微分几何习题及答案解析

合集下载

微分几何课后习题答案

微分几何课后习题答案

微分几何课后习题答案微分几何课后习题答案微分几何是数学中的一个重要分支,研究的是曲线、曲面以及高维空间中的几何性质。

在学习微分几何的过程中,课后习题是巩固知识、提高理解能力的重要途径。

本文将针对微分几何课后习题给出一些答案,并解析其中的一些关键思路和方法。

一、曲线的参数化1. 给定曲线的参数方程为:x = t^2y = t^3求曲线的切向量和法向量。

解析:曲线的切向量是曲线在某一点上的切线的方向,可以通过对参数方程求导得到。

对x和y分别求导,得到:dx/dt = 2tdy/dt = 3t^2所以切向量为:T = (dx/dt, dy/dt) = (2t, 3t^2)曲线的法向量与切向量垂直,可以通过将切向量逆时针旋转90度得到。

所以法向量为:N = (-dy/dt, dx/dt) = (-3t^2, 2t)二、曲线的长度2. 计算曲线的长度:x = e^ty = e^(-t)解析:曲线的长度可以通过积分求解。

首先计算曲线的切向量:dx/dt = e^tdy/dt = -e^(-t)曲线的长度可以表示为:L = ∫√(dx/dt)^2 + (dy/dt)^2 dt= ∫√(e^t)^2 + (-e^(-t))^2 dt= ∫√(e^2t + e^(-2t)) dt这是一个积分问题,可以通过换元法解决。

令u = e^t,那么du = e^t dt。

将u代入上式,得到:L = ∫√(u^2 + u^(-2)) du= ∫√(u^4 + 1) du这是一个较为复杂的积分,可以通过换元法或者级数展开法求解。

三、曲面的法向量3. 给定曲面的参数方程为:x = u + vy = u - vz = u^2 - v^2求曲面的法向量。

解析:曲面的法向量可以通过对参数方程中的u和v分别求偏导得到。

对x、y、z分别对u求偏导,得到:∂x/∂u = 1∂y/∂u = 1∂z/∂u = 2u对x、y、z分别对v求偏导,得到:∂x/∂v = 1∂y/∂v = -1∂z/∂v = -2v所以曲面的法向量为:N = (∂z/∂u, ∂z/∂v, -∂x/∂u * ∂y/∂v + ∂y/∂u * ∂x/∂v) = (2u, -2v, 2)四、曲面的曲率4. 给定曲面的参数方程为:x = u^2y = v^2z = u + v求曲面的曲率。

微分几何第四版习题答案解析梅向明

微分几何第四版习题答案解析梅向明

§1曲面的概念1.求正螺面r ={ u v cos ,u v sin , bv }的坐标曲线.解 u-曲线为r ={u 0cos v ,u 0sin v ,bv 0 }={0,0,bv 0}+u {0cos v ,0sin v ,0},为曲线的直母线;v-曲线为r ={0u v cos ,0u v sin ,bv }为圆柱螺线.2.证明双曲抛物面r ={a (u+v ), b (u-v ),2uv }的坐标曲线就是它的直母线。

证 u-曲线为r ={ a (u+0v ), b (u-0v ),2u 0v }={ a 0v , b 0v ,0}+ u{a,b,20v }表示过点{ a 0v , b 0v ,0}以{a,b,20v }为方向向量的直线;v-曲线为r ={a (0u +v ), b (0u -v ),20u v }={a 0u , b 0u ,0}+v{a,-b,20u }表示过点(a 0u , b 0u ,0)以{a,-b,20u }为方向向量的直线。

3.求球面r =}sin ,sin cos ,sin cos {ϑϕϑϕϑa a a 上任意点的切平面和法线方程。

解 ϑr=}cos ,sin sin ,cos sin {ϑϕϑϕϑa a a -- ,ϕr =}0,cos cos ,sin cos {ϕϑϕϑa a -任意点的切平面方程为00cos cos sin cos cos sin sin cos sin sin sin cos cos cos =------ϕϑϕϑϑϕϑϕϑϑϕϑϕϑa a a a a a z a y a x即 xcos ϑcos ϕ + ycos ϑsin ϕ + zsin ϑ - a = 0 ;法线方程为ϑϑϕϑϕϑϕϑϕϑsin sin sin cos sin cos cos cos cos cos a z a y a x -=-=- 。

4.求椭圆柱面22221x y a b+=在任意点的切平面方程,并证明沿每一条直母线,此曲面只有一个切平面 。

微分几何习题及答案解析

微分几何习题及答案解析

第一章 曲线论§2 向量函数5. 向量函数)(t r具有固定方向的充要条件是)(t r×)('t r= 0 。

分析:一个向量函数)(t r一般可以写成)(t r=)(t λ)(t e的形式,其中)(t e为单位向量函数,)(t λ为数量函数,那么)(t r 具有固定方向的充要条件是)(t e具有固定方向,即)(t e 为常向量,(因为)(t e 的长度固定)。

证 对于向量函数)(t r ,设)(t e 为其单位向量,则)(t r =)(t λ)(t e ,若)(t r具有固定方向,则)(t e 为常向量,那么)('t r =)('t λe ,所以 r ×'r=λ'λ(e ×e )=0 。

反之,若r ×'r =0 ,对)(t r =)(t λ)(t e 求微商得'r ='λe +λ'e ,于是r×'r =2λ(e ×'e )=0 ,则有 λ = 0 或e ×'e =0 。

当)(t λ= 0时,)(t r =0 可与任意方向平行;当λ≠0时,有e ×'e =0 ,而(e ×'e 2)=22'e e -(e ·'e2)=2'e ,(因为e具有固定长, e ·'e = 0) ,所以 'e =0 ,即e为常向量。

所以,)(t r 具有固定方向。

6.向量函数)(t r平行于固定平面的充要条件是(r 'r ''r )=0 。

分析:向量函数)(t r 平行于固定平面的充要条件是存在一个定向向量)(t n,使)(t r ·n = 0 ,所以我们要寻求这个向量n 及n 与'r ,''r的关系。

微分几何二四五章_课后习题答案_

微分几何二四五章_课后习题答案_

微分几何参考答案:P51页1. 求曲线r = { t t sin ,t t cos ,t t e } 在原点的密切平面、法平面、从切面、切线、主法线、副法线。

解 原点对应t=0 , 'r(0)={ t sin +t t cos ,t cos - t t sin ,t e +t t e 0}=t ={0,1,1},=)0(''r{2t cos + t t cos ,t cos - t t sin ,2t e +t t e 0}=t ={2,0,2} ,所以切线方程是110zy x == ,法面方程是 y + z = 0 ; 密切平面方程是202110zy x=0 ,即x+y-z=0 ,主法线的方程是⎩⎨⎧=+=-+00z y z y x 即112zy x =-= ;从切面方程是2x-y+z=0 ,副法线方程式111-==zy x 。

2.求以下曲面的曲率和挠率⑴ },sinh ,cosh {at t a t a r =,⑵ )0)}(3(,3),3({323a t t a at t t a r +-=。

解 ⑴},cosh ,sinh {'a t a t a r = ,}0,sinh ,cosh {''t a t a r = ,}0,cosh ,{sinh '''t t a r =,}1,cosh ,sinh {'''--=⨯t t a r r,所以t a t a t a r r r k 2323cosh 21)cosh 2(cosh 2|'||'''|==⨯= ta t a a r r r r r 22422cosh 21cosh 2)'''()''','','(==⨯=τ 。

⑵ }1,2,1{3'22t t t a r +-= ,}1,0,1{6'''},,1,{6''-=-=a r t t a r,'r ×''r =}1,2,1{18222+--t t t a ,22322223)1(31)1(2227)1(218|'||'''|+=++=⨯=t a t a t a r r r k22224232)1(31)1(2182618)'''()''','','(+=+⨯⨯⨯=⨯=t a t a a r r r r r τ 。

微分几何第四版习题答案解析梅向明

微分几何第四版习题答案解析梅向明

§1曲面的概念1、求正螺面r r={ u v cos ,u v sin , bv }的坐标曲线、解 u-曲线为r r={u 0cos v ,u 0sin v ,bv 0 }={0,0,bv 0}+u {0cos v ,0sin v ,0},为曲线的直母线;v-曲线为r r={0u v cos ,0u v sin ,bv }为圆柱螺线.2.证明双曲抛物面r r={a(u+v), b(u-v),2uv }的坐标曲线就就是它的直母线。

证 u-曲线为r r={ a(u+0v ), b(u-0v ),2u 0v }={ a 0v , b 0v ,0}+ u{a,b,20v }表示过点{ a 0v , b 0v ,0}以{a,b,20v }为方向向量的直线;v-曲线为r r={a(0u +v), b(0u -v),20u v }={a 0u , b 0u ,0}+v{a,-b,20u }表示过点(a 0u , b 0u ,0)以{a,-b,20u }为方向向量的直线。

3.求球面r r=}sin ,sin cos ,sin cos {ϑϕϑϕϑa a a 上任意点的切平面与法线方程。

解 ϑr ρ=}cos ,sin sin ,cos sin {ϑϕϑϕϑa a a -- ,ϕr ρ=}0,cos cos ,sin cos {ϕϑϕϑa a -任意点的切平面方程为00cos cos sin cos cos sin sin cos sin sin sin cos cos cos =------ϕϑϕϑϑϕϑϕϑϑϕϑϕϑa a a a a a z a y a x即 xcos ϑcos ϕ + ycos ϑsin ϕ + zsin ϑ - a = 0 ; 法线方程为ϑϑϕϑϕϑϕϑϕϑsin sin sin cos sin cos cos cos cos cos a z a y a x -=-=- 。

