C语言实现二叉树的前序遍历(递归)

合集下载

数据结构c语言课设-二叉树排序

数据结构c语言课设-二叉树排序

题目:二叉排序树的实现1 内容和要求1)编程实现二叉排序树,包括生成、插入,删除;2)对二叉排序树进展先根、中根、和后根非递归遍历;3)每次对树的修改操作和遍历操作的显示结果都需要在屏幕上用树的形状表示出来。

4)分别用二叉排序树和数组去存储一个班(50 人以上)的成员信息(至少包括学号、姓名、成绩3 项),比照查找效率,并说明在什么情况下二叉排序树效率高,为什么?2 解决方案和关键代码2.1 解决方案:先实现二叉排序树的生成、插入、删除,编写DisplayBST函数把遍历结果用树的形状表示出来。

前中后根遍历需要用到栈的数据构造,分模块编写栈与遍历代码。

要求比照二叉排序树和数组的查找效率,首先建立一个数组存储一个班的成员信息,分别用二叉树和数组查找,利用clock〔〕函数记录查找时间来比照查找效率。

2.2关键代码树的根本构造定义及根本函数typedef struct{KeyType key;} ElemType;typedef struct BiTNode//定义链表{ElemType data;struct BiTNode *lchild, *rchild;}BiTNode, *BiTree, *SElemType;//销毁树int DestroyBiTree(BiTree &T){if (T != NULL)free(T);return 0;}//清空树int ClearBiTree(BiTree &T){if (T != NULL){T->lchild = NULL;T->rchild = NULL;T = NULL;}return 0;}//查找关键字,指针p返回int SearchBST(BiTree T, KeyType key, BiTree f, BiTree &p) {if (!T){p = f;return FALSE;}else if EQ(key, T->data.key){p = T;return TRUE;}else if LT(key, T->data.key)return SearchBST(T->lchild, key, T, p);elsereturn SearchBST(T->rchild, key, T, p);}二叉树的生成、插入,删除生成void CreateBST(BiTree &BT, BiTree p){int i;ElemType k;printf("请输入元素值以创立排序二叉树:\n");scanf_s("%d", &k.key);for (i = 0; k.key != NULL; i++){//判断是否重复if (!SearchBST(BT, k.key, NULL, p)){InsertBST(BT, k);scanf_s("%d", &k.key);}else{printf("输入数据重复!\n");return;}}}插入int InsertBST(BiTree &T, ElemType e){BiTree s, p;if (!SearchBST(T, e.key, NULL, p)){s = (BiTree)malloc(sizeof(BiTNode));s->data = e;s->lchild = s->rchild = NULL;if (!p)T = s;else if LT(e.key, p->data.key)p->lchild = s;elsep->rchild = s;return TRUE;}else return FALSE;}删除//某个节点元素的删除int DeleteEle(BiTree &p){BiTree q, s;if (!p->rchild) //右子树为空{q = p;p = p->lchild;free(q);}else if (!p->lchild) //左子树为空{q = p;p = p->rchild;free(q);}else{q = p;s = p->lchild;while (s->rchild){q = s;s = s->rchild;}p->data = s->data;if (q != p)q->rchild = s->lchild;elseq->lchild = s->lchild;delete s;}return TRUE;}//整棵树的删除int DeleteBST(BiTree &T, KeyType key) //实现二叉排序树的删除操作{if (!T){return FALSE;}else{if (EQ(key, T->data.key)) //是否相等return DeleteEle(T);else if (LT(key, T->data.key)) //是否小于return DeleteBST(T->lchild, key);elsereturn DeleteBST(T->rchild, key);}return 0;}二叉树的前中后根遍历栈的定义typedef struct{SElemType *base;SElemType *top;int stacksize;}SqStack;int InitStack(SqStack &S) //构造空栈{S.base = (SElemType*)malloc(STACK_INIT_SIZE *sizeof(SElemType));if (!S.base) exit(OVERFLOW);S.top = S.base;S.stacksize = STACK_INIT_SIZE;return OK;}//InitStackint Push(SqStack &S, SElemType e) //插入元素e为新栈顶{if (S.top - S.base >= S.stacksize){S.base = (SElemType*)realloc(S.base, (S.stacksize + STACKINCREMENT)*sizeof(SElemType));if (!S.base) exit(OVERFLOW);S.top = S.base + S.stacksize;S.stacksize += STACKINCREMENT;}*S.top++ = e;return OK;}//Pushint Pop(SqStack &S, SElemType &e) //删除栈顶,应用e返回其值{if (S.top == S.base) return ERROR;e = *--S.top;return OK;}//Popint StackEmpty(SqStack S) //判断是否为空栈{if (S.base == S.top) return TRUE;return FALSE;}先根遍历int PreOrderTraverse(BiTree T, int(*Visit)(ElemType e)) {SqStack S;BiTree p;InitStack(S);p = T;while (p || !StackEmpty(S)){if (p){Push(S, p);if (!Visit(p->data)) return ERROR;p = p->lchild;}else{Pop(S, p);p = p->rchild;}}return OK;}中根遍历int InOrderTraverse(BiTree T, int(*Visit)(ElemType e)) {SqStack S;BiTree p;InitStack(S);p = T;while (p || !StackEmpty(S)){if (p){Push(S, p);p = p->lchild;}else{Pop(S, p);if (!Visit(p->data)) return ERROR;p = p->rchild;}}return OK;}后根遍历int PostOrderTraverse(BiTree T, int(*Visit)(ElemType e)) {SqStack S, SS;BiTree p;InitStack(S);InitStack(SS);p = T;while (p || !StackEmpty(S)){if (p){Push(S, p);Push(SS, p);p = p->rchild;}else{if (!StackEmpty(S)){Pop(S, p);p = p->lchild;}}}while (!StackEmpty(SS)){Pop(SS, p);if (!Visit(p->data)) return ERROR;}return OK;}利用数组存储一个班学生信息ElemType a[] = { 51, "陈继真", 88,82, "黄景元", 89,53, "贾成", 88,44, "呼颜", 90,25, "鲁修德", 88,56, "须成", 88,47, "孙祥", 87, 38, "柏有患", 89, 9, " 革高", 89, 10, "考鬲", 87, 31, "李燧", 86, 12, "夏祥", 89, 53, "余惠", 84, 4, "鲁芝", 90, 75, "黄丙庆", 88, 16, "李应", 89, 87, "杨志", 86, 18, "李逵", 89, 9, "阮小五", 85, 20, "史进", 88, 21, "秦明", 88, 82, "杨雄", 89, 23, "刘唐", 85, 64, "武松", 88, 25, "李俊", 88, 86, "卢俊义", 88, 27, "华荣", 87, 28, "杨胜", 88, 29, "林冲", 89, 70, "李跃", 85, 31, "蓝虎", 90, 32, "宋禄", 84, 73, "鲁智深", 89, 34, "关斌", 90, 55, "龚成", 87, 36, "黄乌", 87, 57, "孔道灵", 87, 38, "张焕", 84, 59, "李信", 88, 30, "徐山", 83, 41, "秦祥", 85, 42, "葛公", 85, 23, "武衍公", 87, 94, "范斌", 83, 45, "黄乌", 60, 67, "叶景昌", 99, 7, "焦龙", 89, 78, "星姚烨", 85, 49, "孙吉", 90, 60, "陈梦庚", 95,};数组查询函数void ArraySearch(ElemType a[], int key, int length){int i;for (i = 0; i <= length; i++){if (key == a[i].key){cout << "学号:" << a[i].key << " 姓名:" << a[i].name << " 成绩:" << a[i].grade << endl;break;}}}二叉树查询函数上文二叉树根本函数中的SearchBST()即为二叉树查询函数。

