数据结构课程设计 二叉排序树的操作

合集下载

数据结构平衡二叉树的操作演示

数据结构平衡二叉树的操作演示

平衡二叉树操作的演示1.需求分析本程序是利用平衡二叉树,实现动态查找表的基本功能:创建表,查找、插入、删除。

具体功能:(1)初始,平衡二叉树为空树,操作界面给出创建、查找、插入、删除、合并、分裂六种操作供选择。

每种操作均提示输入关键字。

每次插入或删除一个结点后,更新平衡二叉树的显示。

(2)平衡二叉树的显示采用凹入表现形式。

(3)合并两棵平衡二叉树。

(4)把一棵二叉树分裂为两棵平衡二叉树,使得在一棵树中的所有关键字都小于或等于x,另一棵树中的任一关键字都大于x。

如下图:2.概要设计平衡二叉树是在构造二叉排序树的过程中,每当插入一个新结点时,首先检查是否因插入新结点而破坏了二叉排序树的平衡性,若是则找出其中的最小不平衡子树,在保持二叉排序树特性的前提下,调整最小不平衡子树中各结点之间的链接关系,进行相应的旋转,使之成为新的平衡子树。

具体步骤:(1)每当插入一个新结点,从该结点开始向上计算各结点的平衡因子,即计算该结点的祖先结点的平衡因子,若该结点的祖先结点的平衡因子的绝对值不超过1,则平衡二叉树没有失去平衡,继续插入结点;(2)若插入结点的某祖先结点的平衡因子的绝对值大于1,则找出其中最小不平衡子树的根结点;(3)判断新插入的结点与最小不平衡子树的根结点个关系,确定是那种类型的调整;(4)如果是LL型或RR型,只需应用扁担原理旋转一次,在旋转过程中,如果出现冲突,应用旋转优先原则调整冲突;如果是LR型或RL型,则需应用扁担原理旋转两次,第一次最小不平衡子树的根结点先不动,调整插入结点所在子树,第二次再调整最小不平衡子树,在旋转过程中,如果出现冲突,应用旋转优先原则调整冲突;(5)计算调整后的平衡二叉树中各结点的平衡因子,检验是否因为旋转而破坏其他结点的平衡因子,以及调整后平衡二叉树中是否存在平衡因子大于1的结点。