4.求椭圆柱面22221x y a b+=在任意点的切平面方程,并证明沿每一条直母线,此曲面只有一个切平面 。

微分几何练习的题目库及问题详解

微分几何练习的题目库及问题详解

《微积分几何》复习题 本科 第一局部:练习题库与答案一、填空题〔每题后面附有关键词;难易度;答题时长〕第一章1.(1,1,1),(1,0,1)=-=-a b ,如此这两个向量的夹角的余弦θcos =36 2.(0,1,1),(1,0,1)=-=-a b ,求这两个向量的向量积⨯=a b (-1,-1,-1). 3.过点)1,1,1(P 且与向量(1,0,1)=-a 垂直的平面方程为X-Z=04.求两平面0:1=++z y x π与12:2=+-z y x π的交线的对称式方程为21131--=-=+z y x 5.计算232lim[(31)]t t t →+-+=i j k 138-+i j k .6.设()(sin )t t t =+f i j ,2()(1)tt t e =++g i j ,求0lim(()())t t t →⋅=f g 0.7.(,)(,,)u v u v u v uv =+-r ,其中2t u =,t v sin =,如此d d t=r(2cos ,2cos ,2cos )t t t t vt u t +-+ 8.t =ϕ,2t =θ,如此d (,)d tϕθ=r (sin cos 2cos sin ,sin sin 2cos cos ,cos )a at a at a ϕθϕθϕθϕθϕ---+ 9.42()d (1,2,3)t t =-⎰r ,64()d (2,1,2)t t =-⎰r ,求4622()d ()d t t t t ⨯+⋅⋅=⎰⎰a r b a r )5,9,3(-,其中(2,1,1)=a ,(1,1,0)=-b10.()t '=r a 〔a 为常向量〕,求()t =r t +a c 11.()t t '=r a ,〔a 为常向量〕,求()t =r 212t +a c 12.()(2)(log )t t t =++f j k ,()(sin )(cos )t t t =-g i j ,0t >,如此4d()d d t t ⋅=⎰f g 4cos 62-. 第二章13.曲线3()(2,,)tt t t e =r 在任意点的切向量为2(2,3,)tt e14.曲线()(cosh ,sinh ,)t a t a t at =r 在0t =点的切向量为(0,,)a a 15.曲线()(cos ,sin ,)t a t a t bt =r 在0t =点的切向量为(0,,)a b16.设有曲线2:,,t t C x e y e z t -===,当1t =时的切线方程为2111-=--=-z ee y e e x 17.设有曲线t t t e z t e y t e x ===,sin ,cos ,当0t =时的切线方程为11-==-z y x 第三章18.设(,)u v =r r 为曲面的参数表示,如果u v ⨯≠r r 0,如此称参数曲面是正如此的;如果:()G G →r r 是一一的,如此称参数曲面是简单的.19.如果u -曲线族和v -曲线族处处不相切,如此称相应的坐标网为正规坐标网.(坐标网;易;3分钟) 20.平面(,)(,,0)u v u v =r 的第一根本形式为22d d u v +,面积元为d d u v21.悬链面(,)(cosh cos ,cosh sin ,)u v u v u v u =r 的第一类根本量是2cosh E u =,0F =,2cosh G u =22.曲面z axy =上坐标曲线0x x =,0y y =223.正螺面(,)(cos ,sin ,)u v u v u v bv =r 的第一根本形式是2222d ()d u u b v ++. 24.双曲抛物面(,)((),(),2)u v a u v b u v uv =+-r 的第一根本形式是2222222222(4)d 2(4)d d (4)d a b v u a b uv u v a b u v +++-++++25.正螺面(,)(cos ,sin ,)u v u v u v bv =r 的平均曲率为0.〔正螺面、第一根本量、第二根本量;中;3分钟〕26.方向(d)d :d u v =是渐近方向的充要条件是(d)0n κ=或22d 2d d d 0L u M u v N v ++=27.两个方向(d)d :d u v =和(δ)δ:δu v =共轭的充要条件是(d ,δ)0=II r r 或d δ(d δd δ)d δ0L u u M u v v u N v v +++=28.函数λ29.方向(d)d :d u v =是主方向的充要条件是d d d d 0d d d d E u F vL u M vF uG v M u N v++=++30.根据罗德里格定理,如果方向(d)(d :d )u v =是主方向,如此d d n κ=-n r ,其中n κ是沿(d)方向的法曲率 31.旋转极小曲面是平面或悬链面 第四章32.高斯方程是k ij ij kij kL =Γ+∑r rn ,,1,2i j =,魏因加尔吞方程为,kj i ik i j kL g =-∑n r ,,1,2i j =33.ij g 用ij g 表示为221212111()det()ijij g g g g g g -⎛⎫=⎪-⎝⎭. 34.测地曲率的几何意义是曲面S 上的曲线()C 在P 点的测地曲率的绝对值等于()C 在P 点的切平面∏上的正投影曲线()C *的曲率35.,,g n κκκ之间的关系是222g n κκκ=+.36.如果曲面上存在直线,如此此直线的测地曲率为 0.37.测地线的方程为22,d d d 0,1,2d d d k i jk ij i j u u u k s s s+Γ==∑ 38.高斯-波涅公式为1d d ()2kgii GGK s σκπαπ=∂++-=∑⎰⎰⎰39.如果G ∂是由测地线组成,如此高斯-波涅公式为1d ()2kii GK σπαπ=+-=∑⎰⎰.二、单项选择题第一章40.(1,0,1)=--a ,(1,2,1)=-b ,如此这两个向量的内积⋅a b 为〔 C 〕.〔内积;易;2分钟〕 A 2 B 1- C 0 D 141.求过点(1,1,1)P 且与向量(1,0,1)=--a 平行的直线的方程是〔 A 〕.〔直线方程;易;2分钟〕A ⎩⎨⎧==1y z x B 1321+==-z yx C 11+==+z y x D ⎩⎨⎧==1z yx42.(1,1,1),(1,0,1),(1,1,1)=-=-=a b c ,如此混合积为〔 D 〕.〔混合积;较易;2分钟〕 A 2 B 1- C 1 D 2-43.()(,,)ttt e t e -=r ,如此(0)''r 为〔 A 〕.〔导数;易;2分钟〕 A (1,0,1) B (-1,0,1) C (0,1,1) D (1,0,-1)44.()()t t λ'=r r ,λ为常数,如此()t r 为〔 C 〕.〔导数;易;2分钟〕A t λa B λa C t e λa D e λa上述a 为常向量.45.(,)(,,)x y x y xy =r ,求d (1,2)r 为〔 D 〕.〔微分;较易;2分钟〕 A (d ,d ,d 2d )x y x y + B (d d ,d d ,0)x y x y +- 第二章46.圆柱螺线(cos ,sin ,)t t t =r 的切线与z 轴〔 C 〕.(螺线、切向量、夹角;较易、2分钟) A 平行 B 垂直C 有固定夹角4π D 有固定夹角3π 47.设有平面曲线:()C s =r r ,s 为自然参数,α,β是曲线的根本向量.如下表示错误的答案是〔C 〕. Aα为单位向量 B ⊥ααC κ=-αβ D κ=-βα 48.直线的曲率为〔 B 〕.〔曲率;易;2分钟〕A –1 B 0 C 1 D 249.关于平面曲线的曲率:()C s =r r 不正确的答案是〔 D 〕.〔伏雷内公式;较易;2分钟〕 A ()()s s κ=α B ()()s s κϕ=,ϕ为()s α的旋转角 C()s κ=-⋅αβ D ()|()|s s κ=r50.对于平面曲线,“曲率恒等于0”是“曲线是直线〞的〔 D 〕.〔曲率;易;2分钟) A 充分不必要条件 B 必要不充分条件 C 既不充分也不必要条件 D 充要条件 51.如下论述不正确的答案是〔 D 〕.〔根本向量;易;2分钟〕 A α,β,γ均为单位向量 B ⊥αβ C ⊥βγ D //αβ52.对于空间曲线C,“曲率为零〞是“曲线是直线〞的〔 D 〕.〔曲率;易;2分钟) A 充分不必要条件 B 必要不充分条件 C 既不充分也不必要条件 D 充要条件 53.对于空间曲线C ,“挠率为零〞是“曲线是直线〞的〔 D 〕.〔挠率;易;2分钟) A 充分不必要条件 B 必要不充分条件 C 既不充分也不必要条件 D 充要条件 54.2sin4),cos 1(),sin (t a z t a y t t a x =-=-=在点2π=t 的切线与z 轴关系为〔 D 〕. A 垂直 B 平行 C 成3π的角 D 成4π的角 第三章55.椭球面2222221x y z a b c++=的参数表示为〔C 〕.〔参数表示;易;2分钟〕A (,,)(cos cos ,cos sin ,sin )x y z ϕθϕθϕ=B (,,)(cos cos ,cos sin ,sin )x y z a b ϕθϕθϕ=C (,,)(cos cos ,cos sin ,sin )x y z a b c ϕθϕθϕ=D (,,)(cos cos ,sin cos ,sin 2)x y z a b c ϕθϕθθ=56.以下为单叶双曲面2222221x y z a b c+-=的参数表示的是〔D 〕.〔参数表示;易;2分钟〕A (,,)(cosh sin ,cosh cos ,sinh )x y z a u v b u v u =B (,,)(cosh cos ,cosh sin ,sinh )x y z u v u v u =C (,,)(sinh cos ,sinh sin ,cosh )x y z a u v b u v c u =D (,,)(cosh cos ,cosh sin ,sinh )x y z a u v b u v c u =57.以下为双叶双曲面2222221x y z a b c+-=-的参数表示的是〔A 〕.〔参数表示;易;2分钟〕A (,,)(sinh cos ,sinh sin ,cosh )x y z a u v b u v c u =B (,,)(cosh cos ,sinh sin ,cosh )x y z a u v b u v c u =C (,,)(cosh cos ,cosh sin ,sinh )x y z a u v b u v c u =D (,,)(cosh cos ,cosh sin ,sinh )x y z u v u v u =58.以下为椭圆抛物面22222x y z a b+=的参数表示的是〔B 〕.〔参数表示;易;2分钟〕A 2(,,)(cos ,sin ,)2u x y z u v u v =B 2(,,)(cos ,sin ,)2u x y z au v bu v =C 2(,,)(cosh ,sinh ,)2u x y z au v bu v = D (,,)(cos ,sin ,)x y z a v b v v =59.以下为双曲抛物面22222x y z a b-=的参数表示的是〔C 〕.〔参数表示;易;2分钟〕A (,,)(cosh ,sinh ,)x y z a u b u u =B (,,)(cosh ,sinh ,)x y z u u u =C (,,)((),(),2)x y z a u v b u v uv =+-D (,,)(,,)x y z au bv u v =-60.曲面2233(,)(2,,)u v u v u v u v =-+-r 在点(3,5,7)M 的切平面方程为〔B 〕.〔切平面方程;易;2分钟〕A 2135200x y z +-+=B 1834410x y z +--=C 756180x y z +--=D 1853160x y z +-+=61.球面(,)(cos cos ,cos sin ,sin )u v R u v R u v R u =r 的第一根本形式为〔D 〕.〔第一根本形式;中;2分钟〕A 2222(d sin d )R u u v +B 2222(d cosh d )R u u v + C 2222(d sinh d )R u u v + D 2222(d cos d )R u u v +62.正圆柱面(,)(cos ,sin ,)u v R v R v u =r 的第一根本形式为〔 C 〕.〔第一根本形式;中;2分钟〕A 22d d u v +B 22d d u v -C 222d d u R v +D 222d d u R v -63.在第一根本形式为222(d ,d )d sinh d u v u u v =+I 的曲面上,方程为12()u v v v v =≤≤的曲线段的弧长为〔B 〕.〔弧长;中;2分钟〕A 21cosh cosh v v -B 21sinh sinh v v -C 12cosh cosh v v -D 12sinh sinh v v -64.设M 为3R 中的2维2C 正如此曲面,如此M 的参数曲线网为正交曲线网的充要条件是〔 B 〕. A 0E = B 0F = C 0G =D 0M = 65.以下正确的答案是〔 D 〕.〔魏因加尔吞变换;较易;2分钟〕A d (d )=n rB d (d )u =n rC d (d )u v =n r D d (d )=-n r66.以下正确的答案是〔 C 〕.〔魏因加尔吞变换;较易;2分钟〕 A (d ,(δ))(d ,δ)=-I r r II r r B (d ,(δ))((δ),d )=-I r r I r r C (d ,(δ))((d ),δ)=I r r I r r D (d ,(δ))((d ),δ)=I r r II r r67.以下正确的答案是〔A 〕.〔魏因加尔吞变换;较易;2分钟〕 A (d ,(δ))(d ,δ)=I r r II r r B (d ,(δ))((d ),δ)=I r r II r r C (d ,(δ))((d ),δ)=-I r r I r r D (d ,(δ))((d ),δ)=II r r II r r68.高斯曲率为常数的的曲面叫〔C 〕.〔高斯曲率;易;2分钟〕 A 极小曲面 B 球面 C 常高斯曲率曲面 D 平面 第四章 B 69.,___________ijji i jgg =∑.〔第一根本形式;易;2分钟〕 A 1 B 2 C 0 D -1 B 70.______j kjl jgδ=∑.〔第一根本形式;易;2分钟〕 A kj g B kl g C ki g D ij gA 71.________kij Γ=.〔克氏符号;较易;2分钟〕 A1()2jl ijkl il j il i g g g g u u u ∂∂∂+-∂∂∂∑ B 1()2jl ijkl il j il i g g g g u u u ∂∂∂--∂∂∂∑ C 1()2jl ijkl il j il ig g g g u u u ∂∂∂++∂∂∂∑ D 1()2jl ij kl il j i l ig g g g u u u ∂∂∂-+∂∂∂∑ A 72.曲面上直线〔如果有的话〕的测地曲率等于_____.A 0B 1C 2D 3B 73.当参数曲线构成正交网时,参数曲线u-曲线的测地曲率为_____.〔X 维尔定理、测地曲率;中;4分钟〕ABCD A 74.如果测地线同时为渐进线,如此它必为_____.〔测地曲率、法曲率、曲率;中;2分钟〕 A 直线 B 平面曲线 C 抛物线 D 圆柱螺线B 75.在伪球面(1)K ≡-上,任何测地三角形的内角之和____.〔高斯-波涅定理;中;4分钟〕A 等于πB 小于πC 大于πD 不能确定三、多项选择题第一章76.假如()((),(),()),1,2,3i i i i t x t y t z t i ==r 为向量函数,如此如下论述正确的答案是〔 AD 〕.〔导数;易;4分钟〕A 1111()((),(),())t x t y t z t ''''=r B 1111111111()((),(),())((),(),())((),(),())t x t y t z t x t y t z t x t y t z t ''''=++r C 123123((),(),())((),(),())t t t t t t ''''=r r r r r r D 123((),(),())t t t 'r r r 123123123((),(),())((),(),())((),(),())t t t t t t t t t '''=++r r r r r r r r r E 123123((),(),())((),(),())t t t t t t ''=r r r r r r77.m,n 为常向量,()t r 为向量函数,如此下述正确的答案是〔 ABC 〕.〔积分的性质;中;4分钟〕A()d ()d bbaat t t t ⋅=⋅⎰⎰m r m r B ()d ()d bbaat t t t ⨯=⨯⎰⎰m r m rC(,,())d ()()d bbaat t t t =⨯⎰⎰m n r m n r D (,,())d ()()d bbaat t t t =⋅⎰⎰m n r m n rE(,,())d ()()d bbaat t t t =⨯⨯⎰⎰m n r m n r第二章78.如下曲线中为正如此曲线的有〔ACDE 〕。

微分几何习题解答曲线论

微分几何习题解答曲线论

第一章 曲线论§2 向量函数5. 向量函数)(t r 具有固定方向的充要条件是)(t r × )('t r= 0 。

分析:一个向量函数)(t r 一般可以写成)(t r =)(t λ)(t e 的形式,其中)(t e为单位向量函数,)(t λ为数量函数,那么)(t r 具有固定方向的充要条件是)(t e 具有固定方向,即)(t e 为常向量,(因为)(t e 的长度固定)。

证 对于向量函数)(t r ,设)(t e 为其单位向量,则)(t r =)(t λ)(t e ,若)(t r 具有固定方向,则)(t e 为常向量,那么)('t r =)('t λe ,所以 r ×'r=λ'λ(e ×e )=0 。

反之,若r ×'r =0 ,对)(t r =)(t λ)(t e 求微商得'r ='λe +λ'e ,于是r ×'r=2λ(e ×'e )=0 ,则有 λ = 0 或e ×'e =0 。

当)(t λ= 0时,)(t r =0 可与任意方向平行;当λ≠0时,有e ×'e =0 ,而(e ×'e 2)=22'e e -(e ·'e 2)=2'e ,(因为e 具有固定长, e ·'e = 0) ,所以 'e =0 ,即e为常向量。

所以,)(t r 具有固定方向。

6.向量函数)(t r平行于固定平面的充要条件是(r 'r ''r )=0 。

分析:向量函数)(t r 平行于固定平面的充要条件是存在一个定向向量)(t n ,使)(t r ·n= 0 ,所以我们要寻求这个向量n 及n 与'r ,''r的关系。

微分几何第四版习题答案解析梅向明

微分几何第四版习题答案解析梅向明

§1曲面的概念1。

求正螺面r ={ u v cos ,u v sin , bv }的坐标曲线.解 u-曲线为r ={u 0cos v ,u 0sin v ,bv 0 }={0,0,bv 0}+u {0cos v ,0sin v ,0},为曲线的直母线;v-曲线为r ={0u v cos ,0u v sin ,bv }为圆柱螺线. 2.证明双曲抛物面r ={a(u+v ), b (u-v ),2uv }的坐标曲线就是它的直母线。

证 u —曲线为r ={ a (u+0v ), b (u —0v ),2u 0v }={ a 0v , b 0v ,0}+ u{a ,b,20v }表示过点{ a 0v , b 0v ,0}以{a,b ,20v }为方向向量的直线;v-曲线为r ={a(0u +v), b (0u -v ),20u v }={a 0u , b 0u ,0}+v{a,—b ,20u }表示过点(a 0u , b 0u ,0)以{a,-b ,20u }为方向向量的直线。

3.求球面r =}sin ,sin cos ,sin cos {ϑϕϑϕϑa a a 上任意点的切平面和法线方程.解 ϑr=}cos ,sin sin ,cos sin {ϑϕϑϕϑa a a -- ,ϕr =}0,cos cos ,sin cos {ϕϑϕϑa a -任意点的切平面方程为00cos cos sin cos cos sin sin cos sin sin sin cos cos cos =------ϕϑϕϑϑϕϑϕϑϑϕϑϕϑa a a a a a z a y a x即 xcos ϑcos ϕ + ycos ϑsin ϕ + zsin ϑ - a = 0 ;法线方程为ϑϑϕϑϕϑϕϑϕϑsin sin sin cos sin cos cos cos cos cos a z a y a x -=-=- 。

