中序遍历二叉树非2

合集下载

全国计算机等级考试二级公共基础之树与二叉树1

全国计算机等级考试二级公共基础之树与二叉树1

全国计算机等级考试二级公共基础之树与二叉树1.6 树与二叉树1.6.1 树的基本概念树是一种简单的非线性结构。

在树这种结构中,所有元素之间的关系具有明显的层次关系。

用图形表示树这种数据结构时,就象自然界中的倒长的树,这种结构就用“树”来命名。

如图:在树结构中,每个结点只有一个前件,称为父结点,没有前件的结点只有一个,称为树的根结点,简称为树的根(如R)。

在树结构中,每一个结点可以有多个后件,它们都称为该结点的子结点。

没有后件的结点称为叶子结点(如W,Z,A ,L,B,N,O,T,H,X)。

在树结构中,一个结点拥有的后件个数称为结点的度(如R的度为4,KPQDEC 结点度均为2)。

树的结点是层次结构,一般按如下原则分层:根结点在第1层;同一个层所有结点的所有子结点都在下一层。

树的最大层次称为树的深度。

如上图中的树深度为4。

R结点有4棵子树,KPQDEC结占各有两棵子树;叶子没有子树。

在计算机中,可以用树结构表示算术运算。

在算术运算中,一个运算符可以有若干个运算对象。

如取正(+)与取负(-)运算符只有一个运算对象,称为单目运算符;加(+)、减(-)、乘(*)、除(/)、乘幂(**)有两个运算对象,称为双目运算符;三元函数f(x,y,z)为 f函数运算符,有三个运算对象,称为三目运算符。

多元函数有多个运算对象称多目运算符。

用树表示算术表达式原则是:(1)表达式中的每一个运算符在树中对应一个结点,称为运算符结点(2)运算符的每一个运算对象在树中为该运算结点的子树(在树中的顺序从左到右)(3)运算对象中的单变量均为叶子结点根据上面原则,可将表达式:a*(b+c/d)+c*h-g*f表示如下的树。

树在计算机中通常用多重链表表示,多重链表的每个结点描述了树中对应结点的信息,每个结点中的链域(指针域)个数随树中该结点的度而定。

1.6.2 二叉树及其基本性质1. 什么是二叉树二叉树是很有用的非线性结构。

它与树结构很相似,树结构的所有术语都可用到二叉树这种结构上。

二叉树的建立与基本操作

二叉树的建立与基本操作

二叉树的建立与基本操作二叉树是一种特殊的树形结构,它由节点(node)组成,每个节点最多有两个子节点。

二叉树的基本操作包括建立二叉树、遍历二叉树、查找二叉树节点、插入和删除节点等。

本文将详细介绍二叉树的建立和基本操作,并给出相应的代码示例。

一、建立二叉树建立二叉树有多种方法,包括使用数组、链表和前序、中序、后序遍历等。

下面以使用链表的方式来建立二叉树为例。

1.定义二叉树节点类首先,定义一个二叉树节点的类,包含节点值、左子节点和右子节点三个属性。

```pythonclass Node:def __init__(self, value):self.value = valueself.left = Noneself.right = None```2.建立二叉树使用递归的方法来建立二叉树,先构造根节点,然后递归地构造左子树和右子树。

```pythondef build_binary_tree(lst):if not lst: # 如果 lst 为空,则返回 Nonereturn Nonemid = len(lst) // 2 # 取 lst 的中间元素作为根节点的值root = Node(lst[mid])root.left = build_binary_tree(lst[:mid]) # 递归构造左子树root.right = build_binary_tree(lst[mid+1:]) # 递归构造右子树return root```下面是建立二叉树的示例代码:```pythonlst = [1, 2, 3, 4, 5, 6, 7]root = build_binary_tree(lst)```二、遍历二叉树遍历二叉树是指按照其中一规则访问二叉树的所有节点,常见的遍历方式有前序遍历、中序遍历和后序遍历。

