相似三角形常见模型及经典型例题讲解
相似三角形 经典模型总结与例题分类
相似三角形经典模型总结与例题分类相似三角形经典模型总结在相似三角形中,有一些经典的模型,包括平移型、平行型、旋转180°型、翻折180°型、一般型、特殊型、斜交型、双垂直型等。
这些模型可以帮助我们更好地理解和解决相似三角形的问题。
其中,平移型、平行型、翻折180°型、斜交型和双垂直型都是比较常见的模型。
在解决相似三角形的问题时,可以根据具体情况选择相应的模型进行分析。
以下是一些例题,可以帮助我们更好地理解相似三角形的模型和应用。
例1:如图,EE1∥FF1∥MM1,若AE=EF=FM=MB,则S△.例2:如图,AD∥EF∥MN∥BC,若AD=9,BC=18,.例3:已知,P为平行四边形ABCD对角线,AC上一点,过点P的直线与AD,BC,CD的延长线,AB的延长线分别相交于点E,F,G,H。
则PEPH=PFPG。
例4:已知:在△ABC中,D为AB中点,E为AC上一点,且AE=2,BE、CD相交于点F。
则ABF=2EFD。
例5:已知:在△ABC中,AD=11AB,延长BC到F,使CF=BC,连接FD交AC于点E。
则①DE=EF②AE=2CE。
例6:已知:D,E为三角形ABC中AB、BC边上的点,连接DE并延长交AC的延长线于点F,例7:如图,已知XXX,若AB=a,CD=b,EF=c,则a/b=c/(a+c)。
例8:如图,S△.例9:如图,四边形ABCD中,∠B=∠D=90°,M是AC上一点,ME⊥AD于点E,MF⊥BC于点F。
则MF/ME+1=BD/AC。
例10:如图,在△ABC中,D是AC边的中点,过D作直线EF交AB于E,交BC的延长线于F。
则AE·BF=BE·CF。
BCF:在线段AB上取一点C,以AC、CB为底在AB同侧作两个顶角相等的等腰三角形ADC和CEB,AE交CD于点P,BD交CE于点Q,证明CP=CQ。
解法:首先,由等腰三角形的性质可知,∠XXX∠CEB,∠ACD=∠BCD,因此△ADC≌△CEB,从而AP=BP,AQ=CQ。
相似三角形重难点模型(五大模型)(解析版)
相似三角形重难点模型(五大模型)【题型01:(双)A字型相似】【题型02:(双)8型相似】【题型03:母子型相似】【题型04:旋转相似】【题型05:K字型相似】【题型01:(双)A字型相似】1.如图,在△ABC中,BC=12,高AD=6,正方形EFGH一边在BC上,点E,F分别在AB,AC上,AD交EF于点N,求AN的长.【答案】2【分析】设正方形EFGH的边长EF=EH=x,易证四边形EHDN是矩形,则DN=x,根据正方形的性质得出EF∥BC,推出△AEF∽△ABC,根据相似三角形的性质计算即可得解.【详解】解:设正方形EFGH的边长EF=EH=x,∵四边形EFGH是正方形,∴∠HEF=∠EHG=90°,EF∥BC,∴△AEF∽△ABC,∵AD是△ABC的高,∴∠HDN=90°,∴四边形EHDN是矩形,∴DN=EH=x,∵△AEF∽△ABC,∴AN AD =EFBC(相似三角形对应边上的高的比等于相似比),∵BC=12,AD=6,∴AN=6-x,∴6-x6=x 12,解得:x=4,∴AN=6-x=6-4=2.【点睛】本题考查了相似三角形的判定和性质,矩形的判定和性质.解题的关键是掌握相似三角形的判定和性质,矩形的判定和性质的运用,注意:矩形的对边相等且平行,相似三角形的对应高的比等于相似比.2.如图,光源P 在水平横杆AB 的上方,照射横杆AB 得到它在平地上的影子为CD (点P 、A 、C 在一条直线上,点P 、B 、D 在一条直线上),不难发现AB ⎳CD .已知AB =1.5m ,CD =4.5m ,点P 到横杆AB 的距离是1m ,则点P 到地面的距离等于m .【答案】3【分析】作PF ⊥CD 于点F ,利用AB ∥CD ,推导△P AB ∽△PCD ,再利用相似三角形对应高之比是相似比求解即可.【详解】解:如图,过点P 作PF ⊥CD 于点F ,交AB 于点E ,∵AB ∥CD ,∴△P AB ∽△PCD ,PE ⊥AB ,∵△P AB ∽△PCD ,∴AB CD =PE PF ,(相似三角形对应高之比是相似比)即:1.54.5=1PF,解得PF =3.故答案为:3.【点睛】本题考查相似三角形的判定与性质,掌握相似三角形对应高之比是相似比是解题的关键.3.如图,在Rt △ABC 中,∠ACB =90°,∠BAC =60°,AC =6,AD 平分∠BAC ,交边BC 于点D ,过点D 作CA 的平行线,交边AB 于点E .(1)求线段DE 的长;(2)取线段AD 的中点M ,连接BM ,交线段DE 于点F ,延长线段BM 交边AC 于点G ,求EF DF的值.【答案】(1)4(2)23【分析】(1)根据平行线分线段成比例定理,列出比例式求解即可;(2)根据平行线分线段成比例定理,列出比例式求解即可.【详解】(1)解:∵AD 平分∠BAC ,∠BAC =60°,∴∠DAC =30°,在Rt △ACD 中,∠ACD =90°,∠DAC =30°,AC =6,∴CD =23,在Rt △ACB 中,∠ACB =90°,∠BAC =60°,AC =6,∴BC =63,∴BD =BC -CD =43,∵DE ∥CA ,∴DE CA=BD BC =23,∴DE =4;(2)解:如图.∵点M 是线段AD 的中点,∴DM =AM ,∵DE ∥CA ,∴DF AG =DM AM.∴DF =AG .∵DE ∥CA ,∴EF AG =BF BG ,BF BG =BD BC .∴EF AG=BD BC .∵BD =43,BC =63,DF =AG ,∴EF DF=23.【点睛】考查了平行线分线段成比例定理,注意线段之间的对应关系.4.如图,△ABD 中,∠A =90°,AB =6cm ,AD =12cm .某一时刻,动点M 从点A 出发沿AB 方向以1cm/s 的速度向点B 匀速运动;同时,动点N 从点D 出发沿DA 方向以2cm/s 的速度向点A 匀速运动,运动的时间为ts .(1)求t 为何值时,△AMN 的面积是△ABD 面积的29;(2)当以点A ,M ,N 为顶点的三角形与△ABD 相似时,求t 值.【答案】(1)t 1=4,t 2=2;(2)t =3或245【分析】(1)由题意得DN =2t (cm ),AN =(12-2t )cm ,AM =tcm ,根据三角形的面积公式列出方程可求出答案;(2)分两种情况,由相似三角形的判定列出方程可求出t的值.【详解】解:(1)由题意得DN=2t(cm),AN=(12-2t)cm,AM=tcm,∴△AMN的面积=12AN•AM=12×(12-2t)×t=6t-t2,∵∠A=90°,AB=6cm,AD=12cm∴△ABD的面积为12AB•AD=12×6×12=36,∵△AMN的面积是△ABD面积的29,∴6t-t2=29×36,∴t2-6t+8=0,解得t1=4,t2=2,答:经过4秒或2秒,△AMN的面积是△ABD面积的2 9;(2)由题意得DN=2t(cm),AN=(12-2t)cm,AM=tcm,若△AMN∽△ABD,则有AMAB=ANAD,即t6=12-2t12,解得t=3,若△AMN∽△ADB,则有AMAD=ANAB,即t12=12-2t6,解得t=24 5,答:当t=3或245时,以A、M、N为顶点的三角形与△ABD相似.【点睛】本题考查了相似三角形的判定,直角三角形的性质和一元二次方程的应用,正确进行分类讨论是解题的关键.【题型02:(双)8型相似】5.已知:如图,四边形ABCD是平行四边形,在边AB的延长线上截取BE=AB,点F在AE的延长线上,CE和DF交于点M,BC和DF交于点N,联结BD.(1)求证:△BND∽△CNM;(2)如果AD2=AB•AF,求证:CM•AB=DM•CN.【答案】(1)见解析;(2)见解析【分析】(1)利用平行四边形的性质得AB=CD,AB∥CD,再证明四边形BECD为平行四边形得到BD∥CE,根据相似三角形的判定方法,由CM∥DB可判断△BND∽△CNM;(2)先利用AD 2=AB •AF 可证明△ADB ∽△AFD ,则∠1=∠F ,再根据平行线的性质得∠F =∠4,∠2=∠3,所以∠3=∠4,加上∠NMC =∠CMD ,于是可判断△MNC ∽△MCD ,所以MC :MD =CN :CD ,然后利用CD =AB 和比例的性质即可得到结论.