微分几何习题解答曲线论

微分几何习题解答曲线论

第一章 曲线论§2 向量函数5. 向量函数)(t r 具有固定方向的充要条件是)(t r × )('t r= 0 ;分析:一个向量函数)(t r 一般可以写成)(t r =)(t λ)(t e 的形式,其中)(t e为单位向量函数,)(t λ为数量函数,那么)(t r 具有固定方向的充要条件是)(t e 具有固定方向,即)(t e为常向量,因为)(t e的长度固定;证 对于向量函数)(t r ,设)(t e 为其单位向量,则)(t r =)(t λ)(t e ,若)(t r具有固定方向,则)(t e 为常向量,那么)('t r =)('t λe ,所以 r ×'r=λ'λe ×e =0 ;反之,若r ×'r =0 ,对)(t r =)(t λ)(t e 求微商得'r ='λe +λ'e ,于是r×'r =2λe ×'e =0 ,则有 λ =0 或e ×'e =0 ;当)(t λ= 0时,)(t r =0 可与任意方向平行;当λ≠0时,有e ×'e=0,而e×'e2)=22'e e -e ·'e 2)=2'e ,因为e 具有固定长,e ·'e = 0 ,所以 'e =0 ,即e为常向量;所以,)(t r 具有固定方向;6.向量函数)(t r平行于固定平面的充要条件是r 'r ''r =0 ;分析:向量函数)(t r 平行于固定平面的充要条件是存在一个定向向量)(t n ,使)(t r ·n= 0 ,所以我们要寻求这个向量n 及n 与'r ,''r的关系;证 若)(t r 平行于一固定平面π,设n 是平面π的一个单位法向量,则n为常向量,且)(t r·n = 0 ;两次求微商得'r ·n = 0 ,''r ·n = 0 ,即向量r ,'r ,''r 垂直于同一非零向量n,因而共面,即r 'r ''r =0 ;反之, 若r 'r ''r =0,则有r ×'r =0 或r ×'r ≠0 ;若r ×'r =0,由上题知)(t r 具有固定方向,自然平行于一固定平面,若r ×'r≠0 ,则存在数量函数)(t λ、)(t μ,使''r =r λ+μ'r①令n =r ×'r,则n≠0 ,且)(t r ⊥)(t n ;对n =r ×'r求微商并将①式代入得'n =r ×''r =μr ×'r=μn ,于是n ×'n =0 ,由上题知n 有固定方向,而)(t r ⊥n ,即)(t r 平行于固定平面;§3 曲线的概念1.求圆柱螺线x =t cos ,y =t sin ,z=t 在1,0,0的切线和法平面;解 令t cos =1,t sin =0, t =0得t =0, 'r0={ -t sin ,t cos ,1}|0=t ={0,1,1},曲线在0,1,1的切线为 111z y x ==- ,法平面为 y + z = 0 ;2.求三次曲线},,{32ct bt at r =在点0t 的切线和法平面;解 }3,2,{)('2000ct bt a t r = ,切线为230020032ct ct z bt bt y a at x -=-=-, 法平面为 0)(3)(2)(30202000=-+-+-ct z ct bt y bt at x a ; 3. 证明圆柱螺线r ={ a θcos ,a θsin ,θb } +∞∞- θ的切线和z 轴作固定角;证明 'r= {-a θsin ,a θcos ,b },设切线与z 轴夹角为ϕ,则ϕcos=22||||'ba be r k r +=⋅ 为常数,故ϕ为定角其中k 为z 轴的单位向量; 4. 求悬链线r ={t ,a t a cosh }-∞∞ t 从t =0起计算的弧长;解'r = {1,atsinh },|'r | =at2sinh 1+ = a tcosh , s=a tta ta dt sinh cosh=⎰ ;9.求曲线2232,3axz y a x ==在平面3ay =与y = 9a 之间的弧长;解 曲线的向量表示为r =}2,3,{223xa a x x ,曲面与两平面3a y = 与y = 9a 的交点分别为x=a 与x=3a , 'r =}2,,1{2222xa ax -,|'r |=444441x a a x ++=22222xa a x +,所求弧长为a dx xa a x s aa9)2(22322=+=⎰; 10. 将圆柱螺线r ={a t cos ,a t sin ,b t }化为自然参数表示;解 'r= { -a t sin ,a t cos ,b},s = t b a dt r t 220|'|+=⎰ ,所以22ba s t +=,代入原方程得 r ={a cos22ba s +, a sin22ba s +,22ba bs +}11.求用极坐标方程)(θρρ=给出的曲线的弧长表达式; 解由θθρcos )(=x ,θθρsin )(=y 知'r ={)('θρθcos -θθρsin )(,)('θρθsin +θθρcos )(},|'r| = )(')(22θρθρ+,从0θ到θ的曲线的弧长是s=⎰θθ0)(')(22θρθρ+d θ ;§4 空间曲线1.求圆柱螺线x =a t cos ,y =a t sin ,z = b t 在任意点的密切平面的方程;解 'r ={ -a t sin ,a t cos ,b},''r={-a t cos ,- a t sin ,0 } 所以曲线在任意点的密切平面的方程为sin cos cos sin sin cos ta ta b t a t a bt z t a y t a x ------ = 0 ,即b t sin x-b t cos y+a z-ab t=0 .2. 求曲线r = { t t sin ,t t cos ,t t e } 在原点的密切平面、法平面、从切面、切线、主法线、副法线;解 原点对应t=0 , 'r0={ t sin +t t cos ,t cos - t t sin ,t e +t t e 0}=t ={0,1,1},=)0(''r{2t cos + t t cos ,t cos - t t sin ,2t e +t t e 0}=t ={2,0,2} ,所以切线方程是110zy x == ,法面方程是 y + z = 0 ; 密切平面方程是202110zy x=0 ,即x+y-z=0 ,主法线的方程是⎩⎨⎧=+=-+00z y z y x 即112zy x =-=; 从切面方程是2x-y+z=0 ,副法线方程式111-==zy x ; 3.证明圆柱螺线x =a t cos ,y =a t sin ,z = b t 的主法线和z 轴垂直相交;证 'r ={ -a t sin ,a t cos ,b}, ''r ={-a t cos ,- a t sin ,0 } ,由'r ⊥''r 知''r为主法线的方向向量,而''r 0=⋅k所以主法线与z 轴垂直;主法线方程是与z 轴有公共点o,o,bt;故圆柱螺线的主法线和z 轴垂直相交;4.在曲线x = cos αcost ,y = cos αsint , z = tsin α的副法线的正向取单位长,求其端点组成的新曲线的密切平面;解 'r = {-cos αsint, cos αcost, sin α } , ''r={ -cos αcost,- cos αsint ,0 }=⨯⨯=|'''|'''r r r rγ{sin αsint ,- sin αcost , cos α }新曲线的方程为r ={ cos αcost + sin αsint ,cos αsint- sin αcost ,tsin α + cos α }对于新曲线'r={-cos αsint+ sin αcost ,cos αcost+ sin αsint,sin α }={sin α-t,cos α-t, sin α} , ''r={ -cos α-t, sin α-t,0} ,其密切平面的方程是即 sin α sint-α x –sin α cost-α y + z – tsin α – cos α = 0 .5.证明曲线是球面曲线的充要条件是曲线的所有法平面通过一定点; 证 方法一:⇒设一曲线为一球面曲线,取球心为坐标原点,则曲线的向径)(t r具有固定长,所以r ·'r= 0,即曲线每一点的切线与其向径垂直,因此曲线在每一点的法平面通过这点的向径,也就通过其始点球心;⇐ 若一曲线的所有法平面通过一定点,以此定点为坐标原点建立坐标系,则r ·'r = 0,)(t r具有固定长,对应的曲线是球面曲线;方法二:()r r t =是球面曲线⇔存在定点0r 是球面中心的径矢和常数R 是球面的半径使220()r r R -=⇔02()0r r r '-⋅= ,即0()0r r r '-⋅= ﹡而过曲线()r r t =上任一点的法平面方程为()0r r ρ'-⋅= ;可知法平面过球面中心⇔﹡成立;所以,曲线是球面曲线的充要条件是曲线的所有法平面通过一定点;6.证明过原点平行于圆柱螺线r ={a t cos ,a t sin ,b t }的副法线的直线轨迹是锥面2222)(bz y x a =+.证 'r={ -a tsin ,a t cos , }, ''r ={-a t cos ,- a t sin ,0 } ,'r×''r=},cos ,sin {a t b t b a ---为副法线的方向向量,过原点平行于副法线的直线的方程是az t b y t b x =-=cos sin ,消去参数t 得2222)(bz y x a =+; 7.求以下曲面的曲率和挠率⑴ },sinh ,cosh {at t a t a r =,⑵ )0)}(3(,3),3({323a t t a at t t a r +-=;解 ⑴},cosh ,sinh {'a t a t a r =,}0,sinh ,cosh {''t a t a r =,}0,cosh ,{sinh '''t t a r =,}1,cosh ,sinh {'''--=⨯t t a r r,所以t a t a t a r r r k 2323cosh 21)cosh 2(cosh 2|'||'''|==⨯= ta t a a r r r r r 22422cosh 21cosh 2)'''()''','','(==⨯=τ ; ⑵ }1,2,1{3'22t t t a r +-= ,}1,0,1{6'''},,1,{6''-=-=a r t t a r,'r ×''r =}1,2,1{18222+--t t t a ,22322223)1(31)1(2227)1(218|'||'''|+=++=⨯=t a t a t a r r r k22224232)1(31)1(2182618)'''()''','','(+=+⨯⨯⨯=⨯=t a t a a r r r r r τ ; 8.已知曲线}2cos ,sin ,{cos 33t t t r = ,⑴求基本向量γβα ,,;⑵曲率和挠率;⑶验证伏雷内公式;分析 这里给出的曲线的方程为一般参数,一般地我们可以根据公式去求基本向量和曲率挠率,我们也可以利用定义来求;解 ⑴ }4,sin 3,cos 3{cos sin }2sin 2,cos sin 3,sin cos 3{'22--=--=t t t t t t t t t r,,cos sin 5|)('|t t t r dtds ==设sintcost>0, 则}54,sin 53,cos 53{|'|'--==t t r r α,}0,cos 53,sin 53{cos sin 51t t t t ds dt dt d ==•αα, }0,cos ,{sin ||t t ==••ααβ,}53,sin 54,cos 54{--=⨯=t t βαγ ,⑵ t t k cos sin 253||==•α,}0,cos ,sin {cos sin 254t t t t --=•γ ,由于•γ 与β 方向相反,所以 tt cos sin 254||==•γτ⑶ 显然以上所得 τγβα,,,••k 满足 βτγβα -==••,k ,而γτακβ+-=-=•}0,sin ,{cos cos sin 51t t tt 也满足伏雷内公式 ;9.证明如果曲线的所有切线都经过一的定点,则此曲线是直线;证 方法一:取定点为坐标原点建坐标系,曲线的方程设为r =)(t r,则曲线在任意点的切线方程是)(')(t r t r λρ=-,由条件切线都过坐标原点,所以)(')(t r t rλ=,可见r ∥'r ,所以r 具有固定方向,故r =)(t r是直线;方法二:取定点为坐标原点建坐标系,曲线的方程设为r =)(t r,则曲线在任意点的切线方程是)(')(t r t rλρ=-,由条件切线都过坐标原点,所以)(')(t r t rλ=,于是'r =λ''r ,从而'r ×''r=0 ,所以由曲率的计算公式知曲率k =0,所以曲线为直线;方法二:设定点为0r ,曲线的方程为r =()r s ,则曲线在任意点的切线方程是()()r s s ρλα-=,由条件切线都过定点0r ,所以0()()r r s s λα-=,两端求导得:()()s s αλαλκβ'-=+, 即(1)()0s λαλκβ'++= ,而(),()s s αβ无关,所以10λ'+=,可知0,()0s λκ≠∴=,因此曲线是直线;10. 证明如果曲线的所有密切平面都经过一的定点,则此曲线是平面曲线;证 方法一:取定点为坐标原点建坐标系,曲线的方程设为r =)(t r,则曲线在任意点的密切平面的方程是0))('')('())((=⨯⋅-t r t r t r ρ,由条件0))('')('()(=⨯⋅-t r t r t r,即r 'r ''r =0,所以r 平行于一固定平面,即r =)(t r是平面曲线;方法二:取定点为坐标原点建坐标系,曲线的方程设为r =)(s r,则曲线在任意点的密切平面方程是0))((=⋅-γρ s r ,由条件0)(=⋅γs r ,两边微分并用伏雷内公式得τ-0)(=⋅β s r ;若0)(=⋅β s r ,又由0)(=⋅γ s r 可知)(s r ∥)(s r •= α,所以r =)(s r平行于固定方向,这时r =)(s r表示直线,结论成立;否则0=τ,从而知曲线是平面曲线;方法三:取定点为坐标原点建坐标系,曲线的方程设为r =)(t r,则曲线在任意点的密切平面方程是0))('')('())((=⨯⋅-t r t r t r ρ,由条件0))('')('()(=⨯⋅-t r t r t r,即r 'r ''r =0,所以r ,'r ,''r 共面,若r ∥'r ,则r =)(t r是直线,否则可设''',''''''r r r r r r λμλμ=+∴=+,所以','','''r r r 共面,所以0=τ,从而知曲线是平面曲线;11. 证明如果一条曲线的所有法平面包含常向量e,那么曲线是直线或平面曲线;证 方法一:根据已知0=⋅e α,若α是常向量,则k=||•α =0 ,这时曲线是直线;否则在0=⋅e α两边微分得•α ·e =0,即 k β ·e =0,所以β ·e =0,又因0=⋅e α,所以γ ∥e ,而γ 为单位向量,所以可知γ 为常向量,于是0||||==•γτ,即0=τ,此曲线为平面曲线;方法二:曲线的方程设为r =)(t r ,由条件'r ·e =0,两边微分得''r ·e =0,'''r ·e=0,所以'r , ''r ,'''r共面,所以'r ''r '''r =0;由挠率的计算公式可知0=τ,故曲线为平面曲线;当'r ×''r=0 时是直线;方法三:曲线的方程设为r =)(t r,由条件'r ·e =0,两边积分得p 是常数;因r e p ⋅=是平面的方程,说明曲线r =)(t r在平面上,即曲线是平面曲线,当'r 有固定方向时为直线;12.证明曲率为常数的空间曲线的曲率中心的轨迹仍是曲率为常数的曲线;证明 设曲线C :r =)(s r的曲率k 为常数,其曲率中心的轨迹C 的方程为:)(1)(s ks r βρ+= ,β 为曲线C 的主法向量,对于曲线C 两边微分得γτγτααρ kk k s =+-+=)(1)(' ,α ,γ ,τ分别为曲线C 的单位切向量,副法向量和挠率,βτγτρ k k 2''-=•,k |||'|τρ= ,23'''k τρρ=⨯ α ,曲线C 的曲率为k k k k ==⨯=-33233|||||'||'''|ττρρρ为常数;13.证明曲线x=1+3t+22t ,y=2-2t+52t ,z=1-2t 为平面曲线,并求出它所在的平面方程 ;证 'r ={3+4t, -2+10t,-2t}, ''r ={4,10,-2}, '''r={0,0,0}曲线的挠率是0)'''()''','','(2=⨯=r r r r r τ,所以曲线为平面曲线;曲线所在平面是曲线在任一点的密切平面;对于t=0,r ={1,2,1},'r ={3, -2,0}, ''r ={4,10,-2}, '''r={0,0,0};所以曲线的密切平面,即曲线所在平面是02104023121=-----z y x ,即2x+3y+19z –27=0.14.设在两条曲线Γ、Γ的点之间建立了一一对应关系,使它们在对应点的切线平行,证明它们在对应点的主法线以及副法线也互相平行;证 设曲线Γ:r =)(s r与Γ:)(s r r =点s 与s 一一对应,且对应点的切线平行,则)(s α=)(s α±, 两端对s 求微商得ds s d αα ±=, 即dss d s k s k )()(ββ ±= ,这里k ≠0,若k=||α =0,则β 无定义,所以β ∥β ,即主法线平行,那么两曲线的副法线也平行;15.设在两条曲线Γ、Γ的点之间建立了一一对应关系,使它们在对应点的主法线平行,证明它们在对应点的切线作固定角;证 设α ,α分别为曲线Γ、Γ的切向量,β ,β 分别为曲线Γ、Γ的主法向量,则由已知)()(s s ββ ±=.....① ,而ds s d ds d αααααα ⋅+⋅=⋅)(= dss d s k k )(βααβ ⋅+⋅ 将①式代入 0)(=⋅±⋅dss d k βααβ ;所以α ·α=常数,故量曲线的切线作固定角;16.若曲线Γ的主法线是曲线Γ的副法线, Γ的 曲率、挠率分别为τκ,;求证k=0λ2κ+2τ ,其中0λ为常数;证 设Γ的向量表示为r =)(s r,则Γ可表示为ρ =)(s r +)(s λ)(s β , Γ的切向量'ρ =α+λ β +λ-k α +τγ 与β 垂直,即'ρ ·β =λ =0,所以λ为常数,设为0λ,则'ρ =1-0λk α +0λτγ ;再求微商有''ρ =-0λk α+1-0λkk β +0λτ γ -0λ2τβ ,''ρ ·β =1-0λkk -0λ2τ=0,所以有k=0λ2κ+2τ;17.曲线r ={at-sint,a1-cost,4acos2t}在那点的曲率半径最大;解 'r= a{1-cost,sint,-2sin2t } , ''r = a{sint,cost,-cos 2t}, |2sin |22|'|tr = ,'r ×''r =}1,2cos ,2{sin 2sin 2}2cos 4,2cos 2sin 2,2sin 2{22232tt t a t a t t t a -=--,|'r ×''r |=22sin 222t a , |2sin|81|||'''|3ta r r r k =⨯=,|2sin |8t a R = ,所以在t=2k+1π,k 为整数处曲率半径最大;18. 已知曲线)(:)(3s r r C C =∈上一点)(0s r 的邻近一点)(0s s r ∆+ ,求)(0s s r ∆+点到)(0s r 点的密切平面、法平面、从切平面的距离设点)(0s r 的曲率、挠率分别为00,τκ;解)(0s s r ∆+-)(0s r =30200])([!31)(21)(s s r s s r s s r ∆++∆+∆ε =300021s s ∆+∆βκα +300000020)(61s k k ∆+++-εγτκβα ,设030201γεβεαεε ++=,其中0lim 0=→∆ε s ;则)(0s s r ∆+ -)(0s r=0330003202003120])(61[])(6121[])(61[γετκβεκκαεκ s s s s s ∆++∆++∆+∆+-+∆ 上式中的三个系数的绝对值分别是点)(0s s r ∆+ 到)(0s r的法平面、从切平面、密切平面的距离;§5 一般螺线5. 证明如果所有密切平面垂直于固定直线,那么它是平面直线.证法一: 当曲线的密切平面垂直于某固定直线时,曲线的副法向量γ是常向量.即γ=0;曲线的挠率的绝对值等于|γ|为零,所以曲线为平面曲线; 证法二:设n 是固定直线一向量,则'r ·n =0 ,积分得r ·n=p ,说明曲线在以n 为法向量的一个平面上,因而为平面直线;证法三:设n 是固定直线一向量,则'r ·n =0 ,再微分得''r ·n =0 ,'''r ·n=0 ;所以'r 、''r 、'''r三向量共面,于是'r ''r '''r = 0 ,由挠率的计算公式知τ=0,因此曲线为平面曲线;7.如果两曲线在对应点有公共的副法线,则它们是平面曲线;证 设一曲线为Γ:r =)(s r,则另一曲线Γ的表达式为:+=)(s r ρ)(s λ)(s γ ,)(s γ 为曲线Γ在点s 的主法向量,也应为Γ在对应点的副法线的方向向量;'ρ =α+λ γ -λτβ 与γ 正交,即'ρ ·γ =0,于是λ =0,λ为常数;'ρ =α -λτβ ,''ρ =k β -λτ β -λτ-k α+τγ 也与γ 正交,即''ρ ·γ =-λ2τ=0,而λ≠0,所以有τ=0,曲线Γ为平面曲线;同理曲线Γ为平面曲线;8. 如果曲线Γ:r =)(s r为一般螺线, α、β 为Γ的切向量和主法向量,R 为Γ的曲率半径;证明Γ:ρ=R α-⎰ds β 也是一般螺线;证 因为Γ为一般螺线, 所以存在一非零常向量e 使α与e成固定角,对于曲线Γ,其切向量'ρ=αββκα R R R =-+与α共线,因此也与非零常向量e 成固定角, 所以Γ也为一般螺线;9.证明曲线r =)(s r 为一般螺线的充要条件为0),,(....=r r r证 βκ =r ,γτκτκβκτκκακκγκτβκακ )2()(3,23....2++-+-+-=++-=r r 25333....)(3)2(),,(κτκτκκτκτκκτκκτκτκ -=-=-+=k r r r =)(5κτκ,其中k ≠0. 曲线r =)(s r 为一般螺线的充要条件为κτ为常数,即•)(κτ=0,也就是0),,(....=r r r ;方法二: 0),,(....=r r r ,即0),,(=ααα;曲线r =)(s r 为一般螺线,则存在常向量e ,使α·e =常数,所以,0,0,0=⋅=⋅=⋅e e e ααα所以ααα ,,共面,从而ααα ,,=0;反之,若ααα ,,=0,则α 平行于固定平面,设固定平面的法矢为e ,则有0=⋅e α,从而α·e = p 常数,所以r =)(s r 为一般螺线;方法三:曲线r =)(s r 为一般螺线⇔存在常向量e 使e β⊥,即0e ββ⋅=⇔平行于固定平面以e 为法向量的平面r ⇔平行于一固定平面(,,)0r r r ⇔= ;方法四:""⇒设r =)(s r 为一般螺线,存在常向量e 使e α⋅=常数,即r e ⋅=常数,连续三次求微商得0,0r e r e ⋅=⋅=,0r e ⋅= ,所以0),,(....=r r r ;""⇐因为0),,(....=r r r ,所以r 平行于固定平面,设固定平面的法矢为n 常向量,则r n ⊥,而,r n ββ∴⊥,所以曲线为一般螺线;10. 证明一条曲线的所有切线不可能同时都是另一条曲线的切线;证 设曲线Γ与Γ在对应点有公共的切线,且Γ的表达式为:r =)(s r ,则Γ:+=)(s r ρ)(s λ)(s α ,λ≠0,其切向量为'ρ=α+λ α+λk β 应与α平行,所以k =0,从而曲线Γ为直线;同理曲线Γ为直线,而且是与Γ重合的直线;所以作为非直线的两条不同的曲线不可能有公共的切线;11.设在两条曲线Γ、Γ的点之间建立了一一对应关系,使它们在对应点的切线平行,证明它们在对应点的主法线以及副法线也互相平行,且它们的挠率和曲率都成比例,因此如果Γ为一般螺线, 则Γ也为一般螺线;证 设曲线Γ:r =)(s r 与Γ:)(s r r =点建立了一一对应,使它们对应点的切线平行,则适当选择参数可使)(s α =)(s α , 两端对s 求微商得ds s d αα =, 即ds s d s k s k )()(ββ = ,这里0 ds s d ,所以有β =β ,即主法线平行,从而)(s γ =)(s γ ,即两曲线的副法线也平行;且,ds s d κκ= 或ds s d =κκ;)(s γ =)(s γ 两边对s 求微商得dss d s s )()(βτβτ -=-,于是 ,ds s d ττ=或ds s d =ττ,所以,ττκκ= 或τκτκ=;。