数据结构(二十四)二叉树的链式存储结构(二叉链表)

数据结构(二十四)二叉树的链式存储结构(二叉链表)

数据结构(⼆⼗四)⼆叉树的链式存储结构(⼆叉链表) ⼀、⼆叉树每个结点最多有两个孩⼦,所以为它设计⼀个数据域和两个指针域,称这样的链表叫做⼆叉链表。

⼆、结点结构包括:lchild左孩⼦指针域、data数据域和rchild右孩⼦指针域。

三、⼆叉链表的C语⾔代码实现:#include "string.h"#include "stdio.h"#include "stdlib.h"#include "io.h"#include "math.h"#include "time.h"#define OK 1#define ERROR 0#define TRUE 1#define FALSE 0#define MAXSIZE 100 /* 存储空间初始分配量 */typedef int Status; /* Status是函数的类型,其值是函数结果状态代码,如OK等 *//* ⽤于构造⼆叉树********************************** */int index=1;typedef char String[24]; /* 0号单元存放串的长度 */String str;Status StrAssign(String T,char *chars){int i;if(strlen(chars)>MAXSIZE)return ERROR;else{T[0]=strlen(chars);for(i=1;i<=T[0];i++)T[i]=*(chars+i-1);return OK;}}/* ************************************************ */typedef char TElemType;TElemType Nil=''; /* 字符型以空格符为空 */Status visit(TElemType e){printf("%c ",e);return OK;}typedef struct BiTNode /* 结点结构 */{TElemType data; /* 结点数据 */struct BiTNode *lchild,*rchild; /* 左右孩⼦指针 */}BiTNode,*BiTree;/* 构造空⼆叉树T */Status InitBiTree(BiTree *T){*T=NULL;return OK;}/* 初始条件: ⼆叉树T存在。

二叉树遍历(前序、中序、后序、层次、广度优先、深度优先遍历)

二叉树遍历(前序、中序、后序、层次、广度优先、深度优先遍历)

⼆叉树遍历(前序、中序、后序、层次、⼴度优先、深度优先遍历)⽬录转载:⼆叉树概念⼆叉树是⼀种⾮常重要的数据结构,⾮常多其他数据结构都是基于⼆叉树的基础演变⽽来的。

对于⼆叉树,有深度遍历和⼴度遍历,深度遍历有前序、中序以及后序三种遍历⽅法,⼴度遍历即我们寻常所说的层次遍历。

由于树的定义本⾝就是递归定义,因此採⽤递归的⽅法去实现树的三种遍历不仅easy理解并且代码⾮常简洁,⽽对于⼴度遍历来说,须要其他数据结构的⽀撑。

⽐⽅堆了。

所以。

对于⼀段代码来说,可读性有时候要⽐代码本⾝的效率要重要的多。

四种基本的遍历思想前序遍历:根结点 ---> 左⼦树 ---> 右⼦树中序遍历:左⼦树---> 根结点 ---> 右⼦树后序遍历:左⼦树 ---> 右⼦树 ---> 根结点层次遍历:仅仅需按层次遍历就可以⽐如。

求以下⼆叉树的各种遍历前序遍历:1 2 4 5 7 8 3 6中序遍历:4 2 7 5 8 1 3 6后序遍历:4 7 8 5 2 6 3 1层次遍历:1 2 3 4 5 6 7 8⼀、前序遍历1)依据上⽂提到的遍历思路:根结点 ---> 左⼦树 ---> 右⼦树,⾮常easy写出递归版本号:public void preOrderTraverse1(TreeNode root) {if (root != null) {System.out.print(root.val+" ");preOrderTraverse1(root.left);preOrderTraverse1(root.right);}}2)如今讨论⾮递归的版本号:依据前序遍历的顺序,优先訪问根结点。

