3.3.2 简单的线性规划问题(二)教师版 -

合集下载

《3.3.2简单的线性规划问题》教案

《3.3.2简单的线性规划问题》教案

简单的线性规划学习内容总析线性规划位于不等式和直线方程的结合点上,是培养学生转化能力和熟练运用数形结合能力的重要内容。

这一节的知识内容形成了一条结构紧密的知识链条:以二元一次不等式(组)表示的平面区域为基础,根据实际问题中的已知条件,找出约束条件和目标函数,利用图解法解决简单的线性规划问题。

学情总析本节内容是在学习了直线方程、二元一次不等式(组)所表示的平面区域的基础上,强调应用转化思想和数形结合思想来解决线性规划问题。

三维教学目标知识与技能:①了解线性规划的意义以及约束条件、线性目标函数、可行域、最优解等相关的基本概念;②在巩固二元一次不等式(组)所表示的平面区域的基础上,能从实际优化问题中抽象出约束条件和目标函数,并依据目标函数的几何含义直观地运用图解法求出最优解;③掌握对一些实际优化问题建立线性规划数学模型并运用图解法进行求解的基本方法和步骤。

过程与方法:①培养学生的形象思维能力、绘图能力和探究能力;②强化数形结合的数学思想方法;③提高学生构建(不等关系)数学模型、解决简单实际优化问题的能力。

情感、态度与价值观:①在感受现实生产、生活中的各种优化、决策问题中体验应用数学的快乐;②在运用求解线性规划问题的图解方法中,感受动态几何的魅力;③在探究性练习中,感受多角度思考、探究问题并收获探究成果的乐趣。

教学重点及应对策略1、教学重点:根据实际优化问题准确建立目标函数,并依据目标函数的几何含义直观地运用图解法求出最优解;2、应对策略:将求目标函数最值问题转化为经过可行域的直线在y轴上的截距的最值问题,然后借助直线方程的知识进行解决。

教学难点及应对策略1、教学难点:①借助线性目标函数的几何含义准确理解线性目标函数在y轴上的截距与z最值之间的关系;②用数学语言表述运用图解法求解线性规划问题的过程。

2、应对策略:在理论解释的同时,可用动画进行演示辅助理解。

教学过程设计。

26-简单的线性规划问题(2)

26-简单的线性规划问题(2)

3.3.2简单的线性规划问题(2)教材分析线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法,广泛地应用于军事作战、经济分析、经营管理和工程技术等方面.简单的线性规划指的是目标函数含两个自变量的线性规划,其最优解可以用数形结合方法求出.简单的线性规划关心的是两类问题:一是在人力、物力、资金等资源一定的条件下,如何使用它们来完成最多的任务;二是给定一项任务,如何合理规划,能以最少的人力、物力、资金等资源来完成. 教科书利用生产安排的具体实例,介绍了线性规划问题的图解法,引出线性规划等概念,最后举例说明了简单的二元线性规划在饮食营养搭配中的应用.本节内容蕴含了丰富的数学思想方法,突出体现了优化思想、数形结合思想和化归思想.课时分配本课时是简单的线性规划问题的第二课时,主要解决的是线性规划的应用问题.教学目标重点: 掌握约束条件、目标函数、可行解、可行域、最优解等基本概念.难点:理解实际问题的能力,渗透化归、数形结合的数学思想.知识点:图解法求线性目标函数的最大值、最小值.能力点:函数与方程、数形结合、等价转化、分类讨论的数学思想的运用.教育点:结合教学内容培养学生学习数学的兴趣和“用数学”的意识.自主探究点:培养学生观察、联想、作图和理解实际问题的能力.考试点:线性规划问题的图解法;寻求有实际背景的线性规划问题的最优解.易错易混点:线性规划问题和非线性规划问题的区分于解决.拓展点:非线性规划问题.教具准备实物投影机和粉笔课堂模式诱思探究一、复习引入简单线性规划问题就是求线性目标函数在线性约束条件下的最优解,无论此类题目是以什么实际问题提出,其求解的格式与步骤是不变的:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域作出可行域;(3)在可行域内求目标函数的最优解.【设计意图】通过复习进一步熟悉解决简单线性规划问题的具体操作程序.二、探究新知请同学们通过完成练习来掌握图解法解决简单的线性规划问题.(1)求2z x y =+的最大值,使式中的x y 、满足约束条件,1,1.y x x y y ≤⎧⎪+≤⎨⎪≥-⎩(2)求35z x y =+的最大值和最小值,使式中的x y 、满足约束条件5315,1,5 3.x y y x x y +≤⎧⎪≤+⎨⎪-≥⎩解:不等式组表示的平面区域如右图所示: 当0,0x y ==时,20z x y =+=, 点(0,0)在直线020l x y +=:上.作一组与直线0l 平行的直线2,l x y t t R +=∈:.可知在经过不等式组所表示的公共区域内的点且平行于l 的直线中,以经过点(2,1)A -的直线所对应的t 最大.所以max 2213z =⨯-=.(2)求35z x y =+的最大值和最小值,使式中的x y 、满足约束条件5315,1,5 3.x y y x x y +≤⎧⎪≤+⎨⎪-≥⎩解:不等式组所表示的平面区域如右图所示.从图示可知直线35x y t +=在经过不等式组所表示的公共区域内的点时,以经过点(2,1)--的直线所对应的t 最小,以经过点917(,)88的直线所对应的t 最大.所以min 3(2)5(1)11z =⨯-+⨯-=-, max 917351488z =⨯+⨯=. 【设计意图】通过反思总结,加强对“数形结合”数学思想的认识,形成学生良好的认知结构.三、运用新知【例1】某工厂生产甲、乙两种产品.已知生产甲种产品1t ,需耗A 种矿石10t 、B 种矿石5t 、煤4t ;生产乙种产品需耗A 种矿石4t 、B 种矿石4t 、煤9t.每1t 甲种产品的利润是600元,每1t 乙种产品的利润是1000元.工厂在生产这两种产品的计划中要求消耗A 种矿石不超过360t 、B 种矿石不超过200t 、煤不超过300t ,甲、乙两种产品应各生产多少(精确到0.1t ),能使利润总额达到最大?解:设生产甲、乙两种产品分别为xt yt 、,利润总额为z 元,那么104300,54200,49360,0,0;x y x y x y x y +≤⎧⎪+≤⎪⎪+≤⎨⎪≥⎪≥⎪⎩目标函数为6001000z x y =+.作出以上不等式组所表示的平面区域,即可行域. 作直线6001000=0l x y +:, 即直线5=0l x y +:3,把直线l 向右上方平移至1l 的位置时,直线经过可行域上的点M ,且与原点距离最大,此时6001000z x y =+取最大值.解方程组54200,49360,x y x y +=⎧⎨+=⎩得M 的坐标为3601000(,)2929. 答:应生产甲产品约12.4t ,乙产品34.4t ,能使利润总额达到最大.【设计意图】通过此题检测学生对已学知识的掌握情况,进一步培养学生的运算能力和准确作图的能力.【例2】在上一节例4中(课本85页例4),若生产1车皮甲种肥料,产生的利润为10000元,若生产1车皮乙种肥料,产生的利润为5000元,那么分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?生:若设生产x 车皮甲种肥料,y 车皮乙种肥料,能够产生的利润z 万元.目标函数0.5z x y =+,可行域如右图:把0.5z x y =+变形为22y x z =-+,得到斜率为2-,在y 轴上截距为2z ,随z 变化的一组平行直线.由图可以看出,当直线22y x z =-+经过可行域上的点M 时,截距2z 最大,即z 最大. 解方程组⎩⎨⎧=+=+104,661518y x y x 得点(2,2)M ,因此当2,2x y ==时,0.5z x y =+取最大值,最大值为3.由此可见,生产甲、乙两种肥料各2车皮,能够产生最大的利润,最大利润为3万元.【设计意图】利用学生感兴趣的例子激发学习动机,通过一道完整的简单线性规划问题,让学生掌握解决简单线性规划问题的基本步骤,培养学生的数学建模意识.同时进一步加深对图解法的认识.四、课堂小结用图解法解决简单的线性规划问题的基本步骤:(1)首先,要根据线性约束条件画出可行域(即画出不等式组所表示的公共区域). (2)设0t ,画出直线0l .(3)观察、分析,平移直线0l ,从而找到最优解.(4)最后求得目标函数的最大值及最小值.以实际问题为背景的线性规划问题其求解的格式与步骤: (1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域作出可行域; (3)在可行域内求目标函数的最优解. 当然也要注意问题的实际意义【设计意图】通过总结,培养学生数学交流和表达的能力,养成及时总结的良好习惯,并将所学知识纳入已有的认知结构.五、布置作业课本第93页习题3.3 B 组1、2、3.拓展作业:某工厂用A 、B 两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A 配件耗时1h ,每生产一件乙产品使用4个B 配件耗时2h ,该厂每天最多可从配件厂获得16个A 配件和12个B 配件,按每天工作8h 计算,该厂所有可能的日生产安排是多少?【设计意图】检测题主要考查学生对本节课重点知识的掌握情况,检查学生能否运用所学知识解决问题的能力;拓展作业的设置是为了教会学生怎样利用资料进行数学学习,同时让学生了解网络是自主学习和拓展知识面的一个重要平台,这是本节内容的一个提高与拓展.六、反思提升1. 让学生参与教学的全过程,成为课堂教学的主体和学习的主人,而教师时刻关注学生的活动过程,不时给予引导,及时纠偏的做法是明显的亮点.2.本节课的不足之处是由于整堂课课堂运算量较大,画图用时较多,后续的内容未能完成.七、板书设计。