流程图3.详细设计二叉树类型定义:typedef int Status;typedef int ElemType;typedef struct BSTNode{ElemType data;int bf;struct BSTNode *lchild ,*rchild;} BSTNode,* BSTree;Status SearchBST(BSTree T,ElemType e)//查找void R_Rotate(BSTree &p)//右旋void L_Rotate(BSTree &p)//左旋void LeftBalance(BSTree &T)//插入平衡调整void RightBalance(BSTree &T)//插入平衡调整Status InsertAVL(BSTree &T,ElemType e,int &taller)//插入void DELeftBalance(BSTree &T)//删除平衡调整void DERightBalance(BSTree &T)//删除平衡调整Status Delete(BSTree &T,int &shorter)//删除操作Status DeleteAVL(BSTree &T,ElemType e,int &shorter)//删除操作void merge(BSTree &T1,BSTree &T2)//合并操作void splitBSTree(BSTree T,ElemType e,BSTree &T1,BSTree &T2)//分裂操作void PrintBSTree(BSTree &T,int lev)//凹入表显示附录源代码:#include<stdio.h>#include<stdlib.h>//#define TRUE 1//#define FALSE 0//#define OK 1//#define ERROR 0#define LH +1#define EH 0#define RH -1//二叉类型树的类型定义typedef int Status;typedef int ElemType;typedef struct BSTNode{ElemType data;int bf;//结点的平衡因子struct BSTNode *lchild ,*rchild;//左、右孩子指针} BSTNode,* BSTree;/*查找算法*/Status SearchBST(BSTree T,ElemType e){if(!T){return 0; //查找失败}else if(e == T->data ){return 1; //查找成功}else if (e < T->data){return SearchBST(T->lchild,e);}else{return SearchBST(T->rchild,e);}}//右旋void R_Rotate(BSTree &p){BSTree lc; //处理之前的左子树根结点lc = p->lchild; //lc指向的*p的左子树根结点p->lchild = lc->rchild; //lc的右子树挂接为*P的左子树lc->rchild = p;p = lc; //p指向新的根结点}//左旋void L_Rotate(BSTree &p){BSTree rc;rc = p->rchild; //rc指向的*p的右子树根结点p->rchild = rc->lchild; //rc的左子树挂接为*p的右子树rc->lchild = p;p = rc; //p指向新的根结点}//对以指针T所指结点为根结点的二叉树作左平衡旋转处理,//本算法结束时指针T指向新的根结点void LeftBalance(BSTree &T){BSTree lc,rd;lc=T->lchild;//lc指向*T的左子树根结点switch(lc->bf){ //检查*T的左子树的平衡度,并做相应的平衡处理case LH: //新结点插入在*T的左孩子的左子树,要做单右旋处理T->bf = lc->bf=EH;R_Rotate(T);break;case RH: //新结点插入在*T的左孩子的右子树上,做双旋处理rd=lc->rchild; //rd指向*T的左孩子的右子树根switch(rd->bf){ //修改*T及其左孩子的平衡因子case LH: T->bf=RH; lc->bf=EH;break;case EH: T->bf=lc->bf=EH;break;case RH: T->bf=EH; lc->bf=LH;break;}rd->bf=EH;L_Rotate(T->lchild); //对*T的左子树作左旋平衡处理R_Rotate(T); //对*T作右旋平衡处理}}//右平衡旋转处理void RightBalance(BSTree &T){BSTree rc,ld;rc=T->rchild;switch(rc->bf){case RH:T->bf= rc->bf=EH;L_Rotate(T);break;case LH:ld=rc->lchild;switch(ld->bf){case LH: T->bf=RH; rc->bf=EH;break;case EH: T->bf=rc->bf=EH;break;case RH: T->bf = EH; rc->bf=LH;break;}ld->bf=EH;R_Rotate(T->rchild);L_Rotate(T);}}//插入结点Status InsertAVL(BSTree &T,ElemType e,int &taller){//taller反应T长高与否if(!T){//插入新结点,树长高,置taller为trueT= (BSTree) malloc (sizeof(BSTNode));T->data = e;T->lchild = T->rchild = NULL;T->bf = EH;taller = 1;}else{if(e == T->data){taller = 0;return 0;}if(e < T->data){if(!InsertAVL(T->lchild,e,taller))//未插入return 0;if(taller)//已插入到*T的左子树中且左子树长高switch(T->bf){//检查*T的平衡度,作相应的平衡处理case LH:LeftBalance(T);taller = 0;break;case EH:T->bf = LH;taller = 1;break;case RH:T->bf = EH;taller = 0;break;}}else{if (!InsertAVL(T->rchild,e,taller)){return 0;}if(taller)//插入到*T的右子树且右子树增高switch(T->bf){//检查*T的平衡度case LH:T->bf = EH;taller = 0;break;case EH:T->bf = RH;taller = 1;break;case RH:RightBalance(T);taller = 0;break;}}}return 1;}void DELeftBalance(BSTree &T){//删除平衡调整BSTree lc,rd;lc=T->lchild;switch(lc->bf){case LH:T->bf = EH;//lc->bf= EH;R_Rotate(T);break;case EH:T->bf = EH;lc->bf= EH;R_Rotate(T);break;case RH:rd=lc->rchild;switch(rd->bf){case LH: T->bf=RH; lc->bf=EH;break;case EH: T->bf=lc->bf=EH;break;case RH: T->bf=EH; lc->bf=LH;break;}rd->bf=EH;L_Rotate(T->lchild);R_Rotate(T);}}void DERightBalance(BSTree &T) //删除平衡调整{BSTree rc,ld;rc=T->rchild;switch(rc->bf){case RH:T->bf= EH;//rc->bf= EH;L_Rotate(T);break;case EH:T->bf= EH;//rc->bf= EH;L_Rotate(T);break;case LH:ld=rc->lchild;switch(ld->bf){case LH: T->bf=RH; rc->bf=EH;break;case EH: T->bf=rc->bf=EH;break;case RH: T->bf = EH; rc->bf=LH;break;}ld->bf=EH;R_Rotate(T->rchild);L_Rotate(T);}}void SDelete(BSTree &T,BSTree &q,BSTree &s,int &shorter){if(s->rchild){SDelete(T,s,s->rchild,shorter);if(shorter)switch(s->bf){case EH:s->bf = LH;shorter = 0;break;case RH:s->bf = EH;shorter = 1;break;case LH:DELeftBalance(s);shorter = 0;break;}return;}T->data = s->data;if(q != T)q->rchild = s->lchild;elseq->lchild = s->lchild;shorter = 1;}//删除结点Status Delete(BSTree &T,int &shorter){ BSTree q;if(!T->rchild){q = T;T = T->lchild;free(q);shorter = 1;}else if(!T->lchild){q = T;T= T->rchild;free(q);shorter = 1;}else{SDelete(T,T,T->lchild,shorter);if(shorter)switch(T->bf){case EH:T->bf = RH;shorter = 0;break;case LH:T->bf = EH;shorter = 1;break;case RH:DERightBalance(T);shorter = 0;break;}}return 1;}Status DeleteAVL(BSTree &T,ElemType e,int &shorter){ int sign = 0;if (!T){return sign;}else{if(e == T->data){sign = Delete(T,shorter);return sign;}else if(e < T->data){sign = DeleteAVL(T->lchild,e,shorter);if(shorter)switch(T->bf){case EH:T->bf = RH;shorter = 0;break;case LH:T->bf = EH;shorter = 1;break;case RH:DERightBalance(T);shorter = 0;break;}return sign;}else{sign = DeleteAVL(T->rchild,e,shorter);if(shorter)switch(T->bf){case EH:T->bf = LH;shorter = 0;break;case RH:T->bf = EH;break;case LH:DELeftBalance(T);shorter = 0;break;}return sign;}}}//合并void merge(BSTree &T1,BSTree &T2){int taller = 0;if(!T2)return;merge(T1,T2->lchild);InsertAVL(T1,T2->data,taller);merge(T1,T2->rchild);}//分裂void split(BSTree T,ElemType e,BSTree &T1,BSTree &T2){ int taller = 0;if(!T)return;split(T->lchild,e,T1,T2);if(T->data > e)InsertAVL(T2,T->data,taller);elseInsertAVL(T1,T->data,taller);split(T->rchild,e,T1,T2);}//分裂void splitBSTree(BSTree T,ElemType e,BSTree &T1,BSTree &T2){ BSTree t1 = NULL,t2 = NULL;split(T,e,t1,t2);T1 = t1;T2 = t2;return;}//构建void CreatBSTree(BSTree &T){int num,i,e,taller = 0;printf("输入结点个数:");scanf("%d",&num);printf("请顺序输入结点值\n");for(i = 0 ;i < num;i++){printf("第%d个结点的值",i+1);scanf("%d",&e);InsertAVL(T,e,taller) ;}printf("构建成功,输入任意字符返回\n");getchar();getchar();}//凹入表形式显示方法void PrintBSTree(BSTree &T,int lev){int i;if(T->rchild)PrintBSTree(T->rchild,lev+1);for(i = 0;i < lev;i++)printf(" ");printf("%d\n",T->data);if(T->lchild)PrintBSTree(T->lchild,lev+1);void Start(BSTree &T1,BSTree &T2){int cho,taller,e,k;taller = 0;k = 0;while(1){system("cls");printf(" 平衡二叉树操作的演示 \n\n");printf("********************************\n");printf(" 平衡二叉树显示区 \n");printf("T1树\n");if(!T1 )printf("\n 当前为空树\n");else{PrintBSTree(T1,1);}printf("T2树\n");if(!T2 )printf("\n 当前为空树\n");elsePrintBSTree(T2,1);printf("\n********************************************************************* *********\n");printf("T1操作:1.创建 2.插入 3.查找 4.删除 10.分裂\n");printf("T2操作:5.创建 6.插入 7.查找 8.删除 11.分裂\n");printf(" 9.合并 T1,T2 0.退出\n");printf("*********************************************************************** *******\n");printf("输入你要进行的操作:");scanf("%d",&cho);switch(cho){case 1:CreatBSTree(T1);break;case 2:printf("请输入要插入关键字的值");scanf("%d",&e);InsertAVL(T1,e,taller) ;break;case 3:printf("请输入要查找关键字的值");scanf("%d",&e);if(SearchBST(T1,e))printf("查找成功!\n");elseprintf("查找失败!\n");printf("按任意键返回87"); getchar();getchar();break;case 4:printf("请输入要删除关键字的值"); scanf("%d",&e);if(DeleteAVL(T1,e,k))printf("删除成功!\n");elseprintf("删除失败!\n");printf("按任意键返回");getchar();getchar();break;case 5:CreatBSTree(T2);break;case 6:printf("请输入要插入关键字的值"); scanf("%d",&e);InsertAVL(T2,e,taller) ;break;case 7:printf("请输入要查找关键字的值"); scanf("%d",&e);if(SearchBST(T2,e))printf("查找成功!\n");elseprintf("查找失败!\n");printf("按任意键返回");getchar();getchar();break;case 8:printf("请输入要删除关键字的值"); scanf("%d",&e);if(DeleteAVL(T2,e,k))printf("删除成功!\n");elseprintf("删除失败!\n");printf("按任意键返回");getchar();getchar();break;case 9:merge(T1,T2);T2 = NULL;printf("合并成功,按任意键返回"); getchar();getchar();break;case 10:printf("请输入要中间值字的值"); scanf("%d",&e);splitBSTree(T1,e,T1,T2) ;printf("分裂成功,按任意键返回"); getchar();getchar();break;case 11:printf("请输入要中间值字的值"); scanf("%d",&e);splitBSTree(T2,e,T1,T2) ;printf("分裂成功,按任意键返回"); getchar();getchar();break;case 0:system("cls");exit(0);}}}main(){BSTree T1 = NULL;BSTree T2 = NULL;Start(T1,T2);}。

数据结构c语言课设-二叉树排序

数据结构c语言课设-二叉树排序

题目:二叉排序树的实现1 内容和要求1)编程实现二叉排序树,包括生成、插入,删除;2)对二叉排序树进展先根、中根、和后根非递归遍历;3)每次对树的修改操作和遍历操作的显示结果都需要在屏幕上用树的形状表示出来。

4)分别用二叉排序树和数组去存储一个班(50 人以上)的成员信息(至少包括学号、姓名、成绩3 项),比照查找效率,并说明在什么情况下二叉排序树效率高,为什么?2 解决方案和关键代码2.1 解决方案:先实现二叉排序树的生成、插入、删除,编写DisplayBST函数把遍历结果用树的形状表示出来。

