八年级数学期末复习题(二)
初中数学八年级下期末经典练习题(含答案解析)(2)
一、选择题1.(0分)[ID :10223]下列各命题的逆命题成立的是( ) A .全等三角形的对应角相等 B .如果两个数相等,那么它们的绝对值相等 C .两直线平行,同位角相等 D .如果两个角都是45°,那么这两个角相等2.(0分)[ID :10218]某体育用品商店一天中卖出某种品牌的运动鞋15双,其中各种尺码的鞋的销售量如表所示: 鞋的尺码/cm 23 23.5 24 24.5 25 销售量/双13362则这15双鞋的尺码组成的一组数据中,众数和中位数分别为( ) A .24.5,24.5B .24.5,24C .24,24D .23.5,243.(0分)[ID :10147]正比例函数(0)y kx k =≠的函数值y 随x 的增大而增大,则一次函数y x k =-的图象大致是( )A .B .C .D .4.(0分)[ID :10146]为了调查某校同学的体质健康状况,随机抽查了若干名同学的每天锻炼时间如表: 每天锻炼时间(分钟) 20 40 60 90 学生数2341则关于这些同学的每天锻炼时间,下列说法错误的是()A.众数是60B.平均数是21C.抽查了10个同学D.中位数是50 5.(0分)[ID:10144]如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方ab ,形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b.若8大正方形的面积为25,则小正方形的边长为()A.9B.6C.4D.36.(0分)[ID:10136]已知一次函数y=-0.5x+2,当1≤x≤4时,y的最大值是()A.1.5B.2C.2.5D.-67.(0分)[ID:10187]某单位组织职工开展植树活动,植树量与人数之间关系如图,下列说法不正确的是()A.参加本次植树活动共有30人B.每人植树量的众数是4棵C.每人植树量的中位数是5棵D.每人植树量的平均数是5棵8.(0分)[ID:10181]若一个直角三角形的两边长为12、13,则第三边长为()A.5B.17C.5或17D.5或√3139.(0分)[ID:10177]明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m2)与工作时间t (单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是()A.300m2B.150m2C.330m2D.450m210.(0分)[ID:10173]如图,长方形纸片ABCD中,AB=4,BC=6,点E在AB边上,将纸片沿CE折叠,点B落在点F处,EF,CF分别交AD于点G,H,且EG=GH,则AE的长为( )A.23B.1C.32D.211.(0分)[ID:10169]直角三角形中,有两条边长分别为3和4,则第三条边长是()A.1B.5C.7D.5或712.(0分)[ID:10168]无论m为任何实数,关于x的一次函数y=x+2m与y=-x+4的图象的交点一定不在()A.第一象限 B.第二象限 C.第三象限 D.第四象限13.(0分)[ID:10167]如图,在▱ABCD中,AB=6,BC=8,∠BCD的平分线交AD于点E,交BA的延长线于点F,则AE+AF的值等于()A.2B.3C.4D.614.(0分)[ID:10158]下列运算正确的是()A.235+=B.32﹣2=3C.236⨯=D.632÷=15.(0分)[ID:10157]如图,一个工人拿一个2.5米长的梯子,底端A放在距离墙根C点0.7米处,另一头B点靠墙,如果梯子的顶部下滑0.4米,梯子的底部向外滑()米A.0.4B.0.6C.0.7D.0.8二、填空题16.(0分)[ID :10331]如图,在ABC 中,AC BC =,点D E ,分别是边AB AC ,的中点,延长DE 到点F ,使DE EF =,得四边形ADCF .若使四边形ADCF 是正方形,则应在ABC 中再添加一个条件为__________.17.(0分)[ID :10325]将一次函数y=3x ﹣1的图象沿y 轴向上平移3个单位后,得到的图象对应的函数关系式为__.18.(0分)[ID :10320]如图所示,BE AC ⊥于点D ,且AB BC =,BD ED =,若54ABC ∠=,则E ∠=___.19.(0分)[ID :10315]计算:182-=______. 20.(0分)[ID :10308]如图,直线l 1:y =x +n –2与直线l 2:y =mx +n 相交于点P (1,2).则不等式mx +n <x +n –2的解集为______.21.(0分)[ID :10304]若x <222)x -(﹣x|的正确结果是__.22.(0分)[ID :10288]某公司欲招聘一名公关人员,对甲、乙两位候选人进行了面试和笔试,他们的成绩如表: 候选人甲 乙 测试成绩(百分制)面试8692笔试9083如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权。
八年级(下)数学期末试卷(2)
八年级(下)数学期末试卷(2)一.选择题(共11小题,满分33分,每小题3分)1.(3分)“漏壶”是一种古代计时器,如图所示.在壶内盛一定量的水,水从壶底的小孔漏出,壶内壁画有刻度,人们根据壶中水面的位置计算时间.用x表示漏水时间,y表示壶底到水面的高度,不考虑水量变化对压力的影响,下列图象能表示y与x对应关系的是()A.B.C..D.2.(3分)在一篇文章中,“的”、“地”、“得”三个字共出现100次.已知“的”和“地”的频率之和是0.7,那么“得”字出现的频数是()A.28B.30C.32D.343.(3分)甲、乙、丙、丁四位同学五次数学测验成绩统计如表.如果从这四位同学中,选出一位平均成绩较高且状态稳定的同学参加数学比赛,那么应选()甲乙丙丁平均数80858580方差42455459 A.甲B.乙C.丙D.丁4.(3分)下列二次根式中属于最简二次根式的是()A.B.C.D.5.(3分)下列各式中,无意义的是()A.B.C.D.6.(3分)若x+y=6,x2+y2=20,求xy的值是()A.6B.8C.26D.207.(3分)下列命题中,真命题是()A.任何数的零次幂都等于1B.对角线相等且垂直的四边形是正方形C.有一条边相等的两个等腰直角三角形全等D.有两直角边对应相等的两个直角三角形全等8.(3分)如图,将一副直角三角尺重叠摆放,使得60°角的顶点与等腰直角三角形的直角顶点重合,且DE⊥AB于点D,与BC交于点F,则∠DCF的度数为()A.20°B.15°C.30°D.45°9.(3分)如图,点E是Rt△ABC、Rt△ABD的斜边AB的中点,AC=BC,∠DBA=25°,则∠DCE的度数是()A.20°B.30°C.35°D.40°10.(3分)顺次联结四边形ABCD各边中点所形成的四边形是矩形,那么四边形ABCD是()A.平行四边形B.矩形C.菱形D.等腰梯形11.(3分)函数y=2x+3的图象可能是()A .B .C .D .二.填空题(共4小题,满分12分,每小题3分)12.(3分)小华在整理平行四边形、矩形、菱形、正方形的性质时,发现它们的对角线都具有同一性质是.13.(3分)在平行四边形ABCD 中,AB=3,BC=4,则平行四边形ABCD的周长等于.14.(3分)有5位教师和一群学生一起去公园,教师的全票票价是每人7元,学生票收半价.如果买门票共花费206.5元,那么学生有多少人?设学生有x人,填写下表:人数/人票价/元总票价/元教师学生根据题意,得方程,所以学生有人.15.(3分)直线y=﹣x+m与y=nx+4n(n≠0)的交点的横坐标为﹣2,则关于x的不等式﹣x﹣nx>4n﹣m的解集为.三.解答题(共4小题,满分30分)16.(11分)计算:(1);(2).17.(6分)如图,A,B,H是直线上的三个点,AC⊥l于点A,BD⊥l于点B,HC=HD,AB=5,AC=2,BD=3,求AH的长.18.(6分)如图,任意四边形ABCD中,AB=CD,M、N分别为BC、AD的中点.说明∠1与∠2的大小关系.19.(7分)排球垫球是体育中考的项目之一,下列图表中的数据是甲、乙、丙三人每人十次垫球测试的成绩.测试规则为连续接球10个,每垫球到位1个记1分.运动员甲测试成绩表测试序号12345678910成绩(分)7687758787(1)运动员甲测试成绩的众数为;运动员乙测试成绩的中位数为;运动员丙测试成绩的平均数为;(2)经计算三人成绩的方差分别为S甲2=0.8,S乙2=0.4,S丙2=0.6,如果在他们三人中选择一位垫球成绩较为稳定的接球能手作为自由人,则运动员更合适;(3)甲、乙、丙三人相互之间进行垫球练习,每个人的球都等可能的传给其他两人,球最先从甲手中传出,第三轮结束时球回到甲手中的概率是多少?(用树状图或列表法解答)四.解答题(共3小题,满分23分)20.(7分)如图,四边形ABCD的对角线AC⊥BD于点E.点F为四边形ABCD外一点,且∠FCA=90°,BC平分∠DBF,∠CBF=∠DCB.(1)求证:四边形DBFC是菱形;(2)若AB=BC,∠F=45°,BD=2,则AC=.21.(8分)计算:(1)(+)÷﹣6;(2)﹣(1+)(2﹣).22.(8分)某城市有一类出租车,在5时到23时的时间段内运营,计费规定如下:行驶里程不超过3千米付费14元,超过3千米且不超过15千米的部分每千米付费2.50元;总里程超过15千米的部分每千米付费3.80元(等候时间管不计费).(1)该类出租车起步价为多少元?在多少千米内只收起步价?(2)某人乘该类出租车行驶了x千米,试写出当x(千米)超过3(千米)但不超过15(千米)时,乘车费用y(元)关于里程数x(千米)的函数解析式,并求当所付费用为26元时出租车行驶的里程数.(3)当乘车费用为82元时,出租车行驶了多少千米?五.解答题(共2小题,满分22分)23.(10分)(1)【探究发现】如图①,已知矩形ABCD的对角线AC的垂直平分线与边AD,BC分别交于点E,F.求证:四边形AFCE是菱形;(2)【类比应用】如图②,直线EF分别交矩形ABCD的边AD,BC于点E,F,将矩形ABCD沿EF翻折,使点C的对称点与点A重合,点D的对称点为D',若AB=3,BC=4,求四边形ABFE的周长;(3)【拓展延伸】如图③,直线EF分别交平行四边形ABCD的边AD,BC于点E,F,将平行四边形ABCD沿EF翻折,使点C的对称点与点A重合,点D的对称点为D',若,BC=4,∠C=45°,求EF的长.24.(12分)已知:在矩形ABCD中,AB=6,AD=2,P是BC边上的一个动点,将矩形ABCD折叠,使点A与点P重合,点D落在点G处,折痕为EF.(1)如图1,当点P与点C重合时,则线段EB=,EF=;(2)如图2,当点P与点B,C均不重合时,取EF的中点O,连接并延长PO与GF的延长线交于点M,连接PF,ME,MA.①求证:四边形MEPF是平行四边形;②当tan∠MAD=时,求四边形MEPF的面积.。
初中数学八年级下期末经典题(含答案解析)(2)
一、选择题1.(0分)[ID :10231]某商场试销一种新款衬衫,一周内售出型号记录情况如表所示: 型号(厘米) 38 39 40 41 42 43 数量(件)25303650288商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最有意义的是( ) A .平均数B .中位数C .众数D .方差2.(0分)[ID :10229]如图,将正方形OABC 放在平面直角坐标系中,O 是原点,点A 的坐标为(1,√3),则点C 的坐标为( )A .(-√3,1)B .(-1,√3)C .(√3,1)D .(-√3,-1)3.(0分)[ID :10222]一次函数y kx b =+的图象如图所示,点()3,4P 在函数的图象上.则关于x 的不等式4kx b +≤的解集是( )A .3x ≤B .3x ≥C .4x ≤D .4x ≥4.(0分)[ID :10217]已知M 、N 是线段AB 上的两点,AM =MN =2,NB =1,以点A 为圆心,AN 长为半径画弧;再以点B 为圆心,BM 长为半径画弧,两弧交于点C ,连接AC ,BC ,则△ABC 一定是( ) A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形5.(0分)[ID :10211]一次函数111y k x b =+的图象1l 如图所示,将直线1l 向下平移若干个单位后得直线2l ,2l 的函数表达式为222y k x b =+.下列说法中错误的是( )A .12k k =B .12b b <C .12b b >D .当5x =时,12y y >6.(0分)[ID :10205]以下命题,正确的是( ). A .对角线相等的菱形是正方形 B .对角线相等的平行四边形是正方形 C .对角线互相垂直的平行四边形是正方形 D .对角线互相垂直平分的四边形是正方形7.(0分)[ID :10199]将一张长方形纸片按如图所示的方式折叠,,BC BD 为折痕,则CBD ∠的度数为( )A .60︒B .75︒C .90︒D .95︒8.(0分)[ID :10144]如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a ,较短直角边长为b .若8ab =,大正方形的面积为25,则小正方形的边长为( )A .9B .6C .4D .39.(0分)[ID :10141]12751348)的结果是( ) A .6B .3C .3D .1210.(0分)[ID :10138]小强所在学校离家距离为2千米,某天他放学后骑自行车回家,先骑了5分钟后,因故停留10分钟,再继续骑了5分钟到家.下面哪一个图象能大致描述他回家过程中离家的距离s (千米)与所用时间t (分)之间的关系( )A.B.C.D.11.(0分)[ID:10192]如图2,四边形ABCD的对角线AC、BD互相垂直,则下列条件能判定四边形ABCD为菱形的是()A.BA=BC B.AC、BD互相平分C.AC=BD D.AB∥CD12.(0分)[ID:10166]如图,点P是矩形ABCD的边上一动点,矩形两边长AB、BC长分别为15和20,那么P到矩形两条对角线AC和BD的距离之和是()A.6B.12C.24D.不能确定13.(0分)[ID:10161]如图,一棵大树在一次强台风中距地面5m处折断,倒下后树顶端着地点A距树底端B的距离为12m,这棵大树在折断前的高度为()A.10m B.15m C.18m D.20m14.(0分)[ID:10159]将根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,设筷子露在杯子外面的长度hcm,则h的取值范围是( )A .h 17cm ≤B .h 8cm ≥C .7cm h 16cm ≤≤D .15cm h 16cm ≤≤15.(0分)[ID :10150]如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A .48B .60C .76D .80二、填空题16.(0分)[ID :10332]如图,BD 是△ABC 的角平分线,DE∥BC,交AB 于点E ,DF∥AB,交BC 于点F ,当△ABC 满足_________条件 时,四边形BEDF 是正方形.17.(0分)[ID :10331]如图,在ABC 中,AC BC =,点D E ,分别是边AB AC ,的中点,延长DE 到点F ,使DE EF =,得四边形ADCF .若使四边形ADCF 是正方形,则应在ABC 中再添加一个条件为__________.18.(0分)[ID :10320]如图所示,BE AC ⊥于点D ,且AB BC =,BD ED =,若54ABC ∠=,则E ∠=___.19.(0分)[ID :10300]如图,在平面直角坐标系xOy 中,点(0,6)C ,射线//x CE 轴,直线y x b =-+交线段OC 于点B ,交x 轴于点A ,D 是射线CE 上一点.若存在点D ,使得ABD △恰为等腰直角三角形,则b 的值为_______.20.(0分)[ID :10294]如图,矩形ABCD 的对角线AC 、BD 相交于点O ,∠AOB=120°,CE//BD ,DE//AC ,若AD=5,则四边形CODE 的周长______.21.(0分)[ID :10290]一个三角形的三边长分别为15cm 、20cm 、25cm ,则这个三角形最长边上的高是_____ cm .22.(0分)[ID :10284]如图,将周长为8的△ABC 沿BC 方向向右平移1个单位得到△DEF ,则四边形ABFD 的周长为 .23.(0分)[ID :10274]如果一组数据1,3,5,a ,8的方差是0.7,则另一组数据11,13,15,10a +,18的方差是________.24.(0分)[ID :10252]有一组数据如下:2,3,a ,5,6,它们的平均数是4,则这组数据的方差是 .25.(0分)[ID :10240]已知一组数据1,2,3,4,5的方差为2,则另一组数据11,12,13,14,15的方差为___.三、解答题26.(0分)[ID :10380]如图,在平面直角坐标系xOy 中,一次函数y 1=−23x+2与x 轴、y轴分别相交于点A 和点B ,直线y 2=kx+b(k≠0)经过点C(1,0)且与线段AB 交于点P ,并把△ABO 分成两部分. (1)求A 、 B 的坐标; (2)求△ABO 的面积;(3)若△ABO 被直线CP 分成的两部分的面积相等,求点P 的坐标及直线CP 的函数表达式.27.(0分)[ID :10379]如图①,在正方形ABCD 中,P 是对角线AC 上的一点,点E 在BC 的延长线上,且PE=PB(1)求证:△BCP ≌△DCP ; (2)求证:∠DPE=∠ABC ;(3)把正方形ABCD 改为菱形,其它条件不变(如图②),若∠ABC=58°,则∠DPE= 度.28.(0分)[ID :10347]先阅读下列材料,再解决问题:阅读材料:数学上有一种根号内又带根号的数,形如2a b ±,如果你能找到两个数m 、n ,使22m n a +=,且mn b =,则2a b ±可变形为2222()m n mn m n m n +±=±=±,从而达到化去一层根号的目的.例如:22232212221(2)212(12)-=+-=+-⨯⨯=-1221=-=-仿照上例完成下面各题: 填上适当的数:29.(0分)[ID :10346]011)1235-+⨯--.30.(0分)[ID :10340]设a =b =c =.(1)当x 取什么实数时,a ,b ,c 都有意义;(2)若Rt △ABC 三条边的长分别为a ,b ,c ,求x 的值.【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题 1.C 2.A 3.A 4.B 5.B 6.A 7.C 8.D 9.D 10.D 11.B 12.B 13.C 14.C 15.C二、填空题16.∠ABC=90°【解析】分析:由题意知四边形DEBF是平行四边形再通过证明一组邻边相等可知四边形DEBF是菱形进而得出∠ABC=90°时四边形BEDF是正方形详解:当△ABC满足条件∠ABC=90°17.答案不唯一如∠ACB=90°或∠BAC=45°或∠B=45°【解析】【分析】先证明四边形ADCF 是平行四边形再证明AC=DF即可再利用∠ACB=90°得出答案即可【详解】∠ACB=90°时四边形AD18.27°【解析】【分析】连接AE先证Rt△ABD≌Rt△CBD得出四边形ABCE是菱形根据菱形的性质可推导得到∠E的大小【详解】如下图连接AE∵BE⊥AC∴∠ADB=∠BDC=90°∴△ABD 和△CB19.3或6【解析】【分析】先表示出AB坐标分①当∠ABD=90°时②当∠ADB=90°时③当∠DAB=90°时建立等式解出b即可【详解】解:①当∠ABD=90°时如图1则∠DBC+∠ABO=90°∴∠D20.20【解析】【分析】通过矩形的性质可得再根据∠AOB=120°可证△AOD是等边三角形即可求出OD的长度再通过证明四边形CODE是菱形即可求解四边形CODE的周长【详解】∵四边形ABCD是矩形∴∵∠21.【解析】【分析】过C作CD⊥AB于D根据勾股定理的逆定理可得该三角形为直角三角形然后再利用三角形的面积公式即可求解【详解】如图设AB=25是最长边AC=15BC=20过C作CD ⊥AB于D∵AC2+B22.【解析】试题解析:根据题意将周长为8的△ABC沿边BC向右平移1个单位得到△DEF则AD=1BF=BC+CF=BC+1DF=AC又∵AB+BC+AC=10∴四边形ABFD的周长=AD+AB+BF+D23.7【解析】【分析】根据题目中的数据和方差的定义可以求得所求数据的方差【详解】设一组数据135a8的平均数是另一组数据111315+1018的平均数是+10∵=07∴==07故答案为07【点睛】本题考24.2【解析】试题分析:先由平均数计算出a=4×5-2-3-5-6=4再计算方差(一般地设n个数据x1x2…xn的平均数为=()则方差=)==2考点:平均数方差25.2【解析】试题分析:根据方差的性质当一组数据同时加减一个数时方差不变进而得出答案∵一组数据12345的方差为2∴则另一组数据1112131415的方差为2故答案为2考点:方差三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.C解析:C【解析】分析:商场经理要了解哪些型号最畅销,所关心的即为众数.详解:根据题意知:对商场经理来说,最有意义的是各种型号的衬衫的销售数量,即众数.故选C.点睛:此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.2.A解析:A【解析】试题分析:作辅助线构造出全等三角形是解题的关键,也是本题的难点.