矿产资源储量计算

合集下载

矿产资源储量计算表 平行断面法适用

矿产资源储量计算表 平行断面法适用

平均值s
h
15025.5
10
6724
25
块段体积(m3)
v
150255.00 168100.00
662664.46
溶洞率(%) f
0 0
原始数据
318355.00 计算结果
原始数据
实际矿体体积(万立 方米) V 15.29 1.31 46.10 134.10
矿石体重(吨/ 立方米) d 2.6 2.6 2.6 2.6
16.6727
原始数据
42.4056 计算结果
溶洞裂隙率(%)
f
8 8 0
矿体体积(万 m3)
V1
60.71 0.15 0.12
矿石体重 (t/m3)
d
2.6 2.6 1.97
资源储量(万t)
Q
157.84 0.38 0.24
60.97
158.46
块段矿体体积(m3) 矿石体重(t/m3)
V-1
d
150255.00
溶洞裂隙率 (%) f 0.00 0.00 0.00 0.00
始数据
1968024 计算结果
断面相对面积误差<40%时的块段体积、矿石量计算式
断面积(2)(平方 米)
面积之和
S2
S1+S2
32348.00
58405.00
1246.32
2301.60
611.40
1537.56
10954.00
22443.00
原始数据
剖面法-斜楔形尖灭块段体积、矿石量计算式
尖灭端边长(米) 有矿端边长(米)
h1 197.40 315.80
h2 150.17 296.63

矿产资源储量计算

矿产资源储量计算

实例二:某煤矿储量计算
煤层厚度与面积测量
通过地质勘探和地球物理勘探等方法,测量煤层的厚度和面积。
煤质分析与发热量测定
采集煤样进行工业分析和元素分析,测定煤的发热量等指标。
储量计算与评估
根据煤层厚度、面积和煤质数据,计算煤矿的储量,并进行分类和 评估。
实例三:某铜矿储量计算
铜矿床地质特征研究
收集铜矿床的地质资料,研究其成矿地质背景、矿体形态、矿石 类型等特征。
矿产资源储量计 算
目录
• 矿产资源储量概述 • 矿产资源勘查与评估 • 矿产资源储量计算方法 • 矿产资源储量计算实例分析 • 矿产资源储量计算中的误差分析 • 矿产资源储量计算的发展趋势与
展望
01
矿产资源储量概述
定义与分类
定义
矿产资源储量是指在地壳内或地表富 集的、具有经济意义的、能够被开采 利用的固体、液体或气体矿产的数量 。
引入新的数学模型和算法
随着计算机技术的发展,越来越多的复杂数学模型和算法 被引入到矿产资源储量计算中,如神经网络、支持向量机 等,提高了计算的准确性和效率。
综合利用多源信息
通过综合利用地质、地球物理、地球化学等多源信息,可 以更加准确地刻画矿体的形态、规模和品位分布,进而提 高矿产资源储量计算的精度。
可行性原则
储量计算应考虑矿产资源的开采技术条件 和环境保护要求,确保储量的可开采性和 可持续性。
02
矿产资源勘查与评估
勘查方法与程序
地质填图法
通过地质填图了解矿区的地层、 构造、岩浆岩等地质条件,为进 一步的矿产勘查提供基础资料。
物探法
利用物理方法探测矿体或矿化带的 分布范围、形态、产状等,常用的 物探方法有重力、磁法、电法等。

矿产资源量储量计算

矿产资源量储量计算

9、基础储量:是查明矿产资源的一部分。它能满足现 行采矿和生产所需的指标要求(包括品位、质量、厚 度、开采技术条件等),是经详查、勘探所获控制的、 探明的并通过可行性研究、预可行性研究认为属于经 济的、边际经济的部分,用未扣除设计、采矿损失的 数量表述。
16
10、资源量:是指查明矿产资源的一部分和潜在 矿产资源。包括可行性研究或预可行性研究证实 为次边际经济的矿产资源以及经过勘查而未进行 可行性研究或预可行性研究的内蕴经济的矿产资
(2)推断的:是指对普查区按照普查的精度大致查明矿产 的地质特征以及矿体(矿点)的展布特征、品位、质 量,也包括那些由地质可靠程度较高的基础储量或资源 外推的部分。由于信息有限,不确定因素多,矿体(点) 的连续性是推断的,矿产资源数量的估算所依据的数据 有限,可信度较低。
8
(3)控制的:是指对矿区的一定范围依照详查的精 度基本查明了矿床的主要地质特征、矿体的形态、 产状、规模、矿石质量、品位及开采技术条件,矿 体的连续性基本确定,矿产资源数量所依据的数据 较多,可信度较高。
源;以及经过预查后预测的矿产资源。
17
二、资源/储量分类及编码
1、分类依据:矿产资源经过矿产勘查所获得的不同地 质可靠程度和经相应的可行性评价所获不同的经济意 义,是其分类的主要依据。 2、分类:分为储量(三种)、基础储量(六种)、资 源量(七种)三大类十六种类型。
可用三维形式和矩阵形式表示(EFG)。
3、勘查类型的划分: (1)第Ⅰ勘查类型(简单型): (2)第Ⅱ勘查类型(中等型): (3)第Ⅲ勘查类型(复杂型)
26
(二)工程间距的确定 1、定义: 工程间距是指相邻勘查工程控制矿体的实际距离 。 2、工程间距的确定原则:根据反映矿床地质条件复杂程度的勘 查类型来确定。 (1)首先要看矿体的整体规模,并结合其主要因素确定工程间 距,即使是分段勘查,也要从整体规模入手; (2)不同地质可靠程度、不同勘查类型的勘查工程间距,视实 际情况而定,不限于加密或放稀一倍; (3)当矿体沿走向和倾向的变化不一致时,工程间距要适应其 变化; (4)矿体出露地表时,地表工程间距应比深部工程间距适当加 密。

