《圆柱的体积》圆柱和圆锥PPT课件三

合集下载

《圆柱和圆锥——圆柱的体积》数学教学PPT课件(3篇)

《圆柱和圆锥——圆柱的体积》数学教学PPT课件(3篇)

V=sh
S h
教学新知
教学新知
试一试:一个圆柱形零件,底面半径是5厘米,高是8厘米。 这个零件的体积是多少立方厘米?
V=sh=5²π×8=628(cm³)
教学新知
练一练:
1.计算圆柱的体积。(单位:cm)
V=sh=4²π×8=401.92(cm³) V=sh=3²π×6=169.56(cm³)
V=sh=1.5²π×0.5×2=7.065(m³)
8.两个底面积相等的圆柱,一个高是4.5分米,体积是81立方分米。另 一个高是3分米,它的体积是多少立方分米?
s=V1÷h1=81÷4.5=18(dm²) V2=sh2=18×3=54(m³)
课堂练习
9.把3个高相等、底面半径都是10厘米的圆柱形盒子叠放在 一起,如图 所示,拿走1个盒子,表面积就减少314平方厘米。每个盒子的体积是 多少立方厘米?
个近似的长方体。拼成的长方体的底面积等于圆柱的(底面积), 高就是圆柱的( 高 )。 (2)用字母V表示圆柱的体积,S表示圆柱的底面积,h表示圆柱的高, 圆柱的体积公式可以写成(V=sh)。 (3)一个圆柱的底面积是0.6平方分米,高是3.5分米,体积是(2.1)立 方分米。
课后习题
2.—根木料如图所示,求这根木料的体积。(单位:m)
2.一根圆柱形木料,底面周长是62.8厘米,高是50厘米。这根木料的体 积是多少?
r=C÷2π=62.8÷6.28=10(cm) V=sh=10²π×50=15700(cm³)
教学新知
例一:完成下面的表格。
底面积/m2
高/m
体积/m3
圆 柱
0.6
1.2
0.25
3
0.72 0.75

人教版六年级数学下册第三单元《圆柱与圆锥》课件共10个精品课件

人教版六年级数学下册第三单元《圆柱与圆锥》课件共10个精品课件

柱的底面直径与高的比。
πd=h d :h = 1 :π
课堂总结
通过这节课的学习, 你有什么收获?
义务教育人教版六年级下册
第3单元 圆柱与圆锥 1.圆 柱
第 5 课时 圆柱的体积
复习导入
填空。 圆柱的侧面积=( 底面周长×高 ) 圆柱的表面积=( 侧面积+底面积×2 ) 长方体的体积=( 长×宽×高 ) 正方体的体积=(棱长×棱长×棱长)
底面 侧面
圆柱的底面都 是圆,并且大 小一样。
底面 圆柱的侧面是曲面。
哪个圆柱比较高?为什么?
底面 O
侧面 高
底面 O 侧面 高
底面 O
底面
圆柱两个底面之间的距离叫做高, 圆柱有无数条高。
动手操作: 如果把一张长方形的硬纸贴在木棒上,快速转
动木棒,想一想,转出来的是什么形状?
转动起来像一个圆柱。
8cm
要解决这个问题,就
是要计算什么?
10cm
杯子的容积
10cm
杯子的底面积: 杯子的容积:
8cm
3.14×(8÷2)2
50.24×10
=3.14×42
=502.4 (cm3 )
=3.14×16
=502.4 (mL)
=50.24 (cm2 )
答:因为502.4大于498,所以杯子能 装下这袋牛奶。
(长方体)
(正方体 )
( 圆柱 )
课堂总结
通过这节课的学习, 你有什么收获?
义务教育人教版六年级下册
第3单元 圆柱与圆锥 1.圆 柱
第 2 课时 圆柱的认识(2)
复习导入
圆柱由哪几部分组成? 有什么特征?
上、下底面:圆 侧面:曲面
探究新知