如图:过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,根据同角的余角相等求出∠OAD=∠COE,再利用“角角边”证明△AOD和△OCE全等,根据全等三角形对应边相等可得OE=AD,CE=OD,然后根据点C在第二象限写出坐标即可.∴点C的坐标为(-,1)故选A.考点:1、全等三角形的判定和性质;2、坐标和图形性质;3、正方形的性质.3.A解析:A【解析】 【分析】观察函数图象结合点P 的坐标,即可得出不等式的解集. 【详解】解:观察函数图象,可知:当3x ≤时,4kx b +≤. 故选:A . 【点睛】考查了一次函数与一元一次不等式以及一次函数的图象,观察函数图象,找出不等式4kx b +≤的解集是解题的关键. 4.B解析:B 【解析】 【分析】依据作图即可得到AC =AN =4,BC =BM =3,AB =2+2+1=5,进而得到AC 2+BC 2=AB 2,即可得出△ABC 是直角三角形. 【详解】如图所示,AC =AN =4,BC =BM =3,AB =2+2+1=5, ∴AC 2+BC 2=AB 2,∴△ABC 是直角三角形,且∠ACB =90°, 故选B .【点睛】本题主要考查了勾股定理的逆定理,如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.5.B解析:B 【解析】 【分析】根据两函数图象平行k 相同,以及平移规律“左加右减,上加下减”即可判断 【详解】∵将直线1l 向下平移若干个单位后得直线2l , ∴直线1l ∥直线2l ,∴12k k =,∵直线1l 向下平移若干个单位后得直线2l ,∴12b b >,∴当x 5=时,12y y >故选B .【点睛】本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减.平移后解析式有这样一个规律“左加右减,上加下减”.关键是要搞清楚平移前后的解析式有什么关系.6.A解析:A【解析】【分析】利用正方形的判定方法分别判断后即可确定正确的选项.【详解】A 、对角线相等的菱形是正方形,正确,是真命题;B 、对角线相等的平行四边形是矩形,故错误,是假命题;C 、对角线互相垂直的平行四边形是菱形,故错误,是假命题;D 、对角线互相垂直平分的四边形是菱形,故错误,是假命题,故选:A .【点睛】考查了命题与定理的知识,解题的关键是了解正方形的判定方法.7.C解析:C【解析】【分析】根据图形,利用折叠的性质,折叠前后形成的图形全等,对应角相等,利用平角定义ABC ∠+A BC '∠+E BD '∠+EBD ∠=180°,再通过等量代换可以求出CBD ∠. 【详解】解:∵长方形纸片按如图所示的方式折叠,,BC BD 为折痕∴A BC ABC '∠=∠,E BD EBD '∠=∠∵ABC ∠+A BC '∠+E BD '∠+EBD ∠=180°(平角定义)∴A BC '∠+A BC '∠+E BD '∠+E BD '∠=180°(等量代换)A BC '∠+E BD '∠=90°即CBD ∠=90°故选:C .【点睛】本题通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.8.D解析:D【解析】【分析】由题意可知:中间小正方形的边长为:-a b ,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长.【详解】解:由题意可知:中间小正方形的边长为:-a b每一个直角三角形的面积为:118422ab =⨯= 214()252ab a b ∴⨯+-= 2()25169a b ∴-=-=3a b ∴-=故选:D【点睛】本题考查勾股定理的运用,稍有难度;利用大正方形与小正方形、直角三角形面积之间的等量关系是解答本题的关键.9.D解析:D【解析】【分析】【详解】12===. 故选:D. 10.D解析:D【解析】【分析】根据描述,图像应分为三段,学校离家最远,故初始时刻s最大,到家,s为0,据此可判断.【详解】因为小明家所在学校离家距离为2千米,某天他放学后骑自行车回家,行使了5分钟后,因故停留10分钟,继续骑了5分钟到家,所以图象应分为三段,根据最后离家的距离为0,由此可得只有选项DF符合要求.故选D.【点睛】本题要求正确理解函数图象与实际问题的关系,理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小,通过图象得到函数是随自变量的增大或减小的快慢.11.B解析:B【解析】【分析】【详解】解:对角线互相垂直平分的四边形为菱形.已知对角线AC、BD互相垂直,则需添加条件:AC、BD互相平分故选:B12.B解析:B【解析】【分析】由矩形ABCD可得:S△AOD=14S矩形ABCD,又由AB=15,BC=20,可求得AC的长,则可求得OA与OD的长,又由S△AOD=S△APO+S△DPO=12OA•PE+12OD•PF,代入数值即可求得结果.【详解】连接OP,如图所示:∵四边形ABCD是矩形,∴AC=BD,OA=OC=12AC,OB=OD=12BD,∠ABC=90°,S△AOD=14S矩形ABCD,∴OA =OD =12AC , ∵AB =15,BC =20, ∴AC =22AB BC +=221520+=25,S △AOD =14S 矩形ABCD =14×15×20=75, ∴OA =OD =252, ∴S △AOD =S △APO +S △DPO =12OA •PE +12OD •PF =12OA •(PE +PF )=12×252(PE +PF )=75,∴PE +PF =12. ∴点P 到矩形的两条对角线AC 和BD 的距离之和是12.故选B .【点睛】本题考查了矩形的性质、勾股定理、三角形面积.熟练掌握矩形的性质和勾股定理是解题的关键.13.C解析:C【解析】∵树的折断部分与未断部分、地面恰好构成直角三角形,且BC=5m ,AB=12m , ∴22AB BC +22125+=13m ,∴这棵树原来的高度=BC+AC=5+13=18m.故选C.14.C解析:C【解析】【分析】观察图形,找出图中的直角三角形,利用勾股定理解答即可.【详解】首先根据圆柱的高,知筷子在杯内的最小长度是8cm ,则在杯外的最大长度是24-8=16cm ;再根据勾股定理求得筷子在杯内的最大长度是(如图)2222158AB BC +=+,则在杯外的最小长度是24-17=7cm ,所以h 的取值范围是7cm ≤h ≤16cm ,故选C.【点睛】本题考查了勾股定理的应用,注意此题要求的是筷子露在杯外的取值范围.主要是根据勾股定理求出筷子在杯内的最大长度.15.C解析:C【解析】试题解析:∵∠AEB=90°,AE=6,BE=8,∴22226810AE BE+=+=∴S阴影部分=S正方形ABCD-S Rt△ABE=102-168 2⨯⨯=100-24=76.故选C.考点:勾股定理.二、填空题16.∠ABC=90°【解析】分析:由题意知四边形DEBF是平行四边形再通过证明一组邻边相等可知四边形DEBF是菱形进而得出∠ABC=90°时四边形BEDF是正方形详解:当△ABC满足条件∠ABC=90°解析:∠ABC=90°【解析】分析: 由题意知,四边形DEBF是平行四边形,再通过证明一组邻边相等,可知四边形DEBF是菱形, 进而得出∠ABC=90°时,四边形BEDF是正方形.详解: 当△ABC满足条件∠ABC=90°,四边形DEBF是正方形.理由:∵DE∥BC,DF∥AB,∴四边形DEBF是平行四边形∵BD是∠ABC的平分线,∴∠EBD=∠FBD,又∵DE∥BC,∴∠FBD=∠EDB,则∠EBD=∠EDB,∴BE=DE.故平行四边形DEBF是菱形,当∠ABC=90°时,菱形DEBF是正方形.故答案为:∠ABC=90°.点睛: 本题主要考查了菱形、正方形的判定,正确掌握菱形以及正方形的判定方法是解题关键.17.答案不唯一如∠ACB=90°或∠BAC=45°或∠B=45°【解析】【分析】先证明四边形ADCF是平行四边形再证明AC=DF即可再利用∠ACB=90°得出答案即可【详解】∠ACB=90°时四边形AD解析:答案不唯一,如∠ACB=90°或∠BAC=45°或∠B=45°【解析】【分析】先证明四边形ADCF是平行四边形,再证明AC=DF即可,再利用∠ACB=90°得出答案即可.【详解】∠ACB=90°时,四边形ADCF是正方形,理由:∵E是AC中点,∴AE=EC,∵DE=EF,∴四边形ADCF是平行四边形,∵AD=DB,AE=EC,∴DE=12 BC,∴DF=BC,∵CA=CB,∴AC=DF,∴四边形ADCF是矩形,点D. E分别是边AB、AC的中点,∴DE//BC,∵∠ACB=90°,∴∠AED=90°,∴矩形ADCF是正方形.故答案为∠ACB=90°.【点睛】此题考查正方形的判定,解题关键在于掌握判定法则18.27°【解析】【分析】连接AE先证Rt△ABD≌Rt△CBD得出四边形ABCE是菱形根据菱形的性质可推导得到∠E的大小【详解】如下图连接AE∵BE⊥AC∴∠ADB=∠BDC=90°∴△ABD和△CB解析:27°【解析】【分析】连接AE,先证Rt△ABD≌Rt△CBD,得出四边形ABCE是菱形,根据菱形的性质可推导得到∠E 的大小.【详解】如下图,连接AE∵BE ⊥AC ,∴∠ADB=∠BDC=90°∴△ABD 和△CBD 是直角三角形在Rt △ABD 和Rt △CBD 中AB BC BD BD=⎧⎨=⎩ ∴Rt △ABD ≌Rt △CBD∴AD=DC∵BD=DE∴在四边形ABCE 中,对角线垂直且平分∴四边形ABCE 是菱形∵∠ABC=54°∴∠ABD=∠CED=27°故答案为:27°【点睛】本题考查菱形的证明和性质的运用,解题关键是先连接AE ,然后利用证Rt △ABD ≌Rt △CBD 推导菱形.19.3或6【解析】【分析】先表示出AB 坐标分①当∠ABD=90°时②当∠ADB=90°时③当∠DAB=90°时建立等式解出b 即可【详解】解:①当∠ABD=90°时如图1则∠DBC+∠ABO=90°∴∠D解析:3或6【解析】【分析】先表示出A 、B 坐标,分①当∠ABD=90°时,②当∠ADB=90°时,③当∠DAB=90°时,建立等式解出b 即可.【详解】解:①当∠ABD=90°时,如图1,则∠DBC+∠ABO=90°,,∴∠DBC=∠BAO ,由直线y x b =-+交线段OC 于点B ,交x 轴于点A 可知OB=b ,OA=b ,∵点C (0,6),∴OC=6,∴BC=6-b ,在△DBC 和△BAO 中,DBC BAO DCB AOB BD AB ∠∠⎧⎪∠∠⎨⎪⎩=== ∴△DBC ≌△BAO (AAS ),∴BC=OA ,即6-b=b ,∴b=3;②当∠ADB=90°时,如图2,作AF ⊥CE 于F ,同理证得△BDC ≌△DAF ,∴CD=AF=6,BC=DF ,∵OB=b ,OA=b ,∴BC=DF=b-6,∵BC=6-b ,∴6-b=b-6,∴b=6;③当∠DAB=90°时,如图3,作DF ⊥OA 于F ,同理证得△AOB ≌△DFA ,∴OA=DF ,∴b=6;综上,b 的值为3或6,故答案为3或6.【点睛】本题考查了一次函数图像上点的坐标特征,等腰直角三角形的性质,三角形全等的判定和性质,作辅助线构建求得三角形上解题的关键.20.20【解析】【分析】通过矩形的性质可得再根据∠AOB=120°可证△AOD 是等边三角形即可求出OD 的长度再通过证明四边形CODE 是菱形即可求解四边形CODE 的周长【详解】∵四边形ABCD 是矩形∴∵∠解析:20【解析】【分析】通过矩形的性质可得OD OA OB OC ===,再根据∠AOB=120°,可证△AOD 是等边三角形,即可求出OD 的长度,再通过证明四边形CODE 是菱形,即可求解四边形CODE 的周长.【详解】∵四边形ABCD 是矩形∴OD OA OB OC ===∵∠AOB=120°∴18060AOD AOB =︒-=︒∠∠∴△AOD 是等边三角形∵5AD =∴5OD OA ==∴5OD OC ==∵CE//BD ,DE//AC∴四边形CODE 是平行四边形∵5OD OC ==∴四边形CODE 是菱形∴5OD OC DE CE ====∴四边形CODE 的周长20OD OC DE CE =+++=故答案为:20.【点睛】本题考查了四边形的周长问题,掌握矩形的性质、等边三角形的性质、菱形的性质以及判定定理是解题的关键.21.【解析】【分析】过C作CD⊥AB于D根据勾股定理的逆定理可得该三角形为直角三角形然后再利用三角形的面积公式即可求解【详解】如图设AB=25是最长边AC=15BC=20过C作CD⊥AB于D∵AC2+B解析:【解析】【分析】过C作CD⊥AB于D,根据勾股定理的逆定理可得该三角形为直角三角形,然后再利用三角形的面积公式即可求解.【详解】如图,设AB=25是最长边,AC=15,BC=20,过C作CD⊥AB于D.∵AC2+BC2=152+202=625,AB2=252=625,∴AC2+BC2=AB2,∴∠C=90°.∵S△ACB=12AC×BC=12AB×CD,∴AC×BC=AB×CD,∴15×20=25CD,∴CD=12(cm).故答案为12.【点睛】本题考查了勾股定理的逆定理和三角形的面积公式的应用.根据勾股定理的逆定理判断三角形为直角三角形是解答此题的突破点.22.【解析】试题解析:根据题意将周长为8的△ABC沿边BC向右平移1个单位得到△DEF则AD=1BF=BC+CF=BC+1DF=AC又∵AB+BC+AC=10∴四边形ABFD的周长= AD+AB+BF+D解析:【解析】试题解析:根据题意,将周长为8的△ABC沿边BC向右平移1个单位得到△DEF,则AD=1,BF=BC+CF=BC+1,DF=AC,又∵AB+BC+AC=10,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=10.考点:平移的性质.23.7【解析】【分析】根据题目中的数据和方差的定义可以求得所求数据的方差【详解】设一组数据135a8的平均数是另一组数据111315+1018的平均数是+10∵=07∴==07故答案为07【点睛】本题考解析:7【解析】【分析】根据题目中的数据和方差的定义,可以求得所求数据的方差.【详解】设一组数据1,3,5,a,8的平均数是x,另一组数据11,13,15,x+10,18的平均数是x+10,∵22222 (1)(3)(5)()(8)5x x x a x x-+-+-+-+-=0.7,∴222 (1110)(1310)(1810)5x x x--+--+⋯--=22222 (1)(3)(5)()(8)5x x x a x x -+-+-+-+-=0.7,故答案为0.7.【点睛】本题考查方差,解答本题的关键是明确题意,利用方差的知识解答.24.2【解析】试题分析:先由平均数计算出a=4×5-2-3-5-6=4再计算方差(一般地设n个数据x1x2…xn的平均数为=()则方差=)==2考点:平均数方差解析:2【解析】试题分析:先由平均数计算出a=4×5-2-3-5-6=4,再计算方差(一般地设n个数据,x1,x2,…x n的平均数为x,x=1n(12nx x x++⋯+),则方差2 S=1n[222 12nx xx x x x-+-+⋯+-()()()]),2 S=15[222222434445464-+-+-+-+-()()()()()]=2.考点:平均数,方差25.2【解析】试题分析:根据方差的性质当一组数据同时加减一个数时方差不变进而得出答案∵一组数据12345的方差为2∴则另一组数据1112131415的方差为2故答案为2考点:方差解析:2【解析】试题分析:根据方差的性质,当一组数据同时加减一个数时方差不变,进而得出答案.∵一组数据1,2,3,4,5的方差为2,∴则另一组数据11,12,13,14,15的方差为2.故答案为2考点:方差三、解答题26.(1)A(3,0),B(0,2);(2)3;(3)P (34,32),y=-6x+6 【解析】【分析】(1)已知直线y 1的解析式,分别令x=0和y=0即可求出A 和B 的坐标;(2)根据(1)中求出的A 和B 的坐标,可知OA 和OB 的长,利用三角形的面积公式即可求出S △ABO ;(3)由(2)中的S △ABO ,可推出S △APC 的面积,求出y p ,继而求出点P 的坐标,将点C 和点P 的坐标联立方程组求出k 和b 的值后即可求出函数解析式.【详解】解:(1)∵一次函数的解析式为y 1=-23x+2, 令x=0,得y 1=2,∴B(0,2),令y 1=0,得x=3,∴A(3,0);(2)由(1)知:OA=3,OB=2,∴S △ABO =12OA•OB=12×3×2=3; (3)∵12S △ABO =12×3=32,点P 在第一象限, ∴S △APC =12AC•y p =12×(3-1)×y p =32, 解得:y p =32, 又点P 在直线y 1上, ∴32=-23x+2, 解得:x=34, ∴P 点坐标为(34,32), 将点C(1,0)、P(34,32)代入y=kx+b 中,得 03324k b k b =+⎧⎪⎨=+⎪⎩,解得:66kb=-⎧⎨=⎩.故可得直线CP的函数表达式为y=-6x+6.【点睛】本题是一道一次函数综合题,考查了一次函数的性质、三角形的面积公式、待定系数法求解一次函数的解析式等知识点,解题关键是根据S△APC =12AC•y p求出点P的纵坐标,难度中等.27.(1)详见解析(2)详见解析(3)58【解析】【分析】(1)根据正方形的四条边都相等可得BC=DC,对角线平分一组对角可得∠BCP=∠DCP,然后利用“边角边”证明即可.(2)根据全等三角形对应角相等可得∠CBP=∠CDP,根据等边对等角可得∠CBP=∠E,然后求出∠DPE=∠DCE,再根据两直线平行,同位角相等可得∠DCE=∠ABC,从而得证.(3)根据(2)的结论解答:与(2)同理可得:∠DPE=∠ABC=58°.【详解】解:(1)证明:在正方形ABCD中,BC=DC,∠BCP=∠DCP=45°,∵在△BCP和△DCP中,BC DCBCP DCPPC PC=⎧⎪∠=∠⎨⎪=⎩,∴△BCP≌△DCP(SAS).(2)证明:由(1)知,△BCP≌△DCP,∴∠CBP=∠CDP.∵PE=PB,∴∠CBP=∠E.∴∠CDP=∠E.∵∠1=∠2(对顶角相等),∴180°﹣∠1﹣∠CDP=180°﹣∠2﹣∠E,即∠DPE=∠DCE.∵AB ∥CD ,∴∠DCE=∠ABC .∴∠DPE=∠ABC .(3)解:在菱形ABCD 中,BC=DC ,∠BCP=∠DCP ,在△BCP 和△DCP 中,BC DC BCP DCP PC PC =⎧⎪∠=∠⎨⎪=⎩∴△BCP ≌△DCP (SAS ),∴∠CBP=∠CDP ,∵PE=PB ,∴∠CBP=∠E ,∴∠DPE=∠DCE ,∵AB ∥CD ,∴∠DCE=∠ABC ,∴∠DPE=∠ABC=58°,故答案为:58.28.-【解析】【分析】①直接利用完全平方公式将原式变形进而得出答案;②直接利用完全平方公式将原式变形进而得出答案.【详解】先阅读下列材料,再解决问题:①填上适当的数:====②解:原式==325=+=【点睛】本题主要考查了二次根式的性质与化简,正确应用完全平方公式时关键是记住公式形式,把握公式特征. 29.【解析】【分析】原式第一项利用平方根定义计算,第二项利用零指数幂法则计算,第三项利用负指数幂法则计算,最后一项利用绝对值的代数意义化简,计算即可得到结果.【详解】解:原式=8-1+4-5=6.【点睛】本题考查实数的运算;零指数幂;负整数指数幂.30.(1)483x-≤≤;(2)x=25或2.【解析】【分析】(1)根据二次根式的被开方数为非负数,列不等式组求解;(2)根据a、b、c分别作直角三角形的斜边,由勾股定理分别求解.【详解】解:(1)由二次根式的性质,得80 34020xxx-≥⎧⎪+≥⎨⎪+≥⎩,解得48 3x-≤≤;(2)当c为斜边时,由a2+b2=c2,即8-x+3x+4=x+2,解得x=-10,当b为斜边时,a2+c2=b2,即8-x+x+2=3x+4,解得x=2,当a为斜边时,b2+c2=a2,即3x+4+x+2=8-x,解得x=2 5∵48 3x-≤≤∴x=25或2.【点睛】本题考查二次根式的性质及勾股定理的运用.在没有指定直角三角形的斜边的情况下,注意分类讨论.。
八年级数学第二学期期末复习试题(二)
八年级数学第二学期期末复习试题(二)(2010.6.8)姓名 班级 分数一、选择题。
(每题3分,共30分)1.下列运算中,正确的是 ( )A. 326a a a =÷B.2222x y x y =⎪⎭⎫ ⎝⎛ C.1=+++b a b b a a D.y x x xy x x +=+224.下列各命题中,其逆命题是真命题的是 ( )A .如果a 、b 都是正数,那么它们的积ab 也是正数B .等边三角形是等腰三角形C .全等三角形的面积相等D .线段垂直平分线上的点到这条线段两端点的距离相等5.某市青年排球队12名队员的年龄的情况如下:则:这个排球队队员的年龄的众数和中位数是 ( )A .19,20B .19,19C .19,20.5D .20,196.下列有关四边形的命题中,是真命题的是 ( )A .一组对边平行,另一组对边相等的四边形是平行四边形B .对角线互相平分且互相垂直的四边形是菱形C .对角线相等的四边形是矩形D .一组邻边相等的四边形是正方形8.若y-3与x 成反比例,且当x=2时,y=7,则y 与x 之间的函数关系式是 ( )A .y=x 8B .y=x 14C .y=x 8-3D .y=x8+3 9.如图,等腰梯形ABCD 中,AD ∥BC,AC 交BD 于O,则图中全等三角形共有多少对 ( )A .1B .2C .3D .410.如图,一次函数与反比例函数的图象交于A 、B 两点,则图中使反比例函数小于一次函数的自变量x 的取值范围是 ( )A .x <-1B .x >2C .-1<x <0或x >2D .x <-1或0<x <2二、填空题。
