2005年湖北省高等教育自学考试 微分几何 A卷
高中数学复习资料2005年高考文科数学试题及答案(湖北)
绝密★启用前2005年普通高等学校招生全国统一考试(湖北卷)数学试题卷(文史类)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 满分150分. 考试时间120分钟.第I 部分(选择题 共60分)注意事项: 1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.答在试题卷上无效.3.考试结束,监考人员将本试题卷和答题卡一并收回.一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个备选项中,只有一项是符合题目要求的.1.设P 、Q 为两个非空实数集合,定义集合P +Q =},5,2,0{},,|{=∈∈+P Q b P a b a 若}6,2,1{=Q ,则P +Q 中元素的个数是 ( )A.9B.8C.7D.6 2.对任意实数a ,b ,c ,给出下列命题: ①“b a =”是“bc ac =”充要条件; ②“5+a 是无理数”是“a 是无理数”的充要条件③“a >b ”是“a 2>b 2”的充分条件;④“a <5”是“a <3”的必要条件. 其中真命题的个数是 ( ) A.1 B.2 C.3 D.4 3.已知向量a =(-2,2),b =(5,k).若|a +b |不超过5,则k 的取值范围是 ( ) A.[-4,6] B.[-6,4] C.[-6,2] D.[-2,6] 4.函数|1|||ln --=x e y x 的图象大致是( )5.木星的体积约是地球体积的30240倍,则它的表面积约是地球表面积的 ( )A.60倍B.6030倍C.120倍D.12030倍6.双曲线)0(122≠=-mn ny m x 离心率为2,有一个焦点与抛物线x y 42=的焦点重合,则mn 的值为( )A.163 B.83 C.316 D.38 7.在x y x y x y y x 2cos ,,log ,222====这四个函数中,当1021<<<x x 时,使2)()()2(2121x f x f x x f +>+恒成立的函数的个数是 ( )A.0B.1C.2D.3 8.已知a 、b 、c 是直线,β是平面,给出下列命题:①若c a c b b a //,,则⊥⊥; ②若c a c b b a ⊥⊥则,,//; ③若b a b a //,,//则ββ⊂;④若a 与b 异面,且ββ与则b a ,//相交;⑤若a 与b 异面,则至多有一条直线与a ,b 都垂直.其中真命题的个数是 ( ) A.1 B.2 C.3 D.49.把一同排6张座位编号为1,2,3,4,5,6的电影票全部分给4个人,每人至少分1张,至多分2张,且这两张票具有连续的编号,那么不同的分法种数是 ( ) A.168 B.96 C.72 D.144 10.若∈<<=+απαααα则),20(tan cos sin( )A.)6,0(πB.)4,6(ππ C.)3,4(ππ D.)2,3(ππ 11.在函数x x y 83-=的图象上,其切线的倾斜角小于4π的点中,坐标为整数的点的个数是( ) A.3 B.2 C.1 D.012.某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号1,2,…,270,并将整个编号依次分为10段.如果抽得号码有下列四种情况: ①7,34,61,88,115,142,169,196,223,250; ②5,9,100,107,111,121,180,195,200,265; ③11,38,65,92,119,146,173,200,227,254; ④30,57,84,111,138,165,192,219,246,270; 关于上述样本的下列结论中,正确的是 ( ) A.②、③都不能为系统抽样 B.②、④都不能为分层抽样 C.①、④都可能为系统抽样 D.①、③都可能为分层抽样第Ⅱ卷(非选择题 共90分)注意事项:第Ⅱ卷用0.5毫米黑色的签字或黑色墨水钢笔直接答在答题卡上.答在试题卷上无效. 二、填空题:本大题共4小题,每小题4分,共16分. 把答案填在答题卡相应位置上. 13.函数x x x x f ---=4lg 32)(的定义域是 . 14.843)1()2(xx xx ++-的展开式中整理后的常数项等于 . 15.函数1cos |sin |-=x x y 的最小正周期与最大值的和为 .16.某实验室需购某种化工原料106千克,现在市场上该原料有两种包装,一种是每袋35千克,价格为140元;另一种是每袋24千克,价格为120元. 在满足需要的条件下,最少要花费 元. 三、解答题:本大题共6小题,共74分,解答时应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知向量x f t x x x ⋅=-=+=)(),,1(),1,(2若函数在区间(-1,1)上是增函数,求t 的取值范围.18.(本小题满分12分) 在△ABC 中,已知63,31cos ,3tan ===AC C B ,求△ABC 的面积.19.(本小题满分12分)设数列}{n a 的前n 项和为S n =2n 2,}{n b 为等比数列,且.)(,112211b a a b b a =-=(Ⅰ)求数列}{n a 和}{n b 的通项公式; (Ⅱ)设nnn b a c =,求数列}{n c 的前n 项和T n .20.(本小题满分12分)如图所示的多面体是由底面为ABCD的长方体被截面AEC1F所截面而得到的,其中AB=4,BC=2,CC1=3,BE=1.(Ⅰ)求BF的长;(Ⅱ)求点C到平面AEC1F的距离.21.(本小题满分12分)某会议室用5盏灯照明,每盏灯各使用灯泡一只,且型号相同.假定每盏灯能否正常照明只与灯泡的寿命有关,该型号的灯泡寿命为1年以上的概率为p1,寿命为2年以上的概率为p2.从使用之日起每满1年进行一次灯泡更换工作,只更换已坏的灯泡,平时不换.(Ⅰ)在第一次灯泡更换工作中,求不需要换灯泡的概率和更换2只灯泡的概率;(Ⅱ)在第二次灯泡更换工作中,对其中的某一盏灯来说,求该盏灯需要更换灯泡的概率;(Ⅲ)当p1=0.8,p2=0.3时,求在第二次灯泡更换工作,至少需要更换4只灯泡的概率(结果保留两个有效数字).22.(本小题满分14分)设A 、B 是椭圆λ=+223y x 上的两点,点N(1,3)是线段AB 的中点,线段AB 的垂直平分线与椭圆相交于C 、D 两点.(Ⅰ)确定λ的取值范围,并求直线AB 的方程;(Ⅱ)试判断是否存在这样的λ,使得A 、B 、C 、D 四点在同一个圆上?并说明理由.2005年普通高等学校招生全国统一考试数学试题(文史类)参考答案一、选择题:本题考查基本知识和基本运算,每小题4分,满分16分. 1.B 2.B 3.C 4.D 5.C 6.A 7.B 8.A 9.D 10.C 11.D 12.D 二、填空题:本题考查基本知识和基本运算,每小题4分,满分16分.13.)4,3()3,2[⋃ 14.38 15.212-π 16.500 三、解答题17.本小题主要考查平面向量数量积的计算方法、利用导数研究函数的单调性,以及运用基本函数的性质分析和解决问题的能力.解法1:依定义,)1()1()(232t tx x x x t x x x f +++-=++-=.23)(2t x x x f ++-='则.0)()1,1(,)1,1()(≥'--x f x f 上可设则在上是增函数在若,23)(,)1,1(,230)(22x x x g x x t x f -=--≥⇔≥'∴考虑函数上恒成立在区间,31)(=x x g 的图象是对称轴为由于开口向上的抛物线,故要使x x t 232-≥在区间(-1,1)上恒成立⇔.5),1(≥-≥t g t 即.)1,1()(,0)()1,1()(,5上是增函数在即上满足在时而当->'-'≥x f x f x f t5≥t t 的取值范围是故.解法2:依定义,)1()1()(232t tx x x x t x x x f +++-=++-=.0)()1,1(,)1,1()(.23)(2≥'--++-='x f x f t x x x f 上可设则在上是增函数在若)(x f ' 的图象是开口向下的抛物线,时且当且仅当05)1(,01)1(≥-=-'≥-='∴t f t f.5.)1,1()(,0)()1,1()(≥->'-'t t x f x f x f 的取值范围是故上是增函数在即上满足在18.本小题主要考查正弦定理、余弦定理和三角形面积公式等基础知识,同时考查利用三角公式进行恒等变形的技能和运算能力.解法1:设AB 、BC 、CA 的长分别为c 、a 、b ,.21cos ,23sin ,60,3tan ==∴==B B B B 得由 应用正弦定理得又,322cos 1sin 2=-=C C 8232263sin sin =⨯==B C b c ..3263332213123sin cos cos sin )sin(sin +=⨯+⨯=+=+=∴C B C B C B A 故所求面积.3826sin 21+==∆A bc S ABC 解法3:同解法1可得c =8. 又由余弦定理可得.64,,364,32321236330sin sin sin sin ,sin sin .12030,900,60.64,64.0108,21826454,cos 222122222+=<-=>=⋅=⋅>⋅==<<∴<<=-=+==+-∴⨯⨯-+=-+=a a B b A B b a B b A a A C B a a a a a a B ac c a b 故舍去而得由所得即 故所求面积.3826sin 21+==∆B ac S ABC 19.本小题主要考查等差数列、等比数列基本知识和数列求和的基本方法以及运算能力.解:(1):当;2,111===S a n 时 ,24)1(22,2221-=--=-=≥-n n n S S a n n n n 时当故{a n }的通项公式为4,2}{,241==-=d a a n a n n 公差是即的等差数列. 设{b n }的通项公式为.41,4,,11=∴==q d b qd b q 则 故.42}{,4121111---=⨯-=n n n n n n b b q b b 的通项公式为即(II),4)12(422411---=-==n n nn n n n b a c]4)12(4)32(454341[4],4)12(45431[13212121nn n n n n n n T n c c c T -+-++⨯+⨯+⨯=-++⨯+⨯+=+++=∴--两式相减得].54)56[(91]54)56[(314)12()4444(2131321+-=∴+-=-+++++--=-n n n n n n n T n n T20.本小题主要考查线面关系和空间距离的求法等基础知识,同时考查空间想象能力和推理运算能力.解法1:(Ⅰ)过E 作EH//BC 交CC 1于H,则CH =BE =1,EH//AD,且EH =AD. 又∵AF ∥EC 1,∴∠FAD =∠C 1EH.∴Rt △ADF ≌Rt △EHC 1. ∴DF =C 1H =2..6222=+=∴DF BD BF(Ⅱ)延长C 1E 与CB 交于G ,连AG,则平面AEC 1F 与平面ABCD 相交于AG . 过C 作CM ⊥AG ,垂足为M,连C 1M,由三垂线定理可知AG ⊥C 1M.由于AG ⊥面C 1MC,且AG ⊂面AEC 1F,所以平面AEC 1F ⊥面C 1MC.在Rt △C 1CM 中,作CQ ⊥MC 1,垂足为Q,则CQ 的长即为C 到平面AEC 1F 的距离..113341712317123,17121743cos 3cos 3,.17,1,2211221=+⨯=⨯=∴=⨯===∠=∠=+===MC CC CM CQ GAB MCG CM MCG GAB BG AB AG BG CGBGCC EB 知由从而可得由解法2:(I)建立如图所示的空间直角坐标系,则D(0,0,0),B(2,4,0),A(2,0,0), C(0,4,0),E(2,4,1),C 1(0,4,3).设F(0,0,z ). ∵AEC 1F 为平行四边形,.62,62||).2,4,2().2,0,0(.2),2,0,2(),0,2(,,11的长为即于是得由为平行四边形由BF BF EF F z z EC AF F AEC =--=∴∴=∴-=-=∴∴(II)设1n 为平面AEC 1F 的法向量,)1,,(,11y x n ADF n =故可设不垂直于平面显然 ⎩⎨⎧=+⨯+⨯-=+⨯+⨯⎪⎩⎪⎨⎧=⋅=⋅02020140,0,011y x y x n n 得由⎪⎩⎪⎨⎧-==∴⎩⎨⎧=+-=+.41,1,022,014y x x y 即111),3,0,0(n CC CC 与设又=的夹角为a ,则 .333341161133||||cos 1111=++⨯=⋅=n CC α ∴C 到平面AEC 1F 的距离为.11334333343cos ||1=⨯==αCC d 21.本小题主要考查概率的基础知识和运算能力,以及运用概率的知识分析和解决实际问题能力.解:(I)在第一次更换灯泡工作中,不需要换灯泡的概率为,51p 需要更换2只灯泡的概率为;)1(213125p p C -(II)对该盏灯来说,在第1、2次都更换了灯泡的概率为(1-p 1)2;在第一次未更换灯泡而在第二次需要更换灯泡的概率为p 1(1-p 2),故所求的概率为);1()1(2121p p p p -+-=(III)至少换4只灯泡包括换5只和换4只两种情况,换5只的概率为p 5(其中p 为(II)中所求,下同)换4只的概率为415p C (1-p),故至少换4只灯泡的概率为.34.042.34.04.06.056.06.07.08.02.0,3.0,8.0).1(45322141553只灯泡的概率为年至少需要换即满时又当=⨯⨯+=∴=⨯+===-+=p p p p p p C p p22.本小题主要考查直线、圆和椭圆等平面解析几何的基础知识以及推理运算能力和综合解决问题的能力.