1.前序遍历前序遍历是指先访问根节点,然后访问左子节点,最后访问右子节点。

```pythondef pre_order_traversal(root):if root:print(root.value) # 先访问根节点pre_order_traversal(root.left) # 递归访问左子树pre_order_traversal(root.right) # 递归访问右子树```2.中序遍历中序遍历是指先访问左子节点,然后访问根节点,最后访问右子节点。

二叉树的遍历及常用算法

二叉树的遍历及常用算法

⼆叉树的遍历及常⽤算法⼆叉树的遍历及常⽤算法遍历的定义:按照某种次序访问⼆叉树上的所有结点,且每个节点仅被访问⼀次;遍历的重要性:当我们需要对⼀颗⼆叉树进⾏,插⼊,删除,查找等操作时,通常都需要先遍历⼆叉树,所有说:遍历是⼆叉树的基本操作;遍历思路:⼆叉树的数据结构是递归定义(每个节点都可能包含相同结构的⼦节点),所以遍历也可以使⽤递归,即结点不为空则继续递归调⽤每个节点都有三个域,数据与,左孩⼦指针和右孩⼦之指针,每次遍历只需要读取数据,递归左⼦树,递归右⼦树,这三个操作三种遍历次序:根据访问三个域的不同顺序,可以有多种不同的遍历次序,⽽通常对于⼦树的访问都按照从左往右的顺序;设:L为遍历左⼦树,D为访问根结点,R为遍历右⼦树,且L必须位于R的前⾯可以得出以下三种不同的遍历次序:先序遍历操作次序为DLR,⾸先访问根结点,其次遍历根的左⼦树,最后遍历根右⼦树,对每棵⼦树同样按这三步(先根、后左、再右)进⾏中序遍历操作次序为LDR,⾸先遍历根的左⼦树,其次访问根结点,最后遍历根右⼦树,对每棵⼦树同样按这三步(先左、后根、再右)进⾏后序遍历操作次序为LRD,⾸先遍历根的左⼦树,其次遍历根的右⼦树,最后访问根结点,对每棵⼦树同样按这三步(先左、后右、最后根)进⾏层次遍历层次遍历即按照从上到下从左到右的顺序依次遍历所有节点,实现层次遍历通常需要借助⼀个队列,将接下来要遍历的结点依次加⼊队列中;遍历的应⽤“遍历”是⼆叉树各种操作的基础,可以在遍历过程中对结点进⾏各种操作,如:对于⼀棵已知⼆叉树求⼆叉树中结点的个数求⼆叉树中叶⼦结点的个数;求⼆叉树中度为1的结点个数求⼆叉树中度为2的结点个数5求⼆叉树中⾮终端结点个数交换结点左右孩⼦判定结点所在层次等等...C语⾔实现:#include <stdio.h>//⼆叉链表数据结构定义typedef struct TNode {char data;struct TNode *lchild;struct TNode *rchild;} *BinTree, BinNode;//初始化//传⼊⼀个指针令指针指向NULLvoid initiate(BinTree *tree) {*tree = NULL;}//创建树void create(BinTree *BT) {printf("输⼊当前结点值: (0则创建空节点)\n");char data;scanf(" %c", &data);//连续输⼊整形和字符时.字符变量会接受到换⾏,所以加空格if (data == 48) {*BT = NULL;return;} else {//创建根结点//注意开辟的空间⼤⼩是结构体的⼤⼩⽽不是结构体指针⼤⼩,写错了不会⽴马产⽣问题,但是后续在其中存储数据时极有可能出现内存访问异常(飙泪....) *BT = malloc(sizeof(struct TNode));//数据域赋值(*BT)->data = data;printf("输⼊节点 %c 的左孩⼦ \n", data);create(&((*BT)->lchild));//递归创建左⼦树printf("输⼊节点 %c 的右孩⼦ \n", data);create(&((*BT)->rchild));//递归创建右⼦树}}//求双亲结点(⽗结点)BinNode *Parent(BinTree tree, char x) {if (tree == NULL)return NULL;else if ((tree->lchild != NULL && tree->lchild->data == x) || (tree->rchild != NULL && tree->rchild->data == x))return tree;else{BinNode *node1 = Parent(tree->lchild, x);BinNode *node2 = Parent(tree->rchild, x);return node1 != NULL ? node1 : node2;}}//先序遍历void PreOrder(BinTree tree) {if (tree) {//输出数据printf("%c ", tree->data);//不为空则按顺序继续递归判断该节点的两个⼦节点PreOrder(tree->lchild);PreOrder(tree->rchild);}}//中序void InOrder(BinTree tree) {if (tree) {InOrder(tree->lchild);printf("%c ", tree->data);InOrder(tree->rchild);}}//后序void PostOrder(BinTree tree) {if (tree) {PostOrder(tree->lchild);PostOrder(tree->rchild);printf("%c ", tree->data);}}//销毁结点递归free所有节点void DestroyTree(BinTree *tree) {if (*tree != NULL) {printf("free %c \n", (*tree)->data);if ((*tree)->lchild) {DestroyTree(&((*tree)->lchild));}if ((*tree)->rchild) {DestroyTree(&((*tree)->rchild));}free(*tree);*tree = NULL;}}// 查找元素为X的结点使⽤的是层次遍历BinNode *FindNode(BinTree tree, char x) {if (tree == NULL) {return NULL;}//队列BinNode *nodes[1000] = {};//队列头尾位置int front = 0, real = 0;//将根节点插⼊到队列尾nodes[real] = tree;real += 1;//若队列不为空则继续while (front != real) {//取出队列头结点输出数据BinNode *current = nodes[front];if (current->data == x) {return current;}front++;//若当前节点还有⼦(左/右)节点则将结点加⼊队列if (current->lchild != NULL) {nodes[real] = current->lchild;real++;}if (current->rchild != NULL) {nodes[real] = current->rchild;real++;}}return NULL;}//层次遍历// 查找元素为X的结点使⽤的是层次遍历void LevelOrder(BinTree tree) {if (tree == NULL) {return;}//队列BinNode *nodes[1000] = {};//队列头尾位置int front = 0, real = 0;//将根节点插⼊到队列尾nodes[real] = tree;real += 1;//若队列不为空则继续while (front != real) {//取出队列头结点输出数据BinNode *current = nodes[front];printf("%2c", current->data);front++;//若当前节点还有⼦(左/右)节点则将结点加⼊队列if (current->lchild != NULL) {nodes[real] = current->lchild;real++;}if (current->rchild != NULL) {nodes[real] = current->rchild;real++;}}}//查找x的左孩⼦BinNode *Lchild(BinTree tree, char x) {BinTree node = FindNode(tree, x);if (node != NULL) {return node->lchild;}return NULL;}//查找x的右孩⼦BinNode *Rchild(BinTree tree, char x) {BinTree node = FindNode(tree, x);if (node != NULL) {return node->rchild;}return NULL;}//求叶⼦结点数量int leafCount(BinTree *tree) {if (*tree == NULL)return 0;//若左右⼦树都为空则该节点为叶⼦,且后续不⽤接续递归了else if (!(*tree)->lchild && !(*tree)->rchild)return 1;else//若当前结点存在⼦树,则递归左右⼦树, 结果相加return leafCount(&((*tree)->lchild)) + leafCount(&((*tree)->rchild));}//求⾮叶⼦结点数量int NotLeafCount(BinTree *tree) {if (*tree == NULL)return 0;//若该结点左右⼦树均为空,则是叶⼦,且不⽤继续递归else if (!