矿产资源储量计算表(平行断面法适用)

矿产资源储量计算表(平行断面法适用)

16.6727
原始数据
42.4056 计算结果
溶洞裂隙率(%)
f
8 8 0
矿体体积(万 m3)
V1
60.71 0.15 0.12
矿石体重 (t/m3)
d
2.6 2.6 1.97
资源储量(万t)
Q
157.84 0.38 0.24
60.97
158.46
块段矿体体积(m3) 矿石体重(t/m3)
V-1
d
150255.00
溶洞裂隙率 (%) f 0.00 0.00 0.00 0.00
始数据
1968024 计算结果
断面相对面积误差<40%时的块段体积、矿石量计算式
断面积(2)(平方 米)
面积之和
S2
S1+S2
32348.00
58405.00
1246.32
2301.60
611.40
1537.56
10954.00
22443.00
块段体积(立方米)
V 292025.0000 192759.0000 128770.6500 1879601.2500
溶洞裂隙率 (%) f 0.0000 5.0000 5.0000 5.0000
始数据
2493155.9000 计算结果
法-锥体(点状尖灭)块段体积、矿石量计算式
块段体积(立方 米)
溶洞裂隙率(%)
合 计
原始数据
断面相对面积误差≥40%时的块段体积、矿石量计算式
断面积(2)(平方 米)
面积乘积平方根值
S2
√S1×S2
11192.00
14883.6573
1981.00
1214.8436

矿产资源储量计算方法

矿产资源储量计算方法

矿产储量计算矿产储量计算是指确定工业上有用的地下矿产的数量。

根据地质勘查工作获得的矿床资料,通过计算,以确定有用矿产的数量。

这是矿产勘查工作的一项重要任务,是估算矿床经济价值、确定矿山生产规模和服务年限等的基本依据。

根据地质勘查工作获得的矿床资料,通过计算,以确定有用矿产的数量。

这是矿产勘查工作的一项重要任务,是估算矿床经济价值、确定矿山生产规模和服务年限等的基本依据。

根据地质勘查工作获得的矿床资料,通过计算,以确定有用矿产的数量。

这是矿产勘查工作的一项重要任务,是估算矿床经济价值、确定矿山生产规模和服务年限等的基本依据。

矿产储量计算步骤是:①在地质勘探或矿山生产勘探过程中,通过地表露头、探槽、浅井、坑道中和钻孔编录取样,以及地球物理测井结果,求得储量计算中需要的各种地质图件及各种数据资料;②将勘探工程中各项数据资料,按3维空间坐标位置,投放到相应比例尺的地质图件上,并按地质构造规律和工业指标的要求,圈定矿体;③根据矿体形态和矿石质量分布的特征,考虑勘探工程分布的格局,或采矿场的布局,将矿体分割成大小不同的几何形矿块,用体积公式计算每一矿块的储量,然后汇总而成全矿体和全矿床的储量。

固体矿产固体矿产与液体、气体矿产储量计算的方法和参数不完全相同。

固体矿产储量计算传统的方法是以每一几何形矿块中见矿工程的平均厚度,乘以矿块面积(垂直于矿体厚度),得出矿块的体积;用矿块体积乘以平均体重,得出矿块矿石量;用矿石量乘以平均品位,得出矿块有用组分或金属的储量。

大部分黑色金属矿产(如铁、锰、铬),一部分非金属矿产(如磷、硫铁矿、水泥灰岩)以及煤、油页岩等,只计算原料的矿石储量;绝大多数有色金属(如铜、铅、锌),贵金属(如金、银、铂族元素),稀有金属(如铌、钽),分散元素(如镓、铟、镉、锗)以及放射性铀等矿产计算有用组分(多为氧化物)或金属的储量。

计算方法:按照矿块体积几何形状的不同,储量计算方法可分为:①多角形法,又称最近地区法,以每一勘探工程见矿厚度为中心,推向各相邻工程距离的二分之一处,形成一多棱柱形体矿块;②三角形法,以每3个相邻勘探工程见矿的平均厚度为三角棱柱体矿块的高;③开采块段法,以坑道工程为界,把矿体切割成若干板形矿块;④地质块段法,按地质构造和开采条件相同的原则划分矿块;⑤断面法,又称剖面法,是将每两条相邻勘探线剖面间的矿体作为一个矿块;⑥等高线法,对产状和厚度稳定的沉积矿床,以矿层顶板或底板等高线图为基础,将矿层倾角相近的地段划分为一个矿块;⑦等值线法,利用矿体等厚线图或矿体厚度与品位乘积等值线图,将两等值线间的矿体划为一个矿块。

