排列组合习题-(含详细答案)

合集下载

排列组合练习题-答案

排列组合练习题-答案

经典题库-排列组合练习题注:排列数公式m n P 亦可记为mn A 。

一、选择题1.从0,1,3,4,5,6六个数字中,选出一个偶数和两个奇数,组成一个没有重复数字的三位数,这样的三位数共有( )A 、24个B 、36个C 、48个D 、54个【答案】C【解析】若包括0,则还需要两个奇数,且0不能排在最高位,有C 32A 21A 22=3×2×2=12个若不包括0,则有C 21C 32A 33=3×2×6=36个共计12+36=48个考点:排列组合2.某学生制定了数学问题解决方案: 星期一和星期日分别解决4个数学问题, 且从星期二开始, 每天所解 决问题的个数与前一天相比, 要么“多一个”要么“持平”要么“少一个”.在一周中每天所解决问题个数的不同方案共有( )A.50种B.51种C.140种D.141种【答案】D【解析】试题分析:因为星期一和星期日分别解决4个数学问题,所以从这周的第二天开始后六天中“多一个”或“少一个”的天数必须相同,所以后面六天中解决问题个数“多一个”或“少一个”的天数可能是0、1、2、3天,共四种情况,所以共有01122336656463141C C C C C C C +++=种 考点:排列组合问题3.有10件不同的电子产品,其中有2件产品运行不稳定。

技术人员对它们进行一一测试,直到2件不稳定的产品全部找出后测试结束,则恰好3次就结束测试的方法种数是( )A .16B .24C .32D .48【答案】C【解析】试题分析:前两次测试的是一件稳定的,一件不稳定的,第三件是不稳定的,共有21122832A C C = 种方法.考点:排列与组合公式.4.一个袋中有6个同样大小的黑球,编号为1、2、3、4、5、6,现从中随机取出3个球,以X 表示取出球的最大号码. 则X 所有可能取值的个数是( )A .6B .5C .4D .3【答案】C【解析】试题分析:随机变量X 的可能取值为6,5,4,3取值个数为4.考点:离散型随机变量的取值.5.在1,2,3,4,5,6这六个数字组成的没有重复数字的三位数中,各位数字之和为偶数的共有( )A .60个B .36个C .24个D .18个【答案】A【解析】依题意,所选的三位数字有两种情况:(1)3个数字都是偶数,有33P 种方法;(2)3个数字中有2个是奇数,1个是偶数,有23C 13C 33P 种方法,故共有33P +23C 13C 33P =60种方法,故选A .6.将A ,B ,C ,D ,E 排成一列,要求A ,B ,C 在排列中顺序为“A,B ,C”或“C,B ,A”(可以不相邻),这样的排列数有( )A .12种B .20种C .40种D .60种【答案】C【解析】五个元素没有限制全排列数为55P ,由于要求A ,B ,C 的次序一定(按A ,B ,C 或C ,B ,A)故除以这三个元素的全排列33P ,可得5533P P ×2=40. 7.将7支不同的笔全部放入两个不同的笔筒中,每个笔筒中至少放2支,则不同的放法有( )A .56种B .84种C .112种D .28种【答案】C【解析】根据题意先将7支不同的笔分成两组,若一组2支,另一组5支,有27C 种分组方法;若一组3支,另一组4支,有37C 种分组方法.然后分配到2个不同的笔筒中,故共有(27C +37C )22P =112种放法.8.两家夫妇各带一个小孩一起到动物园游玩,购票后排队依次入园,为安全起见,首尾一定要排两位爸爸,另外,两个小孩一定要排在一起,则这6人的入园顺序排法种数为( )A .48种B .36种C .24种D .12种【答案】C【解析】爸爸排法为22A 种,两个小孩排在一起故看成一体有22P 种排法.妈妈和孩子共有33P 种排法,∴排法种数共有22A 22A 33A =24种.故选C . 9.运动会举行.某运动队有男运动员6名,女运动员4名,选派5人参加比赛,则至少有1名女运动员的选派方法有( )A .128种B .196种C .246种D .720种【答案】C【解析】“至少有1名女运动员”的反面为“全是男运动员”.从10人中任选5人,有510C 种选法,其中全是男运动员的选法有56C 种.所以“至少有1名女运动员”的选法有510C -56C =246种.10.三张卡片的正反面分别写有1和2,3和4,5和6,若将三张卡片并列,可得到不同的三位数(6不能作9用)的个数为( )A .8B .6C .14D .48【答案】D【解析】先排首位6种可能,十位数从剩下2张卡中任取一数有4种可能,个位数1张卡片有2种可能,∴一共有6×4×2=48(种).11.某城市的街道如图,某人要从A 地前往B 地,则路程最短的走法有( )A .8种B .10种C .12种D .32种【答案】B【解析】从A 到B 若路程最短,需要走三段横线段和两段竖线段,可转化为三个a 和两个b 的不同排法,第一步:先排a 有35C 种排法,第二步:再排b 有1种排法,共有10种排法,选B 项.12.某校要求每位学生从7门课程中选修4门,其中甲、乙两门课程不能都选,则不同的选课方案有( )A .35种B .16种C .20种D .25种【答案】D【解析】试题分析:学生从7门课程中选修4门,其中甲、乙两门课程不能都选,有三种方法,一是不选甲乙共有45C 种方法,二是选甲,共有35C 种方法,三是选乙,共有35C 种方法,把这3个数相加可得结果为25 考点:排列组合公式13.用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为( )A .324B .648C .328D .360【答案】C【解析】试题分析:首先应考虑“0”是特殊元素,当0排在个位时,有错误!未找到引用源。

(完整版)经典排列组合问题100题配超详细解析

(完整版)经典排列组合问题100题配超详细解析

1.n N ∈且55n <,则乘积(55)(56)(69)n n n ---等于A .5569nn A --B .1555n A -C .1569n A -D .1469n A -【答案】C【解析】根据排列数的定义可知,(55)(56)(69)n n n ---中最大的数为69-n,最小的数为55—n ,那么可知下标的值为69—n ,共有69—n-(55—n )+1=15个数,因此选择C2.某公司新招聘8名员工,平均分配给下属的甲、乙两个部门,其中两名英语翻译人员不能分在同一部门,另外三名电脑编程人员也不能全分在同一部门,则不同的分配方案共有( ) A. 24种 B. 36种 C 。

38种 D 。

108种 【答案】B【解析】因为平均分配给下属的甲、乙两个部门,其中两名英语翻译人员不能分在同一部门,另外三名电脑编程人员也不能全分在同一部门,那么特殊元素优先考虑,分步来完成可知所有的分配方案有36种,选B3.n ∈N *,则(20-n )(21—n )……(100-n)等于( )A .80100n A - B .nn A --20100 C .81100n A -D .8120n A -【答案】C【解析】因为根据排列数公式可知n ∈N *,则(20-n )(21—n)……(100—n)等于81100n A -,选C4.从0,4,6中选两个数字,从3.5。

7中选两个数字,组成无重复数字的四位数。

其中偶数的个数为 ( ) A 。

56 B. 96 C. 36 D 。

360 【答案】B【解析】因为首先确定末尾数为偶数,那么要分为两种情况来解,第一种,末尾是0,那么其余的有A 35=60,第二种情况是末尾是4,或者6,首位从4个人选一个,其余的再选2个排列即可 433⨯⨯,共有96种5.从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的工作,若其中甲、乙两名志愿者不能从事翻译工作,则选派方案共有 ( )A. 280种B. 240种 C 。

排列组合题目精选(附答案)

排列组合题目精选(附答案)

排列组合题目精选(附答案)1.A和B必须相邻且B在A的右边,剩下的C、D、E可以随意排列,因此排列方式为4.即24种。

选项D正确。

2.先计算所有可能的排列方式,即7.然后减去甲乙相邻的排列方式,即2×6.因此不同的排列方式为5×6.即3600种。

选项B正确。

3.第一个格子有4种选择,第二个格子有3种选择,第三个格子有2种选择,因此不同的填法有4×3×2=24种。

选项D 错误。

4.由于每封信可以投入5个信箱中的任意一个,因此总的投放方式为5的4次方,即625种。

5.对于每个路口,选择4名同学进行调查的方式有12选4种,因此总的分配方案为(12选4)的3次方,即154,440种。

6.第一排有6种选择,第二排有5种选择,第三排有4种选择,因此不同的排法有6×5×4=120种。

选项B正确。

7.首先从8个元素中选出2个排在前排,有8选2种选择方式。

然后从剩下的6个元素中选出1个排在后排,有6种选择方式。

最后将剩下的5个元素排在后排,有5!种排列方式。

因此不同的排法有8选2×6×5!=28×720=20,160种。

8.首先将甲、乙、丙三人排成一排,有3!种排列方式。

然后将其余4人插入到相邻的位置中,有4!种排列方式。

因此不同的排法有3!×4!=144种。

9.首先将10个名额排成一排,有10!种排列方式。

然后在9个间隔中插入6个分隔符,每个间隔至少插入一个分隔符,因此有8种插入方式。

因此不同的分配方案有10!÷(6×8)=21,000种。

10.首先将除了甲和乙的8个人排成一排,有8!种排列方式。

然后将甲和乙插入到相邻的位置中,有2种插入方式。

因此不同的派遣方案有8!×2=80,640种。

11.个位数字小于十位数字的六位数,可以从1、2、3、4、5中选出两个数字排列,有5选2种选择方式,即10种。

(完整版)排列组合练习题3套(含答案)