(*tree)->lchild && !(*tree)->rchild)return 0;else//若当前结点存在左右⼦树,则是⾮叶⼦结点(数量+1),在递归获取左右⼦树中的⾮叶⼦结点,结果相加 return NotLeafCount(&((*tree)->lchild)) + NotLeafCount(&((*tree)->rchild)) + 1;}//求树的⾼度(深度)int DepthCount(BinTree *tree) {if (*tree == NULL)return 0;else{//当前节点不为空则深度+1 在加上⼦树的⾼度,int lc = DepthCount(&((*tree)->lchild)) + 1;int rc = DepthCount(&((*tree)->rchild)) + 1;return lc > rc?lc:rc;// 取两⼦树深度的最⼤值 }}//删除左⼦树void RemoveLeft(BinNode *node){if (!node)return;if (node->lchild)DestroyTree(&(node->lchild));node->lchild = NULL;}//删除右⼦树void RemoveRight(BinNode *node){if (!node)return;if (node->rchild)DestroyTree(&(node->rchild));node->rchild = NULL;}int main() {BinTree tree;create(&tree);BinNode *node = Parent(tree, 'G');printf("G的⽗结点为%c\n",node->data);BinNode *node2 = Lchild(tree, 'D');printf("D的左孩⼦结点为%c\n",node2->data);BinNode *node3 = Rchild(tree, 'D');printf("D的右孩⼦结点为%c\n",node3->data);printf("先序遍历为:");PreOrder(tree);printf("\n");printf("中序遍历为:");InOrder(tree);printf("\n");printf("后序遍历为:");PostOrder(tree);printf("\n");printf("层次遍历为:");LevelOrder(tree);printf("\n");int a = leafCount(&tree);printf("叶⼦结点数为%d\n",a);int b = NotLeafCount(&tree);printf("⾮叶⼦结点数为%d\n",b);int c = DepthCount(&tree);printf("深度为%d\n",c);//查找F节点BinNode *node4 = FindNode(tree,'C');RemoveLeft(node4);printf("删除C的左孩⼦后遍历:");LevelOrder(tree);printf("\n");RemoveRight(node4);printf("删除C的右孩⼦后遍历:");LevelOrder(tree);printf("\n");//销毁树printf("销毁树 \n");DestroyTree(&tree);printf("销毁后后遍历:");LevelOrder(tree);printf("\n");printf("Hello, World!\n");return 0;}测试:测试数据为下列⼆叉树:运⾏程序复制粘贴下列内容:ABDGHECKFIJ特别感谢:iammomo。

中序遍历例子

中序遍历例子

中序遍历例子中序遍历是二叉树遍历的一种方式,它的遍历顺序是先遍历左子树,然后访问根节点,最后遍历右子树。

下面是一些例子,展示了如何使用中序遍历来遍历二叉树。

例子1:假设有一个二叉树如下所示:```1/ \2 3/ \4 5```按照中序遍历的顺序,我们应该先遍历左子树,然后访问根节点,最后遍历右子树。

所以,按照中序遍历的顺序,上面的二叉树应该输出4 2 5 1 3。

例子2:如果我们有一个更复杂的二叉树:```5/ \3 8/ \ \1 4 9```按照中序遍历的顺序,应该输出1 3 4 5 8 9。

例子3:如果二叉树为空树,那么中序遍历的结果应该是空。

例子4:对于只有一个根节点的二叉树,中序遍历的结果就是根节点本身。

例子5:如果二叉树的左子树为空,那么中序遍历的结果就是根节点和右子树的遍历结果按顺序排列。

例子6:如果二叉树的右子树为空,那么中序遍历的结果就是左子树的遍历结果和根节点按顺序排列。

例子7:对于一个完全二叉树,中序遍历的结果应该是按照从左到右的顺序输出所有节点。

例子8:对于一颗平衡二叉树,中序遍历的结果应该是按照从小到大的顺序输出所有节点。

例子9:对于一颗非平衡二叉树,中序遍历的结果可能是乱序的。

例子10:对于一颗二叉搜索树,中序遍历的结果应该是按照从小到大的顺序输出所有节点。

以上是一些使用中序遍历来遍历二叉树的例子。

通过这些例子,我们可以更好地理解中序遍历的概念和应用。

中序遍历是一种非常重要的二叉树遍历方式,它可以帮助我们按照一定的规则来访问二叉树的节点,从而实现对二叉树的各种操作。

数据结构简答题和论述题

数据结构简答题和论述题

数据结构简答题和论述题1、试描述数据结构和抽象数据类型的概念与程序设计语⾔中数据类型概念的区别。

【解答】数据结构是指相互之间存在⼀定关系的数据元素的集合。

⽽抽象数据类型是指⼀个数据结构以及定义在该结构上的⼀组操作。

程序设计语⾔中的数据类型是⼀个值的集合和定义在这个值集上⼀组操作的总称。

抽象数据类型可以看成是对数据类型的⼀种抽象。

串:是零个或多个字符组成的有限序列。

串是⼀种特殊的线性表,它的每个结点仅由⼀个字符组成。

空串 :长度为零的串,它不包含任何字符。

空⽩串 :仅由⼀个或多个空格组成的串⼦串 :串中任意个连续字符组成的⼦序列称为该串的⼦串。

串变量和串常量通常在程序中使⽤的串可分为:串变量和串常量。

(1)串变量 :串变量和其它类型的变量⼀样,其取值是可以改变的。

(2)串常量 :串常量和整常数、实常数⼀样,在程序中只能被引⽤但不能改变其值。

即只能读不能写。

(1)树形图表⽰: 树形图表⽰是树结构的主要表⽰⽅法。

(2)树的其他表⽰法① 嵌套集合表⽰法:是⽤集合的包含关系来描述树结构。

② 凹⼊表表⽰法:类似于书的⽬录③ ⼴义表表⽰法:⽤⼴义表的形式表⽰的。

上图 (a)树的⼴义表表⽰法如下:(A(B(E,F(I,J)), C,D(G,H)))1.中序遍历的递归算法定义:若⼆叉树⾮空,则依次执⾏如下操作:(1)遍历左⼦树; (2)访问根结点; (3)遍历右⼦树。

2.先序遍历的递归算法定义:若⼆叉树⾮空,则依次执⾏如下操作:(1) 访问根结点; (2) 遍历左⼦树; (3) 遍历右⼦树。

3.后序遍历得递归算法定义:若⼆叉树⾮空,则依次执⾏如下操作:(1)遍历左⼦树; (2)遍历右⼦树; (3)访问根结点。

2、链表具有的特点是B 插⼊、删除不需要移动元素C 不必事先估计存储空间D 所需空间与线性表长度成正⽐顺序队列(1)队列的顺序存储结构称为顺序队列,顺序队列实际上是运算受限的顺序表。

(2) 顺序队列的表⽰①和顺序表⼀样顺序队列⽤⼀个向量空间存放当前队列中的元素。

二叉树,树,森林遍历之间的对应关系

二叉树,树,森林遍历之间的对应关系

二叉树,树,森林遍历之间的对应关系一、引言在计算机科学中,数据结构是非常重要的知识点之一。

而树这一数据结构,作为基础的数据结构之一,在软件开发中有着广泛的应用。

本文将重点探讨二叉树、树和森林遍历之间的对应关系,帮助读者更加全面地理解这些概念。

二、二叉树1. 二叉树的定义二叉树是一种特殊的树结构,每个节点最多有两个子节点,分别称为左子节点和右子节点。

二叉树可以为空,也可以是一棵空树。

2. 二叉树的遍历在二叉树中,有三种常见的遍历方式,分别是前序遍历、中序遍历和后序遍历。

在前序遍历中,节点的访问顺序是根节点、左子树、右子树;在中序遍历中,节点的访问顺序是左子树、根节点、右子树;在后序遍历中,节点的访问顺序是左子树、右子树、根节点。

3. 二叉树的应用二叉树在计算机科学领域有着广泛的应用,例如用于构建文件系统、在数据库中存储有序数据、实现算法中的搜索和排序等。

掌握二叉树的遍历方式对于理解这些应用场景非常重要。

三、树1. 树的定义树是一种抽象数据类型,由n(n>0)个节点组成一个具有层次关系的集合。

树的特点是每个节点都有零个或多个子节点,而这些子节点又构成了一颗子树。

树中最顶层的节点称为根节点。

2. 树的遍历树的遍历方式有先根遍历、后根遍历和层次遍历。

在先根遍历中,节点的访问顺序是根节点、子树1、子树2...;在后根遍历中,节点的访问顺序是子树1、子树2...,根节点;在层次遍历中,节点的访问顺序是从上到下、从左到右依次访问每个节点。

3. 树的应用树广泛用于分层数据的表示和操作,例如在计算机网络中的路由算法、在操作系统中的文件系统、在程序设计中的树形结构等。

树的遍历方式对于处理这些应用来说至关重要。