第八章-矿产资源储量估算 PPT课件

第八章-矿产资源储量估算 PPT课件
Kd (1-Kf)]
Cd、Cp、Cpmin为石精矿品位、矿 平均品位和 最低工业品位(%); Kd率、 K(f为%)选。矿回收率和开采贫化
12
3.方案法, 其过程为:
根据矿床的特点和样品分析资料,拟定几组品位指 标方案;
根据矿床开采技术条件和拟采用的采矿方法确定可 采厚度和剔除夹石厚度;
按不同方案计算储量和矿石品位; 不同方案的综合分析和技术经济比较,确定合理指
露天开采的矿体在开采境界范 围外的小矿体不需圈入; 在开采境界内主矿体1附近 的2、3号矿体应圈入,境 界外的4号矿体不圈入。
29
(四) 矿体圈定注意点
推断的矿体厚度不应大于两个 工程的实际见矿厚度; 如左上图,l>m2+m3>m1 不合理
圈定矿石自然类型边界必须考 虑地下水面对氧化矿化布的影 响。 左下图兰线的圈定方法不正 确。
27
4) 中点尖灭法及无限外推
在作有限外推时,以两工程的中点作为尖灭点,即是中点尖 灭法。
无限外推 常用正常网度的1/2、1/3或1/4的间距外推 根据矿床地质特征和矿体变化规律外推 根据物化探资料外推 根据已揭露部分矿体规模予以推断外推
28
(四)矿体圈定的注意点
矿床地质特点和矿化规律的掌 握是正确圈定矿体的基础; 矽卡岩型矿床按接触带圈定。 如果按岩层产状圈则是错 误的。
第二类:与地质体厚度有关的,如最小可采厚度、夹石剔
第三类:其它的,如一些综合指标:最低工业米百分率 (或工业米克吨值)、含矿系数;还有个别矿种所需规定的 特殊标准,如铬铁矿的铬铁比、铝土矿的硅铝比,煤矿的 挥发分、灰分、发热量,耐火材料矿产的耐火度、灼减量; 与采矿条件有关的采剥比、开采深度等。
2
二、储量计算的一般过程是

矿产资源储量规模划分标准2022

矿产资源储量规模划分标准2022

矿产资源储量规模划分标准2022随着经济的发展和技术的进步,矿产资源变得越来越重要,也变得越来越稀缺。

为了更好地管理矿产资源,确保其有效地使用,进一步满足我国经济建设和发展的需要,根据我国《矿产资源管理法》(2010年修订),现就矿产资源储量规模划分标准作出如下规定:一、储量规模划分标准1.储量大于2亿吨,划定为大型储量。

2.储量介于100万吨至2亿吨,划定为中型储量。

3.储量小于100万吨,划定为小型储量。

二、储量规模计算方法根据《中华人民共和国矿产资源储量计算法》,矿产资源储量规模应按以下方法计算:1.产资源的储量规模,应以其资源量、平均分布状况、储量结存质量等因素综合考虑,结合实际情况,以资源量及其含量大小划分为储量规模。

2.量按资源量及含量计算,以资源量和含量之积为准。

其计算公式为:资源量(吨)×量(%)/100 =量规模(万吨)三、储量评价标准1.源量:指矿产资源的地质找矿可能性指数(GPI),根据GPI设定矿产资源量评价标准:A. GPI大于1.5的为高等级资源;B. GPI介于1.0至1.5的为中等级资源;C. GPI介于0.8至1.0的为低等级资源;2.量:指矿产资源中有效元素的含量,不同有效元素的含量标准有所不同,在若干元素具有有效含量时,取含量最高者作为评价标准。

四、储量类型划分标准根据矿产资源储量结存形式和资源开采技术类型,将储量划分为矿产资源型、工业矿石型、金属矿型、电石炉煤型及其他矿产资源型: 1.产资源型:指普通型碱性、半碱性、酸性矿床及其他矿产资源,分为金属类、非金属类和稀土类。