前中后根遍历需要用到栈的数据构造,分模块编写栈与遍历代码。

要求比照二叉排序树和数组的查找效率,首先建立一个数组存储一个班的成员信息,分别用二叉树和数组查找,利用clock〔〕函数记录查找时间来比照查找效率。

2.2关键代码树的根本构造定义及根本函数typedef struct{KeyType key;} ElemType;typedef struct BiTNode//定义链表{ElemType data;struct BiTNode *lchild, *rchild;}BiTNode, *BiTree, *SElemType;//销毁树int DestroyBiTree(BiTree &T){if (T != NULL)free(T);return 0;}//清空树int ClearBiTree(BiTree &T){if (T != NULL){T->lchild = NULL;T->rchild = NULL;T = NULL;}return 0;}//查找关键字,指针p返回int SearchBST(BiTree T, KeyType key, BiTree f, BiTree &p) {if (!T){p = f;return FALSE;}else if EQ(key, T->data.key){p = T;return TRUE;}else if LT(key, T->data.key)return SearchBST(T->lchild, key, T, p);elsereturn SearchBST(T->rchild, key, T, p);}二叉树的生成、插入,删除生成void CreateBST(BiTree &BT, BiTree p){int i;ElemType k;printf("请输入元素值以创立排序二叉树:\n");scanf_s("%d", &k.key);for (i = 0; k.key != NULL; i++){//判断是否重复if (!SearchBST(BT, k.key, NULL, p)){InsertBST(BT, k);scanf_s("%d", &k.key);}else{printf("输入数据重复!\n");return;}}}插入int InsertBST(BiTree &T, ElemType e){BiTree s, p;if (!SearchBST(T, e.key, NULL, p)){s = (BiTree)malloc(sizeof(BiTNode));s->data = e;s->lchild = s->rchild = NULL;if (!p)T = s;else if LT(e.key, p->data.key)p->lchild = s;elsep->rchild = s;return TRUE;}else return FALSE;}删除//某个节点元素的删除int DeleteEle(BiTree &p){BiTree q, s;if (!p->rchild) //右子树为空{q = p;p = p->lchild;free(q);}else if (!p->lchild) //左子树为空{q = p;p = p->rchild;free(q);}else{q = p;s = p->lchild;while (s->rchild){q = s;s = s->rchild;}p->data = s->data;if (q != p)q->rchild = s->lchild;elseq->lchild = s->lchild;delete s;}return TRUE;}//整棵树的删除int DeleteBST(BiTree &T, KeyType key) //实现二叉排序树的删除操作{if (!T){return FALSE;}else{if (EQ(key, T->data.key)) //是否相等return DeleteEle(T);else if (LT(key, T->data.key)) //是否小于return DeleteBST(T->lchild, key);elsereturn DeleteBST(T->rchild, key);}return 0;}二叉树的前中后根遍历栈的定义typedef struct{SElemType *base;SElemType *top;int stacksize;}SqStack;int InitStack(SqStack &S) //构造空栈{S.base = (SElemType*)malloc(STACK_INIT_SIZE *sizeof(SElemType));if (!S.base) exit(OVERFLOW);S.top = S.base;S.stacksize = STACK_INIT_SIZE;return OK;}//InitStackint Push(SqStack &S, SElemType e) //插入元素e为新栈顶{if (S.top - S.base >= S.stacksize){S.base = (SElemType*)realloc(S.base, (S.stacksize + STACKINCREMENT)*sizeof(SElemType));if (!S.base) exit(OVERFLOW);S.top = S.base + S.stacksize;S.stacksize += STACKINCREMENT;}*S.top++ = e;return OK;}//Pushint Pop(SqStack &S, SElemType &e) //删除栈顶,应用e返回其值{if (S.top == S.base) return ERROR;e = *--S.top;return OK;}//Popint StackEmpty(SqStack S) //判断是否为空栈{if (S.base == S.top) return TRUE;return FALSE;}先根遍历int PreOrderTraverse(BiTree T, int(*Visit)(ElemType e)) {SqStack S;BiTree p;InitStack(S);p = T;while (p || !StackEmpty(S)){if (p){Push(S, p);if (!Visit(p->data)) return ERROR;p = p->lchild;}else{Pop(S, p);p = p->rchild;}}return OK;}中根遍历int InOrderTraverse(BiTree T, int(*Visit)(ElemType e)) {SqStack S;BiTree p;InitStack(S);p = T;while (p || !StackEmpty(S)){if (p){Push(S, p);p = p->lchild;}else{Pop(S, p);if (!Visit(p->data)) return ERROR;p = p->rchild;}}return OK;}后根遍历int PostOrderTraverse(BiTree T, int(*Visit)(ElemType e)) {SqStack S, SS;BiTree p;InitStack(S);InitStack(SS);p = T;while (p || !StackEmpty(S)){if (p){Push(S, p);Push(SS, p);p = p->rchild;}else{if (!StackEmpty(S)){Pop(S, p);p = p->lchild;}}}while (!StackEmpty(SS)){Pop(SS, p);if (!Visit(p->data)) return ERROR;}return OK;}利用数组存储一个班学生信息ElemType a[] = { 51, "陈继真", 88,82, "黄景元", 89,53, "贾成", 88,44, "呼颜", 90,25, "鲁修德", 88,56, "须成", 88,47, "孙祥", 87, 38, "柏有患", 89, 9, " 革高", 89, 10, "考鬲", 87, 31, "李燧", 86, 12, "夏祥", 89, 53, "余惠", 84, 4, "鲁芝", 90, 75, "黄丙庆", 88, 16, "李应", 89, 87, "杨志", 86, 18, "李逵", 89, 9, "阮小五", 85, 20, "史进", 88, 21, "秦明", 88, 82, "杨雄", 89, 23, "刘唐", 85, 64, "武松", 88, 25, "李俊", 88, 86, "卢俊义", 88, 27, "华荣", 87, 28, "杨胜", 88, 29, "林冲", 89, 70, "李跃", 85, 31, "蓝虎", 90, 32, "宋禄", 84, 73, "鲁智深", 89, 34, "关斌", 90, 55, "龚成", 87, 36, "黄乌", 87, 57, "孔道灵", 87, 38, "张焕", 84, 59, "李信", 88, 30, "徐山", 83, 41, "秦祥", 85, 42, "葛公", 85, 23, "武衍公", 87, 94, "范斌", 83, 45, "黄乌", 60, 67, "叶景昌", 99, 7, "焦龙", 89, 78, "星姚烨", 85, 49, "孙吉", 90, 60, "陈梦庚", 95,};数组查询函数void ArraySearch(ElemType a[], int key, int length){int i;for (i = 0; i <= length; i++){if (key == a[i].key){cout << "学号:" << a[i].key << " 姓名:" << a[i].name << " 成绩:" << a[i].grade << endl;break;}}}二叉树查询函数上文二叉树根本函数中的SearchBST()即为二叉树查询函数。

