江苏专用2018高考数学一轮复习第九章平面解析几何第47课椭圆的方程及几何性质课时分层训练
(江苏版)2018年高考数学一轮复习专题9.5椭圆(讲)
专题9.5 椭圆【考纲解读】【直击考点】题组一 常识题1. 已知△ABC 的顶点B ,C 在椭圆x 24+y 212=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是________.【解析】由椭圆定义知△ABC 的周长等于椭圆长轴长的2倍,所以△ABC 的周长是43×2=8 3. 2. 椭圆的中心在原点,焦点在x 轴上,长轴长是短轴长的2倍,焦距为4,则椭圆的标准方程为________________.3. 椭圆x 216+y 28=1的离心率为________.【解析】由x 216+y 28=1可得a 2=16,b 2=8,∴c 2=a 2-b 2=8,∴e 2=c 2a 2=12,∴e =22.题组二 常错题4.已知条件甲:动点P 到两定点A ,B 的距离之和为|PA |+|PB |=2a (a >0且a 为常数);条件乙:P 点的轨迹是以A ,B 为焦点,且长轴长为2a 的椭圆.则甲是乙的________________(填“充分不必要、必要不充分或充要”)条件.【解析】∵乙推出甲且甲推不出乙,∴甲是乙的必要不充分条件.5.已知椭圆的焦点在坐标轴上,中心在坐标原点,若直线x -2y +2=0经过该椭圆的一个焦点和一个顶点,则该椭圆的标准方程为__________________________.【解析】易知直线与坐标轴的交点为(0,1),(-2,0),由题意知当焦点在x 轴上时,c =2,b =1,∴a 2=5,所求椭圆的标准方程为x 25+y 2=1.当焦点在y 轴上时,b =2,c =1,∴a 2=5,所求椭圆的标准方程为y 25+x 24=1.题组三 常考题6. 已知椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点为F (4,0),短轴长为6,则a =________.【解析】依题意2b =6,所以b =3,又c =4,所以a =b 2+c 2=5.7. 直线l 经过椭圆的两个相邻顶点,若椭圆中心到l 的距离为其长轴长的13,则该椭圆的离心率为__________.8. 已知圆Q :(x -1)+y 2=16,动圆M 过定点P (-1,0)且与圆Q 相切,则圆心M 的轨迹方程是________________.【解析】点P (-1,0)在圆Q 内,故圆M 与圆Q 内切.设M (x ,y ),圆M 的半径为r ,则|MQ |=4-r .又圆M 过定点P (-1,0),所以|MP |=r ,所以|MQ |=4-|MP |,即|MQ |+|MP |=4.由椭圆定义知,圆心M 的轨迹是椭圆,且c =1,a =2,所以b =3,所以椭圆方程为x 24+y 23=1.【知识清单】考点1 椭圆的定义及其应用 1.椭圆的概念(1)文字形式:在平面内到两定点F 1、F 2的距离的和等于常数(大于|F 1F 2|)的点的轨迹(或集合)叫椭圆.这两定点叫做椭圆的焦点 ,两焦点间的距离叫做焦距. (2)代数式形式:集合1212P={M||MF|+|MF |=2a |FF |=2c.} ①若a c >,则集合P 为椭圆; ②若a c =,则集合P 为线段; ③若a c <,则集合P 为空集.2.椭圆的标准方程:焦点在x 轴时,2222=1(a>b>0)x y a b +;焦点在y 轴时,2222=1(a>b>0)y x a b+考点2 椭圆的标准方程 1.椭圆的标准方程:(1)焦点在x 轴,2222+=1(a>b>0)x y a b ;(2)焦点在y 轴,2222y +=1(a>b>0)x a b.2.满足条件:22222000a c a b c a b c >,=+,>,>,> 考点3 椭圆的几何性质 椭圆的标准方程及其几何性质考点4 直线与椭圆的位置关系1.直线与椭圆位置关系的判断(1)代数法:把椭圆方程与直线方程联立消去y ,整理得到关于x 的方程Ax 2+Bx +C =0.记该一元二次方程根的判别式为Δ,①若Δ>0,则直线与椭圆相交;②若Δ=0,则直线与椭圆相切;③若Δ<0,则直线与椭圆相离.(2)几何法:在同一直角坐标系中画出椭圆和直线,利用图象和性质可判断直线与椭圆的位置关系. 2.直线与椭圆的相交长问题:(1)弦长公式:设直线与椭圆有两个公共点1122()()M x y N x y ,,,,则弦长公式为MN MN (2)弦中点问题,适用“点差法”.【考点深度剖析】椭圆是圆锥曲线中最重要的一类曲线,在高考中出现的次数也最多,主要考查椭圆的定义、性质、方程,在解答题中多与直线、向量、轨迹等综合出题.【重点难点突破】考点1 椭圆的定义及其应用【1-1】[2015·扬州模拟]已知椭圆的焦点是F 1、F 2,P 是椭圆的一个动点,如果M 是线段F 1P 的中点,那么动点M 的轨迹是________. 【答案】椭圆【1-2】已知F 1、F 2是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两个焦点,P 为椭圆C 上的一点,且PF 1→⊥PF 2→.若△PF 1F 2的面积为9,则b =________. 【答案】3【思想方法】1. 涉及到动点到两定点距离之和为常数的问题,可直接用椭圆定义求解.2.涉及椭圆上点、焦点构成的三角形问题,往往利用椭圆定义、勾股定理或余弦定理求解.【温馨提醒】应用椭圆的定义,可以得到结论:(1)椭圆上任意一点P(x ,y)(y≠0)与两焦点F1(-c,0),F2(c,0)构成的△PF1F2称为焦点三角形,其周长为2(a +c).(2)椭圆的一个焦点、中心和短轴的一个端点构成直角三角形,其中a 是斜边,a2=b2+c2.考点2 椭圆的标准方程【2-1】【2014年全国普通高等学校招生统一考试文科数学(大纲卷)】已知椭圆C :22221(0)x y a b a b+=>>的左右焦点为F 1,F 2离心率为3,过F 2的直线l 交C 与A,B 两点,若△AF 1B 的周长为C 的方程为________.【答案】22132x y +=【解析】由椭圆的定义可得,121222,AF AF a BF BF a +=+=,又因为1212 AF AF BF BF +++=所以4a =a =c e a ==1c =, 2222b a c =-=,所以椭圆方程为22132x y +=. 【2-2】求满足下列各条件的椭圆的标准方程: (1)长轴是短轴的3倍且经过点()3,0A ;(2)短轴一个端点与两焦点组成一个正三角形,且焦点到同侧顶点的距离为3;【答案】 (1) 22+y =19x 或22y +=1819x (2) 22y +=1129x ,或22y +=1912x【思想方法】1.求椭圆标准方程的方法求椭圆的标准方程,除了直接根据定义外,常用待定系数法(先定性,后定型,再定参).当椭圆的焦点位置不明确而无法确定其标准方程时,可设方程为22=1x y m n+ (0)0m n m n ≠>,>且,可以避免讨论和繁杂的计算,也可以设为221Ax By += (A >0,B >0且A ≠B ),这种形式在解题中更简便. 2.椭圆的标准方程有两种形式,其结构简单,形式对称且系数的几何意义明确,在解题时要防止遗漏,要深刻理解椭圆中的几何量2,,,,a a b c e c等之间的关系,并能熟练地应用.【温馨提醒】1.用待定系数法求椭圆标准方程的一般步骤是:(1)作判断:根据条件判断焦点的位置.(2)设方程:焦点不确定时,要注意分类讨论,或设方程为221mx ny += (0)0m n m n ≠>,>且. (3)找关系:根据已知条件,建立关于a b c m n 、、或、的方程组. (4)求解,得方程.2.(1)方程2222y +=1x a b 与2222y +=(>0)x a b λλ有相同的离心率.(2)与椭圆2222+=1(a>b>0)x y a b 共焦点的椭圆系方程为22222+=1(a>b>0,0)x y b k a k b k +>++,恰当运用椭圆系方程,可使运算简便. 考点3 椭圆的几何性质【3-1】【2014年全国普通高等学校招生统一考试理科数学(大纲卷)】已知椭圆C :22221x y a b+=(0)a b >>的左、右焦点为1F 、2F2F 的直线l 交C 于A 、B 两点,若1AF B ∆的周长为C 的方程为________.【答案】22132x y +=【3-2】设P 是椭圆221255x y +=上一点,12,F F 是椭圆的两个焦点,120,PF PF ⋅=12F PF ∆则面积是________. 【答案】5【解析】由椭圆方程可知5,a c ===12210PF PF a +==,122F F c ==120,PF PF ⋅=,所以12PF PF ⊥,所以222121280PF PF F F +==,因为222121212()2PF PF PF PF PF PF +=++,解得1210PF PF =.因为12PF PF ⊥,所以1212152F PF S PF PF ∆==. 【思想方法】1.在求解有关离心率的问题时,一般并不是直接求出c 和a 的值,而是根据题目给出的椭圆的几何特征,建立关于参数c 、a 、b的方程或不等式,通过解方程或不等式求得离心率的值或范围.较多时候利用,c e e a ==2.对焦点三角形12F PF △的处理方法,通常是运用⎧⎪⎨⎪⎩定义式的平方余弦定理面积公式2212222121212(2a)212S θθ∆⎧⎪=⎪=-⋅⎨⎪⎪=⋅⎩⇔(|PF|+|PF |)(2c)|PF|+|PF ||PF||PF |cos |PF||PF |sin . 【温馨提醒】1.学习中,要注意椭圆几何性质的挖掘:(1)椭圆中有两条对称轴,“六点”(两个焦点、四个顶点),要注意它们之间的位置关系(如焦点在长轴上等)以及相互间的距离(如焦点到相应顶点的距离为a -c),过焦点垂直于长轴的通径长为2222e?b b c a =等. (2)设椭圆2222+=1(a>b>0)x y a b 上任意一点P(x ,y),则当x =0时,|OP|有最小值b ,这时,P 在短轴端点处;当x =a 时,|OP|有最大值a ,这时P 在长轴端点处.(3)椭圆上任意一点P(x ,y)(y≠0)与两焦点F1(-c,0),F2(c,0)构成的△PF1F2称为焦点三角形,其周长为2(a +c).(4)椭圆的一个焦点、中心和短轴的一个端点构成直角三角形,其中a 是斜边,a2=b2+c2. 2.重视向量在解析几何中的应用,注意合理运用中点、对称、弦长、垂直等几何特征. 考点4 直线与椭圆的位置关系【4-1】过椭圆2222+=1(a>b>0)x y a b左焦点F 斜率为1的直线交椭圆于A ,B 两点,向量OA OB +与向量31()=-a,共线,则该椭圆的离心率为________.【答案】3【4-2】【2014年全国普通高等学校招生统一考试理科数学(江西卷)】过点(1,1)M 作斜率为12-的直线与椭圆C :22221(0)x y a b a b+=>>相交于,A B ,若M 是线段AB 的中点,则椭圆C 的离心率为【解析】设1122(,),(,)A x y B x y ,则由2222112222221,1,x y x y a b a b +=+=两式相减变形得:1212121222()()()()0,x x x x y y y y a b -+-++=即2212220,ab -⨯+=222a b =,从而222,a c e ==【思想方法】1.涉及直线与椭圆的基本题型有: (1)位置关系的判断 (2)弦长、弦中点问题 (3)轨迹问题(4)定值、最值及参数范围问题 (5)存在性问题2.常用思想方法和技巧有:(1)设而不求(2)坐标法(3)根与系数关系3. 若直线与椭圆有两个公共点1122()()M x y N x y ,,,,可结合韦达定理,代入弦长公式MN MN 【温馨提醒】1.涉及直线与椭圆的基本题型有: (1)位置关系的判断 (2)弦长、弦中点问题 (3)轨迹问题(4)定值、最值及参数范围问题 (5)存在性问题2.常用思想方法和技巧有:(1)数形结合思想;(2)设而不求;(3)坐标法;(4)根与系数关系.【易错试题常警惕】[失误与防范]1.判断两种标准方程的方法为比较标准形式中x 2与y 2的分母大小.2.注意椭圆的范围,在设椭圆x 2a 2+y 2b2=1 (a >b >0)上点的坐标为P (x ,y )时,则|x |≤a ,这往往在求与点P 有关的最值问题中用到,也是容易被忽略而导致求最值错误的原因.。
[推荐学习]课标通用2018年高考数学一轮复习第九章解析几何9.5椭圆学案理
§9.5椭圆考纲展示► 1.掌握椭圆的定义、几何图形、标准方程及简单性质.2.了解圆锥曲线的简单应用.3.理解数形结合的思想.考点1 椭圆的定义椭圆的定义平面内与两个定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做________.这两个定点叫做椭圆的________,两焦点间的距离叫做椭圆的________.集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a,c为常数:(1)若________,则集合P为椭圆;(2)若________,则集合P为线段;(3)若________,则集合P为空集.答案:椭圆焦点焦距(1)a>c(2)a=c(3)a<c[教材习题改编]已知甲:动点P到两定点A,B的距离之和|PA|+|PB|=2a(a>0且a为常数);乙:P点的轨迹是椭圆.则甲是乙的________条件.(填“充分不必要”“必要不充分”或“充要”)答案:必要不充分解析:∵乙⇒甲,甲⇒/乙,∴甲是乙的必要不充分条件.椭圆的定义:关键在于理解.(1)动点P到两定点M(0,-2),N(0,2)的距离之和为4,则点P的轨迹是________.答案:线段解析:因为|PM|+|PN|=|MN|=4,所以点P的轨迹是一条线段.(2)已知△ABC 的顶点B ,C 在椭圆x 24+y 212=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是________.答案:8 3解析:由椭圆定义知,△ABC 的周长等于椭圆长轴长的2倍,所以△ABC 的周长是43×2=8 3.[典题1] (1)[2017·北京东城区期末]过椭圆4x 2+y 2=1的一个焦点F 1的直线与椭圆交于A ,B 两点,则A 与B 和椭圆的另一个焦点F 2构成的△ABF 2的周长为( )A .2B .4C .8D .2 2 [答案] B[解析] 因为椭圆的方程为4x 2+y 2=1,所以a =1.根据椭圆的定义知,△ABF 2的周长为|AB |+|AF 2|+|BF 2|=|AF 1|+|BF 1|+|AF 2|+|BF 2|=(|AF 1|+|AF 2|)+(|BF 1|+|BF 2|)=4a =4.(2)已知椭圆x 28+y 2=1的左、右焦点分别为F 1,F 2,点P 在椭圆上,则|PF 1|·|PF 2|的最大值是( )A .8B .2 2C .10D .4 2 [答案] A[解析] 由椭圆的定义得,|PF 1|+|PF 2|=2a =42,∴|PF 1|·|PF 2|≤⎝⎛⎭⎪⎫|PF 1|+|PF 2|22=8(当且仅当|PF 1|=|PF 2|时等号成立).(3)如图所示,一圆形纸片的圆心为O ,F 是圆内一定点,M 是圆周上一动点,把纸片折叠使M 与F 重合,然后抹平纸片,折痕为CD ,设CD 与OM 交于点P ,则点P 的轨迹是( )A .椭圆B .双曲线C .抛物线D .圆 [答案] A[解析] 由折叠过程可知,点M 与点F 关于直线CD 对称,故|PM |=|PF |,所以|PO |+|PF |=|PO |+|PM |=|OM |=r .由椭圆的定义可知,点P 的轨迹为椭圆.[点石成金] 1.利用椭圆的定义定形状时,一定要注意常数2a >|F 1F 2|这一条件. 2.当P 在椭圆上时,与椭圆的两焦点F 1,F 2组成的三角形通常称为“焦点三角形”,椭圆中焦点三角形的5个常用结论(1)|PF 1|+|PF 2|=2a .(2)4c 2=|PF 1|2+|PF 2|2-2|PF 1||PF 2|·cos θ(θ=∠F 1PF 2). (3)当P 为短轴端点时,θ最大.(4)S △PF 1F 2=12|PF 1||PF 2|sin θ =sin θ1+cos θ·b 2=b 2tan θ2=c ·|y 0|.当y 0=±b ,即P 为短轴端点时,S △PF 1F 2有最大值为bc . (5)焦点三角形的周长为2(a +c ).考点2 椭圆的方程(1)[教材习题改编]已知方程x 25-m +y 2m +3=1表示椭圆,则m 的取值范围为________. 答案:(-3,1)∪(1,5)解析:方程表示椭圆的条件为 ⎩⎪⎨⎪⎧5-m >0,m +3>0,5-m ≠m +3,解得m ∈(-3,1)∪(1,5).(2)[教材习题改编]椭圆的中心在原点,焦点在y 轴上,长轴长是短轴长的2倍,焦距为4,则椭圆的标准方程为________.答案:y 28+x 24=1解析:设椭圆的标准方程为y 2a 2+x 2b 2=1(a >b >0). 由已知得a =2b ,c =2,所以c 2=a 2-b 2=b 2=4,得b 2=4,则a 2=8, 所以椭圆的标准方程为y 28+x 24=1.椭圆的标准方程:关注焦点的位置.已知椭圆x 210-m +y 2m -2=1的焦距为4,则m 等于________.答案:4或8解析:由 ⎩⎪⎨⎪⎧10-m >0,m -2>0,得2<m <10.由题意知(10-m )-(m -2)=4或(m -2)-(10-m )=4,解得m =4或m =8.[典题2] (1)已知椭圆的长轴长是短轴长的3倍,且过点A (3,0),并且以坐标轴为对称轴,则椭圆的标准方程为________.[答案]x 29+y 2=1或y 281+x 29=1[解析] 解法一:若椭圆的焦点在x 轴上,设椭圆的方程为x 2a 2+y 2b2=1(a >b >0).由题意,得⎩⎪⎨⎪⎧2a =3×2b ,9a 2+0b2=1,解得⎩⎪⎨⎪⎧a =3,b =1.所以椭圆的标准方程为x 29+y 2=1.若焦点在y 轴上,设椭圆的方程为y 2a 2+x 2b2=1(a >b >0).由题意得⎩⎪⎨⎪⎧2a =3×2b ,0a 2+9b2=1,解得⎩⎪⎨⎪⎧a =9,b =3.所以椭圆的标准方程为y 281+x 29=1.综上所述,椭圆的标准方程为x 29+y 2=1或y 281+x 29=1.解法二:设椭圆的方程为x 2m +y 2n=1(m >0,n >0,m ≠n ),则由题意知,⎩⎪⎨⎪⎧9m =1,2m =3×2n或⎩⎪⎨⎪⎧9m =1,2n =3×2m .解得⎩⎪⎨⎪⎧m =9,n =1 或⎩⎪⎨⎪⎧m =9,n =81.所以椭圆的标准方程为x 29+y 2=1或y 281+x 29=1.(2)过点(3,-5),且与椭圆y 225+x 29=1有相同焦点的椭圆标准方程为________.[答案]y 220+x 24=1 [解析] 解法一:椭圆y 225+x 29=1的焦点为(0,-4),(0,4),即c =4.由椭圆的定义知, 2a =3-2+-5+2+3-2+-5-2,解得a =2 5.由c 2=a 2-b 2可得b 2=4. 所以所求椭圆的标准方程为y 220+x 24=1. 解法二:设所求椭圆方程为y 225-k +x 29-k=1(k <9), 将点(3,-5)的坐标代入可得-5225-k +329-k=1,解得k =5或k =21(舍去), 所以所求椭圆的标准方程为y 220+x 24=1.(3)设F 1,F 2分别是椭圆E :x 2+y 2b2=1(0<b <1)的左、右焦点,过点F 1的直线交椭圆E 于A ,B 两点.若|AF 1|=3|F 1B |,AF 2⊥x 轴,则椭圆E 的方程为________.[答案] x 2+3y22=1[解析] 设点A 在点B 上方,F 1(-c,0),F 2(c,0),其中c =1-b 2, 则可设A (c ,b 2),B (x 0,y 0),由|AF 1|=3|F 1B |,可得AF 1→=3F 1B →,故⎩⎪⎨⎪⎧-2c =x 0+c ,-b 2=3y 0, 即⎩⎪⎨⎪⎧x 0=-53c ,y 0=-13b 2,代入椭圆方程可得-b29+19b 2=1, 解得b 2=23,故椭圆的方程为x 2+3y 22=1.[点石成金] 求椭圆标准方程的基本方法是待定系数法,具体过程是先定形,再定量,即首先确定焦点所在位置,然后再根据条件建立关于a ,b 的方程组.如果焦点位置不确定,要考虑是否有两解,有时为了解题方便,也可把椭圆方程设为mx 2+ny 2=1(m >0,n >0,m ≠n )的形式.1.一个椭圆的中心在原点,焦点F 1,F 2在x 轴上,P (2,3)是椭圆上一点,且|PF 1|,|F 1F 2|,|PF 2|成等差数列,则椭圆的方程为( )A.x 28+y 26=1B.x 216+y 26=1 C.x 24+y 22=1 D.x 28+y 24=1 答案:A解析:设椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0).由点P (2,3)在椭圆上知4a 2+3b2=1.又|PF 1|,|F 1F 2|,|PF 2|成等差数列, 则|PF 1|+|PF 2|=2|F 1F 2|,即2a =2×2c ,c a =12,又c 2=a 2-b 2,联立⎩⎪⎨⎪⎧4a 2+3b 2=1,c 2=a 2-b 2,c a =12,得a 2=8,b 2=6, 故椭圆的方程为x 28+y 26=1.2.求满足下列条件的椭圆的标准方程:(1)与椭圆x 24+y 23=1有相同的离心率且经过点(2,-3);(2)已知点P 在以坐标轴为对称轴的椭圆上,且P 到两焦点的距离分别为5,3,过P 且与长轴垂直的直线恰过椭圆的一个焦点;(3)经过两点⎝ ⎛⎭⎪⎫-32,52,()3,5. 解:(1)由题意,设所求椭圆的方程为x 24+y 23=t 1或y 24+x 23=t 2(t 1,t 2>0),∵椭圆过点(2,-3), ∴t 1=224+-323=2或t 2=-324+223=2512. 故所求椭圆的标准方程为x 28+y 26=1或y 2253+x 2254=1.(2)由于焦点的位置不确定,∴设所求的椭圆方程为x 2a 2+y 2b 2=1(a >b >0)或y 2a 2+x 2b2=1(a >b >0),由已知条件得⎩⎪⎨⎪⎧2a =5+3,c 2=52-32解得a =4,c =2, ∴b 2=12.故椭圆的方程为x 216+y 212=1或y 216+x 212=1. (3)设椭圆方程为mx 2+ny 2=1(m ,n >0,m ≠n ),由⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫-322m +⎝ ⎛⎭⎪⎫522n =1,3m +5n =1,解得m =16,n =110.∴椭圆的方程为y 210+x 26=1.考点3 椭圆的几何性质椭圆的标准方程和几何性质坐标轴 (0,0) (-a,0) (a,0) (0,-b ) (0,b ) (0,-a ) (0,a ) (-b,0) (b,0)2a2b 2c (0,1) a 2-b 2(1)[教材习题改编]椭圆x 216+y 28=1的离心率为________.答案:22解析:由x 216+y 28=1可得a 2=16,b 2=8,∴c 2=a 2-b 2=8,∴e 2=c 2a 2=12,∴e =22.(2)[教材习题改编]已知点P 是椭圆x 25+y 24=1上y 轴右侧的一点,且以点P 及焦点F 1,F 2为顶点的三角形的面积等于1,则点P 的坐标为________.答案: ⎝⎛⎭⎪⎫152,1或 ⎝ ⎛⎭⎪⎫152,-1 解析:设P (x ,y ),由题意知c 2=a 2-b 2=5-4=1,所以c =1,则F 1(-1,0),F 2(1,0), 由题意可得点P 到x 轴的距离为1,所以y =±1, 把y =±1代入x 25+y 24=1,得x =±152,又x >0,所以x =152, 所以点P 的坐标为 ⎝⎛⎭⎪⎫152,1或 ⎝ ⎛⎭⎪⎫152,-1.1.焦点三角形问题:定义法.若椭圆x 24+y 23=1上的点P 与椭圆两焦点F 1,F 2的连线互相垂直,则△F 1PF 2的面积为________.答案:3解析:设|PF 1|=m ,|PF 2|=n .椭圆的长轴长为2a =4,焦距为2c =2, 因为PF 1⊥PF 2,所以m +n =4且m 2+n 2=4, 解得mn =6,所以△F 1PF 2的面积为12mn =3.2.直线与椭圆的位置关系:代数法.直线y =x +k 与椭圆x 2+y 24=1只有一个公共点,则k =________.答案:-5或 5解析:将y =x +k 代入x 2+y 24=1中,消去y ,得5x 2+2kx +k 2-4=0. 因为直线与椭圆只有一个公共点,所以Δ=(2k )2-4×5(k 2-4)=0,解得k =-5或 5.[典题3] (1)[2017·安徽淮南模拟]已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点为F ,C与过原点的直线相交于A ,B 两点,连接AF ,BF .若|AB |=10,|BF |=8,cos ∠ABF =45,则C的离心率为( )A.35B.57C.45D.67 [答案] B[解析] 如图,设|AF |=x ,则cos ∠ABF =82+102-x 22×8×10=45,解得x =6,所以∠AFB =90°,由椭圆及直线关于原点对称可知,|AF 1|=8,∠FAF 1=∠FAB +∠FBA =90°,△FAF 1是直角三角形,所以|F 1F |=10,故2a =8+6=14,2c =10,所以c a =57.(2)设F 1,F 2分别是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,点P 在椭圆C 上,若线段PF 1的中点在y 轴上,∠PF 1F 2=30°,则椭圆的离心率为( )A.33 B.36 C.13 D.16[答案] A[解析] 如图,设PF 1的中点为M ,连接PF 2.因为O 为F 1F 2的中点, 所以OM 为△PF 1F 2的中位线. 所以OM ∥PF 2,所以∠PF 2F 1=∠MOF 1=90°.因为∠PF 1F 2=30°,所以|PF 1|=2|PF 2|. 由勾股定理,得|F 1F 2|=|PF 1|2-|PF 2|2=3|PF 2|, 由椭圆定义,得2a =|PF 1|+|PF 2|=3|PF 2|, 即a =3|PF 2|2,2c =|F 1F 2|=3|PF 2|,即c =3|PF 2|2, 则e =c a=3|PF 2|2·23|PF 2|=33. [题点发散1] [典题3](2)条件变为“若∠PF 1F 2=α,∠PF 2F 1=β,且cos α=55,sin(α+β)=35”,则椭圆的离心率为________.答案:57解析:∵cos α=55⇒sin α=255. sin(α+β)=35⇒cos(α+β)=-45.∴sin β=sin[(α+β)-α]=11525.设|PF 1|=r 1,|PF 2|=r 2.由正弦定理,得r 111525=r 2255=2c35,∴r 1+r 221525=2c35⇒e =c a =57.[题点发散2] [典题3](2)条件变为“P 到两焦点的距离之比为2∶1”,试求椭圆的离心率的取值范围.解:设P 到两个焦点的距离分别是2k ,k , 根据椭圆定义可知3k =2a ,又结合椭圆的性质可知,椭圆上的点到两个焦点距离之差的最大值为2c ,即k ≤2c , ∴2a ≤6c ,即e ≥13.又0<e <1,∴13≤e <1.故椭圆的离心率的取值范围为⎣⎢⎡⎭⎪⎫13,1. [题点发散3] [典题3](2)条件中方程变为“x 2+2y 2=2”,P 是该椭圆上的一个动点.求|PF 1→+PF 2→|的最小值.解:将方程变形为x 22+y 2=1,则F 1(-1,0),F 2(1,0).设P (x 0,y 0),则PF 1→=(-1-x 0,-y 0),PF 2→=(1-x 0,-y 0), ∴PF 1→+PF 2→=(-2x 0,-2y 0),∴|PF 1→+PF 2→|=4x 20+4y 20=22-2y 20+y 20 =2-y 20+2∵点P 在椭圆上,∴0≤y 20≤1,∴当y 20=1时,|PF 1→+PF 2→|的最小值为2.[点石成金] 应用椭圆几何性质的两个技巧与一种方法 1.两个技巧(1)与椭圆几何性质有关的问题要结合图形进行分析,即使画不出图形,思考时也要联想到一个图形.(2)椭圆的范围或最值问题常常涉及一些不等式.例如-a ≤x ≤a ,-b ≤y ≤b,0<e <1,在求椭圆的相关量的范围时,要注意应用这些不等关系.2.一种方法求椭圆的离心率的方法(1)直接求出a ,c ,从而求解e ,通过已知条件列方程组,解出a ,c 的值.(2)构造a ,c 的齐次式,解出e ,由已知条件得出a ,c 的二元齐次方程,然后转化为关于离心率e 的一元二次方程求解.(3)通过特殊值或特殊位置,求出离心率.1.设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点为 F 1,F 2,过F 2 作x 轴的垂线与C 相交于A ,B 两点,F 1B 与y 轴交于点D ,若AD ⊥F 1B ,则椭圆C 的离心率等于________.答案:33解析:由题意知,F 1(-c,0),F 2(c,0), 其中c =a 2-b 2,因为过F 2且与x 轴垂直的直线为x =c ,由椭圆的对称性可设它与椭圆的交点为A ⎝ ⎛⎭⎪⎫c ,b 2a ,B ⎝⎛⎭⎪⎫c ,-b 2a . 因为AB 平行于y 轴,且|F 1O |=|OF 2|, 所以|F 1D |=|DB |,即D 为线段F 1B 的中点,所以点D 的坐标为⎝⎛⎭⎪⎫0,-b 22a ,又AD ⊥F 1B ,所以k AD ·kF 1B =-1,即b 2a -⎝ ⎛⎭⎪⎫-b 22a c -0×-b 2a -0c --c=-1,整理得3b 2=2ac , 所以3(a 2-c 2)=2ac , 又e =c a,0<e <1, 所以3e 2+2e -3=0, 解得e =33或e =-3(舍去). 2.过点M (1,1)作斜率为-12的直线与椭圆C :x 2a 2+y2b 2=1(a >b >0)相交于A ,B 两点,若M是线段AB 的中点,则椭圆C 的离心率等于________.答案:22解析:设A (x 1,y 1),B (x 2,y 2),且A ,B 在椭圆上,⎩⎪⎨⎪⎧x 21a 2+y 21b2=1,x 22a 2+y22b 2=1,则有x 21-x 22a 2+y 21-y 22b2=0,∴x1+x 2x 1-x 2a2+y1+y 2y 1-y 2b2=0,由题意知x 1+x 2=2,y 1+y 2=2,y 1-y 2x 1-x 2=-12, ∴2a 2+-12×2b2=0, ∴a 2=2b 2,∴e =22.考点4 直线与椭圆的位置关系[考情聚焦] 直线与椭圆的综合问题是高考命题的一个热点问题,主要以解答题的形式出现,考查椭圆的定义、几何性质、直线与椭圆的位置关系,考查学生分析问题、解决问题的能力.主要有以下几个命题角度: 角度一由直线与椭圆的位置关系研究椭圆的性质[典题4] 设F 1,F 2分别是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,M 是C 上一点且MF 2与x 轴垂直.直线MF 1与C 的另一个交点为N .(1)若直线MN 的斜率为34,求椭圆C 的离心率;(2)若直线MN 在y 轴上的截距为2,且|MN |=5|F 1N |,求a ,b 的值. [解] (1)根据a 2-b 2=c 2及题设知,M ⎝ ⎛⎭⎪⎫c ,b 2a ,所以b 2a 2c =34,得2b 2=3ac .将b 2=a 2-c 2代入2b 2=3ac ,解得c a =12或ca=-2(舍去).故椭圆C 的离心率为12.(2)设直线MN 与y 轴的交点为D ,由题意,原点O 为F 1F 2的中点,MF 2∥y 轴,所以直线MF 1与y 轴的交点D (0,2)是线段MF 1的中点,故b 2a=4,即b 2=4a .①由|MN |=5|F 1N |,得|DF 1|=2|F 1N |. 设N (x 1,y 1),由题意知y 1<0,则⎩⎪⎨⎪⎧-c -x 1=c ,-2y 1=2,即⎩⎪⎨⎪⎧x 1=-32c ,y 1=-1.代入C 的方程,得9c 24a 2+1b 2=1.②将①及a 2-b 2=c 2代入②得a 2-4a 4a 2+14a=1. 解得a =7,b 2=4a =28, 故a =7,b =27.[点石成金] 解决此类问题的关键是依据条件寻找关于a ,b ,c 的关系式,解方程即可求得椭圆方程或椭圆的几何性质.角度二由直线与椭圆的位置关系研究直线的性质[典题5] 已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点F 与抛物线y 2=43x 的焦点重合,短轴的下、上两个端点分别为 B 1,B 2,且FB 1→·FB 2→=a .(1)求椭圆C 的方程;(2)若直线l :y =kx +m (km <0)与椭圆C 交于M ,N 两点,AB 是椭圆C 经过原点O 的弦,AB ∥l ,且|AB |2|MN |=4,问是否存在直线l ,使得OM →·ON →=2?若存在,求出直线l 的方程;若不存在,请说明理由.[解] (1)由题意可知,抛物线的焦点为(3,0), ∴F (3,0),FB 1→=(-3,-b ),FB 2→=(-3,b ), FB 1→·FB 2→=3-b 2=a ,又b 2=a 2-3,解得a =2,b =1, ∴椭圆C 的方程为x 24+y 2=1.(2)设M (x 1,y 1),N (x 2,y 2),由⎩⎪⎨⎪⎧x 24+y 2=1,y =kx +m ,消去y ,得(4k 2+1)x 2+8kmx +4m 2-4=0, ∴Δ=16(4k 2-m 2+1)>0, x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1,则|MN |=1+k 2·Δ4k 2+1=41+k 2·4k 2-m 2+14k +1, 令m =0,可得|AB |=41+k24k 2+1. ∴|AB |2|MN |=41+k 24k 2-m 2+1=4, 化简得 m =-3k 或 m =3k (舍去), ∴OM →·ON →=x 1x 2+y 1y 2=x 1x 2+k 2[x 1x 2-3(x 1+x 2)+3] =(1+k 2)x 1x 2-3k 2(x 1+x 2)+3k 2=1+k 24m 2-44k 2+1-24k 44k 2+1+3k 2 =11k 2-44k 2+1=2, 解得 k =±2,故直线的方程为 y =2x -6或y =-2x + 6.[点石成金] 1.解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题用“点差法”解决,往往会更简单.2.设直线与椭圆的交点坐标为A (x 1,y 1),B (x 2,y 2),则|AB |=+k2[x 1+x 22-4x 1x 2]=⎝ ⎛⎭⎪⎫1+1k 2y 1+y22-4y 1y 2](k 为直线斜率).[方法技巧] 1.求椭圆标准方程的方法(1)定义法:根据椭圆定义,确定a 2,b 2的值,再结合焦点位置,直接写出椭圆方程. (2)待定系数法:根据椭圆焦点是在x 轴还是y 轴上,设出相应形式的标准方程,然后根据条件确定关于a ,b ,c 的方程组,解出a 2,b 2,从而写出椭圆的标准方程.2.讨论椭圆的几何性质时,离心率问题是重点,求离心率的常用方法有以下两种: (1)求得a ,c 的值,直接代入公式e =ca求得;(2)列出关于a ,b ,c 的齐次方程(或不等式),然后根据b 2=a 2-c 2,消去b ,转化成关于e 的方程(或不等式)求解.[易错防范] 1.在解关于离心率e 的二次方程时,要注意利用椭圆的离心率e ∈(0,1)进行根的取舍,否则将产生增根.2.注意椭圆的范围,在设椭圆x 2a 2+y 2b2=1(a >b >0)上点的坐标为P (x ,y )时,则|x |≤a ,这往往在求与点P 有关的最值问题中特别有用,也是容易被忽略而导致求最值错误的原因.真题演练集训1.[2016·新课标全国卷Ⅲ]已知O 为坐标原点,F 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点,A ,B 分别为C 的左、右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )A.13B.12C.23D.34 答案:A解析:设E (0,m ),则直线AE 的方程为-x a +ym =1,由题意可知,M ⎝⎛⎭⎪⎫-c ,m -mc a ,⎝ ⎛⎭⎪⎫0,m 2和B (a,0)三点共线,则m -mc a -m 2-c =m2-a ,化简得a =3c ,则C 的离心率e =c a =13.2.[2016·江苏卷]如图,在平面直角坐标系xOy 中,F 是椭圆x 2a +y 2b=1(a >b >0)的右焦点,直线y =b2与椭圆交于B ,C 两点,且∠BFC =90°,则该椭圆的离心率是________.答案:63解析:由题意可得B ⎝ ⎛⎭⎪⎫-32a ,b 2,C ⎝ ⎛⎭⎪⎫32a ,b 2,F (c,0),则由∠BFC =90°得BF →·CF →=⎝ ⎛⎭⎪⎫c +32a ,-b 2·⎝ ⎛⎭⎪⎫c -32a ,-b 2=c 2-34a 2+14b 2=0,化简得3c =2a ,则离心率e =c a =23=63. 3.[2016·天津卷]设椭圆x 2a 2+y 23=1(a >3)的右焦点为F ,右顶点为A .已知1|OF |+1|OA |=3e|FA |,其中O 为原点,e 为椭圆的离心率. (1)求椭圆的方程;(2)设过点A 的直线l 与椭圆交于点B (B 不在x 轴上),垂直于l 的直线与l 交于点M ,与y 轴交于点H .若BF ⊥HF ,且∠MOA ≤∠MAO ,求直线l 的斜率的取值范围.解:(1)设F (c,0),由1|OF |+1|OA |=3e |FA |,即1c +1a =3c a a -c,可得a 2-c 2=3c 2, 又a 2-c 2=b 2=3,所以c 2=1,因此a 2=4. 所以,椭圆的方程为x 24+y 23=1. (2)设直线l 的斜率为k (k ≠0),则直线l 的方程为y =k (x -2).设B (x B ,y B ),由方程组⎩⎪⎨⎪⎧x 24+y 23=1,y =k x -消去y ,整理得(4k 2+3)x 2-16k 2x +16k 2-12=0. 解得x =2或x =8k 2-64k 2+3,由题意得x B =8k 2-64k +3,从而y B =-12k4k +3.由(1)知,F (1,0),设H (0,y H ),有FH →=(-1,y H ),BF →=⎝ ⎛⎭⎪⎫9-4k24k 2+3,12k 4k 2+3.由BF ⊥HF ,得BF →·FH →=0,所以4k 2-94k +3+12ky H 4k +3=0,解得y H =9-4k 212k .因此直线MH 的方程为y =-1k x +9-4k212k.设M (x M ,y M ),由方程组⎩⎪⎨⎪⎧y =k x -,y =-1k x +9-4k212k 消去y ,解得x M =20k 2+9k 2+.在△MAO 中,∠MOA ≤∠MAO ⇔|MA |≤|MO |, 即(x M -2)2+y 2M ≤x 2M +y 2M ,化简得x M ≥1, 即20k 2+9k 2+≥1,解得k ≤-64或k ≥64. 所以,直线l 的斜率的取值范围为 ⎝ ⎛⎦⎥⎤-∞,-64∪⎣⎢⎡⎭⎪⎫64,+∞.4.[2014·新课标全国卷Ⅰ]已知点A (0,-2),椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,F 是椭圆E 的右焦点,直线AF 的斜率为233,O 为坐标原点. (1)求E 的方程;(2)设过点A 的动直线l 与E 相交于P ,Q 两点,当△OPQ 的面积最大时,求l 的方程. 解:(1)设F (c,0),由条件知,2c =233,得c = 3.又c a =32,所以a =2,b 2=a 2-c 2=1. 故E 的方程为x 24+y 2=1.(2)当l ⊥x 轴时不合题意,故设l :y =kx -2,P (x 1,y 1),Q (x 2,y 2), 将y =kx -2代入x 24+y 2=1得(1+4k 2)x 2-16kx +12=0.当Δ=16(4k 2-3)>0,即k 2>34时,x 1,2=8k ±24k 2-34k 2+1. 从而|PQ |=k 2+1|x 1-x 2|=4k 2+1·4k 2-34k 2+1. 又点O 到直线PQ 的距离d =2k 2+1,所以△OPQ 的面积S △OPQ =12d |PQ |=44k 2-34k 2+1. 设4k 2-3=t ,则t >0,S △OPQ =4t t 2+4=4t +4t. 因为t +4t ≥4,当且仅当t =2,即k =±72时等号成立,且满足Δ>0,所以,当△OPQ 的面积最大时,l 的方程为y =72x -2或y =-72x -2.课外拓展阅读利用转化与化归思想求圆锥曲线离心率的取值(范围)[典例] (1)如图,椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点为F 1,上顶点为B 2,右顶点为A 2,过点A 2作x 轴的垂线交直线F 1B 2于点P ,若|PA 2|=3b ,则椭圆C 的离心率为________.(2)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1(-c,0),F 2(c,0),若椭圆上存在点P 使a sin ∠PF 1F 2=csin ∠PF 2F 1,则该椭圆的离心率的取值范围为________.[审题视角] 求椭圆的离心率利用方程思想,只需利用题目条件得到a ,b ,c 的一个关系式即可,若得到的关系式含b ,可利用a 2=b 2+c 2转化为只含a ,c 的关系式.[解析] (1)由题设知,|B 2O ||PA 2|=|F 1O ||F 1A 2|=b 3b =c a +c =13,则e =12.(2)依题意及正弦定理,得|PF 2||PF 1|=ac (注意到P 不与F 1F 2共线), 即|PF 2|2a -|PF 2|=ac ,∴2a |PF 2|-1=ca , ∴2a|PF 2|=c a +1>2aa +c,生活的色彩就是学习K12的学习需要努力专业专心坚持 即e +1>21+e,∴(e +1)2>2. 又0<e <1,因此 2-1<e <1.[答案] (1)12(2)(2-1,1) 方法点睛离心率是椭圆的重要几何性质,是高考重点考查的一个知识点,这类问题一般有两类:一类是根据一定的条件求椭圆的离心率;另一类是根据一定的条件求离心率的取值范围.无论是哪类问题,其难点都是建立关于a ,b ,c 的关系式(等式或不等式),并且最后要把其中的b 用a ,c 表示,转化为关于离心率e 的关系式,这是化解有关椭圆的离心率问题难点的根本方法.。