简单的线性规划教学设计

简单的线性规划教学设计

简单的线性规划问题教学设计探究问题(二)如图,图中的阴影部分的整点(坐标为整数的点)就代表所有可能的日生产安排现实际的生产安排与数学问题之间的联系,画出相应的图形数学建模思想及作图能力,并能够找到与实际应用问题相关的可行区域探究问题(三)提出新问题:进一步,若生产一件甲产品获利2万元,生产一件乙产品获利3万元,采用哪种生产安排利润最大?设生产甲产品x件,乙产品y件时,工厂获得的利润为z,则z=2x+3y.这样,上述问题就转化为:当x,y满足不等式(1)并且为非负整数时,z的最大值是多少?把z=2x+3y变形为233zy x=-+,这是斜率为23-,在y轴上的截距为3z的直线.当z变化时,可以得到一组互相平行的直线,如图:由于这些直线的斜率是确定的,因此只要给定一个点,(例如(1,2)),就能确定一条直线(2833y x=-+),这说明,截距3z可以由平面内的一个点的坐标唯一确定。

可以看到,直线233zy x=-+与不等式组表示的平面区域的交点满足不等式组,而且当截距3z最大时,z取得最大值.因此,问题可以转化为当直线233zy x=-+与不等式组确定的平面区域有公共点时,在区域内找一个点P,使直线经过点P时以老师讲授为主,学生配合讨论,归纳总结出求解目标函数最优解的方法通过本环节培养学生探索、发现、解决问题的能力,渗透实际应用问题转化为数学问题的数学建模思想,在实际解决问题的过程中培养学生的观察能力,提高数形结合解题的意识,让学生体会到数学无处不在,体会数学之美。

第一部分 第三章 3.3 第二课时 简单的线性规划问题

第一部分  第三章  3.3  第二课时 简单的线性规划问题
返回
5.某公司租赁甲、乙两种设备生产A、B两类产品,甲种设 备每天能生产A类产品5件和B类产品10件,乙种设备每 天能生产A类产品6件和B类产品20件.已知设备甲每天 的租赁费为200元,设备乙每天的租赁费为300元,现该 公司至少要生产A类产品50件,B类产品140件,所需租 赁费最少为__________元.
3.3
第 三 章
二元 一次 不等 式组
第二 课时
简单
不 等 式
与简 单的 线性 规划
的线 性规 划问 题
问题
理解教材新知 把握热点考向 应用创新演练
考点一 考点二 考点三
返回
返回
第二课时 简单的线性规划问题 返回
返回
现在是信息时代,广告可以给公司带来效益.某公 司计划在甲、乙两个电视台做总时间不超过300分钟的 广告,广告总费用不超过9万元,甲、乙两个电视台的 收费标准分别为500元/分钟和200元/分钟. 问题1:设在甲、乙两个电视台做广告的时间分别为x分 钟,y分钟,试ห้องสมุดไป่ตู้出满足条件的不等关系.
答案:9
返回
2.在如下图所示的可行域内(阴影部分且包括边界), 目标函数z=x-y,则使z取得最小值的点的坐标 为____________.
解析:对直线y=x+b进行平移,注意b越大,z越 小故,四个点中,过点A(1,1)时 z取最小值0. 答案:(1,1)
返回
返回
[例 2]
0≤x≤1 (2011·苏 北 四 市 三 调 )在 约 束 条 件 0≤y≤2 2y-x≥1
返回
[一点通] 解答线性规划应用题的一般步骤: (1)审题——仔细阅读,对关键部分进行“精读”,准 确理解题意,明确有哪些限制条件,起关键作用的变量 有哪些,由于线性规划应用题中的量较多,为了理顺题 目中量与量之间的关系,有时可借助表格来理顺. (2)转化——设元.写出约束条件和目标函数,从而 将实际问题转化为数学上的线性规划问题. (3)求解——解这个纯数学的线性规划问题. (4)作答——就应用题提出的问题作出回答.

高中数学五第三章3.3.2 简单的线性规划问题(第2课时)【教案】

高中数学五第三章3.3.2 简单的线性规划问题(第2课时)【教案】

3。

3。

2简单线性规划问题(第2课时)一、教学目标1.知识目标:1、在应用图解法解题的过程中培养学生的观察能力、理解能力;2、在变式训练的过程中,培养学生的分析能力、探索能力;3、会用线性规划的理论和方法解决一些较简单的实际问题。

2.能力目标: 1、了解线性规划的意义,了解线性约束条件、线性目标函数、可行解、可行域和最优解等概念;2、理解线性规划问题的图解法;3、会利用图解法求线性目标函数的最优解;4、让学生体验数学来源于生活,服务于生活,体验应用数学的快乐。

3.情感目标: 1、培养学生学习数学的兴趣和“用数学"的意识,激励学生创新,鼓励学生讨论,学会沟通,培养团结协作精神;2、让学生学会用运动观点观察事物,了解事物之间从一般到特殊、从特殊到一般的辨证关系,渗透辩证唯物主义认识论的思想。

二、教学重点与难点:重点:1、画可行域;在可行域内,用图解法准确求得线性规划问题的最优;2、解经历从实际情境中抽象出简单的线性规划问题的过程,提高数学建模能力和意识。

难点:1、建立数学模型.把实际问题转化为线性规划问题;2、在可行域内,用图解法准确求得线性规划问题的最优解.三、教学模式与教法、学法教学模式:采用探究教学法,通过“猜想,验证,证明”来探究二元一次不等式(组)表示的平面区域,并通过讲练结合巩固所学的知识。

使用多媒体辅助教学.教师的教法:利用多媒体辅助教学,突出活动的组织设计与方法的引导.“抓三线”,即(一)知识技能线(二)过程与方法线(三)能力线。

“抓两点”,即一抓学生情感和思维的兴奋点,二抓知识的切入点.学法:突出探究、发现与交流.学法设计:引导学生通过主动参与、合作探讨学习知.来源:学四、教学过程:数学教学是数学活动的教学。

因此,我将整个教学过程分为以下六个教学环节:1、创设情境,提出问题;2、分析问题,解决问题,3、复习概念,回顾方法;4、实际应用,强化思想;5、自主思考,归纳总结;6、布置作业,巩固提高._五、教学过程设计①画出了可行域后用闪动的方式加以强调;②拖动直线l 平移,平移过程中可以显示z 值的大小变化。

人教版高中数学必修五第3章 3.3 3.3.3 简单的线性规划问题(二) 课件

人教版高中数学必修五第3章 3.3 3.3.3 简单的线性规划问题(二) 课件

(x+2)2+y2=1 上,那么|PQ|的最小值是( A )
A.1
B.2
2 C.
310-1
2 10 D. 3
2x+5y≥10, 4.已知 x,y 满足约束条件2x-3y≥-6, 则 z=x2+y2
2x+y≤10,
100 的最小值为______2_9_____.
题型3 非线性目标函数(面积)
|3x+4y+5| (3)
表示点
P(x,y)与_直__线__3_x+__4_y_+__5_=__0_的距离.
5
题型1 非线性目标函数(斜率) 例1:求 z= yx++11的最大值,其中 x,y 满足约束条件
思维突破:把所求问题看成区域上的点与点(-1,-1)连 线的斜率.
自主解答:作出不等式组表示的可行域如图 D18.
图D23
例 4:若不等式组xx≥ +03, y≥4, 3x+y≤4
所表示的平面区域被直线
y=kx+43分为面积相等的两部分,则 k 的值是( )
欢迎来到二)
1.进一步了解线性规划的意义,了解线性约束条件、线性 目标函数、可行解、可行域、最优解等基本概念.
2.掌握线性规划问题的图解法,会用图解法求目标函数的 最大值、最小值.
3.训练数形结合、化归等常用思想,培养和发展数学应用 意识.
非线性目标函数.
当把 z 看作常数时,它表示点(x,y)与点(-1,-1)所在直
线的斜率,点(x,y)在可行域内.因此当点(x,y)是点 A 时,斜
率 z 最大.
∵点 A 为直线 y=11 与 y 轴的交点,
∴点 A 的坐标为(0,11).
∴zmax=101++11=12.
图 D18
对形如 z=acxy++db(ac≠0)型的目标函数,可先变 形为 z=ac·yx- -- -badc的形式,将问题化为可行域内的点(x,y)与 -dc,-ba连线斜率的ac倍的范围、最值等.