(每题3分,共18分)11.当x =______时,分式11x x +-有意义;当x =______时,分式2x x x -的值为0 年龄(单位:岁) 18 19 20 21 22 人数 1 4 3 2 2 A B C D O12.若方程234222+=-+-x x mx x 有增根,则m 的值为___________。
人教版八年级数学下册期末测试卷(二)(原卷+解析)
人教版八年级数学下册期末测试卷(二)一.选择题(共10小题,满分30分,每小题3分)1.(3分)已知|a|=5,=7,且|a+b|=a+b,则a﹣b的值为()A.2或12B.2或﹣12C.﹣2或12D.﹣2或﹣12 2.(3分)一组数据3、2、1、2的方差是()A.0.25B.0.5C.1D.23.(3分)已知在四边形ABCD中,AB∥CD,添加下列一个条件后,一定能判定四边形ABCD 是平行四边形的是()A.AD=BC B.AC=BD C.∠A=∠C D.∠A=∠B 4.(3分)已知关于x的一次函数y=(k2+1)x﹣2图象经过点A(3,m)、B(﹣1,n),则m,n的大小关系为()A.m≥n B.m>n C.m≤n D.m<n5.(3分)一水池放水,先用一台抽水机工作一段时间后停止,然后再调来一台同型号抽水机,两台抽水机同时工作直到抽干.设从开始工作的时间为t,剩下的水量为s.下面能反映s与t之间的关系的大致图象是()A.B.C.D.6.(3分)函数y=+(x﹣5)﹣2中自变量x的取值范围是()A.x≥3且x≠5B.x>3且x≠5C.x<3且x≠5D.x≤3且x≠5 7.(3分)在光明中学组织的全校师生迎“五四”诗词大赛中,来自不同年级的25名参赛同学的得分情况如图所示.这些成绩的中位数和众数分别是()A.96分、98分B.97分、98分C.98分、96分D.97分、96分8.(3分)下列各组线段中,不能构成直角三角形的是()A.1、、B.、、C.2、、D.1、2、9.(3分)如图,在矩形ABCD中,点M从点B出发沿BC向点C运动,点E、F分别是AM、MC的中点,则EF的长随着M点的运动()A.不变B.变长C.变短D.先变短再变长10.(3分)如图,在直角三角形ABC中,∠ACB=90°,AC=3,BC=4,点M是边AB 上一点(不与点A,B重合),作ME⊥AC于点E,MF⊥BC于点F,若点P是EF的中点,则CP的最小值是()A.1.2B.1.5C.2.4D.2.5二.填空题(共6小题,满分18分,每小题3分)11.(3分)计算(+2)2的结果等于.12.(3分)如图,把一张平行四边形纸片ABDC沿BC对折,使点D落在E处,BE与AC 相交于点O,若∠DBC=15°,则∠BOC=度.13.(3分)李刚师范大学毕业后参加了某市教育局组织的教师招聘考试,这次考试包括笔试、面试两项,其笔试、面试成绩按3:7的比例确定各人的最终成绩.考试结束后他笔试、面试的成绩分别为90分、96分,那么李刚参加这次招聘考试的最终成绩为分.14.(3分)已知直线y=kx+b在y轴上的截距为3,且经过点(1,4),那么这条直线的表达式为.15.(3分)如图,E,F,M分别是正方形ABCD三边的中点,CE与DF交于N,连接AM,AN,MN对于下列四个结论:①AM∥CE;②DF⊥CE;③AN=BC;④∠AND=∠CMN.其中正确的是.(填序号)16.(3分)如图,在边长为6的等边△ABC中,D为AC上一点,AD=2,P为BD上一点,连接CP,以CP为边,在PC的右侧作等边△CPQ,连接AQ交BD延长线于E,当△CPQ面积最小时,QE=.三.解答题(共8小题,满分72分)17.(8分)计算:(1)﹣﹣;(2)×÷;(3)(﹣3)÷2.18.(8分)元旦期间,小黄自驾游去了离家156千米的黄石矿博园,右图是小黄离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象.(1)求小黄出发0.5小时时,离家的距离;(2)求出AB段的图象的函数解析式;(3)小黄出发1.5小时时,离目的地还有多少千米?19.(8分)如图,一次函数y1=﹣x+m的图象与x轴和y轴分别交于点A和点B,与正比例函数y2=﹣x图象交于点C(﹣2,n).(1)求m和n的值;(2)求△OAC的面积;(3)问:在y轴上,是否存在一点P,使得S△BCP=S△OAC?若存在,直接写出点P的坐标;若不存在,请说明理由.20.(10分)如图,在▱ABCD中,∠BAD,∠ADC的平分线AF,DE分别与线段BC交于点F,E,AF与DE交于点G.(1)求证:AF⊥DE,BF=CE.(2)若AD=10,AB=6,AF=8,求DE的长度.21.(8分)某工厂生产某种产品,3月份的产量为6000件,4月份的产量为9000件.用简单随机抽样的方法分别抽取这两个月生产的该产品若干件进行检测,并将检测结果分别绘制成如图所示的扇形统计图和频数直方图(每组不含前一个边界值,含后一个边界值).已知检测综合得分大于70分的产品为合格产品.(1)4月份随机抽取的若干件产品中位数在组;(2)4月份生产的该产品抽样检测的合格率是;(3)在3月份和4月份生产的产品中,估计哪个月的不合格件数多?为什么?22.(8分)如图,在△ABC中,AB=AC,∠ABC的角平分线交AC于点D,过点A作AE ∥BC交BD的延长线于点E.(1)若∠BAC=50°,求∠E的度数.(2)若F是DE上的一点,且AD=AF,求证:BF=DE.23.(10分)(1)观察猜想:如图1,在△ABC中,tan B=1,AB=AC=3,AD是∠BAC的平分线,以CD为一边作正方形CDEF,点E与点A重合,则=.(2)类比探究:在(1)的条件下,如果正方形CDEF绕点C旋转,连接BE、CE、AF,(1)中的结论是否成立?请按图2加以证明.(3)问题解决:当正方形CDEF旋转到B、E、F三点共线时,请直接写出线段AF的长.24.(12分)如图,平面直角坐标系xOy中,直线y=﹣x+3交x轴于点A,交y轴于点B,点P是线段OA上一动点(不与点A重合),过点P作PC⊥AB于点C.(1)当点P是OA中点时,求△APC的面积;(2)连接BP,若BP平分∠ABO,求此时点P的坐标;(3)设点D是x轴上方的坐标平面内一点,若以点O,B,C,D为顶点的四边形是菱形,求点D的坐标及此时OP的长.2021年人教版八年级数学下册期末测试卷(二)参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)已知|a|=5,=7,且|a+b|=a+b,则a﹣b的值为()A.2或12B.2或﹣12C.﹣2或12D.﹣2或﹣12【分析】首先分别根据绝对值的和算术平方根的定义可求出a,b的值,然后把a,b的值代入|a+b|=a+b中,最终确定a,b的值,然后求解.【解答】解:∵|a|=5,∴a=±5,∵=7,∴b=±7,∵|a+b|=a+b,∴a+b>0,所以当a=5时,b=7时,a﹣b=5﹣7=﹣2,当a=﹣5时,b=7时,a﹣b=﹣5﹣7=﹣12,所以a﹣b的值为﹣2或﹣12.故选:D.【点评】此题主要考查了绝对值的意义:即正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值还是0.也利用了算术平方根的定义.2.(3分)一组数据3、2、1、2的方差是()A.0.25B.0.5C.1D.2【分析】先求出这组数据的平均数,然后代入方差公式求出即可.【解答】解:这组数据的平均数为:(3+2+1+2)÷4=2;则方差为:S2==,故选:B.【点评】此题主要考查了方差的有关知识,正确的求出平均数,并正确代入方差公式是解决问题的关键.3.(3分)已知在四边形ABCD中,AB∥CD,添加下列一个条件后,一定能判定四边形ABCD 是平行四边形的是()A.AD=BC B.AC=BD C.∠A=∠C D.∠A=∠B【分析】利用平行线的判定与性质结合平行四边形的判定得出即可.【解答】解:如图所示:∵AB∥CD,∴∠B+∠C=180°,当∠A=∠C时,则∠A+∠B=180°,故AD∥BC,则四边形ABCD是平行四边形.故选:C.【点评】此题主要考查了平行线的判定与性质以及平行四边形的判定,得出AD∥BC是解题关键.4.(3分)已知关于x的一次函数y=(k2+1)x﹣2图象经过点A(3,m)、B(﹣1,n),则m,n的大小关系为()A.m≥n B.m>n C.m≤n D.m<n【分析】由偶次方非负可得出k2+1>0,利用一次函数的性质可得出y值随x值的增大而增大,再结合3>﹣1可得出m>n,此题得解.【解答】解:∵k2≥0,∴k2+1>0,∴y值随x值的增大而增大.又∵3>﹣1,∴m>n.故选:B.【点评】本题考查了一次函数的性质,牢记“k>0,y随x的增大而增大;k<0,y随x 的增大而减小”是解题的关键.5.(3分)一水池放水,先用一台抽水机工作一段时间后停止,然后再调来一台同型号抽水机,两台抽水机同时工作直到抽干.设从开始工作的时间为t,剩下的水量为s.下面能反映s与t之间的关系的大致图象是()A.B.C.D.【分析】根据抽水时间的增加,剩下的水量逐渐减少;停止时剩下的水量不变,两台抽水机同时工作抽水速度增大,剩下的水量迅速减少,可得答案.【解答】解:由题意,随着抽水时间的增加,剩下的水量逐渐减少;停止时剩下的水量不变,两台抽水机同时工作抽水速度增大,剩下的水量迅速减少,可得答案.故选:D.【点评】本题考查了函数图象,利用抽水时间确定剩下的水量是解题关键,注意两台抽水机同时工作的剩余水量迅速减少.6.(3分)函数y=+(x﹣5)﹣2中自变量x的取值范围是()A.x≥3且x≠5B.x>3且x≠5C.x<3且x≠5D.x≤3且x≠5【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:依题意有x﹣3>0且x﹣5≠0,解得:x>3且x≠5.故选:B.【点评】本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.7.(3分)在光明中学组织的全校师生迎“五四”诗词大赛中,来自不同年级的25名参赛同学的得分情况如图所示.这些成绩的中位数和众数分别是()A.96分、98分B.97分、98分C.98分、96分D.97分、96分【分析】利用众数和中位数的定义求解.【解答】解:98出现了9次,出现次数最多,所以数据的众数为98分;共有25个数,最中间的数为第13数,是96,所以数据的中位数为96分.故选:A.【点评】本题考查了众数:一组数据中出现次数最多的数据叫做众数.也考查了中位数.8.(3分)下列各组线段中,不能构成直角三角形的是()A.1、、B.、、C.2、、D.1、2、【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、12+()2=()2,故能构成直角三角形;B、()2+()2=()2,故能构成直角三角形;C、22+()2≠()2,故不能构成直角三角形;D、12+()2=22,故能构成直角三角形.故选:C.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.9.(3分)如图,在矩形ABCD中,点M从点B出发沿BC向点C运动,点E、F分别是AM、MC的中点,则EF的长随着M点的运动()A.不变B.变长C.变短D.先变短再变长【分析】证明EF为三角形AMC的中位线,那么EF长恒等于定值AC的一半.【解答】解:连接AC,如图所示:∵E,F分别是AM,MC的中点,∴EF=AC,∵C是定点,∴AC是定长,∴无论M运动到哪个位置EF的长不变,故选:A.【点评】此题考查的是进行的性质、三角形中位线的性质,即三角形的中位线平行于第三边且等于第三边的一半.10.(3分)如图,在直角三角形ABC中,∠ACB=90°,AC=3,BC=4,点M是边AB 上一点(不与点A,B重合),作ME⊥AC于点E,MF⊥BC于点F,若点P是EF的中点,则CP的最小值是()A.1.2B.1.5C.2.4D.2.5【分析】先由勾股定理求出AB=5,再证四边形CEMF是矩形,得EF=CM,当CM⊥AB时,CM最短,此时EF也最小,则CP最小,然后由三角形面积求出CM=2.4,即可得出答案.【解答】解:连接CM,如图所示:∵∠ACB=90°,AC=3,BC=4,∴AB===5,∵ME⊥AC,MF⊥BC,∠ACB=90°,∴四边形CEMF是矩形,∴EF=CM,∵点P是EF的中点,∴CP=EF,当CM⊥AB时,CM最短,此时EF也最小,则CP最小,∵△ABC的面积=AB×CM=AC×BC,∴CM===2.4,∴CP=EF=CM=1.2,故选:A.【点评】本题考查了矩形的判定与性质、勾股定理、三角形面积以及最小值等知识;熟练掌握矩形的判定与性质是解题的关键.二.填空题(共6小题,满分18分,每小题3分)11.(3分)计算(+2)2的结果等于7+4.【分析】根据完全平方公式可以解答本题.【解答】解:(+2)2=3+4+4=7+4,故答案为:7+4.【点评】本题考查二次根式的混合运算,解答本题的关键是明确二次根式的混合运算的计算方法.12.(3分)如图,把一张平行四边形纸片ABDC沿BC对折,使点D落在E处,BE与AC 相交于点O,若∠DBC=15°,则∠BOC=150度.【分析】由折叠易得∠OCB=∠DBC=15°,由平行四边形对边平行易得∠ACB=∠DBC =15°,利用三角形内角和即可求得所求的角的度数.【解答】解:∵△BEC是△BDC翻折变换的三角形,∴△BEC≌△BDC,∠EBC=∠DBC=15°,∵AC∥BD,∴∠OCB=∠DBC=15°,∴∠BOC=180°﹣∠OCB﹣∠EBC=180°﹣15°﹣15°=150°.故答案为150.【点评】本题考查的是经过翻折变换后的图形与原图形全等的性质,及平行四边形的性质.13.(3分)李刚师范大学毕业后参加了某市教育局组织的教师招聘考试,这次考试包括笔试、面试两项,其笔试、面试成绩按3:7的比例确定各人的最终成绩.考试结束后他笔试、面试的成绩分别为90分、96分,那么李刚参加这次招聘考试的最终成绩为94.2分.【分析】根据笔试和面试所占的权重以及笔试成绩和面试成绩,列出算式,进行计算即可.【解答】解:李刚参加这次招聘考试的最终成绩为=94.2(分).故答案为:94.2.【点评】此题考查了加权平均数,关键是根据加权平均数的计算公式列出算式,用到的知识点是加权平均数.14.(3分)已知直线y=kx+b在y轴上的截距为3,且经过点(1,4),那么这条直线的表达式为y=x+3.【分析】根据“在y轴上的截距为3”计算求出b值,然后代入点(1,4)即可得解.【解答】解:∵直线y=kx+b在y轴上的截距为3,∴b=3,∴y=kx+3,∵经过点(1,4),∴4=k+3,∴k=1,∴这条直线的解析式是y=x+3.故答案是:y=x+3.【点评】本题考查了待定系数法求一次函数解析式,一次函数图象上点的坐标特征,熟练掌握待定系数法是解题的关键.15.(3分)如图,E,F,M分别是正方形ABCD三边的中点,CE与DF交于N,连接AM,AN,MN对于下列四个结论:①AM∥CE;②DF⊥CE;③AN=BC;④∠AND=∠CMN.其中正确的是①②③.(填序号)【分析】①通过证明四边形AMCE是平行四边形,可得AM∥CE;②由“SAS”可证△DCF≌△CBE,可得∠BCE=∠CDF,由直角三角形的性质可求∠CND=90°;③由直角三角形的性质可得DM=MN,由等腰三角形的性质可得AM垂直平分DN,可得AN=AD=BC;④由等腰三角形的性质和余角的性质可得∠ADN=∠DCN=∠AND=∠CNM,即可求解.【解答】解:∵E,F,M分别是正方形ABCD三边的中点,∴AE=BE=BF=CF=DM=CM,CD∥AB,∴四边形AMCE是平行四边形,∴AM∥CE,故①正确;在△DCF和△CBE中,,∴△DCF≌△CBE(SAS),∴∠BCE=∠CDF,∵∠DCE+∠BCE=90°,∴∠CDF+∠DCN=90°,∴∠CND=90°,∴DF⊥CE,故②正确;∵DF⊥CE,DM=CM,∴DM=MN=CM,∵AM∥CE,∴AM⊥DN,∴AM垂直平分DN,∴AD=AN,∴AN=BC,故③正确;∵AN=BC,∴∠ADN=∠AND,∵DM=MN=CM,∴∠DNM=∠NDM,∠MCN=∠MNC,∵∠ADN+∠CDN=90°,∠CDN+∠DCN=90°,∴∠ADN=∠DCN=∠AND=∠CNM,故④错误,故答案为:①②③.【点评】本题考查了正方形的性质,全等三角形的判定与性质,等腰三角形的性质以及垂直平分线的性质等知识.此题综合性很强,难度较大,解题的关键是注意数形结合思想的应用.16.(3分)如图,在边长为6的等边△ABC中,D为AC上一点,AD=2,P为BD上一点,连接CP,以CP为边,在PC的右侧作等边△CPQ,连接AQ交BD延长线于E,当△CPQ面积最小时,QE=.【分析】如图,过点D作DF⊥BC于F,由“SAS”可证△ACQ≌△BCP,可得AQ=BP,∠CAQ=∠CBP,由直角三角形的性质和勾股定理可求BD的长,由锐角三角函数可求BP的长,由相似三角形的性质可求AE的长,即可求解.【解答】解:如图,过点D作DF⊥BC于F,∵△ABC,△PQC是等边三角形,∴BC=AC,PC=CQ,∠BCA=∠PCQ=60°,∴∠BCP=∠ACQ,且AC=BC,CQ=PC,∴△ACQ≌△BCP(SAS)∴AQ=BP,∠CAQ=∠CBP,∵AC=6,AD=2,∴CD=4,∵∠ACB=60°,DF⊥BC,∴∠CDF=30°,∴CF=CD=2,DF=CF=2,∴BF=4,∴BD===2,∵△CPQ是等边三角形,∴S△CPQ=CP2,∴当CP⊥BD时,△CPQ面积最小,∴cos∠CBD=,∴,∴BP=,∴AQ=BP=,∵∠CAQ=∠CBP,∠ADE=∠BDC,∴△ADE∽△BDC,∴,∴,∴AE=,∴QE=AQ﹣AE=.【点评】本题考查了全等三角形的判定和性质,等边三角形的性质,锐角三角函数,相似三角形的判定和性质,直角三角形的性质,勾股定理等知识,求出BP的长是本题的关键.三.解答题(共8小题,满分72分)17.(8分)计算:(1)﹣﹣;(2)×÷;(3)(﹣3)÷2.【分析】(1)先化简二次根式,再合并同类二次根式;(2)按二次根式的乘除法法则计算求值即可;(3)先算括号里面的,再除法运算.【解答】解:(1)原式=3﹣×3﹣2=﹣;(2)原式===;(3)原式=(4﹣9)÷2==﹣.【点评】本题考查了二次根式的混合运算,掌握二次根式的运算法则是解决本题的关键.18.(8分)元旦期间,小黄自驾游去了离家156千米的黄石矿博园,右图是小黄离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象.(1)求小黄出发0.5小时时,离家的距离;(2)求出AB段的图象的函数解析式;(3)小黄出发1.5小时时,离目的地还有多少千米?【分析】(1)先运用待定系数法求出OA的解析式,再将x=0.5代入,求出y的值即可;(2)设AB段图象的函数表达式为y=k′x+b,将A、B两点的坐标代入,运用待定系数法即可求解;(3)先将x=1.5代入AB段图象的函数表达式,求出对应的y值,再用156减去y即可求解.【解答】解:(1)设OA段图象的函数表达式为y=kx.∵当x=0.8时,y=48,∴0.8k=48,∴k=60.∴y=60x(0≤x≤0.8),∴当x=0.5时,y=60×0.5=30.故小黄出发0.5小时时,离家30千米;(2)设AB段图象的函数表达式为y=k′x+b.∵A(0.8,48),B(2,156)在AB上,,解得,∴y=90x﹣24(0.8≤x≤2);(3)∵当x=1.5时,y=90×1.5﹣24=111,∴156﹣111=45.故小黄出发1.5小时时,离目的地还有45千米.【点评】本题考查了一次函数的应用及一次函数解析式的确定,解题的关键是通过仔细观察图象,从中整理出解题时所需的相关信息,本题较简单.19.(8分)如图,一次函数y1=﹣x+m的图象与x轴和y轴分别交于点A和点B,与正比例函数y2=﹣x图象交于点C(﹣2,n).(1)求m和n的值;(2)求△OAC的面积;(3)问:在y轴上,是否存在一点P,使得S△BCP=S△OAC?若存在,直接写出点P的坐标;若不存在,请说明理由.【分析】(1)直接利用待定系数法可先确定n的值,然后再把C的坐标代入一次函数y =﹣x+m可得m的值;(2)首先确定A点坐标,进而可得AO的长,再集合C点坐标可得△OAC的面积;(3)根据题意可得S△BCP=PB•|x C|=S△OAC=6,解出PB的值,进而可得P点的坐标.【解答】解:(1)∵点C(﹣2,n)在正比例函数y2=﹣x图象上,∴n=﹣×(﹣2)=3,∴点C的坐标为(﹣2,3).∵点C(﹣2,3)在一次函数y=﹣x+m的图象上,∴3=﹣(﹣2)+m,解得:m=2,∴一次函数解析式为y=﹣x+2.∴m的值为2,n的值为3.(2)当y=0时,0=﹣x+2,解得x=4,∴点a的坐标为(4,0),∴S△OAC=OA•y C=×4×3=6.(3)存在.当x=0时,y=﹣x+2=2,∴B(0,2),∵S△BCP=PB•|x C|=S△OAC=6,∴PB•2=6,∴PB=6,∴点P的坐标为(0,8)或(0,﹣4).【点评】此题主要考查了两直线相交问题,关键是掌握待定系数法求函数解析式,掌握凡是函数图象经过的点必能满足解析式.20.(10分)如图,在▱ABCD中,∠BAD,∠ADC的平分线AF,DE分别与线段BC交于点F,E,AF与DE交于点G.(1)求证:AF⊥DE,BF=CE.(2)若AD=10,AB=6,AF=8,求DE的长度.【分析】(1)根据平行四边形的性质和平行线的性质得到∠BAD+∠ADC=180°;然后根据角平分线的性质推知∠DAE+∠ADF=∠BAD+∠ADC=90°,即∠AGD=90°.证得∠BAF=∠AFB,由等腰三角形的判定可得出AB=BF,同理可得CD=CE,则可得出结论;(2)过点C作CK∥AF交AD于K,交DE于点I,证明四边形AFCK是平行四边形,∠AGD=∠KID=90°,得出AF=CK=8,由勾股定理求出DI,则可得出答案.