(完整版)排列组合练习题3套(含答案)

(完整版)排列组合练习题3套(含答案)排列练习⼀、选择题1、将3个不同的⼩球放⼊4个盒⼦中,则不同放法种数有()A、81B、64C、12D、142、n∈N且n<55,则乘积(55-n)(56-n)……(69-n)等于()A、 B、 C、 D、3、⽤1,2,3,4四个数字可以组成数字不重复的⾃然数的个数()A、64B、60C、24D、2564、3张不同的电影票全部分给10个⼈,每⼈⾄多⼀张,则有不同分法的种数是()A、2160B、120C、240D、7205、要排⼀张有5个独唱和3个合唱的节⽬表,如果合唱节⽬不能排在第⼀个,并且合唱节⽬不能相邻,则不同排法的种数是()A、 B、 C、 D、6、5个⼈排成⼀排,其中甲、⼄两⼈⾄少有⼀⼈在两端的排法种数有()A、 B、 C、 D、7、⽤数字1,2,3,4,5组成没有重复数字的五位数,其中⼩于50000的偶数有()A、24B、36C、46D、608、某班委会五⼈分⼯,分别担任正、副班长,学习委员,劳动委员,体育委员,其中甲不能担任正班长,⼄不能担任学习委员,则不同的分⼯⽅案的种数是()A、B、C、D、⼆、填空题1、(1)(4P84+2P85)÷(P86-P95)×0!=___________(2)若P2n3=10Pn3,则n=___________2、从a、b、c、d这四个不同元素的排列中,取出三个不同元素的排列为__________________________________________________________________3、4名男⽣,4名⼥⽣排成⼀排,⼥⽣不排两端,则有_________种不同排法4、有⼀⾓的⼈民币3张,5⾓的⼈民币1张,1元的⼈民币4张,⽤这些⼈民币可以组成_________种不同币值。

三、解答题1、⽤0,1,2,3,4,5这六个数字,组成没有重复数字的五位数,(1)在下列情况,各有多少个?①奇数②能被5整除③能被15整除④⽐35142⼩⑤⽐50000⼩且不是5的倍数2、7个⼈排成⼀排,在下列情况下,各有多少种不同排法?(1)甲排头(2)甲不排头,也不排尾(3)甲、⼄、丙三⼈必须在⼀起(4)甲、⼄之间有且只有两⼈(5)甲、⼄、丙三⼈两两不相邻(6)甲在⼄的左边(不⼀定相邻)(7)甲、⼄、丙三⼈按从⾼到矮,⾃左向右的顺序(8)甲不排头,⼄不排当中3、从2,3,4,7,9这五个数字任取3个,组成没有重复数字的三位数(1)这样的三位数⼀共有多少个?(2)所有这些三位数的个位上的数字之和是多少?(3)所有这些三位数的和是多少?排列与组合练习(1)⼀、填空题1、若,则n的值为()A、6B、7C、8D、92、某班有30名男⽣,20名⼥⽣,现要从中选出5⼈组成⼀个宣传⼩组,其中男、⼥学⽣均不少于2⼈的选法为()A、 B、 C、 D、3、空间有10个点,其中5点在同⼀平⾯上,其余没有4点共⾯,则10个点可以确定不同平⾯的个数是()A、206B、205C、111D、1104、6本不同的书分给甲、⼄、丙三⼈,每⼈两本,不同的分法种数是()A、 B、 C、 D、5、由5个1,2个2排成含7项的数列,则构成不同的数列的个数是()A、21B、25C、32D、426、设P1、P2…,P20是⽅程z20=1的20个复根在复平⾯上所对应的点,以这些点为顶点的直⾓三⾓形的个数为()A、360B、180C、90D、457、若,则k的取值范围是()A、[5,11]B、[4,11]C、[4,12]D、4,15]8、⼝袋⾥有4个不同的红球,6个不同的⽩球,每次取出4个球,取出⼀个线球记2分,取出⼀个⽩球记1分,则使总分不⼩于5分的取球⽅法种数是()A、 B、 C、 D、1、计算:(1)=_______(2)=_______2、把7个相同的⼩球放到10个不同的盒⼦中,每个盒⼦中放球不超1个,则有_______种不同放法。

排列组合经典练习(带答案)

排列组合经典练习(带答案)

排列与组合习题1.6个人分乘两辆不同的汽车,每辆车最多坐4人,则不同的乘车方法数为() A.40B.50C.60D.70[解析]先分组再排列,一组2人一组4人有C26=15种不同的分法;两组各3人共有C36A22=10种不同的分法,所以乘车方法数为25×2=50,故选B.2.有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有()A.36种B.48种C.72种D.96种[解析]恰有两个空座位相邻,相当于两个空位与第三个空位不相邻,先排三个人,然后插空,从而共A33A24=72种排法,故选C.3.只用1,2,3三个数字组成一个四位数,规定这三个数必须同时使用,且同一数字不能相邻出现,这样的四位数有()A.6个B.9个C.18个D.36个[解析]注意题中条件的要求,一是三个数字必须全部使用,二是相同的数字不能相邻,选四个数字共有C13=3(种)选法,即1231,1232,1233,而每种选择有A22×C23=6(种)排法,所以共有3×6=18(种)情况,即这样的四位数有18个.4.男女学生共有8人,从男生中选取2人,从女生中选取1人,共有30种不同的选法,其中女生有() A.2人或3人B.3人或4人C.3人D.4人[解析]设男生有n人,则女生有(8-n)人,由题意可得C2n C18-n=30,解得n=5或n=6,代入验证,可知女生为2人或3人.5.某幢楼从二楼到三楼的楼梯共10级,上楼可以一步上一级,也可以一步上两级,若规定从二楼到三楼用8步走完,则方法有()A.45种B.36种C.28种D.25种[解析]因为10÷8的余数为2,故可以肯定一步一个台阶的有6步,一步两个台阶的有2步,那么共有C28=28种走法.6.某公司招聘来8名员工,平均分配给下属的甲、乙两个部门,其中两名英语翻译人员不能分在同一个部门,另外三名电脑编程人员也不能全分在同一个部门,则不同的分配方案共有()A.24种B.36种C.38种D.108种[解析]本题考查排列组合的综合应用,据题意可先将两名翻译人员分到两个部门,共有2种方法,第二步将3名电脑编程人员分成两组,一组1人另一组2人,共有C13种分法,然后再分到两部门去共有C13A22种方法,第三步只需将其他3人分成两组,一组1人另一组2人即可,由于是每个部门各4人,故分组后两人所去的部门就已确定,故第三步共有C13种方法,由分步乘法计数原理共有2C13A22C13=36(种).7.已知集合A={5},B={1,2},C={1,3,4},从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,则确定的不同点的个数为()A.33 B.34 C.35 D.36[解析]①所得空间直角坐标系中的点的坐标中不含1的有C12·A33=12个;②所得空间直角坐标系中的点的坐标中含有1个1的有C12·A33+A33=18个;③所得空间直角坐标系中的点的坐标中含有2个1的有C13=3个.故共有符合条件的点的个数为12+18+3=33个,故选A.8.由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是() A.72 B.96 C.108 D.144[解析]分两类:若1与3相邻,有A22·C13A22A23=72(个),若1与3不相邻有A33·A33=36(个)故共有72+36=108个.9.如果在一周内(周一至周日)安排三所学校的学生参观某展览馆,每天最多只安排一所学校,要求甲学校连续参观两天,其余学校均只参观一天,那么不同的安排方法有()A.50种B.60种C.120种D.210种[解析]先安排甲学校的参观时间,一周内两天连排的方法一共有6种:(1,2)、(2,3)、(3,4)、(4,5)、(5,6)、(6,7),甲任选一种为C16,然后在剩下的5天中任选2天有序地安排其余两所学校参观,安排方法有A25种,按照分步乘法计数原理可知共有不同的安排方法C16·A25=120种,故选C.10.安排7位工作人员在5月1日到5月7日值班,每人值班一天,其中甲、乙二人都不能安排在5月1日和2日,不同的安排方法共有________种.(用数字作答)[解析]先安排甲、乙两人在后5天值班,有A25=20(种)排法,其余5人再进行排列,有A55=120(种)排法,所以共有20×120=2400(种)安排方法.11.今有2个红球、3个黄球、4个白球,同色球不加以区分,将这9个球排成一列有________种不同的排法.(用数字作答)[解析]由题意可知,因同色球不加以区分,实际上是一个组合问题,共有C49·C25·C33=1260(种)排法.12.将6位志愿者分成4组,其中两个组各2人,另两个组各1人,分赴世博会的四个不同场馆服务,不同的分配方案有________种(用数字作答).[解析]先将6名志愿者分为4组,共有C26C24A22种分法,再将4组人员分到4个不同场馆去,共有A 44种分法,故所有分配方案有:C 26·C 24A 22·A 44=1 080种. 13.要在如图所示的花圃中的5个区域中种入4种颜色不同的花,要求相邻区域不同色,有________种不同的种法(用数字作答).[解析] 5有4种种法,1有3种种法,4有2种种法.若1、3同色,2有2种种法,若1、3不同色,2有1种种法,∴有4×3×2×(1×2+1×1)=72种.14. 将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中.若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有(A )12种 (B )18种 (C )36种 (D )54种【解析】标号1,2的卡片放入同一封信有种方法;其他四封信放入两个信封,每个信封两个有种方法,共有种,故选B.15. 某单位安排7位员工在10月1日至7日值班,每天1人,每人值班1天,若7位员工中的甲、乙排在相邻两天,丙不排在10月1日,丁不排在10月7日,则不同的安排方案共有A. 504种B. 960种C. 1008种D. 1108种 解析:分两类:甲乙排1、2号或6、7号 共有4414222A A A ⨯种方法甲乙排中间,丙排7号或不排7号,共有)(43313134422A A A A A +种方法故共有1008种不同的排法16. 由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是 (A )72 (B )96 (C ) 108 (D )144 解析:先选一个偶数字排个位,有3种选法①若5在十位或十万位,则1、3有三个位置可排,32232A A =24个②若5排在百位、千位或万位,则1、3只有两个位置可排,共32222A A =12个算上个位偶数字的排法,共计3(24+12)=108个 答案:C17. 在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为 A.10 B.11 C.12 D.1518. 现安排甲、乙、丙、丁、戌5名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加。