简单线性规划问题2

简单线性规划问题2
简单的线性规划问题
例1(配餐问题)
营养学家指出,成人日常饮食每天至少要摄入 0.075kg碳水化合物,0.06ห้องสมุดไป่ตู้g蛋白质和0.06kg脂肪。现 有A,B两种食物,在每千克A中含0.105kg碳水化合物, 0.07kg蛋白质、0.14kg脂肪,花费为28元,在每千克B 中含0.105kg碳水化合物, 0.14kg蛋白质,0.07kg脂肪, 花费为21元,为了满足营养学家指出的日常 要求,同时使花费最低,需要同时食用食物A和食物B多
② 174xx174
y y

6 6

x0
y 0
4 7
3 7
2 7
1 7
0
1 2 3 4 5 6x
7 7 7 7 77
14x 7 y 6 7x 7 y 5
7x 14 y 6
y 设z=28x+21y,求z的最小值。 第一步:点(x,y)在此
6
平面区域内运动时,如何
7
求z=28x+21y的最小值。
5 7
4
7
M
3 7
2 7
第二步:由z=28x+21y得:
y

4x 3
z 21
,当这族
直线与此平面区域有公共 点,求z的最小值。
1 7
N
第三步:在区域内找一点,
使直线经过该点时在y轴
上的截距最小。
0
1 2 3 4 56x
7 7 7 7 77
14x 7 y 6 7x 7 y 5 7x 14 y 6
研一研·问题探究、课堂更高效
例 2 要将两种大小不同的钢板截成 A、B、C 三种规格,每张 钢板可同时截得三种规格的小钢板的块数如下表所示:

3.3.2简单的线性规划问题

3.3.2简单的线性规划问题

食物∕㎏ A B
碳水化合物∕㎏ 0.105 0.105
蛋白质∕㎏ 0.07 0.14
脂肪∕㎏ 0.14 0.07
解:设每天食用X㎏食物A,Y㎏食物B,总成本为z,那么
0.105 x 0.105 y 0.075 0.07 x 0.14 y 0.06 0.14 x 0.07 y 0.06 x0 y0
四个步骤
图解法 目 标 函 数
三 个 转 化
平移找解法
常用方法
最优整数解
调整优值法
距离,斜率等
最优解
四个步骤:
寻找平行线组的 最大(小)纵截距
1。画(画可行域) 2。作(作z=Ax+By=0时的直线L 。) 3。移(平移直线L 。寻找使纵截距取得最值时的点) 4。答(求出点的坐标,并转化为最优解)
小结:
列表
Байду номын сангаас
实际问题
作 答
设出变量
寻找约束条件 建立目标函数
转化
线性规划问题
建模
最优解
调 整
若生产一件甲产品获利2万元,生产一件乙产品获利3 万元,采用那种生产安排利润最大?
y
4 3 2 1
o
1
2
3
4
8
x
X+2y-8=0
设工厂获得的利润为z,则z=2x+3y 2 z y x 3 3
y
4 3
M
o
4
8
x
简单的线性规划问题
关于变量x、y的一次不等式,称为线性约束条件。 求最大值或求最小值的的函数称为目标函数,因为它是 关于变量x、y的一次解析式,又称线性目标函数。 在线性约束条件下求线性目标函数的最大值或最小值问 题,统称为线性规划问题。 y 可行解 4 满足线性约束的解 可行域 最优解 (x,y)叫做可行解。 由所有可行解组成的 集合叫做可行域。

简单的线性规划问题

简单的线性规划问题

三、新知建构,典例分析
某工厂用A,B两种配件生产甲,乙两种产品, 每生产一件甲种产品使用4个A配件耗时1h, 每生产一件乙种产品使用4个B配件耗时2h, 该厂每天最多可从配件厂获得16个A配件和 12个B配件,按每天工作8小时计算,该厂所有 可能的日生产安排是什么?
若生产1件甲种产品获利2万元,生产1 件乙 种产品获利3万元,采用哪种生产安排利润最大?
x2y 8
44
x y
16 12
象这样关于x,y一次不等 式组的约束条件称为 线性约束条件
x
0
Z=2x+3y称为目标函数,(因这里 目标函数为关于x,y的一次式,又
y 0
称为线性目标函数
在线性约束下求线性目标函数 的最值问题,统称为线性规划,
满足线性约束的解(x,y)叫做可行解, 所有可行解组成的集合叫做可行域 使目标函数取得最值的可行解叫做这个 问题的最优解
y4x z 3 28
z 28 是直线在y轴上
的截距,当截距最
5/7 M
小时,z的值最小。 3/7
3、移
如图可见,当直线z= 28x+21y 经过可行 域上的点M时,纵截距 最小,即z最小。
o
3/7
y4x 3
/ 57 6/7 x
4、求 M点是两条直线的交点,解方程组
7 x 7 y 5
14x 7 y 6
二、新课引入,任务驱动
1、二元一次不等式表示哪个平面区域的判断方法:
“直线定界、特殊点定域”
2、二元一次不等式组表示的平面区域
各个不等式所表示的平面区域的公共部分
二、新课引入,任务驱动
通过本节的学习你能掌握简单的线性规 划问题的解法及步骤吗?
三、新知建构,典例分析

3.3.2简单线性规划(1_2)--上课用

3.3.2简单线性规划(1_2)--上课用
2、画出Z=2x+y对应的 方程0=2x+y的图像
y-x=0
5
4、 根据0=2x+y平移到 区域的最后一个点时有 最大(小)值
3、根据b的正负值判断向上向下 平移时Z的增减性, 1 O
1 A(2,-1)
5
x
y+1=0
B(-1,-1)
-1
x+y-1=0
x - y 0 1 、 画出x y - 1 0区域 y y 1 0
使 式中,的x、y满足约束条件:
3 z z y x , 为直线3x 5 y z 0 5 5 5 的纵截距
5 x 3 y 15 y x 1 x 5 y 3
5x+3y=15 y y=x+1
5
B(3/2,5/2)
1
X-5y=3 x
O
-1
1
5
A(-2,-1)
B.z=5x+3y D.z=3x+5y
答案:A
第31页
高考题练习:
x y≥2, 1.(2009 浙江)若实数x, y满足不等式组 2 x y≤4, x y≥0, 则2x 3y的最小值是 ________ .
答案:4
第32页
解析:作出可行域如下图. 作直线l:2x+3y=0,平移l,当l过点A(2,0)时,2x+3y有最小值4.
D.5
z=5×1+0=5.
答案:D
第34页
则z x 2y的最大值为
A.4 答案:B B.3 C.2
y≤1, 3.(2010 全国Ⅰ若变量 ) x、y满足约束条件 x y≥0, x y 2≤0,

高中数学 同步教学 简单的线性规划问题

高中数学 同步教学 简单的线性规划问题

x (1)
2
率的 2 倍,
因为 kQA= 7 ,kQB= 3 ,所以 z 的取值范围是[ 3 , 7 ].
48
42
方法技巧 与二元一次不等式(组)表示的平面区域有关的非线性目标函数 的最值问题的求解,一般要结合给定代数式的几何意义来完成.
常 见 代 数 式 的 几 何 意 义 :(1) x2 y2 表 示 点 (x,y) 与 原 点 (0,0) 的 距
4.给定下列命题:在线性规划中,
①最优解指的是使目标函数取得最大值的变量x或y的值;
②最优解指的是目标函数的最大值或最小值;
③最优解指的是使目标函数取得最大值或最小值的可行域;
④最优解指的是使目标函数取得最大值或最小值的可行解.
其中正确命题的序号是
.
解析:因为最优解是使目标函数取得最大值或最小值的可行解,即满足 线性约束条件的解(x,y),它是一个有序实数对,所以①②③均错,④正确. 故填④. 答案:④
变式探究:在本例的约束条件下,求z=x2+y2+2x的最大值与最小值.
解:z=x2+y2+2x=(x+1)2+y2-1 表示可行域内任意一点(x,y)与点 D(-1,0)距离的平方减去 1,
如图所示,过 D 作 AB 的垂线 DP,垂足为 P,所以|DP|= | 1 0 4 | = 5 = 5 2 ,
(2)简单线性规划问题的解法 在确定线性约束条件和线性目标函数的前提下,用图解法求最优解的步骤 可概括为“画、移、求、答”,即: ① 画 : 在 平 面 直 角 坐 标 系 中 , 画 出 可 行 域 和 直 线 ax+by=0( 目 标 函 数 为 z=ax+by); ②移:平行移动直线ax+by=0,确定使z=ax+by取得最大值或最小值的点; ③求:求出使z取得最大值或最小值的点的坐标(解方程组)及z的最大值或 最小值; ④答:给出正确答案.