2.业矿石型:指工业原料、矿渣及其他非金属矿石,可分为非金属类和找矿原料类。

3.属矿型:指含金属的软化矿、金属矿、超硬及硬质矿物等,分为稀有金属类和非稀有金属类。

4.石炉煤型:指炉煤、焦炭、煤泥等,可分为炉煤类和焦炭类。

5.其他矿产资源型:指土砂石、滑石、粗面磨石等。

五、储量划分标准的其他规定1.储量的分布规模、储量类型、储量质量、储量运输成本、储量综合经济价值等因素考虑在内,进一步确定矿产资源储量规模划分标准。

固体矿产资源量储量计算方法

固体矿产资源量储量计算方法

固体矿产资源量储量计算方法储量是指探明和已经被证实的固体矿产资源中能够经济开采的部分。

储量的计算是对已知矿产资源中可供开采的数量进行估算,通常包括证实储量和潜在储量。

证实储量是指在有关地质、矿产和经济条件的基础上,通过勘探和采样等工作已经被证明存在的矿石数量。

证实储量计算方法主要包括:(1)地质勘探法:通过地质勘探工作,包括地质调查、钻探、采样等,确定矿床的规模、品位以及矿石的分布等信息,进而推算矿床的储量。

(2)矿石评估法:通过对矿石进行取样测试,分析其成分、品位等信息,结合已有的地质调查数据,利用统计学方法,计算出矿石的储量。

(3)神经网络模型法:利用神经网络模型对已有的矿石样本数据进行训练,通过预测和模拟,推算出未知区域的矿石储量。

潜在储量是指尚未被证明的、但根据地质和勘探证据可以推测存在的矿石数量。

潜在储量的计算方法主要包括:(1)地质潜力评价法:通过综合考虑地质构造、矿石赋存条件以及已有勘探数据,对未知区域的地质潜力进行评价,进而推测出潜在储量的数量。

(2)地质统计法:通过统计已有矿床的规模、品位等信息,结合地质条件和勘探数据,利用概率分析方法,预测出未知区域的潜在储量。

(3)综合指标法:通过构建合理的指标体系,综合考虑矿床周围的地质条件、地质勘探信息等多种因素,对潜在储量进行定量评估,得出其数量。

资源量是指地壳中存在的固体矿产总量,包括已探明的储量和未探明的潜在储量。

资源量计算方法主要包括完全勘探法和传递因子法。

1.完全勘探法完全勘探法是指针对其中一特定地区,通过全面地进行地质勘探工作,包括地质调查、钻探、采样等,对所有地质构造和各个层次进行深入细致的勘探。

通过对全面勘探区域内已探明储量的估算,再结合周边同类地质构造的勘探数据,推算出该特定地区的资源量。

2.传递因子法传递因子法是指将已探明的储量数据应用到类似的未勘探区域,通过确定相似地质条件和控制因素,按比例将已知资源量扩展到未知区域,得出资源量的估算值。

矿产资源储量的计算方法

矿产资源储量的计算方法

固体矿产资源储量计算方法一、矿体厚度计算1、单工程矿体厚度a 、真厚度m :m =L(sinα·sinβ·cosγ±cosα·cos β)或 m =L(cosθsinβcos γ±sinθcosβ)式中:m ——矿体真厚度;L ——在工程中测量的矿体假厚度; β——矿体倾角;α——切穿矿体时工程的天顶角(工程与铅垂线的夹角);θ——工程切穿矿体时的倾角或坡度(工程与水平线的夹角)。

γ——工程方位角与矿体倾斜方向的夹角。

注:上列两式中,凡工程倾斜方向与矿体倾斜方向相反时,此处用“+”号,反之用“-”号。

b 、水平厚度m s : m s =m/sinβ c 、铅垂厚度m v : m v = m/cosβ2、平均厚度a 、算术平均法如果揭露矿体的勘探工程分布均匀、或者勘探工程分布不均匀,但其厚度变化无一定规律时,块段或矿体的平均厚度可用算术平均法计算:nmnm m m n∑=++=21cp M式中:M cp ——平均厚度;m 1、m 2……m n ——各工程控制的矿体厚度。

n ——控制工程数目。

b 、加权平均法当厚度变化稳定并有规律的情况下,如果勘探工程不均匀时,平均厚度应用各工程控制的长度对厚度进行加权平均:nm l l l l m l m l m nnn ∑=++++=212211cpM式中L 1、L 2……L n ——各工程控制长度(相邻工程间距离各一半之和)。

二、平均品位的确定1、单项工程平均品位计算a 、算术平均法在坑道、探槽或钻孔中连续取样的情况下,若样品长度相等,或不相等,但参予计算的样品较多,且样品分割长度与品位间无一定的依存关系时,应尽可能的使用算术平均法计算平均品位:nn∑=+++=C C C C C n21cp式中:C cp ——平均品位;C 1、C 2……C n ——各样品的品位; n ——样品数目。

b 、长度对品位进行加权平均在坑道、探槽或钻孔中连续采样的情况下,若样品分割长度不等,且样品数量不多或分割长度与品位之间呈一定的依存关系时,应以取样长度对品位进行加权平均:∑∑=++++++=LCL L L L L C L C L C C 212211cp nnn式中:C 1、C 2、……C n ——各个样品的品位;L 1、L 2、……L n ——各个样品的分割长度。

储量核实报告 计算方法

储量核实报告 计算方法

储量核实报告计算方法储量核实报告——计算方法储量核实是资源评估中至关重要的一环,其结果直接关系到资源的有效利用与开发。

本文将详细介绍储量核实报告中的计算方法,帮助读者更好地理解这一过程。

一、储量核实概述储量核实是在矿产资源勘查与开发过程中,对已探明的矿产资源进行定量评价的过程。

通过储量核实,可以为矿山设计、生产计划及资源管理提供科学依据。

二、储量核实计算方法1.矿体体积法矿体体积法是通过计算矿体体积与品位,从而得出矿产资源量的方法。

计算公式如下:矿体资源量(吨)= 矿体体积(立方米)× 矿石体重(吨/立方米)× 矿石品位(%)2.品位吨位法品位吨位法是通过统计不同品位区段的吨位,结合各品位区段的平均品位,计算总资源量的方法。

计算公式如下:矿体资源量(吨)= Σ(品位区段吨位× 平均品位)3.线性回归法线性回归法是根据勘查工程中揭露的矿体厚度、品位等数据,建立矿体厚度与品位之间的线性关系,外推计算矿体资源量的方法。

计算公式如下:矿体资源量(吨)= Σ(矿体厚度× 线性回归方程计算品位)× 段长4.地质块段法地质块段法是将矿体划分为若干个块段,根据块段的矿石类型、品位、厚度等参数,计算各块段资源量,进而得出总资源量的方法。

计算公式如下:矿体资源量(吨)= Σ(块段面积× 块段平均厚度× 矿石体重× 块段平均品位)三、储量核实计算方法的选择在实际操作中,应根据矿床类型、勘查程度、勘查数据等因素,选择合适的储量核实计算方法。