然后在訪问左⼦树和右⼦树。

所以。

对于随意结点node。

第⼀部分即直接訪问之,之后在推断左⼦树是否为空,不为空时即反复上⾯的步骤,直到其为空。

若为空。

则须要訪问右⼦树。

注意。

在訪问过左孩⼦之后。

C语言递归生成二叉树探讨

C语言递归生成二叉树探讨




saf” ” ) cr(%c, ; &c
c=tr n t rtm U L = e ae eu N L mi )
es le
t 、





蹶 。
≮ 。
■‘ 、
ro=B o e) l cs ef N d) ot(N d ma o(zo( o e ; l i B )
2二 叉 树 递 归 生 成 .
可 以利 用二 叉树 基本 性 质 . 即从 根 结点 开始 。 断 不 给 当前 叶子结点 添加左 、 右新 的子 结 点 , 成整 棵完 整 生 的二叉树 。这里 , 以前序 递归 方法 为例来 介绍 。需要 注 意 的是输 入时按先 序遍 历次 序输入 二 叉树 中结 点 的字 符值 . 同时要 把左 右子树 为空 的结 点也 要表 示 出来 , 该 文用 、 表 示空树 。 下面 给 出几 种 C语 言实 现方案 : 使用 的宏 定 义 :
# e n t r n t d f e e mi a e i
# e n OK df e i 1
# e i e ERROR d fn 0
方法 1 :
B re c t( Te  ̄ac )(
BT e o t NUL rero= L:
c a ; h c r源自④ : 法。 【 关键词 】 二 叉树 ; : C语 言 ; 归 递
1 引言 .
二 叉树 是一 种基 本 的非 线性 数据 结构 .二叉 链 表 是 其常用 的存储形 式 。用 二 叉链 表实 现生 成二 叉树 的 算 法 比较多 .其 中递归 生成 及递 归遍 历二叉 树 属 于二 叉 树的基本 操作 。 目前无 论在 教学或 实用 使用 中 , 大都 采 用 C、 + 或 C C+ #编 程实 现 ,其 中用 面 向过程 基 本 C 语 言编程属 于重要 的基本 实现 方法 。该 文在 基 于基本 C语 言 环 境 下 对 实现 生 成 二 叉 树 及 遍 历 进 行 一 些 探

数据结构c语言版第三版习题解答

数据结构c语言版第三版习题解答

数据结构c语言版第三版习题解答数据结构 C 语言版第三版习题解答在学习计算机科学与技术的过程中,数据结构是一门非常重要的基础课程。

而《数据结构C 语言版第三版》更是众多教材中的经典之作。

其中的习题对于我们理解和掌握数据结构的概念、原理以及算法实现起着至关重要的作用。

接下来,我将为大家详细解答这本书中的一些典型习题。

首先,让我们来看一道关于线性表的习题。

题目是这样的:设计一个算法,从一个有序的线性表中删除所有其值重复的元素,使表中所有元素的值均不同。

对于这道题,我们可以采用双指针的方法来解决。

定义两个指针 p和 q,p 指向线性表的开头,q 从 p 的下一个位置开始。

当 q 所指向的元素与 p 所指向的元素相同时,我们就将 q 所指向的元素删除,并将 q 向后移动一位。

当 q 所指向的元素与 p 所指向的元素不同时,我们将 p 向后移动一位,并将 q 所指向的元素赋值给 p 所指向的位置,然后再将 q 向后移动一位。

当 q 超出线性表的范围时,算法结束。

下面是用 C 语言实现的代码:```cvoid removeDuplicates(int arr, int n) {int p = 0, q = 1;while (q < n) {if (arrp == arrq) {for (int i = q; i < n 1; i++){arri = arri + 1;}(n);} else {p++;arrp = arrq;}q++;}}```再来看一道关于栈的习题。

题目是:利用栈实现将一个十进制数转换为八进制数。

我们知道,将十进制数转换为八进制数可以通过不断除以 8 取余数的方法来实现。

而栈的特点是后进先出,正好适合存储这些余数。

以下是 C 语言实现的代码:```cinclude <stdioh>include <stdlibh>define MAX_SIZE 100typedef struct {int top;int dataMAX_SIZE;} Stack;//初始化栈void initStack(Stack s) {s>top =-1;}//判断栈是否为空int isEmpty(Stack s) {return s>top ==-1;}//判断栈是否已满int isFull(Stack s) {return s>top == MAX_SIZE 1;}//入栈操作void push(Stack s, int element) {if (isFull(s)){printf("Stack Overflow!\n");return;}s>data++s>top = element;}//出栈操作int pop(Stack s) {if (isEmpty(s)){printf("Stack Underflow!\n");return -1;}return s>datas>top;}//将十进制转换为八进制void decimalToOctal(int decimal) {Stack s;initStack(&s);while (decimal!= 0) {push(&s, decimal % 8);decimal /= 8;}while (!isEmpty(&s)){printf("%d", pop(&s));}printf("\n");}int main(){int decimal;printf("请输入一个十进制数: ");scanf("%d",&decimal);printf("转换后的八进制数为: ");decimalToOctal(decimal);return 0;}```接下来是一道关于队列的习题。

二叉树先序遍历算法

二叉树先序遍历算法

二叉树先序遍历算法
二叉树先序遍历是一种树的遍历算法,先序遍历过程如下:
1. 先访问根节点;
2. 再访问左子节点;
3. 再访问右子节点;
二叉树先序遍历是一种树状数据结构的深度优先搜索(DFS)算法。

先序遍历对
树状数据结构中的每个节点仅进行一次访问,且访问的次序是从上到下,从左到右的方式。

先序遍历属于深度优先搜索,它以一定的次序访问树或图的每个节点,然后递归访问其子节点,深度优先搜索可以按一定方式去遍历有向图、二叉树等数据结构,对节点都进行一定次序的编号或标签,访问顺序是按从小到大的顺序,从而把BST全部访问一次。

二叉树先序遍历的时间复杂度为O(n),空间复杂度为O(logn),应用范围很广,常用于二叉查找树的构造或查找、求树的高度和深度、树的前中后序遍历等,其中在建立二叉查找树时,往往我们都会使用先序遍历;同时,也可用先序遍历来求二叉树的节点数,计算树的深度等。

因此,二叉树先序遍历是一种基本而又重要的数据结构遍历算法,在许多应用
场景中都可以被朂泛使用,深受各个计算机领域的热捧。

二叉树遍历(前中后序遍历,三种方式)

二叉树遍历(前中后序遍历,三种方式)