排列组合总结(含答案)

排列组合总结(含答案)

1.(站队模型)4男3女站成一排:①女生相邻;5353A A ⋅②女生不相邻;4345A A ⋅③女生从高到低排;47A④甲不在排头,乙不在排尾;解析:当甲在排尾时有66A ;当甲不在排尾时有115555A A A ⋅⋅2.(组数模型)由0到9这10个数字组成没有重复数字的四位数: ①奇数;末位有112588A A A②偶数;解析:末位为0,有39A ;末位不为0,有112488A A A ⋅⋅③被5整除的数;解析:末位为0,有49A ;末位为5,有1288A A ⋅④比3257大的数; 解析:首位为4到9时有396A ;首位为3时281749A ⎧⎪⎧⎨⎪⎨⎪⎪⎩⎩百位为到时有6十位为6到9时有4A 百位为2时十位为5时有2 ⑤被3整除的三位数.12333311123322111333332A A A C C C A C C C A ⎧⋅+⎪⎧⋅⋅⋅⎨⎪⎨⎪⋅⋅⋅⎪⎩⎩都从一个集合中选时有含0时有各选一个时有不含0时有3.(分组分配问题)6个不同的小球:①放入三个不同的盒子;解析:63②放入三个不同的盒子,每盒不空;解析:4363321363132226426222:A C C C A C C C ⎧⎪⋅⋅⋅⎨⎪=++⋅⋅⎩6=4+1+1:有C 6=3+2+1:有有③分三组(堆),每组至少一个;解析:41162122321631222642336222:C C A C C C C C C A ⎧⋅⋅⎪⎪⎪⋅⋅⎨⎪⋅⋅⎪=++⎪⎩C 6=4+1+1:有6=3+2+1:有有4.6个相同的小球:①放入三个不同的盒子;解析:相当于分名额,盒子可空:插板法:28C ②放入三个不同的盒子,每盒不空;25C ③恰有一个空盒.解析:相当于两个盒子不空:1253C C ⋅5.6名同学报名三科竞赛:①每人限报一科;63②每科限报一人;366.(选派问题)5男3女:①选2人开会;28C②选正副班长,至少1女;2285A A - ③选4人开会,至多2男;解析:即至少2女,22313535C C C C ⋅+⋅④选4人跑4×100接力,至少2女.解析:()2231435354C C C C A ⋅+⋅⋅。

排列组合典型例题(带详细答案)

排列组合典型例题(带详细答案)

用0到9这10个数字.可组成多少个没有重复数字的四位偶数?三个女生和五个男生排成一排 如果女生必须全排在一起,可有多少种不同的排法? 如果女生必须全分开,可有多少种不同的排法? 如果两端都不能排女生,可有多少种不同的排法? 如果两端不能都排女生,可有多少种不同的排法? 例3排一张有5个歌唱节目和4个舞蹈节目的演出节目单。

(1 )任何两个舞蹈节目不相邻的排法有多少种? (2)歌唱节目与舞蹈节目间隔排列的方法有多少种?例4某一天的课程表要排入政治、语文、数学、物理、体育、美术共六节课,如果第一节 不排体育,最后一节不排数学,那么共有多少种不同的排课程表的方法.例5现有3辆公交车、3位司机和3位售票员,每辆车上需配 1位司机和1位售票员.问车 辆、司机、售票员搭配方案一共有多少种?例6下是表是高考第一批录取的一份志愿表.如果有 4所重点院校,每所院校有 3个专业是你较为满意的选择.若表格填满且规定学校没有重复,同一学校的专业也没有重复的话, 你将有多少种不同的填表方法?例7 7名同学排队照相.(1)若分成两排照,前排 3人,后排4人,有多少种不同的排法?例2(1) (2)(3) (4)(2)若排成两排照,前排3人,后排4人,但其中甲必须在前排,乙必须在后排,有多少种不同的排法?(3)若排成一排照,甲、乙、丙三人必须相邻,有多少种不同的排法?⑷若排成一排照,7人中有4名男生,3名女生,女生不能相邻,有多少种不面的排法?例8计算下列各题:⑴ AIS ;.ml ⑵A6 ;(3)逬廿例9 a,b,c,d ,e, f六人排一列纵队,限定a要排在b的前面(a与b可以相邻,也可以不相邻),求共有几种排法.例10八个人分两排坐,每排四人,限定甲必须坐在前排,乙、丙必须坐在同一排,共有多少种安排办法?例11计划在某画廊展出10幅不同的画,其中1幅水彩画、陈列,要求同一品种的画必须连在一起,并且不彩画不放在两端, 4幅油画、5幅国画,排成一行那么不同陈列方式有例12由数字0,1,2,3, 4,5组成没有重复数字的六位数, 其中个位数字小于十位数的个数共有().例13用1,2,3,4,5,这五个数字,组成没有重复数字的三位数,其中偶数共有().例14用0、1、2、3、4、5共六个数字,组成无重复数字的自然数,(1)可以组成多少个无重复数字的3位偶数?(2)可以组成多少个无重复数字且被3整除的三位数?学习好资料 欢迎下载原理得不同的填表方法有:A :、A •A I =5184种.1、解法1当个位数上排“ 0”时,千位,百位,十位上可以从余下的九个数字中任选 来排列,故有 A ;个;当个位上在“2、4、6、8”中任选一个来排,则千位上从余下的八个 非零数字中任选一个,百位,十位上再从余下的八个数字中任选两个来排,按乘法原理有A i ”A 木;(个).•••没有重复数字的四位偶数有 A ; +人”A 8 ”A 2=504 + 1792 =22962、解:(1)(捆绑法)因为三个女生必须排在一起,所以可以先把她们看成一个整体,这样 同五个男生合一起共有六个元素,然成一排有A 种不同排法.对于其中的每一种排法,三个女生之间又都有 A 对种不同的排法,因此共有 A 6 ^AI = 4320种不同的排法.(2)(插空法)要保证女生全分开, 可先把五个男生排好,每两个相邻的男生之间留出一个 空档.这样共有4个空档,加上两边两个男生外侧的两个位置,共有六个位置,再把三个女 生插入这六个位置中, 只要保证每个位置至多插入一个女生, 就能保证任意两个女生都不相邻.由于五个男生排成一排有A5种不同排法,对于其中任意一种排法,从上述六个位置中O53选出三个来让三个女生插入都有A ;种方法,因此共有 A -As =14400种不同的排法.(3)解法1:(位置分析法)因为两端不能排女生,所以两端只能挑选 有A 2种不同的排法,对于其中的任意一种排法,其余六位都有A •A =14400种不同的排法.(4)3个女生和5个男生排成一排有 A 种排法,从中扣去两端都是女生排法 A 2"A ;种,3、解:(1)先排歌唱节目有 A 5种,歌唱节目之间以及两端共有 6个位子,从中选4个放入舞蹈节目,共有 A 4中方法,所以任两个舞蹈节目不相邻排法有:(2)先排舞蹈节目有 A :中方法,在舞蹈节目之间以及两端共有 5个空位,恰好供5个歌唱 节目放入。

排列组合经典练习(带答案)

排列组合经典练习(带答案)