(I)解法1:依题意,可设直线AB 的方程为λ=++-=223,3)1(y x x k y 代入,整理得.0)3()3(2)3(222=--+--+λk x k k x k ①设是方程则212211,),,(),,(x x y x B y x A ①的两个不同的根,0])3(3)3([422>--+=∆∴k k λ ②)3,1(.3)3(2221N k k k x x 由且+-=+是线段AB 的中点,得 .3)3(,12221+=-∴=+k k k x x 解得k =-1,代入②得,λ>12,即λ的取值范围是(12,+∞).于是,直线AB 的方程为.04),1(3=-+--=-y x x y 即解法2:设则有),,(),,(2211y x B y x A.0))(())((33,32121212122222121=+-++-⇒⎪⎩⎪⎨⎧=+=+y y y y x x x x y x y x λλ 依题意,.)(3,212121y y x x k x x AB ++-=∴≠.04),1(3).,12(.12313,)3,1(.1,6,2,)3,1(222121=-+--=-+∞∴=+⨯>-==+=+∴y x x y AB N k y y x x AB N AB 即的方程为直线的取值范围是在椭圆内又由从而的中点是λλ(II)解法1:.02,13,=---=-∴y x x y CD AB CD 即的方程为直线垂直平分 代入椭圆方程,整理得 .04442=-++λx x ③是方程则的中点为又设43004433,),,(),,(),,(x x y x M CD y x D y x C ③的两根,).23,21(,232,21)(21,10043043-=+=-=+=-=+∴M x y x x x x x 即且于是由弦长公式可得 ).3(2||)1(1||432-=-⋅-+=λx x kCD ④ 将直线AB 的方程代入椭圆方程得,04=-+y x.016842=-+-λx x ⑤同理可得.)12(2||1||212-=-⋅+=λx x k AB ⑥.||||.,)12(2)3(2,12CD AB <∴->->λλλ时当假设在在λ>12,使得A 、B 、C 、D 四点共圆,则CD 必为圆的直径,点M 为圆心.点M 到直线AB 的距离为.2232|42321|2|4|00=-+-=-+=y x d ⑦ 于是,由④、⑥、⑦式和勾股定理可得.|2|2321229|2|||||22222CD AB d MB MA =-=-+=+==λλ 故当12>λ时,A 、B 、C 、D 四点均在以M 为圆心,2||CD 为半径的圆上. (注:上述解法中最后一步可按如下解法获得:A 、B 、C 、D 共圆⇔△ACD 为直角三角形,A 为直角即|,|||||2DN CN AN ⋅=⇔).2||)(2||()2||(2d CD d CD AB -+= ⑧ 由⑥式知,⑧式左边=.212-λ 由④和⑦知,⑧式右边=)2232)3(2)(2232)3(2(--+-λλ ,2122923-=--=λλ ∴⑧式成立,即A 、B 、C 、D 四点共圆解法2:由(II)解法1及12>λ.,13,-=-∴x y CD AB CD 方程为直线垂直平分 代入椭圆方程,整理得 .04442=-++λx x ③将直线AB 的方程,04=-+y x 代入椭圆方程,整理得.016842=-+-λx x ⑤解③和⑤式可得 .231,2122,4,321-±-=-±-λλx x 不妨设)233,231(),233,231(),12213,12211(-+-+---------+λλλλλλD C A ∴)21233,23123(---+-+-+=λλλλ )21233,23123(-------+=λλλλ 计算可得0=⋅,∴A 在以CD 为直径的圆上.又B 为A 关于CD 的对称点,∴A 、B 、C 、D 四点共圆.(注:也可用勾股定理证明AC ⊥AD)。
全国2005年7月高等教育自学考试
地址:北京市海淀区知春路1号 学院国际大厦18层 -第 1页全国2005年7月高等教育自学考试高等数学基础试题课程代码:00417一、单项选择题(在每小题的四个备选答案中,选出一个正确答案,并将正确答案的序号填在题干的括号内。
每小题1分,共30分)1. 在空间直角坐标系中,点A(2,3,-1)关于yoz 平面的对称点A ′的坐标是( )。
A. (-2,3,1) B. (2,-3-1) C. (2,3,1) D. (-2,3,-1)2. 设a、b 是非零向量,则下列等式中正确的是( )。
A. (a ·b )2=a 2·b 2B. | a |·a =a2C. a ·(b ·b )= a ·b 2D. a ·(a ·b )= a 2·b3. 平面2x-y+z-8=0与x+y+2z+5=0之间的夹角为( )。
A. 6πB. 4πC.3πD.2π 4. 方程2x-3y=0表示的平面在空间直角坐标系中的位置是( )。
A. 过x 轴B. 过y 轴C. xoy 平面D. 过z 轴5. 直线32z 21y 11x -=-=+与平面3x-z=0的位置关系是( )。
A. 互相垂直 B. 平行C. 相交而不垂直D. 直线在平面上 6.方程1b y a x 2222=-在空间直角坐标系中所表示的曲面名称叫( )。
A. 双曲柱面B. 双曲线C. 椭圆柱面D. 椭圆7. 点A(2,1,-3)与球面x 2+y 2+z 2=9的位置关系是( )。
A. 点A 在球面外部B. 点A 在球面内部,但不是球心C. 点A 在球面上D. 点A 是球心 8.函数f(x)=4x 5x 2+-的定义域是( )。
A. (-∞,1)B. [4,+∞]C. (-∞,1)∪[4,+∞]D. (-∞,1)∪(4,+∞)9. 函数y=2x 11+是( )。
A. 偶函数 B. 奇函数地址:北京市海淀区知春路1号 学院国际大厦18层 -第 2页 C. 单调递增函数 D. 单调递减函数 10. 函数y=e x +1的反函数是( )。
2005全国高考试题分类解析(立体几何)
2005全国高考立体几何题一网打尽河北、河南、山西、安徽(全国卷I)(2)一个与球心距离为1的平面截球所得的圆面面积为π,则球的表面积为 (C ) (A )π28(B )π8(C )π24(D )π4(4)如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且BCF ADE ∆∆、均为正三角形,EF ∥AB ,EF=2,则该多面体的体积为 (C )(A )32 (B )33 (C )34(D )23 (16)在正方形''''D C B A ABCD -中,过对角线'BD 的一个平面交'AA 于E ,交'CC 于F ,则① 四边形E BFD '一定是平行四边形 ② 四边形E BFD '有可能是正方形③ 四边形E BFD '在底面ABCD 内的投影一定是正方形 ④ 四边形E BFD '有可能垂直于平面D BB '以上结论正确的为 ①③④ 。
(写出所有正确结论的编号)(18)(本大题满分12分)已知四棱锥P-ABCD 的底面为直角梯形,AB ∥DC ,⊥=∠PA DAB ,90ο底面ABCD ,且PA=AD=DC=21AB=1,M 是PB 的中点。
(Ⅰ)证明:面PAD ⊥面PCD ; (Ⅱ)求AC 与PB 所成的角;(Ⅲ)求面AMC 与面BMC 所成二面角的大小。
18.本小题主要考查直线与平面垂直、直线与平面所成角的有关知识及思维能力和空间想象能力.考查应用向量知识解决数学问题的能力.满分12分. 方案一:(Ⅰ)证明:∵PA ⊥面ABCD ,CD ⊥AD , ∴由三垂线定理得:CD ⊥PD.因而,CD 与面PAD 内两条相交直线AD ,PD 都垂直, ∴CD ⊥面PAD.又CD ⊂面PCD ,∴面PAD ⊥面PCD.(Ⅱ)解:过点B 作BE//CA ,且BE=CA , 则∠PBE 是AC 与PB 所成的角.连结AE ,可知AC=CB=BE=AE=2,又AB=2,所以四边形ACBE 为正方形. 由PA ⊥面ABCD 得∠PEB=90° 在Rt △PEB 中BE=2,PB=5, .510cos ==∠∴PB BE PBE .510arccos所成的角为与PB AC ∴ (Ⅲ)解:作AN ⊥CM ,垂足为N ,连结BN. 在Rt △PAB 中,AM=MB ,又AC=CB , ∴△AMC ≌△BMC,∴BN ⊥CM ,故∠ANB 为所求二面角的平面角. ∵CB ⊥AC ,由三垂线定理,得CB ⊥PC , 在Rt △PCB 中,CM=MB ,所以CM=AM. 在等腰三角形AMC 中,AN ·MC=AC AC CM⋅-22)2(, 5625223=⨯=∴AN . ∴AB=2,322cos 222-=⨯⨯-+=∠∴BN AN AB BN AN ANB 故所求的二面角为).32arccos(-方法二:因为PA ⊥PD ,PA ⊥AB ,AD ⊥AB ,以A 为坐标原点AD 长为单位长度,如图建立空间直角坐标系,则各点坐标为A (0,0,0)B (0,2,0),C (1,1,0),D (1,0,0),P (0,0,1),M (0,1,)21. (Ⅰ)证明:因.,0),0,1,0(),1,0,0(DC AP DC AP DC AP ⊥=⋅==所以故由题设知AD ⊥DC ,且AP 与AD 是平面PAD 内的两条相交直线,由此得DC ⊥面PAD. 又DC 在面PCD 上,故面PAD ⊥面PCD. (Ⅱ)解:因),1,2,0(),0,1,1(-==PB AC.510||||,cos ,2,5||,2||=⋅>=<=⋅==PB AC PB AC PB AC PB AC 所以故(Ⅲ)解:在MC 上取一点N (x ,y ,z ),则存在,R ∈λ使,MC NC λ=..21,1,1),21,0,1(),,1,1(λλ==-=∴-=---=z y x MC z y x NC要使.54,0210,==-=⋅⊥λ解得即只需z x MC AN MC AN),52,1,51(),52,1,51(,.0),52,1,51(,54=⋅-===⋅=MC BN BN AN MC AN N 有此时能使点坐标为时可知当λANB MC BN MC AN ∠⊥⊥=⋅=⋅所以得由.,0,0为所求二面角的平面角.).32arccos(.32||||),cos(.54,530||,530||--=⋅=∴-=⋅==故所求的二面角为BN AN Θ文科数学(全国卷Ⅰ)(11)点O 是三角形ABC 所在平面内的一点,满足⋅=⋅=⋅,则点O 是ABC ∆的(A )三个内角的角平分线的交点(B )三条边的垂直平分线的交点 (C )三条中线的交点(D )三条高的交点2005高考全国卷Ⅱ数学(理)试题(吉林、黑龙江、广西等地区用)(2) 正方体ABCD —A 1 B 1 C 1 D 1中,P 、Q 、R 、分别是AB 、AD 、B 1 C 1的中点。
2005年高考试题——数学文(湖北卷)
绝密★启用前2005年普通高等学校招生全国统一考试(湖北卷)数学试题卷(文史类)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 满分150分. 考试时间120分钟.第I 部分(选择题 共60分)注意事项: 1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.答在试题卷上无效.3.考试结束,监考人员将本试题卷和答题卡一并收回.一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个备选项中,只有一项是符合题目要求的.1.设P 、Q 为两个非空实数集合,定义集合P+Q=},5,2,0{},,|{=∈∈+P Q b P a b a 若 }6,2,1{=Q ,则P+Q 中元素的个数是( )A .9B .8C .7D .62.对任意实数a ,b ,c ,给出下列命题: ①“b a =”是“bc ac =”充要条件; ②“5+a 是无理数”是“a 是无理数”的充要条件③“a >b ”是“a 2>b 2”的充分条件;④“a <5”是“a <3”的必要条件. 其中真命题的个数是 ( )A .1B .2C .3D .43.已知向量a =(-2,2),b =(5,k ).若|a +b |不超过5,则k 的取值范围是 ( )A .[-4,6]B .[-6,4]C .[-6,2]D .[-2,6] 4.函数|1|||ln --=x e y x 的图象大致是 ( )5.木星的体积约是地球体积的30240倍,则它的表面积约是地球表面积的 ( )A .60倍B .6030倍C .120倍D .12030倍6.双曲线)0(122≠=-mn nymx离心率为2,有一个焦点与抛物线x y 42=的焦点重合,则mn 的值为( )A .163B .83C .316D .387.在x y x y x y y x 2c o s ,,lo g ,222====这四个函数中,当1021<<<x x 时,使2)()()2(2121x f x f x x f +>+恒成立的函数的个数是( )A .0B .1C .2D .3 8.已知a 、b 、c 是直线,β是平面,给出下列命题:①若c a c b b a //,,则⊥⊥; ②若c a c b b a ⊥⊥则,,//; ③若b a b a //,,//则ββ⊂;④若a 与b 异面,且ββ与则b a ,//相交;⑤若a 与b 异面,则至多有一条直线与a ,b 都垂直. 其中真命题的个数是( )A .1B .2C .3D .49.把一排6张座位编号为1,2,3,4,5,6的电影票全部分给4个人,每人至少分1张,至多分2张,且这两张票具有连续的编号,那么不同的分法种数是 ( )A .168B .96C .72D .144 10.若∈<<=+απαααα则),20(tan cos sin( )A .)6,0(πB .)4,6(ππ C .)3,4(ππ D .)2,3(ππ11.在函数x x y 83-=的图象上,其切线的倾斜角小于4π的点中,坐标为整数的点的个数是( )A .3B .2C .1D .012.某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号1,2,…,270,并将整个编号依次分为10段.