圆柱和圆锥体积公式推导课件

圆柱和圆锥体积公式推导课件

V=sh V= 兀r2 × h V=兀(d÷2)2 ×h
12平方分米 6 分 米
12×6
7分米
.
3 分 米
3.14 ×32 ×7
3.14 ×(6÷2)2 ×8
A
60
想一想、填一填:
把圆柱体切割拼成近似( ),它们
的( )相等。长方体的高就是圆柱体的
( ),长方体的底面积就是圆柱体的
(
),因为长方体的体积=( 底面积×高
A
111
A
112
A
113
A
114
A
115
A
116
A
117
A
118
A
119
A
120
A
121
A
122
A
123
A
124
A
125
A
126
A
127
A
128
A
129
A
130
A
131
A
132
A
133
A
134
A
135
A
136
A
137
A
138
A
139
A
140
A
1
长方体的体积=长×宽×高
正方体的体积=棱长×棱长×棱长
底面积×高
A
2
A
3
A
4
A
5
A
6
A
7
A
8
A
9
A
10
A
11
A
12
A
13
A
14
A
15

西师版《圆柱的体积》完整1ppt课件

西师版《圆柱的体积》完整1ppt课件
底面半径 底面积
整理版课件
13
如果将这根木料的高锯掉4分
6dm
米,剩下部分的体积是多少?
r: 6÷2=3(分米) S: 3.14×32=28.26(平方分米) h: 10-4=6 (分米) V: 28.26×6=169.56(立方分米)
答:剩下部分的体积是 169.56立方分米。
整理版课件
14
分享收获!
整理版课件
15
作业:
寻找生活中的圆柱形物体,
测量出相关数据,并计算出体积。
整理版课件
16
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
S=60cm2
V=Sh=60X4=240(cm3)
整理版课件
11
3.14 ×0.42×5=2.512(立方米) 答:它的体积是2.512立方米。
整理版课件
12
一个圆柱形瓶子,底面周长是15.5厘米,
高是9厘米,它的体积是多少?(只列式不计算) 3.14×(15.5÷3.14÷2)2 ×9 =体积
六年级数学下册
整理版课件
1
整理版课件
ቤተ መጻሕፍቲ ባይዱ
2
高h

长a
b
棱长a
长方体的体积=长×宽×高 正方体的体积=棱长×棱长×棱长
v长=a b h
v正 =a 3
V=s底 h
整理版课件
3
整理版课件
4
整理版课件
5
整理版课件
6
整理版课件
7
整理版课件
8
整理版课件
9
底面积 高
整理版课件
10
求出下面圆柱的体积。

苏教版六年级下册数学《圆柱的体积》圆柱和圆锥PPT(第3课时)

苏教版六年级下册数学《圆柱的体积》圆柱和圆锥PPT(第3课时)

教学新知
例二:计算圆柱的表面积。(单位:cm)(π取3.14)
S=2π×0.8+2π≈11.304 S=2π×0.5×3.5+2π×0.5²≈12.56
教学新知
例三:一个圆柱形油桶,底面直径是0.6米,高是1米。做这个油桶至少 需要铁皮多少平方米?(得数保留两位小数)
S=2π×0.3×1+2π×0.3²≈2.45(㎡)
能想到一些什么? (2)全部浸入,水面上升9厘米,你又能想到什么?怎样
计算出这个圆钢的体积? (3)这题还可以怎样思考?
教学新知
例一:一个圆柱形水桶的容积是80立方分米,里面装了2/5的水。 已知它的底面积是10平方分米,里面水的深度是多少?
【讲解】根据“水桶的容积是80立方分米”和“里 面装了 2/5的水”这两个条件,我们可以求出水桶 内水的体积,然后用水的体积除以水桶底面积得出 水桶内水的深度。 80× =32(立方分米)……水桶内水的体积 32÷10=3.2(分米)……水桶平均剖成两片,其中一片如图所示。(单位:厘米) (1)剖面面积是多少平方厘米? (2)这片木料的表面积和体积各是多少?
(1)S1=20×12=240(cm²) (2)S2=πrh+πr²+S1=3.14×6×20+3.14×6²+240=792.84(cm²)
V=1/2S3h=1/2×3.14×6²×20=1130.4(cm³)
课后习题
7.把一根长2.4米的圆柱形状的木料锯成4段,表面积增加了 0.18平方米。
这根木料原来的体积是多少立方米?
S=0.18÷6=0.03(m²)
V=sh=0.03×2.4=0.072(m³)
8.一个圆柱高4厘米,底面半径是2厘米。如果将它的底面平均分成若干份,