【详解】证明:(1)∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD ,而BE =AB ,∴BE =CD ,而BE ∥CD ,∴四边形BECD 为平行四边形,∴BD ∥CE ,∵CM ∥DB ,∴△BND ∽△CNM ;(2)∵AD 2=AB •AF ,∴AD :AB =AF :AD ,而∠DAB =∠FAD ,∴△ADB ∽△AFD ,∴∠1=∠F ,∵CD ∥AF ,BD ∥CE ,∴∠F =∠4,∠2=∠3,∴∠3=∠4,而∠NMC =∠CMD ,∴△MNC ∽△MCD ,∴MC :MD =CN :CD ,∴MC •CD =MD •CN ,而CD =AB ,∴CM •AB =DM •CN .【点睛】本题考查了三角形相似的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.在运用相似三角形的性质时主要利用相似比计算线段的长.也考查了平行四边形的判定与性质.6.如图,在平行四边形ABCD 中,点E 是AD 上一点,AE =2ED ,连接BE 交AC 于点G ,延长BE 交CD 的延长线于点F ,则BG GF 的值为()A.23B.12C.13D.34【答案】A【分析】本题考查了相似三角形的判定与性质,平行四边形的性质,解决本题的关键是利用平行四边形的性质对边平行而构建相似三角形.先根据平行四边形的性质得到AB ∥CD ,则可判断△ABG ∽△CFG ,△ABE ∽△DFE ,于是根据相似三角形的性质和AE =2ED 即可得结果.【详解】解:∵四边形ABCD 为平行四边形,∴AB ∥CD ,∴△ABG ∽△CFG ,∴BG GF =AB CF∵△ABE ∽△DFE ,∴AE DE =AB DF,∵AE =2ED ,∴AB =2DF ,∴AB CF =23,∴BG GF=23.故选:A .7.如图1,在四边形ABDE 中,∠ABC =∠BDE ,点C 在边BD 上,且AC ∥DE ,AB ∥CE ,点F 在边AC 上,且AF =CE ,连接BF ,DF ,DF 交CE 于点G .(1)求证:BF =DF ;(2)如图2,若∠ACE =∠CDF ,求证:CE ⋅CF =BF ⋅DG ;(3)如图3,若延长BF 恰好经过点E ,求BC CD的值.【答案】(1)见解析(2)见解析(3)1+52【分析】(1)证明△ABF ≌△CAE ,得出BF =AE ,证明四边形AFDE 为平行四边形,得出AE =DF ,则可得出结论;(2)证明△FCG ∽△FDC ,得出CF DF =GF CF ,证明△FCG ∽△DEG ,得GF DG =CF DE ,则得出结论;(3)证明△ABF ∽△CEF ,得出AB CE =AF CF,设AB =x ,AF =CE =m ,解方程求出x ,则可得出答案.【详解】(1)∵AC∥DE,AB∥CE∴∠BDE=∠ACB,∠ABC=∠DCE,∠BAC=∠ACE ∵∠ABC=∠BDE∴∠ABC=∠BDE=∠ACB=∠DCE∴AB=AC,CE=DE在△ABF和△CAE中,又∵AF=CE∠BAC=∠ACE AB=AC∴△ABF≌△CAE(SAS)∴BF=AE∵CE=DE,AF=CE∴AF=DE∵AF=DE,AC∥DE∴四边形AFDE为平行四边形∴AE=DF∴BF=DF(2)∵∠CFG=∠CFD ∠ACE=∠CDF∴△FCG∽△FDC∴CF DF =GF CF又∵AC∥DE∴△FCG∽△DEG∴GF DG =CFDE,即GFCF=DGDE∴CF DF =DGDE.又∵DE=CE,DF=BF∴CF BF =DGCE,即CE⋅CF=BF⋅DG(3)∵∠ABC=∠DCE ∠ACB=∠EDC∴△ABC∽△ECD∴BC CD =AB CE∵AB∥CE,∴△ABF∽△CEF∴AB CE =AF CF∴AB⋅CF=AF⋅CE.设AB=x,AF=CE=m,则有x(x-m)=m2解得x=1+52m(负值舍去)∴BC CD =ABCE=1+52【点睛】本题考查了相似三角形的判定和性质、全等三角形的判定和性质、平行四边形的性质,利用相似三角形的判定和性质是本题解题的关键.8.如图1,在矩形ABCO 中,OA =8,OC =6,D ,E 分别是AB ,BC 上一点,AD =2,CE =3,OE 与CD 相交于点F .(1)求证:OE ⊥CD ;(2)如图2,点G 是CD 的中点,延长OG 交BC 于H ,求CH 的长.【答案】(1)见解析;(2)CH 的长为6.【分析】(1)根据四边形ABCO 是矩形,可得OA =BC =8,OC =AB =6,根据勾股定理可得OE 和CP 的长,进而得EF 和CF 的长,再根据勾股定理的逆定理即可得OE ⊥CD ;(2)在Rt △CBD 中,CB =8,BD =AB -AD =6-2=4,根据勾股定理可得CD =45,根据点G 是CD 的中点,可得CG =DG =25,所以得点G 是CP 的三等分点,根据OA ∥BC ,对应边成比例即可求出CH 的长.【详解】(1)∵四边形ABCO 是矩形,∴OA =BC =8,OC =AB =6,在Rt △OCE 中,CE =3,∴OE =OC 2+CE 2=62+32=35,∵AB ∥OC ,即AD ∥OC ,且AD =2,∴AD OC =P A PO ,∴26=P A P A +8,∴P A =4,∴PO =P A +OA =12,∴在Rt △OPC 中,OC =6,∴CP =OC 2+PO 2=62+122=65,∵OA ∥BC ,即OP ∥CE ,∴CE OP =EF OF =CF PF ,∴EF OF=CF PF =312=14,∴EF =15OE =355,CF =15CP =655,∵355 2+655 2=95+365=9,∴EF 2+CF 2=CE 2,∴△CEF 是直角三角形,∴∠CFE=90°,∴OE⊥CD;(2)在Rt△CBD中,CB=8,BD=AB-AD=6-2=4,根据勾股定理,得CD=CB2+BD2=82+42=45,∵点G是CD的中点,∴CG=DG=25,由(1)知:CP=65,∴DP=CP-CD=25,∴点G是CP的三等分点,∵OA∥BC,即OP∥CH,∴CH OP =CG GP,∴CH12=12,∴CH=6.答:CH的长为6.【点睛】本题考查了矩形的性质、勾股定理及其逆定理的应用、相似三角形的判定与性质以及平行线分线段成比例定理,解决本题的关键是掌握矩形的性质.【题型03:母子型相似】9.【典例3】如图1,∠C=90,BC=6,tan B=43,点M从点B出发以每秒1个单位长度的速度向点C运动,点N同时从点C出发以每秒2个单位长度的速度向点A运动,当一点到达终点时,另一点也停止运动.(1)求AB的长.(2)当以点M、C、N为顶点的三角形与△ABC相似时,求t的值.(3)如图2,将本题改为点M从点B出发以每秒3个单位长度的速度在BA上向点A运动,点N同时从点A出发向点C运动,其速度是每秒2个单位长度,其它条件不变,求当t为何值时,△MNA为等腰三角形.【答案】(1)10(2)t=125或t=1811时,以点M、C、N为顶点的三角形与△ABC相似(3)t=2或t=4017或t=5031时,△MNA为等腰三角形【分析】(1)根据三角函数解得即可;(2)分①当△MCN ∽△BCA 时和②当△MCN ∽△ACB 时,两种情况利用相似三角形的性质解答即可;(3)分①当AM =AN 时,②当AM =MN 时,③当MN =AN 时,三种情况,利用等腰三角形的性质得出比例解答即可.【详解】(1)解:∵∠C =90°,BC =6,tan B =43∴AC =8∴AB =BC 2+AC 2=62+82=10(2)解:解:①当△MCN ∽△BCA 时,∴MC BC =CN CA ,即6-t 6=2t 8,解得:t =125,②当△MCN ∽△ACB 时,∵MC AC =CN BC ,即6-t 8=2t 6,解得:t =1811,综上所述,t =125或t =1811时,以点M 、C 、N 为顶点的三角形与△ABC 相似,(3)解:①如图3,当AM =AN 时,10-3t =2t ,解得:t =2,②如图4,当AM =MN 时,过点M 作MD ⊥AC 于D ,则∠ADM =90°,AM =MN =10-3t ,AD =12AN =t ,∵∠ACB =90°,∴MD ∥BC ,∴△AMD ∽△ABC ,∴AM AB =AD AC ,即10-3t 10=t 8,解得:t =4017,③如图5,当MN =AN 时,过点N 作ND ⊥AB 于D ,则∠ADN =∠ACB =90°,AD =DM =12AM =12(10-3t ),∵∠A =∠A ,∴△ADN ∽△ACB ,∴AD AC =AN AB ,即12(10-3t )8=2t 10,解得:t =5031,综上所述,t =2或t =4017或t =5031时,△MNA 为等腰三角形【点睛】本题考查考查了相似三角形的判定与性质、等腰三角形的性质,已知正切求边长,解题的关键是掌握辅助线的作法,数形结合,分类讨论思想的应用.10.