如果抽得号码有下列四种情况: ①7,34,61,88,115,142,169,196,223,250; ②5,9,100,107,111,121,180,195,200,265; ③11,38,65,92,119,146,173,200,227,254; ④30,57,84,111,138,165,192,219,246,270;关于上述样本的下列结论中,正确的是 ( )A .②、③都不能为系统抽样B .②、④都不能为分层抽样C .①、④都可能为系统抽样D .①、③都可能为分层抽样第Ⅱ卷(非选择题 共90分)注意事项:第Ⅱ卷用0.5毫米黑色的签字或黑色墨水钢笔直接答在答题卡上.答在试题卷上无效. 二、填空题:本大题共4小题,每小题4分,共16分. 把答案填在答题卡相应位置上. 13.函数x x x x f ---=4lg 32)(的定义域是 .14.843)1()2(xx xx ++-的展开式中整理后的常数项等于 .15.函数1cos |sin |-=x x y 的最小正周期与最大值的和为 .16.某实验室需购某种化工原料106千克,现在市场上该原料有两种包装,一种是每袋35千克,价格为140元;另一种是每袋24千克,价格为120元. 在满足需要的条件下,最少要花费 元.三、解答题:本大题共6小题,共74分,解答时应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知向量b a x f t x b x x a ⋅=-=+=)(),,1(),1,(2若函数在区间(-1,1)上是增函数,求t 的取值范围.18.(本小题满分12分) 在△ABC 中,已知63,31cos ,3tan ===AC C B ,求△ABC 的面积.19.(本小题满分12分)设数列}{n a 的前n 项和为S n =2n 2,}{n b 为等比数列,且.)(,112211b a a b b a =-=(Ⅰ)求数列}{n a 和}{n b 的通项公式; (Ⅱ)设nn n b a c =,求数列}{n c 的前n 项和T n .20.(本小题满分12分)如图所示的多面体是由底面为ABCD的长方体被截面AEC1F所截面而得到的,其中AB=4,BC=2,CC1=3,BE=1.(Ⅰ)求BF的长;(Ⅱ)求点C到平面AEC1F的距离.21.(本小题满分12分)某会议室用5盏灯照明,每盏灯各使用灯泡一只,且型号相同.假定每盏灯能否正常照明只与灯泡的寿命有关,该型号的灯泡寿命为1年以上的概率为p1,寿命为2年以上的概率为p2.从使用之日起每满1年进行一次灯泡更换工作,只更换已坏的灯泡,平时不换.(Ⅰ)在第一次灯泡更换工作中,求不需要换灯泡的概率和更换2只灯泡的概率;(Ⅱ)在第二次灯泡更换工作中,对其中的某一盏灯来说,求该盏灯需要更换灯泡的概率;(Ⅲ)当p1=0.8,p2=0.3时,求在第二次灯泡更换工作中,至少需要更换4只灯泡的概率(结果保留两个有效数字).22.(本小题满分14分)设A 、B 是椭圆λ=+223y x 上的两点,点N (1,3)是线段AB 的中点,线段AB 的垂直平分线与椭圆相交于C 、D 两点.(Ⅰ)确定λ的取值范围,并求直线AB 的方程;(Ⅱ)试判断是否存在这样的λ,使得A 、B 、C 、D 四点在同一个圆上?并说明理由.(此题不要求在答题上画图)2005年普通高等学校招生全国统一考试数学试题(文史类)参考答案一、选择题:本题考查基本知识和基本运算,每小题4分,满分16分.1.B 2.B 3.C 4.D 5.C 6.A 7.B 8.A 9.D 10.C 11.D 12.D 二、填空题:本题考查基本知识和基本运算,每小题4分,满分16分.13.)4,3()3,2[⋃ 14.38 15.212-π 16.500三、解答题17.本小题主要考查平面向量数量积的计算方法、利用导数研究函数的单调性,以及运用基本函数的性质分析和解决问题的能力.解法1:依定义,)1()1()(232t tx x x x t x x x f +++-=++-=.23)(2t x x x f ++-='则.0)()1,1(,)1,1()(≥'--x f x f 上可设则在上是增函数在若,23)(,)1,1(,230)(22x x x g x x t x f -=--≥⇔≥'∴考虑函数上恒成立在区间,31)(=x x g 的图象是对称轴为由于开口向上的抛物线,故要使x x t 232-≥在区间(-1,1)上恒成立⇔.5),1(≥-≥t g t 即.)1,1()(,0)()1,1()(,5上是增函数在即上满足在时而当->'-'≥x f x f x f t5≥t t 的取值范围是故.解法2:依定义,)1()1()(232t tx x x x t x x x f +++-=++-=.0)()1,1(,)1,1()(.23)(2≥'--++-='x f x f t x x x f 上可设则在上是增函数在若)(x f ' 的图象是开口向下的抛物线,时且当且仅当05)1(,01)1(≥-=-'≥-='∴t f t f.5.)1,1()(,0)()1,1()(≥->'-'t t x f x f x f 的取值范围是故上是增函数在即上满足在18.本小题主要考查正弦定理、余弦定理和三角形面积公式等基础知识,同时考查利用三角公式进行恒等变形的技能和运算能力.解法1:设AB 、BC 、CA 的长分别为c 、a 、b ,.21cos ,23sin ,60,3tan ==∴==B B B B得由应用正弦定理得又,322cos 1sin 2=-=C C8232263sin sin =⨯==BC b c ..3263332213123sin cos cos sin )sin(sin +=⨯+⨯=+=+=∴C B C B C B A故所求面积.3826sin 21+==∆A bc S ABC解法2:同解法一可得c=8,又由余弦定理得,3826sin 21646822,038226136322233121sin sin cos cos )cos(cos .cos 2222+==+=+=∴>+=-=⨯+⨯-=+-=+-=-+=∆B ac S a a C B C B C B A A bc c b aABC 故所求面积而解法3:同解法1可得c=8. 又由余弦定理可得.12030,900,60.64,64.0108,21826454,cos 22122222<<∴<<=-=+==+-∴⨯⨯-+=-+=A C B a a a a a a B ac c a b所得即.64,,364,32321236330sin sin sin sin ,sin sin 2+=<-=>=⋅=⋅>⋅==a a Bb A Bb a Bb Aa 故舍去而得由故所求面积.3826sin 21+==∆B ac S ABC19.本小题主要考查等差数列、等比数列基本知识和数列求和的基本方法以及运算能力.解:(1):当;2,111===S a n 时,24)1(22,2221-=--=-=≥-n n n S S a n n n n 时当故{a n }的通项公式为4,2}{,241==-=d a a n a n n 公差是即的等差数列. 设{b n }的通项公式为.41,4,,11=∴==q d b qd b q 则故.42}{,4121111---=⨯-=n n n n n n b b qb b 的通项公式为即(II ),4)12(422411---=-==n n nn n n n b a c]4)12(4)32(454341[4],4)12(45431[13212121nn n n n n n n T n c c c T -+-++⨯+⨯+⨯=-++⨯+⨯+=+++=∴--两式相减得].54)56[(91]54)56[(314)12()4444(2131321+-=∴+-=-+++++--=-nn nnn n n T n n T20.本小题主要考查线面关系和空间距离的求法等基础知识,同时考查空间想象能力和推理运算能力.解法1:(Ⅰ)过E 作EH//BC 交CC 1于H ,则CH=BE=1,EH//AD ,且EH=AD. 又∵AF ∥EC 1,∴∠FAD=∠C 1EH. ∴Rt △ADF ≌Rt △EHC 1. ∴DF=C 1H=2. .6222=+=∴DFBDBF(Ⅱ)延长C 1E 与CB 交于G ,连AG , 则平面AEC 1F 与平面ABCD 相交于AG .过C 作CM ⊥AG ,垂足为M ,连C 1M ,由三垂线定理可知AG ⊥C 1M.由于AG ⊥面C 1MC ,且AG ⊂面AEC 1F ,所以平面AEC 1F ⊥面C 1MC.在Rt △C 1CM 中,作CQ ⊥MC 1,垂足为Q ,则CQ 的长即为C 到平面AEC 1F 的距离..113341712317123,17121743cos 3cos 3,.17,1,2211221=+⨯=⨯=∴=⨯===∠=∠=+===MC CC CM CQ GAB MCG CM MCG GAB BGABAG BG CGBG CC EB 知由从而可得由解法2:(I )建立如图所示的空间直角坐标系,则D (0,0,0),B (2,4,0),A (2,0,0), C (0,4,0),E (2,4,1),C 1(0,4,3).设F (0,0,z ). ∵AEC 1F 为平行四边形,.62,62||).2,4,2().2,0,0(.2),2,0,2(),0,2(,,11的长为即于是得由为平行四边形由BF BF BF F z z EC AF F AEC =--=∴∴=∴-=-=∴∴(II )设1n 为平面AEC 1F 的法向量, )1,,(,11y x n ADF n =故可设不垂直于平面显然⎩⎨⎧=+⨯+⨯-=+⨯+⨯⎪⎩⎪⎨⎧=⋅=⋅02020140,0,011y x y x AF n AE n 得由⎪⎩⎪⎨⎧-==∴⎩⎨⎧=+-=+.41,1,022,014y x x y 即 111),3,0,0(n CC CC 与设又=的夹角为a ,则 .333341161133cos 11=++⨯=⋅=n CC α∴C 到平面AEC 1F 的距离为.11334333343cos ||1=⨯==αCC d21.本小题主要考查概率的基础知识和运算能力,以及运用概率的知识分析和解决实际问题能力.解:(I )在第一次更换灯泡工作中,不需要换灯泡的概率为,51p 需要更换2只灯泡的概率为;)1(213125p p C -(II )对该盏灯来说,在第1、2次都更换了灯泡的概率为(1-p 1)2;在第一次未更换灯泡而在第二次需要更换灯泡的概率为p 1(1-p 2),故所求的概率为);1()1(2121p p p p -+-=(III )至少换4只灯泡包括换5只和换4只两种情况,换5只的概率为p 5(其中p 为(II )中所求,下同)换4只的概率为415p C (1-p ),故至少换4只灯泡的概率为 .34.042.34.04.06.056.06.07.08.02.0,3.0,8.0).1(45322141553只灯泡的概率为年至少需要换即满时又当=⨯⨯+=∴=⨯+===-+=p p p p p p C p p22.本小题主要考查直线、圆和椭圆等平面解析几何的基础知识以及推理运算能力和综合解决问题的能力.(I )解法1:依题意,可设直线AB 的方程为λ=++-=223,3)1(y x x k y 代入,整理得.0)3()3(2)3(222=--+--+λk x k k x k①设是方程则212211,),,(),,(x x y x B y x A ①的两个不同的根,0])3(3)3([422>--+=∆∴k k λ ②)3,1(.3)3(2221N kk k x x 由且+-=+是线段AB 的中点,得.3)3(,12221+=-∴=+k k k x x解得k=-1,代入②得,λ>12,即λ的取值范围是(12,+∞). 于是,直线AB 的方程为.04),1(3=-+--=-y x x y 即 解法2:设则有),,(),,(2211y x B y x A.0))(())((33,32121212122222121=+-++-⇒⎪⎩⎪⎨⎧=+=+y y y y x x x x y x y x λλ 依题意,.)(3,212121y y x x k x x AB ++-=∴≠.04),1(3).,12(.12313,)3,1(.1,6,2,)3,1(222121=-+--=-+∞∴=+⨯>-==+=+∴y x x y AB N k y y x x AB N AB 即的方程为直线的取值范围是在椭圆内又由从而的中点是λλ(II )解法1:.02,13,=---=-∴y x x y CD AB CD 即的方程为直线垂直平分 代入椭圆方程,整理得.04442=-++λx x ③是方程则的中点为又设43004433,),,(),,(),,(x x y x M CD y x D y x C ③的两根,).23,21(,232,21)(21,10043043-=+=-=+=-=+∴M x y x x x x x 即且于是由弦长公式可得 ).3(2||)1(1||432-=-⋅-+=λx x kCD ④将直线AB 的方程代入椭圆方程得,04=-+y x.016842=-+-λx x ⑤同理可得.)12(2||1||212-=-⋅+=λx x k AB ⑥.||||.,)12(2)3(2,12CD AB <∴->->λλλ时当假设在在λ>12,使得A 、B 、C 、D 四点共圆,则CD 必为圆的直径,点M 为圆心.点M 到直线AB 的距离为.2232|42321|2|4|00=-+-=-+=y x d ⑦于是,由④、⑥、⑦式和勾股定理可得.|2|2321229|2|||||22222CD AB d MB MA =-=-+=+==λλ故当12>λ时,A 、B 、C 、D 四点均在以M 为圆心,2||CD 为半径的圆上.(注:上述解法中最后一步可按如下解法获得:A 、B 、C 、D 共圆⇔△ACD 为直角三角形,A 为直角即|,|||||2DN CN AN ⋅=⇔).2||)(2||()2||(2d CD d CD AB -+= ⑧由⑥式知,⑧式左边=.212-λ由④和⑦知,⑧式右边=)2232)3(2)(2232)3(2(--+-λλ,2122923-=--=λλ∴⑧式成立,即A 、B 、C 、D 四点共圆 解法2:由(II )解法1及12>λ.,13,-=-∴x y CD AB CD 方程为直线垂直平分 代入椭圆方程,整理得.04442=-++λx x ③将直线AB 的方程,04=-+y x 代入椭圆方程,整理得.016842=-+-λx x ⑤解③和⑤式可得 .231,2122,4,321-±-=-±=λλx x不妨设)233,231(),233,231(),12213,12211(-+-+---------+λλλλλλD C A∴)21233,23123(---+-+-+=λλλλCA)21233,23123(-------+=λλλλDA计算可得0CA,∴A在以CD为直径的圆上.⋅DA=又B为A关于CD的对称点,∴A、B、C、D四点共圆. (注:也可用勾股定理证明AC⊥AD)。