二叉树的基本操作

二叉树的基本操作

二叉树的基本操作二叉树是一种常见的数据结构,它由节点组成,每个节点最多有两个子节点。

二叉树在计算机领域中得到广泛应用,它的基本操作包括插入、删除、查找、遍历等。

1.插入操作:二叉树的插入操作是将一个新的节点添加到已有的二叉树中的过程。

插入操作会按照一定规则将新节点放置在正确的位置上。

插入操作的具体步骤如下:-首先,从根节点开始,比较新节点的值与当前节点的值的大小关系。

-如果新节点的值小于当前节点的值,则将新节点插入到当前节点的左子树中。

-如果新节点的值大于当前节点的值,则将新节点插入到当前节点的右子树中。

-如果当前节点的左子树或右子树为空,则直接将新节点插入到该位置上。

-如果当前节点的左子树和右子树都不为空,则递归地对左子树或右子树进行插入操作。

2.删除操作:二叉树的删除操作是将指定节点从二叉树中删除的过程。

删除操作有以下几种情况需要考虑:-如果待删除节点是叶子节点,则直接将其从二叉树中删除即可。

-如果待删除节点只有一个子节点,则将其子节点替换为待删除节点的位置即可。

-如果待删除节点有两个子节点,则需要找到其左子树或右子树中的最大节点或最小节点,将其值替换为待删除节点的值,然后再删除最大节点或最小节点。

3.查找操作:二叉树的查找操作是在二叉树中查找指定值的节点的过程。

查找操作的具体步骤如下:-从根节点开始,将待查找值与当前节点的值进行比较。

-如果待查找值等于当前节点的值,则返回该节点。

-如果待查找值小于当前节点的值,则在当前节点的左子树中继续查找。

-如果待查找值大于当前节点的值,则在当前节点的右子树中继续查找。

-如果左子树或右子树为空,则说明在二叉树中找不到该值。

4.遍历操作:二叉树的遍历操作是按照一定规则依次访问二叉树中的每个节点。

有三种常用的遍历方式:- 前序遍历(Preorder Traversal):先访问根节点,然后递归地前序遍历左子树和右子树。

- 中序遍历(Inorder Traversal):先递归地中序遍历左子树,然后访问根节点,最后递归地中序遍历右子树。

二叉树的建立与基本操作

二叉树的建立与基本操作

二叉树的建立与基本操作二叉树是一种特殊的树形结构,它由节点(node)组成,每个节点最多有两个子节点。

二叉树的基本操作包括建立二叉树、遍历二叉树、查找二叉树节点、插入和删除节点等。

本文将详细介绍二叉树的建立和基本操作,并给出相应的代码示例。

一、建立二叉树建立二叉树有多种方法,包括使用数组、链表和前序、中序、后序遍历等。

下面以使用链表的方式来建立二叉树为例。

1.定义二叉树节点类首先,定义一个二叉树节点的类,包含节点值、左子节点和右子节点三个属性。

```pythonclass Node:def __init__(self, value):self.value = valueself.left = Noneself.right = None```2.建立二叉树使用递归的方法来建立二叉树,先构造根节点,然后递归地构造左子树和右子树。

```pythondef build_binary_tree(lst):if not lst: # 如果 lst 为空,则返回 Nonereturn Nonemid = len(lst) // 2 # 取 lst 的中间元素作为根节点的值root = Node(lst[mid])root.left = build_binary_tree(lst[:mid]) # 递归构造左子树root.right = build_binary_tree(lst[mid+1:]) # 递归构造右子树return root```下面是建立二叉树的示例代码:```pythonlst = [1, 2, 3, 4, 5, 6, 7]root = build_binary_tree(lst)```二、遍历二叉树遍历二叉树是指按照其中一规则访问二叉树的所有节点,常见的遍历方式有前序遍历、中序遍历和后序遍历。