如图,在△ABC 中,D 是BC 上的点,E 是AD 上一点,且AB AC=AD CE ,∠BAD =∠ECA .(1)求证:AC 2=BC •CD ;(2)若AD 是△ABC 的中线,求CE AC 的值.【答案】(1)证明见解析;(2)22【分析】(1)首先利用相似三角形的判定得出△BAD ∽△ACE △,得∠B =∠EAC ,进而求出△ABC ∽△DAC ,再利用相似三角形的性质得出答案即可;(2)由△BAD ∽△ACE 可证∠CDE =∠CED ,进而得出CD =CE ,再由(1)可证AC =2CD ,由此即可得出线段之间关系.【详解】(1)证明:∵AB AC =AD CE ,∠BAD =∠ECA ,∴ΔBAD ∽ΔACE ,∴∠B =∠EAC ,∵∠ACB =∠DCA ,∴△ABC ∽△DAC ,∴AC CD =BC AC,∴AC 2=BC ·CD .(2)解:∵△BAD ∽△ACE ,∴∠BDA =∠AEC ,∴∠CDE =∠CED ,∴CD =CE ,∵AD 是△ABC 的中线,∴BC =2BD =2CD ,∴AC 2=BC ·CD =2CD 2,即:AC =2CD ,∴CE AC =CD 2CD=22.【点睛】此题主要考查了相似三角形的判定与性质以及重心的性质等知识,根据已知得出△BAD ∽△ACE 是解题关键.11.如果两个相似三角形的对应边存在2倍关系,则称这两个相似三角形互为母子三角形.(1)如果△DEF 与△ABC 互为母子三角形,则DE AB 的值可能为()A.2B.12C.2或12(2)已知:如图1,△ABC 中,AD 是∠BAC 的角平分线,AB =2AD , ∠ADE =∠B .求证:△ABD 与△ADE 互为母子三角形.(3)如图2,△ABC 中,AD 是中线,过射线CA 上点E 作EG ⎳BC ,交射线DA 于点G ,连结BE ,射线BE 与射线DA 交于点F ,若△AGE 与△ADC 互为母子三角形.求AG GF的值.【答案】(1)C ;(2)见解析;(3)AG GF=13或3.【分析】(1)根据互为母子三角形的定义即可得出结论;(2)根据两角对应相等两三角形相似得出△ABD ∽△ADE ,再根据AB =2AD 从而得出结论;(3)根据题意画出图形,分当G ,E 分别在线段AD ,AC 上时和当G ,E 分别在射线DA ,CA 上时两种情况加以讨论;【详解】(1)∵△DEF 与△ABC 互为母子三角形,∴DEAB=12或2故选:C(2)∵AD 是∠BAC 的角平分线,∴∠BAD =∠CAD ,∵∠ADE =∠B ,∴△ABD ∽△ADE .又∵AB =2AD ,∴△ABD 与△ADE 互为母子三角形.(3)如图,当G ,E 分别在线段AD ,AC 上时,∵△AGE 与△ADC 互为母子三角形,∴CD GE =AD AG=2,∴AG =DG ,∵AD 是中线,∴BD =CD ,又∵GE ⎳BC ,∴△GEF ∽△DBF .∴DF GF =DB GE =CD GE=2,∴DG =3GF ,∴AG GF=3.如图,当G ,E 分别在射线DA ,CA 上时,∵△AGE 与△ADC 互为母子三角形,∴CD GE =AD AG =2,∴AG =12AD =13DG ,∵AD 是中线,∴BD =CD ,又∵GE ⎳BC ,∴△GEF ∽△DBF .∴DF GF =DB GE =CD GE=2,∴DG =GF ,∴AG GF =13.综上所述,AG GF =13或3【点睛】本题主要考查了相似三角形的判定与性质、分类讨论的数学思想以及接受与理解新生事物的能力.准确理解题设条件中互为母子三角形的定义是正确解题的先决条件,在分析与解决问题的过程中,要考虑全面,进行分类讨论,避免漏解.12.如图1,AB =AC =2CD ,DC ∥AB ,将△ACD 绕点C 逆时针旋转得到△FCE ,使点D 落在AC 的点E 处,AB 与CF 相交于点O ,AB 与EF 相交于点G ,连接BF .(1)求证:△ABE ≌△CAD ;(2)求证:AC ∥FB ;(3)若点D,E,F在同一条直线上,如图2,求ABBC的值.(温馨提示:请用简洁的方式表示角)【答案】(1)见解析(2)见解析(3)2【分析】(1)根据旋转变换的性质得到旋转前后两个三角形全等,从而得到CE=CD,根据AC=2CD,就能得到AE=CD,然后利用平行可以得到内错角相等,最后加上AB=AC,就可以通过边角边证明两个三角形全等.(2)根据旋转和第一小题的结论,可以得到BE=FE,然后用等角对等边即可得到∠EFB=∠EBF,又可以从前面的两个全等中得到∠EFC=∠EBA,∠OAC=∠OCA从而得到∠OFB=∠OBF,那么△ACO和△BOF就是顶角互为对顶角的一组等腰三角形,所以就能得到底角相等,即∠CAO=∠FOB,那么内错角相等,两直线平行即可证结论.(3)根据D,E,F在同一条直线上,可以证明△AEG和△CED全等,即可得到AG=12AB,那么EG就是中位线,则EG∥CB,加上第二小题结论就能得到四边形BCEF是平行四边形,那么BC=AD,然后通过三角形外角的性质,可以证得∠ADE=∠ACD,就能证△ACD和△ADE是一组子母型相似,然后根据相似比可得最终答案.【详解】(1)解:∵将△ACD绕点C逆时针旋转得到△FCE,∴△FCE≌△ACD,∴CE=CD,∵AC=2CD,∴AC=2CE,∴AE=AC-CE=2CE-CE=CE=CD,∵DC∥AB∴∠DCA=∠EAB,在△ABE和△CAD中,∵AE=CD∠EAB=∠DCA AB=CA,∴△ABE≌△CAD SAS.(2)解:由(1)得BE=AD,∠ABE=∠CAD,∵△CEF≌△CDA,∴FE=AD,∠EFC=∠DAC,∴BE=FE,∠EFC=∠EBA,∴∠EFB=∠EBF,∵∠OFB=∠EFB-∠EFC,∠OBF=∠EBF-∠EBA,∴∠OFB=∠OBF,∵∠ECF=∠DCA,∴∠OAC=∠OCA,∵∠OCA+∠OAC+∠AOC=180°,∠OBF+∠OFB+∠BOF=180°,又∠AOC=∠BOF,∴∠OCA+∠OAC=∠OBF+∠OFB,即2∠CAO=2∠FOB,∴∠CAO=∠FOB,∴AC∥FB(3)解:在△AEG和△CED中,∵∠GAE=∠DCE AE=CE∠AEG=∠CED ,∴△AEG≌△CED ASA∴AG=CD=12AB,∵AE=CE,∴EG∥CB,∵AC∥FB,∴四边形BCEF是平行四边形,∴BC=FE=AD,∵∠AEG=∠ACD+∠CAD=∠DAE+∠ADE,∴∠ADE=∠ACD,∵∠CAD=∠DAE,∴△ACD∽△ADE,∴EA DA =DA CA,即DA2=EA⋅CA=2EA2,∴DA=2EA,∵AB=AC=2EA,∴AB BC =ABDA=2EA2EA=22=2.【点睛】本题考查了三角形全等的证明,平行线的判定以及利用相似三角形求线段长之比,解题时需要学会将多个小题的结论联系起来,把前面小题的结论用到后面小题的思路中,熟练寻找证明三角形全等或相似所需要的条件是解题的关键.【题型04:旋转相似】13.【典例4】某校数学活动小组探究了如下数学问题:(1)问题发现:如图1,△ABC中,∠BAC=90°,AB=AC.点P是底边BC上一点,连接AP,以AP为腰作等腰Rt△APQ,且∠P AQ=90°,连接CQ、则BP和CQ的数量关系是______;(2)变式探究:如图2,△ABC中,∠BAC=90°,AB=AC.点P是腰AB上一点,连接CP,以CP为底边作等腰Rt△CPQ,连接AQ,判断BP和AQ的数量关系,并说明理由;(3)问题解决:如图3,在正方形ABCD中,点P是边BC上一点,以DP为边作正方形DPEF,点Q是正方形DPEF两条对角线的交点,连接CQ.若正方形DPEF的边长为210,CQ=22,请直接写出正方形ABCD的边长.【答案】(1)BP=CQ(2)BP=2AQ(3)6【分析】(1)根据已知条件利用边角边证明△ABP≌△ACQ,再利用全等三角形的性质即可得到BP和CQ 的数量关系;(2)根据任意等腰直角三角形的直角边与斜边的比是相等的,利用两边长比例且夹角相等的判定定理证明△CBP∽△CAQ,之后再由相似三角形对应边成比例即可得到BP和AQ的数量关系;(3)连接BD,先由正方形的性质判断出△BCD和△PQD都是等腰直角三角形,再利用与第二问同样的方法证出△BDP∽△CDQ,由对应边成比例,依据相似比求出线段BP的长,接着设正方形ABCD的边长为x,运用勾股定理列出方程即可求得答案.【详解】(1)解:∵△APQ是等腰直角三角形,∠P AQ=90°,在△ABC中,∠BAC=90°,AB=AC,∴AP=AQ,∠BAP+∠P AC=∠CAQ+∠P AC,∴∠BAP=∠CAQ.