2005年高考湖北卷(文科数学)
2005年普通高等学校招生全国统一考试文科数学(湖北卷)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个备选项中,只有一项是符合题目要求的.1.设P 、Q 为两个非空实数集合,定义集合{,}P Q a b a P b Q +=+∈∈,若{0,2,5}P =,{1,2,6}Q =,则P Q +中元素的个数是A .9B .8C .7D .6 2.对任意实数a ,b ,c ,给出下列命题:①“b a =”是“bc ac =”充要条件;②“5+a 是无理数”是“a 是无理数”的充要条件;③“a b >”是“22a b >”的充分条件;④“5a <”是“3a <”的必要条件.其中真命题的个数是A .1B .2C .3D .4 3.已知向量(2,2)a =-,(5,)b k =,若a b +不超过5,则k 的取值范围是 A .[4,6]- B .[6,4]- C .[6,2]- D .[2,6]- 4.函数|1|||ln --=x e y x 的图象大致是5.木星的体积约是地球体积的30240倍,则它的表面积约是地球表面积的 A .60倍 B. C .120倍 D.5.双曲线221x y m n-=(0mn ≠)离心率为2,有一个焦点与抛物线x y 42=的焦点重合,则mn 的值为A .163B .83C .316D .38A 1D6.在2x y =,2log y x =,2y x =,cos 2y x =,这四个函数中,当1021<<<x x 时,使2)()()2(2121x f x f x x f +>+恒成立的函数的个数是 A .0 B .1 C .2 D .3 8.已知a 、b 、c 是直线,β是平面,给出下列命题:①若a b ⊥,b c ⊥,则a ∥c ; ②若a ∥b ,b c ⊥,则a c ⊥; ③若//a β,b β⊂,则a ∥b ; ④若a 与b 异面,且//a β,则b 与β相交; ⑤若a 与b 异面,则至多有一条直线与a 、b 都垂直. 其中真命题的个数是A .1B .2C .3D .4 9.把一同排6张座位编号为1,2,3,4,5,6的电影票全部分给4个人,每人至少分1张,至多分2张,且这两张票具有连续的编号,那么不同的分法种数是 A .168 B .96 C .72 D .1447.若sin cos tan ααα+=,02πα<<,则α∈A .)6,0(πB .)4,6(ππC .)3,4(ππD .)2,3(ππ11.在函数x x y 83-=的图象上,其切线的倾斜角小于4π的点中,坐标为整数的点的个数是A .0B .1C .2D .3 11.某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号1,2,…,270,并将整个编号依次分为10段.如果抽得号码有下列四种情况:①7,34,61,88,115,142,169,196,223,250; ②5,9,100,107,111,121,180,195,200,265; ③11,38,65,92,119,146,173,200,227,254; ④30,57,84,111,138,165,192,219,246,270; 关于上述样本的下列结论中,正确的是A .②、③都不能为系统抽样B .②、④都不能为分层抽样C .①、④都可能为系统抽样D .①、③都可能为分层抽样二、填空题:本大题共4小题,每小题4分,共16分. 把答案填在答题卡相应位置上. 13.函数x x x x f ---=4lg 32)(的定义域是 . 14.843)1()2(xx x x ++-的展开式中整理后的常数项等于 .15.函数sin cos 1y x x =-的最小正周期与最大值的和为 .16.某实验室需购某种化工原料106千克,现在市场上该原料有两种包装,一种是每袋35千克,价格为140元;另一种是每袋24千克,价格为120元.在满足需要的条件下,最少要花费 元.三、解答题:本大题共6小题,共74分,解答时应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)已知向量2(,1)a x x =+,(1,)b x t =-,若函数()f x a b =⋅在区间(1,1)-上是增函数,求t 的取值范围. 18.(本小题满分12分)在ABC ∆中,已知tan B =1cos 3C =,AC =ABC ∆的面积. 19.(本小题满分12分)设数列}{n a 的前n 项和为22n S n =,}{n b 为等比数列,且11a b =,2211()b a a b -=. (Ⅰ)求数列}{n a 和}{n b 的通项公式; (Ⅱ)设nnn b a c =,求数列}{n c 的前n 项和n T . 20.(本小题满分12分)如图所示的多面体是由底面为ABCD 的长方体被截面1AEC F 所截面而得到的,其中4AB =,2BC =,13CC =,1BE =. (Ⅰ)求BF 的长;(Ⅱ)求点C 到平面1AEC F 的距离.ABCDFEC 121.(本小题满分12分)某会议室用5盏灯照明,每盏灯各使用灯泡一只,且型号相同.假定每盏灯能否正常照明只与灯泡的寿命有关,该型号的灯泡寿命为1年以上的概率为1p ,寿命为2年以上的概率为2p .从使用之日起每满1年进行一次灯泡更换工作,只更换已坏的灯泡,平时不换.(Ⅰ)在第一次灯泡更换工作中,求不需要换灯泡的概率和更换2只灯泡的概率; (Ⅱ)在第二次灯泡更换工作中,对其中的某一盏灯来说,求该盏灯需要更换灯泡的概率;(Ⅲ)当10.8p =,0.3p =时,求在第二次灯泡更换工作,至少需要更换4只灯泡的概率(结果保留两个有效数字). 22.(本小题满分14分)设A 、B 是椭圆λ=+223y x 上的两点,点(1,3)N 是线段AB 的中点,线段AB 的垂直平分线与椭圆相交于C 、D 两点.(Ⅰ)确定λ的取值范围,并求直线AB 的方程;(Ⅱ)试判断是否存在这样的λ,使得A 、B 、C 、D 四点在同一个圆上?并说明理由.2005年普通高等学校招生全国统一考试数学试题(文史类)参考答案一、选择题:本题考查基本知识和基本运算,每小题4分,满分16分. 1.B 2.B 3.C 4.D 5.C 6.A 7.B 8.A 9.D 10.C 11.D 12.D 二、填空题:本题考查基本知识和基本运算,每小题4分,满分16分.13.)4,3()3,2[⋃ 14.38 15.212-π 16.500 三、解答题17.本小题主要考查平面向量数量积的计算方法、利用导数研究函数的单调性,以及运用基本函数的性质分析和解决问题的能力. 解法1:依定义,)1()1()(232t tx x x x t x x x f +++-=++-=.23)(2t x x x f ++-='则.0)()1,1(,)1,1()(≥'--x f x f 上可设则在上是增函数在若,23)(,)1,1(,230)(22x x x g x x t x f -=--≥⇔≥'∴考虑函数上恒成立在区间,31)(=x x g 的图象是对称轴为由于开口向上的抛物线,故要使x x t 232-≥在区间(-1,1)上恒成立⇔.5),1(≥-≥t g t 即.)1,1()(,0)()1,1()(,5上是增函数在即上满足在时而当->'-'≥x f x f x f t5≥t t 的取值范围是故.解法2:依定义,)1()1()(232t tx x x x t x x x f +++-=++-=.0)()1,1(,)1,1()(.23)(2≥'--++-='x f x f t x x x f 上可设则在上是增函数在若)(x f ' 的图象是开口向下的抛物线,时且当且仅当05)1(,01)1(≥-=-'≥-='∴t f t f.5.)1,1()(,0)()1,1()(≥->'-'t t x f x f x f 的取值范围是故上是增函数在即上满足在18.本小题主要考查正弦定理、余弦定理和三角形面积公式等基础知识,同时考查利用三角公式进行恒等变形的技能和运算能力. 解法1:设AB 、BC 、CA 的长分别为c 、a 、b ,.21cos ,23sin ,60,3tan ==∴==B B B B 得由应用正弦定理得又,322cos 1sin 2=-=C C 8232263sin sin =⨯==B C b c . .3263332213123sin cos cos sin )sin(sin +=⨯+⨯=+=+=∴C B C B C B A 故所求面积.3826sin 21+==∆A bc S ABC 解法3:同解法1可得c=8. 又由余弦定理可得.64,,364,32321236330sin sin sin sin ,sin sin .12030,900,60.64,64.0108,21826454,cos 222122222+=<-=>=⋅=⋅>⋅==<<∴<<=-=+==+-∴⨯⨯-+=-+=a a B b A B b a B b A a A C B a a a a a a B ac c a b 故舍去而得由所得即 故所求面积.3826sin 21+==∆B ac S ABC 19.本小题主要考查等差数列、等比数列基本知识和数列求和的基本方法以及运算能力.解:(1):当;2,111===S a n 时,24)1(22,2221-=--=-=≥-n n n S S a n n n n 时当故{a n }的通项公式为4,2}{,241==-=d a a n a n n 公差是即的等差数列.设{b n }的通项公式为.41,4,,11=∴==q d b qd b q 则故.42}{,4121111---=⨯-=n n n n n n b b q b b 的通项公式为即(II ),4)12(422411---=-==n n nn n n n b a c]4)12(4)32(454341[4],4)12(45431[13212121nn n n n n n n T n c c c T -+-++⨯+⨯+⨯=-++⨯+⨯+=+++=∴--两式相减得].54)56[(91]54)56[(314)12()4444(2131321+-=∴+-=-+++++--=-n n n n n n n T n n T20.本小题主要考查线面关系和空间距离的求法等基础知识,同时考查空间想象能力和推理运算能力.解法1:(Ⅰ)过E 作EH//BC 交CC 1于H ,则CH=BE=1,EH//AD ,且EH=AD. 又∵AF ∥EC 1,∴∠FAD=∠C 1EH. ∴Rt △ADF ≌Rt △EHC 1. ∴DF=C 1H=2..6222=+=∴DF BD BF(Ⅱ)延长C 1E 与CB 交于G ,连AG , 则平面AEC 1F 与平面ABCD 相交于AG. 过C 作CM ⊥AG ,垂足为M ,连C 1M ,由三垂线定理可知AG ⊥C 1M.由于AG ⊥面C 1MC ,且AG ⊂面AEC 1F ,所以平面AEC 1F ⊥面C 1MC.在Rt △C 1CM 中,作CQ ⊥MC 1,垂足为Q ,则CQ 的长即为C 到平面AEC 1F 的距离..113341712317123,17121743cos 3cos 3,.17,1,2211221=+⨯=⨯=∴=⨯===∠=∠=+===MC CC CM CQ GAB MCG CM MCG GAB BG AB AG BG CGBGCC EB 知由从而可得由解法2:(I )建立如图所示的空间直角坐标系,则D (0,0,0),B (2,4,0),A (2,0,0),C (0,4,0),E (2,4,1),C 1(0,4,3).设F (0,0,z ). ∵AEC 1F 为平行四边形,.62,62||).2,4,2().2,0,0(.2),2,0,2(),0,2(,,11的长为即于是得由为平行四边形由BF EF F z z EC F AEC =--=∴∴=∴-=-=∴∴(II )设1n 为平面AEC 1F 的法向量,)1,,(,11y x n ADF n =故可设不垂直于平面显然 ⎩⎨⎧=+⨯+⨯-=+⨯+⨯⎪⎩⎪⎨⎧=⋅=⋅02020140,0,011y x y x n n 得由 ⎪⎩⎪⎨⎧-==∴⎩⎨⎧=+-=+.41,1,022,014y x x y 即 111),3,0,0(n CC CC 与设又=的夹角为a ,则 .333341161133||||cos 1111=++⨯=⋅=n CC α ∴C 到平面AEC 1F 的距离为.11334333343cos ||1=⨯==αCC d 21.本小题主要考查概率的基础知识和运算能力,以及运用概率的知识分析和解决实际问题能力.解:(I )在第一次更换灯泡工作中,不需要换灯泡的概率为,51p 需要更换2只灯泡的概率为;)1(213125p p C -(II )对该盏灯来说,在第1、2次都更换了灯泡的概率为(1-p 1)2;在第一次未更换灯泡而在第二次需要更换灯泡的概率为p 1(1-p 2),故所求的概率为);1()1(2121p p p p -+-=(III )至少换4只灯泡包括换5只和换4只两种情况,换5只的概率为p 5(其中p 为(II )中所求,下同)换4只的概率为415p C (1-p ),故至少换4只灯泡的概率为.34.042.34.04.06.056.06.07.08.02.0,3.0,8.0).1(45322141553只灯泡的概率为年至少需要换即满时又当=⨯⨯+=∴=⨯+===-+=p p p p p p C p p22.本小题主要考查直线、圆和椭圆等平面解析几何的基础知识以及推理运算能力和综合解决问题的能力.