1.前序遍历前序遍历是指先访问根节点,然后访问左子节点,最后访问右子节点。

```pythondef pre_order_traversal(root):if root:print(root.value) # 先访问根节点pre_order_traversal(root.left) # 递归访问左子树pre_order_traversal(root.right) # 递归访问右子树```2.中序遍历中序遍历是指先访问左子节点,然后访问根节点,最后访问右子节点。

数据结构课程设计

数据结构课程设计

“数据结构”课程设计报告二叉排序树的查找与性能分析学生姓名:段晓宣,张静指导教师:陈少军所在系:电子信息系所学专业:计算机科学与技术年级: 2010级计算机(1)班目录第一章需求分析1.1选题要求 (3)1.2选题的背景与意义 (3)1.3本组课程设计的目标 (3)1.4人员组成和分工 (3)第2章概要分析 (4)2.1系统数据流图 (4)2.2原始数据 (4)2.3输出数据 (4)2.4对数据的处理 (5)2.5数据结构 (5)2.6模块划分 (5)第3章详细设计 (6)3.1二叉排序树的创建 (6)3.2二叉排序树的插入 (7)3.3二叉排序树的查找 (7)3.4计算多数据的平均查找长度 (9)3.5主函数 (9)第4章用户手册 (10)4.1 用户须知 (10)第5章系统测试 (11)项目总结 (12)参考文献 (13)二叉树排序树的查找与性能分析摘要:21世纪是信息化的时代,计算机深入到生活的各个领域。

随着计算机的发展,许多高科技产品如雨后春笋应运而生。

但究其本质而言,无非是以前的理论加以包装。

对于数据控制、管理及处理等方面也可见一斑。

在如今应用的计算机的数据存储方式仍然主要以线性,树型,图型等为主要的及结构。

因此了解并掌握数据结构的知识是很有必要的。

在此次实训期间,本组人员通过运用所学数据结构的知识,进行以二叉排序树的查找与性能分析为题的课程设计,在同组人员的共同努力下,基本实现了:1.创建二叉排序树2.利用文件存储二叉排序树3.二叉排序树的插入4.二叉排序树的查找5.二叉排序树平均查找长度的算法第1章需求分析1.1选题要求(1)根据输入的先序及递归建立二叉排序树;(2)通过文件,向二叉排序树插入结点,并生成二叉树;(3)设置报名号为关键字,可以根据关键字进行查找;(5)查找的同时可以判断比较的次数;(6)根据查找的算法计算出10000个数据平均查找长度;1.2选题的背景与意义(1)树型存储结构数据存储结构中重要的组成部分,二叉树由是树的重点。

二叉排序树的实验报告

二叉排序树的实验报告

二叉排序树的实验报告二叉排序树的实验报告引言:二叉排序树(Binary Search Tree,简称BST)是一种常用的数据结构,它将数据按照一定的规则组织起来,便于快速的查找、插入和删除操作。

本次实验旨在深入了解二叉排序树的原理和实现,并通过实验验证其性能和效果。

一、实验背景二叉排序树是一种二叉树,其中每个节点的值大于其左子树的所有节点的值,小于其右子树的所有节点的值。

这种特性使得在二叉排序树中进行查找操作时,可以通过比较节点的值来确定查找的方向,从而提高查找效率。

二、实验目的1. 理解二叉排序树的基本原理和性质;2. 掌握二叉排序树的构建、插入和删除操作;3. 验证二叉排序树在查找、插入和删除等操作中的性能和效果。

三、实验过程1. 构建二叉排序树首先,我们需要构建一个空的二叉排序树。

在构建过程中,我们可以选择一个节点作为根节点,并将其他节点插入到树中。

插入节点时,根据节点的值与当前节点的值进行比较,如果小于当前节点的值,则将其插入到当前节点的左子树中;如果大于当前节点的值,则将其插入到当前节点的右子树中。

重复这个过程,直到所有节点都被插入到树中。

2. 插入节点在已有的二叉排序树中插入新的节点时,我们需要遵循一定的规则。

首先,从根节点开始,将新节点的值与当前节点的值进行比较。

如果小于当前节点的值,则将其插入到当前节点的左子树中;如果大于当前节点的值,则将其插入到当前节点的右子树中。

如果新节点的值与当前节点的值相等,则不进行插入操作。

3. 删除节点在二叉排序树中删除节点时,我们需要考虑不同的情况。

如果要删除的节点是叶子节点,即没有左右子树,我们可以直接删除该节点。

如果要删除的节点只有一个子树,我们可以将子树连接到要删除节点的父节点上。

如果要删除的节点有两个子树,我们可以选择将其右子树中的最小节点或左子树中的最大节点替代该节点,并删除相应的替代节点。

四、实验结果通过对二叉排序树的构建、插入和删除操作的实验,我们得到了以下结果:1. 二叉排序树可以高效地进行查找操作。

数据结构-二叉排序树

数据结构-二叉排序树

二叉排序树操作一、设计步骤1)分析课程设计题目的要求2)写出详细设计说明3)编写程序代码,调试程序使其能正确运行4)设计完成的软件要便于操作和使用5)设计完成后提交课程设计报告(一)程序功能:1)创建二叉排序树2)输出二叉排序树3)在二叉排序树中插入新结点4)在二叉排序树中删除给定的值5)在二叉排序树中查找所给定的值(二)函数功能:1) struct BiTnode 定义二叉链表结点类型包含结点的信息2) class BT 二叉排序树类,以实现二叉排序树的相关操作3) InitBitree() 构造函数,使根节点指向空4) ~BT () 析构函数,释放结点空间5) void InsertBST(&t,key) 实现二叉排序树的插入功能6) int SearchBST(t,key) 实现二叉排序树的查找功能7) int DelBST(&t,key) 实现二叉排序树的删除功能8) void InorderBiTree (t) 实现二叉排序树的排序(输出功能)9) int main() 主函数,用来完成对二叉排序树类中各个函数的测试二、设计理论分析方法(一)二叉排序树定义首先,我们应该明确所谓二叉排序树是指满足下列条件的二叉树:(1)左子树上的所有结点值均小于根结点值;(2)右子数上的所有结点值均不小于根结点值;(3)左、右子数也满足上述两个条件。

根据对上述的理解和分析,我们就可以先创建出一个二叉链表结点的结构体类型(struct BiTNode)和一个二叉排序树类(class BT),以及类中的构造函数、析构函数和其他实现相关功能的函数。

(二)插入函数(void InsertBST(&t,key))首先定义一个与BiTNode<k> *BT同一类型的结点p,并为其申请空间,使p->data=key,p->lchild和p->rchild=NULL。

数据结构二叉排序树

数据结构二叉排序树

05
13
19
21
37
56
64
75
80
88
92
low mid high 因为r[mid].key<k,所以向右找,令low:=mid+1=4 (3) low=4;high=5;mid=(4+5) div 2=4
05
13
19
low
21
37
56
64
75
80
88
92
mid high
因为r[mid].key=k,查找成功,所查元素在表中的序号为mid 的值
平均查找长度:为确定某元素在表中某位置所进行的比 较次数的期望值。 在长度为n的表中找某一元素,查找成功的平均查找长度:
ASL=∑PiCi
Pi :为查找表中第i个元素的概率 Ci :为查到表中第i个元素时已经进行的比较次数
在顺序查找时, Ci取决于所查元素在表中的位置, Ci =i,设每个元素的查找概率相等,即Pi=1/n,则:
RL型的第一次旋转(顺时针) 以 53 为轴心,把 37 从 53 的左上转到 53 的左下,使得 53 的左 是 37 ;右是 90 ,原 53 的左变成了 37 的右。 RL型的第二次旋转(逆时针)
一般情况下,假设由于二叉排序树上插入结点而失去 平衡的最小子树的根结点指针为a(即a是离插入结点最 近,且平衡因子绝对值超过1的祖先结点),则失去平衡 后进行调整的规律可归纳为下列四种情况: ⒈RR型平衡旋转: a -2 b -1 h-1 a1
2.查找关键字k=85 的情况 (1) low=1;high=11;mid=(1+11) / 2=6
05
13
19
21

数据结构第六章二叉树的应用教案

数据结构第六章二叉树的应用教案

6.3 哈夫曼树
• • 最优树的定义 如何构造最优树
6.3.1 基本术语
路径和路径长度
若在一棵树中存在着一个结点序列 k1,k2,…,kj,使得ki是ki+1的 双亲(1≤i<j),则称此结点序列是 从k1到kj的路径从k1到kj所经过的 分支数称为这两点之间的路径长度
结点的权和带权路径长度
权 给结点赋上一个有某种意义 的实数,我们称为权。 带权路径长度 从根结点到该结点之间路径 长度与该结点上权的乘积。
23 设 key = 48
T
20 10 T 23 T 25
T T