圆柱圆锥圆台体积和表面积.ppt

圆柱圆锥圆台体积和表面积.ppt

1
1
A.4
B.2
3 C. 6
3 D. 4
[答案] D
[解析]
三棱锥B1-ABC的高h=3,底面积S=S△ABC=
3 4
×12= 43,
则VB1-ABC=13Sh=13×
43×3=
3 4.
5.若一圆柱与圆锥的高相等,且轴截面面积也相等,那
么圆柱与圆锥的体积之比为( )
A.1
1 B.2
3
3
C. 2
D.4
例题解析
命题方向 多面体与旋转体的面积
【例1】圆台的上、下底面半径分别是10 cm和20 cm,它的侧 面展开图的扇环的圆心角是180°,那么圆台的表面积是多少?
命题方向 多面体的体积
[例 2] 长方体相邻三个面的面积分别为 2、3、6 求它的
体积.
[解析] 设长方体的长、宽、高分别为a、b、c则有
据条件得到
1 2
πl2=2π,解得母线长l=2,2πr=πl=2π,r=1所以
该圆锥的体积为:V圆锥=13Sh=13×
22-12π=
3 3 π.
[点评] 本题主要考查空间几何体的体积公式和侧面展开 图.审清题意,所求的为体积,不是其他的量,分清图形在 展开前后的变化;其次,对空间几何体的体积公式要记准记 牢,属于中低档题.
[解析]
三棱台ABC-A1B1C1的上、下底面积之比为4:9.连接 A1B、BC1和AC1,把棱台分为三个棱锥B-A1B1C1,C1- ABC,A1-ABC1.则这三个棱锥体积之比为________.
[答案] 4:9:6
[解析] 如图,设三棱锥B-A1B1C1,C1-ABC,A1- ABC1体积分别为V1、V2、V3,又设棱台的高为h,上、下底面 积分别为S1、S2.依题意,得

圆柱的ppt课件

圆柱的ppt课件

03
圆柱的应用
生活中的圆柱
圆柱形建筑
圆柱形建筑在日常生活中很常见,如 教堂的圆顶、博物馆的圆柱形展厅等 。
圆柱形物品
圆柱形管道
在工业和工程领域,圆柱形管道被广 泛用于输送流体,如水管、气瓶等。
圆柱形的物品也很多,如铅笔、饮料 瓶、灯罩等。
圆柱在数学中的应用
几何学
圆柱是几何学中一个重要的概念,是二维平面与三维空间相交形 成的几何体。
表面积等特性,为实际应用提供理论支持。
物理模拟
03
在物理模拟中,可以使用旋转体来模拟各种物理现象,如流体
动力学、电磁学等。
06
圆柱的习题与解析
基础习题
01
02
03
04
基础习题1:什么是圆柱?
基础习题2:圆柱的表面积如 何计算?
基础习题3:圆柱的体积如何 计算?
基础习题4:如何绘制圆柱的 图形?
进阶习题
圆柱的底面展开
总结词
底面展开是理解圆柱底面面积的关键 步骤,通过这一步骤,可以帮助学生 更好地掌握圆柱的几何性质。
详细描述
在PPT课件中,可以使用图片或动画 来展示圆柱的底面展开。这一展示可 以帮助学生理解底面是一个圆形,并 可以通过测量底面的半径来计算底面 的面积。
圆柱的折叠与复原
要点一
总结词
旋转体
通过旋转一个平面图形(如圆或椭圆)可以得到一个旋转体,而圆 柱就是其中一种旋转体。
圆柱的表面积和体积
计算圆柱的表面积和体积是数学中的重要问题,涉及到积分等数学 知识。
圆柱在物理中的应用
力学
在力学中,圆柱常被用作支撑和 承受重量的结构,如桥墩、电线
杆等。
流体动力学