(I )解法1:依题意,可设直线AB 的方程为λ=++-=223,3)1(y x x k y 代入,整理得.0)3()3(2)3(222=--+--+λk x k k x k ①设是方程则212211,),,(),,(x x y x B y x A ①的两个不同的根,0])3(3)3([422>--+=∆∴k k λ ②)3,1(.3)3(2221N k k k x x 由且+-=+是线段AB 的中点,得 .3)3(,12221+=-∴=+k k k x x 解得k=-1,代入②得,λ>12,即λ的取值范围是(12,+∞). 于是,直线AB 的方程为.04),1(3=-+--=-y x x y 即 解法2:设则有),,(),,(2211y x B y x A.0))(())((33,32121212122222121=+-++-⇒⎪⎩⎪⎨⎧=+=+y y y y x x x x y x y x λλ 依题意,.)(3,212121y y x x k x x AB ++-=∴≠.04),1(3).,12(.12313,)3,1(.1,6,2,)3,1(222121=-+--=-+∞∴=+⨯>-==+=+∴y x x y AB N k y y x x AB N AB 即的方程为直线的取值范围是在椭圆内又由从而的中点是λλ(II)解法1:.02,13,=---=-∴y x x y CD AB CD 即的方程为直线垂直平分 代入椭圆方程,整理得.04442=-++λx x ③是方程则的中点为又设43004433,),,(),,(),,(x x y x M CD y x D y x C ③的两根,).23,21(,232,21)(21,10043043-=+=-=+=-=+∴M x y x x x x x 即且于是由弦长公式可得).3(2||)1(1||432-=-⋅-+=λx x kCD ④将直线AB 的方程代入椭圆方程得,04=-+y x.016842=-+-λx x ⑤同理可得.)12(2||1||212-=-⋅+=λx x k AB ⑥.||||.,)12(2)3(2,12CD AB <∴->->λλλ时当假设在在λ>12,使得A 、B 、C 、D 四点共圆,则CD 必为圆的直径,点M 为圆心.点M 到直线AB 的距离为.2232|42321|2|4|00=-+-=-+=y x d ⑦于是,由④、⑥、⑦式和勾股定理可得.|2|2321229|2|||||22222CD AB d MB MA =-=-+=+==λλ故当12>λ时,A 、B 、C 、D 四点均在以M 为圆心,2||CD 为半径的圆上.(注:上述解法中最后一步可按如下解法获得:A 、B 、C 、D 共圆⇔△ACD 为直角三角形,A 为直角即|,|||||2DN CN AN ⋅=⇔).2||)(2||()2||(2d CD d CD AB -+= ⑧ 由⑥式知,⑧式左边=.212-λ由④和⑦知,⑧式右边=)2232)3(2)(2232)3(2(--+-λλ ,2122923-=--=λλ ∴⑧式成立,即A 、B 、C 、D 四点共圆2005年普通高等学校招生全国统一考试理科数学(湖北卷)第 11 页 共 11 页 2005年普通高等学校招生全国统一考试理科数学(湖北卷)第 11 页 共 11 页 解法2:由(II )解法1及12>λ.,13,-=-∴x y CD AB CD 方程为直线垂直平分 代入椭圆方程,整理得 .04442=-++λx x ③将直线AB 的方程,04=-+y x 代入椭圆方程,整理得 .016842=-+-λx x ⑤解③和⑤式可得 .231,2122,4,321-±-=-±-λλx x 不妨设)233,231(),233,231(),12213,12211(-+-+---------+λλλλλλD C A ∴)21233,23123(---+-+-+=λλλλ )21233,23123(-------+=λλλλ 计算可得0=⋅,∴A 在以CD 为直径的圆上.又B 为A 关于CD 的对称点,∴A 、B 、C 、D 四点共圆. (注:也可用勾股定理证明AC ⊥AD )。
武汉理工大学 高数A下 2005级 A卷及答案 理工科
故
L
7 CB e4 8 OC 2
y ( ) 2 2(ln x C ) ----6 x
y du 1 dx u2 udu ln x C ,x ---------3 dx u x x 2 由 y(1) 2 得 C 2 , y 2 2x 2 (ln x 2) --------7 u
L
五、 (本题 8 分)求微分方程
dy x y 满足条件 y(1) 2 的解。 dx y x
六、求解下列各题(每小题 8 分,共 16 分) 1.判断级数 (1)n
n 3
ln n 是否收敛?如果收敛,是绝对收敛还是条件收敛? n
2.先求幂级数
n 1
1 xn 的和函数,再求级数 n 1 的和。 n n n 1 3
1. lim 令x
1 3 1 得 ln 3 2 n1 n 3n
2 2 2
n3
n 1
1
n 1
3 ln
2
3 ------8 2
七 (1) L x y z ( x y z 2ax 2ay 2az 2a )
L L L 1 2 ( x a) ; 1 2 ( y a) ; 1 2 ( z a) ---------2 x y z 1 2 ( x a) 0 3a 3a 解方程组 1 2 ( y a ) 0 得: x y z 。代入(*)式得 x y z -------4 3 1 2 ( z a ) 0
5.微分方程 y 6 y 9 y (3x 1)e 3 x 具有形如( A y x 2 (ax b)e 3 x B y (ax b)e3x
微分几何05A答案
I (1 4 x ) d x 8 xyd xd y (1 4 y ) d y
2 2 2
2
II
2 1 4x 4y
2 2
dx
2
2 1 4x 4y
2 2
dy
2
K
LN M EG F
2 2
பைடு நூலகம்
4 (1 4 x 4 y )
2 2 2
H
LG 2M F NE 2( EG F )
| r |
2 , r r { sin t , co s t ,1} , | r r |
2,
k
| r r | 1 3 | r | 2 ( r , r , r ) 1 2 ( r r ) 2
密切平面:
0 1
r ( t ) {cos t , sin t , t }, r ( t ) { sin t , cos t ,1} r ( t ) { cos t , sin t , 0}, r ( t ) {sin t , cos t , 0} 。
矛盾
第 2 页(共 2 页)
华中师范大学 2004 –2005 学年第二学期
------------------------------------------------- 密 ---------------------------------- 封 ----------------------------- 线 ---------------------------------------------------------
期末考试试卷(A 卷)答案
2005年普通高等学校招生全国统一考试数学试卷湖北卷文
2005年普通高等学校招生全国统一考试(湖北卷)数 学(文史类)第I 部分(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个备选项中,只有一项是符合题目要求的.1.设P 、Q 为两个非空实数集合,定义集合P+Q=},5,2,0{},,|{=∈∈+P Q b P a b a 若}6,2,1{=Q ,则P+Q 中元素的个数是( )A.9B.8C.7D.62.对任意实数a ,b ,c ,给出下列命题:其中真命题的个数是( )①“b a =”是“bc ac =”充要条件; ②“5+a 是无理数”是“a 是无理数”的充要条件③“a >b ”是“a 2>b 2”的充分条件; ④“a <5”是“a <3”的必要条件.A.1B.2C.3D.43.已知向量a =(-2,2),b =(5,k ).若|a +b |不超过5,则k 的取值范围是 ( )A.[-4,6]B.[-6,4]C.[-6,2]D.[-2,6]4.函数|1|||ln --=x e y x 的图象大致是( )5.木星的体积约是地球体积的30240倍,则它的表面积约是地球表面积的( )A.60倍B.6030倍C.120倍D.12030倍6.双曲线)0(122≠=-mn n y m x 离心率为2,有一个焦点与抛物线x y 42=的焦点重合,则mn 的值为( )A.163B.83C.316D.387.在x y x y x y y x 2cos ,,log ,222====这四个函数中,当1021<<<x x 时,使2)()()2(2121x f x f x x f +>+恒成立的函数的个数是( )A.0B.1C.2D.3 8.已知a 、b 、c 是直线,β是平面,给出下列命题:①若c a c b b a //,,则⊥⊥;②若c a c b b a ⊥⊥则,,//;③若b a b a //,,//则ββ⊂;④若a 与b 异面,且ββ与则b a ,//相交;⑤若a 与b 异面,则至多有一条直线与a ,b 都垂直. 其中真命题的个数是 ( )A.1B.2C.3D.49.把一同排6张座位编号为1,2,3,4,5,6的电影票全部分给4个人,每人至少分1张,至多分2张,且这两张票具有连续的编号,那么不同的分法种数是 ( )A.168B.96C.72D.14410.若∈<<=+απαααα则),20(tancossin()A.)6,0(πB.)4,6(ππC.)3,4(ππD.)2,3(ππ11.在函数xxy83-=的图象上,其切线的倾斜角小于4π的点中,坐标为整数的点的个数是()A.3B.2C.1D.012.某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号1,2,…,270,并将整个编号依次分为10段.如果抽得号码有下列四种情况:①7,34,61,88,115,142,169,196,223,250;②5,9,100,107,111,121,180,195,200,265;③11,38,65,92,119,146,173,200,227,254;④30,57,84,111,138,165,192,219,246,270.关于上述样本的下列结论中,正确的是()A.②、③都不能为系统抽样B.②、④都不能为分层抽样C.①、④都可能为系统抽样D.①、③都可能为分层抽样第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分。
(湖北版)高考数学分项汇编 专题10 立体几何(含解析)理
专题10 立体几何一.选择题10.1.【2005年普通高等学校招生全国统一考试湖北卷10】如图,在三棱柱ABC—A′B′C′中,点E 、F 、H 、 K 分别为AC′、CB′、A′B、B′C′的中点,G 为△ABC 的重心. 从K 、H 、G 、B′中取一点作为P , 使得该棱柱恰有2条棱与平面PEF 平行,则P 为 ( )A.K B .H C .G D .B′【答案】C2. 【2006年普通高等学校招生全国统一考试湖北卷】关于直线与平面,有以下四个命题: ,m n ,αβ①若且,则;//,//m n αβ//αβ//m n ②若且,则;,m n αβ⊥⊥αβ⊥m n ⊥③若且,则;,//m n αβ⊥//αβm n ⊥④若且,则;//,m n αβ⊥αβ⊥//m n 其中真命题的序号是 ( )A .①②B .③④C .①④D .②③【答案】D.【解析】试题分析:用排除法可得选D.3.【2007年普通高等学校招生全国统一考试湖北卷4】平面外有两条直线和,如果和在平面αm n m nC 【答案】C∴∠EOA即为AC与PB所成的角或其补角AB于3.【2007年普通高等学校招生全国统一考试湖北卷18】如图,在三棱锥V-ABC中,VC⊥底面解法3:(Ⅰ)以点为原点,以所在的直线分别为轴、轴,建立如图所示的空间直角坐D DC DB 平x y 标4.【2008年普通高等学校招生全国统一考试湖北卷18】如图,在直三棱柱ABC-A1B1C1中,平面ABC⊥侧面A1ABB1.(Ⅰ)求证:AB⊥BC;(Ⅱ)若直线AC与平面A1BC所成的角为θ,二面角A1-BC-A的大小为φ的大小关系,并予以证明.【解析】(Ⅰ)证明:如右图,过点A在平面A1ABB1内作AD⊥A1B于D,则由平面A1BC⊥侧面A1ABB1,且平面A1BC侧面A1ABB1=A1B,得AD⊥平面A1BC,又BC平面A1BC,所以AD⊥BC.因为三棱柱ABC—A1B1C1是直三棱柱,则AA1⊥底面ABC,所以AA1⊥BC.又AA1AD=A,从而BC⊥侧面A1ABB1,又AB侧面A1ABB1,故AB⊥BC.5.【2009年普通高等学校招生全国统一考试湖北卷面ABCD ,SD=2a ,点E 是SD 上的点,且2AD a =(Ⅰ)求证:对任意的,都有(0,2]λ∈(Ⅱ)设二面角C—AE—D 的大小为θ的值BE 在平面.2∴⊥根据三垂线定理,知:AC NP7.【2011年普通高等学校招生全国统一考试湖北卷18】如图,已知正三棱柱的各棱长是111ABC A B C -4,E 是BC 的中点,动点F 在侧棱上,且不与点C 重合1CC (Ⅰ)当CF=1时,求证:;1EF A C ⊥ (Ⅱ)设二面角C-AF-E 的大小为,求的最小值。
2005年普通高等学校招生全国统一考试数学及详细解析(湖北卷.文)