30
T
40 35 T
bool Find(BTreeNode* T, ElemType& item) if(T==NULL) return false; //查找失败 else { if(item==T->data) { item=T->data; return true; } else if(item<T->data) //向左子树继续查找 return Find(T->left, item); else return Find(T->right, item); } //向右子树继续查找
ri r2i ri r2i 1
(小顶堆)

ri r2i ri r2i 1
(大顶堆)
12, 36, 27, 65, 40, 34, 98, 81, 73, 55, 49
是小顶堆
12, 36, 27, 65, 40, 14, 98, 81, 73, 55, 49
不是堆
子树上查找;
3)大于根结点的关键字,则继续在右
子树上查找。

数据结构实验三——二叉树基本操作及运算实验报告

数据结构实验三——二叉树基本操作及运算实验报告

《数据结构与数据库》实验报告实验题目二叉树的基本操作及运算一、需要分析问题描述:实现二叉树(包括二叉排序树)的建立,并实现先序、中序、后序和按层次遍历,计算叶子结点数、树的深度、树的宽度,求树的非空子孙结点个数、度为2的结点数目、度为2的结点数目,以及二叉树常用运算。

问题分析:二叉树树型结构是一类重要的非线性数据结构,对它的熟练掌握是学习数据结构的基本要求。

由于二叉树的定义本身就是一种递归定义,所以二叉树的一些基本操作也可采用递归调用的方法。

处理本问题,我觉得应该:1、建立二叉树;2、通过递归方法来遍历(先序、中序和后序)二叉树;3、通过队列应用来实现对二叉树的层次遍历;4、借用递归方法对二叉树进行一些基本操作,如:求叶子数、树的深度宽度等;5、运用广义表对二叉树进行广义表形式的打印。

算法规定:输入形式:为了方便操作,规定二叉树的元素类型都为字符型,允许各种字符类型的输入,没有元素的结点以空格输入表示,并且本实验是以先序顺序输入的。

输出形式:通过先序、中序和后序遍历的方法对树的各字符型元素进行遍历打印,再以广义表形式进行打印。

对二叉树的一些运算结果以整型输出。

程序功能:实现对二叉树的先序、中序和后序遍历,层次遍历。

计算叶子结点数、树的深度、树的宽度,求树的非空子孙结点个数、度为2的结点数目、度为2的结点数目。

对二叉树的某个元素进行查找,对二叉树的某个结点进行删除。

测试数据:输入一:ABC□□DE□G□□F□□□(以□表示空格),查找5,删除E预测结果:先序遍历ABCDEGF中序遍历CBEGDFA后序遍历CGEFDBA层次遍历ABCDEFG广义表打印A(B(C,D(E(,G),F)))叶子数3 深度5 宽度2 非空子孙数6 度为2的数目2 度为1的数目2查找5,成功,查找的元素为E删除E后,以广义表形式打印A(B(C,D(,F)))输入二:ABD□□EH□□□CF□G□□□(以□表示空格),查找10,删除B预测结果:先序遍历ABDEHCFG中序遍历DBHEAGFC后序遍历DHEBGFCA层次遍历ABCDEFHG广义表打印A(B(D,E(H)),C(F(,G)))叶子数3 深度4 宽度3 非空子孙数7 度为2的数目2 度为1的数目3查找10,失败。

二叉树的快速排序、归并排序方法

二叉树的快速排序、归并排序方法

二叉树的快速排序、归并排序方法一、快速排序快速排序采用的是分治法策略,其基本思路是先选定一个基准数(一般取第一个元素),将待排序序列抽象成两个子序列:小于基准数的子序列和大于等于基准数的子序列,然后递归地对这两个子序列排序。

1. 递归实现(1)选定基准数题目要求采用第一个元素作为基准数,因此可以直接将其取出。

(2)划分序列接下来需要将待排序序列划分成两个子序列。

我们定义两个指针 i 和 j,从待排序序列的第二个元素和最后一个元素位置开始,分别向左和向右扫描,直到 i 和 j 相遇为止。

在扫描过程中,将小于等于基准数的元素移到左边(即与左侧序列交换),将大于基准数的元素移到右边(即与右侧序列交换)。

当 i=j 时,扫描结束。

(3)递归排序子序列完成划分后,左右两个子序列就确定了下来。

接下来分别对左右两个子序列递归调用快速排序算法即可。

2. 非递归实现上述方法是快速排序的递归实现。

对于大量数据或深度递归的情况,可能会出现栈溢出等问题,因此还可以使用非递归实现。

非递归实现采用的是栈结构,将待排序序列分成若干子序列后,依次将其入栈并标注其位置信息,然后将栈中元素依次出栈并分割、排序,直至栈为空。

二、归并排序归并排序同样采用的是分治思想。

其基本思路是将待排序序列拆分成若干个子序列,直至每个子序列只有一个元素,然后将相邻的子序列两两合并,直至合并成一个有序序列。

1. 递归实现(1)拆分子序列归并排序先将待排序序列进行拆分,具体方法是将序列平分成两个子序列,然后递归地对子序列进行拆分直至每个子序列只剩下一个元素。

(2)合并有序子序列在完成子序列的拆分后,接下来需要将相邻的子序列两两合并为一个有序序列。

我们先定义三个指针 i、j 和 k,分别指向待合并的左侧子序列、右侧子序列和合并后的序列。

在进行合并时,从两个子序列的起始位置开始比较,将两个子序列中较小的元素移动到合并后的序列中。

具体操作如下:- 当左侧子序列的第一个元素小于等于右侧子序列的第一个元素时,将左侧子序列的第一个元素移动到合并后的序列中,并将指针 i 和 k 分别加 1。

二叉树的基本操作实验报告

二叉树的基本操作实验报告

二叉树的基本操作实验报告二叉树的基本操作实验报告引言:二叉树是一种常见的数据结构,它由节点组成,每个节点最多有两个子节点。

二叉树的基本操作包括创建、遍历、插入和删除等。

本实验旨在通过实践来深入了解二叉树的基本操作,并通过实验结果验证其正确性和有效性。

一、创建二叉树创建二叉树是二叉树操作中的第一步。

在本实验中,我们使用了递归算法来创建二叉树。

递归算法是一种重要的算法思想,通过将问题划分为更小的子问题来解决复杂的问题。

在创建二叉树时,我们首先创建根节点,然后递归地创建左子树和右子树。

二、遍历二叉树遍历二叉树是对二叉树中的每个节点进行访问的过程。

常见的遍历方式有前序遍历、中序遍历和后序遍历。

前序遍历先访问根节点,然后递归遍历左子树和右子树;中序遍历先递归遍历左子树,然后访问根节点,最后递归遍历右子树;后序遍历先递归遍历左子树和右子树,最后访问根节点。

三、插入节点插入节点是向二叉树中添加新节点的操作。

插入节点的过程需要遵循二叉树的特性,即左子节点的值小于父节点的值,右子节点的值大于父节点的值。

在插入节点时,我们需要找到合适的位置,将新节点插入到正确的位置上。

四、删除节点删除节点是从二叉树中移除节点的操作。

删除节点的过程相对复杂,需要考虑多种情况。

如果要删除的节点是叶子节点,直接删除即可。

如果要删除的节点只有一个子节点,将其子节点连接到父节点上。

如果要删除的节点有两个子节点,我们需要找到其后继节点或前驱节点来替代被删除的节点。

实验结果:通过实验,我们成功地实现了二叉树的基本操作。

创建二叉树的递归算法能够正确地创建出符合要求的二叉树。

遍历二叉树的算法能够按照指定的顺序遍历每个节点。

插入节点和删除节点的操作也能够正确地修改二叉树的结构。

讨论与总结:二叉树的基本操作是数据结构中的重要内容,对于理解和应用其他数据结构具有重要意义。

通过本次实验,我们深入了解了二叉树的创建、遍历、插入和删除等操作,并通过实验验证了其正确性和有效性。

头歌二叉排序表的基本操作

头歌二叉排序表的基本操作

头歌二叉排序表的基本操作一、概述二叉排序树,也称为二叉搜索树(Binary Search Tree, BST),是一种特殊的二叉树,其中每个节点都满足以下性质:对于任意节点,其左子树中所有节点的值都小于该节点的值,而其右子树中所有节点的值都大于该节点的值。

这种特性使得二叉排序树成为一种非常有效的数据结构,用于在各种算法中实现快速查找、插入和删除操作。

二、基本操作1. 插入操作插入操作是二叉排序树中最常用的操作之一。

其基本步骤如下:(1)创建一个新节点,并将要插入的值赋给该节点。

(2)如果二叉排序树为空,则将新节点作为根节点。

(3)否则,从根节点开始比较新节点的值与当前节点的值。

如果新节点的值小于当前节点的值,则将新节点插入到当前节点的左子树中;否则,将新节点插入到当前节点的右子树中。

(4)重复步骤3,直到找到一个空位置来插入新节点。

2. 删除操作删除操作是二叉排序树中比较复杂的操作之一。

其基本步骤如下:(1)找到要删除的节点。

如果找不到要删除的节点,则无法进行删除操作。

(2)如果找到要删除的节点,则将其从树中删除。