《微分几何》考试试卷与参考答案

《微分几何》考试试卷与参考答案

《微分几何》结业考试试卷一、判断题:(正确打√,错误打×。

每题2分,共10分))1、等距变换一定是保角变换. ( )2、空间曲线的形状由曲率与挠率唯一确定. ( )3、二阶微分方程22A(,)2B(,)B(,)0u v du u v dudv u v dv ++=总表示曲面上两族曲线. ( )4、连接曲面上两点的所有曲线段中,测地线一定是最短的. ( )5、坐标曲线网是正交网的充要条件是0F =,这里F 是第一基本量. ( )二、填空题:(每空3分,共33分)1、 已知33{cos ,sin ,cos2}r x x x =,02x π<<,则α= ,β= ,γ= ,κ= ,τ= .2、已知曲面{c o s ,s i n ,6}r u v u v v =,0u >,02v π≤<,则它的第一基本形式为 ,第二基本形式为 ,高斯曲率K = ,平均曲率 H = ,点(1,0,0)处沿方向:2du dv =的法曲率 ,点(1,0,0)处的两个主曲率分别为 。

三、计算题(每小题12分,共24分) 1、求曲面33z x y =-的渐近曲线.2、已知曲面的第一基本形式为22()I v du dv =+,0v >,求坐标曲线的测地曲率.密线封层次报读学校专业姓名四、综合题:(每小题11分,共33分)1、设空间两条曲线Γ和C的曲率处处不为零,若曲线Γ和C可以建立一一对应,且在对应点的主法线互相平行,求证曲线Γ和C在对应点的切线夹固定角.2、给出曲面上一条曲率线Γ,设Γ上每一点处的副法向量和曲面在该点的法向量成定角. 求证Γ是一条平面曲线.3、问曲面上曲线Γ的切向量沿曲线Γ本身平行移动的充要条件是曲面上的曲线Γ是测地线吗?为什么?《微分几何》参考答案一、判断题:1. √ 2. √ 3. ⨯ 4. ⨯ 5. √ 二、填空题:① 1{3cos ,3sin ,4}5x x -- ②{sin ,cos ,0}x x③1{4cos ,4sin ,3}5x x -- ④625sin 2x⑤825sin 2x⑥ 222(36)du u dv ++⑦dv⑧2236(36)u -+ ⑨ 0⑩○11 66,3737- 三、计算题:1、求曲面33z x y =-的渐近曲线.解 设33{,,}r u v u v =-则 2{1,0,3}u r u =,2{0,1,3}v r v =-,2243,3,1}||9u v u v r r n u v r r u ⨯==-⨯{0,0,6}uu r u =,0uv r =,{0,0,6}vv r v =-uu L n r =⋅=0uv M n r =⋅=,vv N n r =⋅=(6分)因渐近曲线的微分方程为2220Ldu Mdu dv Ndv ++=即22udu vdv =0=∴ 渐近曲线为331u v C =+或332()u v C -=+ (12分)2、已知曲面的第一基本形式为22()I v du dv =+,0v >,求坐标曲线的测地 曲率.解 E G v ==,0F =,0u G =,1v E=(4分)u-线的测地曲率ug κ==(8分) v-线的测地曲率0vg κ== (12分)四、综合题:1. 设空间两条曲线Γ和C 的曲率处处不为零,若曲线Γ和C 可以建立一一 对应,且在对应点的主法线互相平行,求证曲线Γ和C 在对应点的切线夹固定角.证 设 :()r r s Γ=,:()r r s **Γ=,则由//ββ*知ββ*=±,从而0αβ*⋅=,0αβ*⋅=,()0d ds ds dsαακβακαβ*****⋅=⋅+⋅= ∴ constant αα*⋅=,即 cos ,C αα*=这表明曲线Γ和C 在对应点的切线夹固定角. (11分)2. 给出曲面上一条曲率线Γ,设Γ上每一点处的副法向量和曲面在该点的 法向量成定角. 求证Γ是一条平面曲线.证 设 :(,)r r u v ∑=,:(),()u u s v v s Γ==,其中s 是Γ的自然参数,记,r n θ=,则cos r n θ⋅=,两边求导,得d 0d nn rsτβ-⋅+=, (4分) 由Γ为曲率线知d //d n r ,即d d //d d n r s s α=, 因此d d 0d d n n r n r r s sτβκ⋅=⋅=-⋅= 。

微分几何期末试题及答案

微分几何期末试题及答案

微分几何期末试题及答案一、选择题(每题3分,共30分)1. 曲线在点处的切线方程为,若,则该点处的曲率是()。

A. 0B. 1C. 2D. 3答案:B2. 若函数在点处可微,则在该点处的切平面方程为()。

A.B.C.D.答案:D3. 曲面在点处的法向量为,若,则该点处的高斯曲率是()。

A. 0B. 1C. 2D. 3答案:C4. 给定曲线的参数方程为,则曲线在点处的曲率是()。

A.B.C.D.答案:A5. 若函数在点处的梯度为,则在该点处的方向导数是()。

A.B.C.D.答案:B6. 曲面在点处的主曲率分别为,则该点处的平均曲率是()。

A.B.C.D.答案:A7. 给定曲线的参数方程为,则曲线在点处的挠率是()。

A.B.C.D.答案:B8. 若函数在点处的Hessian矩阵为,则在该点处的二阶偏导数是()。

A.B.C.D.答案:D9. 曲面在点处的切平面方程为,则该点处的法向量是()。

A.B.C.D.答案:C10. 若函数在点处的Jacobi矩阵为,则在该点处的偏导数是()。

A.B.C.D.答案:A二、填空题(每题4分,共20分)1. 曲线在点处的挠率定义为______。

答案:曲线在点处的挠率定义为。

2. 若函数在点处的偏导数为0,则称该点为函数的______。

答案:临界点。

3. 曲面在点处的高斯曲率定义为______。

答案:曲面在点处的高斯曲率定义为。

4. 给定曲线的参数方程为,则曲线在点处的切向量为______。

答案:曲线在点处的切向量为。

5. 若函数在点处的梯度为,则在该点处的方向导数为______。

答案:函数在点处的方向导数为。

三、解答题(每题10分,共50分)1. 已知曲线的参数方程为,求曲线在点处的切线方程。

答案:首先求出曲线的导数,然后利用点斜式方程求得切线方程。

2. 已知函数在点处的梯度为,求在该点处沿向量方向的方向导数。

答案:首先求出向量的单位向量,然后利用方向导数的定义求得结果。

微分几何试题及答案

微分几何试题及答案

微分几何试题及答案一、选择题1. 曲线在某点的曲率是该点处曲线的:A. 切线斜率B. 切线方向C. 法线方向D. 切线与法线夹角的正弦值答案:D2. 曲面在某点的第一基本形式是:A. 曲面的高斯曲率B. 曲面的平均曲率C. 曲面的法向量D. 曲面在该点的切平面答案:D二、填空题1. 给定曲线 \( y = x^2 \) ,求其在点 \( x = 1 \) 处的曲率。

答案:\( \kappa = 4 \) (在 \( x = 1 \) 处)2. 曲面 \( z = x^2 + y^2 \) 在点 \( (1, 1, 2) \) 处的高斯曲率\( K \) 是:答案:\( K = 4 \) (在点 \( (1, 1, 2) \) 处)三、简答题1. 简述微分几何中“切空间”的概念。

答案:切空间是微分几何中描述曲面或流形上某一点处所有可能的切向量的集合,它是一个线性空间,可以看作是曲面或流形在某一点的局部线性近似。

2. 解释什么是高斯映射,并说明其几何意义。

答案:高斯映射是曲面上每一点处法向量的映射,它将曲面的每一点映射到其对应的法线方向。

几何意义上,高斯映射描述了曲面在某一点处的局部弯曲程度。

四、计算题1. 给定曲线 \( \vec{r}(t) = (t, t^2, t^3) \) ,求其在 \( t =1 \) 处的曲率。

答案:首先求导得到速度向量 \( \vec{r'}(t) = (1, 2t, 3t^2) \)和加速度向量 \( \vec{r''}(t) = (0, 2, 6t) \) 。

在 \( t = 1 \) 处,速度向量为 \( (1, 2, 3) \) ,加速度向量为 \( (0, 2, 6)\) 。

曲率 \( \kappa \) 由公式 \( \kappa = \frac{||\vec{r'}\times \vec{r''}||}{||\vec{r'}||^3} \) 计算得到,代入数值得到\( \kappa = \frac{12}{27} = \frac{4}{9} \) 。

(完整word版)《微分几何》考试试卷与参考答案

(完整word版)《微分几何》考试试卷与参考答案

《微分几何》结业考试试卷一、判断题:(正确打√,错误打×。

每题2分,共10分))1、等距变换一定是保角变换. ( )2、空间曲线的形状由曲率与挠率唯一确定. ( )3、二阶微分方程22A(,)2B(,)B(,)0u v du u v dudv u v dv ++=总表示曲面上两族曲线. ( ) 4、连接曲面上两点的所有曲线段中,测地线一定是最短的. ( )5、坐标曲线网是正交网的充要条件是0F =,这里F 是第一基本量. ( )二、填空题:(每空3分,共33分)1、 已知33{cos ,sin ,cos 2}r x x x =,02x π<<,则α= ,β= ,γ= ,κ= ,τ= .2、已知曲面{c o s ,s i n ,6}r u v u v v =,0u >,02v π≤<,则它的第一基本形式为 ,第二基本形式为 ,高斯曲率K = ,平均曲率 H = ,点(1,0,0)处沿方向:2du dv =的法曲率 ,点(1,0,0)处的两个主曲率分别为 。

三、计算题(每小题12分,共24分) 1、求曲面33z x y =-的渐近曲线.2、已知曲面的第一基本形式为22()I v du dv =+,0v >,求坐标曲线的测地曲率.密线封层次报读学校专业姓名四、综合题:(每小题11分,共33分)1、设空间两条曲线Γ和C的曲率处处不为零,若曲线Γ和C可以建立一一对应,且在对应点的主法线互相平行,求证曲线Γ和C在对应点的切线夹固定角.2、给出曲面上一条曲率线Γ,设Γ上每一点处的副法向量和曲面在该点的法向量成定角. 求证Γ是一条平面曲线.3、问曲面上曲线Γ的切向量沿曲线Γ本身平行移动的充要条件是曲面上的曲线Γ是测地线吗?为什么?《微分几何》参考答案一、判断题:1. √ 2. √ 3. ⨯ 4. ⨯ 5. √ 二、填空题:① 1{3cos ,3sin ,4}5x x -- ②{sin ,cos ,0}x x③1{4cos ,4sin ,3}5x x -- ④625sin 2x⑤825sin 2x⑥ 222(36)du u dv ++⑦du dv⑧2236(36)u -+ ⑨ 0⑩○11 66,3737- 三、计算题:1、求曲面33z x y =-的渐近曲线.解 设33{,,}r u v u v =-则 2{1,0,3}u r u =,2{0,1,3}v r v =-,2243,3,1}||9u v u v r r n u v r r u ⨯==-⨯{0,0,6}uu r u =,0uv r =,{0,0,6}vv r v =-uu L n r =⋅=0uv M n r =⋅=,vv N n r =⋅=(6分)因渐近曲线的微分方程为2220Ldu Mdu dv Ndv ++=即22udu vdv =0=∴ 渐近曲线为33221u v C =+或33222()u v C -=+ (12分)2、已知曲面的第一基本形式为22()I v du dv =+,0v >,求坐标曲线的测地 曲率.解 E G v ==,0F =,0u G =,1v E =(4分)u-线的测地曲率ug κ==(8分)v-线的测地曲率0vg κ== (12分)四、综合题:1. 设空间两条曲线Γ和C 的曲率处处不为零,若曲线Γ和C 可以建立一一 对应,且在对应点的主法线互相平行,求证曲线Γ和C 在对应点的切线夹固定角.证 设 :()r r s Γ=,:()r r s **Γ=,则由//ββ*知ββ*=±,从而0αβ*⋅=,0αβ*⋅=,()0d ds ds dsαακβακαβ*****⋅=⋅+⋅= ∴ constant αα*⋅=,即 cos ,C α*=这表明曲线Γ和C 在对应点的切线夹固定角. (11分)2. 给出曲面上一条曲率线Γ,设Γ上每一点处的副法向量和曲面在该点的 法向量成定角. 求证Γ是一条平面曲线.证 设 :(,)r r u v ∑=,:(),()u u s v v s Γ==,其中s 是Γ的自然参数,记,r n θ=,则cos r n θ⋅=,两边求导,得d 0d nn rsτβ-⋅+=, (4分) 由Γ为曲率线知d //d n r ,即d d //d d n r s s α=, 因此d d 0d d n n rn r r s sτβκ⋅=⋅=-⋅= 。