3.3.2简单的线性规划问题2

3.3.2简单的线性规划问题2

[规范作答] 设需截第一种钢板 x 张,第二种钢板 y 张. 2x+y≥15, x+2y≥18, 可得 x+3y≥27, x≥0,y≥0.
且 x、y 都是整数,
求目标函数 z=x+y 取最小值时的 x、y.2 分 作可行域如图所示,6 分
18 x= 5 , x + 3 y = 27 , ∵ ∴ 2x+y=15, y=39, 5 平移直线
18 39 ∴A 5 , 5
18 39 z=x+y,可知直线经过点 5 , 5 ,此时
x+y
18 39 57 18 39 =5, 但 5 与 5 都不是整数, 所以可行域内的点 A 5 , 5 不
是最优解.8 分
方法一:平移求解法 首先在可行域内打网格,其次描出
下取得最大值时的最优解只有一个, 则实数 a
的取值范围是________. 解析:
x+y-3≥0 作出线性约束条件2x-y≤0 y≤a
表示的平面
区域, 如图中阴影部分所示.
• 因为取得最大值时的最优解只有一个,所以目 标函数对应的直线与平面区域的边界线不平行, 根据图形及直线的斜率,可得实数 a的取值范 围是[2,+∞). • 答案: [2,+∞)
∴A′(3,3)是最优解. 所以,甲、乙两种药片各用 3 片配餐最好.

已知变量x,y满足约束条件1≤x+y≤4,-2≤x -y≤2.若目标函数z=ax+y(其中a>0)仅在点(3,1) 处取得最大值,则a的取值范围为________.
• 由题目可获取以下主要信息: • ①可行域已知; • ②目标函数z=ax+y(a>0)仅在(3,1)处取得最大 值. • 解答本题可先画出可行域,利用数形结合求解.
• 1 . 用图解法解决线性目标函数的最优解问题的 一般步骤 • (1)画:根据线性约束条件,在直角坐标系中,把 可行域表示的平面图形准确地画出来,可行域可 以是封闭的多边形,也可以是一侧开放的无限大 的平面区域. • (2)移:运用数形结合的思想,把线性目标函数看 成直线系,把目标函数表示的直线平行移动,最 先通过或最后通过的顶点便是所需要的点. • (3)求:解方程组求最优解,进而求出目标函数的 最大值和最小值.

简单的线性规划问题(二)

简单的线性规划问题(二)

3 .在△ ABC 中,三顶点坐标为 A (2,4) , B(-1,2),C(1,0),点P(x,y)在△ABC内部 及边界运动,则z=x-y的最大,最小值分 别是 ( ) A.3,1 B.-1,-3 C.1,-3 D.3,-1

解析:本题运用线性规划问题的图象解 法.只需画出约束条件对应的可行域,即 一个封闭的三角形区域(含边界),再平移直 线x-y=0使之经过可行域,观察图形,找 出动直线纵截距最大时和最小时经过的点, 然后计算可得答案. 答案:C
x-y=-1, 解方程组 x+y=5,
得 A(2,3),
所以 zmin=2×2-3×3=-5. 当直线经过点 B 时, 直线的纵截距最小, 此时 z 最大.
x-y=3, 解方程组 x+y=1,
得 B(2,-1),
所以 zmax=2×2-3×(-1)=7. 所以 2x-3y 的取值范围是[-5,7]
[点评] 对于线性规划中的最优整数解的问 题,当解方程组得到的解不是整数解时, 可用下面的方法求解: ①平移直线法:先在可行域内打网格,再 描整点,平移直线 l ,最先经过或最后经过 的整点坐标是整点最优解. ②检查优值法:当可行域内整点个数较少 时,也可将整点坐标逐一代入目标函数求 值,经比较得出最优解. ③调整优值法:先求非整点最优解及最优 值,再借助不定方程知识调整最优值,最
[解] 设隔出大房间 x 间,小房间 y 间,获得收 益为 z 元,则
18x+15y≤180, 1000x+600y≤8000, x≥0,y≥0,且x,y∈N, 6x+5y≤60,① 即5x+3y≤40,② x≥0,y≥0,且x,y∈N.
目标函数为 z=200x+150y, 画出可行域如右图 8 所示.

3.3.2 简单的线性规划问题(二)

3.3.2 简单的线性规划问题(二)

巩固练习一
咖啡馆配制两种饮料.甲种饮料每杯含奶粉9g 、咖啡4g、糖 3g,乙种饮料每杯含奶粉4g 、咖啡5g、糖10g.已知每天原料 的使用限额为奶粉3600g ,咖啡2000g 糖3000g,如果甲种饮 料每杯能获利0.7元,乙种饮料每杯能获利1.2元,每天在原料 的使用限额内饮料能全部售出,每天应配制两种饮料各多少 杯能获利最大? 解:将已知数据列为下表:
教师年薪 万元
2/人
2/人
初中
高中
分别用数学关系式和图形表示上述限制条件。若 根据有关部门的规定,初中每人每年可收学费1600 元,高中每人每年可收学费2700元。那么开设初中 班和高中班多少个?每年收费的学费总额最多?
解:设开设初中班x个,高中班y个。因办学规模以 20~30个班为宜,所以, 20≤x+y≤30
小结
巩固练习二
某厂拟生产甲、乙两种适销产品,每件销售收入分 别为3000元、2000元,甲、乙产品都需要在A、B两 种设备上加工,在每台A、B上加工1件甲所需工时分 别为1h、2h,A、B两种设备每月有效使用台数分别 为400h和500h。如何安排生产可使收入最大? 设每月生产甲产品x件,生产乙产品y件,每月收 入为z,目标函数为Z=3x+2y,满足的条件是
y _
目标函数为:z =0.7x +1.2y
把直线l向右上方平移至l1的位置时, _00 4 直线经过可行域上的点C,且与原点 3 _00 距 离最大, 此时z =0.7x +1.2y取最大值 7 _ x + 12 y = 0 解方程组
C _ ( 200 , 240 ) 3 _ x + 10 y = 3000
由图可以看出,当直线经过可行域上的点M时, 截距2z最大,即z最大。 容易求得M点的坐标为 (2,2),则Zmin=3

3.3.3简单的线性规划问题(2)

3.3.3简单的线性规划问题(2)

3.3.3简单的线性规划问题(2)
一、学习目标
1.通过本节学习,能解决与线性规划相关的实际问题,学会从实际情境中抽象出二元线性规划的模型;
2.培养学生观察、联想以及作图能力,渗透集合以及数形结合的数学思想。

教学重点、难点 :从实际问题中抽象出线性规划问题的模型。

二、课前自学
在约束条件⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+0
921432y x y x y x 下,求目标函数的S =3x +2y 的最大值,
并求出此时的x ,y 的取值.
三、问题探究
例1.投资生产A 产品时,每生产100吨需要资金200万元,需场地200平方米,可获利润300万元;投资生产B 产品时,每生产100米需要资金300万元,需场地100平方米,可获利润200万元.现某单位可使用资金1400万元,场地900平方米,问:应作怎样的组合投资,可获利最大?
例2.某运输公司向某地区运送物资,每天至少运送180t. 该公司有8辆载重为6t的A型卡车与4辆载重为10t的B型卡车,有10名驾驶员。