【解答】(1)证明:在平行四边形ABCD中,AB∥DC,∴∠BAD+∠ADC=180°.∵AE,DF分别是∠BAD,∠ADC的平分线,∴∠DAE=∠BAE=∠BAD,∠ADF=∠CDF=∠ADC.∴∠DAE+∠ADF=∠BAD+∠ADC=90°.∴∠AGD=90°.∴AE⊥DF.∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD,∴∠DAF=∠AFB,又∵∠DAF=∠BAF,∴∠BAF=∠AFB,∴AB=BF,同理可得CD=CE,∴BF=CE;(2)解:过点C作CK∥AF交AD于K,交DE于点I,∵AK∥FC,AF∥CK,∴四边形AFCK是平行四边形,∠AGD=∠KID=90°,∴AF=CK=8,∵∠KDI+∠DKI=90°,∠DIC+∠DCI=90°,∠IDK=∠IDC,∴∠DKI=∠DCI,∴DK=DC=6,∴KI=CI=4,∵AD∥BC,∴∠ADE=∠DEC=∠CDE,∴CE=CD,∵CI⊥DE,∴EI=DI,∵DI===2,∴DE=2DI=4.【点评】本题考查了平行四边形的判定与性质,平行线的性质,等腰三角形的判定与性质,勾股定理,熟练掌握平行四边形的判定与性质是解题的关键.21.(8分)某工厂生产某种产品,3月份的产量为6000件,4月份的产量为9000件.用简单随机抽样的方法分别抽取这两个月生产的该产品若干件进行检测,并将检测结果分别绘制成如图所示的扇形统计图和频数直方图(每组不含前一个边界值,含后一个边界值).已知检测综合得分大于70分的产品为合格产品.(1)4月份随机抽取的若干件产品中位数在80<x≤90组;(2)4月份生产的该产品抽样检测的合格率是98.4%;(3)在3月份和4月份生产的产品中,估计哪个月的不合格件数多?为什么?【分析】(1)根据频数分布直方图中的数据,可以得到4月份随机抽取的若干件产品中位数在哪一组;(2)根据频数分布直方图中的数据,可以得到4月份生产的该产品抽样检测的合格率;(3)根据统计图中的数据,可以分别计算出3月和4月不合格的件数,然后比较大小即可解答本题.【解答】解:(1)4月份随机抽取的产品数为:8+132+160+200=500,则4月份随机抽取的若干件产品中位数在80<x≤90这一组,故答案为:80<x≤90;(2)4月份生产的该产品抽样检测的合格率为:×100%=98.4%,故答案为:98.4%;(3)4月的不合格件数多,理由:由题意可得,3月的不合格件数为:6000×2%=120,4月的不合格件数为:9000×(1﹣98.4%)=144,∵144>120,∴4月的不合格件数多.【点评】本题考查频数分布直方图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.22.(8分)如图,在△ABC中,AB=AC,∠ABC的角平分线交AC于点D,过点A作AE ∥BC交BD的延长线于点E.(1)若∠BAC=50°,求∠E的度数.(2)若F是DE上的一点,且AD=AF,求证:BF=DE.【分析】(1)根据等腰三角形两底角相等,已知顶角,可以求出底角,再根据角平分线的定义求出∠CBD的度数,最后根据两直线平行,内错角相等求出;(2)根据AAS先证明△ABD≌△AEF,根据全等三角形的对应边相等得出BD=EF,再根据等式的基本性质证出BF=DE.【解答】解:(1)∵AB=AC,∴∠ABC=∠ACB,∵∠BAC=50°,∴∠ABC=(180°﹣∠BAC)=65°,∵BD平分∠ABC,∴∠CBD=∠ABC=32.5°,∵AE∥BC,∴∠E=∠CBD=32.5°.(2)∵BD平分∠ABC,∴∠ABD=∠CBD,∵AE∥BC,∴∠AEF=∠CBD,∴∠ABD=∠AEF,∵AD=AF,∴∠ADF=∠AFD,∵∠ADB=180°﹣∠ADF,∠AFE=180°﹣∠AFD,∴∠ADB=∠AFE,在△ABD与△AEF中,,∴△ABD≌△AEF(AAS),∴BD=EF,∴BD+DF=EF+DF,∴BF=DE.【点评】本题考查了等腰三角形的性质,平行线的性质,角平分线的定义,三角形全等,考核学生的推理能力,证明三角形全等是解题的关键.23.(10分)(1)观察猜想:如图1,在△ABC中,tan B=1,AB=AC=3,AD是∠BAC的平分线,以CD为一边作正方形CDEF,点E与点A重合,则=.(2)类比探究:在(1)的条件下,如果正方形CDEF绕点C旋转,连接BE、CE、AF,(1)中的结论是否成立?请按图2加以证明.(3)问题解决:当正方形CDEF旋转到B、E、F三点共线时,请直接写出线段AF的长.【分析】(1)先判断出△ABD为等腰直角三角形,进而得出AB=AD,即可得出结论;(2)先利用三角函数得出,证明夹角相等即可得出△ACF∽△BCE,进而得出结论;(3)分两种情况计算,当点E在线段BF上时,如图3,先利用勾股定理求出EF=CF =CD=,BF=,即可得出BE的长,借助(2)得出的结论,当点E在线段BF的延长线上,同前一种情况一样即可得出结论.【解答】解:(1)=,理由是:在Rt△ABC中,AB=AC,根据勾股定理得,BC=AB,又∵点D为BC的中点,∴AD⊥BC,∴AB=AD,∵四边形CDEF是正方形,∴AF=EF=AD,∴AB=AF,即=,故答案为:;(2)(1)中的结论成立.证明:∵tan B=1,∴∠ABC=45°,∵AB=AC=3,∴∠ABC=∠ACB=45°,∴∠BAC=90°,∴sin45°=,∴,∵四边形CDEF是正方形,∴∠FEC=45°,∴sin45°==,∴,∵∠FCA=∠ECB,∴△ACF∽△BCE,∴;(3)或.如图2,当点E在线段BF上时,由(1)知CF=EF=CD=,∵在Rt△BCF中,CF=,CB=3,∴BF==,∴BE=BF﹣EF==.由(2)知,∴BE=AF,∴=AF,∴AF=,如图3,当点E在线段BF的延长线上时,同理可得BE=BF+EF=,∴,∴AF=,综上所述,当正方形CDEF旋转到B,E,F三点共线时,线段AF的长为或.【点评】此题是四边形综合题,主要考查了等腰直角三角形的性质,正方形的性质,旋转的性质,相似三角形的判定和性质,熟练掌握正方形的性质及相似三角形的性质是解题的关键.24.(12分)如图,平面直角坐标系xOy中,直线y=﹣x+3交x轴于点A,交y轴于点B,点P是线段OA上一动点(不与点A重合),过点P作PC⊥AB于点C.(1)当点P是OA中点时,求△APC的面积;(2)连接BP,若BP平分∠ABO,求此时点P的坐标;(3)设点D是x轴上方的坐标平面内一点,若以点O,B,C,D为顶点的四边形是菱形,求点D的坐标及此时OP的长.【分析】(1)连接BP,先求出点A(4,0),点B(0,3),可得AO=4,OB=3,由勾股定理可求AB的长,由面积法可求PC的长,由勾股定理可求AC的长,即可求解;(2)由“AAS”可证△BOP≌△BCP,可得BO=BC=3,OP=CP,由勾股定理可求OP 的值,即可求点P坐标;(3)分OB为边和OB为对角线两种情况讨论,利用菱形的性质两点距离公式先求出点C坐标,再求出CP解析式,即可求解.【解答】解:(1)如图,连接BP,∵直线y=﹣x+3交x轴于点A,交y轴于点B,∴点A(4,0),点B(0,3),∴AO=4,OB=3,∴AB===5,∵点P是OA中点,∴AP=OP=2,∵S△ABP=×AP×OB=×AB×CP,∴CP=,∴AC===,∴S△APC=×AC×PC=;(2)∵BP平分∠ABO,∴∠OBP=∠CBP,又∵BP=BP,∠BOP=∠BCP=90°,∴△BOP≌△BCP(AAS),∴BO=BC=3,OP=CP,∴AC=AB﹣BC=5﹣3=2,∵AP2=PC2+AC2,∴(4﹣OP)2=OP2+4,∴OP=,∴点P(,0);(3)若OB为边,如图2,设点C(a,﹣a+3),连接OD,∵四边形OCDB是菱形,∴OC=CD=BD=OB=3,BO∥CD,OD⊥BC,∴(a﹣0)2+(﹣a+3﹣0)2=9,∴a1=0(不合题意舍去),a2=,∴点C(,),∵BO∥CD,OB=CD=3,∴点D(,),∴直线OD解析式为:y=x,∵PC∥OD,∴设直线PC解析式为y=x+b,∴=×+b,∴b=﹣3,∴直线PC解析式为y=x﹣3,∴当y=0时,x=,∴点P(,0),∴OP=;若OB为对角线,如图3,设点C(a,﹣a+3),连接CD,∵四边形OCBD是菱形,∴OB与CD互相垂直平分,∴点C在OB的垂直平分线上,∴=﹣a+3,∴a=2,∴点C(2,),∵BO垂直CD,∴点D(﹣2,),设直线PC解析式为y=x+b,∴=×2+b,∴b=﹣,∴设直线PC解析式为y=x﹣,当y=0时,x=,∴点P(,0),∴OP=;综上所述:当OP=时,点D(﹣2,)或当OP=时,点D(,).【点评】本题是一次函数综合题,考查了待定系数法求解析式,全等三角形的判定和性质,勾股定理,菱形的性质等知识,利用分类讨论思想解决问题是本题的关键.。
八年级数学人教版上期末试卷期末测试压轴题模拟训练(二)(解析版)(人教版)
期末测试压轴题模拟训练(二)一、单选题1.如图在ABC 中,ABC ∠和ACB ∠的平分线交于点G ,过点G 作//EF BC 交AB 于E ,交AC 于F ,过点G 作GD AC ⊥于D ,下列四个结论:其中正确的结论有( )个.①EF BE CF =+;②90BGC A ∠=︒+∠;③点G 到ABC 各边的距离相等;④设GD m =,AE AF n +=,则AEF S mn =△;⑤AEF 的周长等于+AB AC 的和.A .1B .2C .3D .4【答案】C 【详解】解:①∵∵ABC 和∵ACB 的平分线相交于点G ,∵∵EBG =∵CBG ,∵BCG =∵FCG .∵EF ∵BC ,∵∵CBG =∵EGB ,∵BCG =∵CGF ,∵∵EBG =∵EGB ,∵FCG =∵CGF ,∵BE =EG ,GF =CF ,∵EF =EG +GF =BE +CF ,故①正确;②∵∵ABC 和∵ACB 的平分线相交于点G ,∵∵GBC +∵GCB =12(∵ABC +∵ACB )=12(180°-∵A ), ∵∵BGC =180°-(∵GBC +∵GCB )=180°-12(180°-∵A )=90°+12∵A ,故②错误; ③∵∵ABC 和∵ACB 的平分线相交于点G ,∵点G 也在∵BAC 的平分线上,∵点G 到∵ABC 各边的距离相等,故③正确;④连接AG ,作GM ∵AB 于M ,如图所示:∵点G 是∵ABC 的角平分线的交点,GD =m ,AE +AF =n ,∵GD =GM =m ,∵S ∵AEF =12AE •GM +12AF •GD =12(AE +AF )•GD =12nm ,故④错误.⑤∵BE =EG ,GF =CF ,∵AE +AF +EF =AE +AF +EG +FG =AE +AF +BE +CF =AB +AC ,即∵AEF 的周长等于AB +AC 的和,故⑤正确,故选:C .2.如图,在Rt ABC 中,90ACB ∠=︒,根据尺规作图的痕迹,判断以下结论错误的是( )A .BDE BAC ∠=∠B .BAD B =∠∠C .DE DC =D .AE AC =【答案】B 【详解】解:由题意可得:AD 平分∵BAC ,DE ∵AB ,在∵ACD 和∵AED 中∵AED =∵C ,∵EAD =∵CAD ,AD =AD ,∵∵ACD ∵∵AED (AAS )∵DE =DC ,AE =AC ,即C 、D 正确;在Rt ∵BED 中,∵BDE =90°-∵B ,在Rt ∵BED 中,∵BAC =90°-∵B∵∵BDE =∵BAC ,即选项A 正确;选项B ,只有AE =EB 时,才符合题意.故选B .3.如图,在ABC 中,90ACB ∠=︒,D 是边AB 上的点,过点D 作DE AB ⊥交BC 于点F ,交AC 的延长线于点B ,连接CD ,DCA DAC ∠=∠,则下列结论:①CD BD =;②点D 为AB 的中点;③ADC 是等边三角形;④若30E ∠=︒,则DE EF CF =+;⑤若30E ∠=︒,则ADE ACB ≌,正确的是( )A .①②⑤B .①②④⑤C .②③④⑤D .①③④【答案】B 【详解】解:∵在∵ABC 中,∵ACB =90°,DE ∵AB ,∵∵ADE =∵ACB =90°,∵∵A +∵B =90°,∵ACD +∵DCB =90°, ∵∵DCA =∵DAC ,∵AD =CD ,∵DCB =∵B ;∵CD =BD ,故①正确;∵AD =CD ,∵CD =BD =AD ,即D 为AB 中点,故②正确;但不能判定∵ADC 是等边三角形;故③错误; ∵若∵E =30°,∵∵A =60°,∵∵ACD 是等边三角形,∵∵ADC =60°,∵∵ADE =∵ACB =90°,∵∵EDC =∵BCD =∵B =30°,∵CF =DF ,∵DE =EF +DF =EF +CF .故④正确.∵若∵E =30°,则∵ACD 是等边三角形,在∵ADE 和∵ACB 中,A A AD AC ADE ACB ∠=∠⎧⎪=⎨⎪∠=∠⎩,∵∵ADE ∵∵ACB (ASA ),故⑤正确;故选:B . 4.如图,AD ∵BC ,∵D =∵ABC ,点E 是边DC 上一点,连接AE 交BC 的延长线于点H ,点F 是边AB 上一点,使得∵FBE =∵FEB ,作∵FEH 的角平分线EG 交BH 于点G .若∵BEG =40°,则∵DEH 的度数为( )A .50°B .75°C .100°D .125°【答案】C 【详解】解:设∵FBE =∵FEB =α,则∵AFE =2α,∵FEH 的角平分线为EG ,设∵GEH =∵GEF =β,∵AD ∵BC ,∵∵ABC +∵BAD =180°,∵∵D =∵ABC ,∵∵D +∵BAD =180°,∵AB ∵CD ,∵∵BEG =40°,∵∵BEG =∵FEG -∵FEB =β-α=40°,∵∵AEF =180°-∵FEG -∵HEG =180°-2β,在∵AEF 中,180°-2β+2α+∵FAE =180°,∵∵FAE =2β-2α=2(β-α)=80°, ∵AB ∵CD ,∵∵CEH =∵FAE =80°,∵∵DEH =180°-∵CEH =100°.故选:C .5.我国南宋数学家杨辉用“三角形”解释二项和的乘方规律,称之为“杨辉三角”,这个“三角形”给出了()(1,2,3,4,)n a b n +=的展开式的系数规律(按n 的次数由大到小的顺序)1 1 1()a b a b +=+1 2 1 222()2a b a ab b +=++1 3 3 1 +=+++33223()33a b a a b ab b1 4 6 4 1 4322344()464a b a a b a b ab b +=++++… … 请依据上述规律,写出20212x x ⎛⎫- ⎪⎝⎭展开式中含2019x 项的系数是( )A .-2021B .2021C .4042D .-4042 【答案】D 【详解】解:根据规律可以发现:20212x x ⎛⎫- ⎪⎝⎭第一项的系数为1,第二项的系数为2021,∵第一项为:x 2021,第二项为:20202020201922202120214042xx x x x ⎛⎫-=-=- ⎪⎝⎭故选:D二、填空题目 6.已知:∵ABC 是三边都不相等的三角形,点P 是三个内角平分线的交点,点O 是三边垂直平分线的交点,当P 、O 同时在不等边∵ABC 的内部时,那么∵BOC 和∵BPC 的数量关系是___.【答案】4360BPC ∠-︒【详解】解:BP 平分ABC ∠,CP 平分ACB ∠,12PBC ABC ∴∠=∠,12PCB ACB ∠=∠, 180()BPC PBC PCB ∴∠=︒-∠+∠180(=︒-11)22ABC ACB ∠+∠1180()2ABC ACB =︒-∠+∠1180(180)2BAC =︒-︒-∠1902BAC =︒+∠,即2180BAC BPC ∠=∠-︒; 如图,连接AO .点O 是这个三角形三边垂直平分线的交点,OA OB OC ∴==,OAB OBA ∴∠=∠,OAC OCA ∠=∠,OBC OCB ∠=∠,1802AOB OAB ∴∠=︒-∠,1802AOC OAC ∠=︒-∠,360()BOC AOB AOC ∴∠=︒-∠+∠360(18021802)OAB OAC =︒-︒-∠+︒-∠,22OAB OAC =∠+∠2BAC =∠ 2(2180)BPC =∠-︒4360BPC =∠-︒,故答案为:4360BPC ∠-︒.7.如图,在ABC 中,A α∠=,ABC ∠与ACD ∠的平分线交于点1A ,得1A ∠;1A BC ∠与1A CD ∠的平分线相交于点2A ,得2A ;;2019A BC ∠与2019A CD ∠的平分线相交于点2020A ,得2020A ∠,则2020A ∠=______.【答案】20202α【详解】根据题意,A α∠=,ABC ∠与ACD ∠的平分线交于点1A ,∵11118022A ABC ACB ACD ∠=︒-∠-∠-∠ ∵ACD A ABC ∠=∠+∠,∵111802A ABC ACB A ∠=︒-∠-∠-∠ ∵180A ABC ACB ∠+∠+∠=︒ ,∵112A A ∠=∠ 同理,得2121112222A A A α∠=∠=⨯∠=;323111122222A A A α∠=∠=⨯⨯∠=;43411111222222A A A α∠=∠=⨯⨯⨯∠=;… 1122n n n A A α-∠=∠=,∵202020202A α∠=,故答案为:20202α. 8.已知23,32a b ==,则1111a b +=++_______. 【答案】1. 【详解】解:∵2a +1=2a ×2=3×2=6,3b +1=3b ×3=2×3=6, ∵11111(2)62a a a +++==,11111(3)63b b b +++==,∵11111111666236a b a b +++++⋅==⨯=, ∵11111a b +=++.故答案为:1. 三、解答题9.如图,在Rt ABC 中,90,40ACB A ∠=︒∠=︒,ABC 的外角CBD ∠的平分线BE 交AC 的延长线于点E . (1)补全图形;(2)求CBE ∠的度数;(3)已知F 为AC 延长线上一点,连接DF ,若25AFD ∠=︒,请判断BE 与DF 的位置关系为________.【答案】(1)见解析;(2)65︒;(3)//BE DF ,理由见解析【详解】解:(1)根据题意作图如下:(2)在Rt ABC 中,90ACB ∠=︒,40A ∠=︒,9050ABC A ∴∠=︒-∠=︒,130CBD ∴∠=︒. BE 是CBD ∠的平分线,1652CBE CBD ∴∠=∠=︒; (3)//BE DF ,理由如下;90ACB ∠=︒,65CBE ∠=︒,906525CEB ∴∠=︒-︒=︒.又25F ∠=︒,25F CEB ∴∠=∠=︒,//DF BE ∴.10.如图,ABC 中,过点A ,B 分别作直线AM ,BN ,且AM //BN ,过点C 作直线DE 交直线AM 于D ,交直线BN 于E ,设AD =a ,BE =b .(1)如图1,若AC ,BC 分别平分∵DAB 和∵EBA ,求∵ACB 的度数;(2)在(1)的条件下,若a =1,b =52,求AB 的长; (3)如图2,若AC =AB ,且∵DEB =∵BAC =60°,求DC 的长.(用含a ,b 的式子表示)【答案】(1)90°;(2)72;(3)DC =b −a . 【详解】解:(1)如图1,∵AC 平分∵MAB ,∵∵CAB =∵MAC =12∵MAB ,同理,∵CBA =∵NBC =12∵NBA , ∵AM ∵BN ,∵∵MAB +∵NBA =180°,∵∵BAC +∵ABC =12 (∵MAB +NBA )=90°,∵∵ACB =180°−(∵CAB +∵ABC )=180°−90°=90°;(2)如图1,在AB 上取一点F ,使AF =AD =1,连接CF ,在∵AFC 和∵ADC 中,AF AD FAC DAC AC AC =⎧⎪∠=∠⎨⎪=⎩,∵∵AFC ∵∵ADC (SAS ),∵∵ADC =∵AFC ,∵AM ∵BN ,∵∵ADC +∵BEC =180°,∵∵AFC +∵BFC =180°,∵∵BFC =∵BEC ,∵∵FBC =∵EBC ,BC =BC ,∵∵BFC ∵∵BEC (AAS ),∵EB =BF =52,∵AB =AF +BF =1+52=72; (3)如图2,在EB 上截取EH =EC ,连接CH ,∵AC =AB ,∵BAC =60°,∵∵ABC 为等边三角形,∵AC =BC ,∵ACB =60°,∵EC =EH ,∵DEB =60°,∵∵ECH 为等边三角形,∵∵ECH =∵EHC =60°,∵∵BHC =120°,∵AM ∵BN ,∵∵ADC +∵DEB =180°,∵∵ADC =120°,∵∵ADC =∵CHB ,∵DAC +∵DCA =60°,∵∵DCA +∵ACB +∵HCB +∵ECH =180°,∵∵DAC +∵HCB =60°,∵∵DAC =∵HCB ,∵∵DAC ∵∵HCB (AAS ),∵AD =CH =HE ,CD =BH ,∵AD +DC =BE ,∵DC =BE −AD =b −a .11.在平面直角坐标系中,点A 的坐标为(8,0),点B 为y 轴正半轴上的一个动点,以B 为直角顶点,AB 为直角边在第一象限作等腰Rt ABC △.(1)如图1,若OB =6,则点C 的坐标为__________;(2)如图2,若OB =8,点D 为OA 延长线上一点,以D 为直角顶点,BD 为直角边在第一象限作等腰Rt BDE △,连接AE ,求证:AE ∵AB ;(3)如图3,以B 为直角顶点,OB 为直角边在第三象限作等腰Rt OBF △.连接CF ,交y 轴于点P ,求线段BP 的长.【答案】(1)(6,14);(2)证明见解析;(3)4.【详解】解:(1)如图1,过点C 作CH y ⊥轴于H ,在Rt ABC △中,90ABC ∠=︒,90CHB ABC AOB ∴∠=∠=∠=︒,90BCH HBC HBC ABO ∴∠+∠=∠+∠=︒,ABO BCH ∴∠=∠,在ABO 和BCH 中,AOB BHC ABO BCH AB BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,(AAS)ABO BCH ∴≌△△, 6CH OB ∴==,8BH AO ==,14OH OB BH ∴=+=,∴点(6,14)C ,故答案为:(6,14);(2)过点E 作EF x ⊥轴于F ,已知等腰Rt BDE △,90BDE ∴∠=︒,BD DE =,90EFD BDE BOD ∴∠=∠=∠=︒,90BDO EDF BDO DBO ∴∠+∠=∠+∠=︒,DBO EDF ∴∠=∠,在BOD 和DFE △中,BOD DFE DBO EDF BD DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,(AAS)BOD DFE ∴≌△△,8BO DF ∴==,OD EF =, 点A 的坐标为(8,0),∵在等腰Rt ABC △中,45BAO ∴∠=︒,8OA OB ==, 8OA DF ∴==,OD AF EF ∴==,45EAF AEF ∴∠=∠=︒,90BAE ∴∠=︒,AE AB ∴⊥;(3)过点C 作CG y ⊥轴G ,由(1)可知:ABO BCG ≌△△, BO GC ∴=,8AO BG ==,BF BO =,90OBF ∠=︒,在等腰Rt OBF △中,BF BO =,=90FBO ∠︒,BF GC ∴=,90CGP FBP ∠=∠=︒, 又CPG FPB ∠=∠,(AAS)CPG FPB ∴≌△△,=GP PB ∴,142BP BG ∴==.祝福语祝你考试成功!。