同时,为保证计算结果的准确性,应采用多种方法进行对比验证。

四、结论储量核实报告中的计算方法是确保矿产资源合理开发的关键。

通过对不同计算方法的了解和合理运用,可以为矿产资源的管理与利用提供有力保障。

矿产资源储量的分类及类型条件几何图形法储量计算的原理和一般

矿产资源储量的分类及类型条件几何图形法储量计算的原理和一般

其中最重要、最常用的几项工业指标是: 1)边界品位:指在圈定矿体时,对单个样品有用组分含量的最低要求, 作为区分矿与非矿的分界标准。 它直接影响着矿体形态的复杂程度、矿石平均品位的高低、矿石与金属 储量的多少。它一般界于尾矿品位与最低工业品位之间。 2)最低工业品位,是指对工业可采矿体、块段或单个工程中有用组分平 均含量的最低要求,亦即矿物原料回收价值与所付出费用平衡、利润率为 零的有用组分平均含量。 它是划分矿石品级,区分工业矿体(地段)与非工业矿体(地段)的分 界标准之一。它直接关系到工业矿体边界特征和储量的多少。它常高于边 界品位,在圈定矿体时,往往与边界品位联合使用。 3) 最小可采厚度,是指在一定的技术经济条件下,有开采价值的单层矿 体的最小厚度。原是区分能利用储量与暂不能利用储量的标准之一。 4)夹石剔除厚度(最大允许夹石厚度)是指在储量计算圈定矿体时,允 许夹在矿体中间非工业矿石(夹石)部分的最大厚度。 大于这一厚度的夹石应予以剔除,小于(等于)此厚度的夹石则合并于 矿体中连续采样计算储量。
中国地质大学远程教学
10
5.6.4
矿体圈定
(一) 矿体边界线的种类 零点边界线:矿体尖灭点的联线。 一般情况下,它与矿体自然边 界(矿体与围岩界线明显)或外边界线一致,表示各矿体大致分布范 围。 可采边界线:是指可供开采利用的矿体(矿块或块段)边界线 内边界线:连接边缘见矿工程所形成的边界线,表示由勘探工程 外边界线:用外推法确定的矿体边界线,表示矿体的可能分布范 围;它与内边界线间的储量的可靠程度要低于内边界线范围内的储量。 资源储量类别边界线:以资源储量分类标准圈定,表示不同类别资 源储量分布范围的边界线。 自然(工业)类型边界线—以矿石自然(工业)类型划分标准确 定的边界线。 工业品级边界线—在能分采矿石工业类型边界线内,以工业品级 划分标准确定的边界线。

矿产资源储量估算

矿产资源储量估算
高。
可持续发展要求
在矿产资源储量估算中考虑环境保护 和可持续发展要求,实现资源开发与
环境保护的平衡。
智能化和数字化发展
利用大数据、人工智能等技术手段, 实现矿产资源储量估算的智能化和数 字化。
国际合作与交流
加强国际合作与交流,推动矿产资源 储量估算领域的共同进步和发展。
06
案例分析
金矿储量估算案例
矿区概况
某金矿位于我国东北地区,面 积约10平方公里,地质条件复
杂,成矿潜力大。
地质勘查
通过钻探、坑探和样品测试等 手段,对矿体形态、产状、品 位等进行详细勘查。
储量估算方法
采用地质统计学方法,结合矿 床模型和资源量估算标准,计 算出金矿的资源量。
估算结果
该金矿总资源量为100吨,平均 品位为3克/吨,具有较高的开 采价值。
石灰石
根据矿床分布、矿石质量、矿体规模等信息,对石灰石资源储量 进行估算。
石膏
依据石膏矿床的分布、矿石品位、埋藏深度等数据,通过地质勘查 和工程验证,评估石膏矿资源储量。
石英砂
根据矿床规模、矿石品位、矿物组成等信息,对石英砂资源储量进 行估算。
能源矿产资源储量估算
煤炭
根据煤田地质勘查资料、煤层厚 度、埋藏深度等数据,对煤炭资 源储量进行估算。
保障国家资源安全
对国内主要矿产资源储量的准确评估,有助于保 障国家资源安全,满足经济社会发展对矿产资源 的需求。
矿产资源储量估算的流程
建立矿床模型
根据收集的地质资料,建立矿 床的三维模型,描述矿体的形 态、规模、品位等特征。
估算资源量
利用选定的方法估算各矿体的 资源量和总资源量,并给出相 应的误差估计。
选择

储量计算及报告编写

储量计算及报告编写
2、矿床工业指标的主要内容 矿床工业指通常包括两个方面的主要内容,一是矿石质量方面的要求,一是开采技术条件方面的要求。就金属矿产而言,矿石质量方面的要求主要有:边界品位、最低工业品位(单工程最低工业品位、块段最低工业品位)、矿床平均品位、有害组分最大允许含量、有益组分最低含量(综合评价指标)。开采技术条件方面的要求主要有:最低可采厚度、夹石剔除厚度;对于薄脉型矿体,还包括最低工业米百分值或米克吨值;对于露天开采矿床,还有剥采比、最终开采边坡角、最低露采境界(最小开采底盘宽度) 、安全爆破警戒线等方面的要求。 此外,针对某些矿产的特殊情况和要求,还可提出其他方面的工业指标要求;针对同体共生的贵金属或有色金属矿床,可以下达综合品位指标。 3、工业指标的管理 预查、普查时,可用一般工业指标进行矿体圈定和资源/储量估算;详查、勘探所用的工业指标,要在完成一定程度选冶试验的基础上,由
式中:Q—储量(吨);V—体积(立方米);S1、S2—断面上矿体的面积(平方米);L—两断面之间的距离(米);D—矿石体重(吨/立方米)。 使用条件:(S1-S2)/S1 <40%时使用 ② 截锥公式:Q =V · D V =1/3(S1+S2+ ) · L 或V=L/2(S1+S2) · K 式中:Q、V、S1、S2、L、D同上。 K为a的函数,S1/S2=a或S2/S1=1/a,由a或1/a查“锥形公式法中的k值表”求k值。 使用条件:(S1-S2)/S1>40%使用。 ③ 楔形公式:Q =V · D V=1/2 · S1 · L 式中:Q—储量(吨);V—体积(立方米);S1—断面上矿体的面积(平方米);L—两断面之间的距离(米);D—矿石体重(吨/立方米)。 使用条件:当矿体呈楔形尖灭时使用。 ④ 锥体公式:Q =V · D V=1/3 · S1· L