排列与组合习题1.6个人分乘两辆不同的汽车,每辆车最多坐4人,则不同的乘车方法数为( ) A.40 B.50 C.60 D.70[解析] 先分组再排列,一组2人一组4人有C26=15种不同的分法;两组各3人共有C36A22=10种不同的分法,所以乘车方法数为25×2=50,故选B.2.有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有( ) A.36种B.48种 C.72种D.96种[解析] 恰有两个空座位相邻,相当于两个空位与第三个空位不相邻,先排三个人,然后插空,从而共A33A24=72种排法,故选C.3.只用1,2,3三个数字组成一个四位数,规定这三个数必须同时使用,且同一数字不能相邻出现,这样的四位数有( )A.6个B.9个 C.18个D.36个[解析] 注意题中条件的要求,一是三个数字必须全部使用,二是相同的数字不能相邻,选四个数字共有C13=3(种)选法,即1231,1232,1233,而每种选择有A22×C23=6(种)排法,所以共有3×6=18(种)情况,即这样的四位数有18个.4.男女学生共有8人,从男生中选取2人,从女生中选取1人,共有30种不同的选法,其中女生有( )A.2人或3人 B.3人或4人 C.3人 D.4人[解析] 设男生有n人,则女生有(8-n)人,由题意可得C2n C18-n=30,解得n=5或n =6,代入验证,可知女生为2人或3人.5.某幢楼从二楼到三楼的楼梯共10级,上楼可以一步上一级,也可以一步上两级,若规定从二楼到三楼用8步走完,则方法有( )A.45种B.36种 C.28种D.25种[解析] 因为10÷8的余数为2,故可以肯定一步一个台阶的有6步,一步两个台阶的有2步,那么共有C28=28种走法.6.某公司招聘来8名员工,平均分配给下属的甲、乙两个部门,其中两名英语翻译人员不能分在同一个部门,另外三名电脑编程人员也不能全分在同一个部门,则不同的分配方案共有( )A.24种B.36种 C.38种D.108种[解析] 本题考查排列组合的综合应用,据题意可先将两名翻译人员分到两个部门,共有2种方法,第二步将3名电脑编程人员分成两组,一组1人另一组2人,共有C13种分法,然后再分到两部门去共有C13A22种方法,第三步只需将其他3人分成两组,一组1人另一组2人即可,由于是每个部门各4人,故分组后两人所去的部门就已确定,故第三步共有C13种方法,由分步乘法计数原理共有2C13A22C13=36(种).7.已知集合A={5},B={1,2},C={1,3,4},从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,则确定的不同点的个数为( )A.33 B.34 C.35 D.36[解析] ①所得空间直角坐标系中的点的坐标中不含1的有C12·A33=12个;②所得空间直角坐标系中的点的坐标中含有1个1的有C12·A33+A33=18个;③所得空间直角坐标系中的点的坐标中含有2个1的有C13=3个.故共有符合条件的点的个数为12+18+3=33个,故选A.8.由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是( )A.72 B.96 C.108 D.144[解析] 分两类:若1与3相邻,有A22·C13A22A23=72(个),若1与3不相邻有A33·A33=36(个)故共有72+36=108个.9.如果在一周内(周一至周日)安排三所学校的学生参观某展览馆,每天最多只安排一所学校,要求甲学校连续参观两天,其余学校均只参观一天,那么不同的安排方法有( )A.50种B.60种 C.120种D.210种[解析] 先安排甲学校的参观时间,一周内两天连排的方法一共有6种:(1,2)、(2,3)、(3,4)、(4,5)、(5,6)、(6,7),甲任选一种为C16,然后在剩下的5天中任选2天有序地安排其余两所学校参观,安排方法有A25种,按照分步乘法计数原理可知共有不同的安排方法C16·A25=120种,故选C.10.安排7位工作人员在5月1日到5月7日值班,每人值班一天,其中甲、乙二人都不能安排在5月1日和2日,不同的安排方法共有________种.(用数字作答)[解析] 先安排甲、乙两人在后5天值班,有A25=20(种)排法,其余5人再进行排列,有A55=120(种)排法,所以共有20×120=2400(种)安排方法.11.今有2个红球、3个黄球、4个白球,同色球不加以区分,将这9个球排成一列有________种不同的排法.(用数字作答)[解析] 由题意可知,因同色球不加以区分,实际上是一个组合问题,共有C49·C25·C33=1260(种)排法.12.将6位志愿者分成4组,其中两个组各2人,另两个组各1人,分赴世博会的四个不同场馆服务,不同的分配方案有________种(用数字作答).[解析] 先将6名志愿者分为4组,共有C26C 24A22种分法,再将4组人员分到4个不同场馆去,共有A44种分法,故所有分配方案有:C26·C24A22·A44=1 080种.13.要在如图所示的花圃中的5个区域中种入4种颜色不同的花,要求相邻区域不同色,有________种不同的种法(用数字作答).[解析] 5有4种种法,1有3种种法,4有2种种法.若1、3同色,2有2种种法,若1、3不同色,2有1种种法,∴有4×3×2×(1×2+1×1)=72种.14. 将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中.若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有(A)12种(B)18种(C)36种(D)54种【解析】标号1,2的卡片放入同一封信有种方法;其他四封信放入两个信封,每个信封两个有种方法,共有种,故选B.15. 某单位安排7位员工在10月1日至7日值班,每天1人,每人值班1天,若7位员工中的甲、乙排在相邻两天,丙不排在10月1日,丁不排在10月7日,则不同的安排方案共有A. 504种B. 960种C. 1008种D. 1108种解析:分两类:甲乙排1、2号或6、7号 共有4414222A A A ⨯种方法 甲乙排中间,丙排7号或不排7号,共有)(43313134422A A A A A +种方法 故共有1008种不同的排法16. 由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是 (A )72 (B )96 (C ) 108 (D )144 *s 5* o*m 解析:先选一个偶数字排个位,有3种选法*s 5* o*m①若5在十位或十万位,则1、3有三个位置可排,32232A A =24个②若5排在百位、千位或万位,则1、3只有两个位置可排,共32222A A =12个 算上个位偶数字的排法,共计3(24+12)=108个答案:C17. 在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为18. 现安排甲、乙、丙、丁、戌5名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加。

(完整版)排列组合练习题(含答案)

(完整版)排列组合练习题(含答案)

排列组合练习题1、三个同学必须从四种不同的选修课中选一种自己想学的课程,共有种不同的选法。

2、8名同学争夺3项冠军,获得冠军的可能性有种。

3、乒乓球队的10名队员中有3名主力队员,派5名参加比赛,3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有_________种。

4、从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有。

5、有8本不同的书,从中取出6本,奖给5位数学优胜者,规定第一名(仅一人)得2本,其它每人一本,则共有种不同的奖法。

6、有3位老师、4名学生排成一排照相,其中老师必须在一起的排法共有种。

7、有8本不同的书,其中数学书3本,外文书2本,其他书3本,若将这些书排成一列放在书架上,则数学书恰好排在一起,外文书也恰好排在一起的排法共有____________种。

8、五种不同的收音机和四种不同的电视机陈列一排,任两台电视机不靠在一起,有种陈列方法。

9、有6名同学站成一排:甲、乙、丙不相邻有种不同的排法。

10、五个人排成一排,要求甲、乙不相邻,且甲、丙也不相邻的不同排法的种数是11、6名男生6名女生排成一排,要求男女相间的排法有种。

12、4名男生和3名女生排成一排,要求男女相间的排法有种。

13、有4男4女排成一排,要求女的互不相邻有种排法;要求男女相间有种排法。

14、一排有8个座位,3人去坐,要求每人左右两边都有空位的坐法有种。

15、三个人坐在一排7个座位上,若3个人中间没有空位,有种坐法。

若4个空位中恰有3个空位连在一起,有种坐法。

16、由1、2、3、4、5组成一个无重复数字的5位数,其中2、3必须排在一起,4、5不能排在一起,则不同的5位数共有个。

17、有4名学生和3位老师排成一排照相,规定两端不排老师且老师顺序固定不变,那么不同的排法有种。

18、从6名短跑运动员中选4人参加4 100米的接力赛,如果其中甲不能跑第一棒,乙不能跑第四棒,共有种参赛方案。

(完整版)排列组合练习试题和答案解析

(完整版)排列组合练习试题和答案解析
《排列组合》
一、排列与组合
1.从9人中选派2人参加某一活动,有多少种不同选法?
2.从9人中选派2人参加文艺活动,1人下乡演出,1人在本地演出,有多少种不同选派方法?
3.现从男、女8名学生干部中选出2名男同学和1名女同学分别参加全校“资源”、“生态”和“环保”三个夏令营活动,已知共有90种不同的方案,那么男、女同学的人数是
4.有编号为1、2、3的3个盒子和10个相同的小球,现把10个小球全部装入3个盒子中,使得每个盒子所装球数不小于盒子的编号数,这种装法共有
A.9种B.12种C.15种D.18种
5.将7只相同的小球全部放入4个不同盒子,每盒至少1球的方法有多少种?
6.某中学从高中7个班中选出12名学生组成校代表队,参加市中学数学应用题竞赛活动,使代表中每班至少有1人参加的选法有多少种?
由分类计数原理得,不同的三角形共有5+20+10=35个.
12.从5部不同的影片中选出4部,在3个影院放映,每个影院至少放映一部,每部影片只放映一场,共有种不同的放映方法(用数字作答)。
五、元素与位置——位置分析
1.7人争夺5项冠军,结果有多少种情况?
2. 75600有多少个正约数?有多少个奇约数?
(2)甲乙必须站两端,丙站中间,有多少种不同排法?
2.由1、2、3、4、5、6六个数字可组成多少个无重复数字且是6的倍数的五位数?
3.由数字1,2,3,4,5,6,7所组成的没有重复数字的四位数,按从小到大的顺序排列起来,第379个数是
A.3761 B.4175 C.5132 D.6157
4.设有编号为1、2、3、4、5的五个茶杯和编号为1、2、3、4、5的五个杯盖,将五个杯盖盖在五个茶杯上,至少有两个杯盖和茶杯的编号相同的盖法有