如果该节点只有一个子节点,则直接删除该节点;如果该节点有两个子节点,则可以选择将其中的一个子节点“提升”到该节点的位置,然后删除该子节点。

在提升子节点时,需要考虑子节点的值与要删除的节点的值之间的关系,以确保二叉排序树的性质不变。

(3)如果被提升的子节点仍然包含要删除的节点,则需要重复步骤2,直到找到要删除的节点并将其删除。

3. 查找操作查找操作用于在二叉排序树中查找指定的值。

其基本步骤如下:(1)从根节点开始,比较当前节点的值与要查找的值。

如果它们相等,则查找成功,返回当前节点的位置。

(2)如果当前节点的值大于要查找的值,则进入当前节点的左子树中进行查找;否则进入当前节点的右子树中进行查找。

(3)重复步骤2,直到找到要查找的值或者搜索路径上的所有节点都已访问过。

如果最终没有找到要查找的值,则返回空指针。

二叉排序树(二叉链表结构存储)数据结构课程设计报告

二叉排序树(二叉链表结构存储)数据结构课程设计报告

二叉排序树(二叉链表结构存储)数据结构课程设计报告目录1需求分析 (1)1.1课程设计题目、任务及要求 (1)1.2课程设计思想 (1)2概要设计 (2)2.1 二叉排序树的定义 (2)2.2二叉链表的存储结构 (2)2.3建立二叉排序树 (2)2.4二叉排序树的生成过程 (3)2.5中序遍历二叉树 (3)2.6二叉排序树的查找 (3)2.7二叉排序树的插入 (4)2.8平均查找长度 (4)3详细设计和实现 (4)3.1主要功能模块设计 (4)3.2主程序设计 (5)4调试与操作说明 (12)4.1程序调试 (12)4.2程序操作说明 (13)总结 (16)致谢 (17)参考文献 (19)1需求分析1.1课程设计题目、任务及要求二叉排序树。

用二叉链表作存储结构(1)以(0)为输入结束标志,输入数列L,生成一棵二叉排序树T;(2)对二叉排序树T作中序遍历,输出结果;(3)计算二叉排序树T查找成功的平均查找长度,输出结果;(4)输入元素x,查找二叉排序树T:若存在含x的结点,则删除该结点,并作中序遍历(执行操作2);否则输出信息“无x”;1.2课程设计思想建立二叉排序树采用边查找边插入的方式。

查找函数采用递归的方式进行查找。

如果查找成功则不应再插入原树,否则返回当前结点的上一个结点。

然后利用插入函数将该元素插入原树。

对二叉排序树进行中序遍历采用递归函数的方式。

在根结点不为空的情况下,先访问左子树,再访问根结点,最后访问右子树。

由于二叉排序树自身的性质,左子树小于根结点,而根结点小于右子树,所以中序遍历的结果是递增的。

计算二插排序树的平均查找长度时,仍采用类似中序遍历的递归方式,用s记录总查找长度,j记录每个结点的查找长度,s置初值为0,采用累加的方式最终得到总查找长度s。

平均查找长度就等于s/i(i为树中结点的总个数)。

删除结点函数,采用边查找边删除的方式。

如果没有查找到,则不对树做任何的修改;如果查找到结点,则分四种情况分别进行讨论:1、该结点左右子树均为空;2、该结点仅左子树为空;3、该结点仅右子树为空;4、该结点左右子树均不为空。

二叉排序树的应用

二叉排序树的应用
}
3.2.2插入模块
在二叉排序树中插入新结点,要保证插入后的二叉树仍符合二叉排序树的定义。插入过程:若二叉排序树为空,则待插入结点*p作为根结点插入到空树中;当非空时,将待插结点关键字p->item和树根关键字t->item进行比较,若p->item=t->item,则无需插入,若p->item<t->item则插入到根的左子树中,若p->item>t->item,则插入到根的右子树中。而子树中的插入过程和在树中的插入过程相同,如此进行下去,直到把结点*P作为一个新的树叶插入到二叉排序树中,或者直到发现树已有相同关键字的结点为止。其算法如下:
{
btree *stack[100];
btree *p = NULL;
btree *q = NULL;
int sign = 0;
int top = -1;
p = b;
《数据结构》
课程设计报告书
题目:二叉排序树的实现
系别:计算机科学与应用
1设计要求
(1)用顺序和二叉链表作存储结构
(2)以回车('\n')为输入结束标志,输入数列L,生成一棵二叉排序树T;
(3)对二叉排序树T作中序遍历,输出;
(4)输入元素x,查找二叉排序树T,若存在含x的结点,则删除该结点,并作中序遍历(执行操作2);否则输出信息“无x”;
int main(void)
{
int a = 0;
int x = 0;
int b = 0;
btree *head = NULL;
btree *s = NULL;
head = (btree *)malloc(sizeof(btree));

二叉排序树与平衡二叉排序树基本操作的实现 文本文档

二叉排序树与平衡二叉排序树基本操作的实现 文本文档

10 设计说明书(论文)质量 30 综述简练完整,有见解;立论正确,论述充分,结论严谨合理;实验正确,分析处理科学。
11 创新 10 对前人工作有改进或突破,或有独特见解。
成绩
指导教师评语
指导教师签名: 年 月 日
摘要及关键字
本程序中的数据采用“树形结构”作为其数据结构。具体采用的是“二叉排序树”。
1.2.5 平衡二叉树( AVL树 )
①平衡二叉树(Balanced Binary Tree)是指树中任一结点的左右子树的高度大致相同。 ②任一结点的左右子树的高度均相同(如满二叉树),则二叉树是完全平衡的。通常,只要二叉树的高度为O(1gn),就可看作是平衡的。 ③平衡的二叉排序树指满足BST性质的平衡二叉树。 ④AVL树中任一结点的左、右子树的高度之差的绝对值不超过1。在最坏情况下,n个结点的AVL树的高度约为1.44lgn。而完全平衡的二叉树高度约为lgn,AVL树是最接近最优的。
1.2.4平均查找长度…………………………………………………………… 6
1.2.5平均二叉树(AVL树)…………………………………………………… 6
1.2.6平衡因子………………………………………………………………… 7
1.2.7平衡二叉树的调整方法…………………………………………………… 7
攀枝花学院本科学生课程设计任务书
题 目 二叉排序树与平衡二叉树的实现
1、课程设计的目的
使学生进一步理解和掌握课堂上所学各种基本抽象数据类型的逻辑结构、存储结构和操作实现算法,以及它们在程序中的使用方法。
使学生掌握软件设计的基本内容和设计方法,并培养学生进行规范化软件设计的能力。
3) 使学生掌握使用各种计算机资料和有关参考资料,提高学生进行程序设计的基本能力。

数据结构课程设计_二叉树操作

数据结构课程设计_二叉树操作

数据结构课程设计_⼆叉树操作数据结构课程设计题⽬:⼆叉树的操作学⽣姓名:学号:系部名称:计算机科学与技术系专业班级:指导教师:课程设计任务书第⼀章程序要求1)完成⼆叉树的基本操作。

2)建⽴以⼆叉链表为存储结构的⼆叉树;3)实现⼆叉树的先序、中序和后序遍历;4)求⼆叉树的结点总数、叶⼦结点个数及⼆叉树的深度。

第⼆章算法分析建⽴以⼆叉链表为存储结构的⼆叉树,在次⼆叉树上进⾏操作;1先序遍历⼆叉树的操作定义为:若⼆叉树唯恐则为空操作;否则(1)访问根节点;(2)先序遍历做字数和;(3)先序遍历有⼦树;2中序遍历⼆叉树的操作定义为:若⼆叉树为空,则空操作;否则(1)中序遍历做⼦树;(2)访问根节点;(3)中序遍历有⼦树;3后续遍历⼆叉树的操作定义为:若⼆叉树为空则为空操作;否则(1)后序遍历左⼦树;(2)后序遍历右⼦树;(3)访问根节点;⼆叉树的结点总数、叶⼦结点个数及⼆叉树的深度。

第三章⼆叉树的基本操作和算法实现⼆叉树是⼀种重要的⾮线性数据结构,是另⼀种树形结构,它的特点是每个节点之多有两棵⼦树(即⼆叉树中不存在度⼤于2的结点),并且⼆叉树的结点有左右之分,其次序不能随便颠倒。

1.1⼆叉树创建⼆叉树的很多操作都是基于遍历实现的。

⼆叉树的遍历是采⽤某种策略使得采⽤树形结构组织的若⼲年借点对应于⼀个线性序列。

⼆叉树的遍历策略有四种:先序遍历中续遍历后续遍历和层次遍历。

基本要求1 从键盘接受输⼊数据(先序),以⼆叉链表作为存储结构,建⽴⼆叉树。

2 输出⼆叉树。

3 对⼆叉树进⾏遍历(先序,中序,后序和层次遍历)4 将⼆叉树的遍历打印出来。

⼀.问题描述⼆叉树的很多操作都是基于遍历实现的。

⼆叉树的遍历是采⽤某种策略使得采⽤树型结构组织的若⼲结点对应于⼀个线性序列。

⼆叉树的遍历策略有四种:先序遍历、中序遍历、后序遍历和层次遍历。

⼆.基本要求1.从键盘接受输⼊数据(先序),以⼆叉链表作为存储结构,建⽴⼆叉树。

2.输出⼆叉树。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.2课程设计思想