矿产资源储量的计算方法

矿产资源储量的计算方法

矿产资源储量的计算方法矿产资源储量是指地下含有经济利用价值的矿石或矿床的总量。

确定储量对于矿产资源的合理开发和利用至关重要。

本文将介绍矿产资源储量的计算方法。

计算方法的基本原则矿产资源储量的计算方法通常遵循以下基本原则:1.定义确定性:储量计算应严格以定义矿床的质量和数量为基础,不应含糊或模糊。

2.可量度性:储量应可量化为具体的数字,方便计算和比较。

3.可靠性:储量计算应基于充足、可靠的数据和信息。

4.透明度:储量计算过程应透明,以便其他人能够验证和复制计算结果。

储量计算的步骤储量计算通常分为以下几个步骤:1.矿床描述:对矿床进行详细地质、地球物理和地球化学描述,包括矿床的空间分布、形状、规模和矿石性质等。

2.样本采集:通过采集矿床的岩石、土壤或矿石样本来获取有关储量的信息。

采样应具有代表性,以确保计算结果的准确性。

3.样本分析:对采集的样本进行实验室分析,包括岩石化学成分、矿石品位等。

分析结果将用于计算储量。

4.储量计算:根据采样数据和统计方法,计算矿床的储量。

常用的方法包括体积法、重量法和金属当量法等。

5.储量分类:根据储量的可信程度和经济可开采性,将储量分为不同等级,常见的分类包括proved reserves、probable reserves和possible reserves等。

常用的储量计算方法1. 体积法体积法是最常用的储量计算方法之一。

该方法基于矿床的几何形状和岩石的平均密度,通过测量矿床的体积和岩石的平均含量来计算总储量。

计算公式如下:Total reserves = Volume of deposit × Average grade2. 重量法重量法也是一种常用的储量计算方法,特别适用于黑色金属矿床等。

该方法基于岩石或矿石的平均密度和岩石或矿石的平均品位来计算总储量。

计算公式如下:Total reserves = Total weight of deposit × Average grade3. 金属当量法金属当量法是用于计算多金属矿床的储量的一种方法。

动用储量计算公式

动用储量计算公式

动用储量计算公式储量计算是指对其中一种资源的量进行估算或计算,用以确定其在储存区域内的总量或可采的量。

储量计算是资源开发、评估和管理的基础,对于能源资源、矿产资源以及其他地下水资源等的管理和规划都起着重要的作用。

本文将介绍一些常用的储量计算公式及其应用。

能源资源包括石油、天然气和煤炭等。

下面是常见的几种能源资源的储量计算公式:石油储量的计算通常基于石油藏的体积和有效含量。

其计算公式如下:石油储量=石油藏体积×有效含量其中,石油藏体积可以通过地质勘探技术和资料分析得到,有效含量是指石油中可以直接开采利用的部分。

天然气储量的计算也是基于天然气藏的体积和有效含量。

其计算公式如下:天然气储量=天然气藏体积×有效含量天然气藏体积可以通过地质勘探技术和资料分析得到,有效含量是指天然气中可以直接开采利用的部分。

煤炭储量的计算主要基于煤层的体积和含量。

其计算公式如下:煤炭储量=煤层体积×含量煤层体积通常通过地质勘探技术获得,含量是指煤层中可用煤炭的含量。

矿产资源的储量计算主要基于矿石的体积和含量。

下面是常见的几种矿产资源的储量计算公式:金属矿的储量计算公式如下:矿石储量=矿石体积×含量矿石体积可以通过地质勘探技术和资料分析得到,含量是指矿石中可用金属元素的含量。

非金属矿的储量计算公式与金属矿类似,也是基于矿石的体积和含量进行计算。

稀有金属矿的储量计算公式通常与金属矿类似,计算方式基于矿石的体积和含量。

地下水资源的储量计算主要基于地下水的可用量和地下水含水层的厚度。

下面是地下水资源储量计算的一种简化公式:地下水储量=可用地下水量×地下水含水层厚度其中,可用地下水量是指在可开采范围内的地下水总量,地下水含水层厚度可以通过地质勘探技术和资料分析得到。