在△ABP和△ACQ中,AB=AC∠BAP=∠CAQ AP=AQ,∴△ABP≌△ACQ(SAS),∴BP=CQ;(2)解:结论:BP=2AQ,理由如下:∵△CPQ是等腰直角三角形,△ABC中,∠BAC=90°,AB=AC,∴QCPC=ACBC=22,∠ACB=∠QCP=45°.∵∠BCP+∠ACP=∠ACQ+∠ACP=45°,∴∠BCP=∠ACQ,∴△CBP∽△CAQ,∴QCPC=ACBC=AQBP=22,∴BP=2AQ;(3)解:连接BD,如图所示,∵四边形ABCD与四边形DPEF是正方形,DE与PF交于点Q,∴△BCD和△PQD都是等腰直角三角形,∴QDPD=CDBD=22,∠BDC=∠PDQ=45°.∵∠BDP+∠PDC=∠CDQ+∠PDC=45°,∴∠BDP=∠CDQ,∴△BDP∽△CDQ,∴QDPD=CDBD=CQBP=22.∵CQ=22,∴BP=2CQ=4.在Rt△PCD中,CD2+CP2=DP2,设CD=x,则CP=x-4,又∵正方形DPEF的边长为210,∴DP=210,∴x2+(x-4)2=(210)2,解得x1=-2(舍去),x2=6.∴正方形ABCD的边长为6.【点睛】本题是一道几何综合题,考查了全等三角形,相似三角形的判定和性质,以及正方形和等腰三角形的性质,正确识图并能熟练地掌握几何图形的性质与判定定理进行证明是解题的关键.14.如图1,已知点G在正方形ABCD的对角线AC上,GE⊥BC,垂足为点E,GF⊥CD,垂足为点F.(1)证明:四边形CEGF是正方形;(2)探究与证明:将正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图2所示,试探究线段AG与BE之间的数量关系,并说明理由;(3)拓展与运用:正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图3所示,当B,E,F三点在一条直线上时,延长CG交AD于点H,若AG=9,GH=32,求BC的长.【答案】(1)答案见解析;(2)AG=2BE;理由见解析;(3)BC=95 2.【分析】(1)先说明GE⊥BC、GF⊥CD,再结合∠BCD=90°可证四边形CEGF是矩形,再由∠ECG= 45°即可证明;(2)连接CG,证明△ACG∽△BCE,再应用相似三角形的性质解答即可;(3)先证△AHG∽△CHA可得AGAC =GHAH=AHCH,设BC=CD=AD=a,则AC=a,求出AH=23a,DH=13a,CH=103a最后代入即可求得a的值.【详解】(1)∵四边形ABCD是正方形,∴∠BCD=90°,∠BCA=45°,∵GE⊥BC、GF⊥CD,∴∠CEG=∠CFG=∠ECF=90°,∴四边形CEGF是矩形,∠CGE=∠ECG=45°,∴EG=EC,∴四边形CEGF是正方形.(2)结论:AG=2BE;理由:连接CG,由旋转性质知∠BCE=∠ACG=α,在Rt △CEG 和Rt △CBA 中,CE CG=cos45°=22,CB CA =cos45°=22,∴CG CE =CA CB=2,∴△ACG ∽△BCE ,∴AG BE =CA CB=2∴线段AG 与BE 之间的数量关系为AG =2BE ;(3)∵∠CEF =45°,点B 、E 、F 三点共线,∴∠BEC =135°,∵△ACG ∽△BCE ,∴∠AGC =∠BEC =135°,∴∠AGH =∠CAH =45°,∵∠CHA =∠AHG ,∴△AHG ∽△CHA ,∴AG AC =GH AH=AH CH ,设BC =CD =AD =a ,则AC =2a ,由AG AC =GH AH ,得92a =32AH ,∴AH =23a ,则DH =AD -AH =13a ,CH =CD 2+DH 2=103a ,∴AG AC =AH CH ,得 92a =23a 103a ,解得:a =952,即BC =952.【点睛】本题属于四边形综合题,主要考查相似形的判定和性质、正方形的性质等知识点,解题的关键是正确寻找相似三角形解决问题并利用参数构建方程解决问题.【题型05:K 字型相似】15.综合探究如图,在平面直角坐标系中,点O 为原点,□ABCD 的顶点B 、C 在x 轴上,A 在y 轴上,OA =OC =2OB =4,直线y =x +t (-2≤t ≤4)分别与x 轴、y 轴、线段AD 、直线AB 交于点E 、F 、P 、Q .(1)当t =1时,求证:AP =DP .(2)探究线段AP 、PQ 之间的数量关系,并说明理由.(3)在x 轴上是否存在点M ,使得∠PMQ =90°,且以点M 、P 、Q 为顶点的三角形与△AOB 相似,若存在,请求出此时t 的值以及点M 的坐标;若不存在,请说明理由.【答案】(1)见解析(2)PQ =22AP(3)t =73时,M 13,0 ;t =23时,M 143,0 ;t =-1时,M -7,0 .【分析】(1)根据t =1,求出t =1与AD 交点P 的坐标,即可求解;(2)先求出直线AB 的表达式为y =2x +4,再联立直线AB 与直线y =x +t 求出Q (t -4,2t -4),再求出点P (4-t ,4),利用坐标系中两点距离公式求出即可PQ =22(t -4),结合AP =4-t 即可求解;(3)证明△PHM ∽△MIQ ,得到PM QM =AO BO =2或PM QM =BO AO=12,分四种情况画图求解.【详解】(1)证明:由OA =OC =2OB =4知,OC =4,OB =2,则AD =BC =6,则点A 、B 的坐标分别为:(0,4)、(-2,0),当y =4时,y =x +1=4,则x =3=12AD ,即点P (3,4),∴AP =DP =3;(2)解:PQ =22AP ,理由:设直线AB 的表达式为:y =kx +b ,将A 0,4 、B -2,0 代入得:4=b 0=-2k +b ,解得:k =2b =4 .∴直线AB 的表达式为:y =2x +4,联立上式和y =x +t 得y =x +t y =2x +4 ,解得x =t -4y =2t -4 ,即点Q (t -4,2t -4),同理(1)可得,点P (4-t ,4),∴PQ =t -4 -4-t 2+2t -4 -4 2=224-t∵AP =4-t ,∴PQ =22AP ;(3)分别过点P 、Q 作PH ⊥x 轴,QI ⊥x 轴,∴∠PHM =∠MIQ =90°,∵∠PMQ =90°,∴∠PMH +∠QMI =90°,∵∠MQI +∠QMI =90°,∴∠PMH =∠MQI ,∴△PHM ∽△MIQ ,∴PH MI =MH QI =PM QM,设点M (x ,0),由(2)知,点P 、Q 的坐标分别为:(4-t ,4)、(t -4,2t -4),①若m >0,如图2,则MI =m -(t -4),MH =4-t -m ,QI =2t -4,当△PMQ ∽△AOB 时,∴PM QM =AO BO=42=2,∴PH MI =MH QI=2.∴PH =2MI ,MH =2QI ,联立方程组:4=2m -(t -4) 4-t -m =2(2t -4) ,解得:m =13t =73∴t =73时,M 13,0 ,②若m >0,MI =m -(t -4),MH =m -(4-t ),QI =4-2t ,如图3,当△QMP ∽△AOB 时,∴PM QM =BO AO=24=12∴PH MI =MH QI =12∴2PH =MI ,2MH =QI ,联立方程组:2×4=m -(t -4)2m -(4-t ) =4-2t ,解得m =143t =23.∴t =23时,M 143,0 ③若m <0,当△PMQ ∽△AOB 时,如图4,MI =(t -4)-m ,MH =(4-t )-m ,QI =4-2t ,∴PM AO =QM BO ,∴PM QM =AO BO=42=2,∴PH MI =MH QI =2∴PH =2MI ,MH =2QI ,联立方程组:4=2(t -4)-m 4-t -m =2(4-2t ),解得:m =-7t =-1 ∴t =-1,M -7,0④m <0,△QMP ∽△AOB 的情况不存在,综上,t =73时,M 13,0 ;t =23时,M 143,0 ;t =-1时,M -7,0 .【点睛】本题考查的是一次函数综合运用,涉及到三角形相似、平行四边形的性质等,分类求解是解题的关键.16.如图,边长为10的等边△ABC 中,点D 在边AC 上,且AD =3,将含30°角的直角三角板(∠F =30°)绕直角顶点D 旋转,DE 、DF 分别交边AB 、BC 于P 、Q ,连接PQ .