2018版高考数学理江苏专用大一轮复习讲义教师版文档第
1.椭圆的概念平面内到两个定点F1,F2的距离的和等于常数(大于F1F2)的点的轨迹叫做椭圆,两个定点F1,F2叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.集合P={M|MF1+MF2=2a},F1F2=2c,其中a>0,c>0,且a,c为常数:(1)若a>c,则集合P为椭圆;(2)若a=c,则集合P为线段;(3)若a<c,则集合P为空集.2.椭圆的标准方程和几何性质【知识拓展】点P (x 0,y 0)和椭圆的关系(1)点P (x 0,y 0)在椭圆内⇔x 20a 2+y 20b 2<1.(2)点P (x 0,y 0)在椭圆上⇔x 20a 2+y 20b 2=1.(3)点P (x 0,y 0)在椭圆外⇔x 20a 2+y 20b2>1.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)平面内到两个定点F 1,F 2的距离的和等于常数的点的轨迹叫做椭圆.( × )(2)椭圆上一点P 与两焦点F 1,F 2构成△PF 1F 2的周长为2a +2c (其中a 为椭圆的长半轴长,c 为椭圆的半焦距).( √ )(3)椭圆的离心率e 越大,椭圆就越圆.( × )(4)方程mx 2+ny 2=1(m >0,n >0,m ≠n )表示的曲线是椭圆.( √ ) (5)y 2a 2+x 2b 2=1(a ≠b )表示焦点在y 轴上的椭圆.( × ) (6)x 2a 2+y 2b 2=1(a >b >0)与y 2a 2+x 2b 2=1(a >b >0)的焦距相等.( √ )1.(教材改编)椭圆x 210-m +y 2m -2=1的焦距为4,则m =________.答案 4或8 解析 由题意知⎩⎪⎨⎪⎧ 10-m >m -2>0,(10-m )-(m -2)=4或⎩⎪⎨⎪⎧m -2>10-m >0,(m -2)-(10-m )=4,解得m =4或m =8.2.(2016·苏州检测)在平面直角坐标系xOy 内,动点P 到定点F (-1,0)的距离与P 到定直线x =-4的距离的比值为12.则动点P 的轨迹C 的方程为______________.答案 x 24+y 23=1解析 设点P (x ,y ),由题意知(x +1)2+y 2|x +4|=12,化简得3x 2+4y 2=12,所以动点P 的轨迹C 的方程为x 24+y 23=1.3.(2016·全国乙卷改编)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为________.答案 12解析 如图,由题意得,BF =a ,OF =c ,OB =b , OD =14·2b =12b .在Rt △FOB 中,OF ·OB =BF ·OD ,即cb =a ·12b ,解得a =2c ,故椭圆离心率e =c a =12.4.如果方程x 2+ky 2=2表示焦点在y 轴上的椭圆,那么实数k 的取值范围是________. 答案 (0,1)解析 将椭圆方程化为x 22+y 22k =1,因为焦点在y 轴上,则2k>2,即k <1,又k >0,所以0<k <1.5.(教材改编)已知点P 是椭圆x 25+y 24=1上y 轴右侧的一点,且以点P 及焦点F 1,F 2为顶点的三角形的面积等于1,则点P 的坐标为__________________. 答案 ⎝⎛⎭⎫152,1或⎝⎛⎭⎫152,-1 解析 设P (x ,y ),由题意知c 2=a 2-b 2=5-4=1,所以c =1,则F 1(-1,0),F 2(1,0),由题意可得点P 到x 轴的距离为1,所以y =±1,把y =±1代入x 25+y 24=1,得x =±152,又x >0,所以x =152,所以P 点坐标为⎝⎛⎭⎫152,1或⎝⎛⎭⎫152,-1.题型一 椭圆的定义及标准方程 命题点1 利用定义求轨迹例1 (2016·徐州模拟)如图所示,一圆形纸片的圆心为O ,F 是圆内一定点,M 是圆周上一动点,把纸片折叠使M 与F 重合,然后抹平纸片,折痕为CD ,设CD 与OM 交于点P ,则点P 的轨迹是________.答案 椭圆解析 由条件知PM =PF , ∴PO +PF =PO +PM =OM =R >OF . ∴P 点的轨迹是以O ,F 为焦点的椭圆. 命题点2 利用待定系数法求椭圆方程例2 (1)已知椭圆以坐标轴为对称轴,且长轴长是短轴长的3倍,并且过点P (3,0),则椭圆的方程为_________________________________.(2)已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点P 1(6,1),P 2(-3,-2),则椭圆的方程为________________________________________. 答案 (1)x 29+y 2=1或y 281+x 29=1(2)x 29+y 23=1 解析 (1)若焦点在x 轴上, 设方程为x 2a 2+y 2b2=1(a >b >0).∵椭圆过P (3,0),∴32a 2+02b 2=1,即a =3,又2a =3×2b ,∴b =1,∴椭圆方程为x 29+y 2=1.若焦点在y 轴上,设方程为y 2a 2+x 2b 2=1(a >b >0).∵椭圆过点P (3,0),∴02a 2+32b 2=1,即b =3.又2a =3×2b ,∴a =9,∴椭圆方程为y 281+x 29=1.∴所求椭圆的方程为x 29+y 2=1或y 281+x 29=1.(2)设椭圆方程为mx 2+ny 2=1(m >0,n >0且m ≠n ). ∵椭圆经过点P 1,P 2,∴点P 1,P 2的坐标适合椭圆方程.即⎩⎪⎨⎪⎧6m +n =1,①3m +2n =1,② ①②两式联立,解得⎩⎨⎧m =19,n =13.∴所求椭圆方程为x 29+y 23=1.命题点3 利用定义解决“焦点三角形”问题例3 已知F 1,F 2是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两个焦点,P 为椭圆C 上的一点,且PF 1→⊥PF 2→.若△PF 1F 2的面积为9,则b =________. 答案 3解析 设PF 1=r 1,PF 2=r 2,则⎩⎪⎨⎪⎧r 1+r 2=2a ,r 21+r 22=4c 2, 因为2r 1r 2=(r 1+r 2)2-(r 21+r 22)=4a 2-4c 2=4b 2, 又因为1221219,2PF F S rr b ===△ 所以b =3. 引申探究1.在例3中,若增加条件“△PF 1F 2的周长为18”,其他条件不变,求该椭圆的方程. 解 由原题得b 2=a 2-c 2=9, 又2a +2c =18,所以a -c =1,解得a =5, 故椭圆方程为x 225+y 29=1.2.在例3中,若将条件“PF 1→⊥PF 2→”“△PF 1F 2的面积为9”分别改为“∠F 1PF 2=60°”“12PF F S =△,结果如何?解 PF 1+PF 2=2a ,又∠F 1PF 2=60°,所以PF 21+PF 22-2PF 1·PF 2cos 60°=F 1F 22,即(PF 1+PF 2)2-3PF 1·PF 2=4c 2, 所以3PF 1·PF 2=4a 2-4c 2=4b 2, 所以PF 1·PF 2=43b 2,又因为12121··sin 602PF F S PF PF =︒△ =12·43b 2·32 =33b 2=33, 所以b =3.思维升华 (1)求椭圆的方程多采用定义法和待定系数法,利用椭圆的定义定形状时,一定要注意常数2a >F 1F 2这一条件.(2)求椭圆标准方程的基本方法是待定系数法,具体过程是先定形,再定量,即首先确定焦点所在位置,然后再根据条件建立关于a ,b 的方程组.如果焦点位置不确定,要考虑是否有两解,有时为了解题方便,也可把椭圆方程设为mx 2+ny 2=1(m >0,n >0,m ≠n )的形式. (3)当P 在椭圆上时,与椭圆的两焦点F 1,F 2组成的三角形通常称为“焦点三角形”,利用定义可求其周长;利用定义和余弦定理可求PF 1·PF 2;通过整体代入可求其面积等.(1)(2016·盐城模拟)已知两圆C 1:(x -4)2+y 2=169,C 2:(x +4)2+y 2=9,动圆在圆C 1内部且和圆C 1相内切,和圆C 2相外切,则动圆圆心M 的轨迹方程为________________. (2)(2016·镇江模拟)设F 1、F 2分别是椭圆x 24+y 2=1的左、右焦点,若椭圆上存在一点P ,使(OP→+OF 2→)·PF 2→=0(O 为坐标原点),则△F 1PF 2的面积是______. 答案 (1)x 264+y 248=1 (2)1解析 (1)设圆M 的半径为r ,则MC 1+MC 2=(13-r )+(3+r )=16>8=C 1C 2, 所以M 的轨迹是以C 1,C 2为焦点的椭圆, 且 2a =16,2c =8,故所求的轨迹方程为x 264+y 248=1.(2)∵(OP →+OF 2→)·PF 2→=(OP →+F 1O →)·PF 2→=F 1P →·PF 2→=0, ∴PF 1⊥PF 2,∠F 1PF 2=90°. 设PF 1=m ,PF 2=n ,则m +n =4,m 2+n 2=12,2mn =4,121= 1.2F PF S mn ∴=△题型二 椭圆的几何性质例4 (1)已知点F 1,F 2是椭圆x 2+2y 2=2的左,右焦点,点P 是该椭圆上的一个动点,那么|PF 1→+PF 2→|的最小值是________.(2)(2016·全国丙卷改编)已知O 为坐标原点,F 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点,A ,B 分别为椭圆C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为________. 答案 (1)2 (2)13解析 (1)设P (x 0,y 0),则PF 1→=(-1-x 0,-y 0), PF 2→=(1-x 0,-y 0),∴PF 1→+PF 2→=(-2x 0,-2y 0), ∴|PF 1→+PF 2→|=4x 20+4y 20=22-2y 20+y 20=2-y 20+2.∵点P 在椭圆上,∴0≤y 20≤1, ∴当y 20=1时,|PF 1→+PF 2→|取最小值2.(2)设M (-c ,m ),则E ⎝⎛⎭⎫0,am a -c ,OE 的中点为D ,则D ⎝⎛⎭⎫0,am2(a -c ),又B ,D ,M 三点共线,所以m 2(a -c )=m a +c,a =3c ,e =13.思维升华 (1)利用椭圆几何性质的注意点及技巧 ①注意椭圆几何性质中的不等关系在求与椭圆有关的一些量的范围,或者最大值、最小值时,经常用到椭圆标准方程中x ,y 的范围,离心率的范围等不等关系. ②利用椭圆几何性质的技巧求解与椭圆几何性质有关的问题时,要结合图形进行分析,当涉及顶点、焦点、长轴、短轴等椭圆的基本量时,要理清它们之间的内在联系. (2)求椭圆的离心率问题的一般思路求椭圆的离心率或其范围时,一般是依据题设得出一个关于a ,b ,c 的等式或不等式,利用a 2=b 2+c 2消去b ,即可求得离心率或离心率的范围.(2016·江苏)如图,在平面直角坐标系xOy 中,F 是椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点,直线y =b2与椭圆交于B ,C 两点,且∠BFC =90°,则该椭圆的离心率是________.答案63解析 联立方程组⎩⎨⎧x 2a 2+y 2b 2=1,y =b2,解得B ,C 两点坐标为B ⎝⎛⎭⎫-32a ,b 2,C ⎝⎛⎫32a ,b 2,又F (c,0),则FB →=⎝⎛⎭⎫-32a -c ,b 2,FC →=⎝⎛⎭⎫3a 2-c ,b 2,又由∠BFC =90°,可得FB →·FC →=0,代入坐标可得 c 2-34a 2+b 24=0,①又因为b 2=a 2-c 2.代入①式可化简为c 2a 2=23,则椭圆离心率为e =c a =23=63. 题型三 直线与椭圆例5 (2016·天津)设椭圆x 2a 2+y 23=1(a >3)的右焦点为F ,右顶点为A .已知1OF +1OA =3eF A ,其中O 为原点,e 为椭圆的离心率. (1)求椭圆的方程;(2)设过点A 的直线l 与椭圆交于点B (B 不在x 轴上),垂直于l 的直线与l 交于点M ,与y 轴交于点H .若BF ⊥HF ,且∠MOA ≤∠MAO ,求直线l 的斜率的取值范围. 解 (1)设F (c,0),由1OF +1OA =3eF A ,即1c +1a =3c a (a -c ),可得a 2-c 2=3c 2. 又a 2-c 2=b 2=3,所以c 2=1,因此a 2=4. 所以椭圆的方程为x 24+y 23=1.(2)设直线l 的斜率为k (k ≠0), 则直线l 的方程为y =k (x -2).设B (x B ,y B ),由方程组⎩⎪⎨⎪⎧x 24+y 23=1,y =k (x -2)消去y ,整理得(4k 2+3)x 2-16k 2x +16k 2-12=0, 解得x =2或x =8k 2-64k 2+3.由题意,得x B =8k 2-64k 2+3,从而y B =-12k4k 2+3.由(1)知,F (1,0),设H (0,y H ),有FH →=(-1,y H ),BF →=⎝ ⎛⎭⎪⎫9-4k24k 2+3,12k 4k 2+3.由BF ⊥HF ,得BF →·FH →=0,所以4k 2-94k 2+3+12ky H 4k 2+3=0,解得y H =9-4k 212k .因此直线MH 的方程为y =-1k x +9-4k212k.设M (x M ,y M ),由方程组⎩⎪⎨⎪⎧y =k (x -2),y =-1k x +9-4k 212k 消去y ,解得x M =20k 2+912(k 2+1).在△MAO 中,∠MOA ≤∠MAO ⇔MA ≤MO ,即(x M -2)2+y 2M ≤x 2M +y 2M ,化简得x M ≥1,即20k 2+912(k 2+1)≥1,解得k ≤-64或k ≥64. 所以直线l 的斜率的取值范围为⎝⎛⎦⎤-∞,-64∪⎣⎡⎭⎫64,+∞. 思维升华 (1)解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题时用“点差法”解决,往往会更简单.(2)设直线与椭圆的交点坐标为A (x 1,y 1),B (x 2,y 2),则AB =(1+k 2)[(x 1+x 2)2-4x 1x 2] =(1+1k2)[(y 1+y 2)2-4y 1y 2](k 为直线斜率).提醒:利用公式计算直线被椭圆截得的弦长是在方程有解的情况下进行的,不要忽略判别式.如图,已知椭圆O :x 24+y 2=1的右焦点为F ,B ,C 分别为椭圆O 的上,下顶点,P 是直线l :y =-2上的一个动点(与y 轴交点除外),直线PC 交椭圆O 于另一点M.(1)当直线PM 过椭圆的右焦点F 时,求△FBM 的面积; (2)①记直线BM ,BP 的斜率分别为k 1,k 2,求证:k 1·k 2为定值; ②求PB →·PM →的取值范围.(1)解 由题意知B (0,1),C (0,-1),焦点F (3,0),当直线PM 过椭圆O 的右焦点F 时,直线PM 的方程为x 3+y -1=1,即y =33x -1.联立⎩⎨⎧x 24+y 2=1,y =33x -1,解得⎩⎨⎧x =837,y =17或⎩⎪⎨⎪⎧x =0,y =-1(舍去),即点M 的坐标为(837,17).连结BF ,则直线BF 的方程为x 3+y1=1, 即x +3y -3=0.又BF =a =2, 点M 到直线BF 的距离为d =|837+3×17-3|12+(3)2=2372=37, 故△FBM 的面积为S △MBF =12·BF ·d =12×2×37=37.(2)方法一 ①证明 设P (m ,-2),且m ≠0,则直线PM 的斜率为k =-1-(-2)0-m =-1m ,则直线PM 的方程为y =-1mx -1.联立⎩⎨⎧y =-1mx -1,x24+y 2=1,消去y ,得(1+4m 2)x 2+8mx =0,解得点M 的坐标为(-8mm 2+4,4-m 2m 2+4),所以k 1=4-m 2m 2+4-1-8m m 2+4=-2m 2-8m =14m ,k 2=1-(-2)0-m=-3m ,所以k 1·k 2=-3m ·14m =-34为定值.②解 由①知,PB →=(-m,3), PM →=(-8m m 2+4-m ,4-m 2m 2+4+2)=(-m 3-12m m 2+4,m 2+12m 2+4),所以PB →·PM →=(-m,3)·(-m 3+12m m 2+4,m 2+12m 2+4)=(m 2+12)(m 2+3)m 2+4.令m 2+4=t >4, 则PB →·PM →=(t +8)(t -1)t=t 2+7t -8t =t -8t+7.因为y =t -8t +7在t ∈(4,+∞)上单调递增,所以PB →·PM →=t -8t +7>4-84+7=9,故PB →·PM →的取值范围为(9,+∞).方法二 ①证明 设点M 的坐标为(x 0,y 0)(x 0≠0), 则直线PM 的方程为y =y 0+1x 0x -1,令y =-2,得点P 的坐标为(-x 0y 0+1,-2),所以k 1=y 0-1x 0,k 2=-2-1-x 0y 0+1=3(y 0+1)x 0,所以k 1·k 2=y 0-1x 0·3(y 0+1)x 0=3(y 20-1)x 20=3(y 20-1)4(1-y 20)=-34为定值. ②解 由①知,PB →=(x 0y 0+1,3),PM →=(x 0+x 0y 0+1,y 0+2),所以PB →·PM →=x 0y 0+1(x 0+x 0y 0+1)+3(y 0+2)=x 20(y 0+2)(y 0+1)2+3(y 0+2) =4(1-y 20)(y 0+2)(y 0+1)2+3(y 0+2)=(7-y 0)(y 0+2)y 0+1.令t =y 0+1∈(0,2),则PB →·PM →=(8-t )(t +1)t =-t +8t +7.因为y =-t +8t +7在t ∈(0,2)上单调递减,所以PB →·PM →=-t +8t +7>-2+82+7=9,故PB →·PM →的取值范围为(9,+∞).8.高考中求椭圆的离心率问题考点分析 离心率是椭圆的重要几何性质,是高考重点考查的一个知识点,这类问题一般有两类:一类是根据一定的条件求椭圆的离心率;另一类是根据一定的条件求离心率的取值范围,无论是哪类问题,其难点都是建立关于a ,b ,c 的关系式(等式或不等式),并且最后要把其中的b 用a ,c 表示,转化为关于离心率e 的关系式,这是化解有关椭圆的离心率问题难点的根本方法.典例1 (2015·福建改编)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,短轴的一个端点为M ,直线l :3x -4y =0交椭圆E 于A ,B 两点.若AF +BF =4,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是__________.解析 左焦点F 0,连结F 0A ,F 0B ,则四边形AFBF 0为平行四边形.∵AF +BF =4, ∴AF +AF 0=4, ∴a =2.设M (0,b ),则4b 5≥45,∴1≤b <2.离心率e =ca =c 2a 2= a 2-b 2a 2= 4-b 24∈⎝⎛⎦⎤0,32. 答案 ⎝⎛⎦⎤0,32典例2 (14分)(2016·浙江)如图,设椭圆x 2a2+y 2=1(a >1).(1)求直线y =kx +1被椭圆截得的线段长(用a ,k 表示);(2)若任意以点A (0,1)为圆心的圆与椭圆至多有3个公共点,求椭圆离心率的取值范围. 规范解答解 (1)设直线y =kx +1被椭圆截得的线段为AM , 由⎩⎪⎨⎪⎧y =kx +1,x 2a 2+y 2=1,得(1+a 2k 2)x 2+2a 2kx =0, 故x 1=0,x 2=-2a 2k 1+a 2k 2,因此AM =1+k 2|x 1-x 2|=2a 2|k |1+a 2k2·1+k 2. [6分](2)假设圆与椭圆的公共点有4个,由对称性可设y 轴左侧的椭圆上有两个不同的点P ,Q ,满足AP =AQ .记直线AP ,AQ 的斜率分别为k 1,k 2, 且k 1,k 2>0,k 1≠k 2.[8分]由(1)知AP =2a 2|k 1|1+k 211+a 2k 21,AQ =2a 2|k 2|1+k 221+a 2k 22, 故2a 2|k 1|1+k 211+a 2k 21=2a 2|k 2|1+k 221+a 2k 22,所以(k 21-k 22)[1+k 21+k 22+a 2(2-a 2)k 21k 22]=0.由k 1≠k 2,k 1,k 2>0,得1+k 21+k 22+a 2(2-a 2)k 21k 22=0,因此⎝⎛⎭⎫1k 21+1⎝⎛⎭⎫1k 22+1=1+a 2(a 2-2), ①因为①式关于k 1,k 2的方程有解的充要条件是1+a 2(a 2-2)>1,所以a > 2. [12分] 因此,任意以点A (0,1)为圆心的圆与椭圆至多有3个公共点的充要条件为1<a ≤2, 由e =c a =a 2-1a ,得0<e ≤22.所以离心率的取值范围是(0,22].[14分]1.(2016·苏北四市联考)已知椭圆的中心在原点,离心率e =12,且它的一个焦点与抛物线y 2=-4x 的焦点重合,则此椭圆方程为____________. 答案 x 24+y 23=1解析 依题意,可设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),由已知可得抛物线的焦点为(-1,0),所以c =1,又离心率e =c a =12,解得a =2,b 2=a 2-c 2=3,所以椭圆方程为x 24+y 23=1.2.(2016·苏北四市一模)已知椭圆x 2a 2+y 2b 2=1(a >b >0),点A 、B 1、B 2、F 依次为其左顶点、下顶点、上顶点和右焦点.若直线AB 2与直线B 1F 的交点恰在直线x =a 2c 上,则椭圆的离心率为________. 答案 12解析 由题意知直线AB 2:-x a +y b =1,直线B 1F :x c -y b =1,联立解得x =2aca -c ,若交点在椭圆的右准线上,则2ac a -c =a 2c,即2c 2+ac -a 2=0,所以2e 2+e -1=0,解得e =12.3.(2017·青岛月考)已知A 1,A 2分别为椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左,右顶点,P 是椭圆C上异于A 1,A 2的任意一点,若直线P A 1,P A 2的斜率的乘积为-49,则椭圆C 的离心率为________.答案53解析 设P (x 0,y 0),则y 0x 0+a ·y 0x 0-a=-49,化简得x 20a 2+y 204a29=1,则b 2a 2=49,e = 1-(b a )2=1-49=53. 4.(2016·南昌模拟)已知椭圆:y 29+x 2=1,过点P (12,12)的直线与椭圆相交于A ,B 两点,且弦AB 被点P 平分,则直线AB 的方程为________________. 答案 9x +y -5=0解析 设A (x 1,y 1),B (x 2,y 2),因为A ,B 在椭圆y 29+x 2=1上,所以⎩⎨⎧y 219+x 21=1,y 229+x 22=1,两式相减,得y 21-y 229+x 21-x 22=0, 即(y 1-y 2)(y 1+y 2)9+(x 1-x 2)(x 1+x 2)=0,又弦AB 被点P (12,12)平分,所以x 1+x 2=1,y 1+y 2=1,将其代入上式,得y 1-y 29+x 1-x 2=0,得y 1-y 2x 1-x 2=-9, 即直线AB 的斜率为-9,所以直线AB 的方程为 y -12=-9(x -12), 即9x +y -5=0.5.(2016·宿迁模拟)已知F 1、F 2是椭圆x 24+y 2=1的两个焦点,P 为椭圆上一动点,则使PF 1·PF 2取得最大值的点P 为__________. 答案 (0,1)或(0,-1)解析 由椭圆定义得PF 1+PF 2=2a =4, ∴PF 1·PF 2≤(PF 1+PF 22)2=4,当且仅当PF 1=PF 2=2,即P (0,-1)或(0,1)时,PF 1·PF 2取得最大值.*6.(2016·苏州质检)设A 1,A 2为椭圆x 2a 2+y 2b2=1(a >b >0)的左,右顶点,若在椭圆上存在异于A 1,A 2的点P ,使得PO →·P A 2→=0,其中O 为坐标原点,则椭圆的离心率e 的取值范围是____________. 答案 (22,1) 解析 A 1(-a,0),A 2(a,0),设P (x ,y ),则PO →=(-x ,-y ),P A 2→=(a -x ,-y ), ∵PO →·P A 2→=0,∴(a -x )(-x )+(-y )(-y )=0, ∴y 2=ax -x 2>0,∴0<x <a . 将y 2=ax -x 2代入x 2a 2+y 2b2=1,整理得(b 2-a 2)x 2+a 3x -a 2b 2=0,其在(0,a )上有解, 令f (x )=(b 2-a 2)x 2+a 3x -a 2b 2, ∵f (0)=-a 2b 2<0,f (a )=0, 如图,Δ=(a 3)2-4(b 2-a 2)·(-a 2b 2) =a 2(a 4-4a 2b 2+4b 4) =a 2(a 2-2b 2)2≥0,∴对称轴满足0<-a 32(b 2-a 2)<a ,即0<a 32(a 2-b 2)<a ,∴a 22c 2<1,∴c 2a 2>12. 又0<c a <1,∴22<c a<1.7.若椭圆x 2a 2+y 2b 2=1(a >0,b >0)的焦点在x 轴上,过点(2,1)作圆x 2+y 2=4的切线,切点分别为A ,B ,直线AB 恰好经过椭圆的右焦点和上顶点,则椭圆方程为________________. 答案 x 220+y 216=1解析 设切点坐标为(m ,n ), 则n -1m -2·nm=-1,即m 2+n 2-n -2m =0.∵m 2+n 2=4,∴2m +n -4=0, 即直线AB 的方程为2x +y -4=0.∵直线AB 恰好经过椭圆的右焦点和上顶点, ∴2c -4=0,b -4=0,解得c =2,b =4, ∴a 2=b 2+c 2=20, ∴椭圆方程为x 220+y 216=1.8.已知P 为椭圆x 225+y 216=1上的一点,M ,N 分别为圆(x +3)2+y 2=1和圆(x -3)2+y 2=4上的点,则PM +PN 的最小值为________. 答案 7解析 由题意知椭圆的两个焦点F 1,F 2分别是两圆的圆心,且PF 1+PF 2=10,从而PM +PN 的最小值为PF 1+PF 2-1-2=7.9.(2017·连云港质检)椭圆x 24+y 2=1的左,右焦点分别为F 1,F 2,点P 为椭圆上一动点,若∠F 1PF 2为钝角,则点P 的横坐标的取值范围是________________. 答案 (-263,263)解析 设椭圆上一点P 的坐标为(x ,y ), 则F 1P →=(x +3,y ),F 2P →=(x -3,y ). ∵∠F 1PF 2为钝角,∴F 1P →·F 2P →<0, 即x 2-3+y 2<0,①∵y 2=1-x 24,代入①,得x 2-3+1-x 24<0,34x 2<2,∴x 2<83. 解得-263<x <263,∴x ∈(-263,263).10.已知过椭圆x 2a 2+y 2b 2=1(a >b >0)的左顶点A (-a ,0)作直线l 交y 轴于点P ,交椭圆于点Q ,若△AOP 是等腰三角形,且PQ →=2QA →,则椭圆的离心率为________. 答案255解析 ∵△AOP 是等腰三角形,A (-a,0),∴P (0,a ). 设Q (x 0,y 0),∵PQ →=2QA →,∴(x 0,y 0-a )=2(-a -x 0,-y 0).∴⎩⎪⎨⎪⎧x 0=-2a -2x 0,y 0-a =-2y 0,解得⎩⎨⎧x 0=-23a ,y 0=a3,代入椭圆方程化简,可得b 2a 2=15,∴e =1-b 2a 2=255. 11.(2016·南京模拟)如图,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,右顶点,上顶点分别为A ,B ,且AB =52BF . (1)求椭圆C 的离心率;(2)若斜率为2的直线l 过点(0,2),且l 交椭圆C 于P ,Q 两点,OP ⊥OQ ,求直线l 的方程及椭圆C 的方程.解 (1)由已知AB =52BF , 即a 2+b 2=52a , 4a 2+4b 2=5a 2,4a 2+4(a 2-c 2)=5a 2, ∴e =c a =32.(2)由(1)知a 2=4b 2,∴椭圆C :x 24b 2+y 2b2=1.设P (x 1,y 1),Q (x 2,y 2),直线l 的方程为y -2=2(x -0),即2x -y +2=0. 由⎩⎪⎨⎪⎧2x -y +2=0,x 24b 2+y 2b 2=1消去y , 得x 2+4(2x +2)2-4b 2=0, 即17x 2+32x +16-4b 2=0.Δ=322+16×17(b 2-4)>0,解得b >21717.x 1+x 2=-3217,x 1x 2=16-4b 217.∵OP ⊥OQ ,∴OP →·OQ →=0,即x 1x 2+y 1y 2=0,x 1x 2+(2x 1+2)(2x 2+2)=0, 5x 1x 2+4(x 1+x 2)+4=0. 从而5(16-4b 2)17-12817+4=0,解得b =1,满足b >21717.∴椭圆C 的方程为x 24+y 2=1.12.(2015·安徽)设椭圆E 的方程为x 2a 2+y 2b 2=1(a >b >0),点O 为坐标原点,点A 的坐标为(a,0),点B 的坐标为(0,b ),点M 在线段AB 上,满足BM =2MA ,直线OM 的斜率为510. (1)求E 的离心率e ;(2)设点C 的坐标为(0,-b ),N 为线段AC 的中点,点N 关于直线AB 的对称点的纵坐标为72,求E 的方程.解 (1)由题设条件知,点M 的坐标为⎝⎛⎭⎫23a ,13b , 又k OM =510,从而b 2a =510, 进而得a =5b ,c =a 2-b 2=2b ,故e =c a =255.(2)由题设条件和(1)的计算结果可得,直线AB 的方程为x 5b +yb=1,点N 的坐标为⎝⎛⎭⎫52b ,-12b .设点N 关于直线AB 的对称点S 的坐标为⎝⎛⎭⎫x 1,72, 则线段NS 的中点T 的坐标为⎝⎛⎭⎫54b +x 12,-14b +74.又点T 在直线AB 上,且k NS ·k AB =-1,从而有⎩⎪⎨⎪⎧54b +x 125b+-14b +74b =1,72+12b x 1-52b = 5.解得b =3.所以a =35,故椭圆E 的方程为x 245+y 29=1.13.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,右顶点为A ,上顶点为B ,O 为坐标原点,M 为椭圆上任意一点.过F ,B ,A 三点的圆的圆心坐标为(p ,q ). (1)当p +q ≤0时,求椭圆的离心率的取值范围;(2)若点D (b +1,0),在(1)的条件下,当椭圆的离心率最小时,(MF →+OD →)·MO →的最小值为72,求椭圆的方程.解 (1)设椭圆半焦距为c .由题意AF ,AB 的中垂线方程分别为x =a -c 2,y -b 2=a b (x -a2),于是圆心坐标为(a -c 2,b 2-ac2b ).所以p +q =a -c 2+b 2-ac2b≤0,整理得ab -bc +b 2-ac ≤0,即(a +b )(b -c )≤0, 所以b ≤c ,于是b 2≤c 2,即a 2=b 2+c 2≤2c 2. 所以e 2=c 2a 2≥12,即22≤e <1.(2)当e =22时,a =2b =2c , 此时椭圆的方程为x 22c 2+y 2c 2=1,设M (x ,y ),则-2c ≤x ≤2c ,MF →=(-c -x ,-y ),OD →=(b +1,0),MO →=(-x ,-y ), 所以(MF →+OD →)·MO →=12x 2-x +c 2=12(x -1)2+c 2-12.当c ≥22时,上式的最小值为c 2-12,即c 2-12=72,得c =2; 当0<c <22时,上式的最小值为12(2c )2-2c +c 2, 即12(2c )2-2c +c 2=72, 解得c =2+304,不合题意,舍去. 综上所述,椭圆的方程为x 28+y 24=1.。