圆柱与圆锥体表面积及体积10页课件ppt

圆柱与圆锥体表面积及体积10页课件ppt

10分米 0.5分米
0.8米
把一个棱长是8厘米的正方体木块, 加工成一个最大的圆锥体,圆锥的 体积是多少立方厘米?
圆柱与圆锥体表面积及体积
动画演示
求圆柱体的侧面积
圆柱的表面由上、下两个底面和一个侧面组成。
圆柱的表面积=侧面积+两个底面的面积
一个圆柱的高是15厘米,底面半径是 5厘米,它的表面积是多少?
(1)侧面积:2 ×3.14 ×5 ×15=471(平方厘米) (2)底面积:3.14 ×52 =78.5(平方厘米) (3)表面积:471+78.5 × 2=628(平方厘米)
圆锥的体积V等于和它等底等高 的圆柱体积的三分之一
V圆柱=sh
V=
1 3
sh
打谷场上,有一个近似于圆锥的小麦堆, 测得底面直径是4米,高是1.2米。每立方米小 麦约重735千克,这堆小麦大约有多少千克? (得数保留整数)
第一步:求麦堆底面积
每二步:求麦堆的体积
第三步:求小麦重量
返回
4分米
求各圆柱的 体积。
小结:
(1)在实际应用中计算圆柱形物体的表面 积,要根据实际情况计算各部分的面积。
(2)求用料多少,一般采用进一法取近似 值,以保证材料够用。
圆柱体=底面积×高
V=sh =∏r2h
20厘米 25厘米
(1)水桶的底面积:3.14×( 220)2=314(cm2) (2)水桶的容积: 314×25=7850(cm3)

人教版六年级数学下册第三单元圆柱与圆锥——圆柱的体积(三课时)

人教版六年级数学下册第三单元圆柱与圆锥——圆柱的体积(三课时)

净含量:500ml
1. 圆 柱 圆柱的体积(3)
R·六年级下册
一个内直径是8cm的瓶子里, 水的高度是7cm。
想一想,求不规则 的物体的体积,我们通 常会用到什么方法?

圆柱2
圆柱1

瓶子的容积=V水 +V空气 转化
瓶子的容积=V圆柱1+V圆柱2
探索新知
一个底面内直径是8cm的瓶子里,水的高度是 7cm,把瓶盖拧紧,把瓶子倒置、放平,无水部分是 圆柱形,高度是18cm。这个瓶子的容积是多少?
方法一:
30×10×4÷6=200(cm3)=200mL
答:平均每杯倒200毫升。
方法二:
200(cm3)=200mL
高 答:平均每杯倒200毫升。
10.某公园要修一道围墙,原计划用土石35m3。 后来多开了一个厚度为25cm的月亮门(见下图), 减少了土石的用量。现在用了多少立方米土石?

35-3.14×(2÷2)2×(25÷100) =35-0.785 =34.215(立方米)
V =πr2h
3.14×52×3.2=251.2(m3) 答:这个水池能蓄水251.2吨。
课堂小结
同学们,今天的数学课 你们有哪些收获呢?
巩固练习
1.一个圆柱形钢材,底面积是 0.5 dm2, 长是 0.8 dm,这个圆柱形钢材的体积是多少?
0.5×0.8 = 0.4(dm3)
2.和谐村在休闲广场上建了 10 个同样大小的圆柱形花 坛(如图),花坛的底面内直径为 2m,高为 0.6 m,如果 每个花坛里面填土的高度为 0.4 m,这 10 个花坛共需要 填土多少立方米?
3.14×[(10÷2)2-(8÷2)2]×80 =2260.8(cm3) 答:它所用钢材的体积是2260.8cm3。