当EF ∥PQ 时,DQ 长为()A.6B.39C.10D.63【答案】B【分析】证明△ADP ∽△BPQ ,由相似三角形的性质得出AD BP =AP BQ =DP PQ ,求出BP =6,CQ =2,过点Q 作QM ⊥AC 于点M ,由勾股定理可求出答案.【详解】解:∵∠F =30°,∴∠E =60°,∵EF ∥PQ ,∴∠DPQ =∠E =60°,∠DQP =∠F =30°,∴∠APD +∠BPQ =120°,∵△ABC 为等边三角形,∴∠A =∠B =60°,AC =BC =AB =10,∴∠APD +∠ADP =120°,∴∠BPQ =∠ADP ,∴△ADP ∽△BPQ ,∴AD BP =AP BQ =DP PQ,∵∠PDQ =90°,∠DQP =30°,∴PD =12PQ ,∴3 BP =APBQ=12,∴BP=6,∴AP=4,BQ=8,∴CQ=2,过点Q作QM⊥AC于点M,∴CM=12CQ=1,QM=3,∵CD=AC-AD=10-3=7,∴DM=CD-CM=7-1=6,∴DQ=DM2+QM2=62+(3)2=29.故选:B.【点睛】本题考查了勾股定理,等边三角形的性质,相似三角形的判定与性质,直角三角形的性质.先证明△ADP∽△BPQ是解题的关键.17.(1)问题如图1,在四边形ABCD中,点P为AB上一点,当∠DPC=∠A=∠B=90°时,求证:AD⋅BC=AP ⋅BP.(2)探究若将90°角改为锐角(如图2),其他条件不变,上述结论还成立吗?说明理由.(3)应用如图3,在△ABC中,AB=22,∠B=45°,以点A为直角顶点作等腰Rt△ADE.点D在BC上,点E在AC上,点F在BC上,且∠EFD=45°,若CE=5,求CD的长.【答案】(1)见解析;(2)成立;理由见解析;(3)5【分析】(1)由∠DPC=∠A=∠B=90°可得∠ADP=∠BPC,即可证到△ADP∽△BPC,然后运用相似三角形的性质即可解决问题;(2)由∠DPC=∠A=∠B=α可得∠ADP=∠BPC,即可证到△ADP∽△BPC,然后运用相似三角形的性质即可解决问题;(3)证明△ABD∽△DFE,求出DF=4,再证△EFC∽△DEC,可求FC=1,进而解答即可.【详解】解:(1)证明:如图1,∵∠DPC=90°∴∠BPC+∠APD=90°,∵∠A=90°,∴∠ADP+∠APD=90°∴∠APD=∠BPC,又∵∠A=∠B=90°∴△ADP∽△BPC,∴AD:BP=AP:BC∴AD⋅BC=AP⋅BP;(2)结论AD⋅BC=AP⋅BP仍成立;理由:如图2,∵∠BPD=∠DPC+∠BPC,又∵∠BPD=∠A+∠APD,∴∠DPC+∠BPC=∠A+∠APD,∵∠DPC=∠A=α,∴∠BPC=∠APD,又∵∠A=∠B=α,∴△ADP∽△BPC,∴AD:BP=AP:BC∴AD⋅BC=AP⋅BP;(3)∵∠EFD=45°,∴∠B=∠ADE=45°,∴∠BAD=∠EDF,∴△ABD∽△DFE∴AB:DF=AD:DE∵Rt△ADE是等腰直角三角形∴AD:DE=1:2∴AB:DF=1:2∵AB=22∴DF=4∵Rt△ADE是等腰直角三角形∴∠AED=45°∵∠EFD=45°∴∠DEC=∠EFC=180°-45°=135°又∵∠C=∠C∴△DEC∽△EFC∴DC:EC=EC:CF即EC2=FC⋅(4+FC)∵EC=5∴5=FC(4+FC)∴FC=1解得CD=5.【点睛】本题考查相似三角形的综合题,三角形的相似,正切值的求法,能够通过构造45°角将问题转化为一线三角是解题的关键.18.如图,在Rt△ABC中,∠ACB=90°,BCAC =mn,CD⊥AB于点D,点E是直线AC上一动点,连接DE,过点D作FD⊥ED,交直线BC于点F.(1)探究发现:如图1,若m =n ,点E 在线段AC 上,则DE DF =;(2)数学思考:①如图2,若点E 在线段AC 上,则DE DF =(用含m ,n 的代数式表示);②当点E 在直线AC 上运动时,①中的结论是否仍然成立?请仅就图3的情形给出证明;(3)拓展应用:若AC =5,BC =25,DF =42,请直接写出CE 的长.【答案】(1)1;n m ;(2)①n m ;②n m ;(3)CE =25或CE =255【分析】(1)先用等量代换判断出∠ADE =∠CDF ,∠A =∠DCB ,得到△ADE ∽△CDF ,再判断出△ADC ∽△CDB 即可;(2)方法和1 一样,先用等量代换判断出∠ADE =∠CDF ,∠A =∠DCB ,得到△ADE ∽△CDF ,再判断出△ADC ∽△CDB 即可;(3)由2 的结论得出△ADE ∽△CDF ,判断出CF =2AE ,求出DE ,再利用勾股定理,计算出即可.【详解】解:1 当m =n 时,即:BC =AC ,∵∠ACB =90°,∴∠A +∠ABC =90°,∵CD ⊥AB ,∴∠DCB +∠ABC =90°,∴∠A =∠DCB ,∵∠FDE =∠ADC =90°,∴∠FDE -∠CDE =∠ADC -∠CDE ,即∠ADE =∠CDF ,∴△ADE ∽△CDF ,∴DE DF =AD DC,∵∠A =∠DCB ,∠ADC =∠BDC =90°,∴△ADC ∽△CDB ,∴AD DC =AC BC=1,∴DE DF =12 ①∵∠ACB =90°,∴∠A +∠ABC =90°,∵CD ⊥AB ,∴∠DCB +∠ABC =90°,∴∠A =∠DCB ,∵∠FDE=∠ADC=90°,∴∠FDE-∠CDE=∠ADC-∠CDE,即∠ADE=∠CDF,∴△ADE∽△CDF,∴DE DF =AD DC,∵∠A=∠DCB,∠ADC=∠BDC=90°,∴△ADC∽△CDB,∴AD DC =ACBC=nm,∴DEDF=nm②成立.如图3,∵∠ACB=90°,∴∠A+∠ABC=90°,又∵CD⊥AB,∴∠DCB+∠ABC=90°,∴∠A=∠DCB,∵∠FDE=∠ADC=90°,∴∠FDE+∠CDE=∠ADC+∠CDE,即∠ADE=∠CDF,∴△ADE∽△CDF,∴DE DF =AD DC,∵∠A=∠DCB,∠ADC=∠BDC=90°,∴△ADC∽△CDB,∴AD DC =ACBC=nm,∴DE DF =n m.3 由2 有,△ADE∽△CDF,∵DE DF =ACBC=12,∴AD CD =AECF=DEDF=12,∴CF=2AE,如图4图5图6,连接EF.在Rt△DEF中,DE=22,DF=42,∴EF=210,①如图4,当E在线段AC上时,在Rt△CEF中,CF=2AE=2AC-CE=25-CE,EF=210,根据勾股定理得,CE2+CF2=EF2,∴CE2+25-CE2=40∴CE=25,或CE=-255(舍)②如图5,当E在AC延长线上时,在Rt△CEF中,CF=2AE=2AC+CE=25+CE,EF=210,根据勾股定理得,CE2+CF2=EF2,∴CE2+25+CE2=40,∴CE=255,或CE=-25(舍),③如图6,当E在CA延长线上时,在Rt△CEF中,CF=2AE=2CE-AC=2CE-5,EF=210,根据勾股定理得,CE2+CF2=EF2,∴CE2+2CE-52=40,∴CE=25,或CE=-255(舍),综上:CE=25或CE=25 5.【点睛】本题是三角形综合题,主要考查了三角形相似的性质和判定,勾股定理,判断相似是解决本题的关键,求CE是本题的难点.。
相似三角形典型模型及例题
1:相似三角形模型一:相似三角形判定的根本模型〔一〕 A 字型、反 A 字型〔斜 A 字型〕〔平行〕〔不平行〕〔二〕 8 字型、反 8 字型AA BBO JC DC D〔蝴蝶型〕〔平行〕〔不平行〕〔三〕母子型〔四〕一线三等角型:三等角型相似三角形是以等腰三角形〔等腰梯形〕或者等边三角形为背景,一个与等腰三角形的底角相等的顶点在底边所在的直线上,角的两边分别与等腰三角形的两边相交如下图:〔五〕一线三直角型:三直角相似可以看着是“一线三等角〞中当角为直角时的特例,三直角型相似通常是以矩形或者正方形形为背景,或者在一条直线上有一个顶点在该直线上移动或者旋转的直角,几种常见的根本图形如下:当题目的条件中只有一个或者两个直角时,就要考虑通过添加辅助线构造完整的三直角型相似,这往往是很多压轴题的突破口,进而将三角型的条件进行转化。