⼆叉树遍历(前中后序遍历,三种⽅式)⽬录刷题中碰到⼆叉树的遍历,就查找了⼆叉树遍历的⼏种思路,在此做个总结。

对应的LeetCode题⽬如下:,,,接下来以前序遍历来说明三种解法的思想,后⾯中序和后续直接给出代码。

⾸先定义⼆叉树的数据结构如下://Definition for a binary tree node.struct TreeNode {int val;TreeNode *left;TreeNode *right;TreeNode(int x) : val(x), left(NULL), right(NULL) {}};前序遍历,顺序是“根-左-右”。

使⽤递归实现:递归的思想很简单就是我们每次访问根节点后就递归访问其左节点,左节点访问结束后再递归的访问右节点。

代码如下:class Solution {public:vector<int> preorderTraversal(TreeNode* root) {if(root == NULL) return {};vector<int> res;helper(root,res);return res;}void helper(TreeNode *root, vector<int> &res){res.push_back(root->val);if(root->left) helper(root->left, res);if(root->right) helper(root->right, res);}};使⽤辅助栈迭代实现:算法为:先把根节点push到辅助栈中,然后循环检测栈是否为空,若不空,则取出栈顶元素,保存值到vector中,之后由于需要想访问左⼦节点,所以我们在将根节点的⼦节点⼊栈时要先经右节点⼊栈,再将左节点⼊栈,这样出栈时就会先判断左⼦节点。

代码如下:class Solution {public:vector<int> preorderTraversal(TreeNode* root) {if(root == NULL) return {};vector<int> res;stack<TreeNode*> st;st.push(root);while(!st.empty()){//将根节点出栈放⼊结果集中TreeNode *t = st.top();st.pop();res.push_back(t->val);//先⼊栈右节点,后左节点if(t->right) st.push(t->right);if(t->left) st.push(t->left);}return res;}};Morris Traversal⽅法具体的详细解释可以参考如下链接:这种解法可以实现O(N)的时间复杂度和O(1)的空间复杂度。

c语言二叉树的先序,中序,后序遍历

c语言二叉树的先序,中序,后序遍历

c语言二叉树的先序,中序,后序遍历1、先序遍历先序遍历可以想象为,一个小人从一棵二叉树根节点为起点,沿着二叉树外沿,逆时针走一圈回到根节点,路上遇到的元素顺序,就是先序遍历的结果先序遍历结果为:A B D H I E J C F K G2、中序遍历中序遍历可以看成,二叉树每个节点,垂直方向投影下来(可以理解为每个节点从最左边开始垂直掉到地上),然后从左往右数,得出的结果便是中序遍历的结果中遍历结果为:H D I B E J A F K C G3、后序遍历后序遍历就像是剪葡萄,我们要把一串葡萄剪成一颗一颗的。

还记得我上面提到先序遍历绕圈的路线么?(不记得翻上面理解)就是围着树的外围绕一圈,如果发现一剪刀就能剪下的葡萄(必须是一颗葡萄)(也就是葡萄要一个一个掉下来,不能一口气掉超过1个这样),就把它剪下来,组成的就是后序遍历了。

后序遍历中,根节点默认最后面后序遍历结果:H I D J E B K F G C A4、口诀先序遍历:先根再左再右中序遍历:先左再根再右后序遍历:先左再右再根这里的根,指的是每个分叉子树(左右子树的根节点)根节点,并不只是最开始头顶的根节点,需要灵活思考理解5、代码展示#include<stdio.h>#include<stdlib.h>typedef struct Tree{int data; // 存放数据域struct Tree *lchild; // 遍历左子树指针struct Tree *rchild; // 遍历右子树指针}Tree,*BitTree;BitTree CreateLink(){int data;int temp;BitTree T;scanf("%d",&data); // 输入数据temp=getchar(); // 吸收空格if(data == -1){ // 输入-1 代表此节点下子树不存数据,也就是不继续递归创建return NULL;}else{T = (BitTree)malloc(sizeof(Tree)); // 分配内存空间T->data = data; // 把当前输入的数据存入当前节点指针的数据域中printf("请输入%d的左子树: ",data);T->lchild = CreateLink(); // 开始递归创建左子树printf("请输入%d的右子树: ",data);T->rchild = CreateLink(); // 开始到上一级节点的右边递归创建左右子树return T; // 返回根节点}}// 先序遍历void ShowXianXu(BitTree T) // 先序遍历二叉树{if(T==NULL) //递归中遇到NULL,返回上一层节点{return;}printf("%d ",T->data);ShowXianXu(T->lchild); // 递归遍历左子树ShowXianXu(T->rchild); // 递归遍历右子树}// 中序遍历void ShowZhongXu(BitTree T) // 先序遍历二叉树{if(T==NULL) //递归中遇到NULL,返回上一层节点{return;}ShowZhongXu(T->lchild); // 递归遍历左子树printf("%d ",T->data);ShowZhongXu(T->rchild); // 递归遍历右子树}// 后序遍历void ShowHouXu(BitTree T) // 后序遍历二叉树{if(T==NULL) //递归中遇到NULL,返回上一层节点{return;}ShowHouXu(T->lchild); // 递归遍历左子树ShowHouXu(T->rchild); // 递归遍历右子树printf("%d ",T->data);}int main(){BitTree S;printf("请输入第一个节点的数据:\n");S = CreateLink(); // 接受创建二叉树完成的根节点printf("先序遍历结果: \n");ShowXianXu(S); // 先序遍历二叉树printf("\n中序遍历结果: \n");ShowZhongXu(S); // 中序遍历二叉树printf("\n后序遍历结果: \n");ShowHouXu(S); // 后序遍历二叉树return 0;}。

C语言实现二叉树的前序遍历

C语言实现二叉树的前序遍历

C语言实现二叉树的前序遍历二叉树是一种非线性数据结构,由节点和边组成。

每个节点最多有两个子节点,分别称为左子节点和右子节点。

二叉树可以用递归或迭代的方法进行前序、中序和后序遍历。

在本文中,我们将重点介绍如何使用递归方法实现二叉树的前序遍历。

前序遍历是指首先访问根节点,然后按照左子树->右子树的顺序遍历二叉树。

在实际编程中,我们可以通过递归的方式来遍历每个节点。

首先,让我们定义二叉树的节点结构。

```c//定义二叉树节点结构struct TreeNodeint val; // 节点值struct TreeNode* left; // 左子节点指针struct TreeNode* right; // 右子节点指针};```接下来,让我们实现二叉树的前序遍历函数。