数学六年级下册圆柱与圆锥3容积第1课时计算容积PPT

数学六年级下册圆柱与圆锥3容积第1课时计算容积PPT
【教材37页练一练第3题】
1米=10分米 V = πr2h = 32×10×3.14 =90×3.14=282.6( dm3 )
282.6dm3 =282.6L 282.6×0.74≈209(千克) 答:这个圆柱形油桶大约能装209千克汽油。
6. 一个圆柱形奶桶,它的底面内直径是40厘米,高是50厘米。
V = πr2h = 102×(25-10)×3.14 = 1500×3.14 = 4710(立方厘米)
4710立方厘米 = 4.71立方分米 = 4.71升 答:这个杯中有4.71升的水。
3. 轩轩家来了两位客人,妈妈冲了800 mL的果汁。如果倒在 底面直径为6 cm,高为12cm的玻璃杯中,轩轩和两位客人各 一杯,够吗?(壁厚忽略不计)
一个保温杯,从外面测量的尺寸如图所示。
(1)这个保温杯的体积是多少立方厘米? (2)已知保温杯壁的厚度是0.8厘米。这个保温杯能装 多少毫升的水?(得数保留整数)
当保温杯装满水时,水的体积就是这个保温杯的容积。
小组讨论
1. 求保温杯的容积与保温杯的体积相同吗?
外高度 18cm
2. 要求保温杯的容积需要知道什么?怎么求?
外高度 18cm
外直径7cm
内直径: 7-0.8×2=5.4(厘米)
内高度: 18-0.8×2=16.4(厘米)
容积: (5.4÷2)2×16.4×3.14 = 119.556×3.14 ≈ 375(立方厘米)体积单位 = 375(毫升) 容积单位
1立方厘米=1毫升
外高度 18cm 外直径7cm
计算容积和计算体积有什么相同点和不同点?
1升水有多少千克?
1000毫升=1000克 1升=1000毫升
容积:375毫升

苏教版六年级下册数学《圆柱和圆锥的认识》圆柱和圆锥PPT电子课件

苏教版六年级下册数学《圆柱和圆锥的认识》圆柱和圆锥PPT电子课件
2.一根圆柱形木料,底面周长是62.8厘米,高是50厘米。这根木料的体 积是多少?
r=C÷2π=62.8÷6.28=10(cm) V=sh=10²π×50=15700(cm³)
教学新知
例一:完成下面的表格。
底面积/m2
高/m
圆 柱
0.6
1.2
0.25
3
体积/m3 0.72 0.75
例二:一个圆柱形零件,底面半径5厘米,高8厘米。这个零件
教学新知
例五:一个圆柱形状的奶粉盒,体积是5024立方厘米,底面 半径是 10厘米。它的高是多少厘米?
【讲解】 底面积×高=圆柱体积, 圆柱的高=圆柱体积÷底面积。圆柱 底面半径为10厘米,则底面积为 102×3.14=314(平方厘米),则圆 柱的高为5024÷314=16(厘米)。
课堂练习
1.填空题。 (1)圆柱体通过切拼,可以转化成近似__长__方___体。圆柱的底
想一想:如果把圆柱的底面平均分成32份、64份……切开后拼成的物 体会有什么变化?
教学新知
想一想:拼成的长方体与原来的圆柱有什么关系?
根据上面的实验和讨论,想一想,可以怎样求圆柱的体积?
圆柱的体积=底面积×高
知识要点
如果用V表示圆柱的体积,S表示圆柱的底面积,
h表示圆柱的高,圆柱的体积公式可以写成:
V=sh=3²π×10=282.6(cm³) 282.6cm³=282.6ml
课后习题
7.—个圆柱形粮囤,从里面量,底面半径是2米,高是2.5米。如果每立 方米稻谷重550千克,这个粮囤大约可装多少吨稻谷?
V=sh=2²π×2.5=31.4(m³) z=31.4×550=17270(kg)=17.27(t)
8.学校有一个圆柱形喷水池,池内底面直径是8米,最多能盛水25.12立 方米。这个水池深是多少米?

圆柱与圆锥ppt模版课件

圆柱与圆锥ppt模版课件

圆锥的体积
圆锥的体积计算公式为:V = (1/3) * π * r^2 * h,其中r是 底面半径,h是圆锥的高。
圆锥的体积由底面圆的面积和 高度共同决定,与斜高无关。
圆锥的体积随底面半径和高的 增大而增大。
圆锥的斜高与底面半径关系
圆锥的斜高计算公式为:l = sqrt(r^2 + h^2),其中r是底面
饮料瓶、帽子和灯罩等。
02 圆柱的几何性质
圆柱的表面积
01
02
03
04
圆柱的表面积由两个底面和一 个侧面组成。
底面是一个圆形,其面积为π × r^2,其中r是底面半径。
侧面是一个矩形,其面积为2 × π × r × h,其中h是圆柱的
高。
因此,圆柱的表面积A = 2 × π × r^2 + 2 × π × r × h。
当圆锥的高固定时,母线随底面半径的增大而增大;当底面半径固定时,母线随高 的增大而增大。
04 圆柱与圆锥的相互关系
圆柱与圆锥的相似性
01
02
03
定义相似
如果一个圆柱和一个圆锥 的底面直径与高之比相等, 则它们是相似的。
面积相似
相似圆柱和圆锥的底面面 积之比等于它们的半径平 方之比,而侧面积之比等 于它们的半径之比。
度。
圆柱与圆锥的应用场景
建筑学
圆柱和圆锥在建筑设计中有广 泛的应用,如柱子、穹顶和拱
门。
工程学
在机械工程中,圆柱和圆锥用 于制造各种零件和结构,如轴 承、齿轮和螺母。
自然界
自然界中存在许多圆柱和圆锥 形状的物体,如树木、植物和 动物的身体结构。
日常生活
在日常生活中,我们经常接触 到圆柱和圆锥形状的物品,如