四、森林1. 森林的定义森林是n(n>=0)棵互不相交的树的集合。

每棵树都是一颗独立的树,不存在交集。

2. 森林的遍历森林的遍历方式是树的遍历方式的超集,对森林进行遍历就是对每棵树进行遍历的集合。

3. 森林的应用森林在实际编程中经常用于解决多个独立树结构的问题,例如在数据库中对多个表进行操作、在图像处理中对多个图形进行处理等。

数据结构与算法系列研究五——树、二叉树、三叉树、平衡排序二叉树AVL

数据结构与算法系列研究五——树、二叉树、三叉树、平衡排序二叉树AVL

数据结构与算法系列研究五——树、⼆叉树、三叉树、平衡排序⼆叉树AVL树、⼆叉树、三叉树、平衡排序⼆叉树AVL⼀、树的定义树是计算机算法最重要的⾮线性结构。

树中每个数据元素⾄多有⼀个直接前驱,但可以有多个直接后继。

树是⼀种以分⽀关系定义的层次结构。

a.树是n(≥0)结点组成的有限集合。

{N.沃恩}(树是n(n≥1)个结点组成的有限集合。

{D.E.Knuth})在任意⼀棵⾮空树中:⑴有且仅有⼀个没有前驱的结点----根(root)。

⑵当n>1时,其余结点有且仅有⼀个直接前驱。

⑶所有结点都可以有0个或多个后继。

b. 树是n(n≥0)个结点组成的有限集合。

在任意⼀棵⾮空树中:⑴有⼀个特定的称为根(root)的结点。

⑵当n>1时,其余结点分为m(m≥0)个互不相交的⼦集T1,T2,…,Tm。

每个集合本⾝⼜是⼀棵树,并且称为根的⼦树(subtree)树的固有特性---递归性。

即⾮空树是由若⼲棵⼦树组成,⽽⼦树⼜可以由若⼲棵更⼩的⼦树组成。

树的基本操作1、InitTree(&T) 初始化2、DestroyTree(&T) 撤消树3、CreatTree(&T,F) 按F的定义⽣成树4、ClearTree(&T) 清除5、TreeEmpty(T) 判树空6、TreeDepth(T) 求树的深度7、Root(T) 返回根结点8、Parent(T,x) 返回结点 x 的双亲9、Child(T,x,i) 返回结点 x 的第i 个孩⼦10、InsertChild(&T,&p,i,x) 把 x 插⼊到 P的第i棵⼦树处11、DeleteChild(&T,&p,i) 删除结点P的第i棵⼦树12、traverse(T) 遍历树的结点:包含⼀个数据元素及若⼲指向⼦树的分⽀。

●结点的度: 结点拥有⼦树的数⽬●叶结点: 度为零的结点●分枝结点: 度⾮零的结点●树的度: 树中各结点度的最⼤值●孩⼦: 树中某个结点的⼦树的根●双亲: 结点的直接前驱●兄弟: 同⼀双亲的孩⼦互称兄弟●祖先: 从根结点到某结点j 路径上的所有结点(不包括指定结点)。

二叉树遍历(前序、中序、后序、层次、广度优先、深度优先遍历)

二叉树遍历(前序、中序、后序、层次、广度优先、深度优先遍历)

⼆叉树遍历(前序、中序、后序、层次、⼴度优先、深度优先遍历)⽬录转载:⼆叉树概念⼆叉树是⼀种⾮常重要的数据结构,⾮常多其他数据结构都是基于⼆叉树的基础演变⽽来的。

对于⼆叉树,有深度遍历和⼴度遍历,深度遍历有前序、中序以及后序三种遍历⽅法,⼴度遍历即我们寻常所说的层次遍历。

由于树的定义本⾝就是递归定义,因此採⽤递归的⽅法去实现树的三种遍历不仅easy理解并且代码⾮常简洁,⽽对于⼴度遍历来说,须要其他数据结构的⽀撑。

⽐⽅堆了。

所以。

对于⼀段代码来说,可读性有时候要⽐代码本⾝的效率要重要的多。

四种基本的遍历思想前序遍历:根结点 ---> 左⼦树 ---> 右⼦树中序遍历:左⼦树---> 根结点 ---> 右⼦树后序遍历:左⼦树 ---> 右⼦树 ---> 根结点层次遍历:仅仅需按层次遍历就可以⽐如。

求以下⼆叉树的各种遍历前序遍历:1 2 4 5 7 8 3 6中序遍历:4 2 7 5 8 1 3 6后序遍历:4 7 8 5 2 6 3 1层次遍历:1 2 3 4 5 6 7 8⼀、前序遍历1)依据上⽂提到的遍历思路:根结点 ---> 左⼦树 ---> 右⼦树,⾮常easy写出递归版本号:public void preOrderTraverse1(TreeNode root) {if (root != null) {System.out.print(root.val+" ");preOrderTraverse1(root.left);preOrderTraverse1(root.right);}}2)如今讨论⾮递归的版本号:依据前序遍历的顺序,优先訪问根结点。

然后在訪问左⼦树和右⼦树。

所以。

对于随意结点node。

第⼀部分即直接訪问之,之后在推断左⼦树是否为空,不为空时即反复上⾯的步骤,直到其为空。

若为空。

则须要訪问右⼦树。

注意。

在訪问过左孩⼦之后。

二叉树的遍历及其应用

二叉树的遍历及其应用

0引言
所谓遍历,是指沿着某条搜索路线,依次对树中每个结点均做一次 且仅做一次访问。访问结点所做的操作依赖于具体的应用问题。 遍历 在二叉树上最重要的运算之一,是二叉树上进行其它运算之基础。二叉 树作为一种重要的数据结构是工农业应用与开发的重要工具。遍历是二 叉树算法设计中经典且永恒的话题。经典的算法大多采用递归搜索。递 归算法具有简练、清晰等优点,但因其执行过程涉及到大量的堆栈使 用,难于应用到一些严格限制堆栈使用的系统,也无法应用到一些不支 持递归的语言环境[9]。
由先序序列和中序序列来还原二叉树的过程算法思想[7]: (1)若二叉树空,返回空; (2)若不空,取先序序列第一个元素,建立根节点; (3)在中序序列中查找根节点,以此来确定左右子树的先序序列和中 序序列; (4)递归调用自己,建左子树; (5)递归调用自己,建右子树。
4二叉树的遍历的应用
根据二叉树的遍历算法, 可得出如下规律: 规律1: 前序序列遍历第一个为根结点, 后序遍历的最后一个结点为 根结点。 规律2: 前序序列遍历最后一个为根结点右子树的最右叶子结点, 中 序遍历的最后一个结点为根结点右子树的最右叶子结点。 规律3: 中序序列遍历第一个结点为根结点左子树的最左叶子结点,
1遍历二叉树的概念
所谓遍历二叉树,就是遵从某种次序,访问二叉树中的所有结点, 使得每个结点仅被访问一次。这里提到的“访问”是指对结点施行某种 操作,操作可以是输出结点信息,修改结点的数据值等,但要求这种访
问不破坏它原来的数据结构。在本文中,我们规定访问是输出结点信息 data,且以二叉链表作为二叉树的存贮结构。由于二叉树是一种非线性 结构,每个结点可能有一个以上的直接后继,因此,必须规定遍历的规 则,并按此规则遍历二叉树,最后得到二叉树所有结点的一个线性序 列[1]。

数据结构入门-树的遍历以及二叉树的创建

数据结构入门-树的遍历以及二叉树的创建

数据结构⼊门-树的遍历以及⼆叉树的创建树定义:1. 有且只有⼀个称为根的节点2. 有若⼲个互不相交的⼦树,这些⼦树本⾝也是⼀个树通俗的讲:1. 树是有结点和边组成,2. 每个结点只有⼀个⽗结点,但可以有多个⼦节点3. 但有⼀个节点例外,该节点没有⽗结点,称为根节点⼀、专业术语结点、⽗结点、⼦结点、根结点深度:从根节点到最底层结点的层数称为深度,根节点第⼀层叶⼦结点:没有⼦结点的结点⾮终端节点:实际上是⾮叶⼦结点度:⼦结点的个数成为度⼆、树的分类⼀般树:任意⼀个结点的⼦结点的个数都不受限制⼆叉树:任意⼀个结点的⼦结点个数最多是两个,且⼦结点的位置不可更改⼆叉数分类:1. ⼀般⼆叉数2. 满⼆叉树:在不增加树层数的前提下,⽆法再多添加⼀个结点的⼆叉树3. 完全⼆叉树:如果只是删除了满⼆叉树最底层最右边的连续若⼲个结点,这样形成的⼆叉树就是完全⼆叉树森林:n个互不相交的树的集合三、树的存储⼆叉树存储连续存储(完全⼆叉树)优点:查找某个结点的⽗结点和⼦结点(也包括判断有没有⼦结点)速度很快缺点:耗⽤内存空间过⼤链式存储⼀般树存储1. 双亲表⽰法:求⽗结点⽅便2. 孩⼦表⽰法:求⼦结点⽅便3. 双亲孩⼦表⽰法:求⽗结点和⼦结点都很⽅便4. ⼆叉树表⽰法:把⼀个⼀般树转化成⼀个⼆叉树来存储,具体转换⽅法:设法保证任意⼀个结点的左指针域指向它的第⼀个孩⼦,右指针域指向它的兄弟,只要能满⾜此条件,就可以把⼀个⼀般树转化为⼆叉树⼀个普通树转换成的⼆叉树⼀定没有右⼦树森林的存储先把森林转化为⼆叉树,再存储⼆叉树四、树的遍历先序遍历:根左右先访问根结点,再先序访问左⼦树,再先序访问右⼦树中序遍历:左根右中序遍历左⼦树,再访问根结点,再中序遍历右⼦树后续遍历:左右根后续遍历左⼦树,后续遍历右⼦树,再访问根节点五、已知两种遍历求原始⼆叉树给定了⼆叉树的任何⼀种遍历序列,都⽆法唯⼀确定相应的⼆叉树,但是如果知道了⼆叉树的中序遍历序列和任意的另⼀种遍历序列,就可以唯⼀地确定⼆叉树已知先序和中序求后序先序:ABCDEFGH中序:BDCEAFHG求后序:这个⾃⼰画个图体会⼀下就可以了,⾮常简单,这⾥简单记录⼀下1. ⾸先根据先序确定根,上⾯的A就是根2. 中序确定左右,A左边就是左树(BDCE),A右边就是右树(FHG)3. 再根据先序,A左下⾯就是B,然后根据中序,B左边没有,右边是DCE4. 再根据先序,B右下是C,根据中序,c左下边是D,右下边是E,所以整个左树就确定了5. 右树,根据先序,A右下是F,然后根据中序,F的左下没有,右下是HG,6. 