2005年普通高等学校招生全国统一考试数学及详细解析(湖北卷.文)绝密★启用前2005年普通高等学校招生全国统一考试(湖北卷)数学试题卷(文史类)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 满分150分. 考试时间120分钟.第I 部分(选择题共60分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.答在试题卷上无效.3.考试结束,监考人员将本试题卷和答题卡一并收回.一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个备选项中,只有一项是符合题目要求的.1.设P 、Q 为两个非空实数集合,定义集合P+Q=},5,2,0{},,|{=∈∈+P Q b P a b a 若 }6,2,1{=Q ,则P+Q 中元素的个数是()A .9B .8C .7D .6解:集合P 中和集合Q 中各选一个元素可组成的组合数为11339C C ?=其对应的和有一个重复:0+6=1+5, 故P+Q 中的元素有8个,选(B)2.对任意实数a ,b ,c ,给出下列命题:①“b a =”是“bc ac =”充要条件;②“5+a 是无理数”是“a 是无理数”的充要条件③“a >b ”是“a 2>b 2”的充分条件;④“a <5”是“a <3”的必要条件. 其中真命题的个数是() A .1 B .2 C .3 D .4解:①是假命题,∵由ac=bc 推不出a=b ;②是真命题;③是假命题;④是真命题,∵“a <3”?“a <5”,选(B) 3.已知向量a =(-2,2),b =(5,k ).若|a +b |不超过5,则k 的取值范围是()A .[-4,6] B .[-6,4] C .[-6,2] D .[-2,6]解:∵22222||28252(102)134a b a b ab k k k k +=++=+++-+=++ ,由题意得k 2+4k+-12≤0,解得-6≤k ≤2,即k 的取值范围为[-6,2],选(C) 4.函数|1|||ln --=x e y x 的图象大致是()解:|1|||ln --=x e y x =111,1101,x x x x x x-+=≥-+<5.木星的体积约是地球体积的30240倍,则它的表面积约是地球表面积的()A .60倍B .6030倍C .120倍D .12030倍解:设木星的半径为r 1,地球的半径为r 2由题意得3132r r =,则木星的表面积∶地球的表面积=2311223221120r r r r r r =?===,选(C) 6.双曲线)0(122≠=-mn ny m x 离心率为2,有一个焦点与抛物线x y 42=的焦点重合,则mn 的值为()A .163 B .83 C .316 D .38 解:抛物线x y 42=的焦点为(1,0),∴1,2,m n ?+=?=得m=14,n=34,∴mn=316,选(A)7.在x y x y x y y x 2c o s ,,l o g,222====这四个函数中,当1021<<<="">)()()2(2121x f x f x x f +>+恒成立的函数的个数是()A .0B .1C .2D .3解:∵当1021<<<="">,121222log log 22x x x x++>∴>即当1021<<<="" 2x,="" bdsfid="180" p="" x="" 时,使log="">()()2(2121x f x f x x f +>+恒成立,其它3个函数都可以举出反例当1021<<<="">)()()2(2121x f x f x x f +>+不成立(这里略),选(B) 8.已知a 、b 、c 是直线,β是平面,给出下列命题:①若c a c b b a //,,则⊥⊥;②若c a c b b a ⊥⊥则,,//;③若b a b a //,,//则ββ?;④若a 与b 异面,且ββ与则b a ,//相交;⑤若a 与b 异面,则至多有一条直线与a ,b 都垂直. 其中真命题的个数是() A .1 B .2 C .3 D .4 解:①③④⑤是假命题,②是真命题,选(A)9.把一同排6张座位编号为1,2,3,4,5,6的电影票全部分给4个人,每人至少分1张,至多分2张,且这两张票具有连续的编号,那么不同的分法种数是()A .168 B .96 C .72 D .144 解:本题主要关键是抓连续编号的2张电影票的情况,可分四种情况:情况一:连续的编号的电影票为1,2;3,4;5,6,这时分法种数为222432C P P 情况二:连续的编号的电影票为1,2;4,5,这时分法种数为222422C P P 情况三:连续的编号的电影票为2,3;4,5;这时分法种数为222422C P P 情况四:连续的编号的电影票为2,3;5,6,这时分法种数为222422C P P综上, 把一同排6张座位编号为1,2,3,4,5,6的电影票全部分给4个人,每人至少分1张,至多分2张,且这两张票具有连续的编号,那么不同的分法种数是222432C P P +3222422C P P =144(种) 10.若∈<<=+απαααα则),20(tan cos sin()A .)60(πB .)4,6(ππ C .)3,4(ππ D .)2,3(ππ解:∵sin α+cos α)4πα+∈),∴排除(A),(B),当α=4π时,tan α=1,sin α+cos α,这时sin α+cos α≠tan α,∴选(C) 11.在函数x x y 83-=的图象上,其切线的倾斜角小于4π的点中,坐标为整数的点的个数是() A .3B .2C .1D .0解:y '=3x 2-8,由题意得0<3x 2-8<13x <<或3x -<<,其中整x 的可取值为0个,选(D) 12.某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号1,2,…,270,并将整个编号依次分为10段.如果抽得号码有下列四种情况:①7,34,61,88,115,142,169,196,223,250;②5,9,100,107,111,121,180,195,200,265;③11,38,65,92,119,146,173,200,227,254;④30,57,84,111,138,165,192,219,246,270;关于上述样本的下列结论中,正确的是() A .②、③都不能为系统抽样 B .②、④都不能为分层抽样 C .①、④都可能为系统抽样 D .①、③都可能为分层抽样解:①②不是系统抽样,可能为分层抽样; ③可能为系统抽样,也可能为分层抽样:④既非系统抽样也不是分层抽样,综上选(D)第Ⅱ卷(非选择题共90分)注意事项:第Ⅱ卷用0.5毫米黑色的签字或黑色墨水钢笔直接答在答题卡上.答在试题卷上无效. 二、填空题:本大题共4小题,每小题4分,共16分. 把答案填在答题卡相应位置上. 13.函数x x x x f ---=4lg 32)(的定义域是 . 解:x 必须满足402030x x x ->??-≥??-≠?解之得,∴函数x x x x f ---=4lg 32)(的定义域是{x|3<x<4或2≤x<3}< bdsfid="271" p=""></x<4或2≤x<3}<>14.843)1()2(xx x x ++-的展开式中整理后的常数项等于 .解: 342()x x -的通项公式为341241442()()(2)r r r r r rr T C x C x x --+=-=-,令12-4r=0,r=3,这时得342()x x -的展开式中的常数项为3342C -=-32, 81()x x+的通项公式为8821881()k k k k kk T C x C x x --+==,令8-2k=0,k=4,这时得81()x x +的展开式中的常数项为48C =70,∴843)1()2(xx x x ++-的展开式中整理后的常数项等于3815.函数1cos |sin |-=x x y 的最小正周期与最大值的和为 .解: 函数1cos |sin |-=x x y 的最小正周期为2π,∵1sin 2sin 02|sin |cos 1sin 2sin 02x x x x x x ?≥??=?-的最大值为12,∴1cos |sin |-=x x y 的最大值为12-,∴1cos |sin |-=x x y 的最小正周期与最大值的和为122π-. 16.某实验室需购某种化工原料106千克,现在市场上该原料有两种包装,一种是每袋35千克,价格为140元;另一种是每袋24千克,价格为120元. 在满足需要的条件下,最少要花费元. 三、解答题:本大题共6小题,共74分,解答时应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知向量x f t x x x ?=-=+=)(),,1(),1,(2若函数在区间(-1,1)上是增函数,求t 的取值范围. 18.(本小题满分12分)在△ABC 中,已知63,31cos ,3tan ===AC C B ,求△ABC 的面积.19.(本小题满分12分)设数列}{n a 的前n 项和为S n =2n 2,}{n b 为等比数列,且.)(,112211b a a b b a =-=(Ⅰ)求数列}{n a 和}{n b 的通项公式;(Ⅱ)设nnn b a c =,求数列}{n c 的前n 项和T n . 20.(本小题满分12分)如图所示的多面体是由底面为ABCD的长方体被截面AEC1F所截面而得到的,其中AB=4,BC=2,CC1=3,BE=1.(Ⅰ)求BF的长;(Ⅱ)求点C到平面AEC1F的距离.21.(本小题满分12分)某会议室用5盏灯照明,每盏灯各使用灯泡一只,且型号相同.假定每盏灯能否正常照明只与灯泡的寿命有关,该型号的灯泡寿命为1年以上的概率为p1,寿命为2年以上的概率为p2.从使用之日起每满1年进行一次灯泡更换工作,只更换已坏的灯泡,平时不换.(Ⅰ)在第一次灯泡更换工作中,求不需要换灯泡的概率和更换2只灯泡的概率;(Ⅱ)在第二次灯泡更换工作中,对其中的某一盏灯来说,求该盏灯需要更换灯泡的概率;(Ⅲ)当p 1=0.8,p 2=0.3时,求在第二次灯泡更换工作,至少需要更换4只灯泡的概率(结果保留两个有效数字). 22.(本小题满分14分)设A 、B 是椭圆λ=+223y x 上的两点,点N (1,3)是线段AB 的中点,线段AB 的垂直平分线与椭圆相交于C 、D 两点.(Ⅰ)确定λ的取值范围,并求直线AB 的方程;(Ⅱ)试判断是否存在这样的λ,使得A 、B 、C 、D 四点在同一个圆上?并说明理由.2005年普通高等学校招生全国统一考试数学试题(文史类)参考答案一、选择题:本题考查基本知识和基本运算,每小题4分,满分16分.1.B 2.B 3.C 4.D 5.C 6.A 7.B 8.A 9.D 10.C 11.D 12.D 二、填空题:本题考查基本知识和基本运算,每小题4分,满分16分.13.)4,3()3,2[? 14.38 15.212-π 16.500 三、解答题17.本小题主要考查平面向量数量积的计算方法、利用导数研究函数的单调性,以及运用基本函数的性质分析和解决问题的能力.解法1:依定义,)1()1()(232t tx x x x t x x x f +++-=++-=.23)(2t x x x f ++-='则.0)()1,1(,)1,1()(≥'--x f x f 上可设则在上是增函数在若,23)(,)1,1(,230)(22x x x g x x t x f -=--≥?≥'∴考虑函数上恒成立在区间,31)(=x x g 的图象是对称轴为由于开口向上的抛物线,故要使x x t 232-≥在区间(-1,1)上恒成立?.5),1(≥-≥t g t 即.)1,1()(,0)()1,1()(,5上是增函数在即上满足在时而当->'-'≥x f x f x f t5≥t t 的取值范围是故.解法2:依定义,)1()1()(232t tx x x x t x x x f +++-=++-=.0)()1,1(,)1,1()(.23)(2≥'--++-='x f x f t x x x f 上可设则在上是增函数在若)(x f ' 的图象是开口向下的抛物线,时且当且仅当05)1(,01)1(≥-=-'≥-='∴t f t f.5.)1,1()(,0)()1,1()(≥->'-'t t x f x f x f 的取值范围是故上是增函数在即上满足在18.本小题主要考查正弦定理、余弦定理和三角形面积公式等基础知识,同时考查利用三角公式进行恒等变形的技能和运算能力.解法1:设AB 、BC 、CA 的长分别为c 、a 、b ,.21cos ,23sin ,60,3tan ==∴==B B B B 得由应用正弦定理得又,322cos 1sin 2=-=C C 8232263sin sin =?==B C b c ..3263332213123sin cos cos sin )sin(sin +=?+?=+=+=∴C B C B C B A 故所求面积.3826sin 21+==A bc S ABC 解法3:同解法1可得c=8. 又由余弦定理可得.64,,364,32321236330sin sin sin sin ,sin sin .12030,900,60.64,64.0108,21826454,cos 222122222+=<-=>=?=?>?==<<∴<<=-=+==+-∴??-+=-+=a a B b A B b a B b A a A C B a a a a a a B ac c a b 故舍去而得由所得即故所求面积.3826sin 21+==B ac S ABC 19.本小题主要考查等差数列、等比数列基本知识和数列求和的基本方法以及运算能力.解:(1):当;2,111===S a n 时 ,24)1(22,2221-=--=-=≥-n n n S S a n n n n 时当故{a n }的通项公式为4,2}{,241==-=d a a n a n n 公差是即的等差数列. 设{b n }的通项公式为.41,4,,11=∴==q d b qd b q 则故.42}{,4121111---=?-=n n n n n n b b q b b 的通项公式为即(II ),4)12(422411---=-==n n nn nn n b a c]4)12(4)32(454341[4],4)12(45431[13212121nn n n n n n n T n c c c T -+-++?+?+?=-++?+?+=+++=∴-- 两式相减得].54)56[(91]54)56[(314)12()4444(2131321+-=∴+-=-+++++--=-n n n n n n n T n n T20.本小题主要考查线面关系和空间距离的求法等基础知识,同时考查空间想象能力和推理运算能力.解法1:(Ⅰ)过E 作EH//BC 交CC 1于H ,则CH=BE=1,EH//AD ,且EH=AD. 又∵AF ∥EC 1,∴∠FAD=∠C 1EH.∴Rt △ADF ≌Rt △EHC 1. ∴DF=C 1H=2..6222=+=∴DF BD BF(Ⅱ)延长C 1E 与CB 交于G ,连AG ,则平面AEC 1F 与平面ABCD 相交于AG . 过C 作CM ⊥AG ,垂足为M ,连C 1M ,由三垂线定理可知AG ⊥C 1M.