```c//二叉树的前序遍历函数void preorderTraversal(struct TreeNode* root)if (root == NULL) { // 如果根节点为空,则返回return;}//首先打印根节点的值printf("%d ", root->val);//然后递归遍历左子树preorderTraversal(root->left);//最后递归遍历右子树preorderTraversal(root->right);```首先,我们判断根节点是否为空。

如果为空,表示已经遍历到叶子节点,直接返回。

然后,我们打印当前节点的值。

接下来,我们递归调用前序遍历函数,遍历左子树和右子树。

接下来,我们可以通过构建一个简单的二叉树来测试我们的前序遍历函数。

```c//创建一个二叉树用于测试前序遍历struct TreeNode* createTestTrestruct TreeNode* root = (structTreeNode*)malloc(sizeof(struct TreeNode)); // 创建根节点root->val = 1;root->left = (struct TreeNode*)malloc(sizeof(struct TreeNode)); // 创建左子节点root->left->val = 2;root->left->left = NULL;root->left->right = NULL;root->right = (struct TreeNode*)malloc(sizeof(struct TreeNode)); // 创建右子节点root->right->val = 3;root->right->left = NULL;root->right->right = NULL;return root;```在主函数中,我们创建一个测试二叉树,并调用前序遍历函数进行遍历。

数据结构c语言版课后习题答案

数据结构c语言版课后习题答案

数据结构c语言版课后习题答案数据结构是计算机科学中的一个重要概念,它涉及到组织、管理和存储数据的方式,以便可以有效地访问和修改数据。

C语言是一种广泛使用的编程语言,它提供了丰富的数据结构实现方式。

对于学习数据结构的C语言版课程,课后习题是巩固理论知识和提高实践能力的重要手段。

数据结构C语言版课后习题答案1. 单链表的实现在C语言中,单链表是一种常见的线性数据结构。

它由一系列节点组成,每个节点包含数据部分和指向下一个节点的指针。

实现单链表的基本操作通常包括创建链表、插入节点、删除节点、遍历链表等。

答案:- 创建链表:定义一个链表结构体,然后使用动态内存分配为每个节点分配内存。

- 插入节点:根据插入位置,调整前后节点的指针,并将新节点插入到链表中。

- 删除节点:找到要删除的节点,调整其前后节点的指针,然后释放该节点的内存。

- 遍历链表:从头节点开始,使用指针遍历链表,直到达到链表尾部。

2. 二叉树的遍历二叉树是一种特殊的树形数据结构,其中每个节点最多有两个子节点。

二叉树的遍历是数据结构中的一个重要概念,常见的遍历方式有前序遍历、中序遍历、后序遍历和层序遍历。

答案:- 前序遍历:先访问根节点,然后递归遍历左子树,最后递归遍历右子树。

- 中序遍历:先递归遍历左子树,然后访问根节点,最后递归遍历右子树。

- 后序遍历:先递归遍历左子树,然后递归遍历右子树,最后访问根节点。

- 层序遍历:使用队列,按照从上到下,从左到右的顺序访问每个节点。

3. 哈希表的实现哈希表是一种通过哈希函数将键映射到表中一个位置来访问记录的数据结构。

它提供了快速的数据访问能力,但需要处理哈希冲突。

答案:- 哈希函数:设计一个哈希函数,将键映射到哈希表的索引。

- 哈希冲突:使用链地址法、开放地址法或双重哈希法等解决冲突。

- 插入操作:计算键的哈希值,将其插入到对应的哈希桶中。

- 删除操作:找到键对应的哈希桶,删除相应的键值对。

4. 图的表示和遍历图是一种复杂的非线性数据结构,由顶点(节点)和边组成。

C++二叉树的先序,中序,后序遍历

C++二叉树的先序,中序,后序遍历

C++⼆叉树的先序,中序,后序遍历三种遍历⽅式都分为递归与⾮递归的⽅式。

三种遍历⽅式的递归思想相同。

后序遍历⾮递归⽅法分为两种,具体见代码。

构造⽅式:1 #include<iostream>2 #include<stack>3using namespace std;45 typedef struct BiTNode{6char data;7int lvisited,rvisited;//左、右孩⼦是否访问过,1表⽰已访问(此项只在后序⾮递归2算法中需要)8struct BiTNode *lchild,*rchild;9 }BiTNode,*BiTree;1011void InitBiTree(BiTree &T)//构造空⼆叉树12 {13 T=NULL;14 }15void CreateBiTree(BiTree &T)//⽣成⼆叉树16 {17char ch;18 cin>>ch;19if(ch=='0')//0代表空20 T=NULL;21else22 {23 T=(BiTree)malloc(sizeof(BiTNode));//⽣成根结点24if(!T)25 {26 cout<<"⽣成结点错误!"<<endl;27return;28 }29 T->data=ch;30 T->lvisited=0;31 T->rvisited=0;32 CreateBiTree(T->lchild);33 CreateBiTree(T->rchild);34 }35 }三种遍历⽅式代码:1void PreOrder(BiTree T)//先序递归遍历2 {3if(T!=NULL)4 {5 cout<<T->data<<"";6 PreOrder(T->lchild);7 PreOrder(T->rchild);8 }9 }10void SqlPreOrder(BiTree T)//先序⾮递归遍历11 {12 stack<BiTree> s;13 BiTree p=T;14while(p || !s.empty())15 {16if(p)17 {18 cout<<p->data<<"";19 s.push(p);20 p=p->lchild;21 }22else23 {24 p=s.top();25 p=p->rchild;26 s.pop();27 }28 }29 }30313233void InOrder(BiTree T)//中序递归遍历34 {35if(T!=NULL)36 {37 InOrder(T->lchild);38 cout<<T->data<<"";39 InOrder(T->rchild);40 }41 }42void SqInOrder(BiTree T)//中序⾮递归遍历43 {44 stack<BiTree> s;45 BiTree p=T;46while(p || !s.empty())47if(p)48 {49 s.push(p);50 p=p->lchild;51 }52else53 {54 p=s.top();55 cout<<p->data<<"";56 s.pop();57 p=p->rchild;58 }59 }60616263void PostOrder(BiTree T)//后序递归遍历64 {65if(T!=NULL)66 {67 PostOrder(T->lchild);68 PostOrder(T->rchild);69 cout<<T->data<<"";70 }71 }7273//后序⾮递归遍历1思路:因为后序⾮递归遍历⼆叉树的顺序是先访问左⼦树,再访问后⼦树,最后 74//访问根结点。