最新八年级下学期期末数学考试试卷 (解析版) (2)
一、选择题1.下列标志既是轴对称图形又是中心对称图形的是()A.B.C.D.2.已知x>y,则下列不等式成立的是()A.2x<2y B.x﹣6<y﹣6 C.x+5>y+5 D.﹣3x>﹣3y 3.分式的值为0,则x的值为()A.0 B.1 C.﹣1 D.24.若正多边形的内角和是1080°,则该正多边形的一个外角为()A.45°B.60°C.72°D.90°5.下列等式中,从左到右的变形是因式分解的是()A.x(x+1)=x2+x B.x2+xy﹣3=x(x+y)﹣3C.x2+6x+4=(x+3)2﹣5 D.x2+2x+1=(x+1)2 6.关于x的不等式2x﹣a≤﹣1的解集如图所示,则a的取值是()A.﹣1 B.﹣2 C.﹣3 D.07.如图,在▱ABCD中,AB=4,BC=7,∠ABC的平分线交AD 于点E,则ED等于()A.2 B.3 C.4 D.58.如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠DBC的度数是()A.36°B.45°C.54°D.72°9.点P到△ABC的三个顶点的距离相等,则点P是△ABC()的交点.A.三条高B.三条角平分线C.三边的垂直平分线D.三条中线10.已知关于x的分式方程=1的解是负数,则m的取值范围是()A.m≤3 B.m≤3且m≠2 C.m<3D.m<3且m≠2二、填空题(每小题4分,共16分)11.分解因式:4﹣m2=.12.如图,在△ABC中,D、E分别为AB、AC边的中点,若DE=2,则BC边的长为.13.如图,在长20米,宽10米的长方形草地内修建了宽2米的道路,则草地的面积为.14.如图,在矩形ABCD中,对角线AC与BD交于点O,过点A 作AE⊥BD于点E,已知∠EAD=3∠BAE,则∠EOA=°.三、解答题(本大题共6小题,共54分,答题应写出文字说明、证明过程或演算步骤)15.计算(1)分解因式:x2y﹣2xy2+y3;(2)解不等式组.16.化简:.17.△ABC在平面直角坐标系中的位置如图所示.(1)将△ABC向左平移4个单位长度后得到△A1B1C1,点A1、B1、C1分别是A、B、C的对应点,请画出△A1B1C1,并写出C1的坐标;(2)将△ABC绕点O顺时针旋转90°,得到△A2B2C2,点A2、B2、C2分别是A、B、C的对应点,请画出△A1B1C1,并写出C2的坐标.18.列方程解应用题今年1月下旬以来,新冠肺炎疫情在全国范围内迅速蔓延,而比疫情蔓延速度更快的是口罩恐慌.企业复工复产急需口罩,某大型国有企业向生产口罩的A、B两厂订购口罩,向A厂支付了1.32万元,向B厂支付了2.4万元,且在B厂订购的口罩数量是A厂的2倍,B厂的口罩每只比A厂低0.2元.求A、B两厂生产的口罩单价分别是多少元?19.在学习一元一次不等式与一次函数中,小明在同一个坐标系中分别作出了一次函数y=k1x+b1和y=kx+b的图象,分别与x 轴交于点A、B,两直线交于点C.已知点A(﹣1,0),B(2,0),观察图象并回答下列问题:(1)关于x的方程k1x+b1=0的解是;关于x的不等式kx+b<0的解集是;(2)直接写出关于x的不等式组的解集;(3)若点C(1,3),求关于x的不等式k1x+b1>kx+b的解集和△ABC的面积.20.如图,AD是△ABC的角平分线,线段AD的垂直平分线分别交AB和AC于点E、F,连接DE,DF.(1)试判断四边形AEDF的形状,并证明你的结论;(2)若∠BAC=60°,AE=6,求四边形AEDF的面积;(3)△ABC满足什么条件时,四边形AEDF是正方形?请说明理由.四、填空题(每小题4分,共20分)21.232﹣1可以被10和20之间某两个整数整除,则这两个数是.22.两个全等的直角三角尺如图所示放置在∠AOB的两边上,其中直角三角尺的短直角边分别与∠AOB的两边上,两个直角三角尺的长直角边交于点P,连接OP,且OM=ON,若∠AOB=60°,OM=6cm,则线段OP=cm.23.若关于x的分式方程+=﹣1无解,则常数n的值是.24.如图,Rt△OAB的两直角边OA、OB分别在x轴和y轴上,A (﹣2,0),B(0,4),将△OAB绕O点顺时针旋转90°得到△OCD,直线AC、BD交于点E.点M为直线BD上的动点,点N 为x轴上的点,若以A,C,M,N四点为顶点的四边形是平行四边形,则符合条件的点M的坐标为.25.如图,已知边长为6的菱形ABCD中,∠ABC=60°,点E,F 分别为AB,AD边上的动点,满足BE=AF,连接EF交AC于点G,CE、CF分别交BD于点M,N,给出下列结论:①△CEF是等边三角形;②∠DFC=∠EGC;③若BE=3,则BM=MN=DN;④EF2=BE2+DF2;⑤△ECF面积的最小值为.其中所有正确结论的序号是.五、解答题(本大题共3小题,共30分.其中26题8分,27题10分,28题12分)26.2020年初,“新型冠状病毒”肆虐全国,武汉“封城”.大疫无情人有情,四川在做好疫情防控的同时,向湖北特别是武汉人们伸出了援手,医疗队伍千里驰援、社会各界捐款捐物.某运输公司现有甲、乙两种货车,要将234吨生活物资从成都运往武汉,已知2辆甲车和3辆乙车可运送114吨物资;3辆甲车和2辆乙车可运送106吨物资.(1)求每辆甲车和每辆乙车一次分别能装运多少吨生活物资?(2)从成都到武汉,已知甲车每辆燃油费2000元,乙车每辆燃油费2600元.在不超载的情况下公司安排甲、乙两种车共10辆将所有生活物资运到武汉,问公司有几种派车方案?哪种方案所用的燃油费最少?最低燃油费是多少?27.先阅读下面的内容,再解决问题:问题:对于形如x2+2ax+a2这样的二次三项式,可以用公式法将它分解成(x+a)2的形式.但对于二次三项式x2+2ax﹣3a2,就不能直接运用公式了.此时,我们可以在二次三项式x2+2ax﹣3a2中先加上一项a2,使它与x2+2ax成为一个完全平方式,再减去a2,整个式子的值不变,于是有:x2+2ax﹣3a2=(x2+2ax+a2)﹣a2﹣3a2=(x+a)2﹣4a2=(x+a)2﹣(2a)2=(x+3a)(x﹣a)像这样,先添一适当项,使式中出现完全平方式,再减去这项,使整个式子的值不变的方法称为“配方法”.利用“配方法”,解决下列问题:(1)分解因式:a2﹣8a+15=;(2)若△ABC的三边长是a,b,c,且满足a2+b2﹣14a﹣8b+65=0,c边的长为奇数,求△ABC的周长的最小值;(3)当x为何值时,多项式﹣2x2﹣4x+3有最大值?并求出这个最大值.28.如图1,▱ABCD在平面直角坐标系xOy中,已知点A(﹣1,0)、B(0,4)、C(3,2),点G是对角线AC的中点,过点G 的直线分别与边AB、CD交于点E、F,点P是直线EF上的动点.(1)求点D的坐标和S四边形BEFC的值;(2)如图2,当直线EF交x轴于点H(5,0),且S△PAC=S四边形BEFC时,求点P的坐标;(3)如图3,当直线EF交x轴于点K(3,0)时,在坐标平面内是否存在一点Q,使得以P、A、Q、C为顶点的四边形是矩形?若存在,直接写出点P的坐标;若不存在,请说明理由.参考答案一、选择题(每小题3分,共30分.下列各小题给出的四个选项中,只有一个符合题目要求)1.下列标志既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形与轴对称图形的概念判断即可.解:A、既是轴对称图形,又是中心对称图形.故正确;B、是轴对称图形,不是中心对称图形.故错误;C、不是轴对称图形,是中心对称图形.故错误;D、不是轴对称图形,不是中心对称图形.故错误.故选:A.2.已知x>y,则下列不等式成立的是()A.2x<2y B.x﹣6<y﹣6 C.x+5>y+5 D.﹣3x>﹣3y 【分析】根据不等式的性质逐个判断即可.解:A、∵x>y,∴2x>2y,故本选项不符合题意;B、∵x>y,∴x﹣6>y﹣6,故本选项不符合题意;C、∵x>y,∴x+5>y+5,故本选项符合题意;D、∵x>y,∴﹣3x<﹣3y,故本选项不符合题意;故选:C.3.分式的值为0,则x的值为()A.0 B.1 C.﹣1 D.2【分析】直接利用分式的值为零,则分子为零,且分母不为零,进而得出答案.解:由题意,得x2﹣1=0且x﹣1≠0,解得x=﹣1,故选:C.4.若正多边形的内角和是1080°,则该正多边形的一个外角为()A.45°B.60°C.72°D.90°【分析】首先设这个正多边形的边数为n,根据多边形的内角和公式可得180(n﹣2)=1080,继而可求得答案.解:设这个正多边形的边数为n,∵一个正多边形的内角和为1080°,∴180(n﹣2)=1080,解得:n=8,∴这个正多边形的每一个外角是:360°÷8=45°.故选:A.5.下列等式中,从左到右的变形是因式分解的是()A.x(x+1)=x2+x B.x2+xy﹣3=x(x+y)﹣3C.x2+6x+4=(x+3)2﹣5 D.x2+2x+1=(x+1)2【分析】根据因式分解的定义逐个判断即可.解:A、不是因式分解,故本选项不符合题意;B、不是因式分解,故本选项不符合题意;C、不是因式分解,故本选项不符合题意;D、是因式分解,故本选项符合题意;故选:D.6.关于x的不等式2x﹣a≤﹣1的解集如图所示,则a的取值是()A.﹣1 B.﹣2 C.﹣3 D.0【分析】解关于x的不等式得出x≤,由数轴知不等式的解集即可得出关于a的方程,解之即可.解:移项,得:2x≤a﹣1,系数化为1,得:x≤,由数轴可知=﹣1,解得:a=﹣1,故选:A.7.如图,在▱ABCD中,AB=4,BC=7,∠ABC的平分线交AD 于点E,则ED等于()A.2 B.3 C.4 D.5【分析】由四边形ABCD为平行四边形,得到AD与BC平行,AD=BC,利用两直线平行得到一对内错角相等,由BE为角平分线得到一对角相等,等量代换得到∠ABE=∠AEB,利用等角对等边得到AB=AE=4,由AD﹣AE求出ED的长即可.解:∵四边形ABCD为平行四边形,∴AD∥BC,AD=BC=7,∴∠AEB=∠EBC,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠AEB=∠ABE,∴AB=AE=4,∴ED=AD﹣AE=BC﹣AE=7﹣4=3.故选:B.8.如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠DBC的度数是()A.36°B.45°C.54°D.72°【分析】由已知条件开始,通过线段相等,得到角相等,再由三角形内角和求出各个角的大小.解:设∠A=x°.∵BD=AD,∴∠A=∠ABD=x°,∠BDC=∠A+∠ABD=2x°,∵BD=BC,∴∠BDC=∠BCD=2x°,∵AB=AC,∴∠ABC=∠BCD=2x°,在△ABC中x+2x+2x=180,解得:x=36,∴∠C=∠BDC=72°,∴∠DBC=36°,故选:A.9.点P到△ABC的三个顶点的距离相等,则点P是△ABC()的交点.A.三条高B.三条角平分线C.三边的垂直平分线D.三条中线【分析】根据线段垂直平分线的判定定理解答.解:∵点P到A、B两点的距离相等,∴点P在线段AB的垂直平分线上,同理,点P在线段AC、BC的垂直平分线上,则点P是△ABC三边的垂直平分线的交点,故选:C.10.已知关于x的分式方程=1的解是负数,则m的取值范围是()A.m≤3 B.m≤3且m≠2 C.m<3D.m<3且m≠2【分析】直接解方程得出分式的分母为零,再利用x≠﹣1求出答案.解:=1解得:x=m﹣3,∵关于x的分式方程=1的解是负数,∴m﹣3<0,解得:m<3,当x=m﹣3=﹣1时,方程无解,则m≠2,故m的取值范围是:m<3且m≠2.故选:D.二、填空题(每小题4分,共16分)11.分解因式:4﹣m2=(2+m)(2﹣m).【分析】原式利用平方差公式分解即可.解:原式=(2+m)(2﹣m),故答案为:(2+m)(2﹣m).12.如图,在△ABC中,D、E分别为AB、AC边的中点,若DE=2,则BC边的长为 4 .【分析】根据三角形中位线定理解答即可.解:∵D、E分别为AB、AC边的中点,∴DE是△ABC的中位线,∴BC=2DE=4,故答案为:4.13.如图,在长20米,宽10米的长方形草地内修建了宽2米的道路,则草地的面积为144米2 .【分析】将道路分别向左、向上平移,得到草地为一个长方形,分别求出长方形的长和宽,再用长和宽相乘即可.解:将道路分别向左、向上平移,得到草地为一个长方形,长方形的长为20﹣2=18(米),宽为10﹣2=8(米),则草地面积为18×8=144米2.故答案为:144米2.14.如图,在矩形ABCD中,对角线AC与BD交于点O,过点A 作AE⊥BD于点E,已知∠EAD=3∠BAE,则∠EOA=45 °.【分析】根据矩形的性质得出∠BAD=90°,AC=BD,OA=OC,OB=OD,求出OA=OB,求出∠OAB=∠ABO,求出∠ABO即可.解:∵四边形ABCD是矩形,∴∠BAD=90°,∵∠EAD=3∠BAE,∴∠BAE=×90°=22.5°,∵AE⊥BD,∴∠AEB=90°,∴∠ABO=180°﹣∠AEB﹣∠BAE=180°﹣90°﹣22.5°=67.5°,∵四边形ABCD是矩形,∴AC=BD,OA=OC,OB=OD,∴OA=OB,∴∠OAB=∠ABO=67.5°,∴∠EOA=180°﹣67.5°﹣67.5°=45°,故答案为:45.三、解答题(本大题共6小题,共54分,答题应写出文字说明、证明过程或演算步骤)15.计算(1)分解因式:x2y﹣2xy2+y3;(2)解不等式组.【分析】(1)直接提取公因式y,再利用公式法分解因式得出答案;(2)分别解不等式进而得出不等式组的解集.解:(1)x2y﹣2xy2+y3=y(x2﹣2xy+y2)=y(x﹣y)2;(2),解①得:x<2,解②得:x≥﹣3,故不等式组的解集为:﹣3≤x<2.16.化简:.【分析】直接将括号里面通分运算,再将原式的分子与分母分解因式,进而化简得出答案.解:原式=•=•=.17.△ABC在平面直角坐标系中的位置如图所示.(1)将△ABC向左平移4个单位长度后得到△A1B1C1,点A1、B1、C1分别是A、B、C的对应点,请画出△A1B1C1,并写出C1的坐标;(2)将△ABC绕点O顺时针旋转90°,得到△A2B2C2,点A2、B2、C2分别是A、B、C的对应点,请画出△A1B1C1,并写出C2的坐标.【分析】(1)分别作出A,B,C的对应点A1,B1,C1即可.(2)分别作出A,B,C的对应点A2,B2,C2即可.解:(1)如图△A1B1C1即为所求.并写出C1的坐标(﹣1,4).(2)如图△A2B2C2,即为所求并写出C2的坐标(4,﹣3).18.列方程解应用题今年1月下旬以来,新冠肺炎疫情在全国范围内迅速蔓延,而比疫情蔓延速度更快的是口罩恐慌.企业复工复产急需口罩,某大型国有企业向生产口罩的A、B两厂订购口罩,向A厂支付了1.32万元,向B厂支付了2.4万元,且在B厂订购的口罩数量是A厂的2倍,B厂的口罩每只比A厂低0.2元.求A、B两厂生产的口罩单价分别是多少元?【分析】设B厂生产的口罩单价为x元,则A厂生产的口罩单价为(x+0.2)元,根据数量=总价÷单价结合在B厂订购的口罩数量是A厂的2倍,即可得出关于x的分式方程,解之经检验后即可得出结论.解:设B厂生产的口罩单价为x元,则A厂生产的口罩单价为(x+0.2)元,依题意,得:=2×,解得:x=2,经检验,x=2是原方程的解,且符合题意,∴x+0.2=2.2.答:A厂生产的口罩单价为2.2元,B厂生产的口罩单价为2元.19.在学习一元一次不等式与一次函数中,小明在同一个坐标系中分别作出了一次函数y=k1x+b1和y=kx+b的图象,分别与x 轴交于点A、B,两直线交于点C.已知点A(﹣1,0),B(2,0),观察图象并回答下列问题:(1)关于x的方程k1x+b1=0的解是x=﹣1 ;关于x的不等式kx+b<0的解集是x>2 ;(2)直接写出关于x的不等式组的解集;(3)若点C(1,3),求关于x的不等式k1x+b1>kx+b的解集和△ABC的面积.【分析】(1)利用直线与x轴交点即为y=0时,对应x的值,进而得出答案;(2)利用两直线与x轴交点坐标,结合图象得出答案;(3)利用三角形面积公式求得即可.解:(1)∵一次函数y=k1x+b1和y=kx+b的图象,分别与x轴交于点A(﹣1,0)、B(2,0),∴关于x的方程k1x+b1=0的解是x=﹣1,关于x的不等式kx+b <0的解集,为x>2,故答案为x=﹣1,x>2;(2)根据图象可以得到关于x的不等式组的解集﹣1<x<2;(3)∵AB=3,∴S△ABC=•yC==.20.如图,AD是△ABC的角平分线,线段AD的垂直平分线分别交AB和AC于点E、F,连接DE,DF.(1)试判断四边形AEDF的形状,并证明你的结论;(2)若∠BAC=60°,AE=6,求四边形AEDF的面积;(3)△ABC满足什么条件时,四边形AEDF是正方形?请说明理由.【分析】(1)由∠BAD=∠CAD,AO=AO,∠AOE=∠AOF=90°证△AEO≌△AFO,推出EO=FO,得出平行四边形AEDF,根据EF ⊥AD得出菱形AEDF;(2)根据菱形的性质和菱形的面积公式即可得到结论;(3)根据有一个角是直角的菱形是正方形可得∠BAC=90°时,四边形AEDF是正方形.解:(1)四边形AEDF是菱形,∵AD平分∠BAC,∴∠1=∠2,又∵EF⊥AD,∴∠AOE=∠AOF=90°∵在△AEO和△AFO中∵,∴△AEO≌△AFO(ASA),∴EO=FO,∵EF垂直平分AD,∴EF、AD相互平分,∴四边形AEDF是平行四边形又EF⊥AD,∴平行四边形AEDF为菱形;(2)∵四边形AEDF为菱形,∴AE=AF,∵∠BAC=60°,∴△AEF是等边三角形,∠1=30°,∴AO=3,EF=AE=6,∴AD=6,∴四边形AEDF的面积=AD•EF=6×6=18;(3)在△ABC中,当∠BAC=90°时,四边形AEDF是正方形;∵∠BAC=90°,∴四边形AEDF是正方形(有一个角是直角的菱形是正方形).四、填空题(每小题4分,共20分)21.232﹣1可以被10和20之间某两个整数整除,则这两个数是15和17 .【分析】先对原式进行因式分解,然后即可求出这两个整数.解:原式=(216+1)(216﹣1)=(216+1)(28+1)(24+1)(24﹣1)=(216+1)(28+1)×17×15.则这两个数是15和17.故答案是:15和17.22.两个全等的直角三角尺如图所示放置在∠AOB的两边上,其中直角三角尺的短直角边分别与∠AOB的两边上,两个直角三角尺的长直角边交于点P,连接OP,且OM=ON,若∠AOB=60°,OM=6cm,则线段OP=4cm.【分析】由“HL”可证Rt△OMP≌Rt△ONP,可得∠MOP=∠NOP =30°,由直角三角形的性质可求解.解:在Rt△OMP和Rt△ONP中,OM=ON,OP=OP,∴Rt△OMP≌Rt△ONP(HL),∴∠MOP=∠NOP,∵∠AOB=60°,∴∠MOP=∠NOP=30°,∵∠OMP=90°,∴OP=2MP,OM=MP=6cm,∴MP=2cm,∴OP=4cm,故答案为:4.23.若关于x的分式方程+=﹣1无解,则常数n的值是1或..【分析】分式方程去分母转化为整式方程,由分式方程无解得到x ﹣3=0,确定出x的值,代入整式方程计算即可求出n的值.解:两边都乘(x﹣3),得3﹣2x+nx﹣2=﹣x+3,解得x=,n=1时,整式方程无解,分式方程无解,∴当x=3时分母为0,方程无解,即,∴时方程无解.故答案为:1或.24.如图,Rt△OAB的两直角边OA、OB分别在x轴和y轴上,A (﹣2,0),B(0,4),将△OAB绕O点顺时针旋转90°得到△OCD,直线AC、BD交于点E.点M为直线BD上的动点,点N 为x轴上的点,若以A,C,M,N四点为顶点的四边形是平行四边形,则符合条件的点M的坐标为(2,2)或(6,﹣2).【分析】由A、B的坐标可求得AO和OB的长,由旋转的性质可求得OC、OD的长,从而可求得∠AEB=90°,再由勾股定理可求得CD和AB的长,可求得AB=CD,可证得△ABE≌△DCE,得到OD=OB,由B、D坐标可求得直线BD解析式,当M点在x轴上方时,则有CM∥AN,则可求得M点纵坐标,代入直线BD解析式可求得M点坐标,当M点在x轴下方时,同理可求得M点纵坐标,则可求得M点坐标.