2018版高考数学文江苏专用大一轮复习讲义文档 第九章
1.双曲线定义平面内到两个定点F 1,F 2的距离的差的绝对值等于常数(小于F 1F 2的正数)的点的轨迹叫做双曲线,两个定点F 1,F 2叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距. 集合P ={M ||MF 1-MF 2|=2a },F 1F 2=2c ,其中a ,c 为常数且a >0,c >0. (1)当2a <F 1F 2时,P 点的轨迹是双曲线; (2)当2a =F 1F 2时,P 点的轨迹是两条射线; (3)当2a >F 1F 2时,P 点不存在. 2.双曲线的标准方程和几何性质【知识拓展】 巧设双曲线方程(1)与双曲线x 2a 2-y 2b 2=1(a >0,b >0)有共同渐近线的方程可表示为x 2a 2-y 2b 2=t (t ≠0).(2)过已知两个点的双曲线方程可设为x 2m +y 2n =1(mn <0).【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)平面内到点F 1(0,4),F 2(0,-4)距离之差的绝对值等于8的点的轨迹是双曲线.( × ) (2)方程x 2m -y 2n=1(mn >0)表示焦点在x 轴上的双曲线.( × )(3)双曲线方程x 2m 2-y 2n 2=λ(m >0,n >0,λ≠0)的渐近线方程是x 2m 2-y 2n 2=0,即x m ±yn =0.( √ )(4)等轴双曲线的渐近线互相垂直,离心率等于 2.( √ )(5)若双曲线x 2a 2-y 2b 2=1(a >0,b >0)与x 2b 2-y 2a 2=1(a >0,b >0)的离心率分别是e 1,e 2,则1e 21+1e 22=1(此结论中两条双曲线称为共轭双曲线).( √ )1.(教材改编)若双曲线x 2a 2-y2b 2=1 (a >0,b >0)的焦点到其渐近线的距离等于实轴长,则该双曲线的离心率为________. 答案5解析 由题意得b =2a ,又a 2+b 2=c 2,∴5a 2=c 2. ∴e 2=c 2a2=5,∴e = 5.2.若方程x 22+m -y 2m +1=1表示双曲线,则m 的取值范围是____________.答案 (-∞,-2)∪(-1,+∞) 解析 由题意知(2+m )(m +1)>0, 解得m >-1或m <-2.3.(2016·无锡一模)已知焦点在x 轴上的双曲线的渐近线方程为y =±13x ,那么双曲线的离心率为________. 答案103解析 根据题意,设双曲线的方程为x 2a 2-y 2b 2=1,则b a =13,所以ca =1+(b a )2=103,即双曲线的离心率为103. 4.(2016·江苏)在平面直角坐标系xOy 中,双曲线x 27-y 23=1的焦距是________.答案 210解析 由已知,a 2=7,b 2=3,则c 2=7+3=10,故焦距为2c =210. 5.双曲线x 24-y 2=1的顶点到其渐近线的距离等于________.答案255解析 双曲线的一个顶点坐标为(2,0), 一条渐近线方程是y =12x ,即x -2y =0,则顶点到渐近线的距离d =|2-0|5=255.题型一 双曲线的定义及标准方程 命题点1 利用定义求轨迹方程例1 已知圆C 1:(x +3)2+y 2=1和圆C 2:(x -3)2+y 2=9,动圆M 同时与圆C 1及圆C 2相外切,则动圆圆心M 的轨迹方程为____________________. 答案 x 2-y 28=1(x ≤-1)解析 如图所示,设动圆M 与圆C 1及圆C 2分别外切于A 和B .根据两圆外切的条件,得MC 1-AC 1=MA ,MC 2-BC 2=MB , 因为MA =MB ,所以MC 1-AC 1=MC 2-BC 2, 即MC 2-MC 1=BC 2-AC 1=2,所以点M 到两定点C 1、C 2的距离的差是常数且小于C 1C 2=6.又根据双曲线的定义,得动点M 的轨迹为双曲线的左支(点M 与C 2的距离大,与C 1的距离小), 其中a =1,c =3,则b 2=8.故点M 的轨迹方程为x 2-y 28=1(x ≤-1).命题点2 利用待定系数法求双曲线方程 例2 根据下列条件,求双曲线的标准方程: (1)虚轴长为12,离心率为54;(2)焦距为26,且经过点M (0,12); (3)经过两点P (-3,27)和Q (-62,-7). 解 (1)设双曲线的标准方程为 x 2a 2-y 2b 2=1或y 2a 2-x 2b 2=1(a >0,b >0). 由题意知,2b =12,e =c a =54.∴b =6,c =10,a =8.∴双曲线的标准方程为x 264-y 236=1或y 264-x 236=1.(2)∵双曲线经过点M (0,12),∴M (0,12)为双曲线的一个顶点,故焦点在y 轴上,且a =12. 又2c =26,∴c =13,∴b 2=c 2-a 2=25. ∴双曲线的标准方程为y 2144-x 225=1.(3)设双曲线方程为mx 2-ny 2=1(mn >0).∴⎩⎪⎨⎪⎧9m -28n =1,72m -49n =1,解得⎩⎨⎧m =-175,n =-125.∴双曲线的标准方程为y 225-x 275=1.命题点3 利用定义解决焦点三角形问题例3 已知F 1,F 2为双曲线C :x 2-y 2=2的左,右焦点,点P 在C 上,PF 1=2PF 2,则cos ∠F 1PF 2=________. 答案 34解析 ∵由双曲线的定义有PF 1-PF 2=PF 2=2a =22, ∴PF 1=2PF 2=42,则cos ∠F 1PF 2=PF 21+PF 22-F 1F 222PF 1·PF 2=(42)2+(22)2-422×42×22=34.引申探究1.本例中,若将条件“PF 1=2PF 2”改为“∠F 1PF 2=60°”,则△F 1PF 2的面积是多少? 解 不妨设点P 在双曲线的右支上, 则PF 1-PF 2=2a =22, 在△F 1PF 2中,由余弦定理,得cos ∠F 1PF 2=PF 21+PF 22-F 1F 222PF 1·PF 2=12,所以PF 1·PF 2=8,所以12F PF S △=12PF 1·PF 2·sin 60°=2 3.2.本例中,若将条件“PF 1=2PF 2”改为“PF 1→·PF 2→=0”,则△F 1PF 2的面积是多少? 解 不妨设点P 在双曲线的右支上, 则PF 1-PF 2=2a =22, 由于PF 1→·PF 2→=0,所以PF 1→⊥PF 2→,所以在△F 1PF 2中,有PF 21+PF 22=F 1F 22, 即PF 21+PF 22=16,所以PF 1·PF 2=4, 所以12F PF S △=12PF 1·PF 2=2.思维升华 (1)利用双曲线的定义判定平面内动点与两定点的轨迹是否为双曲线,进而根据要求可求出双曲线方程.(2)在“焦点三角形”中,常利用正弦定理、余弦定理,经常结合|PF 1-PF 2|=2a ,运用平方的方法,建立与PF 1·PF 2的联系.(3)待定系数法求双曲线方程具体过程中先定形,再定量,即先确定双曲线标准方程的形式,然后再根据a ,b ,c ,e 及渐近线之间的关系,求出a ,b 的值,如果已知双曲线的渐近线方程,求双曲线的标准方程,可设有公共渐近线的双曲线方程为x 2a 2-y 2b 2=λ(λ≠0),再由条件求出λ的值即可.(1)已知F 1,F 2为双曲线x 25-y 24=1的左,右焦点,P (3,1)为双曲线内一点,点A在双曲线上,则AP +AF 2的最小值为__________.(2)(2015·课标全国Ⅱ)已知双曲线过点(4,3),且渐近线方程为y =±12x ,则该双曲线的标准方程为________________.答案 (1)37-25 (2)x 24-y 2=1解析 (1)由题意知,AP +AF 2=AP +AF 1-2a ,要求AP +AF 2的最小值,只需求AP +AF 1的最小值,当A ,P ,F 1三点共线时,取得最小值,则AP +AF 1=PF 1=[3-(-3)]2+(1-0)2=37, ∴AP +AF 2的最小值为AP +AF 1-2a =37-2 5.(2)由双曲线的渐近线方程为y =±12x ,可设该双曲线的标准方程为x 24-y 2=λ(λ≠0),已知该双曲线过点(4,3),所以424-(3)2=λ,即λ=1,故所求双曲线的标准方程为x 24-y 2=1.题型二 双曲线的几何性质例4 (1)(2016·盐城三模)若圆x 2+y 2=r 2过双曲线x 2a 2-y 2b2=1的右焦点F ,且圆与双曲线的渐近线在第一、四象限的交点分别为A ,B ,当四边形OAFB 为菱形时,双曲线的离心率为______. (2)(2015·山东)在平面直角坐标系xOy 中,双曲线C 1:x 2a 2-y 2b 2=1(a >0,b >0)的渐近线与抛物线C 2:x 2=2py (p >0)交于点O ,A ,B .若△OAB 的垂心为C 2的焦点,则C 1的离心率为________. 答案 (1)2 (2)32解析 (1)若四边形OAFB 为菱形,且点A 在圆x 2+y 2=r 2上,则点A 坐标为(c 2,32c ),此时r=c .又点A 在渐近线上,所以32c =b a ·c 2,即ba=3, 所以e =1+(ba)2=2.(2)由题意,不妨设直线OA 的方程为y =ba x ,直线OB 的方程为y =-ba x .由⎩⎪⎨⎪⎧y =b a x ,x 2=2py ,得x 2=2p ·b ax ,∴x =2pb a ,y =2pb 2a2,∴A ⎝⎛⎭⎫2pb a ,2pb 2a 2.设抛物线C 2的焦点为F ,则F ⎝⎛⎭⎫0,p 2, ∴k AF =2pb 2a 2-p22pb a.∵△OAB 的垂心为F ,∴AF ⊥OB ,∴k AF ·k OB =-1, 即2pb 2a 2-p22pb a·⎝⎛⎭⎫-b a =-1,∴b 2a 2=54.设C 1的离心率为e ,则e 2=c 2a 2=a 2+b 2a 2=1+54=94.∴e =32.思维升华 双曲线的几何性质中重点是渐近线方程和离心率,在双曲线x 2a 2-y 2b 2=1(a >0,b >0)中,离心率e 与双曲线的渐近线的斜率k =±ba满足关系式e 2=1+k 2.(2016·全国甲卷改编)已知F 1,F 2是双曲线E :x 2a 2-y 2b2=1的左,右焦点,点M 在E 上,MF 1与x 轴垂直,sin ∠MF 2F 1=13,则E 的离心率为________.答案2解析 离心率e =F 1F 2MF 2-MF 1,由正弦定理得e =F 1F 2MF 2-MF 1=sin ∠F 1MF 2sin ∠MF 1F 2-sin ∠MF 2F 1=2231-13= 2.题型三 直线与双曲线的综合问题例5 (2016·苏州模拟)已知椭圆C 1的方程为x 24+y 2=1,双曲线C 2的左,右焦点分别是C 1的左,右顶点,而C 2的左,右顶点分别是C 1的左,右焦点. (1)求双曲线C 2的方程;(2)若直线l :y =kx +2与双曲线C 2恒有两个不同的交点A 和B ,且OA →·OB →>2(其中O 为原点),求k 的取值范围.解 (1)设双曲线C 2的方程为x 2a 2-y 2b 2=1(a >0,b >0),则a 2=4-1=3,c 2=4, 再由a 2+b 2=c 2,得b 2=1.故C 2的方程为x 23-y 2=1.(2)将y =kx +2代入x 23-y 2=1,得(1-3k 2)x 2-62kx -9=0.由直线l 与双曲线C 2有两个不同的交点,得⎩⎨⎧1-3k 2≠0,Δ=(-62k )2+36(1-3k 2)=36(1-k 2)>0,∴k 2≠13且k 2<1.①设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=62k1-3k 2,x 1x 2=-91-3k 2. ∴x 1x 2+y 1y 2=x 1x 2+(kx 1+2)(kx 2+2) =(k 2+1)x 1x 2+2k (x 1+x 2)+2=3k 2+73k 2-1.又∵OA →·OB →>2,得x 1x 2+y 1y 2>2, ∴3k 2+73k 2-1>2,即-3k 2+93k 2-1>0, 解得13<k 2<3,②由①②得13<k 2<1.故k 的取值范围为(-1,-33)∪(33,1). 思维升华 (1)研究直线与双曲线位置关系问题的通法:将直线方程代入双曲线方程,消元,得关于x 或y 的一元二次方程.当二次项系数等于0时,直线与双曲线相交于某支上一点,这时直线平行于一条渐近线;当二次项系数不等于0时,用判别式Δ来判定. (2)用“点差法”可以解决弦中点和弦斜率的关系问题,但需要检验.在平面直角坐标系xOy 中,已知双曲线C :x 24-y 23=1.设过点M (0,1)的直线l 与双曲线C 交于A ,B 两点.若AM →=2MB →,则直线l 的斜率为________. 答案 ±12解析 设A (x 1,y 1),B (x 2,y 2),则x 214-y 213=1,x 224-y 223=1. 又AM →=2MB →,AM →=(-x 1,1-y 1),MB →=(x 2,y 2-1).所以⎩⎪⎨⎪⎧ -x 1=2x 2,1-y 1=2y 2-2,即⎩⎪⎨⎪⎧x 1=-2x 2,y 1=3-2y 2,代入双曲线方程联立解得⎩⎪⎨⎪⎧ x 2=-2,y 2=0或⎩⎪⎨⎪⎧x 2=2,y 2=0,所以A (4,3),B (-2,0)或A (-4,3),B (2,0),故k =3-04+2=12或k =3-0-4-2=-12,即直线l 的斜率为±12.10.直线与圆锥曲线的交点典例 已知双曲线x 2-y 22=1,过点P (1,1)能否作一条直线l ,与双曲线交于A ,B 两点,且点P 是线段AB 的中点? 错解展示现场纠错解 设点A (x 1,y 1),B (x 2,y 2)在双曲线上,且线段AB 的中点为(x 0,y 0), 若直线l 的斜率不存在,显然不符合题意. 设经过点P 的直线l 的方程为y -1=k (x -1), 即y =kx +1-k . 由⎩⎪⎨⎪⎧y =kx +1-k ,x 2-y 22=1,得(2-k 2)x 2-2k (1-k )x -(1-k )2-2=0(2-k 2≠0).①∴x 0=x 1+x 22=k (1-k )2-k 2.由题意,得k (1-k )2-k 2=1,解得k =2.当k =2时,方程①可化为2x 2-4x +3=0. Δ=16-24=-8<0,方程①没有实数解.∴不能作一条直线l 与双曲线交于A ,B 两点,且点P (1,1)是线段AB 的中点. 纠错心得 (1)“点差法”解决直线与圆锥曲线的交点问题,要考虑变形的条件. (2)“判别式Δ≥0”是判断直线与圆锥曲线是否有公共点的通用方法.1.(2015·福建改编)若双曲线E :x 29-y 216=1的左,右焦点分别为F 1,F 2,点P 在双曲线E 上,且PF 1=3,则PF 2=________. 答案 9解析 由双曲线定义|PF 2-PF 1|=2a ,∵PF 1=3,∴P 在左支上,∵a =3,∴PF 2-PF 1=6, ∴PF 2=9.2.(2016·全国乙卷改编)已知方程x 2m 2+n -y 23m 2-n =1表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是________. 答案 (-1,3)解析 ∵方程x 2m 2+n -y 23m 2-n=1表示双曲线,∴(m 2+n )·(3m 2-n )>0,解得-m 2<n <3m 2,由双曲线性质,知c 2=(m 2+n )+(3m 2-n )=4m 2(其中c 是半焦距),∴焦距2c =2×2|m |=4,解得|m |=1,∴-1<n <3.3.(2016·盐城模拟)已知双曲线x 216-y 29=1的左,右焦点分别为F 1,F 2,过F 2的直线与该双曲线的右支交于A ,B 两点,若AB =5,则△ABF 1的周长为________. 答案 26解析 由双曲线x 216-y 29=1,知a =4.由双曲线定义AF 1-AF 2=BF 1-BF 2=2a =8, ∴AF 1+BF 1=AF 2+BF 2+16=21,∴△ABF 1的周长为AF 1+BF 1+AB =21+5=26.4.(2016·常州模拟)已知双曲线x 29-y 2m=1(m >0)的一个焦点在圆x 2+y 2-4x -5=0上,则双曲线的渐近线方程为____________.答案 y =±43x 解析 由⎩⎪⎨⎪⎧y =0,x 2+y 2-4x -5=0,得x 2-4x -5=0, 解得x =5或x =-1.又a =3,故c =5,所以b =4,双曲线的渐近线方程为y =±43x . 5.已知点F 是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点,点E 是该双曲线的右顶点,过F 且垂直于x 轴的直线与双曲线交于A 、B 两点,若△ABE 是锐角三角形,则该双曲线的离心率e 的取值范围是____________.答案 (1,2)解析 由题意易知点F 的坐标为(-c,0),A (-c ,b 2a ),B (-c ,-b 2a),E (a,0), ∵△ABE 是锐角三角形,∴EA →·EB →>0,即EA →·EB →=(-c -a ,b 2a )·(-c -a ,-b 2a)>0, 整理得3e 2+2e >e 4,∴e (e 3-3e -3+1)<0,∴e (e +1)2(e -2)<0,解得e ∈(0,2),又e >1,∴e ∈(1,2).6.(2016·浙江)设双曲线x 2-y 23=1的左,右焦点分别为F 1,F 2,若点P 在双曲线上,且△F 1PF 2为锐角三角形,则PF 1+PF 2的取值范围是________.答案 (27,8)解析 如图,由已知可得a =1,b =3,c =2,从而F 1F 2=4,由对称性不妨设P 在右支上,设PF 2=m ,则PF 1=m +2a =m +2,由于△PF 1F 2为锐角三角形,结合实际意义需满足⎩⎪⎨⎪⎧(m +2)2<m 2+42,42<(m +2)2+m 2,解得-1+7<m <3,又PF 1+PF 2=2m +2,∴27<2m +2<8.7.(2016·南京三模)设F 是双曲线的一个焦点,点P 在双曲线上,且线段PF 的中点恰为双曲线虚轴的一个端点,则双曲线的离心率为________.答案 5解析 不妨设双曲线方程为x 2a 2-y 2b 2=1 (a >0,b >0),设F (-c,0),线段PF 的中点为(0,b ),则P (c,2b ).由点P 在双曲线上,得c 2a 2-4=1,所以e = 5. 8.设双曲线x 24-y 25=1的左,右焦点分别为F 1,F 2,P 为双曲线上位于第一象限内的一点,且△PF 1F 2的面积为6,则点P 的坐标为____________.答案 (655,2) 解析 由双曲线x 24-y 25=1的左,右焦点分别为F 1,F 2,所以F 1F 2=6,设P (x ,y ) (x >0,y >0),因为△PF 1F 2的面积为6,所以12F 1F 2·y =12×6×y =6,解得y =2,将y =2代入x 24-y 25=1得x =655.所以P (655,2). 9.(2016·扬州一模)已知F 1,F 2分别是双曲线x 2a 2-y 2b2=1 (a >0,b >0)的左,右焦点,过点F 2与双曲线的一条渐近线平行的直线交双曲线另一条渐近线于点M ,若点M 在以线段F 1F 2为直径的圆上,则双曲线的离心率为______.答案 2解析 由题意知渐近线y =b a x 与直线y =-b a (x -c )交于点M ,解得M (c 2,bc 2a).因为点M 在圆x 2+y 2=c 2上,所以c 24+b 2c 24a 2=c 2,解得b 2a 2=3,所以e = 1+b 2a2=4=2. 10.(2015·课标全国Ⅰ改编)已知M (x 0,y 0)是双曲线C :x 22-y 2=1上的一点,F 1,F 2是C 的两个焦点,若MF 1→·MF 2→<0,则y 0的取值范围是______________.答案 ⎝⎛⎭⎫-33,33 解析 由题意知a =2,b =1,c =3,∴F 1(-3,0),F 2(3,0),∴MF 1→=(-3-x 0,-y 0),MF 2→=(3-x 0,-y 0).∵MF 1→·MF 2→<0,∴(-3-x 0)(3-x 0)+y 20<0,即x 20-3+y 20<0.∵点M (x 0,y 0)在双曲线上,∴x 202-y 20=1,即x 20=2+2y 20, ∴2+2y 20-3+y 20<0,∴-33<y 0<33. 11.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左,右焦点分别为F 1,F 2,点P 在双曲线的右支上,且PF 1=4PF 2,则此双曲线的离心率e 的最大值为________.答案 53解析 由定义,知PF 1-PF 2=2a .又PF 1=4PF 2,∴PF 1=83a ,PF 2=23a . 在△PF 1F 2中,由余弦定理,得cos ∠F 1PF 2=649a 2+49a 2-4c 22·83a ·23a =178-98e 2. 要求e 的最大值,即求cos ∠F 1PF 2的最小值,∴当cos ∠F 1PF 2=-1时,得e =53, 即e 的最大值为53. 12.设双曲线C 的中心为点O ,若有且只有一对相交于点O 且所成的角为60°的直线A 1B 1和A 2B 2,使A 1B 1=A 2B 2,其中A 1、B 1和A 2、B 2分别是这对直线与双曲线C 的交点,则该双曲线的离心率的取值范围是____________.答案 ⎝⎛⎦⎤233,2 解析 由双曲线的对称性知,满足题意的这一对直线也关于x 轴(或y 轴)对称.又由题意知有且只有一对这样的直线,故该双曲线在第一象限的渐近线的倾斜角范围大于30°且小于等于60°,即tan 30°<b a ≤tan 60°,∴13<b 2a 2≤3.又e 2=(c a )2=c 2a 2=1+b 2a 2,∴43<e 2≤4, ∴233<e ≤2. 13.(2016·泰州模拟)已知双曲线E 的中心为原点,F (3,0)是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为N (-12,-15),求双曲线E 的方程.解 设双曲线的标准方程为x 2a 2-y 2b2=1(a >0,b >0), 由题意知c =3,a 2+b 2=9.设A (x 1,y 1),B (x 2,y 2).则有⎩⎨⎧ x 21a 2-y 21b 2=1,x 22a 2-y 22b 2=1,两式作差,得y 1-y 2x 1-x 2=b 2(x 1+x 2)a 2(y 1+y 2)=-12b 2-15a 2=4b 25a 2, 又AB 的斜率是-15-0-12-3=1,所以4b 25a 2=1. 将4b 2=5a 2代入a 2+b 2=9,得a 2=4,b 2=5.所以双曲线的标准方程是x 24-y 25=1. 14.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一个焦点是F 2(2,0),且b =3a . (1)求双曲线C 的方程;(2)设经过焦点F 2的直线l 的一个法向量为(m,1),当直线l 与双曲线C 的右支交于不同的两点A ,B 时,求实数m 的取值范围,并证明AB 中点M 在曲线3(x -1)2-y 2=3上;(3)设(2)中直线l 与双曲线C 的右支交于A ,B 两点,问是否存在实数m ,使得∠AOB 为锐角?若存在,请求出m 的取值范围;若不存在,请说明理由.解 (1)由已知,得c =2,c 2=a 2+b 2,b =3a ,∴4=a 2+3a 2,∴a 2=1,b 2=3,∴双曲线C 的方程为x 2-y 23=1. (2)由题意,得直线l :m (x -2)+y =0,由⎩⎪⎨⎪⎧y =-mx +2m ,x 2-y 23=1, 得(3-m 2)x 2+4m 2x -4m 2-3=0.由Δ>0,得4m 4+(3-m 2)(4m 2+3)>0,12m 2+9-3m 2>0,即m 2+1>0恒成立.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=4m 2m 2-3,x 1x 2=4m 2+3m 2-3. 又⎩⎪⎨⎪⎧ x 1+x 2>0,x 1·x 2>0,∴⎩⎪⎨⎪⎧ 4m 2m 2-3>0,4m 2+3m 2-3>0,∴m 2>3,∴m ∈(-∞,-3)∪(3,+∞).∵x 1+x 22=2m 2m 2-3,y 1+y 22=-2m 3m 2-3+2m =-6m m 2-3, ∴AB 的中点M (2m 2m 2-3,-6m m 2-3), ∵3(2m 2m 2-3-1)2-36m 2(m 2-3)2=3×(m 2+3)2(m 2-3)2-36m 2(m 2-3)2=3×m 4+6m 2+9-12m 2(m 2-3)2=3, ∴M 在曲线3(x -1)2-y 2=3上.(3)设A (x 1,y 1),B (x 2,y 2),假设存在实数m ,使∠AOB 为锐角,则OA →·OB →>0,∴x 1x 2+y 1y 2>0.∵y 1y 2=(-mx 1+2m )(-mx 2+2m )=m 2x 1x 2-2m 2(x 1+x 2)+4m 2,∴(1+m 2)x 1x 2-2m 2(x 1+x 2)+4m 2>0,∴(1+m 2)(4m 2+3)-8m 4+4m 2(m 2-3)>0,即7m 2+3-12m 2>0,∴m 2<35, 与m 2>3矛盾,∴不存在实数m ,使得∠AOB 为锐角.。
精选江苏专用2018版高考数学专题复习专题9平面解析几何第62练椭圆的几何性质练习理
(江苏专用)2018版高考数学专题复习 专题9 平面解析几何 第62练 椭圆的几何性质练习 理1.设椭圆C :a 2+b2=1(a >b >0)的左,右焦点分别为F 1,F 2,P 是C 上的点,PF 2⊥F 1F 2,∠PF 1F 2=30°,则C 的离心率为________.2.(2016·衡水模拟)已知椭圆C 的中心为O ,两焦点为F 1,F 2,M 是椭圆C 上的一点,且满足|MF 1→|=2|MO →|=2|MF 2→|,则椭圆C 的离心率e =________.3.椭圆x 2a 2+y 2b2=1(a >b >0)的左顶点为A ,左,右焦点分别是F 1,F 2,B 是短轴的一个端点,若3BF 1→=BA →+2BF 2→,则椭圆的离心率为________.4.已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的短轴的两个端点分别为A ,B ,点C 为椭圆上异于A ,B 的一点,直线AC 与直线BC 的斜率之积为-14,则椭圆的离心率为________.5.(2016·镇江模拟)在平面直角坐标系xOy 中,已知点A 在椭圆x 225+y 29=1上,点P 满足AP→=(λ-1)OA →(λ∈R ),且OA →·OP →=72,则线段OP 在x 轴上的投影长度的最大值为________. 6.(2016·济南3月模拟)在椭圆x 216+y 29=1内,过点M (1,1)且被该点平分的弦所在的直线方程为____________________.7.设F 1,F 2分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左,右焦点,离心率为12,M 是椭圆上一点且MF 2与x 轴垂直,则直线MF 1的斜率为________.8.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点为F ,椭圆C 与过原点的直线相交于A ,B 两点,连结AF ,BF ,若AB =10,AF =6,cos∠ABF =45,则椭圆C 的离心率e =________.9.(2017·上海六校3月联考)已知点F 为椭圆C :x 22+y 2=1的左焦点,点P 为椭圆C 上任意一点,点Q 的坐标为(4,3),则PQ +PF 取最大值时,点P 的坐标为________.10.(2016·镇江模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,过右焦点F 且斜率为k (k >0)的直线与C 相交于A ,B 两点,若AF →=3FB →,则k =________.11.(2016·连云港二模)已知P 是以F 1,F 2为焦点的椭圆x 2a 2+y 2b2=1(a >b >0)上的任意一点,若∠PF 1F 2=α,∠PF 2F 1=β,且cos α=55,sin(α+β)=35,则此椭圆的离心率为________.12.设椭圆中心在坐标原点,A (2,0),B (0,1)是它的两个顶点,直线y =kx (k >0)与AB 相交于点D ,与椭圆相交于E ,F 两点,若ED →=6DF →,则k 的值为________.13.(2017·黑龙江哈六中上学期期末)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左,右焦点分别为F 1(-c,0),F 2(c,0),若椭圆上存在点P ,使asin∠PF 1F 2=csin∠PF 2F 1,则该椭圆的离心率的取值范围为____________.14.椭圆C :x 24+y 23=1的左、右顶点分别为A 1、A 2,点P 在C 上且直线PA 2的斜率的取值范围是[-2,-1],那么直线PA 1的斜率的取值范围是________.答案精析 1.33解析 由题意知sin 30°=PF 2PF 1=12, ∴PF 1=2PF 2.又∵PF 1+PF 2=2a , ∴PF 2=2a3.∴tan 30°=PF 2F 1F 2=2a 32c =33. ∴c a =33. 2.63解析不妨设椭圆方程为x 2a 2+y 2b2=1(a >b >0).由椭圆定义,得|MF 1→|+|MF 2→|=2a ,再结合条件可知|MO →|=|MF 2→|=2a 3.如图,过M 作MN ⊥OF 2于N ,则|ON →|=c2,|MN →|2=|MO →|2-c24.设|MF 2→|=x ,则|MF 1→|=2x .在Rt△MF 1N 中,4x 2=94c 2+x 2-c 24,即3x 2=2c 2,而x 2=4a 29,所以43a 2=2c 2,即e 2=c 2a 2=23,所以e =63. 3.15解析 不妨设B (0,b ),则BF 1→=(-c ,-b ),BA →=(-a ,-b ),BF 2→=(c ,-b ),由条件可得-3c =-a +2c , ∴a =5c ,故e =15.4.32解析 设C (x 0,y 0),A (0,b ),B (0,-b ),则x 20a 2+y 20b 2=1.故x 20=a 2×(1-y 20b 2)=a 2×b 2-y 20b2,又k AC ·k BC =y 0-b x 0×y 0+b x 0=y 20-b 2x 20=-14,故a 2=4b 2,c 2=a 2-b 2=3b 2,因此e =c 2a 2= 3b 24b2=32. 5.15解析 AP →=OP →-OA →=(λ-1)OA →,即OP →=λOA →,则O ,P ,A 三点共线.又OA →·OP →=72,所以OA →与OP →同向,所以|OA →||OP →|=72.设OP 与x 轴的夹角为θ,点A 的坐标为(x,y ),点B 为点A在x 轴上的投影,则OP 在x 轴上的投影长度为|OP →|·cos θ=|OP →|·|OB →||OA →|=72|OB →||OA →|2=72×|x |x 2+y 2=72·|x |1625x 2+9=72·11625|x |+9|x |≤72·12× 16×925=15,当且仅当|x |=154时,等号成立.故线段OP 在x 轴上的投影长度的最大值为15. 6.9x +16y -25=0解析 设弦的两个端点的坐标分别是(x 1,y 1),(x 2,y 2),则有x 2116+y 219=1,x 2216+y 229=1,两式相减得x 1-x 2x 1+x 216+y 1-y 2y 1+y 29=0.又x 1+x 2=y 1+y 2=2,因此x 1-x 216+y 1-y 29=0,即y 1-y 2x 1-x 2=-916,所求直线的斜率是-916,弦所在的直线方程是y -1=-916(x -1),即9x +16y -25=0. 7.±34解析 由离心率为12可得c 2a 2=14,可得a 2-b 2a 2=14,即b =32a ,因为MF 2与x 轴垂直,故点M的横坐标为c ,故c 2a 2+y 2b 2=1,解得y =±b 2a =±34a ,则M (c ,±34a ),直线MF 1的斜率为kMF 1=±3a 8c =±38×2=±34.8.57解析 设椭圆的右焦点为F 1,在△ABF 中,由余弦定理可解得BF =8,所以△ABF 为直角三角形,且∠AFB =90°,又因为斜边AB 的中点为O ,所以OF =c =5,连结AF 1,因为A ,B 关于原点对称,所以BF =AF 1=8,所以2a =14,a =7,所以离心率e =57.9.(0,-1)解析 设椭圆的右焦点为E ,PQ +PF =PQ +2a -PE =PQ -PE +2 2. 当P 为线段QE 的延长线与椭圆的交点时,PQ +PF 取最大值,此时,直线PQ 的方程为y =x -1, QE 的延长线与椭圆交于点(0,-1),即点P 的坐标为(0,-1). 10. 2解析 由椭圆C 的离心率为32,得c =32a ,b 2=a 24,∴椭圆C :x 2a 2+4y 2a 2=1,F (32a,0).设A (x A ,y A ),B (x B ,y B ), ∵AF →=3FB →, ∴(32a -x A ,-y A )=3(x B -32a ,y B ). ∴32a -x A =3(x B -32a ),-y A =3y B , 即x A +3x B =23a ,y A +3y B =0. 将A ,B 的坐标代入椭圆C 的方程相减得 9x 2B -x 2Aa2=8,x B +x Ax B -x Aa2=8,∴3x B -x A =433a ,∴x A =33a ,x B =539a , ∴y A =-66a ,y B =618a , ∴k =y B -y A x B -x A =618a +66a 539a -33a= 2. 11.57解析 cos α=55⇒sin α=255,所以sin β=sin[(α+β)-α]=sin(α+β)cos α-cos(α+β)sin α=35·55±45·255=11525或-55(舍去).设PF 1=r 1,PF 2=r 2,由正弦定理得r 111525=r 2255=2c 35⇒r 1+r 221525=2c 35⇒e =c a =57.12.23或38解析 依题设,得椭圆的方程为x 24+y 2=1,直线AB ,EF 的方程分别为x +2y =2,y =kx (k >0).如图,设D (x 0,kx 0),E (x 1,kx 1),F (x 2,kx 2),其中x 1<x 2.则x 1,x 2满足方程(1+4k 2)x 2=4, 故x 2=-x 1=21+4k2.由ED →=6DF →,知x 0-x 1=6(x 2-x 0), 可得x 0=17(6x 2+x 1)=57x 2=1071+4k2. 由D 在AB 上,知x 0+2kx 0=2, 得x 0=21+2k ,所以21+2k =1071+4k 2,化简,得24k 2-25k +6=0,解得k =23或k =38.13.(2-1,1)解析 由a sin∠PF 1F 2=csin∠PF 2F 1,得c a =sin∠PF 2F 1sin∠PF 1F 2. 又由正弦定理得sin∠PF 2F 1sin∠PF 1F 2=PF 1PF 2,所以PF 1PF 2=c a , 即PF 1=c aPF 2.又由椭圆定义得PF 1+PF 2=2a , 所以PF 2=2a 2a +c ,PF 1=2aca +c ,因为PF 2是△PF 1F 2的一边,所以有2c -2ac a +c <2a 2a +c <2c +2aca +c ,即c 2+2ac -a 2>0,所以e 2+2e -1>0(0<e <1),解得椭圆离心率的取值范围为(2-1,1).14.[38,34]解析 由题意可得,A 1(-2,0),A 2(2,0), 当PA 2的斜率为-2时,直线PA 2的方程为y =-2(x -2),代入椭圆方程,消去y 化简得19x 2-64x +52=0, 解得x =2或x =2619.由PA 2的斜率存在可得点P ⎝⎛⎭⎪⎫2619,2419,此时直线PA 1的斜率k =38.同理,当直线PA 2的斜率为-1时, 直线PA 2的方程为y =-(x -2), 代入椭圆方程,消去y 化简得 7x 2-16x +4=0, 解得x =2或x =27.由PA 2的斜率存在可得点P ⎝⎛⎭⎪⎫27,127, 此时直线PA 1的斜率k =34.数形结合可知,直线PA 1的斜率的取值范围是⎣⎢⎡⎦⎥⎤38,34.。
(通用)2018年高考数学一轮复习第九章解析几何95椭圆学案理!