需要注意的是,以上仅是常用的储量计算公式之一,实际情况可能因资源特性、地质条件等因素而有所不同。

储量计算的准确性对资源开发和管理至关重要,因此需要以科学的方法和丰富的实践经验进行计算和评估。

采矿业中的矿产资源评估与储量计算

采矿业中的矿产资源评估与储量计算

采矿业中的矿产资源评估与储量计算矿产资源评估和储量计算是采矿业中非常重要的环节,它们对于决策制定、投资评估和资源管理都起着至关重要的作用。

本文将探讨采矿业中矿产资源评估与储量计算的方法和流程,并介绍其在实际应用中的重要性。

一、矿产资源评估的方法与流程1. 采集数据在进行矿产资源评估之前,首先需要采集大量的地质、地球物理、化学等相关数据。

这些数据包括矿石的成分、品位、分布情况以及矿床的地质特征等。

数据采集可以通过地质勘探、钻探、实验分析等方式进行。

2. 数据整理与处理采集到的数据需要进行整理和处理,以便于后续的评估工作。

数据整理包括数据的统计、分类和编码等,数据处理则包括数据的清洗、校验和插值等。

通过整理和处理,可以得到一组完整、准确的数据,为后续的评估工作提供基础。

3. 资源分类根据矿石的性质和品位,将其分为不同的资源类别。

矿产资源的分类可以根据金属或非金属矿石、不同的成矿类型等来进行。

分类的目的是为了更好地理解和评估资源的性质和特征,并为后续的储量计算提供参考。

4. 资源评估资源评估是根据已有的数据和分析结果,对矿产资源进行定量的评价。

资源评估工作需要运用各种数学和统计方法,包括概率统计、空间插值、回归分析等。

评估的结果通常以资源量的形式呈现,包括可探明储量、可能可探明储量和推测储量等。

5. 资源报告编制完成资源评估后,需要将评估结果整理成资源报告。

资源报告应包括资源的分类、评估结果、数据来源和评估方法等。

资源报告通常由专业人员编制,且需遵守相应的国际或行业规范。

二、矿床储量的计算与估算1. 储量计算方法矿床储量的计算是根据已知的地质数据和资源评估结果,采用合适的方法进行推算。

常用的储量计算方法包括容积法、堆积曲线法和三维建模等。

这些方法都是基于矿床的地质特征和资源评估结果进行的。

2. 储量估算的准确性控制储量估算的准确性对于采矿业具有重要意义。

为了控制储量估算的准确性,应该采用合适的方法和工具,同时考虑到地质风险和不确定性因素。

矿产资源储量计算

矿产资源储量计算

矿产资源储量计算矿产资源储量计算是在矿产勘探分析过程中最重要的一种计算,是评价矿产资源的量化标准。

它以定量的方式表达矿床的可采资源,反映矿床的实际储量情况,具有很强的科学性和准确性。

正确准确的矿产资源储量计算有助于更好地进行矿产资源勘探开发规划,更有效地利用资源,提高矿业企业的经济效益。

基本原理矿产资源储量计算是根据具体矿产资源情况,结合矿产资源勘探开发理论和技术,按照国家规定的储量分类标准,采用均差法、编制分析法、统计比例法、基础数据法、抽样法等综合计算的结果性的评价方法,通过能源估算、可采容量估算以及具体矿床经济效益评价,定量计算矿产资源的可采储量。

计算步骤(1)源勘探结果调查。

根据相关的资料来收集每一个矿产资源的勘探及状况,主要包括:资源种类、结构形态、矿物特征、找矿概率、储量及储量率、埋藏特征等。

(2)择计算法则和计算方法。

矿产资源储量计算有很多计算法则和方法,其中主要有:均差法、编制分析法、统计比例法、基础数据法、抽样法。

需要根据具体矿床的情况,选择比较合适的方法或法则,以适应不同矿床状况。

(3)立矿床经济效益评价模型。

建立经济评价模型处理矿床经济效益评价,该模型应考虑到全部经济因素,如:矿产资源种类、储量大小、埋藏条件、采掘条件、经济指标等。

(4)源估算和可采容量估算。

根据矿床勘探情况,结合声纳定位、地质测量资料,估算矿床可采资源的能源和可采容量,同时根据实际情况制定合理的采掘方案。

(5)制计算结果。

根据以上步骤,按照国家发布的储量分类标准,结合经济效益评价模型,编制矿产资源储量计算结果。

结论矿产资源储量计算是评价矿产资源的量化标准,它需要从各方面考虑矿床的情况,采用多种计算法则和方法,结合经济效益评价模型,进行定量计算求出具体的结果,它具有很强的科学性和准确性,有助于矿业企业更有效地利用资源,提高经济效益,是矿产勘探分析过程中不可缺少的一种重要计算中心。

中国储量SD矿产资源储量计算审定法SD法

中国储量SD矿产资源储量计算审定法SD法

中国储量SD矿产资源储量计算审定
法SD法
随着中国经济的飞速发展,矿产资源的需求也逐渐增长,而矿产资源的储量计算审定一直是重要的课题。

近年来,随着政策法规的不断完善以及科技力量的日益增强,中国储量SD 矿产资源储量计算审定法(以下简称SD法)也得到了更加精准的实施和广泛应用。

SD法首先明确了矿产资源储量计算的定义。

矿产资源储量是指矿床或矿产区内有经济价值的矿物质量与品位之积。

SD法对于储量计算的核心部分给出了明确的规范,以确保储量计算结果的准确性和公正性。

SD法明确了矿产资源储量计算方法的程序和流程,包括方案设计、样品采集、试验分析、数据处理、结果评价和报告编制等步骤,同时要求严格按照ISO国际标准进行实施。

此外,SD法还规定了矿产资源储量计算的审定程序和流程。

按照SD法规定,矿产资源储量计算必须经过专家审定和政府部门审批两个环节。

专家审定主要考虑矿物品位、矿床分布、取样方案等技术问题,而政府部门则涉及到环境、安全、法律等方面的要求。

这些审定标准和条件有力保障了矿产资源储量计算的准确性和公正性,为政府决策提供了重要的信息依据。

当然,SD法实施过程中还存在一些问题需要进一步完善。

例如,一些地方存在储量数据造假、夸大等问题,需要定期进行检查核实。

此外,由于矿区条件、矿床形态等因素的影响,储量计算结果存在一定的误差,需要通过不断学习和研究来提高准确性。

总之,中国储量SD矿产资源储量计算审定法的实施,促
进了矿产资源的合理利用和保护,为处理地球资源的问题提供了标准化的方法。

随着我国矿产资源的不断开发和利用,SD
法将会在未来发挥越来越重要的作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

•1
• 矿床工业指标,简称工业指标,它是指在现行的技术 经济条件下,工业部门对矿石原料质量和矿床开采条 件所提出的要求,即衡量矿体是否具有开采利用价值 的综合性标准。