二叉树的遍历代码

二叉树的遍历代码

二叉树的遍历代码二叉树是一种非常常见的数据结构,它由根节点、左子树和右子树组成,可以用于实现各种算法和应用。

在使用二叉树时,我们常常需要进行遍历来获取树中的节点信息。

下面,我们将详细介绍二叉树的遍历方法及其代码实现。

二叉树的遍历方法分为三种:前序遍历、中序遍历和后序遍历。

它们的不同之处在于遍历节点的顺序不同。

我们分别来介绍一下这三种遍历方法。

1.前序遍历前序遍历的顺序是:先访问根节点,然后递归访问左子树和右子树。

实现前序遍历的代码如下:```pythondef preorder_traversal(node):if node:print(node.data)preorder_traversal(node.left)preorder_traversal(node.right)```在代码中,我们首先输出根节点的值,然后分别递归访问左子树和右子树,直到遍历完整个树。

2.中序遍历中序遍历的顺序是:先递归访问左子树,然后访问根节点,最后递归访问右子树。

实现中序遍历的代码如下:```pythondef inorder_traversal(node):if node:inorder_traversal(node.left)print(node.data)inorder_traversal(node.right)```在代码中,我们先递归访问左子树,然后输出根节点的值,最后递归访问右子树。

3.后序遍历后序遍历的顺序是:先递归访问左子树和右子树,然后访问根节点。

实现后序遍历的代码如下:```pythondef postorder_traversal(node):if node:postorder_traversal(node.left)postorder_traversal(node.right)print(node.data)```在代码中,我们先递归访问左子树和右子树,然后输出根节点的值。

通过前序遍历、中序遍历和后序遍历,我们可以获取二叉树中每个节点的值。

数据结构实验报告--

数据结构实验报告--

数据结构实验报告--实验一、线性表的实现线性表是常用的数据结构之一,其中最常用的是顺序存储结构。

本实验使用C语言实现了顺序存储结构的线性表。

首先,定义了一个结构体来表示线性表:```#define MAXSIZE 100 //线性表最大长度typedef struct {int data[MAXSIZE]; //存放线性表元素int length; //线性表当前长度} SqList; //线性表类型定义```其中,data数组存放线性表元素,length表示线性表当前长度。

接着,定义了三个基本操作:1. 初始化线性表```void InitList(SqList *L) {L->length = 0;}```2. 插入元素```bool ListInsert(SqList *L, int i, int e) {if (i < 1 || i > L->length + 1) { //插入位置不合法}if (L->length >= MAXSIZE) { //线性表已满return false;}for (int j = L->length; j >= i; j--) { //将第i个位置之后的所有元素后移一位L->data[j] = L->data[j - 1];}L->data[i - 1] = e; //将元素e插入到第i个位置L->length++; //线性表长度加1return true;}```3. 删除元素以上三个操作就是线性表的基本操作,通过这三个操作就能完成线性表的所有操作。

实验二、栈和队列的实现2.1 栈的实现栈是一种后进先出(Last In First Out)的数据结构。

我们可以用线性表来实现栈,只需要对线性表的插入和删除操作进行限制就行了。

具体实现如下:void InitStack(Stack *S) {S->top = -1; //初始化栈顶指针}bool Push(Stack *S, int e) {if (S->top == STACK_SIZE - 1) { //栈已满,无法插入元素}S->top++; //栈顶指针加1S->data[S->top] = e; //插入元素e到栈顶return true;}以上代码实现了栈的初始化、入栈和出栈操作。

设二叉树中每个结点的元素均为一个字符,按先序遍历的顺序建立二叉链表,编写递归算

设二叉树中每个结点的元素均为一个字符,按先序遍历的顺序建立二叉链表,编写递归算

设二叉树中每个结点的元素均为一个字符,按先序遍历的顺序建立二叉链表,编写递归算
随着互联网的发展,数据的快速增加,因而急需有一种高效的数据结构来
管理这样大量数据。

其中最基本,最重要的数据结构便是二叉链表,它主要用来表示树形结构。

二叉链表以一种链式存储结构形式存储着树形结构,通过结点之间的指针来存储结点之间的关系,这样就可以遍历树形结构非常方便,通过指针,可以跳转到某一结点,从而达到查找和管理的目的,使得存取效率更高。

先序遍历的话就是,首先访问根结点,然后先序遍历左子树,再先序遍历
右子树。

按照先序遍历的方式建立一棵二叉链表,采用递归方法,就是在二叉树中每个元素均为一个字符的情况下,把其一一读入,把遇到的空格字符用作空指针,创建一个结点把字符读入结点的数据域中,原来的空格字符的地方链入新生成的结点,而读取先序遍历顺序的字符作为树的根结点放在结点的左孩子,紧贴的下一个字符放在根结点的右节点,然后递归修改每个孩子和右孩子,依次创建整棵二叉树,最后遍历完成,就建立好了一棵二叉链表。

二叉链表因其简洁、连环,可以实现动态结构,将数据结构和算法完美结合,得到更高的存储和管理性能,因此,在互联网中建立二叉链表来对数据进行存取,正是大有裨益。

c语言中求二叉树的最大值

c语言中求二叉树的最大值

C语言中如何求二叉树的最大值?二叉树是计算机科学中常用的数据结构之一,它在很多应用中都有广泛的应用。

本文将介绍在C语言中如何求解二叉树的最大值。

首先我们需要了解二叉树。

二叉树是一种树形数据结构,它由一个根节点和一些有序的子节点组成。

每个节点最多有两个子节点:一个左子节点和一个右子节点。

我们可以使用递归的方式遍历整个二叉树,来查找最大值。

在遍历二叉树过程中,我们需要记录当前的最大值,每次遍历到一个新的节点时,比较该节点的值是否大于当前最大值,如果是,则更新当前最大值。

接下来,我们使用C语言编写代码实现求解二叉树最大值的算法。