由于AG ⊥面C 1MC ,且AG ?面AEC 1F ,所以平面AEC 1F ⊥面C 1MC.在Rt △C 1CM 中,作CQ ⊥MC 1,垂足为Q ,则CQ 的长即为C 到平面AEC 1F 的距离..113341712317123,17121743cos 3cos 3,.17,1,2211221=+==∴=?===∠=∠=+===MC CC CM CQ GAB MCG CM MCG GAB BG AB AG BG CGBGCC EB 知由从而可得由解法2:(I )建立如图所示的空间直角坐标系,则D (0,0,0),B (2,4,0),A (2,0,0), C (0,4,0),E (2,4,1),C 1(0,4,3).设F (0,0,z ). ∵AEC 1F 为平行四边形,62,62||).2,4,2().2,0,0(.2),2,0,2(),0,2(,,11的长为即于是得由为平行四边形由BF F z z EC F AEC =--=∴∴=∴-=-=∴∴(II )设1n 为平面AEC 1F 的法向量,)1,,(,11y x n ADF n =故可设不垂直于平面显然=+?+?-=+?+=?=?02020140,0,011y x y x n n 得由 ??-==∴=+-=+.41,1,022,014y x x y 即111),3,0,0(n CC CC 与设又=的夹角为a ,则.333341161133cos 1111=++==α ∴C 到平面AEC 1F 的距离为.11334333343cos ||1=?==αCC d 21.本小题主要考查概率的基础知识和运算能力,以及运用概率的知识分析和解决实际问题能力.解:(I )在第一次更换灯泡工作中,不需要换灯泡的概率为,5 1p 需要更换2只灯泡的概率为;)1(213125p p C -(II )对该盏灯来说,在第1、2次都更换了灯泡的概率为(1-p 1)2;在第一次未更换灯泡而在第二次需要更换灯泡的概率为p 1(1-p 2),故所求的概率为);1()1(2121p p p p -+-=(III )至少换4只灯泡包括换5只和换4只两种情况,换5只的概率为p 5(其中p 为(II )中所求,下同)换4只的概率为415p C (1-p ),故至少换4只灯泡的概率为.34.042.34.04.06.056.06.07.08.02.0,3.0,8.0).1(45322141553只灯泡的概率为年至少需要换即满时又当=??+=∴=?+===-+=p p p p p p C p p22.本小题主要考查直线、圆和椭圆等平面解析几何的基础知识以及推理运算能力和综合解决问题的能力.(I )解法1:依题意,可设直线AB 的方程为λ=++-=223,3)1(y x x k y 代入,整理得.0)3()3(2)3(222=--+--+λk x k k x k ①设是方程则212211,),,(),,(x x y x B y x A ①的两个不同的根,0])3(3)3([422>--+=?∴k k λ ②)3,1(.3)3(2221N k k k x x 由且+-=+是线段AB 的中点,得 .3)3(,12221+=-∴=+k k k x x 解得k=-1,代入②得,λ>12,即λ的取值范围是(12,+∞). 于是,直线AB 的方程为.04),1(3=-+--=-y x x y 即解法2:设则有),,(),,(2211y x B y x A.0))(())((33,32121212122222121=+-++-=+=+y y y y x x x x y x y x λλ 依题意,.)(3,212121y y x x k x x AB ++-=∴≠.04),1(3).,12(.12313,)3,1(.1,6,2,)3,1(222121=-+--=-+∞∴=+?>-==+=+∴y x x y AB N k y y x x AB N AB 即的方程为直线的取值范围是在椭圆内又由从而的中点是λλ(II )解法1:.02,13,=---=-∴y x x y CD AB CD 即的方程为直线垂直平分代入椭圆方程,整理得.04442=-++λx x ③是方程则的中点为又设43004433,),,(),,(),,(x x y x M CD y x D y x C ③的两根,).23,21(,232,21)(21,10043043-=+=-=+=-=+∴M x y x x x x x 即且于是由弦长公式可得).3(2||)1(1||432-=-?-+=λx x kCD ④将直线AB 的方程代入椭圆方程得,04=-+y x.016842=-+-λx x ⑤同理可得.)12(2||1||212-=-?+=λx x k AB ⑥.||||.,)12(2)3(2,12CD AB <∴->->λλλ时当假设在在λ>12,使得A 、B 、C 、D 四点共圆,则CD 必为圆的直径,点M 为圆心.点M 到直线AB 的距离为.2232|42321|2|4|00=-+-=-+=y x d ⑦于是,由④、⑥、⑦式和勾股定理可得.|2|2321229|2|||||22222CD AB d MB MA =-=-+=+==λλ 故当12>λ时,A 、B 、C 、D 四点均在以M 为圆心,2||CD 为半径的圆上.(注:上述解法中最后一步可按如下解法获得:A 、B 、C 、D 共圆?△ACD 为直角三角形,A 为直角即|,|||||2DN CN AN ?=?).2||)(2||()2||(2d CD d CD AB -+= ⑧ 由⑥式知,⑧式左边=.212-λ由④和⑦知,⑧式右边=)2232)3(2)(2232)3(2(--+-λλ ,2122923-=--=λλ ∴⑧式成立,即A 、B 、C 、D 四点共圆解法2:由(II )解法1及12>λ.,13,-=-∴x y CD AB CD 方程为直线垂直平分代入椭圆方程,整理得.04442=-++λx x ③将直线AB 的方程,04=-+y x 代入椭圆方程,整理得.016842=-+-λx x ⑤解③和⑤式可得 .231,2122,4,321-±-=-±-λλx x不妨设)233,231(),233,231(),12213,12211(-+-+---------+λλλλλλD C A∴)21233,23123(---+-+-+=λλλλCA)21233,23123(-------+=λλλλ计算可得0=?,∴A 在以CD 为直径的圆上. 又B 为A 关于CD 的对称点,∴A 、B 、C 、D 四点共圆.(注:也可用勾股定理证明AC ⊥AD )。
2004~2005学年第二学期半期考试答案
解:以A为研究对象,假设其处于临界状态,受力图如下
1
F1 fN1 FFy 0 N1 W1 T sin 0 T W1 [cos f sin ] 130 .54N y N1 T cos f 565 .25N
YD 2.5 kN
以BC为研究对象
ME (F) 0 XC DE 0
X C X C 0
再次以ACDG为研究对象 Fx 0 X A X C X D Q sin 0
XD 0
Fy 0 YA YC YD Q cos 0
YC 13.5
五、小车自处开始以匀速度V向右运动,滑轮直径略去不计,若 h=3m,V=2m/s,试求当t=2s时,物M的速度(15分)。
B
解:BA段长度为
s h2 V 2t2
VM (t) s(t)
V 2t h2 V 2t 2
VM
(2)
8 5
m
s1
六 、 四 连 杆 机 构 如 图 所 示 。 已 知 : 匀 角 速 度 =2rad/s ,
AC=20cm , BD=40cm 。 在 图 示 位 置 时 AC 及 BD 处 于 水 平 位 置 ,
约束力;2)铰链C、D的约束力(20分)。
解:以整体为研究对象
M A(F) 0
YB AC Q sin AG 0
YB 19kN
Fy 0 YA YB Qsin 0
YA 15kN
Fx 0 X A Qcos 0
X A 4kN
以ACDG为研究对象
MC (F) 0 YD CD Qsin CG 0
(完整版)全国2005年10月高等教育自学考试高等数学(工本)试题答案
2005年下半年高等教育自学考试全国统一命题考试高等数学(工本)试题答案及评分参考(课程代码0023)—、单璃送择兄(半大小矗2分,共40分〉I. C 2. A 3+ C 4. C 5. D 6. A 7. D 艮 D 9* C 10. B II. B 12, C 13, D H. C 15. A 1乩 B 17. B 18. B 19, C 2Q A二、填或■(事大疇共10小理,聲小JB 2分.共20分) 肚】+ 乍 + 艺 22. e 23.TC0) 24, r- 1 25.爲沪一‘十 f 26. 1 27,号-■A -28+ <C1 -i-1) 纵工;Gr —S" - 2| < 1 盹 ” + *■(?三•计*9(^大屢共5小題*毎小JH 5分.共25分)3K 解;原式.lim ( + 左 一 + 工 +J2 (3 分j<x — 3>( /I +1 + 2)=lim ______ J --------f /1+^ + 2 ■ * G 分)4払解倔式-J= Prh -◎炉■ In |工 —1 \ — Ln | ^ | + C ™ In x — 14-C強分) 3X 解:设所求平面方程为手4- f + f™ 1Q 分〉L l"将点代人得*1+1+7=1— 1上=一 *一 +<2分) 所求平面方程为 z + 5y - U+1-0<1分〉 珂忆原式■/I 母亦<2分〉LacT+ToL/^*高等数学(工本)试题答案及评分鑫考第】页(共2虑)俱乐部名称:自考乐园;俱乐部id : 5346389 (请牢记它哦~在百度贴吧的搜索框中输入俱乐部1 id,可以直接进入俱乐部);俱乐部url地址:/club/5346389 (您也可以通过此url进入俱乐部。
)俱乐部名称:自考乐园;俱乐部id : 5346389 (请牢记它哦〜在百度贴吧的搜索框中输入俱乐部 id ,可以直接进 入俱乐部);俱乐部url 地址:/club/5346389 (您也可以通过此 url 进入俱乐部。
2005年普通高等学校招生全国统一考试
2005年普通高等学校招生全国统一考试(湖北卷)数学试题卷(理工农医类)本试卷分第I卷(选择题)和第II卷(非选择题)两部分. 满分150分. 考试时间120分钟.第I部分(选择题共60分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
答在试题卷上无效。
3.考试结束,监考人员将本试题卷和答题卡一并收回。
一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个备选项中,只有一项是符合题目要求的.1.设P、Q为两个非空实数集合,定义集合P+Q=,则P+Q中元素的个数是()A.9B.8C.7D.62.对任意实数a,b,c,给出下列命题:①“”是“”充要条件;②“是无理数”是“a是无理数”的充要条件③“a>b”是“a2>b2”的充分条件;④“a<5”是“a<3”的必要条件.其中真命题的个数是()A.1B.2C.3D.43.()A.B.C.D.4.函数的图象大致是()5.双曲线离心率为2,有一个焦点与抛物线的焦点重合,则mn的值为()A.B.C.D.6.在这四个函数中,当时,使恒成立的函数的个数是()A.0B.1C.2D.37.若()A.B.C.D.8.若,则常数的值为()A.B.C.D.9.若的大小关系()A.B.C.D.与x的取值有关10.如图,在三棱柱ABC—A′B′C′中,点E、F、H、K分别为AC′、CB′、A′B、B′C′的中点,G为△ABC的重心. 从K、H、G、B′中取一点作为P,使得该棱柱恰有2条棱与平面PEF平行,则P为()A.K B.HC.G D.B′11.某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号1,2,…,270,并将整个编号依次分为10段。
2005全国高考试题分类解析(立体几何)(2)
2005全国高考立体几何题一打尽河北、河南、山西、安徽(全国卷I)(2)一个与球心距离为1的平面截球所得的圆面面积为π,则球的表面积为 (C ) (A )π28(B )π8(C )π24(D )π4(4)如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且BCF ADE ∆∆、均为正三角形,EF ∥AB ,EF=2,则该多面体的体积为 (C )(A )32 (B )33 (C )34(D )23 (16)在正方形''''D C B A ABCD -中,过对角线'BD 的一个平面交'AA 于E ,交'CC 于F ,则① 四边形E BFD '一定是平行四边形 ② 四边形E BFD '有可能是正方形③ 四边形E BFD '在底面ABCD 内的投影一定是正方形 ④ 四边形E BFD '有可能垂直于平面D BB '以上结论正确的为 ①③④ 。
(写出所有正确结论的编)(18)(本大题满分12分)已知四棱锥P-ABCD 的底面为直角梯形,AB ∥DC ,⊥=∠PA DAB ,90 底面ABCD ,且PA=AD=DC=21AB=1,M 是PB 的中点。
(Ⅰ)证明:面PAD ⊥面PCD ; (Ⅱ)求AC 与PB 所成的角;(Ⅲ)求面AMC 与面BMC 所成二面角的大小。