根据先序,F右下为G,然后根据中序,H在G的左边,所以G的左下边是H再来⼀个例⼦,和上⾯的思路是⼀样的,这⾥就不详细的写了先序:ABDGHCEFI中序:GDHBAECIF已知中序和后序求先序中序:BDCEAFHG后序:DECBHGFA这个和上⾯的思路是⼀样的,只不过是反过来找,后序找根,中序找左右树简单应⽤树是数据库中数据组织⼀种重要形式操作系统⼦⽗进程的关系本⾝就是⼀棵树⾯向对象语⾔中类的继承关系哈夫曼树六、⼆叉树的创建#include <stdio.h>#include <stdlib.h>typedef struct Node{char data;struct Node * lchild;struct Node * rchild;}BTNode;/*⼆叉树建⽴*/void BuildBT(BTNode ** tree){char ch;scanf("%c" , &ch); // 输⼊数据if(ch == '#') // 如果这个节点的数据是#说明这个结点为空*tree = NULL;else{*tree = (BTNode*)malloc(sizeof(BTNode));//申请⼀个结点的内存 (*tree)->data = ch; // 将数据写⼊到结点⾥⾯BuildBT(&(*tree)->lchild); // 递归建⽴左⼦树BuildBT(&(*tree)->rchild); // 递归建⽴右⼦树}}/*⼆叉树销毁*/void DestroyBT(BTNode *tree) // 传⼊根结点{if(tree != NULL){DestroyBT(tree->lchild);DestroyBT(tree->rchild);free(tree); // 释放内存空间}}/*⼆叉树的先序遍历*/void Preorder(BTNode * node){if(node == NULL)return;else{printf("%c ",node->data );Preorder(node->lchild);Preorder(node->rchild);}}/*⼆叉树的中序遍历*/void Inorder(BTNode * node){if(node == NULL)return;else{Inorder(node->lchild);printf("%c ",node->data );Inorder(node->rchild);}}/*⼆叉树的后序遍历*/void Postorder(BTNode * node){if(node == NULL)return;else{Postorder(node->lchild);Postorder(node->rchild);printf("%c ",node->data );}}/*⼆叉树的⾼度树的⾼度 = max(左⼦树⾼度,右⼦树⾼度) +1*/int getHeight(BTNode *node){int Height = 0;if (node == NULL)return 0;else{int L_height = getHeight(node->lchild);int R_height = getHeight(node->rchild);Height = L_height >= R_height ? L_height +1 : R_height +1; }return Height;}int main(int argc, char const *argv[]){BTNode * BTree; // 定义⼀个⼆叉树printf("请输⼊⼀颗⼆叉树先序序列以#表⽰空结点:");BuildBT(&BTree);printf("先序序列:");Preorder(BTree);printf("\n中序序列:");Inorder(BTree);printf("\n后序序列:");Postorder(BTree);printf("\n树的⾼度为:%d" , getHeight(BTree));return 0;}// ABC##DE##F##G##。

前序后序中序详细讲解

前序后序中序详细讲解

前序后序中序详细讲解1.引言1.1 概述在数据结构与算法中,前序、中序和后序是遍历二叉树的三种基本方式之一。

它们是一种递归和迭代算法,用于按照特定的顺序访问二叉树的所有节点。

通过遍历二叉树,我们可以获取有关树的结构和节点之间关系的重要信息。

前序遍历是指先访问根节点,然后递归地访问左子树,最后递归地访问右子树。

中序遍历是指先递归地访问左子树,然后访问根节点,最后递归地访问右子树。

后序遍历是指先递归地访问左子树,然后递归地访问右子树,最后访问根节点。

它们的不同之处在于访问根节点的时机不同。

前序遍历可以帮助我们构建二叉树的镜像,查找特定节点,或者获取树的深度等信息。

中序遍历可以帮助我们按照节点的大小顺序输出树的节点,或者查找二叉搜索树中的某个节点。

后序遍历常用于删除二叉树或者释放二叉树的内存空间。

在实际应用中,前序、中序和后序遍历算法有着广泛的应用。

它们可以用于解决树相关的问题,例如在Web开发中,树结构的遍历算法可以用于生成网页导航栏或者搜索树结构中的某个节点。

在图像处理中,前序遍历可以用于图像压缩或者图像识别。

另外,前序和后序遍历算法还可以用于表达式求值和编译原理中的语法分析等领域。

综上所述,前序、中序和后序遍历算法是遍历二叉树的重要方式,它们在解决各种与树有关的问题中扮演着关键的角色。

通过深入理解和应用这些遍历算法,我们可以更好地理解和利用二叉树的结构特性,并且能够解决更加复杂的问题。

1.2文章结构文章结构是指文章中各个部分的布局和组织方式。

一个良好的文章结构可以使读者更好地理解和理解文章的内容。

本文将详细讲解前序、中序和后序三个部分的内容和应用。

首先,本文将在引言部分概述整篇文章的内容,并介绍文章的结构和目的。

接下来,正文部分将分为三个小节,分别对前序、中序和后序进行详细讲解。

在前序讲解部分,我们将定义和解释前序的意义,并介绍前序在实际应用中的场景。

通过详细的解释和实例,读者将能更好地理解前序的概念和用途。

非递归中序遍历二叉树课件

非递归中序遍历二叉树课件
由于在非递归实现中,我们使用栈来 模拟递归的过程,因此遍历后的结果 与递归实现相同。
04 非递归中序遍历 二叉树的复杂度 分析
时间复杂度
最好情况:O(n) 最坏情况:O(n)
平均情况:O(n)
空间复杂度
最好情况:O(1) 最坏情况:O(n)
平均情况:O(n)
05 非递归中序遍历 二叉树的优缺点
优点
01
02
03
空间效率高
非递归算法通常只需要常 数级别的额外空间,相比 之下,递归算法可能需要 更多的堆栈空间。
代码简洁
非递归算法的代码通常更 简洁,更易于理解和维护。
适合处理大型数据
由于非递归算法不需要大 量的堆栈空间,因此更适 合处理大型数据集。
缺点
编程技巧要求高
非递归算法需要更多的编程技巧, 特别是对于那些不熟悉这种技术 的人来说,理解和实现可能会比 较困难。
遍历过程
01
02
03
04
弹出栈顶元素,访问该 节点。
如果该节点右子节点存 在,将右子节点入栈。
如果该节点左子节点存 在,将左子节点入栈。
重复上述步骤,直到栈 为空。
遍历后的结果
01
中序遍历的顺序为:左子树 -> 根节点 -> 右子树。
02
非递归方法利用了栈的性质,实 现了从上到下、从左到右的遍历 顺序。
THANKS
感谢观看
栈为空。
实例二:复杂的二叉树
总结词:进阶应用
详细描述:对于复杂的二叉树,非递归中序遍历需要 更加细致的处理。由于树的形状可能不规则,我们需 要更加灵活地使用栈来处理节点之间的关系。在遍历 过程中,我们需要注意处理各种特殊情况,例如循环 引用、节点值相等的情况,以避免陷入无限循环或访 问错误的节点。此外,我们还需要注意优化算法的时 间复杂度和空间复杂度,以提高遍历的效率和准确性。

二叉树的遍历PPT-课件

二叉树的遍历PPT-课件

4 、二叉树的创建算法
利用二叉树前序遍历的结果可以非常方便地生成给定的
二叉树,具体做法是:将第一个输入的结点作为二叉树的 根结点,后继输入的结点序列是二叉树左子树前序遍历的 结果,由它们生成二叉树的左子树;再接下来输入的结点 序列为二叉树右子树前序遍历的结果,应该由它们生成二 叉树的右子树;而由二叉树左子树前序遍历的结果生成二 叉树的左子树和由二叉树右子树前序遍历的结果生成二叉 树的右子树的过程均与由整棵二叉树的前序遍历结果生成 该二叉树的过程完全相同,只是所处理的对象范围不同, 于是完全可以使用递归方式加以实现。
void createbintree(bintree *t) { char ch; if ((ch=getchar())==' ') *t=NULL; else { *t=(bintnode *)malloc(sizeof(bintnode)); /*生成二叉树的根结点*/ (*t)->data=ch; createbintree(&(*t)->lchild); /*递归实现左子树的建立*/ createbintree(&(*t)->rchild); /*递归实现右子树的建立*/ }
if (s.top>-1) { t=s.data[s.top]; s.tag[s.top]=1; t=t->rchild; }
else t=NULL; }
}
7.5 二叉树其它运算的实现
由于二叉树本身的定义是递归的,因此关于二叉树的许多 问题或运算采用递归方式实现非常地简单和自然。 1、二叉树的查找locate(t,x)
(1)对一棵二叉树中序遍历时,若我们将二叉树严
格地按左子树的所有结点位于根结点的左侧,右子树的所

数据结构课程设计报告-最短路径算法-二叉树的三种遍历

数据结构课程设计报告-最短路径算法-二叉树的三种遍历