建立二叉排序树采用边查找边插入的方式。查找函数采用递归的方式进行查找。如果查找成功则不应再插入原树,否则返回当前结点的上一个结点。然后利用插入函数将该元素插入原树。
对二叉树进行中序遍历采用递归函数的方式。在根结点不为空的情况下,先访问左子树,再访问根结点,最后访问右子树。
计算二插排序树的平均查找长度时,仍采用类似中序遍历的递归方式,用s记录总查找长度,j记录每个结点的查找长度,s置初值为0,采用累加的方式最终得到总查找长度s。平均查找长度就等于s/i(i为树中结点的总个数)。
六、建议参考资料
1.《数据结构(C语言版)》严蔚敏、吴伟民主编清华大学出版社2004.11
2.《数据结构课程设计案例精编(用C/C++描述)》,李建学 等 编著,清华大学出版社2007.2
3.《数据结构:用面向对象方法与C++语言描述》,殷人昆主编,清华大学出版社 2007.6

数据结构是研究与数据之间的关系,我们称这一关系为数据的逻辑结构,简称数据结构。当数据的逻辑结构确定以后,数据在物理空间中的存储方式,称为数据的存储结构。相同的逻辑结构可以具有不同的存储结构,因而有不同的算法。
}
在计算机迅速发展的今天,将计算机这一信息处理器应用于实际数据问题问题的信息计算已是势必所然,而且这也将数据信息处理带来前所未有的改变。采用计算机对数据的信息处理是信息科学化和现代化的重要标志,它也给各行各业带来了明显的经济效益。主要体现在:极大地提高了工作人员的工作效率,大大地减少了以往的手工操作的各种弊端,同时也加强和规范掌握对于数据信息的计算。
本次课程设计,程序中的数据采用“树形结构”作为其数据结构。具体采用的是“二叉排序树”,并且使用“一维数组”来作为其存储结构。一维数组顺序表存储结构是用一组地址连续的存储单元依次自上而下、自左而右存储完全二叉树上的结点元素;本课程设计实现了二叉排序树的创建、中序遍历、计算二叉排序树的平均查找长度和删除二叉排序树中某个结点。
A)以中序遍历方式遍历左子树;
B)访问根结点;
C)以中序遍历方式遍历右子树。其算法如下:
inorderTraverse(node *t) /*中序遍历函数*/
{
If(*t){
If(inorderTraverse(&(*t)->lchild)) /*中序遍历根的左子树*/
Printf("%d ",(*t)->data); /*中序遍历根的右子树*/
} while(num);
Printf("\n\n--the menu of the opperation---\n");/*主程序菜单*/
Printf("\n 0: exit");
Printf("\n 1: inorder travel the tree");
Printf("\n 2: delete");
本课程主要介绍了本课题的开发背景,所要完成的功能和开发的过程。重点说明了系统的设计思路、总体设计、各个功能模块的设计与实序遍历。
1
1.1
随着经济的迅速发展,各行各业纷纷应用计算机数据信息管理。当然数据信息是一个很笼统的概念,随着现代信息的大量增加,其处理难度也越来越大,如何对各个数据信息进行更好的树立,这就是我们研究这个课题的目的。
Inorder Traverse(&T); /*1--中序遍历*/
Break;
Case 2: printf(" Please input the number you want to delete:");
Scanf("%d,&num"); /*3--删除某个结点*/
If(searchBST(T,num,NULL,&p))
Break;
Default: printf("Your input is wrong!Please input again!\n");
Break; /*输入无效字符*/
}
}
}
4.2 查找模块
该模块是给用户提供查找功能。其查找过程是:若二叉排序树为空,则查找失败,结束查找,返回信息 NULL;否则,将要查找的值与二叉排序树根结点的值进行比较,若相等,则查找成功,结束查找,返回被查找到结点的地址,若不等,则根据要查找的值与根结值的大小关系决定时到根结点的左子树还是右子树中继续查找(查找过程同上),直到查找成功或者查找失败为止。其算法如下:
⑴若它的左子树非空,则左子树上所有结点的值均小于根结点的值;
⑵若它的右子树非空,则右子树上所有结点的值均大于根结点的值;
⑶左、右子树本身又各是一棵二叉排序树。
3.2 二叉排序树的生成过程
二叉排序树的生成,采用递归方式的边查找边插入的方式。如图
3.3 主要功能模块设计
程序主要设计了五个功能:首先是创建二叉排序树,完成后出现任务菜单,菜单中设计了四个模块:退出,中序遍历,计算平均查找长度和删除结点。
内蒙古科技大学课程设计任务书
课程名称
数据结构课程设计
设计题目
二叉排序树的操作
指导教师
周李涌、康懿、兰孝文
时间
2009.6.15——2008.6.26
一、教学要求
1.掌握数据结构与算法的设计方法,具备初步的独立分析和设计能力
2.初步掌握软件开发过程的问题分析、系统设计、程序编码、测试等基本方法和技能
3.提高综合运用所学的理论知识和方法独立分析和解决问题的能力
四、进度安排
资料查阅与讨论(1天)
系统分析(2天)
系统的开发与测试(5天)
编写课程设计说明书和验收(2天)
五、评分标准
1. 根据平时上机考勤、表现和进度,教师将每天点名和检查
2. 根据课程设计完成情况,必须有可运行的软件。
3. 根据课程设计报告的质量,如有雷同,则所有雷同的所有人均判为不及格。
4. 根据答辩的情况,应能够以清晰的思路和准确、简练的语言叙述自己的设计和回答教师的提问
}
4.4 中序遍历模块
遍历(Traversal)是指沿着某条搜索路线,依次对树中每个结点均做一次且仅做一次访问。访问结点所做的操作依赖于具体的应用问题。二叉树共有三个部分组成,即根结点,根结点的左子树,根结点的右子树。限定以从左至右方式共有三种遍历方式,即前序遍历,中序遍历,后序遍历。中序遍历的原则:若被遍历的二叉树为非空,则依次执行如下操作:
创建二叉排序树
输出二叉排序树
在二叉排序树中查找给定值
在二叉排序树中插入新结点
在二叉排序树中删除给定值
并设计主函数测试该类(或类模板)。
三、设计要求及成果
1. 分析课程设计题目的要求
2. 写出详细设计说明
3. 编写程序代码,调试程序使其能正确运行
4. 设计完成的软件要便于操作和使用
5. 设计完成后提交课程设计报告
}
4.3 插入模块
在二叉排序树种插入新结点,要保证插入后的二叉树仍符合二叉排序树的定义。插入过程;若二叉排序树为空,则待插入结点*p作为根结点插入到空树中;当非空时,将待插结点关键字p->item和树根关键字t->item进行比较,若p->item=t->item,则无须插入,若p->item<t->item,则插入到根的左子树中,若p->item>t->item,则插入到根的右子树中。而子树种的插入过程和在树中的插入过程相同,如此进行下去,直到把结点*p作为一个新的树叶插入到二叉排序树中,或者直到发现数已有相同关键字的结点为止。其算法如下:
While(ch==ch)
{ printf("\n choose the opperation to continue:");
Scanf("%d,&ch");
Switch(ch){
Case 0: exit(0); /*0--退出*/
Case 1: printf(" The result of inorder traverse is:\n ");
insertBST(node *t,int key) /*插入函数*/
{
Node p=NULL,s=NULL;
If(!searchBST(*t,key,NULL,&p)) /*查找不成功*/
{
S=(node)malloc(size(BSTnode));
S->data=key;
S->lchild=s->rchild=NULL;
If(!p) *t=s; /*被插结点*s为新的根结点*/
Else if(key<p->data) p->lchild=s; /*被查结点*s为左孩子*/
Else p->rchild=s;/*被插结点*s为右孩子*/
Return(1);
}
Else return(0); /*树中已有关键字相同的结点,不再插入*/
scarchBST(node,int key,node f,node *p) /*查找函数*/
{
If(!t) {*p=f;return(1);} /*查找不成功*/
Else if(key==t->data) searchBST(t->lchild,key,t,p); /*在左子树中继续查找*/
Else searchBST(t->rchild,key,t,p); /*在右子树中继续查找*/
Node p=NULL;
Printf("please input a list o numbers end with zero:");
Do{ scanf("%d,&num");
相关文档
最新文档