微分几何试题及答案

微分几何试题及答案

微分几何试题及答案一、选择题(每题5分,共20分)1. 以下哪个概念不是微分几何中的概念?A. 流形B. 向量场C. 拓扑空间D. 黎曼曲率答案:C2. 在微分几何中,一个流形的局部坐标系是:A. 一组线性无关的向量B. 一组线性无关的函数C. 一组局部坐标函数D. 一组局部坐标点答案:C3. 微分几何中,一个向量场在点p的切空间中的表示为:A. 一个点B. 一个函数C. 一个向量D. 一个切平面答案:C4. 黎曼曲率张量R^i_jkl在微分几何中表示:A. 一个流形的局部性质B. 一个流形的全局性质C. 一个向量场的局部性质D. 一个向量场的全局性质答案:A二、填空题(每题5分,共20分)1. 一个n维流形上的切向量空间的维数是______。

答案:n2. 微分几何中,联络(connection)是定义在切空间上的一个______。

答案:线性映射3. 黎曼度量g_ij定义了一个流形上的______。

答案:长度和角度4. 一个流形的测地线是该流形上使得______取极值的曲线。

答案:弧长三、简答题(每题10分,共30分)1. 简述流形的概念。

答案:流形是一个拓扑空间,每一点都有一个邻域,这些邻域与欧几里得空间中的开集同胚。

2. 什么是联络形式?答案:联络形式是定义在切空间上的一组线性映射,它们满足特定的性质,如与坐标无关,并且可以用于描述流形上的平行性。

3. 黎曼曲率张量在广义相对论中有什么物理意义?答案:黎曼曲率张量在广义相对论中描述了时空的曲率,它与引力场的强度和方向有关。

四、计算题(每题15分,共30分)1. 给定一个二维流形上的度量张量g_ij,其中g_11 = 1, g_22 = 1, g_12 = g_21 = 0,计算该流形上的Christoffel符号。

答案:Christoffel符号为Γ^1_11 = 0, Γ^1_12 = 0, Γ^1_21 = 0, Γ^1_22 = 0, Γ^2_11 = 0, Γ^2_12 = 0, Γ^2_21 = 0, Γ^2_22 = 0。

微分几何理解练习知识题目整合及答案解析

微分几何理解练习知识题目整合及答案解析

《微积分几何》复习题 本科 第一部分:练习题库及答案一、填空题(每题后面附有关键词;难易度;答题时长)第一章1.已知(1,1,1),(1,0,1)=-=-a b ,则这两个向量的夹角的余弦θcos =36 2.已知(0,1,1),(1,0,1)=-=-a b ,求这两个向量的向量积⨯=a b (-1,-1,-1). 3.过点)1,1,1(P 且与向量(1,0,1)=-a 垂直的平面方程为X-Z=04.求两平面0:1=++z y x π与12:2=+-z y x π的交线的对称式方程为21131--=-=+z y x 5.计算232lim[(31)]t t t →+-+=i j k 138-+i j k .6.设()(sin )t t t =+f i j ,2()(1)tt t e =++g i j ,求0lim(()())t t t →⋅=f g 0 .7.已知(,)(,,)u v u v u v uv =+-r ,其中2t u =,t v sin =,则d d t=r(2cos ,2cos ,2cos )t t t t vt u t +-+ 8.已知t =ϕ,2t =θ,则d (,)d tϕθ=r (sin cos 2cos sin ,sin sin 2cos cos ,cos )a at a at a ϕθϕθϕθϕθϕ---+ 9.已知42()d (1,2,3)t t =-⎰r ,64()d (2,1,2)t t =-⎰r ,求4622()d ()d t t t t ⨯+⋅⋅=⎰⎰a r b a r )5,9,3(-,其中(2,1,1)=a ,(1,1,0)=-b10.已知()t '=r a (a 为常向量),求()t =r t +a c 11.已知()t t '=r a ,(a 为常向量),求()t =r212t +a c 12.已知()(2)(log )t t t =++f j k ,()(sin )(cos )t t t =-g i j ,0t >,则4d()d d t t ⋅=⎰f g 4cos 62-. 第二章13.曲线3()(2,,)tt t t e =r 在任意点的切向量为2(2,3,)tt e14.曲线()(cosh ,sinh ,)t a t a t at =r 在0t =点的切向量为(0,,)a a 15.曲线()(cos ,sin ,)t a t a t bt =r 在0t =点的切向量为(0,,)a b16.设有曲线2:,,t t C x e y e z t -===,当1t =时的切线方程为2111-=--=-z ee y e e x 17.设有曲线tt t e z t e y t e x ===,sin ,cos ,当0t =时的切线方程为11-==-z y x 第三章18.设(,)u v =r r 为曲面的参数表示,如果u v ⨯≠r r 0,则称参数曲面是正则的;如果:()G G →r r 是 一一的 ,则称参数曲面是简单的.19.如果u -曲线族和v -曲线族处处不相切,则称相应的坐标网为 正规坐标网 .(坐标网;易;3分钟) 20.平面(,)(,,0)u v u v =r 的第一基本形式为22d d u v +,面积元为d d u v21.悬链面(,)(cosh cos ,cosh sin ,)u v u v u v u =r 的第一类基本量是2cosh E u =,0F =,2cosh G u = 22.曲面z axy =上坐标曲线0x x =,0y y =223.正螺面(,)(cos ,sin ,)u v u v u v bv =r 的第一基本形式是2222d ()d u u b v ++. 24.双曲抛物面(,)((),(),2)u v a u v b u v uv =+-r 的第一基本形式是2222222222(4)d 2(4)d d (4)d a b v u a b uv u v a b u v +++-++++25.正螺面(,)(cos ,sin ,)u v u v u v bv =r 的平均曲率为 0 .(正螺面、第一基本量、第二基本量;中;3分钟) 26.方向(d)d :d u v =2227.两个方向(d)d :d u v =和(δ)δ:δu v =共轭的充要条件是(d ,δ)0=II r r 或d δ(d δd δ)d δ0L u u M u v v u N v v +++= 28.函数λ是主曲率的充要条件是0E LF MF MG Nλλλλ--=--29.方向(d)d :d u v =是主方向的充要条件是d d d d 0d d d d E u F vL u M vF uG v M u N v++=++30.根据罗德里格定理,如果方向(d)(d :d )u v =是主方向,则d d n κ=-n r ,其中n κ是沿(d)方向的法曲率 31.旋转极小曲面是平面 或悬链面 第四章32.高斯方程是k ij ij kij kL =Γ+∑r rn ,,1,2i j =,魏因加尔吞方程为,kj i ik i j kL g =-∑n r ,,1,2i j =33.ijg 用ij g 表示为221212111()det()ijij g g g g g g -⎛⎫=⎪-⎝⎭. 34.测地曲率的几何意义是曲面S 上的曲线()C 在P 点的测地曲率的绝对值等于()C 在P 点的切平面∏上的正投影曲线()C *的曲率35.,,g n κκκ之间的关系是222g n κκκ=+.36.如果曲面上存在直线,则此直线的测地曲率为 0 .37.测地线的方程为22,d d d 0,1,2d d d k i jk ij i ju u u k s s s +Γ==∑ 38.高斯-波涅公式为1d d ()2kgii GGK s σκπαπ=∂++-=∑⎰⎰⎰39.如果G ∂是由测地线组成,则高斯-波涅公式为1d ()2kii GK σπαπ=+-=∑⎰⎰.二、单选题第一章40.已知(1,0,1)=--a ,(1,2,1)=-b ,则这两个向量的内积⋅a b 为( C ).(内积;易;2分钟) A 2 B 1- C 0 D 141.求过点(1,1,1)P 且与向量(1,0,1)=--a 平行的直线的方程是( A ).(直线方程;易;2分钟) A ⎩⎨⎧==1y z x B 1321+==-z yxC 11+==+z y xD ⎩⎨⎧==1z yx42.已知(1,1,1),(1,0,1),(1,1,1)=-=-=a b c ,则混合积为( D ).(混合积;较易;2分钟) A 2 B 1- C 1 D 2-43.已知()(,,)ttt e t e -=r ,则(0)''r 为( A ).(导数;易;2分钟)A (1,0,1) B (-1,0,1) C (0,1,1) D (1,0,-1)44.已知()()t t λ'=r r ,λ为常数,则()t r 为( C ).(导数;易;2分钟) At λa B λa C t e λa D e λa上述a 为常向量.45.已知(,)(,,)x y x y xy =r ,求d (1,2)r 为( D ).(微分;较易;2分钟) A (d ,d ,d 2d )x y x y + B (d d ,d d ,0)x y x y +- 第二章46.圆柱螺线(cos ,sin ,)t t t =r 的切线与z 轴( C ).(螺线、切向量、夹角;较易、2分钟) A 平行 B 垂直 C 有固定夹角4π D 有固定夹角3π47.设有平面曲线:()C s =r r ,s 为自然参数,α,β是曲线的基本向量.下列叙述错误的是(C ). A α为单位向量 B ⊥αα C κ=-αβ D κ=-βα 48.直线的曲率为( B ).(曲率;易;2分钟)A –1 B 0 C 1 D 249.关于平面曲线的曲率:()C s =r r 不正确的是( D ).(伏雷内公式;较易;2分钟) A()()s s κ=α B ()()s s κϕ=,ϕ为()s α的旋转角C ()s κ=-⋅αβ D ()|()|s s κ=r50.对于平面曲线,“曲率恒等于0”是“曲线是直线”的( D ) .(曲率;易;2分钟) A 充分不必要条件 B 必要不充分条件 C 既不充分也不必要条件 D 充要条件 51.下列论述不正确的是( D ).(基本向量;易;2分钟) A α,β,γ均为单位向量 B ⊥αβ C ⊥βγ D //αβ52.对于空间曲线C,“曲率为零”是“曲线是直线”的( D ) .(曲率;易;2分钟)A 充分不必要条件B 必要不充分条件C 既不充分也不必要条件D 充要条件53.对于空间曲线C ,“挠率为零”是“曲线是直线”的( D ).(挠率;易;2分钟) A 充分不必要条件 B 必要不充分条件 C 既不充分也不必要条件 D 充要条件 54.2sin4),cos 1(),sin (t a z t a y t t a x =-=-=在点2π=t 的切线与z 轴关系为( D ). A 垂直 B 平行 C 成3π的角 D 成4π的角 第三章55.椭球面2222221x y z a b c++=的参数表示为(C ).(参数表示;易;2分钟)A (,,)(cos cos ,cos sin ,sin )x y z ϕθϕθϕ=B (,,)(cos cos ,cos sin ,sin )x y z a b ϕθϕθϕ=C (,,)(cos cos ,cos sin ,sin )x y z a b c ϕθϕθϕ=D (,,)(cos cos ,sin cos ,sin 2)x y z a b c ϕθϕθθ=56.以下为单叶双曲面2222221x y z a b c+-=的参数表示的是(D ).(参数表示;易;2分钟)A (,,)(cosh sin ,cosh cos ,sinh )x y z a u v b u v u =B (,,)(cosh cos ,cosh sin ,sinh )x y z u v u v u =C (,,)(sinh cos ,sinh sin ,cosh )x y z a u v b u v c u =D (,,)(cosh cos ,cosh sin ,sinh )x y z a u v b u v c u =57.以下为双叶双曲面2222221x y z a b c+-=-的参数表示的是(A ).(参数表示;易;2分钟)A (,,)(sinh cos ,sinh sin ,cosh )x y z a u v b u v c u =B (,,)(cosh cos ,sinh sin ,cosh )x y z a u v b u v c u =C (,,)(cosh cos ,cosh sin ,sinh )x y z a u v b u v c u =D (,,)(cosh cos ,cosh sin ,sinh )x y z u v u v u =58.以下为椭圆抛物面22222x y z a b+=的参数表示的是(B ).(参数表示;易;2分钟)A 2(,,)(cos ,sin ,)2u x y z u v u v =B 2(,,)(cos ,sin ,)2u x y z au v bu v =C 2(,,)(cosh ,sinh ,)2u x y z au v bu v = D (,,)(cos ,sin ,)x y z a v b v v =59.以下为双曲抛物面22222x y z a b-=的参数表示的是(C ).(参数表示;易;2分钟)A (,,)(cosh ,sinh ,)x y z a u b u u =B (,,)(cosh ,sinh ,)x y z u u u =C (,,)((),(),2)x y z a u v b u v uv =+-D (,,)(,,)x y z au bv u v =-60.曲面2233(,)(2,,)u v u v u v u v =-+-r 在点(3,5,7)M 的切平面方程为(B ).(切平面方程;易;2分钟)A 2135200x y z +-+=B 1834410x y z +--=C 756180x y z +--=D 1853160x y z +-+=61.球面(,)(cos cos ,cos sin ,sin )u v R u v R u v R u =r 的第一基本形式为(D ).(第一基本形式;中;2分钟)A 2222(d sin d )R u u v + B 2222(d cosh d )R u u v +C 2222(d sinh d )R u u v +D 2222(d cos d )R u u v +62.正圆柱面(,)(cos ,sin ,)u v R v R v u =r 的第一基本形式为( C ).(第一基本形式;中;2分钟)A 22d d u v +B 22d d u v -C 222d d u R v +D 222d d u R v -63.在第一基本形式为222(d ,d )d sinh d u v u u v =+I 的曲面上,方程为12()u v v v v =≤≤的曲线段的弧长为(B ).(弧长;中;2分钟)A 21cosh cosh v v -B 21sinh sinh v v -C 12cosh cosh v v -D 12sinh sinh v v -64.设M 为3R 中的2维2C 正则曲面,则M 的参数曲线网为正交曲线网的充要条件是( B ).A 0E =B 0F =C 0G =D 0M = 65.以下正确的是( D ).(魏因加尔吞变换;较易;2分钟)A d (d )=n rB d (d )u =n rC d (d )u v =n r D d (d )=-n r66.以下正确的是( C ).(魏因加尔吞变换;较易;2分钟) A (d ,(δ))(d ,δ)=-I r r II r r B (d ,(δ))((δ),d )=-I r r I r r C (d ,(δ))((d ),δ)=I r r I r r D (d ,(δ))((d ),δ)=I r r II r r67.以下正确的是(A ).(魏因加尔吞变换;较易;2分钟)A (d ,(δ))(d ,δ)=I r r II r rB (d ,(δ))((d ),δ)=I r r II r rC (d ,(δ))((d ),δ)=-I r r I r r D (d ,(δ))((d ),δ)=II r r II r r68.高斯曲率为常数的的曲面叫(C ).(高斯曲率;易;2分钟) A 极小曲面 B 球面 C 常高斯曲率曲面 D 平面 第四章 B 69.,___________ijji i jgg =∑.(第一基本形式;易;2分钟) A 1 B 2 C 0 D -1 B 70.______jkj l jg δ=∑.(第一基本形式;易;2分钟) A kj g B kl g C ki g D ij gA 71.________kij Γ=.(克氏符号;较易;2分钟) A1()2jl ijkl il j i l i g g g g u u u ∂∂∂+-∂∂∂∑ B 1()2jl ijkl il j i l ig g g g u u u ∂∂∂--∂∂∂∑ C 1()2jl ijkl il j il i g g g g u u u ∂∂∂++∂∂∂∑ D 1()2jl ijkl il j i l ig g g g u u u ∂∂∂-+∂∂∂∑ A 72.曲面上直线(如果有的话)的测地曲率等于_____.A 0B 1C 2D 3B 73.当参数曲线构成正交网时,参数曲线u-曲线的测地曲率为_____.(刘维尔定理、测地曲率;中;4分钟)ABCD A 74.如果测地线同时为渐进线,则它必为_____.(测地曲率、法曲率、曲率;中;2分钟) A 直线 B 平面曲线 C 抛物线 D 圆柱螺线B 75.在伪球面(1)K ≡-上,任何测地三角形的内角之和____.(高斯-波涅定理;中;4分钟)A 等于πB 小于πC 大于πD 不能确定三、多选题第一章76.若()((),(),()),1,2,3i i i i t x t y t z t i ==r 为向量函数,则下列论述正确的是( AD ) .(导数;易;4分钟)A 1111()((),(),())t x t y t z t ''''=r B 1111111111()((),(),())((),(),())((),(),())t x t y t z t x t y t z t x t y t z t ''''=++r C 123123((),(),())((),(),())t t t t t t ''''=r r r r r r D 123((),(),())t t t 'r r r 123123123((),(),())((),(),())((),(),())t t t t t t t t t '''=++r r r r r r r r r E 123123((),(),())((),(),())t t t t t t ''=r r r r r r77.m,n 为常向量,()t r 为向量函数,则下述正确的是( ABC ).(积分的性质;中;4分钟) A()d ()d b b aat t t t ⋅=⋅⎰⎰m r m r B ()d ()d b baat t t t ⨯=⨯⎰⎰m r m rC(,,())d ()()d bbaat t t t =⨯⎰⎰m n r m n r D (,,())d ()()d bbaat t t t =⋅⎰⎰m n r m n rE(,,())d ()()d b baat t t t =⨯⨯⎰⎰m n r m n r第二章78.下列曲线中为正则曲线的有(ACDE )。