每辆卡车每天往返次数为A型车4次,B型车3次。

每辆卡车每天往返的成本费A型车320元,B型车为504元。

试为该公司设计调配车辆方案,使公司花费的成本最低。

四、反馈小结
反馈:必修五P86 练习4
1.某人承揽一项业务,需做文字标牌4个,绘画标牌6个。

现有两种规格原料,甲规格每张3平方米,可做文字标牌1个,绘画标牌2个;乙种规格每张2平方米,可做文字标牌2个,绘画标牌1 个。

求两种规格的原料各用多少张,才能使总的用料面积最小?
小结。

高中数学3.3.2-2简单的线性规划问题(第二课时)复习试题

高中数学3.3.2-2简单的线性规划问题(第二课时)复习试题

课时作业(二十七)1.如果实数x ,y 满足条件⎩⎨⎧x -y +1≥0,y +1≥0,x +y +1≤0,那么2x -y 的最大值为()A .2B .1C .-2D .-3答案 B解析 如图所示可行域中,2x -y 在点C 处取得最大值,即在C(0,-1)处取得最大值,最大值为1.2.若实数x ,y 满足不等式组⎩⎨⎧x +3y -3≥0,2x -y -3≤0,x -my +1≥0且x +y 的最大值为9,则实数m=( ) A .-2 B .-1 C .1 D .2答案 C解析 如图,设x +y =9,显然只有在x +y =9与直线2x -y -3=0的交点处满足要求,解得此时x =4,y =5,即点(4,5)在直线x -my +1=0上,代入得m =1.3.已知x ,y ∈Z ,则满足⎩⎨⎧x -y ≥0,x +y ≤5,y ≥0的点(x ,y)的个数为( ) A .9 B .10 C .11 D .12答案 D解析 画出不等式组对应的可行域,共12个点.4.若实数x 、y 满足⎩⎨⎧x -y +1≤0,x>0,则yx 的取值范围是( )A .(0,1)B .(0,1]C .(1,+∞)D .[1,+∞)答案 C解析 在平面内作出x 、y 满足的可行域,设P(x ,y)为可行域内任一点,则直线PO 的斜率k PO =y x ,由数形结合得,k PO >1,故yx 的取值范围是(1,+∞),选C.5.在如下图所示的可行域内(阴影部分且包括边界),目标函数z =x -y ,则使z 取得最小值的点的坐标为( )A .(1,1)B .(3,2)C .(5,2)D .(4,1)答案 A解析 对直线y =x +b 行平移,注意b 越大,z 越小.6.设变量x ,y 满足约束条件⎩⎨⎧x +2y ≥2,2x +y ≤4,4x -y ≥-1,则目标函数z =3x -y 的取值范围是( ) A .[-32,6]B .[-32,-1]C .[-1,6]D .[-6,32]答案 A解析 利用线性规划的知识求解.作出不等式组表示的可行域,如图阴影部分所示,作直线3x -y =0,并向上、下平移,又直线y =3x -z 的斜率为3.由图像知当直线y =3x -z 经过点A(2,0)时z 取最大值6,当直线y =3x -z 经过点B(12,3)时,z 取最小值-32.∴z =3x -y 的取值范围为[-32,6].故选A.7.某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如下表菜的种植面积(单位:亩)分别为( ) A .50,0 B .30,20 C .20,30 D .0,50答案 B解析 设黄瓜的种植面积为x 亩,韭菜的种植面积为y 亩,则由题意知其满足的条件为⎩⎨⎧x +y ≤50,1.2x +0.9y ≤54,x ≥0,y ≥0,化简得⎩⎨⎧x +y ≤50,4x +3y ≤180,x ≥0,y ≥0.目标函数z =0.55×4x +0.3×6y -1.2x -0.9y =x +0.9y.目标函数z =x +0.9y 的几何意义是直线x +0.9y -z =0在x 轴上的截距,由图可知当直线经过点B(30,20)时,目标函数z =x +0.9y 取得最大值. 8.已知以x ,y 为自变量的目标函数ω=kx +y(k>0)的可行域如下图阴影部分(含边界),若使ω取最大值时的最优解有无穷多个,则k 的值为( ) A .1B.32C .2D .4答案 A解析 目标函数可变形为y =-kx +ω,又∵k>0,结合图像可知,当ω最大时,-k =k DC =4-22-4=-1.即k =1.9.已知x ,y满足约束条件⎩⎨⎧x ≥0,y ≥0,x +y ≥1,则(x +3)2+y2的最小值为( ) A.10 B .2 2 C .8 D .10答案 D解析 画出可行域(如图所示).(x +3)2+y 2即点A(-3,0)与可行域上点(x ,y)间距离的平方.显然|AC|长度最小,所以|AC|2=(0+3)2+(1-0)2=10.故选D.10.点P(1,a)到直线x -2y +2=0的距离为355,且P 在3x +y -3>0表示的区域内,则a =________. 答案 3 解析|1-2a +2|5=355,∴a =0或3.又点P 在3x +y -3>0表示区域内,∴3+a -3>0,∴a>0,∴a =3.11.在坐标平面内,点的纵、横坐标都是整数时,称该点为整点,则由不等式组⎩⎨⎧x +y ≤2,x -y ≥-2,y ≥0所表示的区域内整点的个数是________.答案 9解析 首先画出不等式组表示的平面区域(如图),再用打网格法找出区域内整点,部分靠近边界的点代入验证,共9个点.12.记不等式组⎩⎨⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域为D.若直线y =a(x +1)与D 有公共点,则a 的取值范围是________. 答案 [12,4]解析 作出题中不等式组表示的可行域如图中阴影部分所示.∵直线y =a(x +1)过定点C(-1,0),由图并结合题意可知k BC =12,k AC =4,∴要使直线y =a(x +1)与平面区域D 有公共点,则12≤a ≤4.13.已知变量x ,y 满足约束条件⎩⎨⎧x -y +2≥0,x +y -4≥0,2x -y -5≤0,求:(1)z =x 2+y 2-10y +25的最小值; (2)z =2y +1x +1的取值范围. 解析 (1)作出可行域如图,计算得点A(1,3),B(3,1),C(7,9).z =x 2+(y -5)2,表示可行域内任一点(x ,y)到点M(0,5)的距离的平方. 过点M 作AC 的垂线,易知垂足N 在AC 上,故|MN|=|0-5+2|1+(-1)2=32=322, ∴|MN|2=(322)2=92,∴z 的最小值为92. (2)z =2·y -(-12)x -(-1),表示可行域内的点(x ,y)与定点Q(-1,-12)连线的斜率的2倍. 连接QA ,QB.∵k QA =74,k QB =38,∴z 的取值范围是[34,72].14.制订投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目.根据预测,甲、乙项目可能的最大盈利率分别为100%和50%,可能的最大亏损率分别为30%和10%.投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元,问投资人对甲、乙两个项目各投资多少万元,才能使可能的盈利最大? 解析 设投资人分别用x 万元,y 万元投资甲、乙两个项目,由题意知⎩⎨⎧x +y ≤10,0.3x +0.1y ≤1.8,x ≥0,y ≥0.目标函数z =x +0.5y.上述不等式组表示的平面区域如图所示,阴影部分(含边界)即可行域.作直线l 0:x +0.5y =0,并作平行于直线l 0的一组直线x +0.5y =z ,z ∈R ,与可行域相交,其中有一条直线经过可行域上的M 点,且与直线x +0.5y =0的距离最大,这里M 点是直线x +y =10和0.3x +0.1y =1.8的交点. 解方程组⎩⎨⎧x +y =10,0.3x +0.1y =1.8,得x =4,y =6.此时z =1×4+0.5×6=7(万元). ∵7>0,∴当x =4,y =6时z 取得最大值.所以,投资人用4万元投资甲项目,6万元投资乙项目,才能在确保亏损不超过1.8万元的前提下,使可能的盈利最大.15.有一批同规格的钢条,每根钢条有两种切割方式,可截成长度为a 的钢条2根,长度为b 的钢条1根;或截成长度为a 的钢条1根,长度为b 的钢条3根.现长度为a 的钢条至少需要15根,长度为b 的钢条至少需要27根.问:如何切割可使钢条用量最省?解析 设按第一种切割方式需钢条x 根,按第二种切割方式需钢条y 根,根据题意得约束条件是⎩⎨⎧2x +y ≥15,x +3y ≥27,x>0,x ∈N ,y>0,y ∈N ,目标函数是z =x +y ,画出不等式组表示的平面区域如图阴影部分.由⎩⎨⎧2x +y =15,x +3y =27,解得⎩⎨⎧x =3.6,y =7.8. 此时z =11.4,但x ,y ,z 都应当为正整数, 所以点(3.6,7.8)不是最优解.经过可行域内的整点且使z 最小的直线是y =-x +12,即z =12,满足该约束条件的(x ,y)有两个:(4,8)或(3,9),它们都是最优解. 即满足条件的切割方式有两种,按第一种方式切割钢条4根,按第二种方式切割钢条8根;或按第一种方式切割钢条3根,按第二种方式切割钢条9根,可满足要求.1.已知实数x ,y 满足⎩⎨⎧x +2y -5≤0,x ≥1,y ≥0,x +2y -3≥0,则yx 的最大值为________.答案 2解析 画出不等式组⎩⎨⎧x +2y -5≤0,x ≥1,y ≥0,x +2y -3≥0对应的平面区域Ω,y x =y -0x -0表示平面区域Ω上的点P(x ,y)与原点的连线的斜率.A(1,2),B(3,0),∴0≤yx≤2.2.若实数x 、y 满足不等式组⎩⎨⎧y ≥0,x -y ≥0,2x -y -2≥0,则ω=y -1x +1的取值范围是()A .[-1,13]B .[-12,13]C .[-12,+∞)D .[-12,1)答案D解析 所求问题转化为求动点(x ,y)与定点(-1,1)连线的斜率问题.不等式组表示的可行域如图所示.目标函数ω=y -1x +1表示阴影部分的点与定点(-1,1)的连线的斜率,由图可见,点(-1,1)与点(1,0)连线的斜率为最小值,最大值趋近于1,但永远达不到,故-12≤ω<1.3.若目标函数z =x +y +1在约束条件⎩⎨⎧x +y -2≤0,x -y +2≤0,y ≤n ,x ≥-3下取得最大值的最优解有无穷多个,则n 的取值范围是________. 答案 n>2解析先根据⎩⎨⎧x +y -2≤0,x -y +2≤0,x ≥-3作出如图所示阴影部分的可行域,欲使目标函数z=x +y +1取得最大值的最优解有无穷多个,需使目标函数对应的直线平移时达到可行域的边界直线x +y -2=0,且只有当n>2时,可行域才包含x +y -2=0这条直线上的线段BC 或其部分.4.某企业生产甲、乙两种产品,已知生产每吨甲产品要用A 原料3吨,B 原料2吨;生产每吨乙产品要用A 原料1吨,B 原料3吨,销售每吨甲产品可获得利润5万元,每吨乙产品可获得利润3万元.该企业在一个生产周期内消耗A 原料不超过13吨,B 原料不超过18吨.那么该企业可获得最大利润是( ) A .12万元B .20万元C .25万元D .27万元答案 D解析 设生产甲产品x 吨,生产乙产品y 吨,获得利润为z ,则有下列关系:则有⎩⎨⎧ y>0, 3x +y ≤13, 2x +3y ≤18.目标函数z =5x +3y ,作出可行域后(如图所示阴影区域)求出可行域边界上各端点的坐标,可知当x =3,y =4时可获得最大利润为27万元,故选D.。