§9.5椭圆考纲展示► 1.掌握椭圆的定义、几何图形、标准方程及简单性质.2.了解圆锥曲线的简单应用.3.理解数形结合的思想.考点1 椭圆的定义椭圆的定义平面内与两个定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做________.这两个定点叫做椭圆的________,两焦点间的距离叫做椭圆的________.集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a,c为常数:(1)若________,则集合P为椭圆;(2)若________,则集合P为线段;(3)若________,则集合P为空集.答案:椭圆焦点焦距(1)a>c(2)a=c(3)a<c[教材习题改编]已知甲:动点P到两定点A,B的距离之和|PA|+|PB|=2a(a>0且a为常数);乙:P点的轨迹是椭圆.则甲是乙的________条件.(填“充分不必要”“必要不充分”或“充要”)答案:必要不充分解析:∵乙⇒甲,甲⇒/乙,∴甲是乙的必要不充分条件.椭圆的定义:关键在于理解.(1)动点P到两定点M(0,-2),N(0,2)的距离之和为4,则点P的轨迹是________.答案:线段解析:因为|PM|+|PN|=|MN|=4,所以点P的轨迹是一条线段.(2)已知△ABC 的顶点B ,C 在椭圆x 24+y 212=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是________.答案:8 3解析:由椭圆定义知,△ABC 的周长等于椭圆长轴长的2倍,所以△ABC 的周长是43³2=8 3.[典题1] (1)[2017²北京东城区期末]过椭圆4x 2+y 2=1的一个焦点F 1的直线与椭圆交于A ,B 两点,则A 与B 和椭圆的另一个焦点F 2构成的△ABF 2的周长为( )A .2B .4C .8D .2 2 [答案] B[解析] 因为椭圆的方程为4x 2+y 2=1,所以a =1.根据椭圆的定义知,△ABF 2的周长为|AB |+|AF 2|+|BF 2|=|AF 1|+|BF 1|+|AF 2|+|BF 2|=(|AF 1|+|AF 2|)+(|BF 1|+|BF 2|)=4a =4.(2)已知椭圆x 28+y 2=1的左、右焦点分别为F 1,F 2,点P 在椭圆上,则|PF 1|²|PF 2|的最大值是( )A .8B .2 2C .10D .4 2 [答案] A[解析] 由椭圆的定义得,|PF 1|+|PF 2|=2a =42,∴|PF 1|²|PF 2|≤⎝⎛⎭⎪⎫|PF 1|+|PF 2|22=8(当且仅当|PF 1|=|PF 2|时等号成立).(3)如图所示,一圆形纸片的圆心为O ,F 是圆内一定点,M 是圆周上一动点,把纸片折叠使M 与F 重合,然后抹平纸片,折痕为CD ,设CD 与OM 交于点P ,则点P 的轨迹是( )A .椭圆B .双曲线C .抛物线D .圆 [答案] A[解析] 由折叠过程可知,点M 与点F 关于直线CD 对称,故|PM |=|PF |,所以|PO |+|PF |=|PO |+|PM |=|OM |=r .由椭圆的定义可知,点P 的轨迹为椭圆.[点石成金] 1.利用椭圆的定义定形状时,一定要注意常数2a >|F 1F 2|这一条件. 2.当P 在椭圆上时,与椭圆的两焦点F 1,F 2组成的三角形通常称为“焦点三角形”,椭圆中焦点三角形的5个常用结论(1)|PF 1|+|PF 2|=2a .(2)4c 2=|PF 1|2+|PF 2|2-2|PF 1||PF 2|²cos θ(θ=∠F 1PF 2). (3)当P 为短轴端点时,θ最大.(4)S △PF 1F 2=12|PF 1||PF 2|sin θ =sin θ1+cos θ²b 2=b 2tan θ2=c ²|y 0|.当y 0=±b ,即P 为短轴端点时,S △PF 1F 2有最大值为bc . (5)焦点三角形的周长为2(a +c ).考点2 椭圆的方程(1)[教材习题改编]已知方程x 25-m +y 2m +3=1表示椭圆,则m 的取值范围为________. 答案:(-3,1)∪(1,5)解析:方程表示椭圆的条件为 ⎩⎪⎨⎪⎧5-m >0,m +3>0,5-m ≠m +3,解得m ∈(-3,1)∪(1,5).(2)[教材习题改编]椭圆的中心在原点,焦点在y 轴上,长轴长是短轴长的2倍,焦距为4,则椭圆的标准方程为________.答案:y 28+x 24=1解析:设椭圆的标准方程为y 2a 2+x 2b 2=1(a >b >0). 由已知得a =2b ,c =2,所以c 2=a 2-b 2=b 2=4,得b 2=4,则a 2=8, 所以椭圆的标准方程为y 28+x 24=1.椭圆的标准方程:关注焦点的位置.已知椭圆x 210-m +y 2m -2=1的焦距为4,则m 等于________.答案:4或8解析:由 ⎩⎪⎨⎪⎧10-m >0,m -2>0,得2<m <10.由题意知(10-m )-(m -2)=4或(m -2)-(10-m )=4,解得m =4或m =8.[典题2] (1)已知椭圆的长轴长是短轴长的3倍,且过点A (3,0),并且以坐标轴为对称轴,则椭圆的标准方程为________.[答案]x 29+y 2=1或y 281+x 29=1[解析] 解法一:若椭圆的焦点在x 轴上,设椭圆的方程为x 2a 2+y 2b2=1(a >b >0).由题意,得⎩⎪⎨⎪⎧2a =3³2b ,9a +0b=1,解得⎩⎪⎨⎪⎧a =3,b =1.所以椭圆的标准方程为x 29+y 2=1.若焦点在y 轴上,设椭圆的方程为y 2a 2+x 2b2=1(a >b >0).由题意得⎩⎪⎨⎪⎧2a =3³2b ,0a 2+9b2=1,解得⎩⎪⎨⎪⎧a =9,b =3.所以椭圆的标准方程为y 281+x 29=1.综上所述,椭圆的标准方程为x 29+y 2=1或y 281+x 29=1.解法二:设椭圆的方程为x 2m +y 2n=1(m >0,n >0,m ≠n ),则由题意知,⎩⎪⎨⎪⎧9m =1,2m =3³2n或⎩⎪⎨⎪⎧9m =1,2n =3³2m .解得⎩⎪⎨⎪⎧m =9,n =1 或⎩⎪⎨⎪⎧m =9,n =81.所以椭圆的标准方程为x 29+y 2=1或y 281+x 29=1.(2)过点(3,-5),且与椭圆y 225+x 29=1有相同焦点的椭圆标准方程为________.[答案]y 220+x 24=1 [解析] 解法一:椭圆y 225+x 29=1的焦点为(0,-4),(0,4),即c =4.由椭圆的定义知,2a = 3-0 2+ -5+4 2+ 3-0 2+ -5-4 2, 解得a =2 5.由c 2=a 2-b 2可得b 2=4. 所以所求椭圆的标准方程为y 220+x 24=1. 解法二:设所求椭圆方程为y 225-k +x 29-k=1(k <9), 将点(3,-5)的坐标代入可得 -5 225-k + 329-k =1,解得k =5或k =21(舍去), 所以所求椭圆的标准方程为y 220+x 24=1.(3)设F 1,F 2分别是椭圆E :x 2+y 2b2=1(0<b <1)的左、右焦点,过点F 1的直线交椭圆E 于A ,B 两点.若|AF 1|=3|F 1B |,AF 2⊥x 轴,则椭圆E 的方程为________.[答案] x 2+3y22=1[解析] 设点A 在点B 上方,F 1(-c,0),F 2(c,0),其中c =1-b 2, 则可设A (c ,b 2),B (x 0,y 0),由|AF 1|=3|F 1B |,可得AF 1→=3F 1B →,故⎩⎪⎨⎪⎧-2c =3 x 0+c ,-b 2=3y 0, 即⎩⎪⎨⎪⎧x 0=-53c ,y 0=-13b 2,代入椭圆方程可得25 1-b 29+19b 2=1,解得b 2=23,故椭圆的方程为x 2+3y 22=1.[点石成金] 求椭圆标准方程的基本方法是待定系数法,具体过程是先定形,再定量,即首先确定焦点所在位置,然后再根据条件建立关于a ,b 的方程组.如果焦点位置不确定,要考虑是否有两解,有时为了解题方便,也可把椭圆方程设为mx 2+ny 2=1(m >0,n >0,m ≠n )的形式.1.一个椭圆的中心在原点,焦点F 1,F 2在x 轴上,P (2,3)是椭圆上一点,且|PF 1|,|F 1F 2|,|PF 2|成等差数列,则椭圆的方程为( )A.x 28+y 26=1B.x 216+y 26=1 C.x 24+y 22=1 D.x 28+y 24=1 答案:A解析:设椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0).由点P (2,3)在椭圆上知4a 2+3b2=1.又|PF 1|,|F 1F 2|,|PF 2|成等差数列, 则|PF 1|+|PF 2|=2|F 1F 2|,即2a =2³2c ,c a =12,又c 2=a 2-b 2,联立⎩⎪⎨⎪⎧4a 2+3b 2=1,c 2=a 2-b 2,c a =12,得a 2=8,b 2=6, 故椭圆的方程为x 28+y 26=1.2.求满足下列条件的椭圆的标准方程:(1)与椭圆x 24+y 23=1有相同的离心率且经过点(2,-3);(2)已知点P 在以坐标轴为对称轴的椭圆上,且P 到两焦点的距离分别为5,3,过P 且与长轴垂直的直线恰过椭圆的一个焦点;(3)经过两点⎝ ⎛⎭⎪⎫-32,52,()3,5. 解:(1)由题意,设所求椭圆的方程为x 24+y 23=t 1或y 24+x 23=t 2(t 1,t 2>0),∵椭圆过点(2,-3),∴t 1=224+ -3 23=2或t 2= -3 24+223=2512.故所求椭圆的标准方程为x 28+y 26=1或y 2253+x 2254=1.(2)由于焦点的位置不确定,∴设所求的椭圆方程为x 2a 2+y 2b 2=1(a >b >0)或y 2a 2+x 2b2=1(a >b >0),由已知条件得⎩⎪⎨⎪⎧2a =5+3,2c 2=52-32解得a =4,c =2, ∴b 2=12.故椭圆的方程为x 216+y 212=1或y 216+x 212=1. (3)设椭圆方程为mx 2+ny 2=1(m ,n >0,m ≠n ),由⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫-322m +⎝ ⎛⎭⎪⎫522n =1,3m +5n =1,解得m =16,n =110.∴椭圆的方程为y 210+x 26=1.考点3 椭圆的几何性质椭圆的标准方程和几何性质坐标轴 (0,0) (-a,0) (a,0) (0,-b ) (0,b ) (0,-a ) (0,a ) (-b,0) (b,0) 2a2b 2c (0,1) a 2-b 2(1)[教材习题改编]椭圆x 216+y 28=1的离心率为________.答案:22解析:由x 216+y 28=1可得a 2=16,b 2=8,∴c 2=a 2-b 2=8,∴e 2=c 2a 2=12,∴e =22.(2)[教材习题改编]已知点P 是椭圆x 25+y 24=1上y 轴右侧的一点,且以点P 及焦点F 1,F 2为顶点的三角形的面积等于1,则点P 的坐标为________.答案: ⎝⎛⎭⎪⎫152,1或 ⎝ ⎛⎭⎪⎫152,-1 解析:设P (x ,y ),由题意知c 2=a 2-b 2=5-4=1,所以c =1,则F 1(-1,0),F 2(1,0), 由题意可得点P 到x 轴的距离为1,所以y =±1, 把y =±1代入x 25+y 24=1,得x =±152,又x >0,所以x =152, 所以点P 的坐标为 ⎝⎛⎭⎪⎫152,1或 ⎝ ⎛⎭⎪⎫152,-1.1.焦点三角形问题:定义法.若椭圆x 24+y 23=1上的点P 与椭圆两焦点F 1,F 2的连线互相垂直,则△F 1PF 2的面积为________.答案:3解析:设|PF 1|=m ,|PF 2|=n .椭圆的长轴长为2a =4,焦距为2c =2, 因为PF 1⊥PF 2,所以m +n =4且m 2+n 2=4, 解得mn =6,所以△F 1PF 2的面积为12mn =3.2.直线与椭圆的位置关系:代数法.直线y =x +k 与椭圆x 2+y 24=1只有一个公共点,则k =________.答案:-5或 5解析:将y =x +k 代入x 2+y 24=1中,消去y ,得5x 2+2kx +k 2-4=0. 因为直线与椭圆只有一个公共点,所以Δ=(2k )2-4³5(k 2-4)=0,解得k =-5或 5.[典题3] (1)[2017²安徽淮南模拟]已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点为F ,C与过原点的直线相交于A ,B 两点,连接AF ,BF .若|AB |=10,|BF |=8,cos ∠ABF =45,则C的离心率为( )A.35B.57C.45D.67 [答案] B[解析] 如图,设|AF |=x ,则cos ∠ABF =82+102-x 22³8³10=45,解得x =6,所以∠AFB =90°,由椭圆及直线关于原点对称可知,|AF 1|=8,∠FAF 1=∠FAB +∠FBA =90°,△FAF 1是直角三角形,所以|F 1F |=10,故2a =8+6=14,2c =10,所以c a =57.(2)设F 1,F 2分别是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,点P 在椭圆C 上,若线段PF 1的中点在y 轴上,∠PF 1F 2=30°,则椭圆的离心率为( )A.33 B.36 C.13 D.16[答案] A[解析] 如图,设PF 1的中点为M ,连接PF 2.因为O 为F 1F 2的中点, 所以OM 为△PF 1F 2的中位线. 所以OM ∥PF 2,所以∠PF 2F 1=∠MOF 1=90°.因为∠PF 1F 2=30°,所以|PF 1|=2|PF 2|. 由勾股定理,得|F 1F 2|=|PF 1|2-|PF 2|2=3|PF 2|, 由椭圆定义,得2a =|PF 1|+|PF 2|=3|PF 2|, 即a =3|PF 2|2,2c =|F 1F 2|=3|PF 2|,即c =3|PF 2|2, 则e =c a=3|PF 2|2²23|PF 2|=33. [题点发散1] [典题3](2)条件变为“若∠PF 1F 2=α,∠PF 2F 1=β,且cos α=55,sin(α+β)=35”,则椭圆的离心率为________.答案:57解析:∵cos α=55⇒sin α=255. sin(α+β)=35⇒cos(α+β)=-45.∴sin β=sin[(α+β)-α]=11525.设|PF 1|=r 1,|PF 2|=r 2.由正弦定理,得r 111525=r 2255=2c35,∴r 1+r 221525=2c35⇒e =c a =57.[题点发散2] [典题3](2)条件变为“P 到两焦点的距离之比为2∶1”,试求椭圆的离心率的取值范围.解:设P 到两个焦点的距离分别是2k ,k , 根据椭圆定义可知3k =2a ,又结合椭圆的性质可知,椭圆上的点到两个焦点距离之差的最大值为2c ,即k ≤2c , ∴2a ≤6c ,即e ≥13.又0<e <1,∴13≤e <1.故椭圆的离心率的取值范围为⎣⎢⎡⎭⎪⎫13,1. [题点发散3] [典题3](2)条件中方程变为“x 2+2y 2=2”,P 是该椭圆上的一个动点.求|PF 1→+PF 2→|的最小值.解:将方程变形为x 22+y 2=1,则F 1(-1,0),F 2(1,0).设P (x 0,y 0),则PF 1→=(-1-x 0,-y 0),PF 2→=(1-x 0,-y 0), ∴PF 1→+PF 2→=(-2x 0,-2y 0),∴|PF 1→+PF 2→|=4x 20+4y 20=22-2y 20+y 20 =2-y 20+2∵点P 在椭圆上,∴0≤y 20≤1,∴当y 20=1时,|PF 1→+PF 2→|的最小值为2.[点石成金] 应用椭圆几何性质的两个技巧与一种方法 1.两个技巧(1)与椭圆几何性质有关的问题要结合图形进行分析,即使画不出图形,思考时也要联想到一个图形.(2)椭圆的范围或最值问题常常涉及一些不等式.例如-a ≤x ≤a ,-b ≤y ≤b,0<e <1,在求椭圆的相关量的范围时,要注意应用这些不等关系.2.一种方法求椭圆的离心率的方法(1)直接求出a ,c ,从而求解e ,通过已知条件列方程组,解出a ,c 的值.(2)构造a ,c 的齐次式,解出e ,由已知条件得出a ,c 的二元齐次方程,然后转化为关于离心率e 的一元二次方程求解.(3)通过特殊值或特殊位置,求出离心率.1.设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点为 F 1,F 2,过F 2 作x 轴的垂线与C 相交于A ,B 两点,F 1B 与y 轴交于点D ,若AD ⊥F 1B ,则椭圆C 的离心率等于________.答案:33解析:由题意知,F 1(-c,0),F 2(c,0), 其中c =a 2-b 2,因为过F 2且与x 轴垂直的直线为x =c ,由椭圆的对称性可设它与椭圆的交点为A ⎝ ⎛⎭⎪⎫c ,b 2a ,B ⎝⎛⎭⎪⎫c ,-b 2a . 因为AB 平行于y 轴,且|F 1O |=|OF 2|, 所以|F 1D |=|DB |,即D 为线段F 1B 的中点,所以点D 的坐标为⎝⎛⎭⎪⎫0,-b 22a ,又AD ⊥F 1B ,所以k AD ²kF 1B =-1,即b 2a -⎝ ⎛⎭⎪⎫-b 22a c -0³-b 2a -0c - -c=-1,整理得3b 2=2ac , 所以3(a 2-c 2)=2ac , 又e =c a,0<e <1, 所以3e 2+2e -3=0, 解得e =33或e =-3(舍去). 2.过点M (1,1)作斜率为-12的直线与椭圆C :x 2a 2+y2b2=1(a >b >0)相交于A ,B 两点,若M是线段AB 的中点,则椭圆C 的离心率等于________.答案:22解析:设A (x 1,y 1),B (x 2,y 2),且A ,B 在椭圆上,⎩⎪⎨⎪⎧x 21a 2+y 21b2=1,x 22a 2+y22b 2=1,则有x 21-x 22a 2+y 21-y 22b2=0,∴x 1+x 2 x 1-x 2 a 2+ y 1+y 2 y 1-y 2b2=0, 由题意知x 1+x 2=2,y 1+y 2=2,y 1-y 2x 1-x 2=-12, ∴2a 2+-12³2b2=0, ∴a 2=2b 2,∴e =22. 考点4 直线与椭圆的位置关系[考情聚焦] 直线与椭圆的综合问题是高考命题的一个热点问题,主要以解答题的形式出现,考查椭圆的定义、几何性质、直线与椭圆的位置关系,考查学生分析问题、解决问题的能力.主要有以下几个命题角度: 角度一由直线与椭圆的位置关系研究椭圆的性质[典题4] 设F 1,F 2分别是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,M 是C 上一点且MF 2与x 轴垂直.直线MF 1与C 的另一个交点为N .(1)若直线MN 的斜率为34,求椭圆C 的离心率;(2)若直线MN 在y 轴上的截距为2,且|MN |=5|F 1N |,求a ,b 的值. [解] (1)根据a 2-b 2=c 2及题设知,M ⎝ ⎛⎭⎪⎫c ,b 2a ,所以b 2a 2c =34,得2b 2=3ac .将b 2=a 2-c 2代入2b 2=3ac ,解得c a =12或ca=-2(舍去).故椭圆C 的离心率为12.(2)设直线MN 与y 轴的交点为D ,由题意,原点O 为F 1F 2的中点,MF 2∥y 轴,所以直线MF 1与y 轴的交点D (0,2)是线段MF 1的中点,故b 2a=4,即b 2=4a .①由|MN |=5|F 1N |,得|DF 1|=2|F 1N |. 设N (x 1,y 1),由题意知y 1<0,则⎩⎪⎨⎪⎧2 -c -x 1 =c ,-2y 1=2,即⎩⎪⎨⎪⎧x 1=-32c ,y 1=-1.代入C 的方程,得9c 24a 2+1b2=1.②将①及a 2-b 2=c 2代入②得9 a 2-4a 4a 2+14a=1. 解得a =7,b 2=4a =28, 故a =7,b =27.[点石成金] 解决此类问题的关键是依据条件寻找关于a ,b ,c 的关系式,解方程即可求得椭圆方程或椭圆的几何性质.角度二由直线与椭圆的位置关系研究直线的性质[典题5] 已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点F 与抛物线y 2=43x 的焦点重合,短轴的下、上两个端点分别为 B 1,B 2,且FB 1→²FB 2→=a .(1)求椭圆C 的方程;(2)若直线l :y =kx +m (km <0)与椭圆C 交于M ,N 两点,AB 是椭圆C 经过原点O 的弦,AB ∥l ,且|AB |2|MN |=4,问是否存在直线l ,使得OM →²ON →=2?若存在,求出直线l 的方程;若不存在,请说明理由.[解] (1)由题意可知,抛物线的焦点为(3,0), ∴F (3,0),FB 1→=(-3,-b ),FB 2→=(-3,b ), FB 1→²FB 2→=3-b 2=a ,又b 2=a 2-3,解得a =2,b =1, ∴椭圆C 的方程为x 24+y 2=1.(2)设M (x 1,y 1),N (x 2,y 2),由⎩⎪⎨⎪⎧x 24+y 2=1,y =kx +m ,消去y ,得(4k 2+1)x 2+8kmx +4m 2-4=0, ∴Δ=16(4k 2-m 2+1)>0, x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1,则|MN |=1+k 2²Δ4k 2+1=41+k 2²4k 2-m 2+14k +1, 令m =0,可得|AB |=41+k24k 2+1. ∴|AB |2|MN |=41+k 24k 2-m 2+1=4, 化简得 m =-3k 或 m =3k (舍去), ∴OM →²ON →=x 1x 2+y 1y 2=x 1x 2+k 2[x 1x 2-3(x 1+x 2)+3] =(1+k 2)x 1x 2-3k 2(x 1+x 2)+3k 2=1+k 24m 2-44k 2+1-24k 44k 2+1+3k 2 =11k 2-44k 2+1=2, 解得 k =±2,故直线的方程为 y =2x -6或y =-2x + 6.[点石成金] 1.解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题用“点差法”解决,往往会更简单.2.设直线与椭圆的交点坐标为A (x 1,y 1),B (x 2,y 2),则|AB |= 1+k 2[ x 1+x 2 2-4x 1x 2]=⎝ ⎛⎭⎪⎫1+1k 2[ y 1+y 22-4y 1y 2](k 为直线斜率).[方法技巧] 1.求椭圆标准方程的方法(1)定义法:根据椭圆定义,确定a 2,b 2的值,再结合焦点位置,直接写出椭圆方程. (2)待定系数法:根据椭圆焦点是在x 轴还是y 轴上,设出相应形式的标准方程,然后根据条件确定关于a ,b ,c 的方程组,解出a 2,b 2,从而写出椭圆的标准方程.2.讨论椭圆的几何性质时,离心率问题是重点,求离心率的常用方法有以下两种: (1)求得a ,c 的值,直接代入公式e =ca求得;(2)列出关于a ,b ,c 的齐次方程(或不等式),然后根据b 2=a 2-c 2,消去b ,转化成关于e 的方程(或不等式)求解.[易错防范] 1.在解关于离心率e 的二次方程时,要注意利用椭圆的离心率e ∈(0,1)进行根的取舍,否则将产生增根.2.注意椭圆的范围,在设椭圆x 2a 2+y 2b2=1(a >b >0)上点的坐标为P (x ,y )时,则|x |≤a ,这往往在求与点P 有关的最值问题中特别有用,也是容易被忽略而导致求最值错误的原因.真题演练集训1.[2016²新课标全国卷Ⅲ]已知O 为坐标原点,F 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点,A ,B 分别为C 的左、右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )A.13B.12C.23D.34 答案:A解析:设E (0,m ),则直线AE 的方程为-x a +ym =1,由题意可知,M ⎝⎛⎭⎪⎫-c ,m -mc a ,⎝ ⎛⎭⎪⎫0,m 2和B (a,0)三点共线,则m -mc a -m 2-c =m2-a ,化简得a =3c ,则C 的离心率e =c a =13.2.[2016²江苏卷]如图,在平面直角坐标系xOy 中,F 是椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点,直线y =b2与椭圆交于B ,C 两点,且∠BFC =90°,则该椭圆的离心率是________.答案:63解析:由题意可得B ⎝ ⎛⎭⎪⎫-32a ,b 2,C ⎝ ⎛⎭⎪⎫32a ,b 2,F (c,0),则由∠BFC =90°得BF →²CF →=⎝ ⎛⎭⎪⎫c +32a ,-b 2²⎝ ⎛⎭⎪⎫c -32a ,-b 2=c 2-34a 2+14b 2=0,化简得3c =2a ,则离心率e =c a =23=63. 3.[2016²天津卷]设椭圆x 2a 2+y 23=1(a >3)的右焦点为F ,右顶点为A .已知1|OF |+1|OA |=3e|FA |,其中O 为原点,e 为椭圆的离心率. (1)求椭圆的方程;(2)设过点A 的直线l 与椭圆交于点B (B 不在x 轴上),垂直于l 的直线与l 交于点M ,与y 轴交于点H .若BF ⊥HF ,且∠MOA ≤∠MAO ,求直线l 的斜率的取值范围.解:(1)设F (c,0),由1|OF |+1|OA |=3e |FA |,即1c +1a =3c a a -c ,可得a 2-c 2=3c 2,又a 2-c 2=b 2=3,所以c 2=1,因此a 2=4. 所以,椭圆的方程为x 24+y 23=1. (2)设直线l 的斜率为k (k ≠0),则直线l 的方程为y =k (x -2).设B (x B ,y B ),由方程组⎩⎪⎨⎪⎧x 24+y 23=1,y =k x -2消去y ,整理得(4k 2+3)x 2-16k 2x +16k 2-12=0. 解得x =2或x =8k 2-64k 2+3,由题意得x B =8k 2-64k 2+3,从而y B =-12k4k 2+3.由(1)知,F (1,0),设H (0,y H ),有FH →=(-1,y H ),BF →=⎝ ⎛⎭⎪⎫9-4k24k 2+3,12k 4k 2+3.由BF ⊥HF ,得BF →²FH →=0,所以4k 2-94k +3+12ky H 4k +3=0,解得y H =9-4k 212k .因此直线MH 的方程为y =-1k x +9-4k212k.设M (x M ,y M ),由方程组⎩⎪⎨⎪⎧y =k x -2 ,y =-1k x +9-4k212k 消去y ,解得x M =20k 2+912 k 2+1. 在△MAO 中,∠MOA ≤∠MAO ⇔|MA |≤|MO |, 即(x M -2)2+y 2M ≤x 2M +y 2M ,化简得x M ≥1, 即20k 2+912 k 2+1 ≥1,解得k ≤-64或k ≥64. 所以,直线l 的斜率的取值范围为 ⎝ ⎛⎦⎥⎤-∞,-64∪⎣⎢⎡⎭⎪⎫64,+∞.4.[2014²新课标全国卷Ⅰ]已知点A (0,-2),椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,F 是椭圆E 的右焦点,直线AF 的斜率为233,O 为坐标原点. (1)求E 的方程;(2)设过点A 的动直线l 与E 相交于P ,Q 两点,当△OPQ 的面积最大时,求l 的方程. 解:(1)设F (c,0),由条件知,2c =233,得c = 3.又c a =32,所以a =2,b 2=a 2-c 2=1. 故E 的方程为x 24+y 2=1.(2)当l ⊥x 轴时不合题意,故设l :y =kx -2,P (x 1,y 1),Q (x 2,y 2), 将y =kx -2代入x 24+y 2=1得(1+4k 2)x 2-16kx +12=0.当Δ=16(4k 2-3)>0,即k 2>34时,x 1,2=8k ±24k 2-34k 2+1. 从而|PQ |=k 2+1|x 1-x 2|=4k 2+1²4k 2-34k 2+1. 又点O 到直线PQ 的距离d =2k 2+1,所以△OPQ 的面积S △OPQ =12d |PQ |=44k 2-34k 2+1. 设4k 2-3=t ,则t >0,S △OPQ =4t t 2+4=4t +4t. 因为t +4t ≥4,当且仅当t =2,即k =±72时等号成立,且满足Δ>0,所以,当△OPQ 的面积最大时,l 的方程为y =72x -2或y =-72x -2.课外拓展阅读利用转化与化归思想求圆锥曲线离心率的取值(范围)[典例] (1)如图,椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点为F 1,上顶点为B 2,右顶点为A 2,过点A 2作x 轴的垂线交直线F 1B 2于点P ,若|PA 2|=3b ,则椭圆C 的离心率为________.(2)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1(-c,0),F 2(c,0),若椭圆上存在点P 使a sin ∠PF 1F 2=csin ∠PF 2F 1,则该椭圆的离心率的取值范围为________.[审题视角] 求椭圆的离心率利用方程思想,只需利用题目条件得到a ,b ,c 的一个关系式即可,若得到的关系式含b ,可利用a 2=b 2+c 2转化为只含a ,c 的关系式.[解析] (1)由题设知,|B 2O ||PA 2|=|F 1O ||F 1A 2|=b 3b =c a +c =13,则e =12.(2)依题意及正弦定理,得|PF 2||PF 1|=ac (注意到P 不与F 1F 2共线), 即|PF 2|2a -|PF 2|=ac ,∴2a |PF 2|-1=ca , ∴2a|PF 2|=c a +1>2aa +c,- 21 - 即e +1>21+e,∴(e +1)2>2. 又0<e <1,因此 2-1<e <1.[答案] (1)12(2)(2-1,1) 方法点睛离心率是椭圆的重要几何性质,是高考重点考查的一个知识点,这类问题一般有两类:一类是根据一定的条件求椭圆的离心率;另一类是根据一定的条件求离心率的取值范围.无论是哪类问题,其难点都是建立关于a ,b ,c 的关系式(等式或不等式),并且最后要把其中的b 用a ,c 表示,转化为关于离心率e 的关系式,这是化解有关椭圆的离心率问题难点的根本方法.。
2018版高考数学大一轮复习第九章解析几何9.5椭圆课件文新人教A版
y2
+ b 2 =1(a>b>0)
x2
-a≤x≤a -b≤y≤b 对称轴:坐标轴 A1(-a,0),A2(a,0) B1(0,-b),B2(0,b) 长轴 A1A2 的长为 为 2b |F1F2|= e=
������ ������
-b≤x≤b -a≤y≤a 对称中心:原点 A1(0,-a),A2(0,a) B1(-b,0),B2(b,0)
-11考点1 考点2 考点3
考点 1
椭圆的定义及其标准方程
������2 C:������2
例 1(1)已知 F1,F2 是椭圆
+
������2 ������
2 =1(a>b>0)的两个焦点,P
为
椭圆 C 上的一点,且������������1 ⊥ ������������2 .若△PF1F2 的面积为 9,则 b= . (2)(2016 山西孝义模拟)已知椭圆
+
������2 =1 5
D.以上答案都不对
关闭
C
答案
-7知识梳理 双基自测 自测点评
1 2 3 4 5
+
������2 ������
3.已知椭圆
√3
������2 C:������2
右焦点为 2 =1(a>b>0)的左、
F1,F2,离心率为
3
,过 F2 的直线 l 交 C 于 A,B 两点.若△AF1B 的周长为 4√3,则 C 的方 ) + +
2a
;短轴 B1B2 的长
2c
∈(0,1)
c2=a2-b2
-5知识梳理 双基自测 自测点评
1 2 3 4 5
江苏专用2018版高考数学专题复习专题9平面解析几何第62练椭圆的几何性质练习理