微分几何试题库(解答与证明题)

微分几何试题库(解答与证明题)

1 求曲线 2(){,,}t r r t t t e ==在t=0点的密切平面和主法线。

(ZN)2 求圆柱螺线cos ,sin ,x a t y a t z t ===在点(,0,0)a 处的密切平面和主法线。

(ZN) 3求圆柱螺线cos ,sin ,x t y t z t ===在点(1,0,0)处的基本向量,,αβγ和密切平面、副法线。

(LTP 34)4 求曲线 {sin ,cos ,}t r t t t t te =在原点的切线和法平面。

(XTP 54)5 求圆柱螺线 {cos ,sin ,}r t t t = 在(0,1,)2π点的切线和法平面。

(ZN)6 设 (S)为曲线(C)的切线曲面,证明(S)沿任意一直母线l 的切平面就是(C)在切线l 的切点处的密切平面。

(KWD193)7 求圆柱螺线 (){cos ,sin ,}()r a a b θθθθθ=-∞<<+∞的曲率与挠率。

(LTP 42) 8 求曲线 (){(1sin ),(1cos ),}r t a t a t bt =--的曲率和挠率。

9 求曲线22(){,,}23t t r t t = 的曲率和挠率。

10 求圆柱螺线{cos ,sin ,}r t t t =的曲率和挠率。

11.证明曲线x=1+3t+22t ,y=2-2t+52t ,z=1-2t 为平面曲线,并求出它所在的平面方程 。

(XTP 54)12已知曲线33{cos ,sin ,cos 2}r t t t =。

求(1)基本向量,,αβγ;(2)曲率和挠率。

(XTP 54)13设曲线Γ的副法向量1{sin ,cos ,1}2t t γ=-,求它的切向量α和主法向量β,并证明它的曲率和挠率之比是常数。

(KWD92)14若曲线(C ):()r r s =的挠率τ 为非零常数,(C )的主法向量与副法向量分别为,βγ。

证明1():()C r s ds βγτ=-⎰的曲率为常数,且||k τ=,并求()C 的挠率τ.(KWD96)15 证明一空间曲线为一般螺线的充分必要条件是向量k ταγ+具有固定方向。

微分几何练习试题库与参考答案解析(已修改)

微分几何练习试题库与参考答案解析(已修改)