解:∵A(﹣2,0),B(0,4),∴OA=2,OB=4,∵将△OAB绕O点顺时针旋转90°得△OCD,∴OC=OA=2,OD=OB=4,AB=CD,∴∠ACO=∠ECB=∠CBE=45°,∴∠CEB=90°,∴∠AEB=∠CED,且CE=BE,在Rt△ABE和Rt△DCE中,∴Rt△ABE≌Rt△DCE(HL),∴OD=OB=4,∴D(4,0),且B(0,4),∴直线BD解析式为y=﹣x+4,当M点在x轴上方时,则有CM∥AN,即CM∥x轴,∴M点到x轴的距离等于C点到x轴的距离,∴M点的纵坐标为2,在y=﹣x+4中,令y=2可得x=2,∴M(2,2);当M点在x轴下方时,同理可得M点的纵坐标为﹣2,在y=﹣x+4中,令y=﹣2可求得x=6,∴M点的坐标为(6,﹣2);综上可知M点的坐标为(2,2)或(6,﹣2),故答案为:(2,2)或(6,﹣2).25.如图,已知边长为6的菱形ABCD中,∠ABC=60°,点E,F 分别为AB,AD边上的动点,满足BE=AF,连接EF交AC于点G,CE、CF分别交BD于点M,N,给出下列结论:①△CEF是等边三角形;②∠DFC=∠EGC;③若BE=3,则BM=MN=DN;④EF2=BE2+DF2;⑤△ECF面积的最小值为.其中所有正确结论的序号是①②③⑤.【分析】由“SAS”可证△BEC≌△AFC,可得CF=CE,∠BCE=∠ACF,可证△EFC是等边三角形,由三角形内角和定理可证∠DFC =∠EGC;由等边三角形的性质和菱形的性质可求MN=DN=BM =2;由勾股定理即可求解EF2=BE2+DF2不成立;由等边三角形的性质可得△ECF面积的EC2,则当EC⊥AB时,△ECF的最小值为.解:∵四边形ABCD是菱形,∴AB=BC=CD=AD=6,∵AC=BC,∴AB=BC=CD=AD=AC,∴△ABC,△ACD是等边三角形,∴∠ABC=∠BAC=∠ACB=∠DAC=60°,∵AC=BC,∠ABC=∠DAC,AF=BE,∴△BEC≌△AFC(SAS)∴CF=CE,∠BCE=∠ACF,∴∠ECF=∠BCA=60°,∴△EFC是等边三角形,故①正确;∵∠ECF=∠ACD=60°,∴∠ECG=∠FCD,∵∠FEC=∠ADC=60°,∴∠DFC=∠EGC,故②正确;若BE=3,菱形ABCD的边长为6,∴点E为AB中点,点F为AD中点,∵四边形ABCD是菱形,∴AC⊥BD,AO=CO,BO=DO,∠ABO=∠ABC=30°,∴AO=AB=3,BO=AO=3,∴BD=6,∵△ABC是等边三角形,BE=AE=3,∴CE⊥AB,且∠ABO=30°,∴BE=EM=3,BM=2EM,∴BM=2,同理可得DN=2,∴MN=BD﹣BM﹣DN=2,∴BM=MN=DN,故③正确;∵△BEC≌△AFC,∴AF=BE,同理△ACE≌△DCF,∴AE=DF,∵∠BAD≠90°,∴EF2=AE2+AF2不成立,∴EF2=BE2+DF2不成立,故④错误,∵△ECF是等边三角形,∴△ECF面积的EC2,∴当EC⊥AB时,△ECF面积有最小值,此时,EC=3,△ECF面积的最小值为,故⑤正确;故答案为:①②③⑤.五、解答题(本大题共3小题,共30分.其中26题8分,27题10分,28题12分)26.2020年初,“新型冠状病毒”肆虐全国,武汉“封城”.大疫无情人有情,四川在做好疫情防控的同时,向湖北特别是武汉人们伸出了援手,医疗队伍千里驰援、社会各界捐款捐物.某运输公司现有甲、乙两种货车,要将234吨生活物资从成都运往武汉,已知2辆甲车和3辆乙车可运送114吨物资;3辆甲车和2辆乙车可运送106吨物资.(1)求每辆甲车和每辆乙车一次分别能装运多少吨生活物资?(2)从成都到武汉,已知甲车每辆燃油费2000元,乙车每辆燃油费2600元.在不超载的情况下公司安排甲、乙两种车共10辆将所有生活物资运到武汉,问公司有几种派车方案?哪种方案所用的燃油费最少?最低燃油费是多少?【分析】(1)设每辆甲车一次能装运x吨生活物资,每辆乙车一次能装运y吨生活物资,根据“2辆甲车和3辆乙车可运送114吨物资;3辆甲车和2辆乙车可运送106吨物资”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设该公司安排m辆甲车,则安排(10﹣m)辆乙车,根据10辆车的总运载量不少于234吨,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,结合m为正整数即可得出各派车方案,设总燃油费为w元,根据总燃油费=每辆车的燃油费×派车辆数,即可得出w关于m的函数关系式,再利用一次函数的性质,即可解决最值问题.解:(1)设每辆甲车一次能装运x吨生活物资,每辆乙车一次能装运y吨生活物资,依题意,得:,解得:.答:每辆甲车一次能装运18吨生活物资,每辆乙车一次能装运26吨生活物资.(2)设该公司安排m辆甲车,则安排(10﹣m)辆乙车,依题意,得:18m+26(10﹣m)≥234,解得:m≤.又∵m为正整数,∴m可以为1,2,3,∴公司有3种派车方案,方案1:安排1辆甲车,9辆乙车;方案2:安排2辆甲车,8辆乙车;方案3:安排3辆甲车,7辆乙车.设总燃油费为w元,则w=2000m+2600(10﹣m)=﹣600m+26000,∵k=﹣600,∴w随m的增大而减小,∴当m=3时,w取得最小值,最小值=﹣600×3+26000=24200.答:公司有3种派车方案,安排3辆甲车,7辆乙车时,所用的燃油费最少,最低燃油费是24200.27.先阅读下面的内容,再解决问题:问题:对于形如x2+2ax+a2这样的二次三项式,可以用公式法将它分解成(x+a)2的形式.但对于二次三项式x2+2ax﹣3a2,就不能直接运用公式了.此时,我们可以在二次三项式x2+2ax﹣3a2中先加上一项a2,使它与x2+2ax成为一个完全平方式,再减去a2,整个式子的值不变,于是有:x2+2ax﹣3a2=(x2+2ax+a2)﹣a2﹣3a2=(x+a)2﹣4a2=(x+a)2﹣(2a)2=(x+3a)(x﹣a)像这样,先添一适当项,使式中出现完全平方式,再减去这项,使整个式子的值不变的方法称为“配方法”.利用“配方法”,解决下列问题:(1)分解因式:a2﹣8a+15=(a﹣3)(a﹣5);(2)若△ABC的三边长是a,b,c,且满足a2+b2﹣14a﹣8b+65=0,c边的长为奇数,求△ABC的周长的最小值;(3)当x为何值时,多项式﹣2x2﹣4x+3有最大值?并求出这个最大值.【分析】(1)根据题目中的例子,可以对题目中的式子配方后分解因式;(2)根据题目中的式子,利用配方法可以求得a、b的值,根据三角形三边关系确定c的值,由三角形周长可得结论;(3)根据配方法即可求出答案.解:(1)a2﹣8a+15=(a2﹣8a+16)﹣1=(a﹣4)2﹣12=(a ﹣3)(a﹣5);故答案为:(a﹣3)(a﹣5);(2)∵a2+b2﹣14a﹣8b+65=0,∴(a2﹣14a+49)+(b2﹣8b+16)=0,∴(a﹣7)2+(b﹣4)2=0,∴a﹣7=0,b﹣4=0,解得,a=7,b=4,∵△ABC的三边长是a,b,c,∴3<c<11,又∵c边的长为奇数,∴c=5,7,9,当a=7,b=4,c=5时,△ABC的周长最小,最小值是:7+4+5=16;(3)﹣2x2﹣4x+3,=﹣2(x2+2x+1﹣1)+3,=﹣2(x+1)2+5,∴当x=﹣1时,多项式﹣2x2﹣4x+3有最大值,最大值是5.28.如图1,▱ABCD在平面直角坐标系xOy中,已知点A(﹣1,0)、B(0,4)、C(3,2),点G是对角线AC的中点,过点G 的直线分别与边AB、CD交于点E、F,点P是直线EF上的动点.(1)求点D的坐标和S四边形BEFC的值;(2)如图2,当直线EF交x轴于点H(5,0),且S△PAC=S四边形BEFC时,求点P的坐标;(3)如图3,当直线EF交x轴于点K(3,0)时,在坐标平面内是否存在一点Q,使得以P、A、Q、C为顶点的四边形是矩形?若存在,直接写出点P的坐标;若不存在,请说明理由.【分析】(1)根据平行线的性质可求点D的坐标,根据重心的定义可得S四边形BEFC=S▱ABCD,从而求解;(2)分两种情况:①点P在AC左边,②点P在AC右边,进行讨论即可求解;(3)先作出图形,再根据矩形的性质即可求解.解:(1)∵▱ABCD在平面直角坐标系xOy中,点A(﹣1,0)、B(0,4)、C(3,2),∴点D的坐标为(2,﹣2),∴S▱ABCD=6×4﹣×1×4﹣×3×2﹣×1×4﹣×3×2=14,∵点G是对角线AC的中点,∴S四边形BEFC=S▱ABCD=7;(2)∵点G是对角线AC的中点,∴G(1,1),设直线GH的解析式为y=kx+b,则,解得,∴直线GH的解析式为y=﹣x+;①点P在AC右边,S△ACH=×6×2=6,∵S△PAC=S四边形BEFC,1+4×=,当x=时,y=﹣×+=﹣;∴P(,﹣);②点P在AC左边,由中点坐标公式可得P(﹣,).综上所述,点P的坐标为(,﹣)或(﹣,);(3)如图,设直线GK的解析式为y=kx+b,则,解得.则直线GK的解析式为y=﹣x+;CP⊥AP时,点P的坐标为(3,0)或(﹣1,2);CP⊥AC时,直线AC的解析式为y=x+直线CP的解析式为y=﹣2x+8故点P的坐标为(,﹣);AP⊥AC时,同理可得点P的坐标为(﹣,).综上所述,点P的坐标为(3,0)或(﹣1,2)或(,﹣)或(﹣,).。
北师大版2020八年级数学下册期末复习综合训练题2(基础 含答案)
【解析】
【分析】
根据二元一次方程组的定义:
(1)含有两个未知数;
(2)含有未知数的项的次数都是1.
【详解】
解:若方程组 是关于x,y的二元一次方程组,
则c+3=0,a﹣2=1,b+3=1,
解得c=﹣3,a=3,b=﹣2.
所以代数式a+b+c的值是﹣2.
或c+3=0,a﹣2=0,b+3=1,
【点睛】
本题考查了线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.
5.D
【解析】
【分析】
根据科学记数法可表示为: ( ,n为整数)表达即可.
【详解】
解: ,
故答案为:D.
【点睛】
本题考查了绝对值小于1的科学记数法的表示,熟记科学记数法的表示方法是解题的关键.
6.D
【解析】
即x取的正整数有1,2,3,4,一共4个.
故选:B.
【点睛】
本题考查了解一元一次不等式组:分别求出不等式组各不等式的解集,然后根据“同大取大,同小取小,大于小的小于大的取中间,大于大的小于小的无解”确定不等式组的解集.
9.D
【解析】
【分析】
根据中心对称图形的概念即可求解.
【详解】
A,B,C都是轴对称图形,
C.折叠后得到的图形是轴对称图形
D.△EBA和△EDC一定是全等三角形
3.如图,已知 .按照以下步骤作图:①以点 为圆心,以适当的长为半径作弧,分别交 的两边于 两点,连接 .②分别以点 为圆心,以大于线段 的长为半径作弧,两弧在 内交于点 ,连接 .③连接 交 于点 .下列结论中错误的是( )
A. B. C. D.
人教版八年级数学上册期末章末复习试卷(2)第十二章全等三角形(含答案)
章末复习(二) 全等三角形分点突破命题点1 全等三角形的概念及性质1.如图,△ABC≌△DEC,∠A=70°,∠ACB=60°,则∠E的度数为( )A.70° B.50° C.60° D.30°2.(柳州中考)如图,△ABC≌△DEF,则EF=________.命题点2 全等三角形的判定与性质3.(安顺中考)如图,已知AE=CF,∠AFD=∠CEB,那么添加下列一个条件后,仍无法判定△ADF≌△CBE的是() A.∠A=∠C B.AD=CBC.BE=DF D.AD∥BC4.如图,在△ABC和△FED中,AD=FC,AB=FE,当添加条件______________时,即可以得到△ABC≌△FED.(只需填写一个你认为正确的条件)5.如图,点B、C、E、F在同一直线上,BC=EF,AC⊥BC于点C,DF⊥EF于点F,AC=DF.求证:(1)△ABC≌△DEF;(2)AB∥DE.命题点3 角平分线6.(来宾中考)如图,在△ABC中,CD平分∠ACB交AB于点D,DE⊥AC交于点E,DF⊥BC于点F,且BC=4,DE=2,则△BCD的面积是________.7.如图,DE⊥AB于点E,DF⊥BC于点F,且DE=DF,若∠DBC=50°,则∠ABC=________.8.如图1,在一次军事演习中,红方侦察员发现蓝方指挥部在A区内,到铁路到公路的距离相等,且离铁路与公路交叉处B点700米,如果你红方的指挥员,请你在图2所示的作战图上标出蓝方指挥部的位置,并简要说明理由.综合训练9.(宜昌中考)如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个 B.2个C.3个 D.4个10.(宜昌中考)两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,詹姆斯在探究筝形的性质时,得到如下结论:①AC⊥BD;②AO=CO=12AC;③△ABD≌△CBD,其中正确的结论有()A.0个 B.1个C.2个 D.3个11.(石家庄中考)如图,O是△ABC内一点,且O到三边AB、BC、CA的距离OF=OD=OE,若∠BAC=70°,则∠BOC=________.12.为参加学校举行的风筝设计比赛,小明用四根竹棒扎成如图所示的风筝框架,已知AB=CD,AC=DB,AC,BD交于点E,你认为小明扎的风筝两脚的大小相同吗?(即∠B=∠C吗),试说明理由.13.如图,已知BD为∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD于M,PN⊥CD于N,求证:PM=PN.14.(通辽中考)如图,四边形ABCD中,E点在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE.求证:△ABC与△DEC全等.15.如图,OP平分∠MON , PE⊥OM于E,PF⊥ON于F,OA=OB, 则图中有几对全等三角形,并说明理由.参考答案1.B2.53.B4.BC =DE 或∠A =∠F 或AB ∥EF5.(1)证明:∵AC ⊥BC 于点C ,DF ⊥EF 于点F , ∴∠ACB =∠DFE =90°.在△ABC 和△DEF 中,⎩⎪⎨⎪⎧BC =EF ,∠ACB =∠DFE ,AC =DF ,∴△ABC ≌△DEF(SAS). (2)证明:∵△ABC ≌△DEF , ∴∠B =∠DEF. ∴AB ∥DE. 6.4 7. 100°8.如图所示.在两条路所夹角的平分线上,由比例尺算出到B 点的距离为3.5 cm. 9.C 10.D 11.125°12.∠B =∠C ;理由:连接AD ,∵在△ADB 和△DAC 中,⎩⎪⎨⎪⎧AD =DA ,AB =DC ,BD =AC ,∴△ADB ≌△DAC(SSS). ∴∠B =∠C.13.证明:∵BD 为∠ABC 的平分线, ∴∠ABD =∠CBD.在△ABD 和△CBD 中,⎩⎪⎨⎪⎧AB =CB ,∠ABD =∠CBD ,BD =BD ,∴△ABD ≌△CBD(SAS).∴∠ADB =∠CDB ,即BD 平分∠ADC. ∵点P 在BD 上,PM ⊥AD ,PN ⊥CD , ∴PM =PN.14.证明:∵∠BCE =∠ACD =90°, ∴∠BCA +∠ACE =∠ACE +∠ECD. ∴∠BCA =∠ECD.在△ACD 中,∠ACD =90°,∴∠CAE +∠D =90°.∵∠BAE =∠BAC +∠CAE =90°,∴∠BAC =∠D.在△ABC 和△DEC 中,⎩⎪⎨⎪⎧∠BAC =∠D ,∠BCA =∠ECD ,BC =CE ,∴△ABC ≌△DEC(AAS).15.图中共有3对全等的三角形.理由如下:∵∠POE =∠POF, ∠PEO =∠PFO =90°,OP =OP ,∴△POE ≌△POF(AAS).∴PE =PF.又∵OA =OB ,∠POA =∠POB ,OP =OP ,∴△POA ≌△POB(SAS).∴PA =PB.∵PE =PF ,∴Rt △PAE ≌Rt △PBF(HL).别浪费一分一秒——如何利用零散时间学人们常说,时间是公平的,每个人的一天只有24个小时,所以应该珍惜时间去充实自己。
八年级数学(下)第二学期期末考试含答案
八年级数学(下)第二学期期末考试总分:120分 时量:120分钟一、选择题(本大题共12小题,共36分)1.下列各式运算结果是负数的是( )A.()2--B.02--C.22-D.()22- 2.为庆祝中华人民中国成立70周年,我国于2019年10月1日在北京天安门广场举行大型阅兵仪式,在此次活动中,共有15个徒步方队,32个装备方队,空中梯队12个,约15000名官兵通过天安门广场接受党和人民的检阅.将数字15000用科学计数法表示为( )A.31510⨯B.41.510⨯C.51.510⨯D.60.1510⨯3.下列运算中正确的是( )A.2323a a a =⋅B.()224ab ab =C.2222ab b a ÷=D.()222a b a b +=+4.如图,在三角形ABC 中,45A ∠=︒,三角形ABC 的高线BD ,CE 交于点O ,则BOC ∠的度数( )A.120︒B.125︒C.135︒D.145︒5.如图,AB//CD ,AF 交CD 于点E ,45A ∠=︒,则CEF ∠等于( )A.135︒B.120︒C.45︒D.35︒6.一个样本的方差是0,若中位数是a ,那么它的平均数是( )A.等于aB.不等于aC.大于aD.小于a7.下列命题是真命题的是( )A.一组对边平行另一组对边相等的四边形是平行四边形B.一组邻边相等的平行四边形是菱形C.对角线相等的四边形是矩形D.对角线垂直的四边形是菱形8.我国古代数学名著《孙子算经》中记载了一道题,大意是:求100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x 匹,小马有y 匹,那么可列方程组为( )A.10033100x y x y +=⎧⎨+=⎩B.1003100x y x y +=⎧⎨+=⎩C.100131003x y x y +=⎧⎪⎨+=⎪⎩D.1003100x y x y +=⎧⎨+=⎩9.如图所示为抛物线()20y ax bx c a =++≠在坐标系中的位置,以下六个结论:①0a >;②0b >;③0c >;④240b ac ->;⑤0a b c ++<;⑥20a b +>.其中正确的个数是( )A.3B.4C.5D.610.已知圆锥的底面半径为3cm ,母线长为9cm ,则圆锥的侧面积是( )A.218cm πB.227cm πC.236cm πD.254cm π11.一次函数()0y ax c a =+≠与二次函数()20y ax bx c a =++≠在同一平面直角坐标系中的图象可能是( )A. B.C.D.12.如图,抛物线21322y x x =-++的图象与坐标轴交于点A ,B ,D ,顶点为E ,以AB 为直径画半圆交y 负半轴交于点C ,圆心为M ,P 是半圆上的一动点,连接EP .①点E 在M 的内部;②CD 的长为332-;③若P 与C 重合,则15DPE ∠=︒;④在P 的运动过程中,若3AP =26PE =+;⑤N 是PE 的中点,当P 沿半圆从点A 运动至点B 时,点N 运动的路径长是π.则正确的选项为( )A.①②④B.②③④C.②③⑤D.③④⑤二、填空题(本大题共6小题,每小题3分,共18分)13.分解因式()24a b ab +-的结果是________.14.若一元二次方程2220x x --=有两个实数根1x ,2x ,则1212x x x x +-的值是________.15.正六边形的外接圆的半径与内切圆的半径之比为________.16.如图,点A ,B ,C 都在O 上,若30C ∠=︒,则AOB ∠的度数是________度. 17.将二次函数2y x =的图象先向右平移1个单位,再向上平移2个单位,平移后的得到图像函数表达式是________.18.抛物线23y x x =--与直线y x b =+交于A 、B 两点,且26AB =,则b =________.三、解答题(本大题共8个小题)19.计算:(1)()10120209322-⎛⎫+--+- ⎪⎝⎭; (2)解一元二次方程2890x x +-=.20.先化简代数式:22321124a a a a -+⎛⎫-+ ⎪+-⎝⎭,再从2-,0,2这三个数中,选择一个恰当的数作为a 的值,代入求值.21.某中学对本校学生每天完成作业所用时间的情况进行了抽样调查.随机调查了九年级部分学生每天完成作业所用的时间,并根据统计结果制成了条形统计图(时间取整数,图中从左至右依次为第1、2、3、4、5组)和扇形统计图,请结合图中信息回答下列问题:(1)本次调查的学生人数为________;(2)补全条形统计图;(3)根据图中提供的信息,可知下列结论正确的是________(只填所有正确的代号);A.由图(1)知,学生完成作业所用时间的中位数在第三组内B.由图(1)知学生完成作业所用时间的众数在第二组内C.图中,90~120时间段对应的扇形圆心角为108(4)学生每天完成作业的时间不超过120分钟,视为课业负担适中,根据以上调查,估计该校九年级560名学生中,课业负担适中的学生有多少人?22.如图,平行四边形ABCD 中,过点D 作DE AB ⊥于点E ,点F 在边CD 上,CF AE =,连AF ,BF . (1)求证:四边形BFDE 是矩形;(2)已知60DAB ∠=︒,AF 是DAB ∠的平分线,若3AD =,求DC 的长度.23.“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售y (件)与销售单价x (元)之间存在一次函数关系,如图所示.