以下是代码示例:include <stdio.h>include <stdlib.h>// 定义二叉树节点结构体struct TreeNode {int val;struct TreeNode *left;struct TreeNode *right;};// 求解二叉树最大值的函数int getMaxValue(struct TreeNode* root) {if (root == NULL) {return INT_MIN;}int left_max = getMaxValue(root->left);int right_max = getMaxValue(root->right);return fmax(root->val, fmax(left_max, right_max));}int main(){// 构建二叉树struct TreeNode *root = (structTreeNode*)malloc(sizeof(struct TreeNode));root->val = 5;root->left = (struct TreeNode*)malloc(sizeof(struct TreeNode));root->left->val = 3;root->right = (struct TreeNode*)malloc(sizeof(struct TreeNode));root->right->val = 6;root->left->left = (structTreeNode*)malloc(sizeof(struct TreeNode));root->left->left->val = 2;root->left->right = (structTreeNode*)malloc(sizeof(struct TreeNode));root->left->right->val = 4;root->right->right = (structTreeNode*)malloc(sizeof(struct TreeNode));root->right->right->val = 7;// 求解二叉树最大值int max_val = getMaxValue(root);printf("the max value of binary tree is %d\n",max_val);return 0;}在上面的代码中,我们首先定义了一个名为TreeNode的结构体,用于描述二叉树的节点。

编写递归算法在二叉树中求位于先序序列中第K个位置的结点

编写递归算法在二叉树中求位于先序序列中第K个位置的结点

编写递归算法在二叉树中求位于先序序列中第K个位置的结点递归算法是一种常用的解决问题的方法,通过将问题拆分成更小规模的子问题,不断递归调用解决子问题,最终得到问题的解。

在二叉树中求位于先序序列中第K个位置的节点,可以使用递归算法来实现。

首先,我们需要了解先序遍历的特点。

先序遍历的顺序是根节点,左子树,右子树。

我们可以按照这个顺序来编写递归算法。

下面是一个示例代码:```pythonclass Node:def __init__(self, value):self.value = valueself.left = Noneself.right = Nonedef pre_order_kth_node(node, k, count):if node is None:return Nonecount[0] += 1 # 统计节点个数if count[0] == k:return node#递归查找左子树left_res = pre_order_kth_node(node.left, k, count) if left_res:return left_res#递归查找右子树right_res = pre_order_kth_node(node.right, k, count) if right_res:return right_resreturn None#测试代码#构造二叉树root = Node(1)root.left = Node(2)root.right = Node(3)root.left.left = Node(4)root.left.right = Node(5)root.right.left = Node(6)root.right.right = Node(7)#求先序序列中第1个位置的节点count = [0] # 记录节点个数k=1res = pre_order_kth_node(root, k, count)if res:print("第{}个位置的节点值为{}".format(k, res.value))else:print("找不到对应的节点")```上述代码中,我们定义了一个`Node`类来表示二叉树的节点。

二叉树的顺序存储结构代码

二叉树的顺序存储结构代码

二叉树的顺序存储结构代码介绍二叉树是一种常用的数据结构,它由节点组成,每个节点最多有两个子节点。

在计算机中,我们通常使用顺序存储结构来表示二叉树。

顺序存储结构是将二叉树的节点按照从上到下、从左到右的顺序依次存储在一个数组中。

本文将详细介绍二叉树的顺序存储结构代码,包括初始化、插入节点、删除节点以及遍历等操作。

二叉树的顺序存储结构代码实现初始化二叉树首先,我们需要定义一个数组来存储二叉树的节点。

假设数组的大小为n,则二叉树的最大节点数量为n-1。

# 初始化二叉树,将数组中所有元素置为空def init_binary_tree(n):binary_tree = [None] * nreturn binary_tree插入节点在二叉树的顺序存储结构中,节点的插入操作需要保持二叉树的特性,即左子节点小于父节点,右子节点大于父节点。

插入节点的算法如下:1.找到待插入位置的父节点索引parent_index。

2.如果待插入节点小于父节点,将其插入到父节点的左子节点位置,即数组索引2*parent_index+1处。

3.如果待插入节点大于父节点,将其插入到父节点的右子节点位置,即数组索引2*parent_index+2处。

# 插入节点def insert_node(binary_tree, node):index = 0 # 当前节点的索引值,初始值为根节点的索引值while binary_tree[index] is not None:if node < binary_tree[index]:index = 2 * index + 1 # 插入到左子节点else:index = 2 * index + 2 # 插入到右子节点binary_tree[index] = node删除节点删除节点需要保持二叉树的特性,即在删除节点后,仍然满足左子节点小于父节点,右子节点大于父节点的条件。

删除节点的算法如下:1.找到待删除节点的索引delete_index。

用C语言编写二叉树的建立与遍历

用C语言编写二叉树的建立与遍历

用C语言编写二叉树的建立与遍历1.对题目要有需求分析在需求分析中,将题目中要求的功能进行叙述分析,并且设计解决此问题的数据存储结构,设计或叙述解决此问题的算法。

给出实现功能的一组或多组测试数据,程序调试后,将按照此测试数据进行测试的结果列出来。

如果程序不能正常运行,写出实现此算法中遇到的问题和改进方法;2.对题目要有相应的源程序源程序要按照写程序的规则来编写。

要结构清晰,重点函数的重点变量,重点功能部分要加上清晰的程序注释。

(注释量占总代码的四分之一)程序能够运行,要有基本的容错功能。

尽量避免出现操作错误时出现死循环;3.最后提供的主程序可以象一个应用系统一样有主窗口,通过主菜单和分级菜单调用课程设计中要求完成的各个功能模块,调用后可以返回到主菜单,继续选择其他功能进行其他功能的选择。

二叉树的建立与遍历[问题描述]建立一棵二叉树,并对其进行遍历(先序、中序、后序),打印输出遍历结果。

[基本要求]从键盘接受输入,以二叉链表作为存储结构,建立二叉树,并对其进行遍历(先序、中序、后序),将遍历结果打印输出。