《圆柱的认识》PPT课件

《圆柱的认识》PPT课件

《圆柱的认识》PPT课件•圆柱基本概念与性质•圆柱表面积计算方法•圆柱体积计算公式及应用目录•典型例题解析与讨论•学生自主操作实践环节•课堂小结与课后作业布置圆柱基本概念与性质圆柱定义及特点圆柱定义圆柱特点底面侧面高030201底面、侧面和高等元素圆柱与长方体关系形状差异01面积与体积计算02应用场景03圆柱表面积计算方法侧面积计算公式推导公式推导圆柱侧面积定义设圆柱底面半径为面展开后矩形的长为底面周长2πr,宽为h。

因此,侧面积注意事项底面积计算方法回顾圆的面积公式圆柱底面积计算注意事项总表面积计算实例演示实例1解法实例2解法圆柱体积计算公式及应用体积计算公式推导过程圆柱体积公式为公式推导实际应用举例分析圆柱形水桶计算水桶能装多少水,需要用到圆柱体积公式。

已知水桶的底面半径和高,即可求出其容积。

圆柱形油罐计算油罐内油的容量,同样需要用到圆柱体积公式。

通过测量油罐的底面半径和高,可以计算出油的容量。

圆柱形零件在机械工程中,经常需要计算圆柱形零件的体积。

已知零件的底面半径和高,即可利用公式求出其体积。

与其他几何体积关系探讨与长方体体积关系与球体体积关系与圆锥体积关系典型例题解析与讨论求表面积或体积类问题01020304例题1解析例题2解析涉及比例关系类问题例题1解析例题2解析例题1解析例题2解析创新题型展示与思路拓展学生自主操作实践环节测量步骤首先使用卷尺或游标卡尺测量圆柱的高度;接着使用直尺或游标卡尺测量圆柱的底面直径。

准备工具卷尺、游标卡尺、直尺等测量工具。

数据记录将测量得到的高度和底面直径数据记录在表格中,以便后续计算使用。

利用工具测量圆柱尺寸计算给定条件下圆柱表面积和体积公式回顾回顾圆柱表面积和体积的计算公式,即表面积=2πrh+2πr²,体积=πr²h。

数据代入将测量得到的圆柱高度和底面直径数据代入公式中进行计算。

结果呈现将计算得到的圆柱表面积和体积结果呈现在表格中,以便后续分析使用。

《圆柱的体积》PPT课件

《圆柱的体积》PPT课件

面测量得到的。)
8cm
杯子的容积。
杯子的容积: 50.24 ×10 =502.4(cm3)
10cm
杯子的底面积: 3.14 ×(8÷2)2
=3.14 ×16 =50.24(cm2)
=502.4(mL) 牛奶的体积: 240×2=480(mL) 502.4>480 答:杯子能装下2袋这样的牛奶。
课堂练习
小明和妈妈出去游玩,带了一个圆柱形保温壶,从里 面量底面直径是8cm,高是15cm。如果两人游玩期间 要喝1L水,带这壶水够喝吗?
保温壶的底面积:
3.14×(8÷2)2 =3.14×16 =50.24(cm2)
保温壶的容积:
50.24×15=753.6(cm3) =0.7536(L)
1L>0.7536L
答:带这壶水不够喝。
课堂练习
一根圆柱形木料底面直径是0.4m,长5m。如果做一张 课桌用去木料0.02m3,这根木料最多能做多少张课桌?
木料的体积:
3.14×(0.4÷2)2×5 =3.14×0.2 =0.628(m3)
“退一”法。
0.628÷0.02=31.4(张)
答:这根木料最多能做31张课桌。
已知底面直径和高求圆柱体积。 V=π(d2 )2h =3.14×(1÷2)2×10 =7.85(立方米) 答:挖出的土有7.85立方米。
探究新知
下图的杯子能不能装下2袋这样的牛奶?(数据是从杯子 里面测量得到的。)
思考:
8cm
1.已知什么?
10cm
2.要求什么?
3.要注意什么?
探究新知
下图的杯子能不能装下2袋这样的牛奶?(数据是从杯子里
)
于土的高度有关。
两个花坛的体积