《微分几何》复习题与参考答案一、填空题1.极限.232lim[(31)i j k]t t t →+-+= 138i j k -+2.设,,求 0 .f ()(sin )i j t t t =+ 2g()(1)i j t t t e =++ 0lim(()())t f t g t →⋅= 3.已知 ,,,则{}42r()d =1,2,3t t -⎰,{}64r()d =2,1,2t t -⎰ {}2,1,1a ={}1,1,0b =- .4622()()a r t dt+b a r t dt=⨯⋅⋅⎰⎰{}3,9,5-4.已知(为常向量),则.()r t a '= a ()r t = ta c +5.已知,(为常向量),则 .()r t ta '= a ()r t = 212t a c + 6. 最“贴近”空间曲线的直线和平面分别是该曲线的___ 切线___和 密切平面____.7. 曲率恒等于零的曲线是_____ 直线____________ .8. 挠率恒等于零的曲线是_____平面曲线________ .9. 切线(副法线)和固定方向成固定角的曲线称为 一般螺线 .10. 曲线在t = 2处有,则曲线在t = 2处的曲率k = 3 .()r r t = 3αβ= 11. 若在点处则为曲面的_ 正常______点.00(,)u v v 0u r r ⨯≠,00(,)u v 12. 已知,,,则.()(2)(ln )f t t j t k =++ ()(sin )(cos )g t t i t j =- 0t >40()d f g dt dt ⋅=⎰4cos 62-13.曲线在任意点的切向量为.{}3()2,,t r t t t e ={}22,3,t t e 14.曲线在点的切向量为.{}()cosh ,sinh ,r t a t a t at =0t ={}0,,a a 15.曲线在点的切向量为.{}()cos ,sin ,r t a t a t bt =0t ={}0,,a b 16.设曲线,当时的切线方程为.2:,,t t C x e y e z t -===1t =2111-=--=-z ee y e e x 17.设曲线,当时的切线方程为.t t t e z t e y t e x ===,sin ,cos 0t =11-==-z y x 18. 曲面的曲纹坐标网是曲率线网的充要条件是____F =M =0_ ______________.19. u -曲线(v -曲线)的正交轨线的微分方程是 _____ E d u +F d v =0(F d u +G d v =0)__.20. 在欧拉公式中,是 方向(d) 与u -曲线的夹角.2212cos sin n k k k θθ=+θ21. 曲面的三个基本形式、高斯曲率、平均曲率之间的关系是 .,,I II III K H 20H K III -II +I =22.已知,其中,则.{}r(,),,u v u v u v uv =+- 2,sin u t v t ==drd t={}2cos ,2cos ,2cos t t t t vt u t +-+23.已知,其中,,则{}r(,)cos cos ,cos sin ,sin a a a ϕθϕθϕθϕ= t =ϕ2t =θdr(,)d tϕθ=eg.{}sin cos2cos sin,sin sin2cos cos,cosa at a at aϕθϕθϕθϕθϕ---+24.设为曲面的参数表示,如果,则称参数曲面是正则的;如果(,)r r u v=u vr r⨯≠:()r G r G→是一一对应的,则称曲面是简单曲面.25.如果曲线族和曲线族处处不相切,则称相应的坐标网为正规坐标网.u-v-26.平面的第一基本形式为,面积微元为.{}r(,),,0u v u v=22d du v+d d u v27.悬链面第一基本量是.{}r(,)cosh cos,cosh sin,u v u v u v u=22cosh0,coshE uFG u===,28.曲面上坐标曲线,的交角的余弦值z axy=x x=y y=29.正螺面的第一基本形式是.{}(,)cos,sin,r u v u v u v bv=2222d()du u b v++30.双曲抛物面的第一基本形式是{}r(,)(),(),2u v a u v b u v uv=+-.2222222222(4)d2(4)d d(4)da b v u a b uv u v a b u v+++-++++31.正螺面的平均曲率为0 .{}(,)cos,sin,r u v u v u v bv=32.方向是渐近方向的充要条件是.(d)d:du v=22()020nk d Ldu Mdudv Ndv=++=或33.方向和共轭的充要条件是(d)d:du v=(δ)δ:δu v=.(,)0()0drδr Lduδu M duδv dvδu Ndvδv=+++=II或34.是主曲率的充要条件是.λ0E LF MF MG Nλλλλ--=--35.是主方向的充要条件是.(d)d:du v=22d d d d00d d d ddv dudv duE uF v L u M vE F GF uG v M u N vL M N-++==++或36. 根据罗德里格斯定理,如果方向是主方向,则(d)(d:d)u v=.n ndn k dr k=-,其中是沿方向(d)的法曲率37.旋转曲面中的极小曲面是平面或悬链面.38.测地曲率的几何意义是曲面S上的曲线在P点的测地曲率的绝对值等于(C)在P点的切平面∏上的正投影曲线(C*)的曲率.39.之间的关系是.,,g nk k k222g nk k k=+40.如果曲面上存在直线,则此直线的测地曲率为0 .41.正交网时测地线的方程为.ddsdudsdvdsθθθ⎧-⎪⎪⎪⎨⎪⎪⎪⎩42.曲线是曲面的测地线,曲线(C)上任一点在其切平面的正投影曲线是直线.二、单项选择题1.已知,则为( A ).{}(),,t t r t e t e -=r (0)'' A. ; B. ; C. ; D. .{}1,0,1{}1,0,1-{}0,1,1{}1,0,1-2.已知,为常数,则为( C ).()()r t r t λ'= λ()r tA. ;B. ;C. ;D. .ta λ a λt e a λ e a λ 其中为常向量.a3. 曲线(C)是一般螺线,以下命题不正确的是( D ).A .切线与固定方向成固定角; B .副法线与固定方向成固定角;C .主法线与固定方向垂直;D .副法线与固定方向垂直.4. 曲面在每一点处的主方向( A )A .至少有两个; B .只有一个; C .只有两个; D .可能没有.5.球面上的大圆不可能是球面上的( D )A .测地线;B .曲率线;C .法截线;D .渐近线..6. 已知,求为( D ).{}r(,),,x y x y xy = (1,2)drA. ;B. ;{}d ,d ,d 2d x y x y +{}d d ,d d ,0x y x y +-C. ; D. .{}d -d ,d +d ,0x y x y {}d ,d ,2d d x y x y +7.圆柱螺线的切线与轴( C ).{}cos ,sin ,r t t t =z A. 平行; B. 垂直; C. 有固定夹角;D. 有固定夹角.4π3π8.设平面曲线,s 为自然参数,是曲线的基本向量.叙述错误的是( C ).:()C r r s =αβ ,A. 为单位向量; B. ; C. ; D. .α αα⊥ k αβ=- k βατγ=-+ 9.直线的曲率为( B ).A. -1;B. 0;C. 1;D. 2.10.关于平面曲线的曲率不正确的是( D ).:()C r r s =A. ;B. ,为的旋转角; ()()k s s α= ()()k s s ϕ= ϕ()s α C. ;D. .()k s αβ=-⋅()|()|k s rs = 11.对于曲线,“曲率恒等于0”是“曲线是直线”的( D ).A. 充分不必要条件;B. 必要不充分条件;C. 既不充分也不必要条件;D. 充要条件.12.下列论述不正确的是( D ).A. 均为单位向量;B. ;C. ;D. .,αβγ,αβ⊥βγ⊥αβA 13.对于空间曲线,“挠率为零”是“曲线是直线”的(B ).C A. 充分不必要条件; B. 必要不充分条件;C.既不充分也不必要条件; D. 充要条件.14.在点的切线与轴关系为( D ).2sin4),cos 1(),sin (t a z t a y t t a x =-=-=2π=t z A. 垂直; B. 平行;C. 成的角; D. 成的角.3π4π15.椭球面的参数表示为( C ).2222221x y z a b c++=A. ;{}{},,cos cos ,cos sin ,sin x y z ϕθϕθϕ=B. ;{}{},,cos cos ,cos sin ,sin x y z a b ϕθϕθϕ=C. ;{}{},,cos cos ,cos sin ,sin x y z a b c ϕθϕθϕ=D. .{}{},,cos cos ,sin cos ,sin 2x y z a b c ϕθϕθθ=16.曲面在点的切平面方程为( B ).{}2233(,)2,,r u v u v u v u v =-+-(3,5,7)M A. ; B. ;2135200x y z +-+=1834410x y z +--=C. ; D. .756180x y z +--=1853160x y z +-+=17.球面的第一基本形式为( D ).{}(,)cos cos ,cos sin ,sin r u v R u v R u v R u =A. ;B. ;2222(d sin d )R u u v +2222(d cosh d )R u u v +C. ; D. .2222(d sinh d )R u u v +2222(d cos d )R u u v +18.正圆柱面的第一基本形式为( C ).{}(,)cos ,sin ,r u v R v R v u =A. ;B. ;C ;D. .22d d u v +22d d u v -222d d u R v +222d d u R v -19.在第一基本形式为的曲面上,方程为的曲线段的222(d ,d )d sinh d u v u u v =+I 12()u v v v v =≤≤弧长为( B ).A . ;B . ;21cosh cosh v v -21sinh sinh v v -C . ;D . .12cosh cosh v v -12sinh sinh v v -20.设为正则曲面,则的参数曲线网为正交曲线网的充要条件是( B ). M M A . ;B . ;C . ;D . .0E =0F =0G =0M =21.高斯曲率为零的的曲面称为( A ).A .极小曲面;B .球面;C .常高斯曲率曲面;D .平面. 22.曲面上直线(如果存在)的测地曲率等于( A ).A . ;B . ;C .;D . 3.01223.当参数曲线构成正交网时,参数曲线u-曲线的测地曲率为( B ).A .; B .C . D .24.如果测地线同时为渐近线,则它必为( A ).A . 直线;B . 平面曲线;C . 抛物线;D . 圆柱螺线.三、判断题(正确打√,错误打×)1. 向量函数具有固定长度,则. √()r r t = ()()r t r t '⊥2. 向量函数具有固定方向,则. √()r r t = ()()r t r t 'A 3. 向量函数关于t 的旋转速度等于其微商的模. × ()r t ()r t '4. 曲线的曲率、挠率都为常数,则曲线是圆柱螺线. ×ΓΓ5. 若曲线的曲率、挠率都为非零常数,则曲线是圆柱螺线. √ΓΓ6. 圆柱面线是渐近线. √ {cos ,sin ,},r R R z θθ=z -7. 两个曲面间的变换等距的充要条件是它们的第一基本形式成比例. × 8. 两个曲面间的变换等角的充要条件是它们的第一基本形式成比例. √9. 等距变换一定是保角变换. √10. 保角变换一定是等距变换. × 11. 空间曲线的位置和形状由曲率与挠率唯一确定. ×12. 在光滑曲线的正常点处,切线存在但不唯一. ×13. 若曲线的所有切线都经过定点,则该曲线一定是直线.√ 14. 在曲面的非脐点处,有且仅有两个主方向. √ 15. 高斯曲率与第二基本形式有关,不是内蕴量. ×16. 曲面上的直线一定是测地线.√17. 微分方程表示曲面上曲线族. ×A(,)B(,)0u v du u v dv +=18. 二阶微分方程总表示曲面上两族曲线. ×22(,)2(,)(,)0A u v du B u v dudv C u v dv ++=19. 坐标曲线网是正交网的充要条件是,这里是第一基本量. √0F =F 20. 高斯曲率恒为零的曲面必是可展曲面. √ 21. 连接曲面上两点的所有曲线段中,测地线一定是最短的. ×22. 球面上的圆一定是测地线. ×23. 球面上经线一定是测地线. √24. 测地曲率是曲面的内蕴量. √四、计算题1.求旋轮线的一段的弧长.)cos 1(),sin (t a y t t a x -=-=π20≤≤t 解 旋轮线的切向量为,则在一{}()(sin ),(1cos )r t a t t a t =-- {}()cos ,sin r t a a t a t '=-π20≤≤t段的弧长为:.220()d 8s r t t t a ππ'===⎰⎰2.求曲线在原点的切向量、主法向量、副法向量.t te z t t y t t x ===,cos ,sin 解 由题意知 ,{}()sin cos ,cos sin ,t t r t t t t t t t e te '=+-+n t h n,{}()2cos sin ,2sin cos ,2t t r t t t t t t t e te ''=---+在原点,有 ,(0)(0,1,1),(0)(2,0,2)r r '''==又 ,,()(), r r r r r r r r r r r αβ'''''''''⋅-⋅=='''''⋅⨯r r r r γ'''⨯='''⨯ 所以有.αβγ=== 3.圆柱螺线为,{}()cos ,sin ,r t a t a t bt =①求基本向量; ②求曲率k 和挠率.,,αβγτ解 ①,,{}()sin ,cos ,r t a t a t b '=- {}()cos ,sin ,0r t a t a t ''=--又由公式()(), ,r r r r r r r r r r r r r r r αβγ''''''''''''⋅-⋅⨯===''''''''⋅⨯⨯}{}}sin ,cos ,,cos ,sin ,0,sin ,cos ,a t a t b t t b t b t a αβγ∴=-=--=-②由一般参数的曲率公式及挠率公式3()r r k t r '''⨯=' 2(,,)()r r r t r r τ''''''='''⨯ 有,.22a k a b =+22b a b+=τ4.求正螺面的切平面和法线方程.{}(,)cos ,sin ,r u v u v u v bv =解 ,,切平面方程为{}cos ,sin ,0u r v v = {}sin ,cos ,v r u v u v b =-,cos sin cos sin 00sin cos x u v y u v z bv v v u v u vb---=-sin cos 0,b v x b u y uz buv ⇒⋅-⋅+-=法线方程为.cos sin sin cos x u v y u v z bvb v b v u---==-5.求球面上任一点处的切平面与法线方程.{}(,)cos cos ,cos sin ,sin r a a a ϕθϕθϕθϕ=解 , ,{}sin cos ,sin sin ,cos r a a a ϕϕθϕθϕ=--{}cos sin ,cos cos ,0r a a θϕθϕθ=- 312sin cos sin sin cos cos sin cos cos 0e e e r r a a a a a ϕθϕθϕθϕϕθϕθ⨯=---{}2cos cos cos ,cos sin ,sin a ϕϕθϕθϕ=--- 球面上任意点的切平面方程为∴{}{}2cos cos ,cos sin ,sin cos cos cos ,cos sin ,sin 0,x a y a z a a ϕθϕθϕϕϕθϕθϕ---⋅---=即,cos cos cos sin sin 0x y z a θϕϕθϕ⋅+⋅+⋅-=法线方程为2(cos cos,cos sin,sin)cos(cos cos,cos sin,sin), x a y a z a aϕθϕθϕλϕϕθϕθϕ---=⋅---即.cos cos cos sin sincos cos cos sin sinx a y a z aϕθϕθϕϕθϕθϕ---==6.求圆柱螺线在点处的密切平面.cos,sin,x a t y a t z t===(,0,0)a解(){sin,cos,1},r t a t a t'=-(){cos,sin,0},r t a t a t''=--所以曲线在原点的密切平面的方程为00sin cos10cos sin0x a y za t a t=a t a t------或即.sin)(cos)sin0t x t y az a t-+-=(7.求旋转抛物面的第一基本形式.22()z a x y=+解参数表示为,,,{}22(,),,()r x y x y a x y=+{}1,0,2xr ax={}0,1,2yr ay=,,,2214x xE r r a x=⋅=+24x yF r r a xy=⋅=2214y yG r r a y=⋅=+.2222222(d,d)(14)d8d d(14)dx y a x x a xy x y a y y∴=++++I8.求正螺面的第一基本形式.{}(,)cos,sin,r u v u v u v bv=解,,{}cos,sin,0ur v v={}sin,cos,vr u v u v b=-,,,.1u uE r r=⋅=u vF r r=⋅=22v vG r r u b=⋅=+2222(d,d)d()du v u u b v∴=++I9.计算正螺面的第一、第二基本量.{}(,)cos,sin,r u v u v u v bv=解,,{}cos,sin,0ur v v={}sin,cos,vr u v u v b=-,,,{}0,0,0uur={}sin,cos,0uvr v v=-{}cos,sin,0vvr u v u v=--,{}cos sin0sin,cos,sin cosu vi j kr r v v b v b v uu v u v b⨯==--,u vu vr rnr r⨯==⨯,,,1u uE r r=⋅=u vF r r=⋅=22v vG r r u b=⋅=+,,.uuL r n=⋅=uvM r n=⋅=vvN r n=⋅=10.计算抛物面的高斯曲率和平均曲率.22z x y=+解设抛物面的参数表示为,则{}22(,),,r x y x y x y=+,,,,,{}1,0,2xr x={}0,1,2yr y={}0,0,2xxr={}0,0,0xy yxr r=={}002yyr=,,i ,{}1022,2,1012x y i j kr r x x y y ⨯==--||x yx y r r n r r ⨯==⨯, , ,214x x E r r x =⋅=+ 4x y F r r xy =⋅=214y y G r r y =⋅=+ , , ,xx L r n =⋅=0xy M r n =⋅=yy N r n =⋅=,222222222244441(14)(14)(4)(441)LN M x y K EG F x y xy x y --++===-++-++.2232222124422(441)GL FM EN x y H EG Fx y -+++=⋅=-++11. 计算正螺面的高斯曲率.{}(,)cos ,sin ,r u v u v u v av =解 直接计算知,,,,,,1E =0F =22G u a =+0L =M =0N =.222222()LN M a K EG F u a -∴==--+12. 求曲面的渐近线.2z xy =解 ,则,,,, 2z xy =2z p y x∂==∂2z q xy y ∂==∂220z r x ∂==∂22z s y x y ∂==∂∂222z t x y ∂==∂所以,L =0, ,M =N =渐近线微分方程,20dxdy =化简得,(2)0dy ydx xdy +=020dy ydx xdy =+=或渐近线为y=C 1,x 2y =C 213. 求螺旋面上的曲率线.{}cos ,sin ,r u v u v bv =解 u v r {cos ,sin v,0},r {u sin v,u cos v,b}v ==-2222u u v v E r 1,F r r 0,G r u b ,===⋅===+{}{}u vu v bsin v,b cos v,u r r n r r bsin v,b cos v,u -⨯===⨯-n d,{}{}{}uu uv vv r =0,0,0,r =sin v,cos v,0,r u cos v,u sin v,0-=--L 0,M N 0===曲率线的微分方程为:或2222dv dudv du 10u b =00-+dubu dv 221+±=积分得两族曲率线方程:12v ln(u c v u)c .=++=-+和14. 求马鞍面在原点处沿任意方向的法曲率.22{,,}r u v u v =-解 ,{1,0,2},{0,1,2}==-u v r u r v22214,4,14==+==-=+A u u v E r u F r r uv G v2222(14)8(14)=+-++u du uvdudv v dv Ⅰ ,u vu v r r n r r ⨯==⨯uu L n r == A uv M n r 0,== A vv N n r ==A , .22=-Ⅱn k ==ⅡⅠ15. 求抛物面在(0,0)点的主曲率.22()z a x y =+解 曲面方程即22{,,()},=+r x y a x y{1,0,2},{0,1,2},==x y r ax r ay E(0,0)F(0,0)G(0,0)=1,=0,=1,,{0,0,2},{0,0,0},{0,0,2}===xx xy yy r a r r a L(0,0)a M(0,0)N(0,0)=2,=0,=2a,代入主曲率公式,,所以两主曲率分别为 .NN2a k 0002a k -=-12k k 2a ==16. 求曲面在点(1,1)的主方向.22{,,}r u v u v =+解 {}u r =,u 1,02,{},v r ,v =01,22214,4,14E u F uv G v =+==+ (1,)5(1,)4(1,)5;E F G 1=,1=,1=0,L M N ===代入主方向方程,得,2(1,1)(1,1),(1,1)0,3L N M ===()()0du dv du dv +-=即在点(1,1)主方向.:1:1;:1:1du dv u v δδ=-=17. 求曲面上的椭圆点,双曲点和抛物点.23(,){,,}r u v u v u v =+解 由 得 23{,,},r u v u v =+{}u r =,u 1,02,{}2,v r ,v =01,3 {}{}{}u u u v v v r =,r =,r =,v0,02,0,00,0,06,0,L M N ===2241241vLN M .u +9v +-=①v >0时,是椭圆点;②v <0时,是双曲点;③v =0时,是抛物点.18. 求曲面上的抛物点的轨迹方程.32(,){,,}r u v v u u v =+解 由 得 32(,){,,},r u v v u u v =+{}u r =u, 0,21,{}2,v r v , =30,1 {}{}{}u u u v v v r =,r =,r =v ,0,20,0,00,6,00,0,L M N ===令 得u =0 或v =020LN M .-=所以抛物点的轨迹方程为 或.{}r=v ,,v 30{}0r=,u ,u219.求圆柱螺线自然参数表示.(){cos ,sin ,}r t a t a t bt =解 由得 (){cos ,sin ,},r t a t a t bt = {sin ,cos ,}r a t a t b '=-,()r t '= 弧长(),s t =⎰t =曲线的自然参数表示为(){r s a a =20. 求挠曲线的主法线曲面的腰曲线.解 设挠曲线为则主法线曲面为:a a s =(),r=a s v s ,β()+()则,a =a=α' ,b ==-k βατγ'+ a b =k,''- A 2,22b =k +τ' 所以腰曲线是222a b k r=a s s =a s s k b ββτ'''A()-()()+()+21.求位于正螺面上的圆柱螺线(=cos ,sin ,x u v y u v z av ===00cos ,sin ,x u v y u v z av ===0u 常数)的测地曲率.解 因为正螺面的第一基本形式为,螺旋线是正螺面的v -曲线,由2222d ()d u u a v =++Ι0u u =得.由正交网的坐标曲线的测地曲率得.2πθ=d 0d s θ=0220g u k u a==+五、证明题1. 设曲线:证明:(s),r r = 2()k -;r ,r ,r =k .ταγτ=⋅ ⑴⑵l 证明 ⑴由伏雷内公式,得 =k =-,αβγτβ 或两式作点积,得=-k =-k,αγτββτ⋅⋅ k =-.ταγ∴⋅ ⑵ r=r==k ,ααβ 或2()r =k +k =k +k -k +=-k +k +k βββατγαβτγ22()()()r ,r ,r =,k ,-k +k +k =,k ,k =k .αβαβτγαβτγτ∴ 2. 设曲线: 证明:(s),r r = 3()()r ,r ,r =k k -k.ττ 证明 由伏雷内公式,得r==k αβ 或2()r =k +k =k +k -k +=-k +k +k βββατγαβτγ323()(2)r =-kk +-k +k-k +k+k ατβττγ 232()(())(3()(2))r ,r ,r =k -k +k +k -kk +-k +k-k +k +k βαβτγατβττγ⨯ A 3232()(3()(2))=k +k -kk +-k +k-k +k +k γταατβττγ A 33432=-k k+k k +k τττ 3()=k k -k ττ 3. 曲线Γ:是一般螺线,证明也是一般螺线(R 是曲线Γ的曲率半径).()r r s =1:r R ds αβΓ=-⎰ 证明 1r R ds αβ=-⎰,两边关于s 微商,得11ds R R ds αααβ=+- 1R R R αββ=+- R α= ,由于Γ是一般螺线,所以也是一般螺线. 1αα∴A ,Γ4. 证明曲线是常数)是一般螺线.(){sin (),s (),}(r t a t dt a co t dt bt a,b ϕϕ=⎰⎰证明 (){sin (),cos (),},r t a t a t b ϕϕ'=(){()cos (),()sin (),0},r t a t t a t t ϕϕϕϕ''''=-2()(){cos (),sin (),0}(){sin ()cos ()0}r t a t t t a t t t ϕϕϕϕϕϕ''''''=-+-,, r r a ϕ''''⨯= 32()()r r r a b t ϕ'''''''=- ,,或322(),r r a k t a b r ϕ'''⨯'==+'()222(),r r r bt a b r r τϕ'''''''==-+'''⨯,, . k a bτ∴=-5.曲面S 上一条曲线(C), P 是曲线(C)上的正常点,分别是曲线(C)在点P 的曲率、法n g k,k ,k 曲率与测地曲率,证明.222n g k =k +k 证明 测地曲率 (是主法向量与法向量()g k k k n βεβα=⋅=⋅⨯ (,,)k n k n αβγ==⋅sin k .θ=±θβ 的夹角)n法曲率cos n k k n k βθ=⋅=或222k =k +k .∴6. 证明曲线的切向量与曲线的位置向量成定角.{}cos ,sin ,0t t r e t e t =证明 对曲线上任意一点,曲线的位置向量为,该点切线的切向量为:{}cos ,sin ,0t t r e t e t =,则有:{}(cos sin ),(sin cos ),0t t r e t t e t t '=-+夹角为.cos r r r r θ'⋅===' 4π由所取点的任意性可知,该曲线与曲线的切向量成定角.7.证明:若和对一切线性相关,则曲线是直线.r ' r ''t 证明 若和对一切线性相关,则存在不同时为0的使r ' r ''t (),()f t g t ,()()()()0f t r t g t r t '''+=则 ,()()0,t r t r t '''∀⨯=又,故有.于是该曲线是直线.3()r r k t r '''⨯='t ∀()0k t =8. 证明圆柱螺线的主法线和z 轴垂直相交.bt z t a y t a x ===,sin ,cos 证明 由题意有,{}{}()sin ,cos ,,()cos ,sin ,0r t a t a t b r t a t a t '''=-=--由知.()()r r r r r r r r r β''''''''⋅-⋅=''''⋅⨯{}cos ,sin ,0t t β=-- 另一方面轴的方向向量为,而,故,即主法线与轴垂直.z {}0,0,1a = 0a β⋅= a β⊥z 9.证明曲线的所有法平面皆通过坐标原点.t a z t t a y t a x cos ,cos sin ,sin 2===证明 由题意可得,则任意点的法平面为{}()sin 2,cos 2,sin r t a t a t a t '=-将点(0,0,0)代入上述0)cos (sin )cos sin (2cos )sin (2sin 00000020=---+-t a z t a t t a y t a t a x t a 方程有左边右边,)cos 0(sin )cos sin 0(2cos )sin 0(2sin 00000020t a t a t t a t a t a t a ---+-===0故结论成立.10.证明曲线为平面曲线,并求出它所在的平面方程.222132225,1x t+t ,y t t z t =+=-+=-证明 ,,{}222132225,1r t+t ,t t t =+-+- {}34210,2r +t,t t '=-+-,{}410,2r ,''=- {}00,0r ,'''= (,,)0r r r ,''''''=,所以曲线是平面曲线. 它所在的平面就是密切平面0τ=, {}(0)32,0r ,'=- {}(0)410,2r ,''=-密切平面方程为, 12132004102x y z -=----化简得其所在的平面方程是2x +3y +19z –27=0.11. 证明如果曲线的所有切线都经过一个定点,那么它是直线.证明 设曲线方程,定点的向径为,则()r r s =0R 0()()r s R s λα-=两边求微商,得()()()()s s s s k αλαλαλαλβ=+=+ 由于线性无关,∴ (1())()0s s k λαλβ--= ,αβ 100k λλ⎧-⎨⎩ 或或∴ k =0曲线是直线.12. 证明如果曲线的所有密切平面都经过一个定点,那么它是平面曲线.证明 取定点为坐标原点,曲线的方程为 ,()r r t =则曲面在任一点的密切平面方程为 ((),(),())0r t r t r t ρ'''-=因任一点的密切平面过定点,所以 , 即((),(),())0o r t r t r t '''-= ((),(),())0r t r t r t '''=所以 平行于固定平面, 所以 是平面曲线.()r r t = ()r r t =13. 若一条曲线的所有法平面包含非零常向量,证明曲线是直线或平面曲线.e证明 根据已知条件,得,0.............e α⋅=①①两边求导,得 ,由伏雷内公式得 ,0e α⋅= 0k e β⋅= ⅰ),则曲线是直线;0k =ⅱ) 又有①可知 ‖0e β⋅= γ e因是常向量,所以是常向量,eγ 于是 所以 ,所以曲线为平面曲线.||||0,τγ==0τ=14. 设在两条挠曲线的点之间建立了一一对应关系,使它们在对应的点的副法线互相平行,,ΓΓ证明它们在对应点的切线和主法线也分别平行.证明 , γγ±12=21ds ds γγ±A A12=由伏雷内公式得 进而211ds ds τβτβ±122=12ββ∴± =12αα=±15. 证明挠曲线()的主法线曲面是不可展曲面.0τ≠证明 设挠曲线为,则挠率,()r r s =0τ≠其主法线曲面的方程是: 取,则()()r s t s ρβ=+ (),()a r s b s β==(),()k a s b s αβατγ''===-A+所以, (,,)((),(),k )((),(),k )((),(),)0a b b s s s s s s αβατγαβααβτγτ''=-=-≠++=所以挠曲线的主法线曲面不是可展曲面. 16. 证明挠曲线()的副法线曲面是不可展曲面.0τ≠证明 设挠曲线为,则挠率,()r r s =其副法线曲面的方程是:()()r s t s ργ=+取,则(),()a r s b s γ== (),()a s b s αγτβ''===-A所以, ,所以挠曲线的副法线曲面不是可展曲面. (,,)((),(),)0a b b s s αγτβτ''=-=≠17. 证明每一条曲线在它的主法线曲面上是渐近线.证明 设曲线则曲线的主法线曲面为r r(s), =r r s +v s β=()(),s r v k vk v αατγατγ++=+(-)=(1-)()v r =s β ,沿曲线(v =0)n=γ,所以主法向量与曲面的法向量夹角,2πθ=n cos 0,k k θ==所以曲线是它的主法线曲面上的渐近线.18. 证明二次锥面沿每一条直母线只有一个切平面.{cos ,sin ,}r au bu cu θθ=证明 为直纹面{cos ,sin ,}{cos ,sin ,}0()θθθθϕθ===+r au bu cu u a b c u ,(0,(),()0ϕθϕθ'=) 所以,曲面可展,即沿每一条直母线只有一个切平面.也可以用高斯曲率K =0证明.19. 给出曲面上一条曲率线,设上每一处的副法向量和曲面在该点处的法向量成定角,求ΓΓ证是一平面曲线.Γ证明 设副法向量和曲面在该点处的法向量成定角,则θ0cos γθA 0n=两边求微商,得 0γγA AA A n+n=由于曲线是曲率线,所以,进而,由伏雷内公式得ΓαAA n0γA A n=0τβ A -n=⑴时,是一平面曲线 0τ=Γ⑵,即,,n 0β A =n β⊥n kcos =0k θ=又因为是曲率线,所以即是常向量,所以是平面曲线. Γ0n dn k dr =-= nΓ20.求证正螺面上的坐标曲线(即曲线族曲线族)互相垂直.u -v -证明 设正螺面的参数表示是,则{}(,)cos ,sin ,r u v u v u v bv =,,{}cos ,sin ,0u r v v = {}sin ,cos ,v r u v u v b =-,故正螺面上的坐标曲线互相垂直.{}{}cos ,sin ,0sin ,cos ,0u v r r v v u v u v b ⇒⋅=⋅-=21. 证明在曲面上的给定点处,沿互相垂直的方向的法曲率之和为常数.证明 由欧拉公式2212cos sin θθ=+n k k k *n 1in ππθθ=±-±-k k 222cos ()+k s()221in cos k θθ=222s +ksin所以=常数.*n n12k k k k+=+22. 如果曲面上非直线的测地线均为平面曲线,则必是曲率线.ΓΓ证明因为曲线是非直线的测地线,所以沿此曲线有Γ,β=±n从而又因为曲线是平面曲线,所以(),κατγ=±-+n0,τ=进一步.由罗德里格斯定理可知曲线的切线方向为主方向,故所给曲线为曲率线.nκα=±23. 证明在曲面上曲线族x=常数,y =常数构成共轭网.()()z f x f y=+证明曲面的向量表示为x=常数,y=常数是两族坐标曲线.{}(,),,()(),r x y x y f x f y=+,.{1,0,}xr f'={0,1,}yr g'={0,0,},{0,0,0},{0,0,},xx xy yyr f r r g''''===因为,所以坐标曲线构成共轭网,xyM r==即曲线族x=常数, y=常数构成共轭网.24.证明马鞍面上所有点都是双曲点.z xy=证明参数表示为,则{}(,),,r x y x y xy=,,,,,{}1,0,xr y={}0,1,yr x={}0,0,0xxr={}0,0,1xyr={}0,0,0yyr=,,{},,1x yr r y x⨯=--||x yx yr rnr r⨯==⨯,,xxL r n=⋅=xyM r n=⋅=yyN r n=⋅=,222221100011LN Mx y x y∴-=⨯-=-<++++故马鞍面上所有点都是双曲点.z xy=25.如果曲面上某点的第一与第二基本形式成比例,即与方向无关,则称该点是曲面(d,d)(d,d)u vu vIII的脐点;如果曲面上所有点都是脐点,则称曲面是全脐的.试证球面是全脐的.证明设球面的参数表示为,则{}(,)cos cos,cos sin,sinr u v R v u R v u R v=,,{}cos sin,cos cos,0ur R v u R v u=-{}sin cos,sin sin,cosvr R v u R v u R v=--,,{}cos cos,cos sin,0uur R v u R v u=--{}sin sin,sin cos,0uv vur r R v u R v u==-,{}cos cos,cos sin,sinvvr R v u R v u R v=---,,,22cosu uE r r R v=⋅=u vF r r=⋅=2v vG r r R=⋅=,,,2cosL R v==-0M==N R==-,故球面是全脐的.1(,,)(,,)L M N E F GR∴=-26.证明平面是全脐的.dA证明 设平面的参数表示为,则{}(,),,0r x y x y =,,,,,{}1,0,0x r = {}0,1,0y r = {}0,0,0xx r = {}0,0,0xy r = {}0,0,0yy r = ,,,1x x E r r =⋅= 0x y F r r =⋅= 1y y G r r =⋅=,,0xx L r n =⋅= 0xyM r n =⋅= 0yy N r n =⋅= ,故平面是全脐的.(,,)0(,,)L M N E F G ∴=27.证明曲面的所有点为抛物点.3x y z +=证明 曲面的参数表示为,则{}1/3(,),,()r x y x y x y =+, , {}2/3131,0,()x r x y -=+ {}2/3130,1,()y r x y -=+ ,, ,{}5/3230,0,()xx r x y -=-+ {}5/3290,0,()xy r x y -=-+ {}5/3290,0,()yy r x y -=-+ , ,{}2/32/31133(),(),1x y r r x y x y --⨯=-+-+ ||x y x y r r n r r ⨯=⨯ ,,{}5/3290,0,()xx L r n x y n -=⋅=-+⋅ {}5/3290,0,()xy M r n x y n -=⋅=-+⋅ ,{}5/3290,0,()yy N r n x y n -=⋅=-+⋅ 20LN M ⇒-=曲面的所有点为抛物点.∴3x y z +=28.求证正螺面是极小曲面.{}(,)cos ,sin ,r u v u v u v av =证明 ,,{}cos ,sin ,0u r v v = {}sin ,cos ,v r u v u v a =-,,,{}0,0,0uu r = {}sin ,cos ,0uv r v v =- {}cos ,sin ,0vv r u v u v =--,{}cos sin 0sin ,cos ,sin cos u v i j kr r v v a v a v u u v u v a ⨯==--||u vu v r r n r r ⨯==⨯,,,1u u E r r =⋅= 0u v F r r =⋅=22v v G r r a u =⋅=+,,0uu L r n =⋅= uv M r n =⋅=0vv N r n =⋅= 故正螺面是极小曲面.21210,22EN FM GL H EG F -+∴=⋅==-29. 圆柱面上的纬线是测地线.{cos ,sin ,}r a u a u v =证明 由{cos ,sin ,},r a u a u v ={sin ,cos ,0}u r -a u a u = ,{0,0,1}v r =,纬线是u -线,此时2,0, 1.E a F G ===g d k ds θθθ=-,0θπ=或, 所以,纬线是测地线.0.g k ∴=30.证明极小曲面上的点都是双曲点或平点.证明 , , 1202k k H +== 12k k ∴=-21220K k k k ∴=⋅=-≤当时,, 极小曲面的点都是平点;0K =120k k ==∴当时,极小曲面的点都是双曲点.0K <31. 证明 (1)如果测地线同时是渐近线,则它是直线;(2)如果测地线同时是曲率线,则它一定是平面曲线.证明 (1) 因为曲线是测地线,所以 曲线又是渐近线,所以,0=g k ,0=n k ,而 所以k=0,故所给曲线是直线. 222=+n g k k k ,(2)证法1因曲线是测地线,所以沿此曲线有所以β A n ,βA dn ,又曲线是曲率线,所以αA A dn dr ,所以所以故所给曲线是平面曲线.(k )ατγα-+A ,0τ=,证法2因所给曲线既是测地线又为曲率线,所以沿此曲线有,,n n βα A A 而,所以从而,γαβ=⨯ ,n γα=±⨯ ()(0)0n n k n γααβ=±⨯+⨯=±-⨯+= 又,所以,故所给曲线是平面曲线.γτβ=- 0τ=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 曲线论§2 向量函数5. 向量函数)(t r 具有固定方向的充要条件是)(t r × )('t r= 0。