(江苏专用)2018版高考数学专题复习 专题9 平面解析几何 第62练 椭圆的几何性质练习 理训练目标 熟练掌握椭圆的几何性质并会应用. 训练题型(1)求离心率的值或范围;(2)应用几何性质求参数值或范围;(3)椭圆方程与几何性质综合应用.解题策略(1)利用定义PF 1+PF 2=2a 找等量关系;(2)利用a 2=b 2+c 2及离心率e =ca找等量关系;(3)利用焦点三角形的特殊性找等量关系.1.设椭圆C :a 2+b2=1(a >b >0)的左,右焦点分别为F 1,F 2,P 是C 上的点,PF 2⊥F 1F 2,∠PF 1F 2=30°,则C 的离心率为________.2.(2016·衡水模拟)已知椭圆C 的中心为O ,两焦点为F 1,F 2,M 是椭圆C 上的一点,且满足|MF 1→|=2|MO →|=2|MF 2→|,则椭圆C 的离心率e =________.3.椭圆x 2a 2+y 2b2=1(a >b >0)的左顶点为A ,左,右焦点分别是F 1,F 2,B 是短轴的一个端点,若3BF 1→=BA →+2BF 2→,则椭圆的离心率为________.4.已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的短轴的两个端点分别为A ,B ,点C 为椭圆上异于A ,B 的一点,直线AC 与直线BC 的斜率之积为-14,则椭圆的离心率为________.5.(2016·镇江模拟)在平面直角坐标系xOy 中,已知点A 在椭圆x 225+y 29=1上,点P 满足AP→=(λ-1)OA →(λ∈R ),且OA →·OP →=72,则线段OP 在x 轴上的投影长度的最大值为________. 6.(2016·济南3月模拟)在椭圆x 216+y 29=1内,过点M (1,1)且被该点平分的弦所在的直线方程为____________________.7.设F 1,F 2分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左,右焦点,离心率为12,M 是椭圆上一点且MF 2与x 轴垂直,则直线MF 1的斜率为________.8.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点为F ,椭圆C 与过原点的直线相交于A ,B 两点,连结AF ,BF ,若AB =10,AF =6,cos∠ABF =45,则椭圆C 的离心率e =________.9.(2017·上海六校3月联考)已知点F 为椭圆C :x 22+y 2=1的左焦点,点P 为椭圆C 上任意一点,点Q 的坐标为(4,3),则PQ +PF 取最大值时,点P 的坐标为________.10.(2016·镇江模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,过右焦点F 且斜率为k (k >0)的直线与C 相交于A ,B 两点,若AF →=3FB →,则k =________.11.(2016·连云港二模)已知P 是以F 1,F 2为焦点的椭圆x 2a 2+y 2b2=1(a >b >0)上的任意一点,若∠PF 1F 2=α,∠PF 2F 1=β,且cos α=55,sin(α+β)=35,则此椭圆的离心率为________.12.设椭圆中心在坐标原点,A (2,0),B (0,1)是它的两个顶点,直线y =kx (k >0)与AB 相交于点D ,与椭圆相交于E ,F 两点,若ED →=6DF →,则k 的值为________.13.(2017·黑龙江哈六中上学期期末)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左,右焦点分别为F 1(-c,0),F 2(c,0),若椭圆上存在点P ,使asin∠PF 1F 2=csin∠PF 2F 1,则该椭圆的离心率的取值范围为____________.14.椭圆C :x 24+y 23=1的左、右顶点分别为A 1、A 2,点P 在C 上且直线PA 2的斜率的取值范围是[-2,-1],那么直线PA 1的斜率的取值范围是________.答案精析解析由题意知sin 30°=PF2PF1=12,∴PF1=2PF2.又∵PF1+PF2=2a,∴PF2=2a3.∴tan 30°=PF2F1F2=2a32c=33.∴ca=33.解析不妨设椭圆方程为x2a2+y2b2=1(a>b>0).由椭圆定义,得|MF1→|+|MF2→|=2a,再结合条件可知|MO→|=|MF2→|=2a3.如图,过M作MN⊥OF2于N,则|ON→|=c2,|MN→|2=|MO→|2-c24.设|MF2→|=x,则|MF1→|=2x.在Rt△MF1N中,4x2=94c2+x2-c24,即3x2=2c2,而x2=4a29,所以43a2=2c2,即e2=c2a2=23,所以e=63.解析 不妨设B (0,b ),则BF 1→=(-c ,-b ),BA →=(-a ,-b ),BF 2→=(c ,-b ),由条件可得-3c =-a +2c , ∴a =5c ,故e =15.解析 设C (x 0,y 0),A (0,b ),B (0,-b ),则x 20a 2+y 20b 2=1.故x 20=a 2×(1-y 20b 2)=a 2×b 2-y 20b2,又k AC ·k BC =y 0-b x 0×y 0+b x 0=y 20-b 2x 20=-14,故a 2=4b 2,c 2=a 2-b 2=3b 2,因此e =c 2a 2= 3b 24b2=32. 5.15解析 AP →=OP →-OA →=(λ-1)OA →,即OP →=λOA →,则O ,P ,A 三点共线.又OA →·OP →=72,所以OA →与OP →同向,所以|OA →||OP →|=72.设OP 与x 轴的夹角为θ,点A 的坐标为(x ,y ),点B 为点A 在x 轴上的投影,则OP 在x 轴上的投影长度为|OP →|·cos θ=|OP →|·|OB →||OA →|=72|OB →||OA →|2=72×|x |x 2+y 2=72·|x |1625x 2+9=72·11625|x |+9|x |≤72·12× 16×925=15,当且仅当|x |=154时,等号成立.故线段OP 在x 轴上的投影长度的最大值为15. 6.9x +16y -25=0解析 设弦的两个端点的坐标分别是(x 1,y 1),(x 2,y 2),则有x 2116+y 219=1,x 2216+y 229=1,两式相减得x 1-x 2x 1+x 216+y 1-y 2y 1+y 29=0.又x 1+x 2=y 1+y 2=2,因此x 1-x 216+y 1-y 29=0,即y 1-y 2x 1-x 2=-916,所求直线的斜率是-916,弦所在的直线方程是y -1=-916(x -1),即9x +16y -25=0. 7.±34解析 由离心率为12可得c 2a 2=14,可得a 2-b 2a 2=14,即b =32a ,因为MF 2与x 轴垂直,故点M的横坐标为c ,故c 2a 2+y 2b 2=1,解得y =±b 2a =±34a ,则M (c ,±34a ),直线MF 1的斜率为kMF 1=±3a 8c =±38×2=±34.解析 设椭圆的右焦点为F 1,在△ABF 中,由余弦定理可解得BF =8,所以△ABF 为直角三角形,且∠AFB =90°,又因为斜边AB 的中点为O ,所以OF =c =5,连结AF 1,因为A ,B 关于原点对称,所以BF =AF 1=8,所以2a =14,a =7,所以离心率e =57.9.(0,-1)解析 设椭圆的右焦点为E ,PQ +PF =PQ +2a -PE =PQ -PE +2 2. 当P 为线段QE 的延长线与椭圆的交点时,PQ +PF 取最大值,此时,直线PQ 的方程为y =x -1, QE 的延长线与椭圆交于点(0,-1),即点P 的坐标为(0,-1).解析 由椭圆C 的离心率为32, 得c =32a ,b 2=a 24,∴椭圆C :x 2a 2+4y 2a 2=1,F (32a,0).设A (x A ,y A ),B (x B ,y B ), ∵AF →=3FB →, ∴(32a -x A ,-y A )=3(x B -32a ,y B ). ∴32a -x A =3(x B -32a ),-y A =3y B , 即x A +3x B =23a ,y A +3y B =0. 将A ,B 的坐标代入椭圆C 的方程相减得 9x 2B -x 2A a 2=8,3x B +x A3x B -x Aa2=8,∴3x B -x A =433a ,∴x A =33a ,x B =539a , ∴y A =-66a ,y B =618a , ∴k =y B -y A x B -x A =618a +66a 539a -33a= 2.解析cos α=55⇒sinα=255,所以sin β=sin[(α+β)-α]=sin(α+β)cos α-cos(α+β)sin α=35·55±45·255=11525或-55(舍去).设PF1=r1,PF2=r2,由正弦定理得r111525=r2255=2c35⇒r1+r221525=2c35⇒e=ca=57.或38解析依题设,得椭圆的方程为x24+y2=1,直线AB,EF的方程分别为x+2y=2,y=kx(k>0).如图,设D(x0,kx0),E(x1,kx1),F(x2,kx2),其中x1<x2.则x1,x2满足方程(1+4k2)x2=4,故x2=-x1=21+4k2.由ED→=6DF→,知x0-x1=6(x2-x0),可得x0=17(6x2+x1)=57x2=1071+4k2.由D在AB上,知x0+2kx0=2,得x0=21+2k,所以21+2k=1071+4k2,化简,得24k2-25k+6=0,解得k=23或k=38.13.(2-1,1)解析由asin∠PF1F2=csin∠PF2F1,得ca=sin∠PF2F1sin∠PF1F2.又由正弦定理得sin∠PF 2F 1sin∠PF 1F 2=PF 1PF 2,所以PF 1PF 2=c a , 即PF 1=c aPF 2.又由椭圆定义得PF 1+PF 2=2a , 所以PF 2=2a 2a +c ,PF 1=2aca +c ,因为PF 2是△PF 1F 2的一边,所以有2c -2ac a +c <2a 2a +c <2c +2aca +c ,即c 2+2ac -a 2>0,所以e 2+2e -1>0(0<e <1),解得椭圆离心率的取值范围为(2-1,1). 14.[38,34]解析 由题意可得,A 1(-2,0),A 2(2,0), 当PA 2的斜率为-2时,直线PA 2的方程为y =-2(x -2),代入椭圆方程,消去y 化简得19x 2-64x +52=0, 解得x =2或x =2619.由PA 2的斜率存在可得点P ⎝⎛⎭⎪⎫2619,2419,此时直线PA 1的斜率k =38.同理,当直线PA 2的斜率为-1时, 直线PA 2的方程为y =-(x -2), 代入椭圆方程,消去y 化简得 7x 2-16x +4=0, 解得x =2或x =27.由PA 2的斜率存在可得点P ⎝ ⎛⎭⎪⎫27,127,此时直线PA 1的斜率k =34.数形结合可知,直线PA 1的斜率的取值范围是⎣⎢⎡⎦⎥⎤38,34.。
(苏教版)高考数学一轮复习第九章解析几何第五节椭圆教案理(解析版)
1.椭圆的定义平面内到两定点F 1,F 2的距离的和等于常数(大于F 1F 2)的点的轨迹叫做椭圆.两定点F 1,F 2叫做椭圆的焦点.集合P ={M |MF 1+MF 2=2a },F 1F 2=2c ,其中a >0,c >0,且a ,c 为常数. (1)当2a >F 1F 2时,P 点的轨迹是椭圆; (2)当2a =F 1F 2时,P 点的轨迹是线段; (3)当2a <F 1F 2时,P 点不存在. 2.椭圆的标准方程和几何性质[小题体验]1.已知椭圆x 29+y 24=1的两焦点为F 1,F 2,过F 1作直线交椭圆于A ,B 两点,则△ABF 2的周长为________.答案:122.已知直线x -2y +2=0过椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点和一个顶点,则椭圆的方程为________.解析:直线x -2y +2=0与x 轴的交点为(-2,0),即为椭圆的左焦点,故c =2.直线x -2y +2=0与y 轴的交点为(0,1),即为椭圆的顶点,故b =1,所以a 2=b 2+c 2=5,故椭圆的方程为x 25+y 2=1.答案:x 25+y 2=13.已知椭圆的一个焦点为F (1,0),离心率为12,则椭圆的标准方程为________.解析:设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0).因为椭圆的一个焦点为F (1,0),离心率e =12,所以⎩⎪⎨⎪⎧c =1,c a =12,a 2=b 2+c 2,解得⎩⎪⎨⎪⎧a =2c =2,b 2=3,故椭圆的标准方程为x 24+y 23=1.答案:x 24+y 23=11.求椭圆的标准方程时易忽视判断焦点的位置,而直接设方程为x 2a 2+y 2b2=1(a >b >0).2.注意椭圆的范围,在设椭圆x 2a 2+y 2b 2=1(a >b >0)上点的坐标为P (x ,y )时,|x |≤a ,|y |≤b ,这往往在求与点P 有关的最值问题中特别有用,也是容易被忽略而导致求最值错误的原因.[小题纠偏]1.(2019·无锡一中月考)已知椭圆x 213-m +y 2m -2=1的焦距为6,则m =________.解析:∵椭圆x 213-m +y 2m -2=1的焦距为6,∴当焦点在x 轴时,(13-m )-(m -2)=9,解得m =3; 当焦点在y 轴时,(m -2)-(13-m )=9,解得m =12. 答案:3或122.若方程x 25-k +y 2k -3=1表示椭圆,则k 的取值范围是________.解析:由已知得⎩⎪⎨⎪⎧5-k >0,k -3>0,5-k ≠k -3.解得3<k <5且k ≠4.答案:(3,4)∪(4,5)考点一 椭圆的标准方程基础送分型考点——自主练透[题组练透]1.与椭圆x 29+y 24=1有相同的焦点,且离心率为55的椭圆的标准方程为________.解析:由椭圆x 29+y24=1,得a 2=9,b 2=4,∴c 2=a 2-b 2=5,∴该椭圆的焦点坐标为(±5,0).设所求椭圆方程为x 2a ′2+y 2b ′2=1,a ′>b ′>0,则c ′=5,又c ′a ′=55,解得a ′=5.∴b ′2=25-5=20,∴所求椭圆的标准方程为x 225+y 220=1.答案:x 225+y 220=12.(2018·海门中学测试)已知中心在坐标原点的椭圆C 的右焦点为F (1,0),点F 关于直线y =12x 的对称点在椭圆C 上,求椭圆C 的标准方程.解:设点F 关于y =12x 的对称点为P (x 0,y 0),又F (1,0),所以⎩⎪⎨⎪⎧y 0-0x 0-1=-2,y 02=12×x 0+12,解得⎩⎨⎧x 0=35,y 0=45.又点P 在椭圆上,设椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),所以⎩⎪⎨⎪⎧925a 2+1625b 2=1,c 2=a 2-b 2=1,解得⎩⎨⎧a 2=95,b 2=45,则椭圆C 的方程为x 295+y 245=1.3.求分别满足下列条件的椭圆的标准方程: (1)经过点P (-23,0),Q(0,2)两点;(2)与椭圆x 24+y 23=1有相同的焦点且经过点(2,-3).解:(1)由题意,P ,Q 分别是椭圆长轴和短轴上的端点,且椭圆的焦点在x 轴上, 所以a =23,b =2,所求椭圆的标准方程为x 212+y 24=1.(2)设椭圆x 24+y 23=1的左、右焦点分别为F 1,F 2,所以F 1(-1,0),F 2(1,0), 所以所求椭圆焦点在x 轴上, 设方程为x 2a 2+y 2b 2=1(a >b >0).由题意得⎩⎪⎨⎪⎧a 2-b 2=1,4a 2+3b2=1,解得a 2=4+23,b 2=3+23或a 2=4-23,b 2=3-23(舍去), 所以椭圆的标准方程为x 24+23+y 23+23=1.[谨记通法]求椭圆标准方程的 2种常用方法考点二 椭圆的定义及其应用重点保分型考点——师生共研[典例引领]已知椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点为F 2(1,0),点H ⎝⎛⎭⎫2,2103在椭圆上.(1)求椭圆的方程;(2)点M 在圆x 2+y 2=b 2上,且点M 在第一象限,过点M 作圆x 2+y 2=b 2的切线交椭圆于P ,Q 两点,求证:△PF 2Q 的周长是定值.解:(1)设椭圆的左焦点为F 1.根据已知,椭圆的左右焦点分别是F 1(-1,0),F 2(1,0),半焦距c =1, 因为H ⎝⎛⎭⎫2,2103在椭圆上,所以2a =HF 1+HF 2=2+12+⎝⎛⎭⎫21032+2-12+⎝⎛⎭⎫21032=6.所以a =3,b =22,故椭圆的方程是x 29+y 28=1.(2)证明:设P (x 1,y 1),Q(x 2,y 2),则x 219+y 218=1,所以PF 2=x 1-12+y 21=x 1-12+8⎝⎛⎭⎫1-x 219= ⎝⎛⎭⎫x 13-32.因为0<x 1<3,所以PF 2=3-13x 1.在圆x 2+y 2=b 2中,M 是切点, 所以PM =OP 2-OM 2=x 21+y 21-8=x 21+8⎝⎛⎭⎫1-x 219-8=13x 1.所以PF 2+PM =3-13x 1+13x 1=3.同理,Q F 2+Q M =3, 所以F 2P +F 2Q +P Q =3+3=6. 因此△PF 2Q 的周长是定值6.[由题悟法]利用定义求方程、焦点三角形及最值的方法[即时应用]1.已知椭圆的两个焦点为F 1(-2,0),F 2(2,0),点P 是椭圆上的点,且△PF 1F 2的周长是4+22,则椭圆的标准方程为________.解析:∵椭圆的两个焦点为F 1(-2,0),F 2()2,0, ∴椭圆的焦距为F 1F 2=2 2. ∵△PF 1F 2的周长是4+22, ∴PF 1+PF 2+F 1F 2=4+22, 可得PF 1+PF 2=4.根据椭圆的定义,可得2a =PF 1+PF 2=4,∴a =2, 又∵c =2,∴b =a 2-c 2=2,可得a 2=4,b 2=2. 故椭圆的标准方程为x 24+y 22=1.答案:x 24+y 22=12.已知F 1,F 2是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两个焦点,P 为椭圆C 上的一点,且PF 1―→⊥PF 2―→.若△PF 1F 2的面积为9,则b =________.解析:由题意知PF 1+PF 2=2a ,PF 1―→⊥PF 2―→,所以PF 21+PF 22=F 1F 22=4c 2,所以(PF 1+PF 2)2-2PF 1·PF 2=4c 2,所以2PF 1·PF 2=4a 2-4c 2=4b 2.所以PF 1·PF 2=2b 2,所以S △PF 1F 2= 12PF 1·PF 2=12×2b 2=b 2=9.所以b =3.答案:3考点三 椭圆的几何性质 题点多变型考点——多角探明[锁定考向]椭圆的几何性质是高考的热点,常见的命题角度有: (1)求离心率的值或范围;(2)根据椭圆的性质求参数的值或范围;(3)焦点三角形的研究.[题点全练]角度一:求离心率的值或范围1.(2019·连云港调研)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,过F 2且垂直于x 轴的直线与椭圆交于A ,B 两点,O 为坐标原点,若F 1A ⊥OB ,则椭圆的离心率为________.解析:由题意,可得A ⎝⎛⎭⎫c ,b 2a ,B ⎝⎛⎭⎫c ,-b 2a . ∵F 1A ⊥OB ,∴b 2a 2c ·-b 2ac =-1,可得a 2-c 2=2ac ,即e 2+2e -1=0,解得e =6-22(负值舍去). 答案:6-222.从椭圆x 2a 2+y 2b 2=1(a >b >0)上一点P 向x 轴作垂线,垂足恰为左焦点F 1,A 是椭圆与x 轴正半轴的交点,B 是椭圆与y 轴正半轴的交点,且AB ∥OP (O 是坐标原点),则该椭圆的离心率是________.解析:由题意可设P (-c ,y 0)(c 为半焦距),k OP =-y 0c ,k AB =-b a ,由于OP ∥AB ,所以-y 0c =-ba ,y 0=bca ,把P ⎝⎛⎭⎫-c ,bc a 代入椭圆方程得-c 2a 2+⎝⎛⎭⎫bc a 2b2=1,即⎝⎛⎭⎫c a 2=12,所以e =c a =22. 答案:22角度二:根据椭圆的性质求参数的值或范围3.若方程x 2a -5+y 22=1表示的曲线为焦点在x 轴上的椭圆,则实数a 的取值范围是________.解析:∵方程x 2a -5+y 22=1表示的曲线为焦点在x 轴上的椭圆,∴⎩⎪⎨⎪⎧a -5>0,a -5>2,解得a >7.∴实数a 的取值范围是(7,+∞). 答案:(7,+∞)4.如果x 2+ky 2=2表示焦点在y 轴上的椭圆,那么实数k 的取值范围是________. 解析:x 2+ky 2=2转化为椭圆的标准方程,得x 22+y 22k=1,因为x 2+ky 2=2表示焦点在y 轴上的椭圆,所以2k >2,解得0<k <1.所以实数k 的取值范围是(0,1).答案:(0,1)角度三:焦点三角形的研究5.已知椭圆C :x 2a 2+y2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,点P 为椭圆C 上一点,且∠F 1PF 2=60°.(1)求椭圆C 的离心率的范围;(2)求证:△F 1PF 2的面积只与椭圆C 的短半轴长有关. 解:(1)设PF 1=m ,PF 2=n ,则m +n =2a . 在△PF 1F 2中,由余弦定理可知, 4c 2=m 2+n 2-2mn cos 60°=(m +n )2-3mn =4a 2-3mn ≥4a 2-3·⎝⎛⎭⎫m +n 22=4a 2-3a 2=a 2(当且仅当m =n 时取等号).所以c 2a 2≥14,即e ≥12.又0<e <1,所以e 的取值范围是⎣⎡⎭⎫12,1. (2)证明:由(1)知mn =43b 2,所以S △PF 1F 2=12mn sin 60°=33b 2,即△PF 1F 2的面积只与短半轴长有关.[通法在握]1.应用椭圆几何性质的2个技巧(1)与椭圆几何性质有关的问题要结合图形进行分析,即使画不出图形,思考时也要联想到一个图形. (2)椭圆的范围或最值问题常常涉及一些不等式.例如-a ≤x ≤a ,-b ≤y ≤b,0<e <1,在求椭圆的相关量的范围时,要注意应用这些不等关系.2.求椭圆离心率的方法(1)直接求出a ,c 的值,利用离心率公式直接求解.(2)列出含有a ,b ,c 的齐次方程(或不等式),借助于b 2=a 2-c 2消去b ,转化为含有e 的方程(或不等式)求解.[演练冲关]1.已知椭圆x 29+y 24-k =1的离心率为45,则k 的值为______.解析:当9>4-k >0,即-5<k <4时, a =3,c 2=9-(4-k )=5+k , 所以5+k 3=45,解得k =1925. 当9<4-k ,即k <-5时,a =4-k ,c 2=-k -5, 所以-k -54-k =45,解得k =-21,所以k 的值为1925或-21.答案:1925或-212.过椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点F 1作x 轴的垂线交椭圆于点P ,F 2为椭圆的右焦点,若∠F 1PF 2=60°,则椭圆的离心率为________.解析:由题意,可设P ⎝⎛⎭⎫-c ,b 2a . 因为在Rt △PF 1F 2中,PF 1=b 2a ,F 1F 2=2c ,∠F 1PF 2=60°,所以2acb 2= 3.又因为b 2=a 2-c 2,所以3c 2+2ac -3a 2=0,即3e 2+2e -3=0, 解得e =33或e =-3, 又因为e ∈(0,1),所以e =33. 答案:333.(2019·南京一模)设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,P 是椭圆C 上的点,PF 2⊥F 1F 2,∠PF 1F 2=θ,若cos θ=13,则椭圆C 的离心率为________.解析:∵PF 2⊥F 1F 2,cos ∠PF 1F 2=13,F 1F 2=2c ,∴PF 1=6c ,PF 2=42c ,又PF 1+PF 2=2a ,∴6c +42c =2a , ∴椭圆C 的离心率e =2c 2a =13+22=3-2 2.答案:3-2 2考点四 直线与椭圆的位置关系重点保分型考点——师生共研[典例引领]如图,在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,且过点⎝⎛⎭⎫1,32.过椭圆C 的左顶点A 作直线交椭圆C 于另一点P ,交直线l :x =m (m >a )于点M .已知点B (1,0),直线PB 交l 于点N .(1)求椭圆C 的方程;(2)若MB 是线段PN 的垂直平分线,求实数m 的值. 解:(1)因为椭圆C 的离心率为32,所以a 2=4b 2.又因为椭圆C 过点⎝⎛⎭⎫1,32,所以1a 2+34b 2=1,解得a 2=4,b 2=1.所以椭圆C 的方程为x 24+y 2=1.(2)设P (x 0,y 0),且-2<x 0<2, x 0≠1,则x 204+y 20=1. 因为MB 是PN 的垂直平分线,所以点P 关于点B 的对称点N (2-x 0,-y 0), 所以x 0=2-m .由A (-2,0),P (x 0,y 0),可得直线AP 的方程为y =y 0x 0+2(x +2),令x =m ,得y =y 0m +2x 0+2,即M ⎝⎛⎭⎪⎫m ,y 0m +2x 0+2. 因为PB ⊥MB ,所以k PB ·k MB =-1,所以k PB ·k MB =y 0x 0-1·y 0m +2x 0+2m -1=-1,即y 20m +2x 0-1x 0+2m -1=-1. 因为x 204+y 20=1.所以x 0-2m +24x 0-1m -1=1.因为x 0=2-m ,所以化简得3m 2-10m +4=0, 解得m =5±133.因为m >2,所以m =5+133.[由题悟法]直线与椭圆的位置关系的解题策略解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.[即时应用](2018·南通、扬州调研)如图,在平面直角坐标系xOy 中,已知椭圆x 2a 2+y 2b 2=1(a>b >0)的离心率为22.A 为椭圆上异于顶点的一点,点P 满足OP ―→=2AO ―→. (1)若点P 的坐标为(2,2),求椭圆的方程;(2)设过点P 的一条直线交椭圆于B ,C 两点,且BP ―→=m BC ―→,直线OA ,OB 的斜率之积为-12,求实数m 的值.解:(1) 因为OP ―→=2AO ―→,而P (2,2),所以A ⎝⎛⎭⎫-1,-22,代入椭圆方程,得1a 2+24b 2=1,①又椭圆的离心率为22,所以1-b 2a 2=22.② 由①②,得a 2=2,b 2=1.故椭圆的方程为x 22+y 2=1.(2)设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3). 因为OP ―→=2AO ―→,所以P (-2x 1,-2y 1),因为BP ―→=m BC ―→,所以(-2x 1-x 2,-2y 1-y 2)=m (x 3-x 2,y 3-y 2),即⎩⎪⎨⎪⎧-2x 1-x 2=m x 3-x 2,-2y 1-y 2=my 3-y 2,于是⎩⎨⎧x 3=m -1m x 2-2mx 1,y 3=m -1m y 2-2m y 1.代入椭圆方程,得⎝⎛⎭⎫m -1m x 2-2m x 12a 2+⎝⎛⎭⎫m -1m y 2-2m y 12b 2=1,即4m 2⎝⎛⎭⎫x 21a 2+y 21b 2+m -12m 2⎝⎛⎭⎫x 22a 2+y 22b 2-4m -1m 2⎝⎛⎭⎫x 1x 2a 2+y 1y 2b 2=1,③ 因为A ,B 在椭圆上,所以x 21a 2+y 21b 2=1,x 22a 2+y 22b2=1. ④因为直线OA ,OB 的斜率之积为-12,即y 1x 1·y 2x 2=-12,结合②知x 1x 2a 2+y 1y 2b 2=0. ⑤将④⑤代入③,得4m2+m -12m 2=1,解得m =52.一抓基础,多练小题做到眼疾手快1.已知椭圆的中心在原点,焦点F 1,F 2在x 轴上,P (2,3)是椭圆上一点,且PF 1,F 1F 2,PF 2成等差数列,则椭圆的方程为______________.解析:∵椭圆的中心在原点,焦点F 1,F 2在x 轴上, ∴设椭圆方程为x 2a 2+y 2b2=1(a >b >0),∵P (2,3)是椭圆上一点,且PF 1,F 1F 2,PF 2成等差数列, ∴⎩⎪⎨⎪⎧4a 2+3b 2=1,2a =4c ,且a 2=b 2+c 2,解得a =22,b =6, ∴椭圆的方程为x 28+y 26=1.答案:x 28+y 26=12.已知椭圆的中心在坐标原点,焦点在x 轴上,且长轴长为12,离心率为12,则该椭圆方程为________________.解析:设椭圆的方程为x 2a 2+y 2b 2=1(a >b >0),因为2a =12,c a =12,所以a =6,c =3,b 2=27.所以椭圆的方程为x 236+y 227=1.答案:x 236+y 227=13.椭圆x 22+y 2=1的左、右两焦点分别为F 1,F 2,椭圆上一点P 满足∠F 1PF 2=60°,则△F 1PF 2的面积为________.解析:由题意,椭圆x 22+y 2=1的左、右两焦点分别为F 1,F 2,则PF 1+PF 2=22,F 1F 2=2.由余弦定理,得F 1F 22=PF 21+PF 22-2PF 1·PF 2·cos 60°=(PF 1+PF 2)2-3PF 1·PF 2,解得PF 1·PF 2=43.故△F 1PF 2的面积S =12PF 1·PF 2·sin 60°=33.答案:334.(2019·南京名校联考)若n 是2和8的等比中项,则圆锥曲线x 2+y 2n=1的离心率是________.解析:由n 2=2×8,得n =±4,当n =4时,曲线为椭圆,其离心率为e =4-12=32;当n =-4时,曲线为双曲线,其离心率为e =4+11= 5. 答案:32或 5 5.(2018·北京东城模拟)已知椭圆C 的中心在原点,一个焦点F (-2,0),且长轴长与短轴长的比是2∶3,则椭圆C 的方程是__________.解析:设椭圆C 的方程为x 2a 2+y 2b2=1(a >b >0).由题意知⎩⎪⎨⎪⎧a 2=b 2+c 2,a ∶b =2∶3,c =2,解得a 2=16,b 2=12.所以椭圆C 的方程为x 216+y 212=1.答案:x 216+y 212=16.(2018·启东中学检测)分别过椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左右焦点F 1,F 2所作的两条互相垂直的直线l 1,l 2的交点在椭圆上,则此椭圆的离心率的取值范围是________.解析:设两直线交点为M ,令MF 1=m ,MF 2=n .由椭圆的定义可得m +n =2a ,因为MF 1⊥MF 2,所以m 2+n 2=4c 2,因为(m +n )2=m 2+n 2+2mn ≤2(n 2+m 2),当且仅当m =n =a 时取等号,即4a 2≤2(4c 2),所以a ≤2c ,所以c a ≥22,即e ≥22,因为e <1,所以22≤e <1.答案:⎣⎡⎭⎫22,1二保高考,全练题型做到高考达标1.(2019·启东模拟)设点P 在圆x 2+(y -2)2=1上移动,点Q 在椭圆x 29+y 2=1上移动,则P Q 的最大值是________.解析:已知圆心C (0,2),P Q ≤PC +C Q =1+C Q ,故只需求C Q 的最大值即可. 设Q(x ,y ), 则 C Q =x 2+y -22=91-y 2+y -22=-8y 2-4y +13=-8⎝⎛⎭⎫y +142+272. ∵ -1≤y ≤1,∴ 当y =-14时,C Q max =272=362, ∴ P Q max =1+362. 答案:1+3622.(2019·常州模拟)若椭圆C 的长轴长是短轴长的3倍,则C 的离心率为________. 解析:不妨设椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),则2a =2b ×3,即a =3b .所以a 2=9b 2=9(a 2-c 2). 即c 2a 2=89, 所以e =c a =223.答案:2233.(2018·镇江期末)已知椭圆x 2m +y 2n =1(m >n >0)的左、右焦点分别为F 1,F 2,P 是以椭圆短轴为直径的圆上任意一点,则PF 1―→·PF 2―→=________.解析:法一:PF 1―→·PF 2―→=(PO ―→+OF 1―→)·(PO ―→+OF 2―→)=(PO ―→+OF 1―→)·(PO ―→-OF 1―→)=|PO ―→|2-|OF 1―→|2=n -(m -n )=2n -m .法二:设F 1(-c,0),F 2(c,0),P (x ,y ),则x 2+y 2=n ,PF 1―→·PF 2―→=(x +c )(x -c )+y 2=x 2+y 2-c 2=n -(m -n )=2n -m .答案:2n -m4.(2018·苏北四市一模)如图,在平面直角坐标系xOy 中,已知点A ,B 1,B 2分别为椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右、下、上顶点,F 是椭圆C 的右焦点.若B 2F⊥AB 1,则椭圆C 的离心率是________.解析:因为F (c,0),B 2(0,b ),B 1(0,-b ),A (a,0),所以B 2F ―→=(c ,-b ),B 1A ―→=(a ,b ).因为B 2F ⊥AB 1,所以ac -b 2=0,即c 2+ac -a 2=0,故e 2+e -1=0,解得e =-1+52(负值舍去).答案:5-125.如图,已知椭圆C 的中心为原点O ,F (-25,0)为C 的左焦点,P 为C 上一点,满足OP =OF ,且PF =4,则椭圆C 的方程为________.解析:设椭圆的标准方程为x 2a 2+y2b 2=1(a >b >0),焦距为2c ,右焦点为F ′,连结PF ′,如图所示.因为F (-25,0)为C 的左焦点,所以c =2 5.由OP =OF =OF ′知,∠FPF ′=90°,即FP ⊥PF ′.在Rt △PFF ′中,由勾股定理,得PF ′=FF ′2-PF 2=452-42=8.由椭圆定义,得PF +PF ′=2a =4+8=12,所以a =6,a 2=36,于是b 2=a 2-c 2=36-(25)2=16,所以椭圆C 的方程为x 236+y 216=1.答案:x 236+y 216=16.(2019·启东月考)如图所示,A ,B 是椭圆的两个顶点,C 是AB 的中点,F 为椭圆的右焦点,OC 的延长线交椭圆于点M ,且OF =2,若MF ⊥OA ,则椭圆的方程为________.解析:∵F 为椭圆的右焦点,OF =2,∴c = 2. 设椭圆方程为x 2b 2+2+y 2b2=1(b >0),∵A ,B 是椭圆的两个顶点,∴A ()b 2+2,0,B (0,b ).又∵C 是AB 的中点,∴C ⎝ ⎛⎭⎪⎫b 2+22,b 2.由OC 的延长线交椭圆于点M ,MF ⊥OA ,得M ⎝⎛⎭⎪⎫2,b 2b 2+2.∵k OM =k OC ,∴b 2b 2+22=b2b 2+22,∴b =2,故所求椭圆的方程为x 24+y 22=1.答案:x 24+y 22=17.在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点F 1,F 2在x 轴上,离心率为22.过F 1的直线l 交C 于A ,B 两点,且△ABF 2的周长为16,那么C 的方程为________.解析:设椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),因为AB 过F 1且A ,B 在椭圆C 上, 所以△ABF 2的周长=AB +AF 2+BF 2 =AF 1+AF 2+BF 1+BF 2 =4a =16, 所以a =4.又离心率e =c a =22,所以c =22, 所以b 2=a 2-c 2=8,所以椭圆C 的方程为x 216+y 28=1.答案:x 216+y 28=18.(2019·句容月考)离心率e =13,焦距为4的椭圆的标准方程为________________.解析:∵椭圆的离心率e =13,焦距为4,∴c =2,a =6,∴b 2=32,∴椭圆的标准方程为x 236+y 232=1或y 236+x 232=1.答案:x 236+y 232=1或y 236+x 232=19.已知椭圆x 2a 2+y 2b 2=1(a >b >0),F 1,F 2分别为椭圆的左、右焦点,A 为椭圆的上顶点,直线AF 2交椭圆于另一点B .(1)若∠F 1AB =90°,求椭圆的离心率.(2)若AF 2―→=2F 2B ―→,AF 1―→·AB ―→=32,求椭圆的方程.解:(1)若∠F 1AB =90°,则△AOF 2为等腰直角三角形,所以有OA =OF 2,即b =c . 所以a =2c ,e =c a =22.(2)由题知A (0,b ),F 1(-c,0),F 2(c,0),其中c =a 2-b 2,设B (x ,y ). 由AF 2―→=2F 2B ―→,得(c ,-b )=2(x -c ,y ), 解得x =3c 2,y =-b2,即B ⎝⎛⎭⎫3c 2,-b 2. 将B 点坐标代入x 2a 2+y 2b 2=1,得94c 2a 2+b 24b 2=1,即9c 24a 2+14=1,解得a 2=3c 2.① 又由AF 1―→·AB ―→=(-c ,-b )·⎝⎛⎭⎫3c 2,-3b 2=32, 得b 2-c 2=1,即有a 2-2c 2=1.② 由①②解得c 2=1,a 2=3,从而有b 2=2. 所以椭圆的方程为x 23+y 22=1.10.(2018·南京学情调研)如图,在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,P 为椭圆上一点(在x 轴上方),连结PF 1并延长交椭圆于另一点Q ,设PF 1―→=λF 1Q ―→.(1)若点P 的坐标为⎝⎛⎭⎫1,32,且△P Q F 2的周长为8,求椭圆C 的方程; (2)若PF 2⊥x 轴,且椭圆C 的离心率e ∈⎣⎡⎦⎤12,22,求实数λ的取值范围.解:(1)因为F 1,F 2为椭圆C 的两焦点,且P ,Q 为椭圆上的点, 所以PF 1+PF 2=Q F 1+Q F 2=2a , 从而△P Q F 2的周长为4a , 由题意得4a =8,解得a =2.因为点P 的坐标为⎝⎛⎭⎫1,32,且在椭圆上, 所以14+94b 2=1,解得b 2=3.所以椭圆C 的方程为x 24+y 23=1.(2)因为PF 2⊥x 轴,且P 在x 轴上方,所以可设P (c ,y 0),且y 0>0,Q(x 1,y 1).因为点P 在椭圆上,所以c 2a 2+y 2b2=1,解得y 0=b 2a ,即P ⎝⎛⎭⎫c ,b 2a .因为F 1(-c,0),所以PF 1―→=⎝⎛⎭⎫-2c ,-b 2a ,F 1Q ―→=(x 1+c ,y 1). 由PF 1―→=λF 1Q ―→,得-2c =λ(x 1+c ),-b 2a =λy 1,解得x 1=-λ+2λc ,y 1=-b 2λa,所以Q ⎝ ⎛⎭⎪⎫-λ+2λc ,-b 2λa .因为点Q 在椭圆上,所以⎝ ⎛⎭⎪⎫λ+2λ2e 2+b 2λ2a 2=1,即(λ+2)2e 2+(1-e 2)=λ2,即(λ2+4λ+3)e 2=λ2-1. 因为λ+1≠0,所以(λ+3)e 2=λ-1, 从而λ=3e 2+11-e 2=41-e 2-3. 因为e ∈⎣⎡⎦⎤12,22,所以14≤e 2≤12,即73≤λ≤5.所以λ的取值范围为⎣⎡⎦⎤73,5.三上台阶,自主选做志在冲刺名校1.(2019·宿迁调研)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,下顶点为A .若平行于AF 且在y轴上截距为3- 2 的直线与圆x 2+(y -3)2=1相切,则该椭圆的离心率为________.解析:由椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,下顶点为A ,可得AF 的斜率为-bc ,则平行于AF 且在y 轴上截距为3-2的直线方程为y =-bc x +3- 2.由该直线与圆x 2+(y -3)2=1相切,可得|-3+3-2|1+b 2c2=1,解得b =c ,所以e =c a =12=22. 答案:222.(2018·连云港质检)已知两定点A (-2,0)和B (2,0),动点P (x ,y )在直线l :y =x +3上移动,椭圆C 以A ,B 为焦点且经过点P ,则椭圆C 的离心率的最大值为________.解析:设点A 关于直线l 的对称点为A 1(x 1,y 1),则有⎩⎨⎧y 1x 1+2=-1,y 12=x 1-22+3,解得x 1=-3,y 1=1,易知P A +PB 的最小值等于A 1B =26,因此椭圆C 的离心率e =AB P A +PB =4P A +PB 的最大值为22613.答案:226133.已知椭圆M :x 2a 2+y 2b 2=1(a >b >0)的右焦点F 的坐标为(1,0),P ,Q 为椭圆上位于y 轴右侧的两个动点,使PF ⊥Q F ,C 为P Q 中点,线段P Q 的垂直平分线交x 轴,y 轴于点A ,B (线段P Q 不垂直x 轴),当Q 运动到椭圆的右顶点时,PF =22. (1)求椭圆M 的方程;(2)若S △ABO ∶S △BCF =3∶5,求直线P Q 的方程. 解:(1)当Q 运动到椭圆的右顶点时,PF ⊥x 轴, 所以PF =b 2a =22,又c =1,a 2=b 2+c 2,所以a =2,b =1. 所以椭圆M 的方程为x 22+y 2=1.(2)设直线P Q 的方程为y =kx +b ,显然k ≠0, 联立椭圆方程得:(2k 2+1)x 2+4kbx +2(b 2-1)=0,设点P (x 1,y 1),Q(x 2,y 2),则⎩⎪⎨⎪⎧x 1+x 2=-4kb2k 2+1>0, ①x 1x 2=2b 2-12k 2+1>0, ②Δ=82k 2-b 2+1>0, ③由PF ―→·Q F ―→=0,得(x 1-1)(x 2-1)+y 1y 2=0, 即(k 2+1)x 1x 2+(kb -1)(x 1+x 2)+b 2+1=0, 代入化简得3b 2-1+4kb =0.④ 由y 1+y 2=k (x 1+x 2)+2b =2b2k 2+1, 得C ⎝ ⎛⎭⎪⎫-2kb 2k 2+1,b 2k 2+1, 所以线段P Q 的中垂线AB 的方程为 y -b 2k 2+1=-1k ⎝⎛⎭⎫x +2kb 2k 2+1.令y =0,x =0,可得A ⎝ ⎛⎭⎪⎫-kb 2k 2+1,0,B ⎝ ⎛⎭⎪⎫0,-b 2k 2+1,则A 为BC 中点, 故S △BCF S △ABO =2S △ABF S △ABO =2AF AO=21-x A x A =2⎝⎛⎭⎫1x A -1. 由④式得,k =1-3b 24b ,则x A =-kb 2k 2+1=6b 4-2b 29b 4+2b 2+1,所以S △BCF S △ABO =2⎝⎛⎭⎫1x A -1=6b 4+8b 2+26b 4-2b 2=53,解得b 2=3. 所以b =3,k =-233或b =-3,k =233.经检验,满足条件①②③,故直线P Q 的方程为y =233x -3或y =-233x + 3.。