人教版小学数学六年级下册《第三单元圆柱与圆锥:3.圆柱的体积》PPT1

人教版小学数学六年级下册《第三单元圆柱与圆锥:3.圆柱的体积》PPT1
169.56立方分米。
判断:
1、圆柱的体积比表面积大。( ) ×
2、等底等高的正方体、长方体和圆柱,它们的体积
都相等。( √ )
3、一个圆柱的底面半径扩大到原来的3倍,体积也
4、体积相等的两个圆柱不一定是等底等高。(√ )
扩到原来的3倍。( × )
判断:
5、高不变,圆柱体的底面积越大,它的体积就
人教版六年级数学下册第三单元
圆柱的体积练习课
知识回顾:
圆柱的体积公式是怎样推导出来的?
转化
长方体的体积= 底面积 × 高 圆柱的体积= V
底面积 S
圆柱体积计算公式是:
V
×
高 h
已知圆柱的底面积和高,怎样求圆柱的体积?
V=s×h
已知圆柱的体积和高,怎样求圆柱的底面积?
s=V÷h
已知圆柱的体积和底面积,怎样求圆柱的高?
越大。( √ )
6、圆柱体的高越长,它的体积越大。( × ) 7、圆柱体的底面直径和高可以相等。(√ )
巩固练习:
将一个棱长为6分米的正方 体钢材熔铸成底面半径为1 分米的圆柱体,这个圆柱有 多长?(得数保留整数)
思考:正方体与熔铸成的圆柱体体积有什么关系? 正方体的体积:6×6×6=216(dm3) 圆柱的长:216÷(3.14×1×1) =216÷3.14 ≈69(分米)
=18×3 =54(dm3)
答:它的体积是54dm3。
练一练:
把一个棱长6分米的正方体木块切削成一个体积最 大的圆柱体,这个圆柱的体积是多少立方分米?
d 2 思考:圆柱的直径和高 V ( ) h 2 是正方体的什么? =3.14×(6÷2)2×6 =3.14×32×6 3) =169.56 ( dm 答:这个圆柱的体积是

部编版六年级数学下册第三单元《圆柱的体积》(复习课件)

部编版六年级数学下册第三单元《圆柱的体积》(复习课件)