(1)求y 与x 之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.24.如图,O 是直角三角形ABC 的外接圆,直径4AC =,过C 点作O 的切线,与AB 延长线交于点D ,M 为CD 的中点,连接BM ,OM ,且BC 与OM 相交于点N .(1)求证:BM 与O 相切;(2)当60A ∠=︒时,求弦AB 和弧AB 所夹图形的面积;(3)在(2)的条件下,在O 的圆上取点F ,使15ABF ∠=︒,求点F 到直线AB 的距离.25.阅读下面材料:对于二次函数()20y ax bx c a =++>,当m x n ≤≤时,二次函数在何处取得最值?对此,我们可做如下探究:当0a >时,观察图①到图④:(1)由图①可知,当x n =时取最小值,当x m =时取最大值,点离对称轴越近,函数值越小;(2)由图②、图③可知,当2b x a=-时取最小值,点离对称轴越近,函数值越小; (3)由图④可知,当x m =时取最小值,当x n =时取最大值,点离对称轴越近,函数值越小.结论:1.当抛物线开口向上时,抛物线上的点,离对称轴越近,其对应的函数值越小;2.若对称轴在自变量的取值范围内,则二次函数在2b x a=-时取最小值; 3.若对称轴不在自变量的取值范围内,则二次函数在离对称轴最近的点处取得最小值.请结合以上结论,解决下列问题:(1)已知二次函数222y x x =--,当32x -≤≤时,此时函数的最大值和最小值; (2)已知二次函数数222y x x =--在1m x m ≤≤+的范围内有最小值2m ,求出m 的值;(3)二次函数222y x x =--,当m x n ≤≤时,()m y n m n ≤≤≠,求出此时的m ,n 的值.26.如图,抛物线218333y x x =--与x 轴交于A 、B 两点,与y 轴交于C 点.以AB 为直径作M .(1)求出M的坐标并证明点C在M上;(2)若P为抛物线上一动点,求出当CP与M相切时P的坐标;,若存在,求出D点坐标,若不存在,请说明(3)在抛物线上是否存在一点D,使得BC平分ABD理由.参考答案考试时间:120分钟 满分:120分一、选择题(本大题共12小题,每小题3分,共36分)1-5:BBCCA 6-11:ABCBB 11-12:DB二、填空题(本大题共6小题,每小题3分,共18分)13.分解因式(a +a )2−4aa 的结果是 (a-b)2 ;14.若一元二次方程0222=--x x 有两个实数根21,x x ,则2121x x x x -+的值是___4__;16. 如图,点 A ,B ,C 都在 ⊙O 上,若 ∠C =30∘,则 ∠AOB 的度数是 60 度. 17.将二次函数的图象先向右平移1个单位,再向上平移2个单位,平移后的得到图像函数表达式是 y=(x-1)2+2 ;18.抛物线32--=x x y 与直线b x y +=交于A 、B 两点,且AB =62,则b = -1 .三、解答题(本大题共8个小题)19.计算:(1)239)2020()21(01-+--+-; (2)解一元二次方程a 2+8a −9=0.解:原式=2-3 ----3分 1,921=-=x x -------3分 20.先化简代数式:412)231(22-+-÷+-a a a a ,再从−2,0,2这三个数中,选择一个恰当的数作为a 的值,代入求值.解:原式=12--a a ; -----3分 当a=0时,原式=2----3分21.某中学对本校学生每天完成作业所用时间的情况进行了抽样调查。
八年级下学期数学期末测试卷 试题试卷 含答案解析(2)
八年级下期数学期末测试一.选择题1.9的平方根为()A.3B.﹣3C.±3D.2.下列式子中,为最简二次根式的是()A.B.C.D.3.直线y=3x+1向下平移2个单位,所得直线的解析式是()A.y=3x+3B.y=3x﹣2C.y=3x+2D.y=3x﹣14.若式子在实数范围内有意义,则x的取值范围是()A.x≥1且x≠2B.x≤1C.x>1且x≠2D.x<15.某超市销售A,B,C,D四种矿泉水,它们的单价依次是5元、3元、2元、1元.某天的销售情况如图所示,则这天销售的矿泉水的平均单价是()A.1.95元B.2.15元C.2.25元D.2.75元6.下表是我市6个县(市)区今年某日最高气温(℃)的统计结果:地区孟州温县沁阳博爱武陟修武平均气温温度(℃)■302729283029则6个县(市)区该日最高气温(℃)的众数和中位数分别是()A.29,31B.30,29.5C.30,29D.30,37.如图,直线y=﹣x+b经过点(0,3),则关于x的不等式﹣x+b>0的解集是()A.x>2B.x<2C.x≥2D.x≤28.如图,在边长为1个单位长度的小正方形组成的网格中,点A、B都是格点,则线段AB 的长度为()A.5B.6C.7D.259.如果△ABC的三个顶点A,B,C所对的边分别为a,b,c,那么下列条件中,不能判断△ABC是直角三角形的是()A.∠A=25°,∠B=65°B.∠A:∠B:∠C=2:3:5C.a:b:c=::D.a=6,b=10,c=1210.四边形ABCD的对角线AC与BD相交于点O,下列四组条件中,一定能判定四边形ABCD为平行四边形的是()A.AD∥BC B.OA=OC,OB=ODC.AD∥BC,AB=DC D.AC⊥BD11.如图,正方形ABCD的边长为2,动点P从点B出发,在正方形的边上沿B→C→D的方向运动到点D停止,设点P的运动路程为x,在下列图象中,能表示△P AD的面积y 关于x的函数关系的图象是()A.B.C.D.二.填空题12.甲、乙两人在100米短跑训练中,某5次的平均成绩相等,甲的方差是0.14,乙的方差是0.06,这5次短跑训练成绩较稳定的是.(填“甲”或“乙”)13.化简:=.14.如图,菱形ABCD的对角线AC、BD相交于点O,OE⊥AD,垂足为E,AC=8,BD=6,则OE的长为.15.如图,菱形ABCD的两条对角线AC、BD相交于点O,若AB=cm,BD=6cm,则菱形ABCD的面积是.16.若一组数据4,a,7,8,3的平均数是5,则这组数据的中位数是.17.一次函数y=kx﹣2的图象经过第一、三、四象限,且与两坐标轴围成的三角形的面积等于4,则k的值等于.18.如图,在△ABC中,点D,E分别是边AB,AC的中点,AF⊥BC,垂足为点F,∠ADE =30°,DF=3,则AF的长为.19.如图,E是矩形ABCD的对角线的交点,点F在边AE上,且DF=DC,若∠ADF=25°,则∠ECD=°.三.解答题20.计算:.21.计算:(﹣2)2+﹣÷.22.如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,过点E作EF∥CD交BC的延长线于点F,连接CD.(1)求证:DE=CF;(2)求EF的长.23.在平面直角坐标系xOy中,已知一次函数y=kx+4与y=﹣x+b的图象都经过A(﹣2,0),且分别与y轴交于点B和点C.(1)填空:k=,b=;(2)设点D在直线y=﹣x+b上,且在y轴右侧,当△ABD的面积为15时,求点D 的坐标.24.小王花1200元从农贸市场购进批发价分别为每箱30元与50元的A、B两种水果进行销售,并分别以每箱35元与60元的价格售出,设购进A水果x箱,B水果y箱.(1)若小王将水果全部售出共赚了215元,则小王共购进A、B水果各多少箱?(2)若要求购进A水果的数量不得少于B水果的数量,则应该如何分配购进A、B水果的数量并全部售出才能获得最大利润,此时最大利润是多少?25.如图,在▱ABCD中,点O是边BC的中点,连接DO并延长,交AB的延长线于点E,连接BD,EC.(1)求证:四边形BECD是平行四边形;(2)当∠BOD=°时,四边形BECD是菱形;(3)当∠A=50°,则当∠BOD=°时,四边形BECD是矩形.26.如图,正方形ABCD中,M为BC上的点,E是AD的延长线的点,且AE=AM,过E作EF⊥AM垂足为F,EF交DC于点N.(1)求证:AF=BM;(2)若AB=12,AF=5,求DE的长.27.某校七、八年级各有400名学生,为了了解疫情期间线上教学学生的学习情况,复学后,某校组织了一次数学测试,刘老师分别从七、八两个年级随机抽取各50名同学的成绩(百分制),并对数据(成绩)进行了整理、描述和分析,部分信息如下:a.七、八年级的频数分布直方图如下(数据分为5组:x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100):b.七年级学生成绩在80≤x<90的这一组是:808081818182828283858586868888899090c.七、八年级学生成绩的平均数、中位数如下:年级平均数中位数七年级80.3m八年级78.276根据以上信息,回答下列问题:(1)表中m的值为;(2)在这次测试中,八年级80分以上(含80分)有人;(3)小江说:“这次考试没考好,只得了79分,但年级排名仍属于前50%”,请判断小江所在年级,并说明理由;(4)若85分及以上为“优秀”,请估计七年级达到“优秀”的人数.28.如图,在菱形ABCD中,∠ABC=60°,E是对角线AC上一点.F是线段BC延长线上一点,且CF=AE,连接BE.(1)发现问题如图①,若E是线段AC的中点,连接EF,其他条件不变,填空:线段BE与EF的数量关系是;(2)探究问题如图②,若E是线段AC上任意一点,连接EF,其他条件不变,猜想线段BE与EF的数量关系是什么?请证明你的猜想;(3)解决问题如图③,若E是线段AC延长线上任意一点,其他条件不变,且∠EBC=30°,AB=1,请直接写出AF的长度.参考答案一.选择题1.C.2.B.3.D.4.A.5.C.6.B.7.B.8.A.9.D.10.B.11.D.二.填空题12.乙.13..14..15.12cm2.16.4.17..18.3.19.57.5.三.解答题20.解:原式=﹣﹣2=4﹣﹣2=4﹣3.21.解:原式=3﹣4+2+2﹣3=7﹣5.22.解:(1)∵D、E分别为AB、AC的中点,∴DE∥BC,DE=BC,∵EF∥CD∴四边形DEFC是平行四边形,∴DE=CF.(2)∵四边形DEFC是平行四边形,∴DC=EF,∵D为AB的中点,等边△ABC的边长是2,∴AD=BD=1,CD⊥AB,BC=2,∴DC=EF=.23.解:(1)将A(﹣2,0)代入y=kx+4得﹣2k+4=0,解得k=2,将A(﹣2,0)代入y=﹣x+b得1+b=0,解得b=﹣1;故答案为2,﹣1;(2)如图,过D作DE⊥BC于E,在y=2x+4中,令x=0,则y=4,∴B(0,4),在y=﹣x﹣1中,令x=0,则y=﹣1,∴C(0,﹣1),∴BC=5,+S△BCD=15,当△ABD的面积为15时,S△ABC即AO×BC+DE×BC=15,∴×2×5+×DE×5=15,∴DE=4,在y=﹣x﹣1中,令x=4,则y=﹣3,∴D(4,﹣3).24.解:(1)由题意可得,,解得,答:小王共购进A种水果25箱,B种水果9箱.(2)设利润为W元,W=(35﹣30)x+(60﹣50)y=5x+10×=﹣x+240.∵购进A水果的数量不得少于B水果的数量,∴x≥,解得:x≥15.∵﹣1<0,∴W随x的增大而减小,∴当x=15时,W取最大值,最大值为225,此时y=(1200﹣30×15)÷50=15.答:购进水果A、B的数量均为15箱并全部售出才能获得最大利润,此时最大利润为225元.25.(1)证明:∵四边形ABCD为平行四边形,∴AB∥DC,AB=CD,∴∠OEB=∠ODC,又∵O为BC的中点,∴BO=CO,在△BOE和△COD中,,∴△BOE≌△COD(AAS);∴OE=OD,∴四边形BECD是平行四边形;(2)解:当∠BOD=90°时,四边形BECD是菱形;理由:∵四边形BECD是平行四边形,∴当∠BOD=90°时,四边形BECD是菱形;(3)解:若∠A=50°,则当∠BOD=100°时,四边形BECD是矩形.理由如下:∵四边形ABCD是平行四边形,∴∠BCD=∠A=50°,∵∠BOD=∠BCD+∠ODC,∴∠ODC=100°﹣50°=50°=∠BCD,∴OC=OD,∵BO=CO,OD=OE,∴DE=BC,∵四边形BECD是平行四边形,∴四边形BECD是矩形;故答案是:(2)90°;(3)100°.26.证明:(1)∵四边形ABCD是正方形∴∠ABC=90°,AD∥BC∴∠EAF=∠AMB,∵∠AFE=∠ABC=90°,AE=AM,∴△ABM≌△EF A(AAS)∴AF=BM(2)∵在Rt△ABM中,AB=12,AF=BM=5∴AM==13∵△ABM≌△EF A,∴AM=AE=13,∵四边形ABCD是正方形,∴AB=AD,∴DE=AE﹣AD=13﹣12=127.解:(1)由直方图中的数据可知,中位数是80≤x<90这一组第一个和第二个数的平均数,故m=(80+80)÷2=80,故答案为:80;(2)由频数分布直方图可得,在这次测试中,八年级80分以上(含80分)有400×=160(人),故答案为:160;(3)小江属于八年级,因为小江的成绩大于八年级成绩的中位数,而小于七年级成绩的中位数,故小江属于八年级;(4)400×=136(人),即七年级达到“优秀”的有136人.28.解:(1)猜想线段BE与EF的数量关系为:BE=EF;理由如下:∵四边形ABCD是菱形,∴AB=BC,∵∠ABC=60°,∴△ABC是等边三角形,∴∠BCA=60°,∵E是线段AC的中点,∴∠CBE=∠ABE=30°,AE=CE,∵CF=AE,∴CE=CF,∴∠F=∠CEF=∠BCA=30°,∴∠CBE=∠F=30°,∴BE=EF.故答案为BE=EF.(2)猜想线段BE与EF的数量关系为:BE=EF;理由如下:过点E作EG∥BC交AB于点G,如图②所示:∵四边形ABCD为菱形,∠ABC=60°,∴AB=BC,∠BCD=120°,AB∥CD,△ABC与△ACD都是等边三角形,∴∠ACD=60°,∠DCF=∠ABC=60°,AB=AC,∴∠ECF=120°,又∵EG∥BC,∴∠AGE=∠ABC=60°,又∵∠BAC=60°,∴△AGE是等边三角形,∴AG=AE=GE,∴BG=CE,∠BGE=120°=∠ECF,又∵CF=AE,∴GE=CF,在△BGE和△CEF中,,∴△BGE≌△ECF(SAS),∴BE=EF.(3)连接EF,过点E作EG∥BC交AB延长线于点G,如图③所示:∵四边形ABCD为菱形,∠ABC=60°,∴△ABC是等边三角形,∴AB=AC,∠ACB=60°,∴∠ECF=60°,又∵EG∥BC,∴∠AGE=∠ABC=60°,又∵∠BAC=60°,∴△AGE是等边三角形,∴AG=AE=GE,∴BG=CE,∠AGE=∠ECF,又∵CF=AE,∴GE=CF,在△BGE和△CEF中,,∴△BGE≌△ECF(SAS),∴BE=EF,∵∠ABC=60°,∠EBC=30°,∴∠ABE=∠ABC+∠EBC=60°+30°=90°,∵△ABC是等边三角形,∴∠BAC=60°,∴∠BEA=180°﹣∠ABE﹣∠BAC=180°﹣90°﹣60°=30°,在Rt△ABE中,∠BEA=30°,∴AE=2AB=2×1=2,BE=,∴EF=,∵BE=EF,∴∠EBC=∠EFB=30°,∴∠BEF=180°﹣30°﹣30°=120°,∴∠AEF=∠BEF﹣∠BEA=120°﹣30°=90°,由勾股定理得:AF===.。
2020-2021学年八年级数学北师大版下册期末综合复习模拟测试卷2(附答案)
2020-2021学年北师大版八年级数学下册期末综合复习模拟测试卷2(附答案)一.选择题(共10小题,每小题3分,共计30分)1.下列分解因式正确的是()A.xy2﹣4y=y(x+2y)(x﹣2y)B.4x2﹣y2=y2(2x+1)(2x﹣1)C.x3﹣4x2+x=x(x﹣2)2D.4x3﹣4x2+x=x(2x﹣1)22.下列各式中,能用平方差公式分解因式的是()A.x2+4y2B.﹣x2+4y2C.x2﹣2y+1D.﹣x2﹣4y23.假设每个人的工作效率一样,若m个人完成某项工程需要a天,则(m+n)个人完成此项工程需要的天数为()A.B.C.a+m D.4.若关于x的分式方程的解为非负数,则m的取值范围是()A.m≤5B.m<5且m≠3C.m≠3D.m≤5且m≠3 5.已知一元一次不等式组的解集为x<3,那么a的取值范围是()A.a≥2B.a>2C.a≤2D.a<26.某种商品进价为700元,标价1100元,由于该商品积压,商店准备打折销售,但要保证利润率不低于10%,则至多可以打()折.A.6折B.7折C.8折D.9折7.如图,在△ABC中,AC=4cm,线段AB的垂直平分线交AC于点N,△BCN的周长是7cm,则BC的长为()cmA.3B.4C.7D.118.如图,CD是△ABC的边AB上的中线,将线段AD绕点D顺时针旋转90°后,点A的对应点E恰好落在AC边上,若AD=,BC=,则CE的长为()A.B.C.D.19.已知在四边形ABCD中,AB∥CD,添加下列一个条件后,一定能判定四边形ABCD是平行四边形的是()A.AD=BC B.AC=BD C.∠A=∠C D.∠A=∠B10.如图,在平行四边形ABCD中,AD=6,点E在边AD上,点F在BC的延长线上,且满足BF=BE=8,过点C作CE的垂线交BE于点G,若CE恰好平分∠BEF,则BG的长为()A.2B.3C.4D.2二.填空题(共10小题,每小题3分,共计30分)11.计算:20203﹣2019×2020×2021=.12.已知,则的值等于.13.已知可以写成3+,根据这一做法解决:当整数x的值为时,分式的值为整数.14.若a使关于x的不等式组至少有三个整数解,且关于x的分式方程+=2有正整数解,则所有整数a的乘积为.15.已知关于x的不等式(3a﹣2b)x<a﹣4b的解集是,则关于x的不等式bx﹣a >0的解集为.16.若关于x的不等式2(x﹣1)≤x+m恰好有3个正整数解,则m的取值范围为.17.在Rt△ABC中,∠C=90°,有一个锐角为60°,AB=4.若点P在直线AB上(不与点A,B重合),且∠PCB=30°,则CP的长为.18.定义:有一组对角互余的四边形叫做对余四边形,如图,在对余四边形ABCD中,AB =BC,AD=2,CD=5,∠ABC=60°,则线段BD=.19.如图,四边形ABCD中,AD∥BC,AD=12cm,BC=15cm,点P自点A向D以1cm/s 的速度运动,到D点即停止.点Q自点C向B以2cm/s的速度运动,到B点即停止,直线PQ截原四边形为两个新四边形.则当P,Q同时出发秒后其中一个新四边形为平行四边形.20.如图,在▱ABCD中,∠ABC=45°,AB=6,CB=14.点M,N分别是边AB,AD 的中点,连接CM,BN,并取CM,BN的中点,分别记为点E,F,连接EF,则EF的长为.三.解答题(共8小题,21、22、23、24每小题6分,25、26、27、28每小题9分,共计60分)21.分解因式:(1)x3﹣25x;(2)m(a﹣3)+2(3﹣a).22.已知方程组的解满足x为非负数,y为正数.(1)求m的取值范围.(2)若不等式(m+1)x<m+1的解集为x>1,求满足条件的整数m的值.23.先化简(﹣x+1)÷,再从﹣1,0,1中选择合适的x值代入求值.24.某种型号油电混合动力汽车,从A地到B地,只用燃油行驶,需用燃油76元;从A地到B地,只用电行驶,需用电26元,已知每行驶1千米,只用燃油的费用比只用电的费用多0.5元.(1)若只用电行驶,每行驶1千米的费用是多少元?(2)若要使从A地到B地油电混合行驶所需的油、电费用合计不超过39元,则至少需用电行驶多少千米?25.如图,△ABC是等边三角形,D、E分别是BC、AC边上的点,连接AD、BE,且AD、BE相交于点P,∠AEB=∠CDA.(1)求∠BPD的度数.(2)过点B作BQ⊥AD于Q,若PQ=3,PE=1,求BE的长.26.图1是由一副三角板拼成的图案,其中∠ACB=∠DBE=90°,∠A=30°,∠ABC=60°,∠BDE=∠E=45°.(1)求图1中∠EBC的度数.(2)若将图1中的三角板BDE不动,将另一三角板ABC绕点B顺时针或逆时针旋转α度(0°<α<90°).当∠ABE=2∠DBC时,求∠ABD的度数(图2,图3,图4仅供参考).27.如图,在平行四边形ABCD中,AC是对角线,且AB=AC,CF是∠ACB的角平分线交AB于点F,在AD上取一点E,使AB=AE,连接BE交CF于点P.(1)求证:BP=CP;(2)若BC=4,∠ABC=45°,求平行四边形ABCD的面积.28.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕点C顺时针旋转得到△DEC,点B 的对应点为E,点A的对应点D落在线段AB上,DE与BC相交于点F,连接BE.(Ⅰ)求证:DC平分∠ADE;(Ⅱ)试判断BE与AB的位置关系,并说明理由;(Ⅲ)若BE=BD,求∠ABC的大小.(直接写出结果即可)参考答案一.选择题(共10小题,每小题3分,共计30分)1.解:A、原式=y(xy﹣4),不符合题意;B、原式=(2x+y)(2x﹣y),不符合题意;C、原式=x(x2﹣4x+1),不符合题意;D、原式=x(4x2﹣4x+1)=x(2x﹣1)2,符合题意.故选:D.2.解:A.x2+4y2两项的符号相同,不能用平方差公式分解因式;B.﹣x2+4y2是2y与x的平方的差,能用平方差公式分解因式;C.x2﹣2y+1是三项不能用平方差公式分解因式;D.﹣x2﹣4y2两项的符号相同,不能用平方差公式分解因式.故选:B.3.解:设该项工程总量为1,由m个人完成某项工程需要a天,则m个人的工作效率为,∴每个人的工作效率为;则(m+n)个人完成这项工程的工作效率是(m+n)×;∴(m+n)个人完成这项工程所需的天数是1÷[(m+n)×]=(天).故选:A.4.解:去分母得,3=x﹣2+m,解得,x=5﹣m,∵分式方程的解为非负数,∴5﹣m≥0,∴m≤5,又∵x≠2,∴5﹣m≠2,m≠3,∴m的取值范围是m≤5且m≠3,故选:D.5.