〔六〕双垂型:二:相似三角形判定的变化模型旋转型:由 A 字型旋转得到8 字型拓展AE FGB C共享性一线三等角的变形一线三直角的变形2:相似三角形典型例题〔 1〕母子型相似三角形例 1:如图,梯形ABCD 中, AD ∥ BC,对角线 AC、 BD 交于点 O, BE∥ CD 交 CA 延长线于 E.求证: OC 2OA OE.例 2::如图,△ABC 中,点 E 在中线 AD 上 ,DEBABC .求证:〔 1〕DB2DE DA ;〔2〕 DCE DAC .BDEA C例 3::如图,等腰△ABC 中, AB= AC,AD⊥ BC 于 D, CG∥ AB, BG 分别交 AD 、 AC 于 E、 F.求证: BE 2EF EG .1、如图,AD 为△ABC 的角平分线, EF 为 AD 的垂直平分线.求证:FD2FB FC.2、: AD 是 Rt△ABC 中∠ A 的平分线,∠ C=90°,EF 是 AD 的垂直平分线交AD 于 M ,EF、BC 的延长线交于一点 N。
相似三角形典型模型及例题
1:相似三角形模型一:相似三角形判定的基本模型(一)A字型、反A字型(斜A字型)B(平行)(不平行)(二)8字型、反8字型BCBC(蝴蝶型)(平行)(不平行)(三)母子型B(四)一线三等角型:三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景,一个与等腰三角形的底角相等的顶点在底边所在的直线上,角的两边分别与等腰三角形的两边相交如图所示:(五)一线三直角型:三直角相似可以看着是“一线三等角”中当角为直角时的特例,三直角型相似通常是以矩形或者正方形形为背景,或者在一条直线上有一个顶点在该直线上移动或者旋转的直角,几种常见的基本图形如下:当题目的条件中只有一个或者两个直角时,就要考虑通过添加辅助线构造完整的三直角型相似,这往往是很多压轴题的突破口,进而将三角型的条件进行转化。
(六)双垂型:CAD二:相似三角形判定的变化模型旋转型:由A字型旋转得到8字型拓展CB EDA共享性一线三等角的变形GAB CE F一线三直角的变形2:相似三角形典型例题(1)母子型相似三角形例1:如图,梯形ABCD中,AD∥BC,对角线AC、BD交于点O,BE∥CD交CA延长线于E.求证:OEOAOC⋅=2.例2:已知:如图,△ABC中,点E在中线AD上, ABCDEB∠=∠.求证:(1)DADEDB⋅=2;(2)DACDCE∠=∠.例3:已知:如图,等腰△ABC中,AB=AC,AD⊥BC于D,CG∥AB,BG分别交AD、AC于E、F.求证:EGEFBE⋅=2.1、如图,已知AD为△ABC的角平分线,EF为AD的垂直平分线.求证:FCFBFD⋅=2.A CDEB2、已知:AD 是Rt △ABC 中∠A 的平分线,∠C=90°,EF 是AD 的垂直平分线交AD 于M ,EF 、BC 的延长线交于一点N 。
求证:(1)△AME ∽△NMD; (2)ND 2=NC·NB3、已知:如图,在△ABC 中,∠ACB=90°,CD ⊥AB 于D ,E 是AC 上一点,CF ⊥BE 于F 。
中考中相似三角形的常见模型及典型例题
(1)A字、8字; (3)角平分线; (5)一线三等角; (7)内接矩形;
2.基本辅助线:
(2)反A、反8; (4)旋转型; (6)线束模型; (8)相似比与面积比。
(1)作平行线构造A字、8字; (2)作垂线构造直角三角形相似
3.基本问题类型:
(1)证明相似;
(2)求线段长;
(1)若点P在线段CB上,且BP=6,求线段CQ的长; (2)若BP=x,CQ=y,求y与x的关系式,并求出自变量x的取值范围。
例 9 如图,△ABC是等边三角形,点D、E分别在BC、AC上,且BD=CD,
AD与BE相交于点F. (1)求证:△ABD≌△BCE; (2)求证:△ABE∽△FAE;
(3)当AF=7,DF=1时,求BD的长。
(量得BN=70cm)
C
C
DME
DME
A PN F
B
A PN F
B
1.如图,△ABC是一块锐角三角形余料,边BC=120毫米,高AD=80 毫米,要把它加工成正方形零件,使正方形的一边在BC上,其 余两个顶点分别在AB、AC上,这个正方形零件的边长是多少?
A
A
M
EN
H
KG
∟
B Q DPC
B
E
DF C
E
AB AC BC
B
C (2)公共边平方=共线边之积:AC 2 AE • AB
反A字 型 【模型2】反“A”字型&反“8”字型
(Ⅱ)DE拉下来经过点C,又称之为母子型,为相似常考模型:
A
A
E
B
C
AC2 AED • BC
AC2 CD • CB
AD2 BD • CD
相似三角形中考考点归纳与典型例题
相似三角形中考考点归纳与典型例题相似三角形是初中数学中常出现的重要概念,它是几何学中研究两个三角形之间形状关系的一个重要内容。
掌握相似三角形的性质和应用是解决几何问题的基础。
相似三角形的重要性质:1. 定义:如果两个三角形的对应角相等,对应边成比例,则它们是相似三角形。
记作ΔABC ~ ΔDEF。
其中A、B、C是ΔABC的顶点,D、E、F是ΔDEF的顶点。
2. 判定定理:(1) AA相似定理:如果两个三角形的两个对应角相等,则它们是相似的。
(2) AAA相似定理:如果两个三角形的三个对应角相等,则它们是相似的。
3. 边比例关系:相似三角形的对应边成比例。
即对于ΔABC ~ΔDEF,有AB/DE = BC/EF = AC/DF。
4. 高比例关系:相似三角形的高线成比例。
即对于ΔABC ~ΔDEF,有h1/h2 = AB/DE = BC/EF = AC/DF。
5. 相似三角形的性质:(1) 对应角相等,即∠A = ∠D,∠B = ∠E,∠C = ∠F。
(2) 对应边成比例,即AB/DE = BC/EF = AC/DF。
(3) 相似三角形的顶角相等,边比例相等,它们的面积比例也相等。
(4) 相似三角形的高线间成比例。
相似三角形的典型例题:例题1:如图,在直角三角形ABC中,∠B = 90°,BM是AC的中线,求比值AB/BC。
解:由与直角三角形的垂直关系可知∠A = ∠CBM,∠C = ∠ABM。
所以∠ABC ~ ∠CBM。
根据相似三角形的性质可得AB/BC = CB/BM = 2/1,即AB/BC = 2。
例题2:如图,上底AE = 4cm,下底BC = 8cm,连结CD,且CD = AE,点F是AE的中点,连接BF,求比值∠AFB/∠ACD。
解:由AE = CD可得∠A = ∠C。
又由BF = FE可得∠B = ∠AFE。
所以∠AFB ~ ∠ACD。
根据相似三角形的性质可得∠AFB/∠ACD = AB/AD= BC/CD = 2。
初三数学相似三角形典型例题(附解析)
2初三数学相似三角形(一)相似三角形是初中几何的一个重点,同时也是一个难点,本节复习的目标是:1. 理解线段的比、成比例线段的概念,会根据比例线段的有关概念和性质求线段的长或两线段的比,了解黄金分割。
2. 会用平行线分线段成比例定理进行有关的计算、证明,会分线段成已知比。
3. 能熟练应用相似三角形的判定和性质解答有关的计算与证明题。
4.能熟练运用相似三角形的有关概念解决实际问题本节的重点内容是相似三角形的判定定理和性质定理以及平行线分线段成比例定理。
本节的难点内容是利用判定定理证明两个三角形相似以及相似三角形性质的应用。
相似三角形是平面几何的主要内容之一, 在中考试题中时常与四边形、 圆的知识相结合 构成高分值的综合题,题型常以填空、选择、简答或综合出现,分值一般在 10%左右,有时也单独成题,形成创新与探索型试题;有利于培养学生的综合素质。
(二)重要知识点介绍: 1.比例线段的有关概念:在比例式 ab c (a : b c :d )中, a 、 d 叫外项, db 、c 叫内项, a 、c 叫前项,b 、d 叫后项, d 叫第四比例项,如果 b=c ,那么 b 叫做 a 、d 的比例中项。
把线段 AB 分成两条线段 AC 和 BC ,使 AC=AB BC ,叫做把线段 AB 黄金分割, C 叫做线段 AB 的黄金分割点。
2. 比例性质:①基本性质: ac b d②合比性质:acb dad bca b c d bd③等比性质:a c⋯b dm (b d ⋯ nn ≠ 0) a c ⋯ m ab d ⋯ nb3.平行线分线段成比例定理:①定理:三条平行线截两条直线,所得的对应线段成比例,如图:l 1∥ l 2∥ l 3 。
AB 则BCDE , ABEF AC DE , BCDF AC EF ,⋯DF②推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。
③定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。
相似三角形知识点及典型例题
相似三角形知识点及典型例题知识点归纳:1、三角形相似的判定方法〔1〕定义法:对应角相等,对应边成比例的两个三角形相似。
〔2〕平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似。