(完整版)排列组合练习题及答案

(完整版)排列组合练习题及答案

(完整版)排列组合练习题及答案《排列组合》一、排列与组合1.从9人中选派2人参加某一活动,有多少种不同选法?2.从9人中选派2人参加文艺活动,1人下乡演出,1人在本地演出,有多少种不同选派方法?3. 现从男、女8名学生干部中选出2名男同学和1名女同学分别参加全校“资源”、“生态”和“环保”三个夏令营活动,已知共有90种不同的方案,那么男、女同学的人数是A.男同学2人,女同学6人B.男同学3人,女同学5人C. 男同学5人,女同学3人D. 男同学6人,女同学2人4.一条铁路原有m个车站,为了适应客运需要新增加n个车站(n>1),则客运车票增加了58种(从甲站到乙站与乙站到甲站需要两种不同车票),那么原有的车站有A.12个B.13个C.14个D.15个5.用0,1,2,3,4,5这六个数字,(1)可以组成多少个数字不重复的三位数?(2)可以组成多少个数字允许重复的三位数?(3)可以组成多少个数字不允许重复的三位数的奇数?(4)可以组成多少个数字不重复的小于1000的自然数?(5)可以组成多少个大于3000,小于5421的数字不重复的四位数?二、注意附加条件1.6人排成一列(1)甲乙必须站两端,有多少种不同排法?(2)甲乙必须站两端,丙站中间,有多少种不同排法?2.由1、2、3、4、5、6六个数字可组成多少个无重复数字且是6的倍数的五位数?3.由数字1,2,3,4,5,6,7所组成的没有重复数字的四位数,按从小到大的顺序排列起来,第379个数是A.3761B.4175C.5132D.61574. 设有编号为1、2、3、4、5的五个茶杯和编号为1、2、3、4、5的五个杯盖,将五个杯盖盖在五个茶杯上,至少有两个杯盖和茶杯的编号相同的盖法有 A.30种 B.31种 C.32种 D.36种5.从编号为1,2,…,10,11的11个球中取5个,使这5个球中既有编号为偶数的球又有编号为奇数的球,且它们的编号之和为奇数,其取法总数是 A.230种 B.236种 C.455种 D.2640种6.从6双不同颜色的手套中任取4只,其中恰好有1双同色的取法有 A.240种 B.180种 C.120种 D.60种7. 用0,1,2,3,4,5这六个数组成没有重复数字的四位偶数,将这些四位数从小到大排列起来,第71个数是。

排列组合练习题___(含答案)

排列组合练习题___(含答案)

排列组合练习题1、三个同学必须从四种不同的选修课中选一种自己想学的课程,共有种不同的选法。

2、8名同学争夺3项冠军,获得冠军的可能性有种。

3、乒乓球队的10名队员中有3名主力队员,派5名参加比赛,3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有_________种。

4、从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有。

5、有8本不同的书,从中取出6本,奖给5位数学优胜者,规定第一名(仅一人)得2本,其它每人一本,则共有种不同的奖法。

6、有3位老师、4名学生排成一排照相,其中老师必须在一起的排法共有种。

7、有8本不同的书,其中数学书3本,外文书2本,其他书3本,若将这些书排成一列放在书架上,则数学书恰好排在一起,外文书也恰好排在一起的排法共有____________种。

8、五种不同的收音机和四种不同的电视机陈列一排,任两台电视机不靠在一起,有种陈列方法。

9、有6名同学站成一排:甲、乙、丙不相邻有种不同的排法。

10、五个人排成一排,要求甲、乙不相邻,且甲、丙也不相邻的不同排法的种数是11、6名男生6名女生排成一排,要求男女相间的排法有种。

12、4名男生和3名女生排成一排,要求男女相间的排法有种。

13、有4男4女排成一排,要求女的互不相邻有种排法;要求男女相间有种排法。

14、一排有8个座位,3人去坐,要求每人左右两边都有空位的坐法有种。

15、三个人坐在一排7个座位上,若3个人中间没有空位,有种坐法。

若4个空位中恰有3个空位连在一起,有种坐法。

16、由1、2、3、4、5组成一个无重复数字的5位数,其中2、3必须排在一起,4、5不能排在一起,则不同的5位数共有个。

17、有4名学生和3位老师排成一排照相,规定两端不排老师且老师顺序固定不变,那么不同的排法有种。

18、从6名短跑运动员中选4人参加4 100米的接力赛,如果其中甲不能跑第一棒,乙不能跑第四棒,共有种参赛方案。

排列组合典型例题(带详细答案)

排列组合典型例题(带详细答案)

例1 用0到9这10 个数字.可组成多少个没有重复数字的四位偶数例2三个女生和五个男生排成一排(1)如果女生必须全排在一起,可有多少种不同的排法(2)如果女生必须全分开,可有多少种不同的排法(3)如果两端都不能排女生,可有多少种不同的排法(4)如果两端不能都排女生,可有多少种不同的排法例3 排一张有5个歌唱节目和4个舞蹈节目的演出节目单。

(1)任何两个舞蹈节目不相邻的排法有多少种(2)歌唱节目与舞蹈节目间隔排列的方法有多少种例4某一天的课程表要排入政治、语文、数学、物理、体育、美术共六节课,如果第一节不排体育,最后一节不排数学,那么共有多少种不同的排课程表的方法.例 5 现有3辆公交车、3位司机和3位售票员,每辆车上需配1位司机和1位售票员.问车辆、司机、售票员搭配方案一共有多少种例6下是表是高考第一批录取的一份志愿表.如果有4所重点院校,每所院校有3个专业是你较为满意的选择.若表格填满且规定学校没有重复,同一学校的专业也没有重复的话,你将有多少种不同的填表方法例7 7名同学排队照相.(1)若分成两排照,前排3人,后排4人,有多少种不同的排法(2)若排成两排照,前排3人,后排4人,但其中甲必须在前排,乙必须在后排,有多少种不同的排法(3)若排成一排照,甲、乙、丙三人必须相邻,有多少种不同的排法 (4)若排成一排照,7人中有4名男生,3名女生,女生不能相邻,有多少种不面的排法例8计算下列各题:(1) 215A ; (2) 66A ; (3) 1111------⋅n n m n mn m n A A A ;例9 f e d c b a ,,,,,六人排一列纵队,限定a 要排在b 的前面(a 与b 可以相邻,也可以不相邻),求共有几种排法.例10 八个人分两排坐,每排四人,限定甲必须坐在前排,乙、丙必须坐在同一排,共有多少种安排办法例11 计划在某画廊展出10幅不同的画,其中1幅水彩画、4幅油画、5幅国画,排成一行陈列,要求同一品种的画必须连在一起,并且不彩画不放在两端,那么不同陈列方式有例12 由数字5,4,3,2,1,0组成没有重复数字的六位数,其中个位数字小于十位数的个数共有( ).例13 用5,4,3,2,1,这五个数字,组成没有重复数字的三位数,其中偶数共有( ).例14 用543210、、、、、共六个数字,组成无重复数字的自然数,(1)可以组成多少个无重复数字的3位偶数(2)可以组成多少个无重复数字且被3整除的三位数1、解法1:当个位数上排“0”时,千位,百位,十位上可以从余下的九个数字中任选3个来排列,故有39A 个;当个位上在“2、4、6、8”中任选一个来排,则千位上从余下的八个非零数字中任选一个,百位,十位上再从余下的八个数字中任选两个来排,按乘法原理有281814A A A ⋅⋅(个).∴ 没有重复数字的四位偶数有2296179250428181439=+=⋅⋅+A A A A2、解:(1)(捆绑法)因为三个女生必须排在一起,所以可以先把她们看成一个整体,这样同五个男生合一起共有六个元素,然成一排有66A 种不同排法.对于其中的每一种排法,三个女生之间又都有33A 对种不同的排法,因此共有43203366=⋅A A 种不同的排法.(2)(插空法)要保证女生全分开,可先把五个男生排好,每两个相邻的男生之间留出一个空档.这样共有4个空档,加上两边两个男生外侧的两个位置,共有六个位置,再把三个女生插入这六个位置中,只要保证每个位置至多插入一个女生,就能保证任意两个女生都不相邻.由于五个男生排成一排有55A 种不同排法,对于其中任意一种排法,从上述六个位置中选出三个来让三个女生插入都有36A 种方法,因此共有144003655=⋅A A 种不同的排法.(3)解法1:(位置分析法)因为两端不能排女生,所以两端只能挑选5个男生中的2个,有25A 种不同的排法,对于其中的任意一种排法,其余六位都有66A 种排法,所以共有144006625=⋅A A 种不同的排法. (4)3个女生和5个男生排成一排有88A 种排法,从中扣去两端都是女生排法6623A A ⋅种,就能得到两端不都是女生的排法种数.因此共有36000662388=⋅-A A A 种不同的排法.3、解:(1)先排歌唱节目有55A 种,歌唱节目之间以及两端共有6个位子,从中选4个放入舞蹈节目,共有46A 中方法,所以任两个舞蹈节目不相邻排法有:55A 46A =43200.(2)先排舞蹈节目有44A 中方法,在舞蹈节目之间以及两端共有5个空位,恰好供5个歌唱节目放入。