数据结构课程设计报告班级:计算机科学与技术132班姓名:赖恒财指导教师:董跃华成绩:32信息工程学院2015 年7月8日目录图的最短路径算法实现1. 需求分析 (1)1.1 程序设计内容 (1)1.2 设计要求 (1)2.概要设计 (2)3.详细设计 (2)3.1 数据类型的定义 (2)3.2 功能模块的设计 (2)3.3 主程序流程 (9)4.调试分析 (10)4.1 问题回顾和分析 (10)4.2.经验和体会 (11)5.测试结果 (12)二叉树的遍历1.设计目的 (13)2.需求分析 (14)2.1课程设计的内容和要求 (14)2.2选题的意义及背景 (14)3.概要设计 (14)3.1设计思想 (14)3.2程序数据类型 (16)3.3程序模块分析 (16)3.3.1置空栈 (16)3.3.2入栈 (17)3.3.3出栈 (17)3.3.4取栈顶操作 (17)3.3.5判空栈 (17)3.4函数关系: (18)4.详细设计 (18)4.1二叉树算法程序截图和结果 (18)5.程序测试结果及问题分析 (19)6.总结 (20)参考文献 (21)附录1 (22)附录2 (26)图的最短路径算法实现----基于floyd最短路径算法1.需求分析设计校园平面图,所含景点不少于8个。

以图中顶点表示学校内各景点,存放景点的名称、景点介绍信息等;以边表示路径,存放路径长度信息。

要求将这些信息保存在文件graph.txt中,系统执行时所处理的数据要对此文件分别进行读写操作。

1.1程序设计内容1.从文件graph.txt中读取相应数据, 创建一个图,使用邻接矩阵表示图;2.景点信息查询:为来访客人提供校园任意景点相关信息的介绍;3.问路查询:为来访客人提供校园任意两个景点之间的一条最短路径。

1.2 设计要求(1) 程序要具在一定的健壮性,即当输入数据非法时,程序也能适当地做出反应。

(2) 程序要添加适当的注释,程序的书写要采用缩进格式。

二叉树的遍历及相关题目

二叉树的遍历及相关题目

⼆叉树的遍历及相关题⽬⼆叉树的遍历及相关题⽬1.1⼆叉树遍历的概念⼆叉树结构体的定义:typedef struct node{ ElemType data; struct node * lchild; struct node * rchild;}⼆叉树的遍历是指按照⼀定的次序访问⼆叉树中的所有的节点,并且每个节点仅访问⼀次的过程。

若规定先遍历左⼦树,后遍历右⼦树,则对于⾮空⼆叉树,可得到如下3种递归的遍历⽅法:(1)先序遍历访问根节点,先序遍历左⼦树,先序遍历右⼦树。

(根,左,右)(2)中序遍历中序遍历左⼦树,访问根节点,中序遍历右⼦树。

(左,根,右)(3)后序遍历后序遍历左⼦树,后序遍历右⼦树,访问根节点。

(左,右,根)除此之外也有层次遍历。

先访问根节点,在从左到右访问第⼆层的所有节点,从左到右访问第三层的所有节点......1.2⼆叉树遍历递归算法先序遍历递归算法:void PreOrder(BTNode * b){ if(n != NULL) { cout<<b->data; PreOrder(b->lchild); PreOrder(b->rchild); }}中序遍历递归算法void InOrder(BTNode * b){ if(n != NULL) { InOrder(b->lchild); cout<<b->data; InOrder(b->rchild); }}后序遍历递归算法:void PostOrder(BTNode * b){ if(b != NULL) { PostOrder(b->lchild); PostOrder(b->rchild); cout<<b->data; }}题⽬1:输出⼀个给定⼆叉树的所有的叶⼦节点:void DispLeaf(BTNode * b){ if(b != NULL) { if(b->lchild == NULL && b->rchild == NULL) cout<<b->data; DispLeaf(b->lchild); DispLeaf(b->rchild); }}以上算法采⽤先序遍历输出了所有的叶⼦节点,所以叶⼦节点是从左到右输出的。

数据结构与算法(3):二叉树

数据结构与算法(3):二叉树
证!
1.3.3 性质三
包含n个结点的二二叉树的高高度至至少为log2(n + 1);
证明:根据"性质2"可知,高高度为h的二二叉树最多有2{h}–1个结点。反之,对于包含n个节点的二二
叉树的高高度至至少为log2(n + 1)。
1.3.4 性质四
对任何一一颗二二叉树T,如果其终端结点数为n0 ,度为2的结点数为n2 ,则n0 = n2 + 1 证明:因为二二叉树中所有结点的度数均不不大大于2,所以结点总数(记为n)="0度结点数(n0)" + "1度 结点数(n1)" + "2度结点数(n2)"。由此,得到等式一一。(等式一一) n = n0 + n1 + n2
}
还有一一种方方式就是利利用用栈模拟递归过程实现循环先序遍历二二叉树。这种方方式具备扩展性,它模拟 了了递归的过程,将左子子树不不断的压入入栈,直到null,然后处理理栈顶节点的右子子树。
java
public void preOrder(Node root){ if(root==null)return;
2. 叶子子数为2h 3. 第k层的结点数是:2k−1; 4. 总结点数是2k − 1,且总节点数一一定是奇数。
1.4.2 完全二二叉树
定义:一一颗二二叉树中,只有最小小面面两层结点的度可以小小于2,并且最下一一层的叶结点集中在靠左 的若干干位置上。这样现在最下层和次下层,且最小小层的叶子子结点集中在树的左部。显然,一一颗 满二二叉树必定是一一颗完全二二叉树,而而完全二二叉树未必是满二二叉树。
} root = s.pop(); root = root.right;//如果是null,出栈并处理理右子子树 } }

二叉树的遍历(前序、中序、后序、已知前中序求后序、已知中后序求前序)

二叉树的遍历(前序、中序、后序、已知前中序求后序、已知中后序求前序)

⼆叉树的遍历(前序、中序、后序、已知前中序求后序、已知中后序求前序)之前的⼀篇随笔()只对⼆叉树的遍历进⾏了笼统的描述,这篇随笔重点对前、中、后序的遍历顺序进⾏分析⼆叉树的遍历⼆叉树的深度优先遍历可细分为前序遍历、中序遍历、后序遍历,这三种遍历可以⽤递归实现(本篇随笔主要分析递归实现),也可使⽤⾮递归实现的前序遍历:根节点->左⼦树->右⼦树(根->左->右)中序遍历:左⼦树->根节点->右⼦树(左->根->右)后序遍历:左⼦树->右⼦树->根节点(左->右->根)在进⾏已知两种遍历顺序求另⼀种遍历顺序前,先看⼀下不同遍历顺序对应的代码前序遍历1/* 以递归⽅式前序遍历⼆叉树 */2void PreOrderTraverse(BiTree t, int level)3 {4if (t == NULL)5 {6return ;7 }8 printf("data = %c level = %d\n ", t->data, level);9 PreOrderTraverse(t->lchild, level + 1);10 PreOrderTraverse(t->rchild, level + 1);11 }中序遍历1/* 以递归⽅式中序遍历⼆叉树 */2void PreOrderTraverse(BiTree t, int level)3 {4if (t == NULL)5 {6return ;7 }8 PreOrderTraverse(t->lchild, level + 1);9 printf("data = %c level = %d\n ", t->data, level);10 PreOrderTraverse(t->rchild, level + 1);11 }后序遍历1/* 以递归⽅式后序遍历⼆叉树 */2void PreOrderTraverse(BiTree t, int level)3 {4if (t == NULL)5 {6return ;7 }8 PreOrderTraverse(t->lchild, level + 1);9 PreOrderTraverse(t->rchild, level + 1);10 printf("data = %c level = %d\n ", t->data, level);11 }三种遍历⽅式对应的代码⼏乎相同,只是⼀条语句的位置发⽣了变化printf("data = %c level = %d\n ", t->data, level);只看⽂字和代码来理解遍历的过程是⽐较困难的,建议读者亲⾃去遍历,为了理清遍历的过程下⾯上题(图⽚来源:)前序遍历前序的遍历的特点,根节点->左⼦树->右⼦树,注意看前序的遍历的代码printf语句是放在两条递归语句之前的,所以先访问根节点G,打印G,然后访问左⼦树D,此时左⼦树D⼜作为根节点,打印D,再访问D的左⼦树AA⼜作为根节点,打印A,A没有左⼦树或者右⼦树,函数调⽤结束返回到D节点(此时已经打印出来的有:GDA)D节点的左⼦树已经递归完成,现在递归访问右⼦树F,F作为根节点,打印F,F有左⼦树访问左⼦树E,E作为根节点,打印E,(此时已经打印出来的有:GDAFE),E没有左⼦树和右⼦树,函数递归结束返回F节点,F的左⼦树已经递归完成了,但没有右⼦树,所以函数递归结束,返回D节点,D节点的左⼦树和右⼦树递归全部完成,函数递归结束返回G节点,访问G节点的右⼦树M,M作为根节点,打印M,访问M的左⼦树H,H作为根节点,打印H,(此时已经打印出来的有:GDAFEMH)H没有左⼦树和右⼦树,函数递归结束,返回M节点,M节点的左⼦树已经递归完成,访问右⼦树Z,Z作为根节点,打印Z,Z没有左⼦树和右⼦树,函数递归结束,返回M节点,M节点的左⼦树右⼦树递归全部完成,函数递归结束,返回G节点,G节点的左右⼦树递归全部完成,整个⼆叉树的遍历就结束了(MGJ,终于打完了··)前序遍历结果:GDAFEMHZ总结⼀下前序遍历步骤第⼀步:打印该节点(再三考虑还是把访问根节点这句话去掉了)第⼆步:访问左⼦树,返回到第⼀步(注意:返回到第⼀步的意思是将根节点的左⼦树作为新的根节点,就好⽐图中D是G的左⼦树但是D也是A节点和F节点的根节点)第三步:访问右⼦树,返回到第⼀步第四步:结束递归,返回到上⼀个节点前序遍历的另⼀种表述:(1)访问根节点(2)前序遍历左⼦树(3)前序遍历右⼦树(在完成第2,3步的时候,也是要按照前序遍历⼆叉树的规则完成)前序遍历结果:GDAFEMHZ中序遍历(详细遍历过程就不再赘述了,(┬_┬))中序遍历步骤第⼀步:访问该节点左⼦树第⼆步:若该节点有左⼦树,则返回第⼀步,否则打印该节点第三步:若该节点有右⼦树,则返回第⼀步,否则结束递归并返回上⼀节点(按我⾃⼰理解的中序就是:先左到底,左到不能在左了就停下来并打印该节点,然后返回到该节点的上⼀节点,并打印该节点,然后再访问该节点的右⼦树,再左到不能再左了就停下来)中序遍历的另⼀种表述:(1)中序遍历左⼦树(2)访问根节点(3)中序遍历右⼦树(在完成第1,3步的时候,要按照中序遍历的规则来完成)所以该图的中序遍历为:ADEFGHMZ后序遍历步骤第⼀步:访问左⼦树第⼆步:若该节点有左⼦树,返回第⼀步第三步:若该节点有右⼦树,返回第⼀步,否则打印该节点并返回上⼀节点后序遍历的另⼀种表述:(1)后序遍历左⼦树(2)后序遍历右⼦树(3)访问根节点(在完成1,2步的时候,依然要按照后序遍历的规则来完成)该图的后序遍历为:AEFDHZMG(读者如果在纸上遍历⼆叉树的时候,仍然容易将顺序搞错建议再回去看⼀下三种不同遍历对应的代码)进⼊正题,已知两种遍历结果求另⼀种遍历结果(其实就是重构⼆叉树)第⼀种:已知前序遍历、中序遍历求后序遍历前序遍历:ABCDEF中序遍历:CBDAEF在进⾏分析前读者需要知道不同遍历结果的特点1、前序遍历的第⼀元素是整个⼆叉树的根节点2、中序遍历中根节点的左边的元素是左⼦树,根节点右边的元素是右⼦树3、后序遍历的最后⼀个元素是整个⼆叉树的根节点(如果读者不明⽩上述三个特点,建议再回去看⼀下三种不同遍历对应的代码,并在纸上写出⼀个简单的⼆叉树的三种不同的遍历结果,以加深对三种不同遍历的理解)⽤上⾯这些特点来分析遍历结果,第⼀步:先看前序遍历A肯定是根节点第⼆步:确认了根节点,再来看中序遍历,中序遍历中根节点A的左边是CBD,右边是EF,所有可以确定⼆叉树既有左⼦树⼜有右⼦树第三步:先来分析左⼦树CBD,那么CBD谁来做A的左⼦树呢?这个时候不能直接⽤中序遍历的特点(左->根->右)得出左⼦树应该是这个样⼦因为有两种情况都满⾜中序遍历为CBD⽆法直接根据中序遍历来直接得出左⼦树的结构,这个时候就要返回到前序遍历中去观察前序遍历ABCDEF,左⼦树CBD在前序遍历中的顺序是BCD,意味着B是左⼦树的根节点(这么说可能不太好理解,换个说法就是B是A的左⼦树),得出这个结果是因为如果⼀个⼆叉树的根节点有左⼦树,那么这个左⼦树⼀定在前序遍历中⼀定紧跟着根节点(这个是⽤前序遍历的特点(根->左->右)得出的),到这⾥就可以确认B是左⼦树的根节点第四步:再观察中序遍历CBDAEF,B元素左边是C右边是D,说明B节点既有左⼦树⼜有右⼦树,左右⼦树只有⼀个元素就可以直接确定了,不⽤再返回去观察前序遍历第五步:到这⾥左⼦树的重建就已经完成了,现在重建右⼦树,因为重建右⼦树的过程和左⼦树的过程⼀模⼀样,步骤就不像上⾯写这么细了((┬_┬)),观察中序遍历右⼦树为EF,再观察前序遍历ABCDEF中右⼦树的顺序为EF,所以E为A的右⼦树,再观察中序便利中E只有右边有F,所有F为E的右⼦树,最后得到的⼆叉树是这个样⼦的所有求得的后序遍历为:CDBFEA总结⼀下上述步骤:先观察前序遍历找到根节点->观察中序遍历将根节点左边归为左⼦树元素,右边归为右⼦树元素(可能会出现只有左⼦树或者右⼦树的情况)->观察前序遍历中左\右⼦树⼏个元素的顺序,最靠前的为左\右⼦树的根节点->重复前⾯的步骤第⼆种:已知中序遍历、后序遍历求前序遍历(题还是上⾯这道)中序遍历:CBDAEF后序遍历为:CDBFEA仍然是根据不同遍历⽅式结果的特点来重构⼆叉树,过程很相似这⾥就不详细说了,后序遍历的最后⼀个元素A是根节点,在中序遍历中以根节点A作为分界将元素分为左⼦树(CBD)和右⼦树(EF),再观察后序遍历中左⼦树的顺序是CDB,可以判断出B是左⼦树的根节点(因为后序遍历是:左->右->根),再观察中序遍历,B元素左边是C右边是D,说明B节点既有左⼦树⼜有右⼦树,左右⼦树只有⼀个元素就可以直接确定了,不⽤再返回去观察后序遍历,左⼦树重建完成,现在来看右⼦树,右⼦树有两个元素EF,观察后序遍历E在F的后⾯,所以E是右⼦树的根节点,然后看中序遍历中E只有右边⼀个F元素了,即F是E的右⼦树,此时整个⼆叉树重构完成总结⼀下上述步骤:先观察后序遍历找到根节点->观察中序遍历将根节点左边归为左⼦树元素,右边归为右⼦树元素(可能会出现只有左⼦树或者右⼦树的情况)->观察后序遍历中左\右⼦树⼏个元素的顺序,最靠后的为左\右⼦树的根节点->重复前⾯的步骤注意:已知前序遍历、后序遍历⽆法求出中序遍历(因为由前序后序重构出来的⼆叉树不⽌⼀种)举个栗⼦左图这两种⼆叉树前序(BEFA)和后序(AFEB)⼀样,但对应的中序遍历结果不⼀样(左边的是AFEB右边的是BEFA),所以仅靠前序后序是重构出唯⼀的⼆叉树。

数据结构C语言版第二版第5章树和二叉树答案

数据结构C语言版第二版第5章树和二叉树答案

第5章 树和二叉树1.选择题(1)把一棵树转换为二叉树后,这棵二叉树的形态是( )。

A .唯一的 B.有多种C .有多种,但根结点都没有左孩子 D.有多种,但根结点都没有右孩子 答案:A解释:因为二叉树有左孩子、右孩子之分,故一棵树转换为二叉树后,这棵二叉树的形态是唯一的。

(2)由3个结点可以构造出多少种不同的二叉树?( ) A .2 B .3 C .4 D .5 答案:D解释:五种情况如下:A CBACBA CBACBACB(3)一棵完全二叉树上有1001个结点,其中叶子结点的个数是( )。

A .250 B . 500 C .254 D .501 答案:D解释:设度为0结点(叶子结点)个数为A ,度为1的结点个数为B ,度为2的结点个数为C ,有A=C+1,A+B+C=1001,可得2C+B=1000,由完全二叉树的性质可得B=0或1,又因为C 为整数,所以B=0,C=500,A=501,即有501个叶子结点。

(4)一个具有1025个结点的二叉树的高h 为( )。

A .11B .10C .11至1025之间D .10至1024之间 答案:C解释:若每层仅有一个结点,则树高h 为1025;且其最小树高为 log 21025 + 1=11,即h 在11至1025之间。

(5)深度为h 的满m 叉树的第k 层有( )个结点。

(1=<k=<h) A .mk-1B .m k -1C .m h-1D .m h-1答案:A解释:深度为h 的满m 叉树共有m h-1个结点,第k 层有m k-1个结点。

(6)利用二叉链表存储树,则根结点的右指针是( )。

A .指向最左孩子B .指向最右孩子C .空D .非空 答案:C解释:利用二叉链表存储树时,右指针指向兄弟结点,因为根节点没有兄弟结点,故根节点的右指针指向空。

(7)对二叉树的结点从1开始进行连续编号,要求每个结点的编号大于其左、右孩子的编号,同一结点的左右孩子中,其左孩子的编号小于其右孩子的编号,可采用( )遍历实现编号。

二叉树的遍历

二叉树的遍历

T->rchild= CreatBiTree(); /*构造右子树*/ 扩展先序遍历序列
}
2021/2/21
return (T) ;}
A B Φ D Φ Φ C Φ 17Φ
T
T
T
ch=B
ch=Φ
Λ
T
T= Λ, Creat(T)
ch=A T
A
B creat(T L)
ΛB 返回
creat(T L)
creat(T R)
A
p=p->RChild;
}
2021/2/21
}
top
A
B
C
D
top
B
top
A
A
top
D
A
top
A
top
C
13
top
中序遍历二叉树的非递归算法:
A
void InOrder(BiTree T)
{ InitStack(&S); 相当于top=-1;
p=T;
B
C
while(p!=NULL | | !IsEmpty(S)) 相当于top==-1;
}
后序遍历二叉树的递归算法:
void PostOrder (BiTree T)
{ if(T!=NULL)
{ PostOrder (T->lchild);
PostOrder (T->rchild);
printf(T->data); }
2021/2/21
15
}
先序遍历二叉树的递归算法: void PreOder (BiTree T) { if(T! =NULL){ printf (T->data); PreOrder (T->lchild); PreOrder (T->rchild); } }
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