它是圈定矿体和计算资源储量所依据的标准。也
是评价矿床工业价值、确定可采范围的重要依据。。
2020/4/2
意义:矿床工业指标能保证 – 合理地圈定矿体、计算储量 – 正确地进行矿床技术经济评价 – 综合利用矿产资源,减少损失 – 确定最优的矿床开采方案,从而获得最高经 济效果
2020/4/2
1)边界品位:指在圈定矿体时,对单个样品有用组分含量的最低要求 ,作为区分矿与非矿的分界标准。 它直接影响着矿体形态的复杂程度、矿石平均品位的高低、矿 石与金属储量的多少。它一般界于尾矿品位与最低工业品位之间。
是每年的内部收益率大于国家或行业的基准收益率,即经预 可行性或可行性研究属于经济的,未扣除设计和采矿损失(扣除 之后为储量)。
又可分为3个类型,与储量中的3 个类型呈对应关系,探明的 (可研)经济基础储量(111b),探明的(预可研)经济基础储 量(121b)、控制的经济基础储量(122b);
边际经济基础储量
了推断的至探明的,但可行性评价工作只进行了概略 研究,由于技术经济参数取值于经验数据,未与市场 挂钩,区分不出其真实的经济意义,统归为资源量。
可细分为3个类型:探明的内蕴经济资源量(331 )、控制的内蕴经济资源量(332)、推断的内蕴经济 资源量(333)。
预测资源量 经预查,依据已有资料分析对比估算的预测资源
基础储量 (121b) 基础储量(122b)
基础储量(2M11)
基础储量(2M21) 基础储量(2M22)
资源量(2S11)
资源量(2S21)
资源量(2S22)
潜在矿产资源
推断的
预测的
勘探、开采 阶段
普查、详查、 勘探阶段
预查阶段、 普查阶段
内蕴经济的
资源量(331)
资源量(332)
资源量 (333)
即内部收益率介于国家或行业基准收益率与0之间的那部分。 也有3个类型,探明的(可研)边际经济基础储量(2M11)、探 明的(预可研)边际经济基础储量(2M21)、控制的边际经济基础 储量(2M22)。
2020/4/2
新《总则》中的资源量和储量的划分
3)储量
经过详查或勘探,地质可靠程度达到了控制或探 明的矿产资源,在进行了预可行性研究或可行性研究 ,扣除了设计和采矿损失,能实际采出的数量,经济 上表现为在生产期内每年平均的内部收益率高于国家 或行业的基准收益率。储量是基础储量中的经济可采 部分。
矿产资源储量计算
- 矿产资源及储量的分类与分级 – – 矿床工业指标的确定 – 矿体圈定及块段划分 – 储量计算参数的确定 – 储量计算方法 – 储量精度估计及其评价方法
2020/4/2
一. 矿产资源及储量的分类与分级
1.资源及储量的地质研究可靠程度 我国新的《固体矿产地质勘查规范总则》 (GB/T17766-2019)中,则分为勘探、详查、普查和 预查4个调查阶段。相应的地质可靠程度为探明的 、控制的、推断的和预测的,编码依次为1,2,3 ,4。
根据矿产勘查阶段和可行性评价阶段的不同,储 量又可分为可采储量(111)、预可采储量(121)及 预可采储量(122)3个类型。
2020/4/2
固体矿产资源/储量分类表
地质可靠程度 分类
类型 经济意义
经济的
边际经济的
次边际经济的
查明矿产资源
探明的 可采储量(111)
控制的
基础储量(111b)
预可采储量(121) 预可采储量(122)
1.确定矿床工业指标
2.
3.根据选择的计算方法,测算求得相应的资源储量计算参数:矿
体(或矿段)
S,平均厚度M,资源量/储量Q
Q=VD
P
P=QC
5.统计计算各矿体或块段的资源量/储量之和,即得矿床的总资 源量/储量。
• (一)矿床工业指标的概念和内容
2020/4/2
•2
• 矿床工业指标可归纳为如下三类 • 第一类:与矿石质量有关的,如边界品位,最低工业(
可采)品位,有害杂质最大允许含量,有用伴生组分的 最低综合品位,矿石自然类型和工业品级的划分标准
• 第二类:与地质体厚度有关的,如最小可采厚度、夹
• 第三类:其它的,如一些综合指标:最低工业米百分 率(或工业米克吨值)、含矿系数;还有个别矿种所需规 定的特殊标准,如铬铁矿的铬铁比、铝土矿的硅铝比 ,煤矿的挥发分、灰分、发热量,耐火材料矿产的耐 火度、灼减量;与采矿条件有关的采剥比、开采深度
量(334)?,也是资源量的一种,属潜在矿产资源。
2020/4/2
2)基础储量
经过详查或勘探,地质可靠程度达到控制的和探明的矿产资 源,在进行了预可行性或可行性研究后,经济意义属于经济的或 边际经济的,也就是在生产期内,每年的平均内部收益率在0以上 的那部分矿产资源。
基础储量又可分为两部分: 经济基础储量
二、矿产资源储量计算的原理和一般过程
• •
• • • •
• • • • •
2020/4/2
(一)储量计算的基本原理
把自然界客观存在的形态复杂的矿体分割转变为体积与之
大体相等、矿化相对均一的形态简单的几何体,运用恰当的数学 方法,求得储量计算所需的各种参数,最后计算出矿产(矿石或 金属)储量来。
(二)储量计算的一般过程是
资源量 (334)?
注表中所用代码:(111—334),第一位数表示经济意义;1=经济的;2M=边际经济的;2S=次边际经济的。 3=内蕴经济的;?=经济意义未定的。第二位数表示可行性评价阶段:1=可行性研究,2=预可行性研究,3= 概略研究;第三位数表示地质可靠程度:1=探明的,2=控制的,3=推断的,4=预测的。B=未扣除设计、采 矿损2失02的0/4可/2 采储量
2.矿床技术经济研究程度 可行性研究(1)预可行性研究(2) 概略研究(3

3.储量开发的经济意义
经济的(1);边际经济的;(2M)次边际经济的
2020/4/2
(2S);内蕴经济的(3);经济意义未定的(? )
新《总则》中的资源量和储量的划分
内蕴经济资源量 矿产勘查工作自普查至勘探,地质可靠程度达到
相关文档
最新文档