排列组合经典例题(含解析)

排列组合经典例题(含解析)

排列与组合习题1.6个人分乘两辆不同的汽车,每辆车最多坐4人,则不同的乘车方法数为() A.40B.50C.60D.70[解析]先分组再排列,一组2人一组4人有C26=15种不同的分法;两组各3人共有C36A22=10种不同的分法,所以乘车方法数为25×2=50,故选 B.2.有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有()A.36种B.48种C.72种D.96种[解析]恰有两个空座位相邻,相当于两个空位与第三个空位不相邻,先排三个人,然后插空,从而共A33A24=72种排法,故选 C.3.只用1,2,3三个数字组成一个四位数,规定这三个数必须同时使用,且同一数字不能相邻出现,这样的四位数有()A.6个B.9个C.18个D.36个[解析]注意题中条件的要求,一是三个数字必须全部使用,二是相同的数字不能相邻,选四个数字共有C13=3(种)选法,即1231,1232,1233,而每种选择有A22×C23=6(种)排法,所以共有3×6=18(种)情况,即这样的四位数有18个.4.男女学生共有8人,从男生中选取2人,从女生中选取1人,共有30种不同的选法,其中女生有() A.2人或3人B.3人或4人C.3人D.4人[解析]设男生有n人,则女生有(8-n)人,由题意可得C2n C18-n=30,解得n=5或n=6,代入验证,可知女生为2人或3人.5.某幢楼从二楼到三楼的楼梯共10级,上楼可以一步上一级,也可以一步上两级,若规定从二楼到三楼用8步走完,则方法有()A.45种B.36种C.28种D.25种[解析]因为10÷8的余数为2,故可以肯定一步一个台阶的有6步,一步两个台阶的有2步,那么共有C28=28种走法.6.某公司招聘来8名员工,平均分配给下属的甲、乙两个部门,其中两名英语翻译人员不能分在同一个部门,另外三名电脑编程人员也不能全分在同一个部门,则不同的分配方案共有()A.24种B.36种C.38种D.108种[解析]本题考查排列组合的综合应用,据题意可先将两名翻译人员分到两个部门,共有2种方法,第二步将3名电脑编程人员分成两组,一组1人另一组2人,共有C13种分法,然后再分到两部门去共有C13A22种方法,第三步只需将其他3人分成两组,一组1人另一组2人即可,由于是每个部门各4人,故分组后两人所去的部门就已确定,故第三步共有C13种方法,由分步乘法计数原理共有2C13A22C13=36(种).7.已知集合A={5},B={1,2},C={1,3,4},从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,则确定的不同点的个数为()A.33 B.34 C.35 D.36[解析]①所得空间直角坐标系中的点的坐标中不含1的有C12·A33=12个;②所得空间直角坐标系中的点的坐标中含有1个1的有C12·A33+A33=18个;③所得空间直角坐标系中的点的坐标中含有2个1的有C13=3个.故共有符合条件的点的个数为12+18+3=33个,故选 A.8.由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是() A.72 B.96 C.108 D.144[解析]分两类:若1与3相邻,有A22·C13A22A23=72(个),若1与3不相邻有A33·A33=36(个)故共有72+36=108个.9.如果在一周内(周一至周日)安排三所学校的学生参观某展览馆,每天最多只安排一所学校,要求甲学校连续参观两天,其余学校均只参观一天,那么不同的安排方法有()A.50种B.60种C.120种D.210种[解析]先安排甲学校的参观时间,一周内两天连排的方法一共有6种:(1,2)、(2,3)、(3,4)、(4,5)、(5,6)、(6,7),甲任选一种为C16,然后在剩下的5天中任选2天有序地安排其余两所学校参观,安排方法有A25种,按照分步乘法计数原理可知共有不同的安排方法C16·A25=120种,故选 C.10.安排7位工作人员在5月1日到5月7日值班,每人值班一天,其中甲、乙二人都不能安排在5月1日和2日,不同的安排方法共有________种.(用数字作答)[解析]先安排甲、乙两人在后5天值班,有A25=20(种)排法,其余5人再进行排列,有A55=120(种)排法,所以共有20×120=2400(种)安排方法.11.今有2个红球、3个黄球、4个白球,同色球不加以区分,将这9个球排成一列有________种不同的排法.(用数字作答)[解析]由题意可知,因同色球不加以区分,实际上是一个组合问题,共有C49·C25·C33=1260(种)排法.12.将6位志愿者分成4组,其中两个组各2人,另两个组各1人,分赴世博会的四个不同场馆服务,不同的分配方案有________种(用数字作答).[解析]先将6名志愿者分为4组,共有C26C24A22种分法,再将4组人员分到4个不同场馆去,共有A44种分法,故所有分配方案有:C26·C24A22·A44=1 080种.13.要在如图所示的花圃中的5个区域中种入4种颜色不同的花,要求相邻区域不同色,有________种不同的种法(用数字作答).[解析]5有4种种法,1有3种种法,4有2种种法.若1、3同色,2有2种种法,若1、3不同色,2有1种种法,∴有4×3×2×(1×2+1×1)=72种.14. 将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中.若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有(A)12种(B)18种(C)36种(D)54种【解析】标号1,2的卡片放入同一封信有种方法;其他四封信放入两个信封,每个信封两个有种方法,共有种,故选 B.15. 某单位安排7位员工在10月1日至7日值班,每天1人,每人值班1天,若7位员工中的甲、乙排在相邻两天,丙不排在10月1日,丁不排在10月7日,则不同的安排方案共有A.504种B.960种C.1008种D.1108种解析:分两类:甲乙排1、2号或6、7号共有4414222AA A 种方法甲乙排中间,丙排7号或不排7号,共有)(43313134422A A A AA 种方法故共有1008种不同的排法16. 由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是(A )72(B )96(C )108(D )144w_w_w.k*s 5*u.co*m解析:先选一个偶数字排个位,有3种选法w_w_w.k*s 5*u.co*m①若5在十位或十万位,则1、3有三个位置可排,32232A A=24个②若5排在百位、千位或万位,则1、3只有两个位置可排,共32222A A=12个算上个位偶数字的排法,共计3(24+12)=108个答案:C17. 在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为A.10B.11C.12D.1518. 现安排甲、乙、丙、丁、戌5名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加。

排列组合练习题(附答案)

排列组合练习题(附答案)