F
B A
S
中序遍历二叉树非递归算法
Status InorderTraverse(BiTree T,int (*visit)(char e)) { InitStack(S); T p=T; while(p||!StackEmpty(S)) A { if(p) { Push(S,p); p=p->lchild;} B else { p C D Pop(S,p); if(!visit(p->data)) return ERROR; p=p->rchild; E } G } return OK; }
F
S
中序遍历二叉树非递归算法
Status InorderTraverse(BiTree T,int (*visit)(char e)) { InitStack(S); T p=T; p A while(p||!StackEmpty(S)) { if(p) { Push(S,p); p=p->lchild;} B else { D C Pop(S,p); if(!visit(p->data)) return ERROR; p=p->rchild; E } G } return OK; }
F
C B A
S
中序遍历二叉树非递归算法
Status InorderTraverse(BiTree T,int (*visit)(char e)) { InitStack(S); T p=T; while(p||!StackEmpty(S)) A { if(p) { Push(S,p); p=p->lchild;} B else { D C Pop(S,p); p if(!visit(p->data)) return ERROR; p=p->rchild; E } G } return OK; }
F
A
S
中序遍历二叉树非递归算法
Status InorderTraverse(BiTree T,int (*visit)(char e)) { InitStack(S); T p=T; while(p||!StackEmpty(S)) A { if(p) { Push(S,p); p=p->lchild;} p B else { D C Pop(S,p); if(!visit(p->data)) return ERROR; p=p->rchild; E } G } return OK; }
F
B A
S
中序遍历二叉树非递归算法
Status InorderTraverse(BiTree T,int (*visit)(char e)) { InitStack(S); T p=T; while(p||!StackEmpty(S)) A { if(p) { Push(S,p); p=p->lchild;} B else { p C D Pop(S,p); if(!visit(p->data)) return ERROR; p=p->rchild; E } G } return OK; }
F
A
S
中序遍历二叉树非递归算法
Status InorderTraverse(BiTree T,int (*visit)(char e)) { InitStack(S); T p=T; while(p||!StackEmpty(S)) A { if(p) { Push(S,p); p=p->lchild;} p B else { D C Pop(S,p); if(!visit(p->data)) return ERROR; p=p->rchild; E } G } return OK; }
F
C B A
S
中序遍历二叉树非递归算法
Status InorderTraverse(BiTree T,int (*visit)(char e)) { InitStack(S); T p=T; while(p||!StackEmpty(S)) A { if(p) { Push(S,p); p=p->lchild;} B else { D C Pop(S,p); p if(!visit(p->data)) return ERROR; p=p->rchild; E } G } return OK; }
F
B A
S
中序遍历二叉树非递归算法
Status InorderTraverse(BiTree T,int (*visit)(char e)) { InitStack(S); T p=T; while(p||!StackEmpty(S)) A { if(p) { Push(S,p); p=p->lchild;} B else { p C D Pop(S,p); if(!visit(p->data)) return ERROR; p=p->rchild; E } G } return OK; }
F
B A
S
中序遍历二叉树非递归算法
Status InorderTraverse(BiTree T,int (*visit)(char e)) { InitStack(S); T p=T; while(p||!StackEmpty(S)) A { if(p) { Push(S,p); p=p->lchild;} B else { p C D Pop(S,p); if(!visit(p->data)) return ERROR; p=p->rchild; E } G } return OK; }
F
C B A
S
中序遍历二叉树非递归算法
Status InorderTraverse(BiTree T,int (*visit)(char e)) { InitStack(S); T p=T; while(p||!StackEmpty(S)) A { if(p) { Push(S,p); p=p->lchild;} B else { p C D Pop(S,p); if(!visit(p->data)) return ERROR; p=p->rchild; E } G } return OK; }
F
S
中序遍历二叉树非递归算法
Status InorderTraverse(BiTree T,int (*visit)(char e)) { InitStack(S); T p=T; p A while(p||!StackEmpty(S)) { if(p) { Push(S,p); p=p->lchild;} B else { D C Pop(S,p); if(!visit(p->data)) return ERROR; p=p->rchild; E } G } return OK; }
F
B A
S
中序遍历二叉树非递归算法
Status InorderTraverse(BiTree T,int (*visit)(char e)) { InitStack(S); T p=T; while(p||!StackEmpty(S)) A { if(p) { Push(S,p); p=p->lchild;} B else { p C D Pop(S,p); if(!visit(p->data)) return ERROR; p=p->rchild; E } G } return OK; 先序序列: 先序序列:C }
F
A
S
中序遍二叉树非递归算法
Status InorderTraverse(BiTree T,int (*visit)(char e)) { InitStack(S); T p=T; while(p||!StackEmpty(S)) A { if(p) { Push(S,p); p=p->lchild;} p B else { D C Pop(S,p); if(!visit(p->data)) return ERROR; p=p->rchild; E } G } return OK; }
F
C B A
S
中序遍历二叉树非递归算法
Status InorderTraverse(BiTree T,int (*visit)(char e)) { InitStack(S); T p=T; while(p||!StackEmpty(S)) A { if(p) { Push(S,p); p=p->lchild;} B else { D C Pop(S,p); p if(!visit(p->data)) return ERROR; p=p->rchild; E } G } return OK; }
F
C B A
S
中序遍历二叉树非递归算法
Status InorderTraverse(BiTree T,int (*visit)(char e)) { InitStack(S); T p=T; while(p||!StackEmpty(S)) A { if(p) { Push(S,p); p=p->lchild;} B else { D C Pop(S,p); p if(!visit(p->data)) return ERROR; p=p->rchild; E } G } return OK; }
中序遍历二叉树非递归算法
Status InorderTraverse(BiTree T,int (*visit)(char e)) { InitStack(S); T p=T; while(p||!StackEmpty(S)) A { if(p) { Push(S,p); p=p->lchild;} B else { D C Pop(S,p); if(!visit(p->data)) return ERROR; p=p->rchild; E } G } return OK; }
相关文档
最新文档