〔3〕判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
简述为:两角对应相等,两三角形相似。
〔4〕判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。
简述为:两边对应成比例且夹角相等,两三角形相似。
〔5〕判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似。
简述为:三边对应成比例,两三角形相似。
〔6〕判定直角三角形相似的方法:①以上各种判定均适用。
②如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。
③直角三角形被斜边上的高分成的两个直角三角形与原三角形相似。
#直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。
每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。
如图,Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,那么有射影定理如下:〔1〕〔AD〕2=BD·DC,〔2〕〔AB〕2=BD·BC ,〔3〕〔AC〕2=CD·BC 。
注:由上述射影定理还可以证明勾股定理。
即〔AB〕2+〔AC〕2=〔BC〕2。
典型例题:例1 如图,等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ‖AB ,BG 分别交AD ,AC 于E 、 F ,求证:BE2=EF·EG 证明:如图,连结EC ,∵AB =AC ,AD ⊥BC , ∴∠ABC =∠ACB ,AD 垂直平分BC ∴BE =EC ,∠1=∠2,∴∠ABC-∠1=∠ACB-∠2, 即∠3=∠4,又CG ∥AB ,∴∠G =∠3,∴∠4=∠G又∵∠CEG =∠CEF ,∴△CEF ∽△GEC ,∴EG CE =CE EF∴EC 2=EG· EF,故EB 2=EF·EG 【解题技巧点拨】此题必须综合运用等腰三角形的三线合一的性质,线段的垂直平分线的性质和相似三角形的根本图形来得到证明.而其中利用线段的垂直平分线的性质得到BE=EC ,把原来处在同一条直线上的三条线段BE ,EF ,EC 转换到相似三角形的根本图形中是证明此题的关键。
(完整版)相似三角形基本知识点+经典例题(完美打印版)
相似三角形知识点与经典题型知识点1 有关相似形的概念(1)形状相同的图形叫相似图形,在相似多边形中,最简单的是相似三角形。
(2)如果两个边数相同的多边形的对应角相等,对应边成比例,这两个多边形叫做相似多边形.相似多边形对应边长度的比叫做相似比(相似系数).知识点2 比例线段的相关概念(1)如果选用同一单位量得两条线段b a ,的长度分别为n m ,,那么就说这两条线段的比是nmb a =,或写成n m b a ::=.注:在求线段比时,线段单位要统一.(2)在四条线段d c b a ,,,中,如果b a 和的比等于d c 和的比,那么这四条线段d c b a ,,,叫做成比例线段,简称比例线段.注:①比例线段是有顺序的,如果说a 是d c b ,,的第四比例项,那么应得比例式为:a d c b =.②()a ca b c d b d ==在比例式::中,a 、d 叫比例外项,b 、c 叫比例内项, a 、c 叫比例前项,b 、d 叫比例后项,d 叫第四比例项,如果b=c ,即 a b b d =::那么b 叫做a 、d 的比例中项, 此时有2b ad =。
(3)黄金分割:把线段AB 分成两条线段)(,BC AC BC AC >,且使AC 是BC AB 和的比例中项,即2AC AB BC =⋅,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AB AC 215-=≈0.618AB.即12AC BC AB AC ==简记为:长短=全长注:黄金三角形:顶角是360的等腰三角形。
黄金矩形:宽与长的比等于黄金数的矩形知识点3 比例的性质(注意性质立的条件:分母不能为0)(1) 基本性质:①bc ad d c b a =⇔=::;②2::a b b c b a c =⇔=⋅.注:由一个比例式只可化成一个等积式,而一个等积式共可化成八个比例式,如bc ad =,除了可化为d c b a ::=,还可化为d b c a ::=,b a d c ::=,c a d b ::=,c d a b ::=,b d a c ::=,a b c d ::=,a c b d ::=.(2) 更比性质(交换比例的内项或外项):()()()a bc d a c d cb d b ad bc a ⎧=⎪⎪⎪=⇔=⎨⎪⎪=⎪⎩,交换内项,交换外项.同时交换内外项 (3)反比性质(把比的前项、后项交换): a c b db d a c=⇔=.(4)合、分比性质:a c abc db d b d±±=⇔=.注:实际上,比例的合比性质可扩展为:比例式中等号左右两个比的前项,后项之间发生同样和差变化比例仍成立.如:⎪⎪⎩⎪⎪⎨⎧+-=+--=-⇒=dc dc b a b a c cd a a b d c b a 等等.(5)等比性质:如果)0(≠++++====n f d b nm f e d c b a ,那么b an f d b m e c a =++++++++ . 注:①此性质的证明运用了“设k 法”(即引入新的参数k )这样可以减少未知数的个数,这种方法是有关比例计算变形中一种常用方法.②应用等比性质时,要考虑到分母是否为零.③可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.如:baf d b e c a f e d c b a f e d c b a =+-+-⇒=--=⇒==32323322;其中032≠+-f d b . 知识点4 比例线段的有关定理1。
相似三角形典型模型及例题
1:相似三角形模型一:相似三角形判定的基本模型 (一)A 字型、反A 字型(斜A 字型)(平行)(不平行)(二)8字型、反8字型JOADBCAB CD(蝴蝶型)(平行)(不平行)(三)母子型(四)一线三等角型:三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景,一个与等腰三角形的底角相等的顶点在底边所在的直线上,角的两边分别与等腰三角形的两边相交如图所示:(五)一线三直角型:三直角相似可以看着是“一线三等角”中当角为直角时的特例,三直角型相似通常是以矩形或者正方形形为背景,或者在一条直线上有一个顶点在该直线上移动或者旋转的直角,几种常见的基本图形如下:当题目的条件中只有一个或者两个直角时,就要考虑通过添加辅助线构造完整的三直角型相似,这往往是很多压轴题的突破口,进而将三角型的条件进行转化。
(六)双垂型:二:相似三角形判定的变化模型旋转型:由A 字型旋转得到8字型拓展共享性GABC EF一线三等角的变形一线三直角的变形2:相似三角形典型例题(1)母子型相似三角形例1:如图,梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于点O ,BE ∥CD 交CA 延长线于E . 求证:OE OA OC ⋅=2.例2:已知:如图,△ABC 中,点E 在中线AD 上,ABC DEB ∠=∠. 求证:(1)DA DE DB ⋅=2;(2)DAC DCE ∠=∠.例3:已知:如图,等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ∥AB ,BG 分别交AD 、AC 于E 、F . 求证:EG EF BE ⋅=2.1、如图,已知AD 为△ABC 的角平分线,EF 为AD 的垂直平分线.求证:FC FB FD ⋅=2.2、已知:AD 是Rt △ABC 中∠A 的平分线,∠C=90°,EF 是AD 的垂直平分线交AD 于M ,EF 、BC 的延长线交于一点N 。
求证:(1)△AME ∽△NMD;(2)ND 2=NC·NB3、已知:如图,在△ABC 中,∠ACB=90°,CD ⊥AB 于D ,E 是AC 上一点,CF ⊥BE 于F 。
相似三角形基本知识点+经典例题(完美打印版)
相似三角形基本知识点+经典例题(完美打印版)相似三角形基本知识点+经典例题一、相似三角形的定义和性质相似三角形是指具有相同形状但大小不同的三角形。
它们的对应角度相等,对应边长成比例。