3.3.3简单的线性规划问题(2)(2015年人教A版数学必修五导学案)

3.3.3简单的线性规划问题(2)(2015年人教A版数学必修五导学案)

2、若点 P 满足 ( x 2 y 1)(x y 3 0) ,求 P 到原点的最小距离.
【课后巩固】
1.一家饮料厂生产甲、乙两种果汁饮料,甲种饮料主要西方是每 3 份李子汁加1 份苹 果汁,乙种饮料的西方是李子汁和苹果汁各一半.该厂每天能获得的原料是 2000 L 李子汁和 1000 L 苹果汁, 又厂方的利润是生产 1L 甲种饮料得 3 元, 生产 1L
课题:3.3.3 简单的线性规划问题(2)导学案
班级: 姓名: 学号: 第 学习小组 【学习目标】 1、 能够将实际问题抽象概括为线性问题; 2、 能用线性规划的知识知识解决实际问题的能力. 【课前预习】 x y 2 2 2 1.已知 x, y 满足 x 2 ,则 x y 的最小值是__________. y 2
4.设实数 x, y 满足不等式组
1 x y 4 . y 2 2 x 3 y 2
(1)求作此不等式组表示的平面区域; (2)设 a 1 ,求函数 f ( x,y) y ax 的最大值和最小值.
例 2、某运输公司向某地区运送物资,每天至少运送 180t .该公司有 8 辆载重为 6t 的 A 型卡车与 4 辆载重为 10t 的 B 型卡车,有 10 名驾驶员.每辆卡车每天往返次 数为 A 型车 4 次,B 型车 3 次. 每辆卡车每天往返的成本费 A 型车为 320 元,B 型车为 504 元.试为该公司设计调配车辆方案,使公司花费的成本最低.
x y 2 0 y 2.设实数 x, y 满足 y 1 ,则 的最大值是__________. x x 4 x y 3 y 1 3.已知 x, y 满足约束条件 x 1 ,则 的最大值是__________. x 1 y 1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.3.2 简单的线性规划问题(二)编制人:高一数学组审核人:【使用说明】:1.课前认真研读课本,完成自主研读学习单设计的问题..2.课堂内限时完成合作探究学习单,书写规范.3.找出疑问和不能独立解决的问题,通过合作探究,教师指导等方式解决.4.课后认真完成反馈巩固学习单.【学习目标】1.准确利用线性规划知识求解目标函数的最值.2.掌握线性规划实际问题中的两种常见类型.※自主研读学习单※※自主研读学习单※2.用图解法解线性规划问题的步骤:(1)分析并将已知数据列出表格;(2)确定线性约束条件;(3)确定线性目标函数;(4)画出可行域;(5)利用线性目标函数(直线)求出最优解;根据实际问题的需要,适当调整最优解(如整数解等).※合作探究学习单※[问题情境]在线性规划的实际问题中,主要掌握两种类型:一是给定一定数量的人力、物力资源,问怎样运用这些资源能使完成的任务量最大,收到的效益最大;二是给定一项任务,问怎样统筹安排,能使完成这项任务耗费的人力、物力资源最小.探究点 线性规划中的最优整数解问题 问题1设变量x ,y 满足条件⎩⎨⎧x +4y ≤11,3x +2y ≤10,x >0,y >0,求z =5x +4y 的最大值及最优解.解 根据约束条件画出可行域如图所示.∵-32<-54<-14,∴当直线z =5x +4y 经过点A ⎝ ⎛⎭⎪⎫95,2310时,z 取到最大值,且z max =5×95+4×2310=1815.问题2 当变量x ,y 满足⎩⎨⎧x +4y ≤11,3x +2y ≤10,x >0,y >0,x ∈Z,y ∈Z时,求z =5x +4y 的最大值及最优解.解 若不考虑x ∈Z,y ∈Z,则当直线经过点A ⎝ ⎛⎭⎪⎫95,2310时,z =1815,∵x ∈Z,y ∈Z,∴z ∈Z.令z =18,则5x +4y =18.∵4y 为偶数,18为偶数,∴5x 为偶数,∴x 为偶数. 结合可行域可知x =2,从而y =2. 经检验(2,2)在可行域内.从而,z max =18,最优解为(2,2).【典型例题】例1 某家具厂有方木料90 m 3,五合板600 m 2,准备加工成书桌和书橱出售.已知生产每张书桌需要方木料0.1 m 3,五合板2 m 2,生产每个书橱需要方木料0.2 m 3,五合板1 m 2,出售一张方桌可获利润80元,出售一个书橱可获利润120元. (1)如果只安排生产书桌,可获利润多少? (2)如果只安排生产书橱,可获利润多少?(3)怎样安排生产可使所得利润最大?(1)设只生产书桌x 个,可获得利润z 元,则⎩⎨⎧0.1x ≤902x ≤600z =80x⇒⎩⎨⎧x ≤900x ≤300⇒x ≤300.所以当x =300时,z max =80×300=24 000(元),即如果只安排生产书桌,最多可生产300张书桌,获得利润24 000元.(2)设只生产书橱y 个,可获得利润z 元,则⎩⎨⎧0.2y ≤901·y ≤600z =120y⇒⎩⎨⎧y ≤450y ≤600⇒y ≤450.所以当y =450时,z max =120×450=54 000(元),即如果只安排生产书橱,最多可生产450个书橱,获得利润54 000元.(3)设生产书桌x 张,书橱y 个,利润总额为z 元,则⎩⎨⎧0.1x +0.2y ≤902x +y ≤600x ≥0y ≥0⇒⎩⎨⎧x +2y ≤900,2x +y ≤600,x ≥0,y ≥0.z =80x +120y .在直角坐标平面内作出上面不等式组所表 示的平面区域,即可行域. 作直线l :80x +120y =0, 即直线l :2x +3y =0.把直线l 向右上方平移至l 1的位置时,直 线经过可行域上的点M ,此时z =80x +120y 取得最大值.由⎩⎨⎧x +2y =900,2x +y =600解得点M 的坐标为(100,400). 所以当x =100,y =400时,z max =80×100+120×400=56 000(元).因此,生产书桌100张、书橱400个,可使所得利润最大.小结 利用图解法解决线性规划实际问题,要注意合理利用表格,处理繁杂的数据;另一方面约束条件要注意实际问题的要求,如果要求整点,则用逐步平移法验证.跟踪训练1 某工厂有甲、乙两种产品,按计划每天各生产不少于15吨,已知生产甲产品1吨需煤9吨,电力4千瓦,劳动力3个(按工作日计算);生产乙产品1吨需煤4吨,电力5千瓦,劳动力10个;甲产品每吨价7万元,乙产品每吨价12万元;但每天用煤量不得超过300吨,电力不得超过200千瓦,劳动力只有300个,当每天生产甲产品________吨,乙产品______吨时,既能保证完成生产任务,又能使工厂每天的利润最大. 解析 设每天生产甲产品x 吨,乙产品y 吨,总利润为S 万元,依题意约束条件为⎩⎪⎨⎪⎧9x +4y ≤3004x +5y ≤2003x +10y ≤300x ≥15y ≥15目标函数为S =7x +12y从图中可以看出,当直线S =7x +12y 经过点A 时,直线的纵截距最大,所以S 也取最大值.