排列组合练习题(附答案)1、如图,花坛内有五个花池,有五种不同颜色的花卉可供栽种,每个花池内只能种同种颜色的花卉,相邻两池的花色不同,则最多有几种栽种方案()A. 180种B. 240种C. 360D. 420种2、4名同学争夺三项冠军,冠军获得者的可能种数是()A、43 B. A43 C. C43 D. 43、某会议室共有8个座位,现有3人就座,若要求每人左右均有空位,那么不同的坐法种数为( )A.12B.16C.24D.324、从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数.其中奇数的个数为( )A.24B.18C.12D.65、两家夫妇各带一个小孩一起去公园游玩,购票后排队依次入园.为安全起见,首尾一定要排两位爸爸,另外,两个小孩一定要排在一起,则这6人的入园顺序排法种数为.6、7人排成一列,甲必须在乙的后面(可以不相邻),有种不同的排法.用1,2,3,4,5,6,7组成没有重复数字的七位数,若1,3,5,7的顺序一定,则有个七位数符合条件.8、用0,1,2,3,4,5六个数字:(1)能组成多少个无重复数字的四位偶数?(2)能组成多少个无重复数字且为5的倍数的五位数?(3)能组成多少个比1 325大的四位数?9、六本不同的书,分为三组,求在下列条件下各有多少种不同的分配方法?(1)每组两本.(2)一组一本,一组二本,一组三本.(3)一组四本,另外两组各一本.10、有四个男生,三个女生按下列要求排队拍照,各有多少种不同的排列方法?(1)七个人排成一列,四个男生必须连排在一起;(2)七个人排成一列,三个女生中任何两个均不能排在一起;(3)七个人排成一列,甲、乙、丙三人顺序一定;(4)七个人排成一列,但男生必须连排在一起,女生也必须连排在一起,且男甲与女乙不能相邻.答案与解析1、答案D解:若5个花池栽了5种颜色的花卉,方法有A 55种,若5个花池栽了4种颜色的花卉,则2、4两个花池栽同一种颜色的花;或者3、5两个花池栽同一种颜色的花,方法有2A 54种,若5个花池栽了3种颜色的花卉,方法有A 53种,故最多有A 55+2A 54+A 53=420种栽种方案.故选D .2、答案A解:每一项冠军的情况都有4种,故四名学生争夺三项冠军,分三步,4×4×4=43.获得冠军的可能的种数是43,故选A .3、答案C将三个人插入五个空位中间的四个空当中,有A 43=24种不同的坐法.4、答案B若从0,2中选出的是2,则2可以在百位也可以在十位,所以有A 32×A 21=12个奇数;若从0,2中选出的是0,则0只能在十位,所以有A 32=6个奇数,所以共有12+6=18个奇数.5、答案 24两位爸爸排在首尾有A 22种排法,两个小孩排在一起有A 22种排法,小孩与两位妈妈排列有A 33种排法,所以共有A 22·A 22·A 33=24种排法.6、答案25207人排队,2人顺序固定,共有A 77A 22=5 0402=2 520种排法.7、答案 210若1,3,5,7的顺序不定,有A 44=24种排法,故1,3,5,7的顺序一定的排法数只占总排法数的一种,故有A 77A 44=210个七位数符合条件. 8、(1)符合要求的四位偶数可分为三类.第一类:0在个位时有A 53个;第二类:2在个位时,首位从1,3,4,5中选定1个有A 41种,十位和百位从余下的数字中选有A 42种,于是有A 41·A 42个;第三类:4在个位时,与第二类同理,也有A 41·A 42个.由分类加法计数原理知,无重复数字的四位偶数共有A 53+A 41·A 42+A 41·A 42=156个.(2)五位数中5的倍数的数可分为两类:个位上的数字是0的五位数有A 54个;个位上的数字是5的五位数有A 41·A 43个.故所求数共有A 54+A 41·A 43=216个.(3)比1 325大的四位数可分为三类.第一类:千位数字分别为2,3,4,5时,共A 41·A 53个;第二类:千位数字为1,百位数字分别为4,5时,共有A 21·A 42个;第三类:千位数字为1,百位数字为3,十位数字分别为4,5时,共有A 21·A 31个.由分类加法计数原理知,比1 325大的四位数共有A 41A 53+A 21A 42+A 21A 31=270个.9、(1)22264233C C C A =15(种) (2)615233C C C =60(种)(3)41162122C C C A =15(种) 10、解:(1)不妨先将四个男生看作一个整体,连同三个女生共4个元素进行排列,有A 44种排法,然后将4个男生全排列,有A 44种排法,根据分步乘法计数原理有A 44A 44=576(种)不同的排法;(2)先排男生,有A 44种排法,再在他们之间和左右两端共5个空档中插入3个女生,有A 53种排法,故共有A 44A 53=1440(种);(3)先不考虑三人的顺序,任意排列有A 77种,其中每A 33种有且只有1种符合甲、乙、丙三人顺序一定,因此共有A 77A 33=840(种); (4)先将男生和女生看作两个整体,男生、女生分别全排列,有A 22A 44A 33种排法,再考虑男甲与女乙相邻,有A 22A 33A 22种,故有A 22A 44A 33−A 22A 33A 22=264(种).。

排列组合习题_(含详细答案)

排列组合习题_(含详细答案)

圆梦教育中心排列组合专项训练1.题1 (方法对比,二星)题面:(1)有5个插班生要分配给3所学校,每校至少分到一个,有多少种不同的分配方法(2)有5个数学竞赛名额要分配给3所学校,每校至少分到一个名额,有多少种不同的名额分配方法 解析:“名额无差别”——相同元素问题(法1)每所学校各分一个名额后,还有2个名额待分配,可将名额分给2所学校、1所学校,共两类:2133C C +(种)(法2——挡板法)相邻名额间共4个空隙,插入2个挡板,共:246C =(种) 注意:“挡板法”可用于解决待分配的元素无差别,且每个位置至少分配一个元素的问题.(位置有差别,元素无差别)同类题一 题面:有10个运动员名额,分给7个班,每班至少一个,有多少种分配方案答案:69C详解:因为10个名额没有差别,把它们排成一排。

相邻名额之间形成9个空隙。

在9个空档中选6个位置插个隔板,可把名额分成7份,对应地分给7个班级,每一种插板方法对应一种分法共有69C 种分法。

同类题二题面:求方程X+Y+Z=10的正整数解的个数。

答案:36. 详解:将10个球排成一排,球与球之间形成9个空隙,将两个隔板插入这些空隙中(每空至多插一块隔板),规定由隔板分成的左、中、右三部分的球数分别为x 、y 、z 之值, 故解的个数为C 92=36(个)。

2.题2 (插空法,三星)题面:某展室有9个展台,现有3件展品需要展出,要求每件展品独自占用1个展台,并且3件展品所选用的展台既不在两端又不相邻,则不同的展出方法有______种;如果进一步要求3件展品所选用的展台之间间隔不超过两个展位,则不同的展出方法有____种. 答案:60,48同类题一题面:6男4女站成一排,任何2名女生都不相邻有多少种排法答案:A 66·A 47种.详解: 任何2名女生都不相邻,则把女生插空,所以先排男生再让女生插到男生的空中,共有A 66·A 47种不同排法.同类题二 题面:有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有( )A .36种B .48种C .72种D .96种答案:C.详解:恰有两个空座位相邻,相当于两个空位与第三个空位不相邻,先排三个人,然后插空,从而共A 33A 24=72种排法,故选C.3.题3 (插空法,三星)题面:5个男生到一排12个座位上就座,两个之间至少隔一个空位.1]没有坐人的7个位子先摆好,[2](法1——插空)每个男生占一个位子,插入7个位子所成的8个空当中,有:58A =6720种排法.(法2)[1]5个男生先排好:55A; [2]每个男生加上相邻的一个座位,共去掉9个位置,当作5个排好的元素,共有6个空,剩下的3个元素往里插空,每个空可以插1个、2个、3个元素, 共有:3216662C C C++种,综上:有55A (3216662C C C ++)=6720种.同类题一题面:文艺团体下基层宣传演出,准备的节目表中原有4个歌舞节目,如果保持这些节目的相对顺序不变,拟再添两个小品节目,则不同的排列方法有多少种答案:30。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆梦教育中心排列组合专项训练1.题1 (方法对比,二星)题面:(1)有5个插班生要分配给3所学校,每校至少分到一个,有多少种不同的分配方法?(2)有5个数学竞赛名额要分配给3所学校,每校至少分到一个名额,有多少种不同的名额分配方法? 解析:“名额无差别”——相同元素问题 (法1)每所学校各分一个名额后,还有2个名额待分配,可将名额分给2所学校、1所学校,共两类:2133C C +(种) (法2——挡板法)相邻名额间共4个空隙,插入2个挡板,共:246C =(种) 注意:“挡板法”可用于解决待分配的元素无差别,且每个位置至少分配一个元素的问题.(位置有差别,元素无差别)同类题一 题面:有10个运动员名额,分给7个班,每班至少一个,有多少种分配方案?答案:69C详解:因为10个名额没有差别,把它们排成一排。

相邻名额之间形成9个空隙。

在9个空档中选6个位置插个隔板,可把名额分成7份,对应地分给7个班级,每一种插板方法对应一种分法共有69C 种分法。

同类题二题面:求方程X+Y+Z=10的正整数解的个数。

答案:36. 详解:将10个球排成一排,球与球之间形成9个空隙,将两个隔板插入这些空隙中(每空至多插一块隔板),规定由隔板分成的左、中、右三部分的球数分别为x 、y 、z之值, 故解的个数为C 92=36(个)。

2.题2 (插空法,三星)题面:某展室有9个展台,现有3件展品需要展出,要求每件展品独自占用1个展台,并且3件展品所选用的展台既不在两端又不相邻,则不同的展出方法有______种;如果进一步要求3件展品所选用的展台之间间隔不超过两个展位,则不同的展出方法有____种. 答案:60,48同类题一题面:6男4女站成一排,任何2名女生都不相邻有多少种排法?答案:A 66·A 47种.详解: 任何2名女生都不相邻,则把女生插空,所以先排男生再让女生插到男生的空中,共有A 66·A 47种不同排法.同类题二 题面:有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有( )A .36种B .48种C .72种D .96种答案:C.详解:恰有两个空座位相邻,相当于两个空位与第三个空位不相邻,先排三个人,然后插空,从而共A 33A 24=72种排法,故选C.3.题3 (插空法,三星)题面:5个男生到一排12个座位上就座,两个之间至少隔一个空位.1]没有坐人的7个位子先摆好,[2](法1——插空)每个男生占一个位子,插入7个位子所成的8个空当中,有:58A =6720种排法.(法2)[1]5个男生先排好:55A ;[2]每个男生加上相邻的一个座位,共去掉9个位置,当作5个排好的元素,共有6个空,剩下的3个元素往里插空,每个空可以插1个、2个、3个元素, 共有:3216662C C C ++种,综上:有55A (3216662C C C ++)=6720种.同类题一题面:文艺团体下基层宣传演出,准备的节目表中原有4个歌舞节目,如果保持这些节目的相对顺序不变,拟再添两个小品节目,则不同的排列方法有多少种? 答案:30。