解:∵一元一次不等式组的解集为x<3,∴a+1≥3,解得:a≥2.故选:A.6.解:设打x折,根据题意可得:1100×﹣700≥700×10%,解得:x≥7,故至多可以打7折.故选:B.7.解:∵MN是线段AB的垂直平分线,∴NA=NB,∵△BCN的周长是7cm,∴BC+CN+BN=7(cm),∴BC+CN+NA=7(cm),即BC+AC=7(cm),∵AC=4cm,∴BC=3(cm),故选:A.8.解:因为AD绕点D顺时针旋转90°后,点A的对应点E恰好落在AC边上,所以△ADE是等腰直角三角形,所以AB=,AE=2,∠A=45°,若作BH⊥AC于H,则AH=2,所以E和H重合,所以BE⊥AC,在Rt△BCE中,CE=,故选:D.9.解:如图所示:∵AB∥CD,∴∠B+∠C=180°,当∠A=∠C时,则∠A+∠B=180°,故AD∥BC,则四边形ABCD是平行四边形.故选:C.10.解:如图,延长EF,GC两条线相交于点H,过点G作GP∥EF交BC于点P,∵四边形ABCD是平行四边形,∴BC=AD=6,∵BF=BE=8,∴CF=BF﹣BC=2,∵CE平分∠BEF,∴∠GEC=∠HEC,∵CE⊥GC,∴∠ECG=∠ECH=90°,在△ECG和△ECH中,,∴△ECG≌△ECH(ASA),∴CG=CH,∵GP∥EF,∴∠PGC=∠FHC,在△PCG和△FCH中,,∴△PCG≌△FCH(ASA),∴CP=CF=2,∴BP=BF﹣PF=8﹣4=4,∵BF=BE,∴∠BEF=∠BFE,∵GP∥EF,∴∠BGP=∠BEF,∠BPG=∠BFE,∴∠BGP=∠BPG,∴BG=BP=4.故选:C.二.填空题(共10小题,每小题3分,共计30分)11.解:原式=2020×[20202﹣(2020﹣1)×(2020+1)]=2020×(20202﹣20202+1)=2020×1=2020.故答案为:2020.12.解:已知等式整理得:=2,即a﹣b=﹣2ab,则原式===﹣5,故对答案为:﹣513.解:把==2+,∵是整数,∴应是整数,∵5=1×5=﹣1×(﹣5),∴x﹣2=1,x﹣2=﹣1,x﹣2=5,x﹣2=﹣5,解得:x=3或1或7或﹣3,故答案为:3或1或7或﹣3.14.解:关于x的不等式组,整理得,,由不等式组至少有三个整数解,可得a>﹣2,关于x的分式方程+=2,整理得x=,∵分式方程有正整数解,且x≠2,∴a=﹣1或a=5,∴﹣1×5=﹣5,故答案为:﹣5.15.解:不等式(3a﹣2b)x<a﹣4b,解得:x>,3a﹣2b<0,即3a<2b,∴=,即9a=16b,,∵3a﹣2b<0,9a=16b,∴b<0,a<0,∴bx﹣a>0的解集为x<,故答案为:.16.解:解不等式2(x﹣1)≤x+m,得x≤m+2.∵不等式恰好有3个正整数解,∴正整数解为1、2、3.∴3≤m+2<4,解得1≤m<2.故答案为1≤m<2.17.解:(1)当∠ABC=60°时,则BC=AB=2,当点P在线段AB上时,∵∠PCB=30°,故CP⊥AB,则PC=BC cos30°=2×=;当点P(P′)在AB的延长线上时,∵∠P′CB=30°,∠ABC=60°,则△P′BC为的等腰三角形则BP′=BC=2,(2)当∠ABC=30°时,同理可得,PC=2;故答案为2或.18.解:∵对余四边形ABCD中,∠ABC=60°,∴∠ADC=30°,∵AB=BC,∴将△BCD绕点B逆时针旋转60°,得到△BAF,连接FD,如图所示,∴△BCD≌△BAF,∠FBD=60°∴BF=BD,AF=CD,∠BDC=∠BF A,∴△BFD是等边三角形,∴BF=BD=DF,∵∠ADC=30°,∴∠ADB+∠BDC=30°,∴∠BF A+∠ADB=30°,∵∠FBD+∠BF A+∠ADB+∠AFD+∠ADF=180°,∴60°+30°+∠AFD+∠ADF=180°,∴∠AFD+∠ADF=90°,∴∠F AD=90°,∴AD2+AF2=DF2,∴AD2+CD2=BD2,∴BD2=(2)2+52=45,∵BD>0,∴BD=3,故答案为:3.19.解:根据题意有AP=t,CQ=2t,PD=12﹣t,BQ=15﹣2t.①∵AD∥BC,∴当AP=BQ时,四边形APQB是平行四边形.∴t=15﹣2t,解得t=5.∴t=5s时四边形APQB是平行四边形;②AP=tcm,CQ=2tcm,∵AD=12cm,BC=15cm,∴PD=AD﹣AP=12﹣t,∵AD∥BC,∴当PD=QC时,四边形PDCQ是平行四边形.即:12﹣t=2t,解得t=4s,∴当t=4s时,四边形PDCQ是平行四边形.综上所述,当P,Q同时出发4或5秒后其中一个新四边形为平行四边形.故答案是:4或5.20.解:如图,连接BE交CD于点G,连接GN,过点G作GH⊥DN于点H,∵四边形ABCD是平行四边形,∴AD=CB=14,CD=AB=6,∵点M,N分别是边AB,AD的中点,∴AN=DN=AD=7,BM=AB=3,∵AB∥CD,∴∠BME=∠GCE,∠MBE=∠CGE,∵点E是CM的中点,∴ME=CE,在△MEB和△CEG中,,∴△MEB≌△CEG(AAS),∴BE=GE,BM=GC=3,∴DG=CD﹣GC=3,∵∠D=∠ABC=45°,GH⊥DN,∴DH=GH=DG=3,∴NH=DN﹣DH=7﹣3=4,∴GN==5,∵BF=FN,BE=EG,∴EF是△BGN的中位线,∴EF=GN=.故答案为:.三.解答题(共8小题,21、22、23、24每小题6分,25、26、27、28每小题9分,共计60分)21.解:(1)原式=x(x2﹣25)=x(x+5)(x﹣5);(2)原式=m(a﹣3)﹣2(a﹣3)=(a﹣3)(m﹣2).22.解:(1)解方程组得,根据题意,得:,解得﹣3≤m<;(2)∵不等式(m+1)x<m+1的解集为x>1,∴m+1<0,解得m<﹣1,又﹣3≤m<,∴﹣3≤m<﹣1,则整数m的值为﹣3、﹣2.23.解:(﹣x+1)÷=[﹣(x﹣1)]÷=•=•=,∵分式的分母x+1≠0,x2﹣1≠0,x2+2x+1≠0,解得:x≠±1,∴取x=0,当x=0时,原式==﹣1.24.解:(1)设只用电行驶,每行驶1千米的费用是x元,则只用燃油行驶,每行驶1千米的费用是(x+0.5)元,依题意得:=,解得:x=0.26,经检验,x=0.26是原方程的解,且符合题意.答:只用电行驶,每行驶1千米的费用是0.26元.(2)A,B两地间的路程为26÷0.26=100(千米).设用电行驶m千米,则用油行驶(100﹣m)千米,依题意得:0.26m+(0.26+0.5)(100﹣m)≤39,解得:m≥74.答:至少需用电行驶74千米.25.解:(1)由△ABC是等边三角形可得,∠ABC=∠C=60°,∵∠ADC=∠ABC+∠BAD,∠AEB=∠C+∠EBC,∠AEB=∠CDA,∴∠BAD=∠EBC,∵∠BPD=∠ABE+∠BAD,∴∠BPD=∠ABE+∠EBC=∠ABC=60°;(2)∵BQ⊥AD于Q,∴∠BQP=90°,∵∠BPD=60°,∴∠PBQ=90°﹣∠BPD=30°,在Rt△BPQ中,∵PQ=3,∠PBQ=30°,∴BP=2PQ=6,又∵PE=1,∴BE=BP+PE=6+1=7.26.解:(1)∠EBC=∠ABC+∠EBD=60°+90°=150°;(2)第一种情况:若逆时针旋转α度(0<α<60°),如图2:据题意得90°﹣α=2(60°﹣α),解得α=30°,∴∠EBC=90°+(60°﹣30°)=120°,∴∠DBC=120°﹣90°=30°,∴∠ABD=60°﹣30°=30°;第二种情况,若逆时针旋转α度(60°≤α<90°),如图3,据题意得90°﹣α=2(α﹣60°),解得α=70°,∴∠EBC=90°﹣(70°﹣60°)=80°,∴∠DBC=90°﹣80°=10°,∵∠ABD=60°+10°=70°;第三种情况:若顺时针旋转α度,如图4,据题意得90°+α=2(60°+α),得α=﹣30°,∵0<α<90°,α=﹣30°不合题意,舍去,故α=30°或70°时,∠ABD的度数是30°或70°.27.解:(1)设AP与BC交于H,∵在平行四边形ABCD中,AD∥BC,∴∠AEB=∠CBE,∵AB=AE,∴∠ABE=∠AEB,∴∠ABE=∠CBE,∴BE平分∠ABC,∵CF是∠ACB的角平分线,BE交CF于点P,∴AP平分∠BAC,∵AB=AC,∴AH垂直平分BC,∴PB=PC;(2)∵AH垂直平分BC,∴AH⊥BC,BH=CH=BC=2,∵∠ABH=45°,∴AH=BH=2,∴平行四边形ABCD的面积=4×2=8.28.(Ⅰ)证明:∵△DCE是由△ACB旋转得到,∴CA=CD,∠A=∠CDE,∴∠A=∠CDA,∴∠CDA=∠CDE,∴CD平分∠ADE.(Ⅱ)解:结论:BE⊥AB.由旋转的性质可知,∠ACD=∠BCE,∵CA=CD,CB=CE,∴∠CAD=∠CDA=∠CBE=∠CEB,∵∠ABC+∠CAB+∠ACD+∠DCB=180°,∴∠ABC+∠CBE+∠DCB+∠BCE=180°,∴∠DCE+∠DBE=180°,∵∠DCE=90°,∴∠DBE=90°,∴BE⊥AB.(Ⅲ)如图,设BC交DE于O.连接AO,过点B作BH⊥CD交CD的延长线于H,作BT⊥CE于T,∵∠H=∠BTC=∠HCT=90°,∴∠HBT=∠DBE=90°,∴∠DBH=∠EBT,∵BD=BE,∠H=∠BTE=90°∴△BHD≌△BTE(AAS),∴BH=BT,∵BH⊥CH,BT⊥CE,∴∠DCO=∠DEB=45°,∵∠ACB=90°,∴∠ACD=∠OCD,∵CD=CD,∠ADC=∠ODC,∴△ACD≌△OCD(ASA),∴AC=OC,∴∠AOC=∠CAO=45°,∵∠ADO=135°,∴∠CAD=∠ADC=67.5°,∴∠ABC=22.5°,∵∠AOC=∠OAB+∠ABO,∴∠OAB=∠ABO=22.5°.。
鲁教版2020八年级数学期末复习综合练习题2(基础过关 含答案)
本题考查了等腰梯形的性质,菱形的判定,矩形的判定,以及三角形的中位线定理,关键的应用三角形的中位线定理得到四边形EFGH和四边形OPMN的边的关系.
8.B
【解析】
【分析】
根据二次根式有意义的条件列出不等式,解不等式即可.
【详解】
解:由题意得,5x﹣1≥0,
解得,x≥ ,
故选B.
【点睛】
本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键.
∴ ,
∴ ,
∵∠CDP=∠BDE,
∴△DPC∽△DEB,
∴ ,
∴BE:PA= ,
故答案为 .
【点睛】
本题考查正方形的性质,相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
16.6
【解析】
【分析】
把x=-2代入x2+(a-1)x+a=0即可求出a的值.
【详解】
把x=-2代入x2+(a-1)x+a=0,得
故答案为:2026.
【点睛】
本题考查一元二次方程根与系数的关系,解题关键是把所求代数式化成两根之和、两根之积的系数,然后利用根与系数的关系式求值.
14.
【解析】
【分析】
根据根式的计算法则计算即可.
【详解】
解:原式 ,
故答案为: .
【点睛】
本题主要考查根式的计算,注意绝对值的计算,这是同学们往往容易计算错误的,应当引起重视.
24.解方程:(1)(2x﹣1)2=(x﹣3)2;(2)x2﹣2 x﹣1=0
25.计算:
(1) × -3 +
(2)( -1)2-( - ) ( + )
沪教版数学八年级下学期期末测试卷二(含答案及解析)
沪教版数学八年级下学期期末测试卷二一、选择题(本大题共10 个小题,每小题3 分,共30 分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)二元二次方程x2﹣xy﹣2y2=0可以化为两个二元一次方程,下列表示正确的是()A.B.C.x+y=0 或x﹣2y=0 D.x﹣y=0 或x+2y=02.(3分)下列函数中,在其定义域内y随x的增大而增大的是()A.B.C.D.3.(3分)下列图形中,是轴对称图形而不是中心对称图形的是()A.矩形B.菱形C.正方形D.等腰梯形4.(3分)如图,DE是△ABC的中位线,下面的结论中错误的是()A.B.AB∥DE C.BC=2DE D.AB=2DE5.(3分)下列事件属于必然事件的是()A.10 只鸟关在3 个笼子里,至少有1 个笼子里关的鸟超过3 只B.某种彩票的中奖概率为,购买100 张彩票一定中奖C.将10 克浓度为3%的盐水和10 克浓度为7%的盐水混合得20 克浓度为10%的盐水D.夹在两条互相平行的直线之间的线段相等6.(3分)下列命题中,真命题是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相平分的四边形是平行四边形D.对角线互相垂直平分的四边形是正方形7.(3分)下列说法中正确的是()A.x4+1=0 是二项方程B.x2y﹣y=2 是二元二次方程C.﹣=1 是分式方程D.x2﹣1=0 是无理方程8.(3分)下列事件中,属于确定事件的是()A.抛掷一枚质地均匀的骰子,正面向上的点数是6B.抛掷一枚质地均匀的骰子,正面向上的点数大于6C.抛一枚质地均匀的骰子,正面向上的点数小于6D.抛掷一枚质地均匀的骰子6 次,“正面向上的点数是6”至少出现一次9.(3分)如果平行四边形ABCD两条对角线的长度分别为AC=8cm,BD=12cm,那么BC边的长度可能是()A.BC=2cm B.BC=6cm C.BC=10cm D.BC=20cm10.(3分)已知四边形ABCD中,∠A=∠B=∠C=90°,如果添加一个条件,使得该四边形成为正方形,那么所添加的这个条件可以是()A.∠D=90°B.AB=CD C.AB=BC D.AC=BD二、认真填一填(本大题共 6 个小题,每题 4 分,共24 分。
2024八年级数学上册第二部分期末专题复习专题2图形与几何习题课件新版新人教版
(1)图中与 MF 相等的线段是
;
CE
(2)当 BF + CE 取最小值时,∠ AFB
= 95
1
2
3
4
°.
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
19. [2023北京海淀区期中] 如图,在△ ABC 中, AC = BC ,
∠ ACB =90°, AD 平分∠ CAB ,交 BC 于点 D . 点 A
与点 E 关于直线 BC 对称,连接 BE , CE ,延长 AD 交
BE 于点 F .
(2)求证:△ BDF 是等腰三角形;
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
(2)证明:∵ AC = BC ,∠ ACB =90°,
∴∠ CAB =∠ CBA =45°.
∵ AD 是∠ CAB 的平分线,
∴△ BDF 是等腰三角形.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
19. [2023北京海淀区期中] 如图,在△ ABC 中, AC = BC ,
∠ ACB =90°, AD 平分∠ CAB ,交 BC 于点 D . 点 A
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八里湾四中八年级数学期末复习题(二)
一、选一选(每题3分,共36分)
1、已知b
a、是有理数,且b
a>,则下列式子正确的是()
A、1
1-
>
-b
a B、b
a-
>
-1
1 C、1
1-
<
-b
a D、b
a
2
1
2
1
-
>
-
2、已知b
a、两个实数在数轴上的对应点如图所示,
则下列式子中正确的是()
A、b
a>B、0
>
+b
a C、0
<
-b
a D、a
ab<
3、乐器上一根弦AB=80cm,两端点A、B固定在乐器板面上,期间支撑点C是AB的
黄金分割点(AC>BC),则AC的长是()
A、40
5
40-B、80
5
40-C、5
40
120-D、5
40
120+
4、如果bc
ax=,那么将x作为第四比例项的比例式是()
A.
x
a
c
b
=B.
b
c
x
a
=C.
x
c
b
a
=D.
c
a
b
x
=
5、如图平面直角坐标系中,有一条“鱼”,它有六个顶点,则下列说法正确的是()
A、将各点横坐标乘以2,纵坐标不变得到的“鱼”与原来的“鱼”
位似
B、将各点纵坐标乘以2,横坐标不变得到的“鱼”与原与原来的“鱼”
位似
C、将各点横坐标、纵坐标都乘以2,得到的“鱼”与原来的“鱼”
位似
D、将各点的横坐标乘以2纵坐标乘以
2
1
得到的“鱼”与原来的“鱼”
位似
6、下列多项式不能用平方差分解的是()
A、2
2
25b
a-B、2
2
4
1
b
a-C、2
225b
a+
-D、2
4b
-
-
7、若分式n
m
n
m
m
、
中的
2
2
+
同时扩大2倍,则分式的值()
A、扩大两倍
B、不变
C、缩小两倍
D、无法确定
8、我校八年级学生在生物实验中抽出50粒种籽进行研究,数据落在37~40之间的
频率是0.2,则这50个数据在37~40之间的个数是()
A、1
B、2
C、10
D、5
9、如图,D、E分别在△ABC的AB、AC边上,∠B=∠AED,则下列关系式中成
立的是()
A、
BC
DE
AB
AD
=B、
DB
AD
EC
AE
=
C、
AB
AC
AE
AD
=D、EC
AE
DB
AD⋅
=
⋅
10、分式方程
1
1
5
1
2
2-
=
-
+
+x
m
x
x
会产生增根,则m=
()
A、-10
B、-3
C、-10或-4
D、-4
11、如果关于x的不等式(a+1)x > a + 1的解集为x < 1,则a的取值范围是()
A、a < 0
B、a < -1
C、a > 1
D、a > -1
12、在梯形ABCD中,AD∥BC,AC与BD相交于O,如果AD∶BC=1∶3,那么
下列结论正确的是()
A、S△COD=9S△AOD
B、S△ABC=9S△ACD
C、S△BOC=9S△AOD
D、S△DBC=9S△
AOD
二、填一填(每题3分,共36分。
)
1、分解因式:x
x8
23-= 。
2、命题“相等的角是对顶角”的条件是,结论
是。
3、如图,A、B两点被池塘隔开,在 AB外选一点 C,连结 AC和 BC,并分
别找出它们的中点 M、N.若测得MN=15m,则A、B两点的距离为
4、若2
x+是多项式32
x x ax b
+++的一个因式,且22
230
a a
b b
++≠,则分式
2332
22
44
23
ab a b a b
a a
b b
-+-
++
的值是______.
5、如图,已知△ADE∽△ABC,AD=6cm,DB=3cm,
BC=9.9cm,
∠B=50°,则∠ADE= ,DE = cm 。
6、 当整数x =___ _时,分式
3
1
x +的值是整数. 7、某项工程,甲、乙两队合作需m 天完成,甲队单独做需要n 天完成(n >m ),则乙队单独完成的时间是______.
8、如图,下列结论:①∠A >∠ACD ;②∠B+∠ACB=180°-∠A ;③∠B+∠ACB<180°; ④∠HEC>∠B 。
其中正确的是 (填上你认为正确的所有序号).
9、已知分式1
1
2+-x x 的值为零,则=x 。
10、若D 、E 、F 分别为△ABC 三边的中点,则ABC DEF S S ∆∆: = 。
11、若=+=+
221
31x
x x x ,则 。
12、在2003年世界游泳锦标赛跳水比赛中,我国选手郭晶晶的六次跳水成绩为:
9.2, 9.3, 9.0, 9.1, 9.2, 9.2 则郭晶晶六次跳水成绩的方差为 。
三、解答题(本题包括9个小题,共78分,请将必要的文字说明、图形及必要演算步骤或推理过程填写到答题卡相应题号的空格内,只写答案的不给分) 1、(6分)解方程:
2
1
321--=+-x x x 2、(6分)解不等式组:()215
113
25131x x x x -+⎧-≤⎪
⎨⎪-<+⎩
3、(6分) k 取什么值时,代数式2
2112152334k k k k ⎛⎫⎛⎫--+- ⎪
⎪⎝⎭⎝⎭
的值. (1)小于0? (2)不小于0?
4、(8分) 某城市平均每天产生垃圾700吨,由甲、乙两个垃圾处理厂处理,已知甲厂每小时可处理垃圾55吨,需要费用550元,乙厂每小时可处理垃圾45吨,需费用495元.
(1)甲、乙两厂同时处理该城市的垃圾,每天需几个小时完成?
(2)如果规定该城市每天用于处理垃圾的费用不超过7370元,甲厂每天处理垃圾至少需要多少小时?
5、(7分) 求使方程组2,
4563
x y m x y m +=+⎧⎨+=+⎩的解x 、y 都是正数的m 的取值范围.
6、(9分)已知一次函数y=kx+b 经过(-1,2),且与y 轴交点的纵坐标为4。
(1)求一次函数的解析式; (2)求直线与x 轴的交点坐标; (3)画出此函数的图象。
7、(6分)如图所示,已知△ABC 中,∠B=∠C ,AE 平分∠DAC ,求证:AE ∥BC
8、(18分)提示:此题有I 、II 、IIV 三道题目,其中I 题4分,II 题6分,IIV 题8分。
题目I :如图I ,已知∠B =∠C ,试说明AE
AD
AC AB =。
题目II :如图II ,已知AE
AC
AD AB =,试说明OB ·OD=OC ·OE.
题目IIV :在△ABC 中,AD 是∠BAC 的平分线,M 是AD 中点,MN ⊥AD 交BC 的延
长线于N ,求证:DN 2
=BN ·CN 。
9、(12分)直线y= -2x+4分别交x 轴、y 轴于A 、B 两点,O 是原点。
(1)求△ABO 的面积; (2)过三角形AOB 的顶点能不能画出直线把△ABO 分成面积相等的两部分?如能,可以画出几条?写出这样的直线所对应的函数关系式。
解之得:
答:
(2)甲厂每天处理垃圾至少需要
OB OD OC
∙=∙
AN
是∠BAC的平分线,
AD
(1)如图:直线y= -2x+4
∴A(- 2,0);B(0
即OB =∣4 - 0∣= 4。