解方程组⎩⎨⎧4x +5y -200=03x +10y -300=0得A (20,24),故当x =20,y =24时,S max =7×20+12×24=428(万元) 答案 20 24例2 要将两种大小不同的钢板截成A 、B 、C 三种规格,每张钢板可同时截得三种规格所需三种规格成品,且使所用钢板张数最少?分析 解决简单线性规划应用题的关键是(1)找出线性约束条件和目标函数;(2)准确画出可行域;(3)利用几何意义,求出最优解.解 设需截第一种钢板x 张,第二种钢板y 张.⎩⎨⎧2x +y ≥15x +2y ≥18x +3y ≥27x ≥0,y ≥0.作出可行域如图(阴影部分)目标函数为z =x +y ,作出一族平行直线x +y =t ,其中经过可行域内的点且和原点距离最近的直线,经过直线x +3y =27和直线2x +y =15的交点A ⎝ ⎛⎭⎪⎫185,395,直线方程为x +y =575.由于185和395都不是整数,而最优解(x ,y )中,x ,y 必须都是整数,所以可行域内点A ⎝ ⎛⎭⎪⎫185,395不是最优解.经过可行域内的整点且与原点距离最近的直线是x +y =12, 经过的整点是B (3,9)和C (4,8),它们都是最优解.答 要截得所需三种规格的钢板,且使所截两种钢板的张数最少的方法有两种:第一种截法是截第一种钢板3张、第二种钢板9张;第二种截法是截第一种钢板4张、第二种钢板8张.两种方法都最少要截两种钢板共12张.小结 在实际应用问题中,有些最优解往往需要整数解(比如人数、车辆数等),而直接根据约束条件得到的不一定是整数解,可以运用枚举法验证求最优整数解,或者运用平移直线求最优整数解.最优整数解有时并非只有一个,很可能是许多个,应具体情况具体分析.跟踪训练2 某公司招收男职员x 名,女职员y 名,x 和y 需满足约束条件⎩⎨⎧5x -11y ≥-22,2x +3y ≥9,2x ≤11,则z =10x +10y 的最大值是____90____.解析 该不等式组表示平面区域 如图阴影所示,由于x ,y ∈N *,计算区域内与 点⎝ ⎛⎭⎪⎫112,92最近的整点为(5,4), 当x =5,y =4时,z 取得最大值为90.1.画图对解决线性规划问题至关重要,关键步骤基本上是在图上完成的,所以作图应尽可能准确,图上操作尽可能规范.2.在实际应用问题中,有些最优解往往需要整数解(比如人数、车辆数等)而直接根据约束条件得到的不一定是整数解,可以运用枚举法验证求最优整数解,或者运用平移直线求最优整数解.最优整数解有时并非只有一个,应具体情况具体分析.※反馈巩固学习单※一、选择题1.某电脑用户计划使用不超过500元的资金购买单价分别为60元、70元的单片软件和盒装磁盘.根据需要,软件至少买3片,磁盘至少买2盒,则不同的选购方式共有( ) A .5种B .6种C .7种D .8种【答案】:C2.若x 、y 满足约束条件⎩⎨⎧x +y ≥1,x -y ≥-1,2x -y ≤2,目标函数z =ax +2y 仅在点(1,0)处取得最小值,则a 的取值范围是( )A .(-1,2)B .(-4,2)C .(-4,0]D .(-2,4)【答案】:B3.某公司有60万元资金,计划投资甲、乙两个项目,按要求对项目甲的投资不小于对项目乙投资的23倍,且对每个项目的投资不能低于5万元,对项目甲每投资1万元可获得0.4万元的利润,对项目乙每投资1万元可获得0.6万元的利润,该公司正确规划投资后,在这两个项目上共可获得的最大利润为( ) A .36万元B .31.2万元C .30.4万元D .24万元【答案】:B4.某厂生产甲产品每千克需用原料A 和原料B 分别为a 1、b 1千克,生产乙产品每千克需用原料A 和原料B 分别为a 2、b 2千克,甲、乙产品每千克可获利润分别为d 1、d 2元.月初一次性购进本月用的原料A 、B 各c 1、c 2千克,要计划本月生产甲产品和乙产品各多少千克才能使月利润总额达到最大.在这个问题中,设全月生产甲、乙两种产品分别为x 千克、y 千克,月利润总额为z 元,那么,用于求使总利润z =d 1x +d 2y 最大的数学模型中,约束条件为( )A.⎩⎨⎧ a 1x +a 2y ≥c 1,b 1x +b 2y ≥c 2,x ≥0,y ≥0B.⎩⎨⎧ a 1x +b 1y ≤c 1,a 2x +b 2y ≤c 2,x ≥0,y ≥0C.⎩⎨⎧a 1x +a 2y ≤c 1,b 1x +b 2y ≤c 2,x ≥0,y ≥0D.⎩⎨⎧a 1x +a 2y =c 1,b 1x +b 2y =c 2,x ≥0,y ≥0答案 C解析 比较选项可知C 正确.5. 如图所示的坐标平面的可行域内(阴影部分且包括边界),若使目标函数z =ax +y (a >0)取得最大值的最优解有无穷多个,则a 的值为()A.14B.35 C .4 D.53 答案 B解析 由y =-ax +z 知当-a =k AC 时,最优解有无穷多个.∵k AC =-35,∴a =35. 6.某公司有60万元资金,计划投资甲、乙两个项目,按要求对项目甲的投资不小于对项目乙投资的23倍,且对每个项目的投资不能低于5万元,对项目甲每投资1万元可获得0.4万元的利润,对项目乙每投资1万元可获得0.6万元的利润,该公司正确规划投资后,在这两个项目上共可获得的最大利润为( )A .36万元B .31.2万元C .30.4万元D .24万元 答案 B解析 设投资甲项目x 万元,投资乙项目y 万元,可获得利润为z 万元,则⎩⎪⎨⎪⎧x +y ≤60,x ≥23y ,x ≥5,y ≥5,z=0.4x+0.6y.由图象知,目标函数z=0.4x+0.6y在A点取得最大值.∴y max=0.4×24+0.6×36=31.2(万元).7.某加工厂用某原料由甲车间加工出A产品,由乙车间加工出B产品,甲车间加工一箱原料需耗费工时10小时,可加工出7千克A产品,每千克A产品获利40元,乙车间加工一箱原料耗费工时6小时,可加工出4千克B产品,每千克B产品获利50元.甲、乙两车间每天共能完成至多70箱原料的加工,每天甲、乙两车间耗费工时总和不得超过480小时,甲、乙两车间每天总获利最大的生产计划为()A.甲车间加工原料10箱,乙车间加工原料60箱B.甲车间加工原料15箱,乙车间加工原料55箱C.甲车间加工原料18箱,乙车间加工原料50箱D.甲车间加工原料40箱,乙车间加工原料30箱答案 B解析设甲车间加工原料x箱,乙车间加工原料y箱,由题意可知⎩⎨⎧x+y≤70,10x+6y≤480,x≥0,y≥0.甲、乙两车间每天总获利为z=280x+200y.画出可行域如图所示.点M(15,55)为直线x+y=70和直线10x+6y=480的交点,由图象知在点M(15,55)处z取得最大值.8.如图所示,目标函数z=kx-y的可行域为四边形OABC,点B(3,2)是目标函数的最优解,则k的取值范围为()A.⎝⎛⎭⎪⎫23,2 B.⎝⎛⎭⎪⎫1,53C.⎝⎛⎭⎪⎫-2,-23 D.⎝⎛⎭⎪⎫-3,-43答案 C解析y=kx-z.若k>0,则目标函数的最优解是点A(4,0)或点C(0,4),不符合题意.∴k<0,∵点(3,2)是目标函数的最优解.∴k AB ≤k ≤k BC ,即-2≤k ≤-23.9.