2018版高考数学理江苏专用大一轮复习讲义教师版文档第
第2课时 范围、最值问题题型一 范围问题例1 (2015·天津)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F (-c,0),离心率为33,点M 在椭圆上且位于第一象限,直线FM 被圆x 2+y 2=b 24截得的线段的长为c ,FM =433.(1)求直线FM 的斜率; (2)求椭圆的方程;(3)设动点P 在椭圆上,若直线FP 的斜率大于2,求直线OP (O 为原点)的斜率的取值范围. 解 (1)由已知,有c 2a 2=13,又由a 2=b 2+c 2,可得a 2=3c 2,b 2=2c 2.设直线FM 的斜率为k (k >0),F (-c,0),则直线FM 的方程为y =k (x +c ). 由已知,有⎝ ⎛⎭⎪⎫kc k 2+12+⎝⎛⎭⎫c 22=⎝⎛⎭⎫b 22,解得k =33. (2)由(1)得椭圆方程为x 23c 2+y 22c 2=1,直线FM 的方程为y =33(x +c ),两个方程联立,消去y ,整理得3x 2+2cx -5c 2=0,解得x =-53c 或x =c .因为点M 在第一象限,可得M 的坐标为⎝⎛⎭⎫c ,233c .由FM =(c +c )2+⎝⎛⎭⎫233c -02=433. 解得c =1,所以椭圆的方程为x 23+y 22=1.(3)设点P 的坐标为(x ,y ),直线FP 的斜率为t ,得t =yx +1,即直线FP 的方程为y =t (x +1)(x ≠-1),与椭圆方程联立⎩⎪⎨⎪⎧y =t (x +1),x 23+y22=1,消去y ,整理得2x 2+3t 2(x +1)2=6, 又由已知,得t =6-2x 23(x +1)2>2,解得-32<x <-1或-1<x <0.设直线OP 的斜率为m ,得m =y x ,即y =mx (x ≠0),与椭圆方程联立,整理得m 2=2x 2-23.①当x ∈⎝⎛⎭⎫-32,-1时,有y =t (x +1)<0, 因此m >0,于是m =2x 2-23,得m ∈⎝⎛⎭⎫23,233.②当x ∈(-1,0)时,有y =t (x +1)>0, 因此m <0,于是m =- 2x 2-23, 得m ∈⎝⎛⎫-∞,-233.综上,直线OP 的斜率的取值范围是⎝⎛⎭⎫-∞,-233∪⎝⎛⎭⎫23,233. 思维升华 解决圆锥曲线中的取值范围问题应考虑的五个方面(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围.(2)利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个参数之间的等量关系.(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围. (4)利用已知的不等关系构造不等式,从而求出参数的取值范围.(5)利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.(2016·扬州模拟)如图,已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左,右焦点分别为F 1,F 2,P 是椭圆上一点,点M 在PF 1上,且满足F 1M →=λMP →(λ∈R ),PO ⊥F 2M ,O 为坐标原点.(1)若椭圆的方程为x 28+y24=1,且点P 的坐标为(2,2),求点M 的横坐标;(2)若λ=2,求椭圆离心率e 的取值范围. 解 (1)因为椭圆的方程为x 28+y 24=1,所以点F 1的坐标为(-2,0),点F 2的坐标为(2,0), 所以k OP =22,2F M k =-2,1F M k =24, 所以直线F 2M 的方程为y =-2(x -2),直线F 1M 的方程为y =24(x +2). 联立⎩⎪⎨⎪⎧y =-2(x -2),y =24(x +2), 解得x =65, 所以点M 的横坐标为65.(2)设点P 的坐标为(x 0,y 0),点M 的坐标为(x M ,y M ), 因为F 1M →=2MP →,所以F 1M →=23(x 0+c ,y 0)=(x M +c ,y M ),所以点M 的坐标为(23x 0-13c ,23y 0),F 2M →=(23x 0-43c ,23y 0).因为PO ⊥F 2M ,OP →=(x 0,y 0),所以(23x 0-43c )x 0+23y 20=0,即x 20+y 20=2cx 0. 联立⎩⎪⎨⎪⎧x 20+y 20=2cx 0,x 20a 2+y 20b2=1, 消去y 0,得c 2x 20-2a 2cx 0+a 2(a 2-c 2)=0,解得x 0=a (a +c )c 或x 0=a (a -c )c.因为-a <x 0<a ,所以x 0=a (a -c )c ∈(0,a ),所以0<a 2-ac <ac ,解得e >12.又椭圆离心率e ∈(0,1),故椭圆离心率e 的取值范围为(12,1).题型二 最值问题命题点1 利用三角函数有界性求最值例2 (2016·徐州模拟)过抛物线y 2=4x 的焦点F 的直线交抛物线于A ,B 两点,点O 是坐标原点,则AF ·BF 的最小值是_____. 答案 4解析 设直线AB 的倾斜角为θ,可得AF =21-cos θ,BF =21+cos θ,则AF ·BF =21-cos θ×21+cos θ=4sin 2θ≥4.命题点2 数形结合利用几何性质求最值例3 (2015·江苏)在平面直角坐标系xOy 中,P 为双曲线x 2-y 2=1右支上的一个动点.若点P 到直线x -y +1=0的距离大于c 恒成立,则实数c 的最大值为_____________. 答案22解析 双曲线x 2-y 2=1的渐近线为x ±y =0,直线x -y +1=0与渐近线x -y =0平行,故两平行线的距离d =|1-0|12+(-1)2=22.由点P 到直线x -y +1=0的距离大于c 恒成立,得c ≤22,故c 的最大值为22. 命题点3 转化为函数利用基本不等式或二次函数求最值例4 (2016·山东)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的长轴长为4,焦距为2 2.(1)求椭圆C 的方程.(2)过动点M (0,m )(m >0)的直线交x 轴于点N ,交C 于点A ,P (P 在第一象限),且M 是线段PN 的中点.过点P 作x 轴的垂线交C 于另一点Q ,延长QM 交C 于点B . ①设直线PM ,QM 的斜率分别为k ,k ′,证明k ′k 为定值;②求直线AB 的斜率的最小值. (1)解 设椭圆的半焦距为c . 由题意知2a =4,2c =2 2. 所以a =2,b =a 2-c 2= 2. 所以椭圆C 的方程为x 24+y 22=1.(2)①证明 设P (x 0,y 0)(x 0>0,y 0>0). 由M (0,m ),可得P (x 0,2m ),Q (x 0,-2m ). 所以直线PM 的斜率k =2m -m x 0=mx 0.直线QM 的斜率k ′=-2m -m x 0=-3mx 0.此时k ′k =-3.所以k ′k为定值-3.②解 设A (x 1,y 1),B (x 2,y 2). 由①知直线P A 的方程为y =kx +m ,则 直线QB 的方程为y =-3kx +m . 联立⎩⎪⎨⎪⎧y =kx +m ,x 24+y 22=1,整理得(2k 2+1)x 2+4mkx +2m 2-4=0, 由x 0x 1=2m 2-42k 2+1,可得x 1=2(m 2-2)(2k 2+1)x 0,所以y 1=kx 1+m =2k (m 2-2)(2k 2+1)x 0+m .同理x 2=2(m 2-2)(18k 2+1)x 0,y 2=-6k (m 2-2)(18k 2+1)x 0+m .所以x 2-x 1=2(m 2-2)(18k 2+1)x 0-2(m 2-2)(2k 2+1)x 0=-32k 2(m 2-2)(18k 2+1)(2k 2+1)x 0, y 2-y 1=-6k (m 2-2)(18k 2+1)x 0+m -2k (m 2-2)(2k 2+1)x 0-m=-8k (6k 2+1)(m 2-2)(18k 2+1)(2k 2+1)x 0, 所以k AB =y 2-y 1x 2-x 1=6k 2+14k =14⎝⎛⎭⎫6k +1k , 由m >0,x 0>0,可知k >0,所以6k +1k ≥26,当且仅当k =66时取“=”.因为P (x 0,2m )在椭圆x 24+y 22=1上,所以x 0=4-8m 2,故此时2m -m4-8m 2-0=66,即m =147,符合题意. 所以直线AB 的斜率的最小值为62. 思维升华 处理圆锥曲线最值问题的求解方法圆锥曲线中的最值问题类型较多,解法灵活多变,但总体上主要有两种方法:一是利用几何法,即通过利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;二是利用代数法,即把要求最值的几何量或代数表达式表示为某个(些)参数的函数(解析式),然后利用函数方法、不等式方法等进行求解.(2017·扬州预测)已知圆(x -a )2+(y +1-r )2=r 2(r >0)过点F (0,1),圆心M 的轨迹为C .(1)求轨迹C 的方程;(2)设P 为直线l :x -y -2=0上的点,过点P 作曲线C 的两条切线P A ,PB ,当点P (x 0,y 0)为直线l 上的定点时,求直线AB 的方程; (3)当点P 在直线l 上移动时,求AF ·BF 的最小值. 解 (1)依题意,由圆过定点F 可知轨迹C 的方程为x 2=4y . (2)抛物线C 的方程为x 2=4y ,即y =14x 2,求导得y ′=12x .设A (x 1,y 1),B (x 2,y 2)(其中y 1=x 214,y 2=x 224),则切线P A ,PB 的斜率分别为12x 1,12x 2,所以切线P A 的方程为y -y 1=x 12(x -x 1),即y =x 12x -x 212+y 1,即x 1x -2y -2y 1=0.同理可得切线PB 的方程为x 2x -2y -2y 2=0. 因为切线P A ,PB 均过点P (x 0,y 0), 所以x 1x 0-2y 0-2y 1=0,x 2x 0-2y 0-2y 2=0,所以(x 1,y 1),(x 2,y 2)为方程x 0x -2y 0-2y =0的两组解. 所以直线AB 的方程为x 0x -2y -2y 0=0. (3)由抛物线定义可知AF =y 1+1,BF =y 2+1, 所以AF ·BF =(y 1+1)(y 2+1)=y 1y 2+(y 1+y 2)+1,联立方程⎩⎪⎨⎪⎧x 0x -2y -2y 0=0,x 2=4y ,消去x 整理得y 2+(2y 0-x 20)y +y 20=0,由一元二次方程根与系数的关系可得y 1+y 2=x 20-2y 0,y 1y 2=y 20, 所以AF ·BF =y 1y 2+(y 1+y 2)+1=y 20+x 20-2y 0+1.又点P (x 0,y 0)在直线l 上,所以x 0=y 0+2, 所以y 20+x 20-2y 0+1=2y 20+2y 0+5=2(y 0+12)2+92, 所以当y 0=-12时,AF ·BF 取得最小值,且最小值为92.1.(2016·昆明两区七校调研)过抛物线y 2=x 的焦点F 的直线l 交抛物线于A ,B 两点,且直线l 的倾斜角θ≥π4,点A 在x 轴上方,则F A 的取值范围是__________.答案 (14,1+22]解析 记点A 的横坐标是x 1,则有AF =x 1+14=(14+AF ·cos θ)+14=12+AF ·cos θ, AF (1-cos θ)=12,AF =12(1-cos θ).由π4≤θ<π得-1<cos θ≤22,2-2≤2(1-cos θ)<4,14<12(1-cos θ)≤12-2=1+22, 即AF 的取值范围是(14,1+22].2.已知P 为双曲线C :x 29-y 216=1上的点,点M 满足|OM →|=1,且OM →·PM →=0,则当|PM →|取得最小值时点P 到双曲线C 的渐近线的距离为________. 答案125解析 由OM →·PM →=0,得OM ⊥PM ,根据勾股定理,求MP 的最小值可以转化为求OP 的最小值,当OP 取得最小值时,点P 的位置为双曲线的顶点(±3,0),而双曲线的渐近线为4x ±3y =0,∴所求的距离d =125.3.已知F 1,F 2分别是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左,右焦点,对于左支上任意一点P 都有PF 22=8a ·PF 1(a 为实半轴长),则此双曲线的离心率e 的取值范围是__________. 答案 (1,3]解析 由P 是双曲线左支上任意一点及双曲线的定义,得PF 2=2a +PF 1,所以PF 22PF 1=PF 1+4a 2PF 1+4a =8a ,所以PF 1=2a ,PF 2=4a ,在△PF 1F 2中,PF 1+PF 2≥F 1F 2, 即2a +4a ≥2c ,所以e =ca ≤3.又e >1,所以1<e ≤3.4.(2016·宿迁质检)若点O 和点F 分别为椭圆x 29+y 28=1的中点和左焦点,点P 为椭圆上的任意一点,则OP →·FP →的最小值为________. 答案 6解析 点P 为椭圆x 29+y 28=1上的任意一点,设P (x ,y )(-3≤x ≤3,-22≤y ≤22),依题意得左焦点F (-1,0),∴OP →=(x ,y ),FP →=(x +1,y ), ∴OP →·FP →=x (x +1)+y 2=x 2+x +72-8x 29=19·⎝⎛⎭⎫x +922+234. ∵-3≤x ≤3,∴32≤x +92≤152,∴94≤⎝⎛⎭⎫x +922≤2254, ∴14≤19⎝⎛⎭⎫x +922≤22536, ∴6≤19·⎝⎛⎭⎫x +922+234≤12, 即6≤OP →·FP →≤12.故最小值为6.5.(2017·郑州第一次质量预测)已知椭圆C 1:x 2m +2-y 2n =1与双曲线C 2:x 2m +y 2n =1有相同的焦点,则椭圆C 1的离心率e 1的取值范围为________. 答案 (22,1) 解析 ∵椭圆C 1:x 2m +2-y 2n=1,∴a 21=m +2,b 21=-n ,c 21=m +2+n ,e 21=m +2+n m +2=1+n m +2. ∵双曲线C 2:x 2m +y 2n=1,∴a 22=m ,b 22=-n ,c 22=m -n ,∴由条件知m +2+n =m -n ,则n =-1, ∴e 21=1-1m +2.由m >0,得m +2>2,1m +2<12,-1m +2>-12,∴1-1m +2>12,即e 21>12,而0<e 1<1,∴22<e 1<1. 6.已知F 为抛物线y 2=x 的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,OA →·OB →=2(其中O 为坐标原点),则△ABO 与△AFO 面积之和的最小值是________. 答案 3解析 依题意不妨设A (x 1,x 1),B (x 2,-x 2),OA →·OB →=2⇒x 1x 2-x 1x 2=2⇒x 1x 2=2或x 1x 2=-1(舍去).当x 1=x 2时,有x 1=x 2=2,则S △ABO +S △AFO =22+28=1728;当x 1≠x 2时,直线AB 的方程为y -x 1=x 1+x 2x 1-x 2(x -x 1),则直线AB 与x 轴的交点坐标为(2,0).于是S △ABO+S △AFO =12×2×(x 1+x 2)+12×14x 1=98x 1+x 2≥298x 1x 2=3(当且仅当98x 1=x 2时取“=”),而1728>3,故填3.7.已知椭圆C 1:y 2a 2+x 2b 2=1(a >b >0)的右顶点为A (1,0),过C 1的焦点且垂直长轴的弦长为1.(1)求椭圆C 1的方程;(2)设点P 在抛物线C 2:y =x 2+h (h ∈R )上,C 2在点P 处的切线与C 1交于M ,N 两点.当线段AP 的中点与MN 的中点的横坐标相等时,求h 的最小值. 解 (1)由题意,得⎩⎪⎨⎪⎧b =1,2·b 2a=1.从而⎩⎪⎨⎪⎧a =2,b =1.因此,所求的椭圆C 1的方程为y 24+x 2=1.(2)如图,设M (x 1,y 1),N (x 2,y 2),P (t ,t 2+h ),则抛物线C 2在点P 处的切线斜率为y ′| x =t =2t . 直线MN 的方程为 y =2tx -t 2+h .将上式代入椭圆C 1的方程中,得4x 2+(2tx -t 2+h )2-4=0, 即4(1+t 2)x 2-4t (t 2-h )x +(t 2-h )2-4=0.① 因为直线MN 与椭圆C 1有两个不同的交点,所以①式中的Δ1=16[-t 4+2(h +2)t 2-h 2+4]>0.② 设线段MN 的中点的横坐标是x 3, 则x 3=x 1+x 22=t (t 2-h )2(1+t 2).设线段P A 的中点的横坐标是x 4,则x 4=t +12.由题意,得x 3=x 4, 即t 2+(1+h )t +1=0.③由③式中的Δ2=(1+h )2-4≥0,得h ≥1或h ≤-3. 当h ≤-3时,h +2<0,4-h 2<0, 则不等式②不成立,所以h ≥1. 当h =1时,代入方程③得t =-1, 将h =1,t =-1代入不等式②,检验成立. 所以,h 的最小值为1.8. (2016·苏北四市联考)如图,在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率e =12,左顶点为A (-4,0),过点A 作斜率为k (k ≠0)的直线l 交椭圆C 于点D ,交y轴于点E .(1)求椭圆C 的标准方程;(2)已知P 为AD 的中点,是否存在定点Q ,对于任意的k (k ≠0)都有OP ⊥EQ ?若存在,求出点Q 的坐标;若不存在,请说明理由.(3)若过点O 作直线l 的平行线交椭圆C 于点M ,求AD +AEOM 的最小值.解 (1)因为左顶点为A (-4,0), 所以a =4,又e =12,所以c =2.又因为b 2=a 2-c 2=12,所以椭圆C 的标准方程为x 216+y 212=1.(2)直线l 的方程为y =k (x +4),联立⎩⎪⎨⎪⎧ x 216+y 212=1,y =k (x +4),得x 216+[k (x +4)]212=1, 化简,得(x +4)[(4k 2+3)x +16k 2-12]=0,所以x 1=-4,x 2=-16k 2+124k 2+3. 当x =-16k 2+124k 2+3时,y =k (-16k 2+124k 2+3+4)=24k 4k 2+3, 所以点D 的坐标为(-16k 2+124k 2+3,24k 4k 2+3). 因为P 为AD 的中点,所以点P 的坐标为(-16k 24k 2+3,12k 4k 2+3), 则k OP =-34k(k ≠0). 直线l 的方程为y =k (x +4),令x =0,得点E 的坐标为(0,4k ).假设存在定点Q (m ,n )(m ≠0),使得OP ⊥EQ ,则k OP k EQ =-1,即-34k ·n -4k m=-1,所以(4m +12)k -3n =0, 所以⎩⎪⎨⎪⎧ 4m +12=0,-3n =0, 解得⎩⎪⎨⎪⎧m =-3,n =0, 因此定点Q 的坐标为(-3,0).(3)因为OM ∥l ,所以OM 的方程可设为y =kx ,联立⎩⎪⎨⎪⎧ x 216+y 212=1,y =kx ,得点M 的横坐标为x =±434k 2+3. 由OM ∥l ,得AD +AE OM =|x D -x A |+|x E -x A ||x M |=x D -2x A |x M |=-16k 2+124k 2+3+8434k 2+3=13·4k 2+94k 2+3=13(4k 2+3+64k 2+3)≥22, 当且仅当4k 2+3=64k 2+3,即k =±32时取等号.所以当k =±32时,AD +AE OM 取得最小值为2 2. 9.如图,O 为坐标原点,椭圆C 1:x 2a 2+y 2b2=1(a >b >0)的左,右焦点分别为F 1,F 2,离心率为e 1;双曲线C 2:x 2a 2-y 2b 2=1的左,右焦点分别为F 3,F 4,离心率为e 2.已知e 1e 2=32,且F 2F 4=3-1.(1)求C 1,C 2的方程;(2)过F 1作C 1的不垂直于y 轴的弦AB ,M 为AB 的中点,当直线OM 与C 2交于P ,Q 两点时,求四边形APBQ 面积的最小值.解 (1)因为e 1e 2=32,所以 a 2-b 2a ·a 2+b 2a =32,即a 4-b 4=34a 4,因此a 2=2b 2,从而F 2(b,0),F 4(3b,0),于是3b -b =F 2F 4=3-1,所以b =1,a 2=2.故C 1,C 2的方程分别为x 22+y 2=1,x 22-y 2=1. (2)因为AB 不垂直于y 轴,且过点F 1(-1,0),故可设直线AB 的方程为x =my -1.由⎩⎪⎨⎪⎧x =my -1,x 22+y 2=1得(m 2+2)y 2-2my -1=0. 易知此方程的判别式大于0.设A (x 1,y 1),B (x 2,y 2),则y 1,y 2是上述方程的两个实根,所以y 1+y 2=2m m 2+2,y 1y 2=-1m 2+2. 因此x 1+x 2=m (y 1+y 2)-2=-4m 2+2, 于是AB 的中点为M (-2m 2+2,m m 2+2),故直线PQ 的斜率为-m 2,PQ 的方程为y =-m 2x , 即mx +2y =0.由⎩⎨⎧ y =-m 2x ,x 22-y 2=1得(2-m 2)x 2=4, 所以2-m 2>0,且x 2=42-m 2,y 2=m 22-m 2, 从而PQ =2x 2+y 2=2 m 2+42-m 2. 设点A 到直线PQ 的距离为d ,则点B 到直线PQ 的距离也为d ,所以2d =|mx 1+2y 1|+|mx 2+2y 2|m 2+4. 因为点A ,B 在直线mx +2y =0的异侧, 所以(mx 1+2y 1)(mx 2+2y 2)<0,于是|mx 1+2y 1|+|mx 2+2y 2|=|mx 1+2y 1-mx 2-2y 2|,从而2d =(m 2+2)|y 1-y 2|m 2+4. 又因为|y 1-y 2|=(y 1+y 2)2-4y 1y 2=22·1+m 2m 2+2, 所以2d =22·1+m 2m 2+4. 故四边形APBQ 的面积S =12·PQ ·2d =22·1+m 22-m 2=22·-1+32-m 2. 而0<2-m 2≤2,故当m =0时,S 取得最小值2. 综上所述,四边形APBQ 面积的最小值为2.。
2018版高考数学文江苏专用大一轮复习讲义文档 第九章 平面解析几何 9.7 含答案 精品
1.抛物线的概念平面内到一个定点F 和一条定直线l (F 不在l 上)的距离相等的点的轨迹叫做抛物线,定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线. 2.抛物线的标准方程与几何性质【知识拓展】1.抛物线y 2=2px (p >0)上一点P (x 0,y 0)到焦点F ⎝⎛⎭⎫p 2,0的距离PF =x 0+p2,也称为抛物线的焦半径.2.y 2=ax 的焦点坐标为⎝⎛⎭⎫a 4,0,准线方程为x =-a 4.3.设AB 是过抛物线y 2=2px (p >0)焦点F 的弦, 若A (x 1,y 1),B (x 2,y 2),则 (1)x 1x 2=p 24,y 1y 2=-p 2.(2)弦长AB =x 1+x 2+p =2psin 2α(α为弦AB 的倾斜角).(3)以弦AB 为直径的圆与准线相切.(4)通径:过焦点垂直于对称轴的弦,长等于2p ,通径是过焦点最短的弦. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹一定是抛物线.( × ) (2)方程y =ax 2(a ≠0)表示的曲线是焦点在x 轴上的抛物线,且其焦点坐标是(a4,0),准线方程是x =-a4.( × )(3)抛物线既是中心对称图形,又是轴对称图形.( × )(4)AB 为抛物线y 2=2px (p >0)的过焦点F (p 2,0)的弦,若A (x 1,y 1),B (x 2,y 2),则x 1x 2=p 24,y 1y 2=-p 2,弦长AB =x 1+x 2+p .( √ )1.(2016·四川改编)抛物线y 2=4x 的焦点坐标是______. 答案 (1,0)解析 ∵对于抛物线y 2=ax ,其焦点坐标为⎝⎛⎭⎫a 4,0, ∴对于y 2=4x ,焦点坐标为(1,0).2.(2017·苏州模拟)已知抛物线C :y 2=x 的焦点为F ,A (x 0,y 0)是C 上一点,AF =54x 0,则x 0=______. 答案 1解析 由抛物线的定义,可得AF =x 0+14,∵AF =54x 0,∴x 0+14=54x 0,∴x 0=1.3.(2016·苏州模拟)设坐标原点为O ,抛物线y 2=2x 与过焦点的直线交于A 、B 两点,则OA →·OB →=________. 答案 -34解析 设A (x 1,y 1),B (x 2,y 2), 由题意知过焦点的直线斜率不为0, 设其直线方程为x =ky +12,则由⎩⎪⎨⎪⎧x =ky +12,y 2=2x , 得y 2-2ky -1=0,y 1y 2=-1,OA →·OB →=x 1x 2+y 1y 2 =(y 1y 2)24+y 1y 2=14-1=-34.4.(教材改编)已知抛物线的顶点是原点,对称轴为坐标轴,并且经过点P (-2,-4),则该抛物线的标准方程为________________. 答案 y 2=-8x 或x 2=-y解析 设抛物线方程为y 2=2px (p ≠0)或x 2=2py (p ≠0). 将P (-2,-4)代入,分别得方程为y 2=-8x 或x 2=-y .5.(2017·南京月考)已知抛物线y 2=2px (p >0)的准线与圆x 2+y 2-6x -7=0相切,则p 的值为___. 答案 2解析 抛物线y 2=2px (p >0)的准线为x =-p 2,圆x 2+y 2-6x -7=0,即(x -3)2+y 2=16, 则圆心为(3,0),半径为4.又因为抛物线y 2=2px (p >0)的准线与圆x 2+y 2-6x -7=0相切,所以3+p2=4,解得p =2.题型一 抛物线的定义及应用例1 设P 是抛物线y 2=4x 上的一个动点,若B (3,2),则PB +PF 的最小值为________.答案 4解析如图,过点B作BQ垂直准线于点Q,交抛物线于点P1,则P1Q=P1F.则有PB+PF≥P1B+P1Q=BQ=4.即PB+PF的最小值为4.引申探究1.若将本例中的B点坐标改为(3,4),试求PB+PF的最小值.解由题意可知点(3,4)在抛物线的外部.因为PB+PF的最小值即为B,F两点间的距离,所以PB+PF≥BF=42+22=16+4=25,即PB+PF的最小值为2 5.2.若将本例中的条件改为:已知抛物线方程为y2=4x,直线l的方程为x-y+5=0,在抛物线上有一动点P到y轴的距离为d1,到直线l的距离为d2,求d1+d2的最小值.解由题意知,抛物线的焦点为F(1,0).点P到y轴的距离d1=PF-1,所以d1+d2=d2+PF-1.易知d2+PF的最小值为点F到直线l的距离,故d2+PF的最小值为|1+5|12+(-1)2=32,所以d1+d2的最小值为32-1.思维升华与抛物线有关的最值问题,一般情况下都与抛物线的定义有关.由于抛物线的定义在运用上有较大的灵活性,因此此类问题也有一定的难度.“看到准线想焦点,看到焦点想准线”,这是解决抛物线焦点弦有关问题的重要途径.设P是抛物线y2=4x上的一个动点,则点P到点A(-1,1)的距离与点P到直线x =-1的距离之和的最小值为________.答案 5解析如图,易知抛物线的焦点为F(1,0),准线是x=-1,由抛物线的定义知:点P 到直线x =-1的距离等于点P 到F 的距离.于是,问题转化为在抛物线上求一点P ,使点P 到点A (-1,1)的距离与点P 到F (1,0)的距离之和最小,显然,连结AF 与抛物线相交的点即为满足题意的点, 此时最小值为[1-(-1)]2+(0-1)2= 5. 题型二 抛物线的标准方程和几何性质 命题点1 求抛物线的标准方程例2 已知双曲线C 1:x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2.若抛物线C 2:x 2=2py (p >0)的焦点到双曲线C 1的渐近线的距离为2,则抛物线C 2的方程为__________. 答案 x 2=16y解析 ∵x 2a 2-y 2b2=1的离心率为2,∴c a =2,即c 2a 2=a 2+b 2a 2=4,∴b 2a 2=3,ba= 3. x 2=2py (p >0)的焦点坐标为⎝⎛⎭⎫0,p 2,x 2a 2-y 2b 2=1的渐近线方程为y =±bax ,即y =±3x .由题意得p21+(3)2=2,∴p =8.故C 2的方程为x 2=16y .命题点2 抛物线的几何性质例3 已知抛物线y 2=2px (p >0)的焦点为F ,A (x 1,y 1),B (x 2,y 2)是过F 的直线与抛物线的两个交点,求证: (1)y 1y 2=-p 2,x 1x 2=p 24;(2)1AF +1BF为定值; (3)以AB 为直径的圆与抛物线的准线相切. 证明 (1)由已知得抛物线焦点坐标为(p2,0).由题意可设直线方程为x =my +p2,代入y 2=2px ,得y 2=2p ⎝⎛⎭⎫my +p2,即y 2-2pmy -p 2=0.(*) 则y 1,y 2是方程(*)的两个实数根,所以y 1y 2=-p 2.因为y 21=2px 1,y 22=2px 2,所以y 21y 22=4p 2x 1x 2, 所以x 1x 2=y 21y 224p 2=p 44p 2=p 24.(2)1AF +1BF =1x 1+p 2+1x 2+p 2=x 1+x 2+p x 1x 2+p 2(x 1+x 2)+p 24. 因为x 1x 2=p 24,x 1+x 2=AB -p ,代入上式,得1AF +1BF =AB p 24+p 2(AB -p )+p 24=2p(定值). (3)设AB 的中点为M (x 0,y 0),分别过A ,B 作准线的垂线,垂足为C ,D ,过M 作准线的垂线,垂足为N ,则MN =12(AC +BD )=12(AF +BF )=12AB .所以以AB 为直径的圆与抛物线的准线相切.思维升华 (1)求抛物线标准方程的常用方法是待定系数法,其关键是判断焦点位置、开口方向,在方程的类型已经确定的前提下,由于标准方程只有一个参数p ,只需一个条件就可以确定抛物线的标准方程.(2)在解决与抛物线的性质有关的问题时,要注意利用几何图形的形象、直观的特点来解题,特别是涉及焦点、顶点、准线的问题更是如此.(1)(2016·全国乙卷改编)以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C的准线于D ,E 两点.已知AB =42,DE =25,则C 的焦点到准线的距离为________. (2)若抛物线y 2=4x 上一点P 到其焦点F 的距离为3,延长PF 交抛物线于Q ,若O 为坐标原点,则S △OPQ =________. 答案 (1)4 (2)322解析 (1)不妨设抛物线C :y 2=2px (p >0),则圆的方程可设为x 2+y 2=r 2(r >0),如图,又可设A (x 0,22),D ⎝⎛⎭⎫-p2,5, 点A (x 0,22)在抛物线y 2=2px 上,∴8=2px 0,① 点A (x 0,22)在圆x 2+y 2=r 2上,∴x 20+8=r 2,②点D ⎝⎛⎭⎫-p2,5在圆x 2+y 2=r 2上, ∴5+⎝⎛⎭⎫p 22=r 2,③联立①②③,解得p =4,即C 的焦点到准线的距离为4. (2)如图所示,由题意知,抛物线的焦点F 的坐标为(1,0).又PF =3,由抛物线定义知:点P 到准线x =-1的距离为3, ∴点P 的横坐标为2.将x =2代入y 2=4x ,得y 2=8, 由图知点P 的纵坐标y =22,∴P (2,22),∴直线PF 的方程为y =22(x -1).方法一 联立直线与抛物线的方程⎩⎨⎧y =22(x -1),y 2=4x ,解得⎩⎪⎨⎪⎧x =12,y =-2或⎩⎨⎧x =2,y =2 2.由图知Q (12,-2),∴S △OPQ =12·OF ·|y P -y Q |=12×1×|22+2|=322. 方法二 将y =22(x -1)代入y 2=4x , 得2x 2-5x +2=0,∴x 1+x 2=52,∴PQ =x 1+x 2+p =92,O 到PQ 的距离d =223,∴S △OPQ =12·PQ ·d =12×92×223=32 2.题型三 直线与抛物线的综合问题 命题点1 直线与抛物线的交点问题例4 已知抛物线C :y 2=8x 与点M (-2,2),过C 的焦点且斜率为k 的直线与C 交于A 、B 两点.若MA →·MB →=0,则k =________. 答案 2解析 抛物线C 的焦点为F (2,0),则直线方程为y =k (x -2),与抛物线方程联立,消去y 化简得k 2x 2-(4k 2+8)x +4k 2=0.设点A (x 1,y 1),B (x 2,y 2). 则x 1+x 2=4+8k2,x 1x 2=4.所以y 1+y 2=k (x 1+x 2)-4k =8k,y 1y 2=k 2[x 1x 2-2(x 1+x 2)+4]=-16.因为MA →·MB →=(x 1+2,y 1-2)·(x 2+2,y 2-2)=(x 1+2)(x 2+2)+(y 1-2)(y 2-2)=x 1x 2+2(x 1+x 2)+y 1y 2-2(y 1+y 2)+8=0,将上面各个量代入,化简得k 2-4k +4=0,所以k =2. 命题点2 与抛物线弦的中点有关的问题例5 (2016·全国丙卷)已知抛物线C :y 2=2x 的焦点为F ,平行于x 轴的两条直线l 1,l 2分别交C 于A ,B 两点,交C 的准线于P ,Q 两点.(1)若F 在线段AB 上,R 是PQ 的中点,证明:AR ∥FQ ;(2)若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程. (1)证明 由题意知,F ⎝⎛⎭⎫12,0,设l 1:y =a ,l 2:y =b ,则ab ≠0, 且A ⎝⎛⎭⎫a 22,a ,B ⎝⎛⎭⎫b 22,b ,P ⎝⎛⎭⎫-12,a ,Q ⎝⎛⎭⎫-12,b ,R ⎝⎛⎭⎫-12,a +b 2. 记过A ,B 两点的直线为l ,则l 的方程为2x -(a +b )y +ab =0. 由于F 在线段AB 上,故1+ab =0. 记AR 的斜率为k 1,FQ 的斜率为k 2,则k 1=a -b 1+a 2=a -b a 2-ab =1a=-ab a =-b =b -0-12-12=k 2. 所以AR ∥FQ .(2)解 设过AB 的直线为l ,设l 与x 轴的交点为D (x 1,0), 则S △ABF =12|b -a |·FD =12|b -a |⎪⎪⎪⎪x 1-12,S △PQF =|a -b |2. 由题意可得|b -a |⎪⎪⎪⎪x 1-12=|a -b |2, 所以x 1=1,x 1=0(舍去).设满足条件的AB 的中点为E (x ,y ).当AB 与x 轴不垂直时,由k AB =k DE 可得2a +b =yx -1(x ≠1).而a +b 2=y ,所以y 2=x -1(x ≠1).当AB 与x 轴垂直时,E 与D 重合,此时E 点坐标为(1,0), 所以所求轨迹方程为y 2=x -1(x ≠1).思维升华 (1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系.(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点.若过抛物线的焦点,可直接使用公式AB =x 1+x 2+p ,若不过焦点,则必须用一般弦长公式.(3)涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”、“整体代入”等解法.