18.本小题主要考查直线与平面垂直、直线与平面所成角的有关知识及思维能力和空间想象能力.考查应用向量知识解决数学问题的能力.满分12分. 方案一:(Ⅰ)证明:∵PA ⊥面ABCD ,CD ⊥AD , ∴由三垂线定理得:CD ⊥PD.因而,CD 与面PAD 内两条相交直线AD ,PD 都垂直, ∴CD ⊥面PAD.又CD ⊂面PCD ,∴面PAD ⊥面PCD.(Ⅱ)解:过点B 作BE//CA ,且BE=CA , 则∠PBE 是AC 与PB 所成的角.连结AE ,可知AC=CB=BE=AE=2,又AB=2,所以四边形ACBE 为正方形. 由PA ⊥面ABCD 得∠PEB=90° 在Rt △PEB 中BE=2,PB=5, .510cos ==∠∴PB BE PBE .510arccos所成的角为与PB AC ∴ (Ⅲ)解:作AN ⊥CM ,垂足为N ,连结BN. 在Rt △PAB 中,AM=MB ,又AC=CB , ∴△AMC ≌△BMC,∴BN ⊥CM ,故∠ANB 为所求二面角的平面角. ∵CB ⊥AC ,由三垂线定理,得CB ⊥PC , 在Rt △PCB 中,CM=MB ,所以CM=AM. 在等腰三角形AMC 中,AN ·MC=AC AC CM⋅-22)2(, 5625223=⨯=∴AN . ∴AB=2,322cos 222-=⨯⨯-+=∠∴BN AN AB BN AN ANB 故所求的二面角为).32arccos(-方法二:因为PA ⊥PD ,PA ⊥AB ,AD ⊥AB ,以A 为坐标原点AD 长为单位长度,如图建立空间直角坐标系,则各点坐标为A (0,0,0)B (0,2,0),C (1,1,0),D (1,0,0),P (0,0,1),M (0,1,)21. (Ⅰ)证明:因.,0),0,1,0(),1,0,0(DC AP DC AP DC AP ⊥=⋅==所以故由题设知AD ⊥DC ,且AP 与AD 是平面PAD 内的两条相交直线,由此得DC ⊥面PAD. 又DC 在面PCD 上,故面PAD ⊥面PCD. (Ⅱ)解:因),1,2,0(),0,1,1(-==.510||||,cos ,2,5||,2||=⋅>=<=⋅==PB AC 所以故(Ⅲ)解:在MC 上取一点N (x ,y ,z ),则存在,R ∈λ使,MC NC λ=..21,1,1),21,0,1(),,1,1(λλ==-=∴-=---=z y x MC z y x NC要使.54,0210,==-=⋅⊥λ解得即只需z x MC AN MC AN),52,1,51(),52,1,51(,.0),52,1,51(,54=⋅-===⋅=MC BN BN AN N 有此时能使点坐标为时可知当λANB MC BN MC AN MC BN MC AN ∠⊥⊥=⋅=⋅所以得由.,0,0为所求二面角的平面角.).32arccos(.32||||),cos(.54,530||,530||--=⋅=∴-=⋅==故所求的二面角为BN AN文科数学(全国卷Ⅰ)(11)点O 是三角形ABC 所在平面内的一点,满足⋅=⋅=⋅,则点O 是ABC ∆的(A )三个内角的角平分线的交点(B )三条边的垂直平分线的交点 (C )三条中线的交点(D )三条高的交点2005高考全国卷Ⅱ数学(理)试题(吉林、黑龙江、广西等地区用)(2) 正方体ABCD —A 1 B 1 C 1 D 1中,P 、Q 、R 、分别是AB 、AD 、B 1 C 1的中点。
全国2005年4月高等教育自学考试
全国2005年4月高等教育自学考试高等数学(工专)试题课程代码:00022、单项选择题(本大题共30小题,1 — 20每小题1分,21— 30每小题2分,共40分) 在每小题列出的四个备选项中只有一个是符合题目要求的, 请将其代码填写在题干的括号内。
错选、多选或未选均无分。
(一)(每小题1分,共20分) 1 .函数f (x )=arccos 2x 的定义域是( 1[0,2]1 (0,-)2A .奇函数 C .有界函数arctgx lim ( X r'' x不存在2 .函数 f(x)=le 2x 1 3A . (-1, 1) C . (0, 1)B .偶函数 D .单调增函数3. 4 .曲线y= 1在点x1,2 )处的切线的斜率为 2-45. 设 y=ln(secx+tgx), 1 则 dy=(secx tgx1 dx secx tgxsecx secxdx6.设 2』x =1 n(1 +t )、、y =arctgt1 A . 一2tA .发散C .收敛于JT D .收敛于一213.过点( - x^11 1, y-121, -1)且与平面z 13x+2y-3z+2=0 垂直的直线方程为_ x +1 y +1( )z —1x 1 y 1 z _11 2 3 x y 1 z「21 2 -314 .2t7. 设函数f(x)在点x o处具有二阶导数且f(X。
)=0,那末当f(X。
):::0 时(8. 函数f(x)在点X0处取得最小值函数f(x)在点X0处取得极大值B .函数f(x)在点x0处不取得极值D .函数f(x)在点x0处取得极小值曲线y= 3 x (A .的渐近线为x=0B .的拐点为x=0C .没有拐点9.曲线y=x2+ 1的垂直渐近线是xD •的拐点为(0, 0)y=0 x=0 y=1 x=110.X若 f (x)dx =2sin C ,则』 2f(x)=(11 .x cos C 2x2cos C2■ X------------ d x =(,2—x2( A . 2 -x2JC. - 2 -x2 +C12.广义积分:4dx(-:1 x2xcos—2x 2sin22 -x2 +CB .收敛A . -dx+dyB . dx-dyC . -dx-dyD . dx+dy 2 215.设函数 f(x,y)=ln( 1+x +y ),则 f(x,y)在点(0, 0)( ) A .取得最大值0 B .取得最小值0 16. 设区域( A .C . 2 二17 . 由半球面 体积 V=(A . 2 二 2 °。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2005年湖北省高等教育自学考试A 卷试卷(课程代码2014)第一部分 选择题 (共20分)一、单项选择题(本大题共10小题, 每小题1分,共10分) 在每小题列出的四个备选项中有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选、或未选均无分。
1.已知()t '=r 0,则r )(t 为 ( )A .常向量;B .零向量;C .常数;D .非零常数。
2.如果在P 点有20LN M -<,则称P 点为曲面的 ( )A .椭圆点;B .双曲点;C .抛物点;D .脐点。
3.曲线是平面曲线的充分必要条件是 ( )A .曲率为零;B .挠率为零;C .曲率非零;D .挠率非零。
4.如果曲线的曲率与挠率之比是常数,则该曲线是 ( )A .平面曲线;B .球面曲线;C .测地线;D .一般螺线。
5.如果方向():d du dv =满足d d λ=n r ,则 ( )A .方向()d 是渐近方向,λ是该方向的法曲率;B .方向()d 是主方向,λ是主曲率;C .方向()d 是主方向,λ是高斯曲率;D .方向()d 是主方向,λ是平均曲率。
6.曲纹坐标网是曲率线网的充分必要条件是 ( )A .0M =;B .0F =;C .0,0M F ==;D .20LN M -=。
7.过曲面上一点切于给定方向的测地线恰有 ( )A .一条;B .两条;C .三条;D .四条。
8.曲面在椭圆点附近的形状近似于 ( )A .椭圆面;B .双曲面;C .抛物面;D .马鞍面。
9.过曲线某点且由曲线在该点的切向量与副法向量所张成的平面是曲线的 ( )A .切平面;B .法平面;C .密切平面;D .从切平面。
10.设曲面上的两个方向v u dv du d δδδ:)(,:)(==满足0)(=+++v N d v u dv v du M u Ldu δδδδ,则这两个方向 ( )A .正交;B .平行;C .共轭;D .为主方向。
二、多项选择题(本大题共5小题,每小题2分,共10分)在每小题列出的五个备选项中有二个至五个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选、少选或未选均无分。
11.下列曲线中哪些是正则曲线? ( )A .{cos ,sin ,}t t t =r ;B .2{cos ,cos ,}t t t =r ;C .2{cos ,sin ,}t t t =r ;D .2{cos ,sin ,}t t t =r ;E .r },,{32t t t =。
12.下面曲面哪些是极小曲面? ( )A .球面;B .正螺面;C .悬链面;D .平面;E .旋转抛物面。
13.下列曲面哪些是直纹面? ( )A .马鞍面;B .旋转抛物面;C .锥面;D .单叶双曲面;E .双叶双曲面。
14.下列公式正确的有 ( ) A .βαk = ;B .τβαβ+-=k ;C .τγαβ+-=k ; D .τβγ-= ;E .τβγ-=。
15.下列量中哪些是内蕴量? ( )A .曲面的第一基本量;B .曲面的第二基本量;C .曲面的第三基本量;D .曲面区域的面积;E .曲面的高斯曲率。
第二部分 非选择题 (共80分)三、填空题(本大题共 10小题,每小题 1分,共 10分)16.已知(){,,}t t t e t e -=r ,则()t ''=r 。
17.球面上大圆(即过球心的平面与球面的交线)的测地曲率为 。
18.如果曲面上某点处有E F G L M N==,则该点叫 。
19.单位球面的高斯曲率K = 。
20.方向():d du dv =是渐近方向的充要条件是 。
21.设曲面的参数表示为(,)u v =r r ,则||u v ⨯r r 用第一基本量表示为。
22.第二类克氏符号定义为lij Γ= 。
23.两向量平行的充分必要条件是它们的向量积为 。
24.曲线()t =r r 从a 到b 的弧长为 。
25.曲面(,)z f x y =用向量的形式表示为 。
四、计算题(本大题共10小题,每小题5分,共50分)设圆柱螺线()C 的参数表示为(cos ,sin ,)t t t =r 。
26.计算()C 在(1,0,0)点的基本向量α、γ、β;27.计算()C 在(1,0,0)点的密切平面方程;28.计算()C 在(1,0,0)点的从切平面方程;29.计算()C 在任意点处的曲率;30.计算()C 在任意点处的挠率。
设球面()S 的参数表示为{cos cos ,cos sin ,sin }R R R θϕθϕθ=r 。
31.写出()S 的第一基本形式;32.计算()S 的单位法向量;33.写出()S 的第二基本形式;34.计算()S 的高斯曲率和平均曲率;35.求()S 的所有脐点;五、证明题 (本大题共2小题,每小题10分,共20分)36. 设曲面方程为(,)u v =r r ,证明||u v ⨯=r r 。
37.用高斯-波涅定理证明极小曲面上不存在闭测地线。
绝密★启用前200 年湖北省高等教育自学考试A 卷答案(课程代码2014)第一部分 选择题 (共20分)一、单项选择题(本大题共10小题, 每小题1分,共10分)1.(A )2.(B )3.(B )4.(D )5.(B )6.(C )7.(A )8.(C )9.(D )10.(C )二、多项选择题(本大题共5小题,每小题2分,共10分)11.( ACDE )12.( BCD )13.( ACD )14.( ACD )15.( ADE )第二部分 非选择题 (共80分)三、填空题(本大题共 10小题,每小题 1分,共 10分)16.{,0,}t te e -。
17.零。
18.脐点。
19. 1。
20.2220Ldu Mdudv Ndv ++=。
2122.1()2jl ij kl il j i i l g g g g u u u ∂∂∂+-∂∂∂∑。
23.零。
24.|()|b ar dt '⎰r 。
25.(,){,,(,)}x y x y f x y =r 。
四、计算题(本大题共10小题,每小题5分,共50分)26. (){sin ,cos ,1}t t t '=-r ,(){cos ,sin ,0}t t t ''=--r在给定点P 处的参数0t =,所以有(0){1,0,=r ,(0){0,1,1}'=r ,(0){1,0,0}''=-r于是有,1}=α ………………………………………………2分1,1}=-γ………………………………………………4分{1,0,0}=-β………………………………………………5分27.密切平面:法向量1,1}=-γ……………………………………2分10110100X Y Z-=-,即0Y Z-+=……………………5分28.从切平面:法向量{1,0,0}=-β………………………………………2分10110011X Y Z-=-,即1X=…………………………5分29.||{sin,cos,1},||t t''''''⨯=-⨯r r r r r……3分3||1||2k'''⨯=='r rr...............................5分30.(){cos,sin,0},(){sin,cos,0}t t t t t t'''''=--=-r r……2分2()1()2τ''''''=='''⨯r,r,rr r………………………………………5分31.{cos sin,cos sin,0}R Rϕθϕθϕ=-r,{sin cos,sin sin,cos}R R Rθθϕθϕθ=--r,22222cos,0,E RFG Rϕϕθθθ======r r r r………4分22222cosR d R dθϕθ=+I………………………………5分32.{cos cos ,cos sin ,sin }θϕθϕθ⨯==r r n …5分33.{cos cos ,cos sin ,0}R R ϕϕθϕθϕ=--r{sin sin ,sin cos ,0}R R ϕθθϕθϕ=-r{cos cos ,cos sin ,sin }R R R θθθϕθϕθ=---r2cos ,0,L R M N R ϕϕϕθθθθ==-====-r n r n r n ……4分 222(cos )R d Rd θϕθ=-+II …………………………5分34.2221LN M K EG F R -==- …………………………………3分 2212()LG MF NE H EG F R -+==-- ……………………………5分 35. 1R=-II I ,∴全脐 …………………………………5分 五、证明题 (本大题共2小题,每小题10分,共20分) 36.2||()()u v u v u v ⨯=⨯⋅⨯r r r r r r ………………………………2分 由拉格朗日公式有上式右端等于2()()()u u v v u v ⋅⋅-⋅r r r r r r ……………………7分 因此有22||u v EG F ⨯=-r r ………………………………10分 37.120k k += 120K k k ∴=≤ ………………………………3分由于在测地线上0g k = …………………………………6分 由高斯-波涅公式有20Kd σσπ=≤⎰⎰。
矛盾。
…………10分。