以下是我的数据结构实验的作业:肯定好用,里面还包括了统计树的深度和叶子数!记住每次做完一个遍历还要重新输入你的树哦!#include "stdio.h"#include "string.h"#define NULL 0typedef struct BiTNode{char data;struct BiTNode *lchild,*rchild;}BiTNode,*BiTree;BiTree Create(BiTree T){char ch;ch=getchar();if(ch=='#')T=NULL;else{if(!(T=(BiTNode *)malloc(sizeof(BiTNode))))printf("Error!");T->data=ch;T->lchild=Create(T->lchild);T->rchild=Create(T->rchild); }return T;}void Preorder(BiTree T){if(T){printf("%c",T->data); Preorder(T->lchild); Preorder(T->rchild);}}int Sumleaf(BiTree T){int sum=0,m,n;if(T){if((!T->lchild)&&(!T->rchild)) sum++;m=Sumleaf(T->lchild);sum+=m;n=Sumleaf(T->rchild);sum+=n;}return sum;}void zhongxu(BiTree T){if(T){zhongxu(T->lchild);printf("%c",T->data); zhongxu(T->rchild);}}void houxu(BiTree T){if(T){houxu(T->lchild);houxu(T->rchild);printf("%c",T->data);}}int Depth(BiTree T){int dep=0,depl,depr;if(!T) dep=0;else{depl=Depth(T->lchild);depr=Depth(T->rchild);dep=1+(depl>depr?depl:depr);}return dep;}main(){BiTree T;int sum,dep;T=Create(T);Preorder(T);printf("\n");zhongxu(T);printf("\n");houxu(T);printf("\n");sum=Sumleaf(T);printf("%d",sum);dep=Depth(T);printf("\n%d",dep);}在Turbo C的环境下,先按Ctrl+F9运行程序,此时就是建立二叉树的过程,例如输入序列ABC##DE#G##F###(其中的“#”表示空,并且输入过程中不要加回车,因为回车也有对应的ASCII码,是要算字符的,但是输入完之后可以按回车退出),然后再按ALT+F5显示用户界面,这时候就能够看到结果了。

给定一棵二叉树的先序遍历序列和中序遍历序列,要求计算该二叉树的高度

给定一棵二叉树的先序遍历序列和中序遍历序列,要求计算该二叉树的高度

给定一棵二叉树的先序遍历序列和中序遍历序列,要求计算该二叉树的高度.题目描述现给定一棵二叉树的先序遍历序列和中序遍历序列,要求你计算该二叉树的高度。

输入输入包含多组测试数据,每组输入首先给出正整数N(<=50),为树中结点总数。

下面2行先后给出先序和中序遍历序列,均是长度为N的不包含重复英文字母(区别大小写)的字符串。

输出对于每组输入,输出一个整数,即该二叉树的高度。

样例输入9ABDFGHIECFDHGIBEAC7思路见代码#include<bits/stdc++.h>using namespace std;int dfs(char*pre,char*in,int n)//n为中序遍历中的查找个数,即为子树的节点数{if(n==0) return 0;int i;for(i=0;i<n;i++) //找顶点if(pre[0]==in[i])break;int left=dfs(pre+1,in,i);//对左子树//顶点在先序遍历中的位置往后一位//中序查找的起点不变,但结尾处应小于i ,即n=iint right=dfs(pre+i+1,in+i+1,n-i-1);// 对右子树//顶点在先序遍历中的位置要加上其左子树的全部节点数i,再往后移一位//中序查找的位置就从i往后一位,其个数为n-i-1;return max(left,right)+1;//要最深的那个}int main(){int n;while(cin>>n){char pre[n+1],in[n+1];cin>>pre>>in;cout<<dfs(pre,in,n)<<endl; }return 0;}。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

C语言实现二叉树的前序遍历算法实现一:
#include <stdio.h>
#include <stdlib.h>
typedef struct BiTNode//定义结构体
{
char data;
struct BiTNode *lchild,*rchild;
}BiTNode,*BiTree;
void CreateBiTree(BiTree &T) //前序创建树
{
char ch;
scanf("%c",&ch);
if(ch==' ') T=NULL;
else
{
T=(struct BiTNode *)malloc(sizeof(struct BiTNode));
T->data=ch;
CreateBiTree(T->lchild);
CreateBiTree(T->rchild);
}
}
int print(BiTree T)//前序遍历(输出二叉树)
{
if(T==NULL)return 0;
else if(T->lchild==NULL && T->rchild==NULL)return 1;
else return print(T->lchild)+print(T->rchild);
}
void main()//主函数
{
BiTree T;
CreateBiTree(T);
printf("%d\n",print(T));
}
算法实现二:
#include<stdio.h>
#include<stdlib.h>
struct BiTNode//定义结构体
{
char data;
struct BiTNode *lchild,*rchild;
};
int num=0;
void CreatBiTree(struct BiTNode *&p) //前序创建树
{
char ch;
scanf("%c",&ch);
if(ch==' ') p=NULL;
else
{
p=(struct BiTNode *)malloc(sizeof(struct BiTNode));
p->data=ch;
CreatBiTree(p->lchild);
CreatBiTree(p->rchild);
}
}
void print(struct BiTNode *p) //前序遍历(输出二叉树){
if(p!=NULL)
{
if(p->lchild==NULL&&p->rchild==NULL)
else
{
print(p->lchild);
print(p->rchild);
}
}
}
void main()//主函数
{
struct BiTNode *p;
CreatBiTree(p);
print(p);
printf("%d\n",num);
}
供测试使用的数据。

相关文档
最新文档