提醒:涉及弦的中点、斜率时一般用“点差法”求解.(2016·南京、盐城、徐州二模)在平面直角坐标系xOy 中,已知抛物线C :x 2=4y的焦点为F ,定点A (22,0),若射线F A 与抛物线C 相交于点M ,与抛物线C 的准线相交于点N ,则FM ∶MN =________. 答案 1∶3解析 由题意得F (0,1), ∴直线AF 的方程为x 22+y1=1,将它与抛物线方程联立解得⎩⎪⎨⎪⎧x =2,y =12或⎩⎨⎧x =-22,y =2,又交点在第一象限,∴M (2,12),准线方程为y =-1.故易求得N (42,-1).∴由三角形相似性质得FM MN =1-1212-(-1)=13.7.直线与圆锥曲线问题的求解策略典例 (16分)已知抛物线C :y =mx 2(m >0),焦点为F ,直线2x -y +2=0交抛物线C 于A ,B 两点,P 是线段AB 的中点,过P 作x 轴的垂线交抛物线C 于点Q . (1)求抛物线C 的焦点坐标;(2)若抛物线C 上有一点R (x R,2)到焦点F 的距离为3,求此时m 的值;(3)是否存在实数m ,使△ABQ 是以Q 为直角顶点的直角三角形?若存在,求出m 的值;若不存在,请说明理由.思维点拨 (3)中证明QA →·QB →=0. 规范解答解 (1)∵抛物线C :x 2=1m y ,∴它的焦点F (0,14m).[2分] (2)∵RF =y R +14m ,∴2+14m =3,得m =14.[4分](3)存在实数m ,使△ABQ 定以Q 为直角顶点的直角三角形.联立方程⎩⎪⎨⎪⎧y =mx 2,2x -y +2=0,消去y ,得mx 2-2x -2=0,依题意,有Δ=(-2)2-4×m ×(-2)>0⇒m >-12. [7分]设A (x 1,mx 21),B (x 2,mx 22),则⎩⎨⎧x 1+x 2=2m,x 1·x 2=-2m. (*)∵P 是线段AB 的中点,∴P (x 1+x 22,mx 21+mx 222),即P (1m ,y P ),∴Q (1m ,1m).[9分]得QA →=(x 1-1m ,mx 21-1m ),QB →=(x 2-1m ,mx 22-1m), 若存在实数m ,使△ABQ 是以Q 为直角顶点的直角三角形,则QA →·QB →=0, 即(x 1-1m )·(x 2-1m )+(mx 21-1m )(mx 22-1m )=0,[12分]结合(*)化简得-4m 2-6m+4=0,即2m 2-3m -2=0,∴m =2或m =-12,而2∈(-12,+∞),-12∉(-12,+∞).∴存在实数m =2,使△ABQ 是以Q 为直角顶点的直角三角形.[16分]解决直线与圆锥曲线的位置关系的一般步骤 第一步:联立方程,得关于x 或y 的一元二次方程;第二步:写出根与系数的关系,并求出Δ>0时参数范围(或指出直线过曲线内一点); 第三步:根据题目要求列出关于x 1x 2,x 1+x 2(或y 1y 2,y 1+y 2)的关系式,求得结果; 第四步:反思回顾,查看有无忽略特殊情况.1.(2017·盐城模拟)若抛物线y =ax 2的焦点坐标是(0,1),则a =________. 答案 14解析 因为抛物线的标准方程为x 2=1ay ,所以其焦点坐标为(0,14a ),则有14a =1,a =14.2.已知抛物线y 2=2px (p >0),过其焦点且斜率为1的直线交抛物线于A 、B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为______________. 答案 x =-1解析 ∵y 2=2px (p >0)的焦点坐标为(p2,0),∴过焦点且斜率为1的直线方程为y =x -p2,即x =y +p2,将其代入y 2=2px ,得y 2=2py +p 2,即y 2-2py -p 2=0.设A (x 1,y 1),B (x 2,y 2), 则y 1+y 2=2p ,∴y 1+y 22=p =2,∴抛物线的方程为y 2=4x ,其准线方程为x =-1.3.(2016·淮安模拟)已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2=4x 上一动点P 到直线l 1和l 2的距离之和的最小值为________. 答案 2解析 直线l 2:x =-1是抛物线y 2=4x 的准线, 抛物线y 2=4x 的焦点为F (1,0),则点P 到直线l 2:x =-1的距离等于PF , 过点F 作直线l 1:4x -3y +6=0的垂线, 和抛物线的交点就是点P ,所以点P 到直线l 1:4x -3y +6=0的距离和直线l 2:x =-1的距离之和的最小值就是点F (1,0)到直线l 1:4x -3y +6=0的距离,所以最小值为|4-0+6|32+42=2.4.已知抛物线y 2=2px (p >0)的焦点弦AB 的两端点坐标分别为A (x 1,y 1),B (x 2,y 2),则y 1y 2x 1x 2的值一定等于________. 答案 -4解析 ①若焦点弦AB ⊥x 轴, 则x 1=x 2=p 2,∴x 1x 2=p 24,∴y 1=p ,y 2=-p ,∴y 1y 2=-p 2,∴y 1y 2x 1x 2=-4. ②若焦点弦AB 不垂直于x 轴, 可设AB 的直线方程为y =k (x -p2),联立y 2=2px ,得k 2x 2-(k 2p +2p )x +p 2k 24=0,则x 1x 2=p 24,x 1+x 2=p +2pk 2,∴y 1y 2=-p 2.故y 1y 2x 1x 2=-4.5.(2016·苏州一模)过抛物线y 2=8x 的焦点F 的直线交抛物线于A ,B 两点,交抛物线的准线于点C ,若AF =6,BC →=λFB →,则λ的值为________. 答案 3解析 设A (x 1,y 1)(y 1>0),B (x 2,y 2),C (-2,y 3), 则x 1+2=6,解得x 1=4,则y 1=42, 则直线AB 的方程为y =22(x -2),令x =-2,得C (-2,-82),联立⎩⎨⎧y 2=8x ,y =22(x -2),解得⎩⎨⎧ x =4,y =42或⎩⎨⎧x =1,y =-22,则B (1,-22),∴BF =1+2=3,BC =9,∴λ=3.6.(2016·镇江模拟)已知直线y =k (x +2)(k >0)与抛物线C :y 2=8x 相交于A ,B 两点,F 为C 的焦点,若F A =2FB ,则k 的值为________. 答案223解析 抛物线C 的准线为l :x =-2, 直线y =k (x +2)恒过定点P (-2,0),如图,过A ,B 分别作AM ⊥l 于M ,BN ⊥l 于N ,由F A =2FB ,得AM =2BN ,从而点B 为AP 的中点,连结OB ,则OB =12AF ,所以OB =BF ,从而点B 的横坐标为1,点B 的坐标为(1,22), 所以k =22-01-(-2)=223.7.设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,则AB =________. 答案 12解析 焦点F 的坐标为⎝⎛⎭⎫34,0. 方法一 直线AB 的斜率为33, 所以直线AB 的方程为y =33⎝⎛⎭⎫x -34, 即y =33x -34,代入y 2=3x ,得13x 2-72x +316=0. 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=212,所以AB =x 1+x 2+p =212+32=12.方法二 由抛物线焦点弦的性质可得AB =2p sin 2θ=3sin 230°=12.8.(2016·宿迁模拟)已知抛物线的方程为y 2=2px (p >0),过抛物线上一点M (p ,2p )和抛物线的焦点F 作直线l 交抛物线于另一点N ,则NF ∶FM =________. 答案 1∶2解析 由题意知直线l 的方程为y =22(x -p 2),联立方程⎩⎪⎨⎪⎧y 2=2px ,y =22(x -p2),得4x 2-5px +p 2=0,∴N (p 4,-22p ),∴NF =p 4+p 2=34p ,MF =p +p 2=32p ,∴NF ∶FM =1∶2.9.(2016·徐州、连云港、宿迁三检)已知点F 是抛物线y 2=4x 的焦点,该抛物线上位于第一象限的点A 到其准线的距离为5,则直线AF 的斜率为________.答案 43解析 抛物线y 2=4x 的准线为x =-1,焦点F (1,0),设点A (x 0,y 0)(x 0>0,y 0>0),由题意得x 0+1=5,所以x 0=4,所以y 20=4x 0=16,y 0=4,从而点A (4,4),直线AF 的斜率为k =4-04-1=43.10.已知椭圆E 的中心在坐标原点,离心率为12,E 的右焦点与抛物线C :y 2=8x 的焦点重合,A ,B 是C 的准线与E 的两个交点,则AB =________. 答案 6解析 抛物线y 2=8x 的焦点为(2,0), 准线方程为x =-2.设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),由题意,c =2,c a =12,可得a =4,b 2=16-4=12. 故椭圆方程为x 216+y 212=1.把x =-2代入椭圆方程,解得y =±3. 从而AB =6.11.已知抛物线C :y 2=4x 的焦点为F ,准线为l ,过抛物线C 上的点A 作准线l 的垂线,垂足为M ,若△AMF 与△AOF (其中O 为坐标原点)的面积之比为3∶1,则点A 的坐标为__________. 答案 (2,±22)解析 如图所示,由题意,可得OF =1,由抛物线的定义,得AF =AM ,∵△AMF 与△AOF (其中O 为坐标原点)的面积之比为3∶1, ∴S △AMFS △AOF =12·AF ·AM ·sin ∠MAF 12·OF ·AF ·sin (π-∠MAF )=3,∴AF =AM =3,设A ⎝⎛⎭⎫y 204,y 0, ∴y 204+1=3,∴y 204=2,y 0=±22, ∴点A 的坐标是(2,±22).12.设直线l 与抛物线y 2=4x 相交于A ,B 两点,与圆(x -5)2+y 2=r 2(r >0)相切于点M ,且M 为线段AB 的中点.若这样的直线l 恰有4条,则r 的取值范围是________________. 答案 (2,4) 解析 如图,设A (x 1,y 1),B (x 2,y 2),M (x 0,y 0),则⎩⎪⎨⎪⎧y 21=4x 1,y 22=4x 2, 两式相减得,(y 1+y 2)(y 1-y 2)=4(x 1-x 2).当l 的斜率k 不存在时,符合条件的直线l 必有两条. 当k 存在时,x 1≠x 2, 则有y 1+y 22·y 1-y 2x 1-x 2=2,又y 1+y 2=2y 0,所以y 0k =2. 由CM ⊥AB ,得k ·y 0-0x 0-5=-1,即y 0k =5-x 0,因此2=5-x 0,x 0=3, 即M 必在直线x =3上.将x =3代入y 2=4x , 得y 2=12,则有-23<y 0<2 3.因为点M 在圆上,所以(x 0-5)2+y 20=r 2,故r 2=y 20+4<12+4=16.又y 20+4>4(为保证有4条,在k 存在时,y 0≠0), 所以4<r 2<16,即2<r <4.13. (2016·江苏苏北四市期中)已知抛物线C :x 2=2py (p >0)过点(2,1),直线l 过点P (0,-1)与抛物线C 交于A ,B 两点,点A 关于y 轴的对称点为A ′,连结A ′B.(1)求抛物线C 的标准方程;(2)问直线A ′B 是否过定点?若是,求出定点坐标;若不是,请说明理由. 解 (1)将点(2,1)代入抛物线C 的方程得2p =4, 解得p =2,∴抛物线C 的标准方程为x 2=4y .(2)若直线l 斜率不存在,则显然不成立,则直线l 的斜率k 一定存在. 设直线l 的方程为y =kx -1,A (x 1,y 1),B (x 2,y 2), 则A ′(-x 1,y 1).由⎩⎪⎨⎪⎧y =14x 2,y =kx -1,得x 2-4kx +4=0,则Δ=16k 2-16>0,x 1x 2=4,x 1+x 2=4k , ∴k A ′B =y 2-y 1x 2-(-x 1)=x 224-x 214x 1+x 2=x 2-x 14,于是直线A ′B 的方程为y -x 224=x 2-x 14(x -x 2),∴y =x 2-x 14(x -x 2)+x 224=x 2-x 14x +1,当x =0时,y =1,∴直线A ′B 过定点(0,1).。
2018版高考数学理江苏专用大一轮复习讲义教师版文档第九章 平面解析几何 9.3 含答案 精品
圆的定义与方程【知识拓展】1.确定圆的方程的方法和步骤确定圆的方程主要方法是待定系数法,大致步骤为(1)根据题意,选择标准方程或一般方程;(2)根据条件列出关于a,b,r或D,E,F的方程组;(3)解出a,b,r或D,E,F代入标准方程或一般方程.2.点与圆的位置关系点和圆的位置关系有三种.圆的标准方程(x-a)2+(y-b)2=r2,点M(x0,y0)(1)点在圆上:(x0-a)2+(y0-b)2=r2;(2)点在圆外:(x0-a)2+(y0-b)2>r2;(3)点在圆内:(x0-a)2+(y0-b)2<r2.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)确定圆的几何要素是圆心与半径.( √ )(2)已知点A (x 1,y 1),B (x 2,y 2),则以AB 为直径的圆的方程是(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0.( √ )(3)方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示圆的充要条件是A =C ≠0,B =0,D 2+E 2-4AF >0.( √ )(4)方程x 2+2ax +y 2=0一定表示圆.( × )(5)若点M (x 0,y 0)在圆x 2+y 2+Dx +Ey +F =0外,则x 20+y 20+Dx 0+Ey 0+F >0.( √ )1.(教材改编)圆心是(-2,3),且经过原点的圆的标准方程为______________. 答案 (x +2)2+(y -3)2=13 解析 易得r =13.2.已知圆C :(x -3)2+(y -4)2=1和两点A (-m,0),B (m ,0)(m >0),若圆C 上存在点P ,使得∠APB =90°,则m 的最大值为________. 答案 6解析 根据题意,画出示意图,如图所示,则圆心C 的坐标为(3,4),半径r =1,且AB =2m . 因为∠APB =90°,连结OP , 易知OP =12AB =m .要求m 的最大值,即求圆C 上的点P 到原点O 的最大距离. 因为OC =32+42=5, 所以(OP )max =OC +r =6, 即m 的最大值为6.3.(2016·扬州检测)当a 为任意实数时,直线(a -1)x -y +a +1=0恒过定点C ,则以点C 为圆心,5为半径的圆的方程为______________. 答案 x 2+y 2+2x -4y =0解析 将方程分离参数a 可得a (x +1)-(x +y -1)=0,方程表示过两直线的交点,由⎩⎪⎨⎪⎧x +1=0,x +y -1=0得交点为(-1,2),故圆的方程为(x +1)2+(y -2)2=5,即x 2+y 2+2x -4y =0.4.(教材改编)圆C 的圆心在x 轴上,并且过点A (-1,1)和B (1,3),则圆C 的方程为_______. 答案 x 2+y 2-4x -6=0 解析 设圆心坐标为C (a,0), ∵点A (-1,1)和B (1,3)在圆C 上, ∴CA =CB ,即(a +1)2+1=(a -1)2+9, 解得a =2, ∴圆心为C (2,0),半径CA =(2+1)2+1=10,∴圆C 的方程为(x -2)2+y 2=10,即x 2+y 2-4x -6=0.5.(2016·浙江)已知a ∈R ,方程a 2x 2+(a +2)y 2+4x +8y +5a =0表示圆,则圆心坐标是________,半径是________. 答案 (-2,-4) 5解析 由已知方程表示圆,则a 2=a +2, 解得a =2或a =-1.当a =2时,方程不满足表示圆的条件,故舍去. 当a =-1时,原方程为x 2+y 2+4x +8y -5=0, 化为标准方程为(x +2)2+(y +4)2=25, 表示以(-2,-4)为圆心,半径为5的圆.题型一 求圆的方程例1 (1)(2016·天津)已知圆C 的圆心在x 轴的正半轴上,点M (0,5)在圆C 上,且圆心到直线2x -y =0的距离为455,则圆C 的方程为________________.(2)(2015·课标全国Ⅰ)一个圆经过椭圆x 216+y 24=1的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为________.答案 (1)x 2+y 2-4x -5=0 (2)⎝⎛⎭⎫x -322+y 2=254解析 (1)因为圆C 的圆心在x 轴的正半轴上,设C (a,0),且a >0, 所以圆心到直线2x -y =0的距离d =2a 5=455,解得a =2,所以圆C 的半径r =CM =4+5=3,所以圆C 的方程为(x -2)2+y 2=9, 即x 2+y 2-4x -5=0.(2)由题意知圆过(4,0),(0,2),(0,-2)三点, (4,0),(0,-2)两点的垂直平分线方程为 y +1=-2(x -2),令y =0,解得x =32,圆心为⎝⎛⎭⎫32,0,半径为52. 所以圆的标准方程为(x -32)2+y 2=254.思维升华 (1)直接法:根据圆的几何性质,直接求出圆心坐标和半径,进而写出方程. (2)待定系数法①若已知条件与圆心(a ,b )和半径r 有关,则设圆的标准方程,依据已知条件列出关于a ,b ,r 的方程组,从而求出a ,b ,r 的值;②若已知条件没有明确给出圆心或半径,则选择圆的一般方程,依据已知条件列出关于D ,E ,F 的方程组,进而求出D ,E ,F 的值.(2016·苏北四市联考)已知圆C 关于y 轴对称,经过点A (1,0),且被x 轴分成两段弧,弧长之比为1∶2,则圆C 的标准方程为________________. 答案 x 2+(y ±33)2=43解析 ∵圆C 关于y 轴对称,∴可设C (0,b ),设圆C 的半径为r ,则圆C 的标准方程为x 2+(y -b )2=r 2, 依题意,得⎩⎪⎨⎪⎧12+(-b )2=r 2,|b |=12r ,解得⎩⎨⎧r 2=43,b =±33,于是圆C 的标准方程为x 2+(y ±33)2=43.题型二 与圆有关的最值问题例2 (2016·盐城检测)已知点(x ,y )在圆(x -2)2+(y +3)2=1上,求x +y 的最大值和最小值. 解 设t =x +y ,则y =-x +t ,t 可视为直线y =-x +t 的纵截距,∴x +y 的最大值和最小值就是直线与圆有公共点时直线纵截距的最大值和最小值,即直线与圆相切时的纵截距.由直线与圆相切得圆心到直线的距离等于半径, 即|2+(-3)-t |2=1, 解得t =2-1或t =-2-1.∴x +y 的最大值为2-1,最小值为-2-1. 引申探究1.在例2的条件下,求yx的最大值和最小值.解 y x 可视为点(x ,y )与原点连线的斜率,y x 的最大值和最小值就是与该圆有公共点的过原点的直线斜率的最大值和最小值,即直线与圆相切时的斜率.设过原点的直线的方程为y =kx ,由直线与圆相切得圆心到直线的距离等于半径,即|2k +3|k 2+1=1,解得k =-2+233或k =-2-233.∴y x 的最大值为-2+233,最小值为-2-233. 2.在例2的条件下,求x 2+y 2+2x -4y +5的最大值和最小值. 解x 2+y 2+2x -4y +5=(x +1)2+(y -2)2,求它的最值可视为求点(x ,y )到定点(-1, 2)的距离的最值,可转化为圆心(2,-3)到定点(-1,2)的距离与半径的和或差.又圆心到定点(-1,2)的距离为34,∴x 2+y 2+2x -4y +5的最大值为34+1,最小值为34-1. 思维升华 与圆有关的最值问题的常见类型及解题策略(1)与圆有关的长度或距离的最值问题的解法.一般根据长度或距离的几何意义,利用圆的几何性质数形结合求解.(2)与圆上点(x ,y )有关代数式的最值的常见类型及解法.①形如u =y -b x -a 型的最值问题,可转化为过点(a ,b )和点(x ,y )的直线的斜率的最值问题;②形如t =ax +by 型的最值问题,可转化为动直线的截距的最值问题;③形如(x -a )2+(y -b )2型的最值问题,可转化为动点到定点(a ,b )的距离平方的最值问题.(2016·扬州模拟)已知实数x ,y 满足方程x 2+y 2-4x +1=0.求:(1)yx 的最大值和最小值; (2)y -x 的最小值; (3)x 2+y 2的最大值和最小值.解 (1)如图,方程x 2+y 2-4x +1=0表示以点(2,0)为圆心,以3为半径的圆.设yx =k ,即y =kx ,则圆心(2,0)到直线y =kx 的距离为半径,即直线与圆相切时,斜率取得最大值、最小值. 由|2k -0|k 2+1=3,解得k 2=3, ∴k max =3,k min =- 3.(2)设y -x =b ,则y =x +b ,当且仅当直线y =x +b 与圆切于第四象限时,截距b 取最小值, 由点到直线的距离公式,得|2-0+b |2=3, 即b =-2±6, 故(y -x )min =-2- 6.(3)x 2+y 2是圆上的点与原点的距离的平方,故连结OC , 与圆交于B 点,并延长交圆于C ′,则 (x 2+y 2)max =(OC ′)2=(2+3)2=7+43, (x 2+y 2)min =OB 2=(2-3)2=7-4 3. 题型三 与圆有关的轨迹问题例3 (2016·盐城模拟)已知圆x 2+y 2=4上一定点A (2,0),B (1,1)为圆内一点,P ,Q 为圆上的动点.(1)求线段AP 中点的轨迹方程;(2)若∠PBQ =90°,求线段PQ 中点的轨迹方程. 解 (1)设AP 的中点为M (x ,y ),由中点坐标公式可知,P 点坐标为(2x -2,2y ). 因为P 点在圆x 2+y 2=4上, 所以(2x -2)2+(2y )2=4,故线段AP 中点的轨迹方程为(x -1)2+y 2=1. (2)设PQ 的中点为N (x ,y ),在Rt △PBQ 中, PN =BN .设O 为坐标原点,连结ON ,则ON ⊥PQ , 所以OP 2=ON 2+PN 2=ON 2+BN 2, 所以x 2+y 2+(x -1)2+(y -1)2=4.故线段PQ 中点的轨迹方程为x 2+y 2-x -y -1=0.思维升华 求与圆有关的轨迹问题时,根据题设条件的不同常采用以下方法 (1)直接法,直接根据题目提供的条件列出方程. (2)定义法,根据圆、直线等定义列方程. (3)几何法,利用圆的几何性质列方程.(4)代入法,找到要求点与已知点的关系,代入已知点满足的关系式等.(2016·天津模拟)设定点M (-3,4),动点N 在圆x 2+y 2=4上运动,以OM 、ON为两边作平行四边形MONP ,求点P 的轨迹.解 如图所示,设P (x ,y ),N (x 0,y 0),则线段OP 的中点坐标为⎝⎛⎭⎫x 2,y 2,线段MN 的中点坐标为⎝⎛⎭⎫x 0-32,y 0+42.由于平行四边形的对角线互相平分,故x 2=x 0-32,y 2=y 0+42.从而⎩⎪⎨⎪⎧x 0=x +3,y 0=y -4. 又N (x +3,y -4)在圆上,故(x +3)2+(y -4)2=4. 因此所求轨迹为圆:(x +3)2+(y -4)2=4,但应除去两点⎝⎛⎭⎫-95,125和⎝⎛⎭⎫-215,285(点P 在直线OM 上的情况).21.利用几何性质巧设方程求半径典例 在平面直角坐标系xOy 中,曲线y =x 2-6x +1与坐标轴的交点都在圆C 上,求圆C 的方程.思想方法指导 本题可采用两种方法解答,即代数法和几何法.(1)一般解法(代数法):可以求出曲线y =x 2-6x +1与坐标轴的三个交点,设圆的方程为一般式,代入点的坐标求解析式.(2)巧妙解法(几何法):利用圆的性质,知道圆心一定在圆上两点连线的垂直平分线上,从而设圆的方程为标准式,简化计算,显然几何法比代数法的计算量小,因此平时训练多采用几何法解题. 规范解答解 一般解法 (代数法)曲线y =x 2-6x +1与y 轴的交点为(0,1),与x 轴的交点为(3+22,0),(3-22,0),设圆的方程是x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0),则有⎩⎨⎧1+E +F =0,(3+22)2+D (3+22)+F =0,(3-22)2+D (3-22)+F =0,解得⎩⎪⎨⎪⎧D =-6,E =-2,F =1,故圆的方程是x 2+y 2-6x -2y +1=0.巧妙解法 (几何法)曲线y =x 2-6x +1与y 轴的交点为(0,1),与x 轴的交点为(3+22,0),(3-22,0).故可设C 的圆心为(3,t ),则有32+(t -1)2=(22)2+t 2,解得t =1. 则圆C 的半径为32+(t -1)2=3, 所以圆C 的方程为(x -3)2+(y -1)2=9, 即x 2+y 2-6x -2y +1=0.1.(2017·南京检测)圆心在y 轴上,且过点(3,1)的圆与x 轴相切,则该圆的方程是______. 答案 x 2+y 2-10y =0解析 根据题意,设圆心坐标为(0,r ),半径为r ,则32+(r -1)2=r 2,解得r =5,所以圆的方程为x 2+y 2-10y =0.2.已知圆M 的圆心M 在y 轴上,半径为1,直线l :y =2x +2被圆M 所截得的弦长为455,且圆心M 在直线l 的下方,则圆M 的标准方程是__________. 答案 x 2+(y -1)2=1 解析 点M 到l 的距离d = 1-(255)2=55.设M (0,a ),所以|2-a |5=55,所以a =1或a =3.又因为a <2×0+2=2,所以a =1. 所以圆M 的标准方程为x 2+(y -1)2=1.3.若直线ax +2by -2=0(a >0,b >0)始终平分圆x 2+y 2-4x -2y -8=0的周长,则1a +2b 的最小值为________. 答案 3+2 2解析 由题意知圆心C (2,1)在直线ax +2by -2=0上, ∴2a +2b -2=0,整理得a +b =1,∴1a +2b =(1a +2b )(a +b )=3+b a +2a b ≥3+2b a ×2ab=3+22, 当且仅当b a =2ab ,即b =2-2,a =2-1时,等号成立.∴1a +2b的最小值为3+2 2. 4.点P (4,-2)与圆x 2+y 2=4上任一点连线的中点的轨迹方程是________________. 答案 (x -2)2+(y +1)2=1解析 设圆上任一点坐标为(x 0,y 0),x 20+y 20=4,连线中点坐标为(x ,y ),则⎩⎪⎨⎪⎧ 2x =x 0+4,2y =y 0-2⇒⎩⎪⎨⎪⎧x 0=2x -4,y 0=2y +2,代入x 20+y 20=4,得(x -2)2+(y +1)2=1.5.圆C 的圆心在y 轴正半轴上,且与x 轴相切,被双曲线x 2-y 23=1的渐近线截得的弦长为3,则圆C 的标准方程为______________. 答案 x 2+(y -1)2=1解析 依题意得,题中的双曲线的一条渐近线的斜率为3,倾斜角为60°,结合图形(图略)可知,所求的圆C 的圆心坐标是(0,1),半径是1,因此其方程是x 2+(y -1)2=1.6.(2016·淮安模拟)已知P 是直线l :3x -4y +11=0上的动点,P A ,PB 是圆x 2+y 2-2x -2y +1=0的两条切线(A ,B 是切点),C 是圆心,那么四边形P ACB 的面积的最小值是__________. 答案3解析 圆的方程可化为(x -1)2+(y -1)2=1,则C (1,1),当PC 最小时,四边形P ACB 的面积最小, (PC )min =|3-4+11|32+42=2,此时P A =PB = 3.所以四边形P ACB 的面积S =2×12×3×1= 3.7.(2016·常州模拟)已知圆C 过点(-1,0),且圆心在x 轴的负半轴上,直线l :y =x +1被该圆所截得的弦长为22,则过圆心且与直线l 平行的直线方程为________________. 答案 x -y +3=0解析 设圆的方程为(x -a )2+y 2=r 2(a <0),因为圆C 过点(-1,0),且直线l :y =x +1被该圆所截得的弦长为22,所以⎩⎪⎨⎪⎧(-1-a )2=r 2,(|a +1|2)2+(2)2=r 2, 解得⎩⎪⎨⎪⎧a =-3,r 2=4,即圆心坐标为(-3,0),则所求直线为y =x +3,即x -y +3=0.8.过点P (1,1)的直线,将圆形区域{(x ,y )|x 2+y 2≤4}分为两部分,使得这两部分的面积之差最大,则该直线的方程为______________. 答案 x +y -2=0解析 当圆心与点P 的连线和过点P 的直线垂直时,符合条件.圆心O 与点P 连线的斜率k =1,所求直线方程为y -1=-(x -1),即x +y -2=0.9.已知D 是由不等式组⎩⎪⎨⎪⎧x -2y ≥0, x +3y ≥0所确定的平面区域,则圆x 2+y 2=4在区域D 内的弧长为________. 答案 π2解析 作出可行域D 及圆x2+y 2=4,如图所示,图中阴影部分所在圆心角θ=α-β所对的弧长即为所求. 易知图中两直线的斜率分别为12,-13,即tan α=12,tan β=-13,tan θ=tan(α-β)=12+131-12×13=1,得θ=π4,故弧长l =θ·R =π4×2=π2(R 为圆的半径).10.在平面直角坐标系中,O 为原点,A (-1,0),B (0,3),C (3,0),动点D 满足|CD →|=1,则|OA →+OB →+OD →|的最大值是________. 答案7+1解析 设D (x ,y ),由CD →=(x -3,y )及|CD →|=1, 知(x -3)2+y 2=1,即动点D 的轨迹为以点C 为圆心的单位圆,又OA →+OB →+OD →=(-1,0)+(0,3)+(x ,y )=(x-1,y +3),∴|OA →+OB →+OD →|=(x -1)2+(y +3)2.问题转化为圆(x -3)2+y 2=1上的点与点P (1,-3)间距离的最大值.∵圆心C (3,0)与点P (1,-3)之间的距离为d =(3-1)2+(0+3)2=7, 故(x -1)2+(y +3)2的最大值为7+1.11.已知圆C 经过P (4,-2),Q (-1,3)两点,且在y 轴上截得的线段的长为43,半径小于5.(1)求直线PQ 与圆C 的方程;(2)若直线l ∥PQ ,且l 与圆C 交于点A ,B ,且以线段AB 为直径的圆经过坐标原点,求直线l 的方程.解 (1)由题意知直线PQ 的方程为x +y -2=0.设圆心C (a ,b ),半径为r ,由于线段PQ 的垂直平分线的方程是y -12=x -32, 即y =x -1,所以b =a -1.① 由圆C 在y 轴上截得的线段的长为43,知r 2=(23)2+a 2,可得(a +1)2+(b -3)2=12+a 2,② 由①②得a =1,b =0或a =5,b =4.当a =1,b =0时,r 2=13,满足题意,当a =5,b =4时,r 2=37,不满足题意.故圆C 的方程为(x -1)2+y 2=13.(2)设直线l 的方程为y =-x +m (m ≠2),A (x 1,m -x 1),B (x 2,m -x 2).由题意可知OA ⊥OB ,即OA →·OB →=0,∴x 1x 2+(m -x 1)(m -x 2)=0,化简得2x 1x 2-m (x 1+x 2)+m 2=0.③ 由⎩⎪⎨⎪⎧y =-x +m ,(x -1)2+y 2=13得 2x 2-2(m +1)x +m 2-12=0,∴x 1+x 2=m +1,x 1x 2=m 2-122, 代入③,得m 2-12-m ·(1+m )+m 2=0,∴m =4或m =-3,经检验都满足题意,∴直线l 的方程为x +y -4=0或x +y +3=0.12.在平面直角坐标系xOy 中,已知圆P 在x 轴上截得线段长为22,在y 轴上截得线段长为2 3.(1)求圆心P 的轨迹方程;(2)若P 点到直线y =x 的距离为22,求圆P 的方程. 解 (1)设P (x ,y ),圆P 的半径为r .则y 2+2=r 2,x 2+3=r 2.∴y 2+2=x 2+3,即y 2-x 2=1.∴圆心P 的轨迹方程为y 2-x 2=1.(2)设P 点的坐标为(x 0,y 0), 则|x 0-y 0|2=22,即|x 0-y 0|=1. ∴y 0-x 0=±1,即y 0=x 0±1.①当y 0=x 0+1时,由y 20-x 20=1,得(x 0+1)2-x 20=1.∴⎩⎪⎨⎪⎧x 0=0,y 0=1,∴r 2=3. ∴圆P 的方程为x 2+(y -1)2=3.②当y 0=x 0-1时,由y 20-x 20=1,得(x 0-1)2-x 20=1.∴⎩⎪⎨⎪⎧x 0=0,y 0=-1,∴r 2=3. ∴圆P 的方程为x 2+(y +1)2=3.综上所述,圆P 的方程为x 2+(y ±1)2=3.*13.已知M 为圆C :x 2+y 2-4x -14y +45=0上任意一点,且点Q (-2,3).(1)求MQ 的最大值和最小值;(2)若M (m ,n ),求n -3m +2的最大值和最小值. 解 (1)由圆C :x 2+y 2-4x -14y +45=0,可得(x -2)2+(y -7)2=8,所以圆心C 的坐标为(2,7),半径r =2 2.又QC =(2+2)2+(7-3)2=4 2.所以(MQ )max =42+22=62,(MQ )min =42-22=2 2.(2)可知n -3m +2表示直线MQ 的斜率, 设直线MQ 的方程为y -3=k (x +2),即kx -y +2k +3=0,n -3m +2=k . 由直线MQ 与圆C 有交点, 所以|2k -7+2k +3|1+k 2≤22, 可得2-3≤k ≤2+3,所以n -3m +2的最大值为2+3,最小值为2- 3.。
(江苏专版)高考数学一轮复习第九章解析几何第四节椭圆实用课件文
3.[考点二]已知中心在原点,焦点坐标为(0,±2 6)的椭圆被直线
a42+b32=1, c2=a2-b程为x82+y62=1.
[答案] (1)x32+y22=1 (2)x82+y62=1
第十页,共33页。
[方法技巧] 待定系数法求椭圆方程的思路
第十一页,共33页。
能力练通 抓应用体验的“得”与“失”
1.[考点一]已知椭圆 C:x42+y32=1,M,N 是坐标平面内的两点,
MAN 的中位线,则|DF1|=12|AN|,同理|DF2|=12|BN|,所以|AN|
+|BN|=2(|DF1|+|DF2|),因为 D 在椭圆上,所以根据椭圆的定
义知|DF1|+|DF2|=4,所以|AN|+|BN|=8.
答案:8
第十二页,共33页。
2.[考点一](2018·浙江金丽衢联考)若椭圆 C:x92+y22=1 的焦点为 F1,F2,点 P 在椭圆 C 上,且|PF1|=4,则∠F2PF1=________. 解析:由题意得 a=3,c= 7,则|PF2|=2a-|PF1|=2.在△ F2PF1 中,由余弦定理可得 cos∠F2PF1=42+22×2-4×22 72=-12. 又∵∠F2PF1∈(0,π),∴∠F2PF1=23π. 答案:23π
第四页,共33页。
2(1.)焦椭点圆在的x标轴准上方的程椭圆的标准方程是__xa_22_+__by_22=__1__(a>b>0), 焦点为F1(-c,0),F2(c,0),其中c2=a2-b2.
(2)焦点在y轴上的椭圆的标准方程是__ay_22_+__xb_22=__1__(a>b>0), 焦点为F1(0,-c),F2(0,c),其中c2=a2-b2.
第五页,共33页。
2018课标版文数一轮(9)第九章-平面解析几何(含答案)5-第五节 椭圆
∵PF∥y轴,∴ = = , = = ,
栏目索引
(2)由| AM |=1,A(3,0),知点M在以A(3,0)为圆心,1为半径的圆上运动,∵
PM · PM |= AM =0,∴PM⊥AM,即PM为☉A的切线,连接PA(如图),则|
| PA |
2
PA |min=5-3=2时, | AM | = | PA | 1 ,又∵P在椭圆上运动,∴当|
栏目索引
1.如图所示,一圆形纸片的圆心为O,F是圆内一定点,M是圆周上一动点, 把纸片折叠使M与F重合,然后抹平纸片,折痕为CD,设CD与OM交于 点P,则点P的轨迹是 ( )
A.椭圆 B.双曲线 C.抛物线 D.圆
答案 A 由折叠过程可知点M与点F关于直线CD对称,故|PM|=|PF|,所
以|PO|+|PF|=|PO|+|PM|=|OM|=r>|OF|(r为圆O的半径).故由椭圆的定义 可知,点P的轨迹为椭圆.
栏目索引
1-1 一个椭圆的中心在原点,焦点F1,F2在x轴上,P(2, 3 )是椭圆上一点,
且|PF1|,|F1F2|,|PF2|成等差数列,则椭圆的标准方程为 (
x2 y 2 A. + =1 8 6 x2 y 2 C. + =1 4 2 x2 y 2 B. + =1 16 6 x2 y 2 D. + =1 8 4
.