在如图所示的坐标平面的可行域内(阴影部分且包括边界),目标函数z =x +ay 取得最小值的最优解有无数个,则a 的一个可能值为( )A .-3B .3C .-1D .1答案 A解析 当a =0时,z =x .仅在直线x =z 过点A (1,1)时, z 有最小值1,与题意不符.当a >0时,y =-1a x +za .斜率k =-1a <0,仅在直线z =x +ay 过点A (1,1)时,直线在y 轴的截距最小,此时z 也最小,与目标函数取得最小值的最优解有无数个矛盾.当a <0时,y =-1a x +z a ,斜率k =-1a >0,为使目标函数z 取得最小值的最优解有无数个,当且仅当斜率-1a =k AC .即-1a =13,∴a =-3.10.设实数x ,y 满足不等式组⎩⎨⎧x +2y -5>0,2x +y -7>0,x ≥0,y ≥0且x ,y 为整数.则3x +4y 的最小值是( B ) A .14 B .16 C .17 D .19 解析 作出可行域,如图中阴影部分所示,点A (3,1)不在可行域内,利用网格易得点(4,1)符合条件 ,故3x +4y 的最小值是3×4+4×1=16.11. 在“家电下乡”活动中,某厂要将100台洗衣机运往邻近的乡镇.现有4辆甲型货 车和8辆乙型货车可供使用.每辆甲型货车运输费用400元,可装洗衣机20台;每辆乙型货车运输费用300元,可装洗衣机10台.若每辆车至多只运一次,则该厂所花的最少运输费用为 ( B )A .2 000元B .2 200元C .2 400元D .2 800元 解析 设需使用甲型货车x 辆,乙型货 车y 辆,运输费用z 元, 根据题意,得线性约束条件⎩⎨⎧20x +10y ≥100,0≤x ≤4,0≤y ≤8,求线性目标函数z =400x +300y 的最小值,解得当⎩⎨⎧x =4,y =2时,z min =2 200(元).答案 B二、填空题12.某公司租赁甲、乙两种设备生产A ,B 两类产品,甲种设备每天能生产A 类产品5件和B 类产品10件,乙种设备每天能生产A 类产品6件和B 类产品20件.已知设备甲每天的租赁费为200元,设备乙每天的租赁费为300元,现该公司至少要生产A 类产品50件,B 类产品140件,所需租赁费最少为________元.答案 2 300解析 设需租赁甲种设备x 台,乙种设备y 台,则⎩⎨⎧5x +6y ≥50,10x +20y ≥140,x ∈N *,y ∈N *.目标函数为z =200x +300y .作出其可行域,易知当x =4,y =5时,z =200x +300y 有最小值2 300元.13.某公司招收男职员x 名,女职员y 名,x 和y 需满足约束条件⎩⎨⎧5x -11y ≥-22,2x +3y ≥9,2x ≤11,则z =10x +10y 的最大值是________. 答案 90 解析该不等式组表示平面区域如图阴影所示,由于x ,y ∈N *,计算区域内与点⎝ ⎛⎭⎪⎫112,92最近的整点为(5,4),当x =5,y =4时,z 取得最大值为90.14. 实数x ,y 满足不等式组⎩⎨⎧y ≥0,x -y ≥0,2x -y -2≤0,则ω=y -1x +1的取值范围是________.答案 ⎣⎢⎡⎦⎥⎤-1,13三、解答题15.医院用甲、乙两种原料为手术后的病人配营养餐.甲种原料每10 g 含5单位蛋白质和10单位铁质,售价3元;乙种原料每10 g 含7单位蛋白质和4单位铁质,售价2元.若病人每餐至少需要35单位蛋白质和40单位铁质.试问:应如何使用甲、乙原料,才能既满足营养,又使费用最省?解设甲、乙两种原料分别用10x g 和10y g ,总费用为z ,那么⎩⎨⎧5x +7y ≥35,10x +4y ≥40,x ≥0,y ≥0,目标函数为z =3x +2y ,作出可行域如图所示:把z =3x +2y 变形为y =-32x +z 2,得到斜率为-32,在y 轴上的截距为z2,随z 变化的一族平行直线.由图可知,当直线y =-32x +z 2经过可行域上的点A 时,截距z2最小,即z 最小. 由⎩⎨⎧10x +4y =40,5x +7y =35,得A (145,3), ∴z min =3×145+2×3=14.4.∴甲种原料145×10=28(g),乙种原料3×10=30(g),费用最省.16.某家具厂有方木料90 m 3,五合板600 m 2,准备加工成书桌和书橱出售.已知生产每张书桌需要方木料0.1 m 3,五合板2 m 2,生产每个书橱需要方木料0.2 m 3,五合板1 m 2,出售一张方桌可获利润80元,出售一个书橱可获利润120元.(1)如果只安排生产书桌,可获利润多少? (2)如果只安排生产书橱,可获利润多少? (3)怎样安排生产可使所得利润最大?解(1)则⎩⎨⎧ 0.1x ≤902x ≤600z =80x⇒⎩⎨⎧ x ≤900x ≤300⇒x ≤300. 所以当x =300时,z max =80×300=24 000(元),即如果只安排生产书桌,最多可生产300张书桌,获得利润24 000元. (2)设只生产书橱y 个,可获利润z 元,则⎩⎨⎧0.2y ≤901·y ≤600z =120y⇒⎩⎨⎧y ≤450y ≤600⇒y ≤450.所以当y =450时,z max =120×450=54 000(元),即如果只安排生产书橱,最多可生产450个书橱,获得利润54 000元.(3)设生产书桌x 张,书橱y 个,利润总额为z 元,则⎩⎨⎧0.1x +0.2y ≤902x +y ≤600x ≥0y ≥0⇒⎩⎨⎧x +2y ≤900,2x +y ≤600,x ≥0,y ≥0.z =80x +120y .在直角坐标平面内作出上面不等式组所表示的平面区域,即可行域.作直线l :80x +120y =0,即直线l :2x +3y =0. 把直线l 向右上方平移至l 1的位置时,直线经过可行域上的点M ,此时z =80x +120y 取得最大值.由⎩⎨⎧x +2y =900,2x +y =600解得点M 的坐标为(100,400). 所以当x =100,y =400时,z max =80×100+120×400=56 000(元).因此,生产书桌100张、书橱400个, 可使所得利润最大.17.两类药片有效成分如下表所示,若要求至少提供12毫克阿司匹林,70毫克小苏打,28毫克可待因,问两类药片最小总数是多少?怎样搭配价格最低?解 设A ,B 两种药品分别为x 片和y 片,则有⎩⎨⎧2x +y ≥125x +7y ≥70x +6y ≥28x ≥0,y ≥0,两类药片的总数为z =x +y ,两类药片的价格和为k =0.1x +0.2y . 如图所示,作直线l :x +y =0,将直线l 向右上方平移至l 1位置时,直线经过可行域上一点A ,且与原点最近. 解方程组⎩⎨⎧2x +y =125x +7y =70,得交点A 坐标为⎝ ⎛⎭⎪⎫149,809.结合图形可知,经过可行域内整点且与原点距离最近的直线是x +y =11,经过的整点是(1,10),(2,9),(3,8),因此z 的最小值为11.药片最小总数为11片.同理可得,当x =3,y =8时,k 取最小值1.9,因此当A 类药品3片、B 类药品8片时,药品价格最低.。

相关文档
最新文档