大?你有什么发现?
18

12
9
6
2 3 4 6
图1
以长方形的宽 图1
为底面周长:
图2
5π4>
36 π

27 π

18 π
图3
图4的体积最大。 图4
图2
图3
图4
π×(2÷π÷2)²×2=1π8(dm³)
π×(3÷π÷2)²×3= 2π7(dm³)
π×(4÷π÷2)²×4= 3π6(dm³)
π×(6÷π÷2)²×6= 5π4(dm³)
求高为12cm圆柱的体积。
(6÷2)2×3.14×12 =9×3.14×12 =339.12(cm3) =339.12(mL) 答:小红喝了339.12mL的水。
两个底面积相等的圆柱,一个高为4.5dm,体积为81dm3。 另一个高为3dm,它的体积是多少?
只要求出其中一 个圆柱的底面积, 也就得出了另一 个圆柱的底面积。
下面4个图形的面积都是36dm2(图中单位:dm)。
用这些图形分别卷成圆柱,哪个圆柱的体积最小?哪个圆柱的体积最
大?你有什么发现?
18
12
9
6
2 3 4 6
图1
图2
同一个长方形,以 长为底面周长比以 宽为底面周长卷成 的圆柱体积大。
1
图3
图4
侧面积相等的圆柱, 底面周长比高大得 越多,体积就越大。 否则就越小。
=3.14×400×10
20cm
20cm,高10cm。
=1256×10
=12560(cm³)
答:以宽为轴旋转一周,得到的圆柱的体积是12560cm³。
我国是一个水资源短缺、水旱灾害频繁的国家, 全国669座城市中有400座供水不足,110座严重缺 水。但是,在一些校园内经常会发现学生忘关水龙 头的现象,如果学校自来水管的内直径是2厘米, 水管内水的流速是每秒8分米。小军去水池洗手时, 忘记关掉水龙头,像这样5分钟会浪费多少升水?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆 柱
教学目标
1.理解圆柱体体积公式的推 导过程,掌握计算公式。 2.会运用公式计算圆柱的体 积。
生活中的圆柱
孔庙
生活中的圆柱
美国白宫
生活中的圆柱
瓷器
生活中的圆柱
冶炼设备
你能说出下列立体图形的体积公式吗?
正方体体积=底面积×高 长方体体积=底面积×高
V=Sh
猜一猜:
你能猜出我的体积 公式吗?
讨论
1.已知圆柱体的底面半径和高,怎样求体积?
S=∏r2 v=sh
2.已知圆柱体的底面直径和高,怎样求体积?
r= d
2
S=∏r2 v=sh
3.已知圆柱体的底面周长和高,怎样求体积 ?
r=c÷2∏ S=∏r2 v=sh
达标测评
一、填表
底面积S(平方米)
15 6.4
高h(米)
3 4
圆柱的体积V(立方米)
? 圆柱的体积=底面积×高
想一想: 学习计算圆的面积时,是怎样
把圆变成已学过的图形再计算面积 的?
能不能把圆柱转化成我们学过 的立体图形,来计算它的体积?
把圆柱等分成16份
圆柱
拼成的图形是近似的 长方体
分组观察讨论:
1. 圆柱拼成近似的长方体后,形状变了吗?体积发生 变化了吗?
2. 圆柱拼成近似的长方体后,底面积与高发生变化了 吗?
(4)圆柱体的底面直径和高可以相等。 (√ )
全课小结
通过本节课的学习,你有什么收获? 1.圆柱体体积公式的推导方法。 2.公式的应用。
人生里面总是有所缺少,你得到什么,也就失去什么,重要的是你应该知道自己到底要什么。追两只兔子的人,难免会一无所获。 大器不必晚成,趁着年轻,努力让自己的才能创造最大的价值。 人们常犯最大的错误,是对陌生人太客气,而对亲密的人太苛刻,把这个坏习惯改过来,天下太平。 所有的胜利,与征服自己的胜利比起来,都是微不足道。 付出了不一定有回报,但不付出永远没有回报。 带孩子去旅游,去爬山,去逛公园,去看电影,这都是夸奖孩子最适当的方式。——张石平 合理安排时间,就等于节约时间。——培根 一个不注意小事情的人,永远不会成功大事业。——戴尔·卡耐基
课外延伸
课下量一个圆柱形杯子的高和底 面直径(底面周长),算出这个杯 子大约可以装 水多少克?(1立 方厘米水重1克)
退出
3. 判断正误,对的画“√”,错误的画“×”。
(1)圆柱体的底面积越大,它的体积越大。 (×)
(2)圆柱体的高越长,它的体积越大。 (×)
(3)圆柱体的体积与长方体的体积相等。 (×)
高=

底面积 =
底面积
因为 长方体的体积=底面积×高
所以 圆柱体的体积=底面积×高
猜一猜:
你能猜出我的体积 公式吗?
?√ 圆柱的体积=底面积×高 V=Sh
学以致用:
4 有一根圆柱形钢材,底面积是50平方 厘米,长是2.1米,你能求出它的体积吗?
2.1米=210厘米
V=sh =50×210 =10500(平方厘米)
455厘米,高 是8分米。它的容积是多少立方分米?
25厘米=2.5分米
3.14×2.5²×8
=3.14×6.25×8 =157(立方分米)
生活中的数学
一饮料生产商生产一种饮料,采用 圆柱形易拉罐包装,从易拉罐的外面量, 底面直径是6厘米,高是12厘米,易拉 罐侧面印有“净含量340毫升”字样。 请大家讨论:生产商是否欺骗了消费者?
相关文档
最新文档