答案 (1)D (2)A (3)3
解析 (1)设圆M的半径为r,则|MC1|+|MC2|=(13-r)+(3+r)=16,又|C1C2|=8<
16,∴动圆圆心M的轨迹是以C1、C2为焦点的椭圆,且2a=16,2c=8,则a=8,c
(江苏专用)高考数学一轮复习 第九章 平面解析几何 第47课 椭圆的方程及几何性质教师用书-人教版高
第47课椭圆的方程及几何性质[最新考纲]内容要求A B C中心在坐标原点的椭圆的标准方程与几何性质√1.椭圆的定义(1)平面内与两个定点F1,F2的距离的和等于常数(大于F1F2)的点的轨迹叫作椭圆.这两个定点叫作椭圆的焦点,两焦点间的距离叫作椭圆的焦距.(2)集合P={M|MF1+MF2=2a},F1F2=2c,其中a,c为常数且a>0,c>0.①当2a>F1F2时,M点的轨迹为椭圆;②当2a=F1F2时,M点的轨迹为线段F1F2;③当2a<F1F2时,M点的轨迹不存在.2.椭圆的标准方程和几何性质标准方程x2a2+y2b2=1(a>b>0)y2a2+x2b2=1(a>b>0)图形性质X围-a≤x≤a-b≤y≤b-b≤x≤b-a≤y≤a对称性对称轴:坐标轴;对称中心:原点顶点A1(-a,0),A2(a,0),B1(0,-b),B2(0,b)A1(0,-a),A2(0,a),B1(-b,0),B2(b,0) 离心率e=ca,且e∈(0,1)a ,b ,c的关系c 2=a 2-b 21.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)平面内与两个定点F 1,F 2的距离之和等于常数的点的轨迹是椭圆.( ) (2)椭圆上一点P 与两焦点F 1,F 2构成△PF 1F 2的周长为2a +2c (其中a 为椭圆的长半轴长,c 为椭圆的半焦距).( )(3)椭圆的离心率e 越大,椭圆就越圆.( ) (4)椭圆既是轴对称图形,又是中心对称图形.( ) [答案] (1)× (2)√ (3)× (4)√2.(教材改编)已知中心在原点的椭圆C 的右焦点为F (1,0),离心率等于12,则C 的方程是________.x 24+y 23=1 [椭圆的焦点在x 轴上,c =1. 又离心率为c a =12,故a =2,b 2=a 2-c 2=4-1=3,故椭圆的方程为x 24+y 23=1.]3.(2015·某某高考改编)已知椭圆x 225+y 2m2=1(m >0)的左焦点为F 1(-4,0),则m =________.3 [由左焦点为F 1(-4,0)知c =4.又a =5,∴25-m 2=16,解得m =3或-3.又m >0,故m =3.]4.(2016·全国卷Ⅰ改编)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为________.12 [如图,OB 为椭圆中心到l 的距离,则OA ·OF =AF ·OB ,即bc =a ·b 2,所以e =c a =12.]5.椭圆x 24+y 23=1的左焦点为F ,直线x =m 与椭圆相交于点A ,B ,当△FAB 的周长最大时,△FAB 的面积是__________.3 [直线x =m 过右焦点(1,0)时,△FAB 的周长最大,由椭圆定义知,其周长为4a =8,即a =2,此时,AB =2×b 2a =2×32=3,∴S △FAB =12×2×3=3.]椭圆的定义及应用(1)如图471所示,一圆形纸片的圆心为O ,F 是圆内一定点,M 是圆周上一动点,把纸片折叠使M 与F 重合,然后抹平纸片,折痕为CD ,设CD 与OM交于点P ,则点P 的轨迹是________.(2)已知F 1,F 2是椭圆C :x 2a 2+y 2b2=1(a >b >0)的两个焦点,P 为椭圆C 上的一点,且PF 1→⊥PF 2→.若△PF 1F 2的面积为9,则b =__________.图471(1)椭圆 (2)3 [(1)由条件知PM =PF . ∴PO +PF =PO +PM =OM =R >OF . ∴P 点的轨迹是以O ,F 为焦点的椭圆. (2)由定义,PF 1+PF 2=2a ,且PF 1→⊥PF 2→, ∴PF 21+PF 22=F 1F 22=4c 2, ∴(PF 1+PF 2)2-2PF 1·PF 2=4c 2,∴2PF 1·PF 2=4a 2-4c 2=4b 2,∴PF 1·PF 2=2b 2. ∴S △PF 1F 2=12PF 1·PF 2=12×2b 2=9,因此b =3.][规律方法] (1)利用椭圆的定义定形状时,一定要注意常数2a >F 1F 2这一条件. (2)当涉及到焦点三角形有关的计算或证明时,常利用勾股定理、正(余)弦定理、椭圆定义,但一定要注意PF 1+PF 2与PF 1·PF 2的整体代换.[变式训练1] 与圆C 1:(x +3)2+y 2=1外切,且与圆C 2:(x -3)2+y 2=81内切的动圆圆心P 的轨迹方程为________. 【导学号:62172260】x 225+y 216=1 [设动圆的半径为r ,圆心为P (x ,y ),则有PC 1=r +1,PC 2=9-r . 所以PC 1+PC 2=10>C 1C 2,即P 在以C 1(-3,0),C 2(3,0)为焦点,长轴长为10的椭圆上,得点P 的轨迹方程为x 225+y 216=1.]求椭圆的标准方程(1)已知椭圆以坐标轴为对称轴,且长轴是短轴的3倍,并且过点P (3,0),则椭圆的方程为____________.(2)已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点P 1(6,1),P 2(-3,-2),则椭圆的方程为________.(1)x 29+y 2=1或y 281+x 29=1 (2)x 29+y 23=1 [(1)若焦点在x 轴上,设方程为x 2a 2+y 2b2=1(a >b >0),∵椭圆过P (3,0),∴32a 2+02b2=1,即a =3, 又2a =3×2b ,∴b =1,方程为x 29+y 2=1.若焦点在y 轴上,设方程为y 2a 2+x 2b2=1(a >b >0).∵椭圆过点P (3,0).∴02a 2+32b2=1,即b =3.又2a =3×2b ,∴a =9. ∴方程为y 281+x 29=1.∴所求椭圆的方程为x 29+y 2=1或y 281+x 29=1.(2)设椭圆方程为mx 2+ny 2=1(m >0,n >0且m ≠n ). ∵椭圆经过点P 1,P 2,∴点P 1,P 2的坐标适合椭圆方程.则⎩⎪⎨⎪⎧6m +n =1, ①3m +2n =1, ②①②两式联立,解得⎩⎪⎨⎪⎧m =19,n =13.∴所求椭圆方程为x 29+y 23=1.] [规律方法] 求椭圆标准方程的基本方法是待定系数法,具体过程是先定位,再定量,即首先确定焦点所在的位置,然后再根据条件建立关于a ,b 的方程组,若焦点位置不确定,可把椭圆方程设为Ax 2+By 2=1(A >0,B >0,A ≠B )的形式.[变式训练2] (1)过点(3,-5),且与椭圆y 225+x 29=1有相同焦点的椭圆标准方程为________.(2)设F 1,F 2分别是椭圆E :x 2+y 2b2=1(0<b <1)的左、右焦点,过点F 1的直线交椭圆E 于A ,B 两点.若AF 1=3F 1B ,AF 2⊥x 轴,则椭圆E 的方程为________.(1)x 220+y 24=1 (2)x 2+3y 22=1 [(1)法一:椭圆y 225+x29=1的焦点为(0,-4),(0,4),即c =4.由椭圆的定义知,2a =3-02+-5+42+3-02+-5-42,解得a =2 5.由c 2=a 2-b 2可得b 2=4. 所以所求椭圆的标准方程为y 220+x 24=1. 法二:设所求椭圆方程为y 225-k+x 29-k=1(k <9),将点(3,-5)的坐标代入可得-5225-k+329-k =1,解得k =5(k =21舍去),所以所求椭圆的标准方程为y 220+x 24=1.(2)设点A 在点B 上方,F 1(-c,0),F 2(c,0),其中c =1-b 2,则可设A (c ,b 2),B (x 0,y 0),由AF 1=3F 1B ,可得AF →1=3F 1B →,故⎩⎪⎨⎪⎧-2c =3x 0+c,-b 2=3y 0,即⎩⎪⎨⎪⎧x 0=-53c ,y 0=-13b 2,代入椭圆方程可得251-b29+19b 2=1, 得b 2=23,故椭圆方程为x 2+3y 22= 1.]椭圆的几何性质(1)(2016·某某高考)如图472,在平面直角坐标系xOy 中,F 是椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点,直线y =b2与椭圆交于B ,C 两点,且∠BFC =90°,则该椭圆的离心率是 ________.图472(2)椭圆x 236+y 29=1上有两个动点P ,Q ,E (3,0),EP ⊥EQ ,则EP →·QP →的最小值为________.【导学号:62172261】(1)63 (2)6 [(1)将y =b 2代入椭圆的标准方程,得x 2a 2+b 24b 2=1,所以x =±32a ,故B ⎝ ⎛⎭⎪⎫-32a ,b 2,C ⎝ ⎛⎭⎪⎫32a ,b 2. 又因为F (c,0),所以BF →=⎝ ⎛⎭⎪⎫c +32a ,-b 2,CF →=⎝ ⎛⎭⎪⎫c -32a ,-b 2.因为∠BFC =90°,所以BF →·CF →=0, 所以⎝ ⎛⎭⎪⎫c +32a ⎝ ⎛⎭⎪⎫c -32a +⎝ ⎛⎭⎪⎫-b 22=0,即c 2-34a 2+14b 2=0,将b 2=a 2-c 2代入并化简,得a 2=32c 2,所以e 2=c 2a 2=23,所以e =63(负值舍去).(2)设P 点坐标为(m ,n ),则m 236+n 29=1,所以PE =m -32+n -02=34m 2-6m +18=34m -42+6,因为-6≤m ≤6,所以PE 的最小值为6,所以EP →·QP →=EP →·(EP →-EQ →)=EP 2→-EP →·EQ →=EP 2→,所以EP →·QP →的最小值为6.] [规律方法] 1.求椭圆离心率的方法(1)直接求出a ,c 的值,利用离心率公式直接求解.(2)列出含有a ,b ,c 的齐次方程(或不等式),借助于b 2=a 2-c 2消去b ,转化为含有e 的方程(或不等式)求解.2.利用椭圆几何性质求值或X 围的思路求解与椭圆几何性质有关的参数问题时,要结合图形进行分析,当涉及顶点、焦点、长轴、短轴等椭圆的基本量时,要理清它们之间的关系.[变式训练3] (1)已知直线x =t 与椭圆x 225+y 29=1交于P ,Q 两点.若点F 为该椭圆的左焦点,则使FP →·FQ →取得最小值时,t 的值为________.(2)已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的右焦点为F ,短轴的一个端点为M ,直线l :3x -4y=0交椭圆E 于A ,B 两点,若AF +BF =4,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值X 围是________.(1)-5017 (2)⎝ ⎛⎦⎥⎤0,32 [易知椭圆的左焦点F (-4,0).根据对称性可设P (t ,y 0),Q (t ,-y 0),则FP →=(t +4,y 0),FQ →=(t +4,-y 0),所以FP →·FQ →=(t +4,y 0)·(t +4,-y 0)=(t +4)2-y 20.又因为y 2=9⎝ ⎛⎭⎪⎫1-t 225=9-925t 2,所以FP →·FQ →=(t +4)2-y 20=t 2+8t +16-9+925t 2=3425t2+8t +7,所以当t =-5017时,FP →·FQ →取得最小值.(2)左焦点F 0,连结F 0A ,F 0B ,则四边形AFBF 0为平行四边形. ∵AF +BF =4,∴AF +AF 0=4,∴a =2. 设M (0,b ),则4b 5≥45,∴1≤b <2.离心率e =ca =c 2a 2=a 2-b 2a 2=4-b 24∈⎝⎛⎦⎥⎤0,32.[思想与方法]1.椭圆的定义揭示了椭圆的本质属性,正确理解、掌握定义是关键,应注意定义中的常数大于F 1F 2,避免了动点轨迹是线段或不存在的情况.2.求椭圆方程的方法,除了直接根据定义外,常用待定系数法.当椭圆的焦点位置不明确而无法确定其标准方程时,设方程为x 2m +y 2n=1(m >0,n >0,且m ≠n )可以避免讨论和烦琐的计算,也可以设为Ax 2+By 2=1(A >0,B >0,且A ≠B ),这种形式在解题中更简便.3.讨论椭圆的几何性质时,离心率问题是重点,常用方法: (1)求得a ,c 的值,直接代入公式e =c a求得;(2)列出关于a ,b ,c 的齐次方程(或不等式),然后根据b 2=a 2-c 2,消去b ,转化成关于e 的方程(或不等式)求解.[易错与防X]1.判断两种标准方程的方法是比较标准形式中x 2与y 2的分母大小.2.注意椭圆的X 围,在设椭圆x 2a 2+y 2b2=1(a >b >0)上点的坐标为P (x ,y )时,则|x |≤a ,这往往在求与点P 有关的最值问题中用到,也是容易被忽视而导致求最值错误的原因.3.椭圆上任意一点M 到焦点F 的最大距离为a +c ,最小距离为a -c .课时分层训练(四十七)A 组 基础达标 (建议用时:30分钟)一、填空题1.(2017·某某模拟)若方程x 2m -2+y 26-m=1表示一个椭圆,则实数m 的取值X 围为______________.(2,4)∪(4,6) [由题意可知⎩⎪⎨⎪⎧m -2>0,6-m >0,m -2≠6-m ,解得2<m <6且m ≠4.]2.已知椭圆E 经过点A (2,3),对称轴为坐标轴,焦点F 1,F 2在x 轴上,离心率e =12,则椭圆E 的方程为________.x 216+y 212=1 [设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),由e =12,即c a =12,得a =2c ,则b 2=a 2-c 2=3c 2.所以椭圆方程可化为x 24c 2+y 23c2=1.将A (2,3)代入上式,得1c 2+3c 2=1,解得c 2=4,所以椭圆的标准方程为x 216+y 212=1.]3.已知△ABC 的顶点B ,C 在椭圆x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是________.【导学号:62172262】43 [由椭圆的方程得a = 3.设椭圆的另一个焦点为F ,则由椭圆的定义得BA +BF =CA +CF =2a ,所以△ABC 的周长为BA +BC +CA =BA +BF +CF +CA =(BA +BF )+(CF +CA )=2a +2a =4a =4 3.]4.(2017·某某模拟)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点为F ,C 与过原点的直线相交于A ,B 两点,连结AF ,BF .若AB =10,BF =8,cos ∠ABF =45,则C 的离心率为________.57 [如图,设AF =x ,则cos ∠ABF =82+102-x 22×8×10=45. 解得x =6,∴∠AFB =90°,由椭圆及直线关于原点对称可知AF 1=8,∠FAF 1=∠FAB +∠FBA =90°,△FAF 1是直角三角形,∴F 1F =10,故2a =8+6=14,2c =10,∴c a =57.]5.已知圆(x +2)2+y 2=36的圆心为M ,设A 为圆上任一点,且点N (2,0),线段AN 的垂直平分线交MA 于点P ,则动点P 的轨迹是________.椭圆 [点P 在线段AN 的垂直平分线上, 故PA =PN ,又AM 是圆的半径, 所以PM +PN =PM +PA =AM =6>MN , 由椭圆定义知,P 的轨迹是椭圆.]6.椭圆x 225+y 29=1的左焦点为F 1,点P 在椭圆上,若线段PF 1的中点M 在y 轴上,则PF 1=________.415 [因线段PF 1的中点M 在y 轴上,故可知P ⎝ ⎛⎭⎪⎫c ,±b 2a ,即P ⎝⎛⎭⎪⎫4,±95,所以PF 1=10-95=415.] 7.已知椭圆x 2a 2+y 2b2=1(a >b >0)的一个焦点是圆x 2+y 2-6x +8=0的圆心,且短轴长为8,则椭圆的左顶点为________. 【导学号:62172263】(-5,0) [因为圆的标准方程为(x -3)2+y 2=1, 所以圆心坐标为(3,0),所以c =3.又b =4,所以a =b 2+c 2=5.因为椭圆的焦点在x 轴上,所以椭圆的左顶点为(-5,0).]8.已知圆M :x 2+y 2+2mx -3=0(m <0)的半径为2,椭圆C :x 2a 2+y 23=1的左焦点为F (-c,0),若垂直于x 轴且经过F 点的直线l 与圆M 相切,则a 的值为________.2 [圆M 的方程可化为(x +m )2+y 2=3+m 2,则由题意得m 2+3=4,即m 2=1(m <0),所以m =-1,则圆心M 的坐标为(1,0).由题意知直线l 的方程为x =-c ,又因为直线l 与圆M 相切,所以c =1,所以a 2-3=1,所以a =2.]9.若m ≠0,则椭圆x 2m 2+1+y 2m=1的离心率的取值X 围是________.⎣⎢⎡⎭⎪⎫22,1 [因为椭圆方程中m >0,m 2+1≥2m >m (m >0),所以a 2=m 2+1,b 2=m ,c 2=a 2-b 2=m 2-m +1, e 2=c 2a 2=m 2-m +1m 2+1=1-m m 2+1=1-1m +1m ≥1-12=12,所以22≤e <1.] 10.若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,若P 为椭圆上的任意一点,则OP →·FP →的最大值为________.6 [由题意知,O (0,0),F (-1,0),设P (x ,y ),则OP →=(x ,y ),FP →=(x +1,y ),∴OP →·FP→=x (x +1)+y 2=x 2+y 2+x .又∵x 24+y 23=1,∴y 2=3-34x 2, ∴OP →·FP →=14x 2+x +3=14(x +2)2+2. ∵-2≤x ≤2,∴当x =2时,OP →·FP →有最大值6.]二、解答题11.(2017·某某模拟)在平面直角坐标系xOy 中,已知椭圆C 过点(0,2),其焦点为F 1(-5,0),F 2(5,0).(1)求椭圆C 的标准方程;(2)已知点P 在椭圆C 上,且PF 1=4,求△PF 1F 2的面积. 【导学号:62172264】[解] (1)由题意可知,c =5,b =2,所以a 2=b 2+c 2=9,所以椭圆C 的标准方程为x 29+y 24=1. (2)法一:由(1)可知,F 1F 2=25,PF 1+PF 2=6,又PF 1=4,所以PF 2=2,所以PF 21+PF 22=F 1F 22,所以PF 1⊥PF 2,所以△PF 1F 2的面积为12×PF 1·PF 2=4. 法二:由(1)可知e =53,设P (x 0,y 0), 因为PF 1=4,所以3+53x 0=4,解得x 0=35, 代入方程得15+y 204=1,解得|y 0|=45, 所以△PF 1F 2的面积为12×25×45=4. 12.已知椭圆C 的中心在原点,一个焦点为F (-2,0),且长轴与短轴长的比是2∶ 3.(1)求椭圆C 的方程; (2)设点M (m,0)在椭圆C 的长轴上,点P 是椭圆上任意一点.当PM 最小时,点P 恰好落在椭圆的右顶点,某某数m 的取值X 围. [解] (1)由题意知⎩⎪⎨⎪⎧ c =2,a b =23,a 2=b 2+c 2,解得⎩⎪⎨⎪⎧ a 2=16,b 2=12.所以椭圆方程为x 216+y 212=1. (2)设P (x 0,y 0),且x 2016+y 2012=1,所以PM 2=(x 0-m )2+y 20 =x 20-2mx 0+m 2+12⎝ ⎛⎭⎪⎫1-x 2016=14x 20-2mx 0+m 2+12 =14(x 0-4m )2-3m 2+12(-4≤x 0≤4). 所以PM 2为关于x 0的二次函数,开口向上,对称轴为x 0=4m .由题意知,当x 0=4时,PM 2最小,所以4m ≥4,所以m ≥1.又点M (m,0)在椭圆长轴上,所以1≤m ≤4.B 组 能力提升(建议用时:15分钟) 1.已知椭圆x 2a 2+y 2b 2=1(a >b >0)与x 2m 2-y 2n2=1(m >0,n >0)有相同的焦点(-c,0)和(c,0),若c 是a ,m 的等比中项,n 2是2m 2与c 2的等差中项,则椭圆的离心率为________.12 [因为椭圆x 2a 2+y 2b 2=1(a >b >0)与x 2m 2-y 2n2=1(m >0,n >0)有相同的焦点(-c,0)和(c,0),所以c 2=a 2-b 2=m 2+n 2,因为c 是a ,m 的等比中项,n 2是2m 2与c 2的等差中项,所以c 2=am,2n 2=2m 2+c 2,所以m 2=c 4a 2,n 2=c 4a 2+c 22,所以2c 4a 2+c 22=c 2,化为c 2a 2=14,所以e =c a =12.] 2.设F 1,F 2分别是椭圆x 225+y 216=1的左、右焦点,P 为椭圆上任一点,点M 的坐标为(6,4),则PM +PF 1的最大值为________.15 [PF 1+PF 2=10,PF 1=10-PF 2,PM +PF 1=10+PM -PF 2,易知M 点在椭圆外,连结MF 2并延长交椭圆于P 点(图略),此时PM -PF 2取最大值MF 2,故PM +PF 1的最大值为10+MF 2=10+6-32+42=15.]3.已知点M (6,2)在椭圆C :x 2a 2+y 2b 2=1(a >b >0)上,且椭圆的离心率为63. (1)求椭圆C 的方程;(2)若斜率为1的直线l 与椭圆C 交于A ,B 两点,以AB 为底边作等腰三角形,顶点为P (-3,2),求△PAB 的面积.[解] (1)由已知得⎩⎪⎨⎪⎧ 6a 2+2b2=1,c a =63,a 2=b 2+c 2, 解得⎩⎪⎨⎪⎧ a 2=12,b 2=4. 故椭圆C 的方程为x 212+y 24=1. (2)设直线l 的方程为y =x +m ,A (x 1,y 1),B (x 2,y 2),AB 的中点为D (x 0,y 0). 由⎩⎪⎨⎪⎧ y =x +m ,x 212+y 24=1,消去y ,整理得4x 2+6mx +3m 2-12=0, 则x 0=x 1+x 22=-34m ,y 0=x 0+m =14m , 即D ⎝ ⎛⎭⎪⎫-34m ,14m . 因为AB 是等腰三角形PAB 的底边,所以PD ⊥AB ,即PD 的斜率k =2-m 4-3+3m 4=-1,解得m =2. 此时x 1+x 2=-3,x 1x 2=0,则|AB |=2|x 1-x 2|=2·x 1+x 22-4x 1x 2=3 2.又点P 到直线l :x -y +2=0的距离为d =32, 所以△PAB 的面积为S =12|AB |·d =92. 4.(2017·某某模拟)已知椭圆C 1:x 2a 2+y 2b2=1(a >b >0)的右焦点为F ,上顶点为A ,P 为C 1上任一点,MN 是圆C 2:x 2+(y -3)2=1的一条直径,在y 轴上截距为3-2的直线l 与AF 平行且与圆C 2相切.(1)求椭圆C 1的离心率;(2)若椭圆C 1的短轴长为8,求PM →·PN →的最大值.[解] (1)由题意,得F (c,0),A (0,b ),k AF =-b c , ∵在y 轴上截距为3-2的直线l 与AF 平行,∴直线l :y =-b c x +3-2,即bx +cy +(2-3)c =0. ∵直线l 与圆C 2相切,∴|2c |b 2+c 2=1,2c a=1,e =22, (2)∵椭圆C 1的短轴长为8,∴2b =8,b =4.∵a 2=b 2+c 2,2ca =1,∴a =2c,2c 2=b 2+c 2, ∴c =b =4,a =42,∴椭圆方程是x 232+y 216=1,设P (x ,y ), ∴PM →·PN →=(PC →2+C 2M →)·(PC 2→+C 2N →)=(PC 2→)2+PC 2→·(C 2M →+C 2N →)+C 2M →·C 2N → =(PC 2→)2+C 2M →·C 2N →=x 2+(y -3)2-1=32⎝ ⎛⎭⎪⎫1-y 216+(y -3)2-1=-y 2-6y +40=-(y +3)2+49,又y ∈[-4,4],∴PM →·PN →的最大值是49.。
(江苏专用)高考数学一轮复习 第九章 平面解析几何 第47课 椭圆的方程及几何性质课时分层训练-人教
第九章 平面解析几何 第47课 椭圆的方程及几何性质课时分层训练A 组 基础达标 (建议用时:30分钟)一、填空题1.(2017·某某模拟)若方程x 2m -2+y 26-m=1表示一个椭圆,则实数m 的取值X 围为______________.(2,4)∪(4,6) [由题意可知⎩⎪⎨⎪⎧m -2>0,6-m >0,m -2≠6-m ,解得2<m <6且m ≠4.]2.已知椭圆E 经过点A (2,3),对称轴为坐标轴,焦点F 1,F 2在x 轴上,离心率e =12,则椭圆E 的方程为________.x 216+y 212=1 [设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),由e =12,即c a =12,得a =2c ,则b 2=a 2-c 2=3c 2.所以椭圆方程可化为x 24c 2+y 23c2=1.将A (2,3)代入上式,得1c 2+3c 2=1,解得c 2=4,所以椭圆的标准方程为x 216+y 212=1.]3.已知△ABC 的顶点B ,C 在椭圆x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是________.【导学号:62172262】43 [由椭圆的方程得a = 3.设椭圆的另一个焦点为F ,则由椭圆的定义得BA +BF =CA +CF =2a ,所以△ABC 的周长为BA +BC +CA =BA +BF +CF +CA =(BA +BF )+(CF +CA )=2a +2a =4a =4 3.]4.(2017·某某模拟)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点为F ,C 与过原点的直线相交于A ,B 两点,连结AF ,BF .若AB =10,BF =8,cos ∠ABF =45,则C 的离心率为________.57 [如图,设AF =x ,则cos ∠ABF =82+102-x 22×8×10=45. 解得x =6,∴∠AFB =90°,由椭圆及直线关于原点对称可知AF 1=8,∠FAF 1=∠FAB +∠FBA =90°,△FAF 1是直角三角形,∴F 1F =10,故2a =8+6=14,2c =10,∴c a =57.]5.已知圆(x +2)2+y 2=36的圆心为M ,设A 为圆上任一点,且点N (2,0),线段AN 的垂直平分线交MA 于点P ,则动点P 的轨迹是________.椭圆 [点P 在线段AN 的垂直平分线上, 故PA =PN ,又AM 是圆的半径, 所以PM +PN =PM +PA =AM =6>MN , 由椭圆定义知,P 的轨迹是椭圆.]6.椭圆x 225+y 29=1的左焦点为F 1,点P 在椭圆上,若线段PF 1的中点M 在y 轴上,则PF 1=________.415 [因线段PF 1的中点M 在y 轴上,故可知P ⎝ ⎛⎭⎪⎫c ,±b 2a ,即P ⎝⎛⎭⎪⎫4,±95,所以PF 1=10-95=415.] 7.已知椭圆x 2a 2+y 2b2=1(a >b >0)的一个焦点是圆x 2+y 2-6x +8=0的圆心,且短轴长为8,则椭圆的左顶点为________. 【导学号:62172263】(-5,0) [因为圆的标准方程为(x -3)2+y 2=1, 所以圆心坐标为(3,0),所以c =3.又b =4,所以a =b 2+c 2=5.因为椭圆的焦点在x 轴上,所以椭圆的左顶点为(-5,0).]8.已知圆M :x 2+y 2+2mx -3=0(m <0)的半径为2,椭圆C :x 2a 2+y 23=1的左焦点为F (-c,0),若垂直于x 轴且经过F 点的直线l 与圆M 相切,则a 的值为________.2 [圆M 的方程可化为(x +m )2+y 2=3+m 2,则由题意得m 2+3=4,即m 2=1(m <0),所以m =-1,则圆心M 的坐标为(1,0).由题意知直线l 的方程为x =-c ,又因为直线l 与圆M 相切,所以c =1,所以a 2-3=1,所以a =2.]9.若m ≠0,则椭圆x 2m 2+1+y 2m=1的离心率的取值X 围是________.⎣⎢⎡⎭⎪⎫22,1 [因为椭圆方程中m >0,m 2+1≥2m >m (m >0),所以a 2=m 2+1,b 2=m ,c 2=a 2-b 2=m 2-m +1,e 2=c 2a 2=m 2-m +1m 2+1=1-m m 2+1=1-1m +1m≥1-12=12,所以22≤e <1.]10.若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,若P 为椭圆上的任意一点,则OP →·FP →的最大值为________.6 [由题意知,O (0,0),F (-1,0),设P (x ,y ),则OP →=(x ,y ),FP →=(x +1,y ),∴OP →·FP →=x (x +1)+y 2=x 2+y 2+x .又∵x 24+y 23=1,∴y 2=3-34x 2,∴OP →·FP →=14x 2+x +3=14(x +2)2+2.∵-2≤x ≤2,∴当x =2时,OP →·FP →有最大值6.] 二、解答题11.(2017·某某模拟)在平面直角坐标系xOy 中,已知椭圆C 过点(0,2),其焦点为F 1(-5,0),F 2(5,0). (1)求椭圆C 的标准方程;(2)已知点P 在椭圆C 上,且PF 1=4,求△PF 1F 2的面积. 【导学号:62172264】 [解] (1)由题意可知,c =5,b =2,所以a 2=b 2+c 2=9, 所以椭圆C 的标准方程为x 29+y 24=1.(2)法一:由(1)可知,F 1F 2=25,PF 1+PF 2=6, 又PF 1=4,所以PF 2=2,所以PF 21+PF 22=F 1F 22,所以PF 1⊥PF 2, 所以△PF 1F 2的面积为12×PF 1·PF 2=4.法二:由(1)可知e =53,设P (x 0,y 0), 因为PF 1=4,所以3+53x 0=4,解得x 0=35, 代入方程得15+y 204=1,解得|y 0|=45,所以△PF 1F 2的面积为12×25×45=4.12.已知椭圆C 的中心在原点,一个焦点为F (-2,0),且长轴与短轴长的比是2∶ 3. (1)求椭圆C 的方程;(2)设点M (m,0)在椭圆C 的长轴上,点P 是椭圆上任意一点.当PM 最小时,点P 恰好落在椭圆的右顶点,某某数m 的取值X 围.[解] (1)由题意知⎩⎪⎨⎪⎧c =2,a b =23,a 2=b 2+c 2,解得⎩⎪⎨⎪⎧a 2=16,b 2=12.所以椭圆方程为x 216+y 212=1.(2)设P (x 0,y 0),且x 2016+y 2012=1,所以PM 2=(x 0-m )2+y 2=x 20-2mx 0+m 2+12⎝ ⎛⎭⎪⎫1-x 2016=14x 20-2mx 0+m 2+12=14(x 0-4m )2-3m 2+12(-4≤x 0≤4). 所以PM 2为关于x 0的二次函数,开口向上,对称轴为x 0=4m . 由题意知,当x 0=4时,PM 2最小,所以4m ≥4,所以m ≥1. 又点M (m,0)在椭圆长轴上,所以1≤m ≤4.B 组 能力提升 (建议用时:15分钟)1.已知椭圆x 2a 2+y 2b 2=1(a >b >0)与x 2m 2-y 2n 2=1(m >0,n >0)有相同的焦点(-c,0)和(c,0),若c 是a ,m 的等比中项,n 2是2m 2与c 2的等差中项,则椭圆的离心率为________.12 [因为椭圆x 2a 2+y 2b 2=1(a >b >0)与x 2m 2-y2n 2=1(m >0,n >0)有相同的焦点(-c,0)和(c,0),所以c 2=a 2-b 2=m 2+n 2,因为c 是a ,m 的等比中项,n 2是2m 2与c 2的等差中项,所以c 2=am,2n 2=2m 2+c 2,所以m 2=c 4a 2,n 2=c 4a 2+c 22,所以2c 4a 2+c 22=c 2,化为c 2a 2=14,所以e =c a =12.]2.设F 1,F 2分别是椭圆x 225+y 216=1的左、右焦点,P 为椭圆上任一点,点M 的坐标为(6,4),则PM +PF 1的最大值为________.15 [PF 1+PF 2=10,PF 1=10-PF 2,PM +PF 1=10+PM -PF 2,易知M 点在椭圆外,连结MF 2并延长交椭圆于P 点(图略),此时PM -PF 2取最大值MF 2,故PM +PF 1的最大值为10+MF 2=10+6-32+42=15.]3.已知点M (6,2)在椭圆C :x 2a 2+y 2b 2=1(a >b >0)上,且椭圆的离心率为63.(1)求椭圆C 的方程;(2)若斜率为1的直线l 与椭圆C 交于A ,B 两点,以AB 为底边作等腰三角形,顶点为P (-3,2),求△PAB 的面积.[解] (1)由已知得⎩⎪⎨⎪⎧6a 2+2b2=1,c a =63,a 2=b 2+c 2,解得⎩⎪⎨⎪⎧a 2=12,b 2=4.故椭圆C 的方程为x 212+y 24=1.(2)设直线l 的方程为y =x +m ,A (x 1,y 1),B (x 2,y 2),AB 的中点为D (x 0,y 0).由⎩⎪⎨⎪⎧y =x +m ,x 212+y24=1,消去y ,整理得4x 2+6mx +3m 2-12=0,则x 0=x 1+x 22=-34m ,y 0=x 0+m =14m , 即D ⎝ ⎛⎭⎪⎫-34m ,14m . 因为AB 是等腰三角形PAB 的底边,所以PD ⊥AB ,即PD 的斜率k =2-m4-3+3m 4=-1,解得m =2. 此时x 1+x 2=-3,x 1x 2=0, 则|AB |=2|x 1-x 2|=2·x 1+x 22-4x 1x 2=3 2. 又点P 到直线l :x -y +2=0的距离为d =32, 所以△PAB 的面积为S =12|AB |·d =92.4.(2017·某某模拟)已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,上顶点为A ,P 为C 1上任一点,MN 是圆C 2:x 2+(y -3)2=1的一条直径,在y 轴上截距为3-2的直线l 与AF 平行且与圆C 2相切.(1)求椭圆C 1的离心率;(2)若椭圆C 1的短轴长为8,求PM →·PN →的最大值.[解] (1)由题意,得F (c,0),A (0,b ),k AF =-b c, ∵在y 轴上截距为3-2的直线l 与AF 平行,∴直线l :y =-b cx +3-2,即bx +cy +(2-3)c =0. ∵直线l 与圆C 2相切,∴|2c |b 2+c2=1,2c a=1,e =22, (2)∵椭圆C 1的短轴长为8, ∴2b =8,b =4. ∵a 2=b 2+c 2,2ca=1,∴a =2c,2c 2=b 2+c 2,∴c =b =4,a =42,∴椭圆方程是x 232+y 216=1,设P (x ,y ),∴PM →·PN →=(PC →2+C 2M →)·(PC 2→+C 2N →) =(PC 2→)2+PC 2→·(C 2M →+C 2N →)+C 2M →·C 2N →=(PC 2→)2+C 2M →·C 2N →=x 2+(y -3)2-1=32⎝ ⎛⎭⎪⎫1-y 216+(y -3)2-1=-y 2-6y +40=-(y +3)2+49,又y ∈[-4,4],∴PM →·PN →的最大值是49.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第九章 平面解析几何 第47课 椭圆的方程及几何性质课时分层训练A 组 基础达标 (建议用时:30分钟)一、填空题1.(2017·徐州模拟)若方程x 2m -2+y 26-m=1表示一个椭圆,则实数m 的取值范围为______________.(2,4)∪(4,6) [由题意可知⎩⎪⎨⎪⎧m -2>0,6-m >0,m -2≠6-m ,解得2<m <6且m ≠4.]2.已知椭圆E 经过点A (2,3),对称轴为坐标轴,焦点F 1,F 2在x 轴上,离心率e =12,则椭圆E 的方程为________.x 216+y 212=1 [设椭圆的标准方程为x 2a +y 2b =1(a >b >0),由e =12,即c a =12,得a =2c ,则b 2=a 2-c 2=3c 2.所以椭圆方程可化为x 24c 2+y 23c2=1.将A (2,3)代入上式,得1c 2+3c 2=1,解得c 2=4,所以椭圆的标准方程为x 216+y 212=1.]3.已知△ABC 的顶点B ,C 在椭圆x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是________.43 [由椭圆的方程得a = 3.设椭圆的另一个焦点为F ,则由椭圆的定义得BA +BF =CA +CF =2a ,所以△ABC 的周长为BA +BC +CA =BA +BF +CF +CA =(BA +BF )+(CF +CA )=2a +2a =4a =4 3.]4.(2017·泰州模拟)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点为F ,C 与过原点的直线相交于A ,B 两点,连结AF ,BF .若AB =10,BF =8,cos ∠ABF =45,则C 的离心率为________.57 [如图,设AF =x ,则cos ∠ABF =82+102-x 22×8×10=45. 解得x =6,∴∠AFB =90°,由椭圆及直线关于原点对称可知AF 1=8,∠FAF 1=∠FAB+∠FBA =90°,△FAF 1是直角三角形,∴F 1F =10,故2a =8+6=14,2c =10,∴c a =57.]5.已知圆(x +2)2+y 2=36的圆心为M ,设A 为圆上任一点,且点N (2,0),线段AN 的垂直平分线交MA 于点P ,则动点P 的轨迹是________.椭圆 [点P 在线段AN 的垂直平分线上, 故PA =PN ,又AM 是圆的半径, 所以PM +PN =PM +PA =AM =6>MN , 由椭圆定义知,P 的轨迹是椭圆.]6.椭圆x 225+y 29=1的左焦点为F 1,点P 在椭圆上,若线段PF 1的中点M 在y 轴上,则PF 1=________.415 [因线段PF 1的中点M 在y 轴上,故可知P ⎝ ⎛⎭⎪⎫c ,±b 2a ,即P ⎝⎛⎭⎪⎫4,±95,所以PF 1=10-95=415.] 7.已知椭圆x 2a 2+y 2b2=1(a >b >0)的一个焦点是圆x 2+y 2-6x +8=0的圆心,且短轴长为8,(-5,0) [因为圆的标准方程为(x -3)2+y 2=1,所以圆心坐标为(3,0),所以c =3.又b =4,所以a =b 2+c 2=5.因为椭圆的焦点在x 轴上,所以椭圆的左顶点为(-5,0).]8.已知圆M :x 2+y 2+2mx -3=0(m <0)的半径为2,椭圆C :x 2a 2+y 23=1的左焦点为F (-c,0),若垂直于x 轴且经过F 点的直线l 与圆M 相切,则a 的值为________.2 [圆M 的方程可化为(x +m )2+y 2=3+m 2,则由题意得m 2+3=4,即m 2=1(m <0),所以m =-1,则圆心M 的坐标为(1,0).由题意知直线l 的方程为x =-c ,又因为直线l 与圆M 相切,所以c =1,所以a 2-3=1,所以a =2.]9.若m ≠0,则椭圆x 2m 2+1+y 2m=1的离心率的取值范围是________.⎣⎢⎡⎭⎪⎫22,1 [因为椭圆方程中m >0,m 2+1≥2m >m (m >0),所以a 2=m 2+1,b 2=m ,c 2=a 2-b 2=m 2-m +1,e 2=c 2a 2=m 2-m +1m 2+1=1-m m 2+1=1-1m +1m≥1-12=12,所以22≤e <1.]10.若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,若P 为椭圆上的任意一点,则OP →·FP →的最大值为________.6 [由题意知,O (0,0),F (-1,0),设P (x ,y ),则OP →=(x ,y ),FP →=(x +1,y ),∴OP →·FP →=x (x +1)+y 2=x 2+y 2+x .又∵x 24+y 23=1,∴y 2=3-34x 2,∴OP →·FP →=14x 2+x +3=14(x +2)2+2.∵-2≤x ≤2,∴当x =2时,OP →·FP →有最大值6.] 二、解答题11.(2017·苏州模拟)在平面直角坐标系xOy 中,已知椭圆C 过点(0,2),其焦点为F 1(-5,0),F 2(5,0). (1)求椭圆C 的标准方程;[解] (1)由题意可知,c =5,b =2,所以a 2=b 2+c 2=9, 所以椭圆C 的标准方程为x 29+y 24=1.(2)法一:由(1)可知,F 1F 2=25,PF 1+PF 2=6, 又PF 1=4,所以PF 2=2,所以PF 21+PF 22=F 1F 22,所以PF 1⊥PF 2, 所以△PF 1F 2的面积为12×PF 1·PF 2=4.法二:由(1)可知e =53,设P (x 0,y 0), 因为PF 1=4,所以3+53x 0=4,解得x 0=35, 代入方程得15+y 204=1,解得|y 0|=45,所以△PF 1F 2的面积为12×25×45=4.12.已知椭圆C 的中心在原点,一个焦点为F (-2,0),且长轴与短轴长的比是2∶ 3. (1)求椭圆C 的方程;(2)设点M (m,0)在椭圆C 的长轴上,点P 是椭圆上任意一点.当PM 最小时,点P 恰好落在椭圆的右顶点,求实数m 的取值范围.[解] (1)由题意知⎩⎪⎨⎪⎧c =2,a b =23,a 2=b 2+c 2,解得⎩⎪⎨⎪⎧a 2=16,b 2=12.所以椭圆方程为x 216+y 212=1.(2)设P (x 0,y 0),且x 2016+y 2012=1,所以PM 2=(x 0-m )2+y 2=x 20-2mx 0+m 2+12⎝ ⎛⎭⎪⎫1-x 2016=14x 20-2mx 0+m 2+12=14(x 0-4m )2-3m 2+12(-4≤x 0≤4). 所以PM 2为关于x 0的二次函数,开口向上,对称轴为x 0=4m . 由题意知,当x 0=4时,PM 2最小,所以4m ≥4,所以m ≥1. 又点M (m,0)在椭圆长轴上,所以1≤m ≤4.B 组 能力提升 (建议用时:15分钟)1.已知椭圆x 2a 2+y 2b 2=1(a >b >0)与x 2m 2-y 2n 2=1(m >0,n >0)有相同的焦点(-c,0)和(c,0),若c 是a ,m 的等比中项,n 2是2m 2与c 2的等差中项,则椭圆的离心率为________.12 [因为椭圆x 2a 2+y 2b 2=1(a >b >0)与x 2m 2-y2n 2=1(m >0,n >0)有相同的焦点(-c,0)和(c,0),所以c 2=a 2-b 2=m 2+n 2,因为c 是a ,m 的等比中项,n 2是2m 2与c 2的等差中项,所以c 2=am,2n 2=2m 2+c 2,所以m 2=c 4a 2,n 2=c 4a 2+c 22,所以2c 4a 2+c 22=c 2,化为c 2a 2=14,所以e =c a =12.]2.设F 1,F 2分别是椭圆x 225+y 216=1的左、右焦点,P 为椭圆上任一点,点M 的坐标为(6,4),则PM +PF 1的最大值为________.15 [PF 1+PF 2=10,PF 1=10-PF 2,PM +PF 1=10+PM -PF 2,易知M 点在椭圆外,连结MF 2并延长交椭圆于P 点(图略),此时PM -PF 2取最大值MF 2,故PM +PF 1的最大值为10+MF 2=10+-2+42=15.]3.已知点M (6,2)在椭圆C :x 2a +y 2b =1(a >b >0)上,且椭圆的离心率为63.(1)求椭圆C 的方程;(2)若斜率为1的直线l 与椭圆C 交于A ,B 两点,以AB 为底边作等腰三角形,顶点为P (-3,2),求△PAB 的面积.[解] (1)由已知得⎩⎪⎨⎪⎧6a 2+2b2=1,c a =63,a 2=b 2+c 2,解得⎩⎪⎨⎪⎧a 2=12,b 2=4.故椭圆C 的方程为x 212+y 24=1.(2)设直线l 的方程为y =x +m ,A (x 1,y 1),B (x 2,y 2),AB 的中点为D (x 0,y 0).由⎩⎪⎨⎪⎧y =x +m ,x 212+y24=1,消去y ,整理得4x 2+6mx +3m 2-12=0,则x 0=x 1+x 22=-34m ,y 0=x 0+m =14m , 即D ⎝ ⎛⎭⎪⎫-34m ,14m . 因为AB 是等腰三角形PAB 的底边,所以PD ⊥AB ,即PD 的斜率k =2-m4-3+3m 4=-1,解得m =2. 此时x 1+x 2=-3,x 1x 2=0, 则|AB |=2|x 1-x 2|=2·x 1+x 22-4x 1x 2=3 2. 又点P 到直线l :x -y +2=0的距离为d =32, 所以△PAB 的面积为S =12|AB |·d =92.4.(2017·苏州模拟)已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,上顶点为A ,P 为C 1上任一点,MN 是圆C 2:x 2+(y -3)2=1的一条直径,在y 轴上截距为3-2的直线l 与AF 平行且与圆C 2相切.(1)求椭圆C 1的离心率;(2)若椭圆C 1的短轴长为8,求PM →·PN →的最大值. [解] (1)由题意,得F (c,0),A (0,b ),k AF =-b c,∵在y 轴上截距为3-2的直线l 与AF 平行,∴直线l :y =-b cx +3-2,即bx +cy +(2-3)c =0. ∵直线l 与圆C 2相切,∴|2c |b 2+c2=1,2c a=1,e =22, (2)∵椭圆C 1的短轴长为8, ∴2b =8,b =4. ∵a 2=b 2+c 2,2ca=1,∴a =2c,2c 2=b 2+c 2,∴c =b =4,a =42,∴椭圆方程是x 232+y 216=1,设P (x ,y ),∴PM →·PN →=(PC →2+C 2M →)·(PC 2→+C 2N →) =(PC 2→)2+PC 2→·(C 2M →+C 2N →)+C 2M →·C 2N →=(PC 2→)2+C 2M →·C 2N →=x 2+(y -3)2-1=32⎝ ⎛⎭⎪⎫1-y 216+(y -3)2-1=-y 2-6y +40=-(y +3)2+49,又y ∈[-4,4],∴PM →·PN →的最大值是49.。