详解:记两个小品节目分别为A 、B 。

先排A 节目。

根据A节目前后的歌舞节目数目考虑方法数,相当于把4个球分成两堆,有种方法。

这一步完成后就有5个节目了。

再考虑需加入的B 节目前后的节目数,同理知有种方法。

故由分步计数原理知,方法共有(种)。

同类题二 题面:(2013年开封模拟)2位男生和3位女生共5位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是( ) A .60 B .48 C .42D .36答案:B. 详解:第一步选2女相邻排列C 23·A 22,第二步与男—女排列A 22,第三步男生甲插在中间,1种插法,第四步男—男生插空C 14,故有C 23·A 22·A 22·C 14=48种不同排法.4.题4 (隔板法变形,三星)题面:15个相同..的球,按下列要求放入4个写上了1、2、3、4编号的盒子,各有多少种不同的放法? (1)将15个球放入盒子内,使得每个盒子都不空;314364C =(2)将15个球放入盒子内,每个盒子的球数不小于盒子的编号数;(3)将15个球放入盒子内,每个盒子不必非空; (4)任取5个球,写上1-5编号,再放入盒内,使每个盒子都至少有一个球;(5)任取10个球,写上1-10编号,奇数编号的球放入奇数编号的盒子,偶数编号的球放入偶数编号的盒子.解析:(2)先将2、3、4号盒子分别放入1、2、3个球,剩下的9个球用挡板法,38C =56(3)借来4个球,转化为19个球放入盒子内,每个盒子非空,318816C =(4)不能用“挡板法”,因为元素有差别.(法1)必有一个盒子有2个球,2454240C A =; (法2)先选3个球,分别排到4个盒子中的3个里,剩下的盒子自然放2个球.3354240C A =;(法3)4154480A C =,会重!需要除2! 重复原因:1号盒子放1、5号球,先放1后放5与先放5、后放1是一样的!(5)(法1)每个球都有2种选择,共有102种方法; (法2)奇数号的球有1、3、5、7、9,共5个,可以在1、3号两个盒子中选一个放入,共有:54321055555552C C C C C C +++++=种放法, 同理放偶数号的球也有52种方法,综上共有102种方法.同类题一题面:某车队有7辆车,现要调出4辆按一定顺序出去执行任务.要求甲、乙两车必须参加,且甲车要先于乙车开出有________种不同的调度方法(填数字).答案:120. 详解:先从除甲、乙外的5辆车任选2辆有C 25种选法,连同甲、乙共4辆车,排列在一起,先从4个位置中选两个位置安排甲、乙,甲在乙前共有C 24种,最后,安排其他两辆车共有A 22种方法,故不同的调度方法为C 25·C 24·A 22=120种.同类题二 题面:我国第一艘航母“辽宁舰”在某次舰载机起降飞行训练中,有5架舰载机准备着舰,如果甲、乙两机必须相邻着舰,而丙、丁两机不能相邻着舰,那么不同的着舰方法有( ) A .12 B .18C .24D .48 答案:C. 详解:分三步:把甲、乙捆绑为一个元素A ,有22A 种方法;A 与戊机形成三个“空”,把丙、丁两机插入空中有23A 种方法;考虑A 与戊机的排法有22A 种方法.由乘法原理可知共有22A 23A 22A 24=种不同的着舰方法.故应选C .5. 题5(相同与不同,三星)题面:某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友每位朋友1本,则不同的赠送方法共有( )A .4种B .10种C .18种D .20种同类题一题面:(2013·北京高考)将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是________.答案:96.详解:按照要求要把序号分别为1,2,3,4,5的5张参观券分成4组,然后再分配给4人,连号的情况是1和2,2和3,3和4,4和5,故其方法数是4A 44=96.同类题二题面:3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是 ( )A. 360B. 288C. 216D. 96答案:288种. 详解:分析排列组合的问题第一要遵循特殊元素优先考虑的原则,先考虑女生的问题,先从3个女生中选两位,有23C 种方法,然后再考虑顺序,即先选后排,有22A 种方法;这样选出两名女生后,再考虑男生的问题,先把三个男生任意排列,有23A 中不同的排法,然后把两个女生看成一个整体,和另一个女生看成两个元素插入4个位置中。

有24A 种不同的排法,共有22A 23C 33A 24A 种不同的排法。

然后再考虑把男生甲站两端的情况排除掉。

甲可能站左端,也可能是右端,有12C 种不同的方法,然后其他两个男生排列有22A 种排法,最后把女生在剩余的三个位置中排列,有23A 种不同的排法。

共22A 23C 12C 22A 23A 种不同的排法, 故总的排法为22A 23C 33A 24A —22A 23C 12C 22A 23A =288种不同的方法。

.题6(组合数的性质,二星)题面:5个男生3个女生,分别满足下列条件,各有多少种方法?(1)选出3人参加A 活动; (2)选出5人参加B 活动;(3)选出4人参加一项活动,女生甲必须参加; (4)选出4人参加一项活动,女生甲不能参加.答案:同类题一题面:从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求其中男、女医生都有,则不同的组队方案共有 ( )A. 70 种B. 80种C. 100 种D. 140 种答案:A. 详解: 分为2男1女,和1男2女两大类,共有21125454C C C C ⋅+⋅=70种同类题二题面:男运动员6名,女运动员4名,其中男女队长各1人.选派5人外出比赛.在下列情形中各有多少种选派方法?(1)男运动员3名,女运动员2名; (2)至少有1名女运动员; (3)队长中至少有1人参加;(4)既要有队长,又要有女运动员. 答案:(1)120种(2) 246种. 详解:(1)第一步:选3名男运动员,有C 36种选法. 第二步:选2名女运动员,有C 24种选法. 共有C 36·C 24=120种选法.(2) 至少1名女运动员包括以下几种情况:1女4男,2女3男,3女2男,4女1男.由分类加法计数原理可得总选法数为C 14C 46+C 24C 36+C 34C 26+C 44C 16=246种..题7 (选和排,二星)题面:从4名男生和3名女生中选出3人,分别从事三项不同的工作,若这3人中有且只有1名女生,则选派方案共有多少种?法一:先选后排,123343C C A 法二:边选边排,112334()C A A ⋅同类题一题面:将4名教师分配到3所中学任教,每所中学至少1名教师,则不同的分配方案共有( ) A .12种 B .24种 C .36种 D .48种答案:C. 详解: 先分组再排列:将4名教师分成3组有C 24种分法,再将这三组分配到三所学校有A 33种分法,由分步乘法计数原理,知一共有C 24·A 33=36种不同分配方案.同类题二 题面:甲、乙、丙3人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数是( )A .258B .306C .336D .296答案:C. 详解:根据题意,每级台阶最多站2人,所以,分两类:第一类,有2人站在同一级台阶,共有C 23A 27种不同的站法;第二类,一级台阶站1人,共有A 37种不同的站法.根据分类加法计数原理,得共有C 23A 27+A 37=336(种)不同的站法.3.题一(合理分类,二星)题面:若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有( )A .60种B .63种C .65种D .66种同类题一题面:只用1,2,3三个数字组成一个四位数,规定这三个数必须同时使用,且同一数字不能相邻出现,这样的四位数有( )A.6个B.9个 C.18个D.36个答案:C.详解:注意题中条件的要求,一是三个数字必须全部使用,二是相同的数字不能相邻,选四个数字共有C13=3(种)选法,即1231,1232,1233,而每种选择有A22×C23=6(种)排法,所以共有3×6=18(种)情况,即这样的四位数有18个.同类题二题面:由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是( )A.72 B.96 C.108D.144答案:C.详解:分两类:若1与3相邻,有A22·C13A22A23=72(个),若1与3不相邻有A33·A33=36(个)故共有72+36=108个.题8题面:5个男生3个女生,分别满足下列条件,各有多少种方法?(1)选出4人参加一项活动,女生甲必须参加;(2)选3人参加数学竞赛,至少有一名男生.(法1)分类:1名、2名、3名男生:12213 5353555C C C C C++=;(法2)间接法——333838155C C C-=-=. (法3)[1]先取1名男生;[2]再在剩下的7人中取3人;12577651052C C⨯=⨯=?同类题一题面:将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同分法的种数为.18A.24B.30C.36D答案:C.详解:用间接法解答:四名学生中有两名学生分在一个班的种数是24C,顺序有33A种,而甲乙被分在同一个班的有33A种,所以种数是23343330C A A-=同类题二题面:甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中至少有1门不相同的选法共有()A. 6B. 12C. 30D. 36答案:C.详解:可以先让甲、乙任意选择两门,有2244C C⋅种选择方法,然后再把两个人全不相同的情况去掉,两个人全不相同,可以让甲选两门有24C种选法,然后乙从剩余的两门选,有22C种不同的选法,全不相同的选法是24C22C种方法,所以至少有一门不相同的选法为2244C C⋅—24C22C=30种不同的选法。

相关文档
最新文档