分析:一个向量函数)(t r 一般可以写成)(t r =)(t λ)(t e 的形式,其中)(t e为单位向量函数,)(t λ为数量函数,那么)(t r 具有固定方向的充要条件是)(t e具有固定方向,即)(t e 为常向量,(因为)(t e 的长度固定)。

证 对于向量函数)(t r ,设)(t e 为其单位向量,则)(t r =)(t λ)(t e ,若)(t r具有固定方向,则)(t e 为常向量,那么)('t r =)('t λe ,所以 r ×'r=λ'λ(e ×e )=0 。

反之,若r ×'r =0 ,对)(t r =)(t λ)(t e 求微商得'r ='λe +λ'e ,于是r×'r =2λ(e ×'e )=0 ,则有 λ = 0 或e ×'e =0 。

当)(t λ= 0时,)(t r =0 可与任意方向平行;当λ≠0时,有e ×'e =0 ,而(e ×'e 2)=22'e e -(e ·'e2)=2'e ,(因为e 具有固定长, e ·'e = 0) ,所以 'e =0 ,即e为常向量。

所以,)(t r 具有固定方向。

6.向量函数)(t r平行于固定平面的充要条件是(r 'r ''r )=0 。

分析:向量函数)(t r 平行于固定平面的充要条件是存在一个定向向量)(t n,使)(t r ·n = 0 ,所以我们要寻求这个向量n 及n 与'r ,''r的关系。

证 若)(t r 平行于一固定平面π,设n 是平面π的一个单位法向量,则n为常向量,且)(t r ·n = 0 。

两次求微商得'r ·n = 0 ,''r ·n= 0 ,即向量r ,'r ,''r 垂直于同一非零向量n,因而共面,即(r 'r ''r )=0 。

反之, 若(r 'r ''r )=0,则有r ×'r =0 或r ×'r ≠0 。

若r ×'r =0,由上题知)(t r 具有固定方向,自然平行于一固定平面,若r ×'r ≠,则存在数量函数)(t λ、)(t μ,使''r = r λ+μ'r①令n =r ×'r,则n≠0 ,且)(t r ⊥)(t n 。

对n =r ×'r求微商并将①式代入得'n =r ×''r =μ(r ×'r)=μn ,于是n ×'n =0 ,由上题知n 有固定方向,而)(t r ⊥n,即)(t r 平行于固定平面。

§3 曲线的概念3. 证明圆柱螺线r ={ a θcos ,a θsin ,θb } (+∞∞- θ)的切线和z 轴作固定角。

证明 'r= {-a θsin ,a θcos ,b },设切线与z 轴夹角为ϕ,则ϕcos=22||||'ba be r k r +=⋅ 为常数,故ϕ为定角(其中k 为z 轴的单位向量)。

10. 将圆柱螺线r ={a t cos ,a t sin ,b t }化为自然参数表示。

解 'r= { -a t sin ,a t cos ,b},s = t b a dt r t 220|'|+=⎰ ,所以22ba s t +=,代入原方程得 r ={a cos22ba s +, a sin22ba s +,22ba bs +}§4 空间曲线1.求圆柱螺线x =a t cos ,y =a t sin ,z= b t 在任意点的密切平面的方程。

解 'r ={ -a t sin ,a t cos ,b},''r={-a t cos ,- a t sin ,0 } 所以曲线在任意点的密切平面的方程为sin cos cos sin sin cos ta ta b t a t a bt z t a y t a x ------ = 0 ,即(b t sin )x-(b t cos )y+a z-ab t=0 .2. 求曲线r = { t t sin ,t t cos ,t t e } 在原点的密切平面、法平面、从切面、切线、主法线、副法线。

解 原点对应t=0 , 'r (0)={ t sin +t t cos ,t cos - t t sin ,t e +t te 0}=t ={0,1,1},=)0(''r{2t cos + t t cos ,t cos - t t sin ,2t e +t t e 0}=t ={2,0,2} ,所以切线方程是110zy x == ,法面方程是 y + z = 0 ; 密切平面方程是202110zy x=0 ,即x+y-z=0 ,主法线的方程是⎩⎨⎧=+=-+00z y z y x 即112zy x =-= ;从切面方程是2x-y+z=0 ,副法线方程式111-==zy x 。

3.证明圆柱螺线x =a t cos ,y =a t sin ,z= b t 的主法线和z 轴垂直相交。

证 'r ={ -a t sin ,a t cos ,b}, ''r={-a t cos ,- a t sin ,0 } ,由'r⊥''r知''r为主法线的方向向量,而''r 0=⋅k所以主法线与z 轴垂直;主法线方程是sin sin cos cos btz t t a y t t a x -=-=- 与z 轴有公共点(o,o,bt)。

故圆柱螺线的主法线和z 轴垂直相交。

4.在曲线x = cos αcost ,y = cos αsint , z = tsin α的副法线的正向取单位长,求其端点组成的新曲线的密切平面。

解 'r = {-cos αsint, cos αcost, sin α } , ''r={ -cos αcost,- cos αsint ,0 }=⨯⨯=|'''|'''r r r rγ{sin αsint ,- sin αcost , cos α }新曲线的方程为r ={ cos αcost + sin αsint ,cos αsint- sin αcost ,tsin α + cos α }对于新曲线'r ={-cos αsint+ sin αcost ,cos αcost+ sin αsint ,sin α }={sin(α-t), cos(α-t), sin α} , ''r={ -cos(α-t), sin(α-t),0} ,其密切平面的方程是00)sin()cos(sin )cos()sin(sin sin cos cos cos =--------t a t a a t a t a a t z t a y t a x即 sin α sin(t-α) x –sin α cos(t-α) y + z – tsin α – cos α = 0 .5.证明曲线是球面曲线的充要条件是曲线的所有法平面通过一定点。

证 方法一:⇒设一曲线为一球面曲线,取球心为坐标原点,则曲线的向径)(t r具有固定长,所以r ·'r = 0,即曲线每一点的切线与其向径垂直,因此曲线在每一点的法平面通过这点的向径,也就通过其始点球心。

⇐若一曲线的所有法平面通过一定点,以此定点为坐标原点建立坐标系,则r ·'r = 0,)(t r具有固定长,对应的曲线是球面曲线。

方法二:()r r t =是球面曲线⇔存在定点0r (是球面中心的径矢)和常数R (是球面的半径)使220()r r R -=⇔02()0r r r '-⋅= ,即0()0r r r '-⋅= (﹡)而过曲线()r r t =上任一点的法平面方程为()0r r ρ'-⋅= 。

可知法平面过球面中心⇔(﹡)成立。

所以,曲线是球面曲线的充要条件是曲线的所有法平面通过一定点。

7.求以下曲面的曲率和挠率⑴ },sinh ,cosh {at t a t a r =,⑵ )0)}(3(,3),3({323a t t a at t t a r +-=。

解 ⑴},cosh ,sinh {'a t a t a r = ,}0,sinh ,cosh {''t a t a r = ,}0,cosh ,{sinh '''t t a r =,}1,cosh ,sinh {'''--=⨯t t a r r,所以t a t a t a r r r k 2323cosh 21)cosh 2(cosh 2|'||'''|==⨯= ta t a a r r r r r 22422cosh 21cosh 2)'''()''','','(==⨯=τ 。

⑵ }1,2,1{3'22t t t a r +-= ,}1,0,1{6'''},,1,{6''-=-=a r t t a r,'r ×''r =}1,2,1{18222+--t t t a ,22322223)1(31)1(2227)1(218|'||'''|+=++=⨯=t a t a t a r r r k22224232)1(31)1(2182618)'''()''','','(+=+⨯⨯⨯=⨯=t a t a a r r r r r τ 。

8.已知曲线}2cos ,sin ,{cos 33t t t r = ,⑴求基本向量γβα ,,;⑵曲率和挠率;⑶验证伏雷内公式。

相关文档
最新文档