以下是相似三角形的基本知识点和性质:1. 相似三角形的定义:如果两个三角形对应角相等,且对应边成比例,则它们是相似三角形。
2. 相似三角形的性质:a. 对应角相等:两个相似三角形的对应角是相等的。
b. 对应边成比例:两个相似三角形的对应边的比值相等。
3. 相似三角形的判定条件:a. AA判定:如果两个三角形的两对对应角相等,则它们是相似三角形。
b. AAA判定:如果两个三角形的对应角相等,则它们是相似三角形。
二、相似三角形的比例关系相似三角形的对应边长之间存在一定的比例关系。
如果两个三角形是相似的,则对应边的比值相等。
以∆ABC∼∆DEF为例,A与D为对应顶角,AB与DE、BC与EF、AC与DF分别为对应边长。
则有以下比例关系:AB/DE = BC/EF = AC/DF三、相似三角形的应用相似三角形在几何学中有广泛的应用,下面通过一些经典例题来进一步了解相似三角形的应用。
例题一:已知∆ABC与∆DBC是相似三角形,AB = 3cm, BC = 4cm, AC = 5cm, DB = 2cm,求DC的长度。
解析:根据相似三角形的性质,可以得到以下比例关系:AB/DB = AC/DC3/2 = 5/DCDC = 10/5 = 2cm因此,DC的长度为2cm。
例题二:在平行四边形ABCD中,∠B的度数是∠D的度数的2倍。
若AB= 10cm,BC = 15cm,求AD的长度。
解析:由于ABCD是平行四边形,所以∠B = ∠D。
根据题目条件可得:∠B = 2∠D∠B + ∠D = 180°(平行四边形的内角和为180°)将∠B代入上式得:2∠D + ∠D = 180°3∠D = 180°∠D = 60°由相似三角形的性质可得AB/AD = BC/CD,代入已知值可得:10/AD = 15/CD将CD表示为AD的式子,并代入已知条件可得:10/AD = 15/(2AD)10AD = 30AD = 3cm因此,AD的长度为3cm。
(完整版)相似三角形模型分析大全(非常全面-经典)
相似三角形模型分析大全1、相似三角形判定的基本模型认识(一)A字型、反A字型(斜A字型)B(平行)B(不平行)(二)8字型、反8字型BCBC(蝴蝶型)(平行)(不平行)(三)母子型B(四)一线三等角型:三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景(五)一线三直角型:(6)双垂型:2、相似三角形判定的变化模型旋转型:由A 字型旋转得到。
8字型拓展B一线三等角的变形一线三直角的变形第二部分 相似三角形典型例题讲解母子型相似三角形例1:如图,梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于点O ,BE ∥CD 交CA 延长线于E .求证:.OE OA OC ⋅=2例2:已知:如图,△ABC 中,点E 在中线AD 上, .ABC DEB ∠=∠求证:(1); (2).DA DE DB ⋅=2DAC DCE ∠=∠ACDEB例3:已知:如图,等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ∥AB ,BG 分别交AD 、AC 于E 、F .求证:.EG EF BE ⋅=2相关练习:1、如图,已知AD 为△ABC 的角平分线,EF 为AD 的垂直平分线.求证:.FC FB FD ⋅=22、已知:AD 是Rt△ABC 中∠A 的平分线,∠C=90°,EF 是AD 的垂直平分线交AD 于M ,EF 、BC 的延长线交于一点N 。
求证:(1)△AME∽△NMD; (2)ND =NC·NB23、已知:如图,在△ABC中,∠ACB=90°,CD⊥AB于D,E是AC上一点,CF⊥BE于F。
求证:EB·DF=AE·DB⊥,垂足为F,延长AD到G,使DG=EF,M是AH的中点。
4.在∆ABC中,AB=AC,高AD与BE交于H,EF BCGBM90求证:∠=︒5.(本题满分14分,第(1)小题满分4分,第(2)、(3)小题满分各5分)已知:如图,在Rt△ABC 中,∠C =90°,BC =2,AC =4,P 是斜边AB 上的一个动点,PD ⊥AB ,交边AC于点D (点D 与点A 、C 都不重合),E 是射线DC 上一点,且∠EPD =∠A .设A 、P 两点的距离为x ,△BEP 的面积为y .(1)求证:AE =2PE ;(2)求y 关于x 的函数解析式,并写出它的定义域;(3)当△BEP 与△ABC 相似时,求△BEP 的面积.双垂型1、如图,在△ABC 中,∠A=60°,BD 、CE 分别是AC 、AB 上的高A(第25题图)求证:(1)△ABD∽△ACE;(2)△ADE∽△ABC;(3)BC=2ED2、如图,已知锐角△ABC ,AD 、CE 分别是BC 、AB 边上的高,△ABC 和△BDE 的面积分别是27和3,DE=6,求:点B 到直线AC 的距离。
相似三角形典型模型及例题
1:相似三角形模型一:相似三角形判定的基本模型(一)A字型、反A字型(斜A字型)(平行)(不平行)(二)8字型、反8字型BCBC(蝴蝶型)(平行)(不平行)(三)母子型(四)一线三等角型:三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景,一个与等腰三角形的底角相等的顶点在底边所在的直线上,角的两边分别与等腰三角形的两边相交如图所示:(五)一线三直角型:三直角相似可以看着是“一线三等角”中当角为直角时的特例,三直角型相似通常是以矩形或者正方形形为背景,或者在一条直线上有一个顶点在该直线上移动或者旋转的直角,几种常见的基本图形如下:当题目的条件中只有一个或者两个直角时,就要考虑通过添加辅助线构造完整的三直角型相似,这往往是很多压轴题的突破口,进而将三角型的条件进行转化。
(六)双垂型:二:相似三角形判定的变化模型一线三等角的变形一线三直角的变形2:相似三角形典型例题(1)母子型相似三角形例1:如图,梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于点O ,BE ∥CD 交CA 延长线于E . 求证:OE OA OC ⋅=2.例2:已知:如图,△ABC 中,点E 在中线AD 上, ABC DEB ∠=∠. 求证:(1)DA DE DB ⋅=2; (2)DAC DCE ∠=∠.例3:已知:如图,等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ∥AB ,BG 分别交AD 、AC 于E 、F . 求证:EG EF BE ⋅=2.1、如图,已知AD 为△ABC 的角平分线,EF 为AD 的垂直平分线.求证:FC FB FD ⋅=2.2、已知:AD 是Rt △ABC 中∠A 的平分线,∠C=90°,EF 是AD 的垂直平分线交AD 于M ,EF 、BC 的延长线交于一点N 。
求证:(1)△AME ∽△NMD; (2)ND 2=NC·NB3、已知:如图,在△ABC 中,∠ACB=90°,CD ⊥AB 于D ,E 是AC 上一点,CF ⊥BE 于F 。
相似三角形-基本知识点 经典例题(完美打印版)
相似三角形知识点与经典题型知识点1 有关相似形的概念(1)形状相同的图形叫相似图形,在相似多边形中,最简单的是相似三角形.(2)如果两个边数相同的多边形的对应角相等,对应边成比例,这两个多边形叫做相似多 边形.相似多边形对应边长度的比叫做相似比(相似系数).知识点2 比例线段的相关概念(1)如果选用同一单位量得两条线段b a ,的长度分别为n m ,,那么就说这两条线段的比是nmb a =,或写成n m b a ::=.注:在求线段比时,线段单位要统一。
(2)在四条线段d c b a ,,,中,如果b a 和的比等于d c 和的比,那么这四条线段d c b a ,,,叫做成比例线段,简称比例线段.注:①比例线段是有顺序的,如果说a 是d c b ,,的第四比例项,那么应得比例式为:ad c b=.②()a ca b c d b d==在比例式::中,a 、d 叫比例外项,b 、c 叫比例内项, a 、c 叫比例前项,b 、d 叫比例后项,d 叫第四比例项,如果b=c ,即 a b b d =::那么b 叫做a 、d 的比例中项, 此时有2b ad =。
(3)黄金分割:把线段AB 分成两条线段)(,BC AC BC AC >,且使AC 是BC AB 和的比例中项,即2AC AB BC =⋅,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AB AC 215-=≈0.618AB.即AC BC AB AC ==简记为:长短=全长注:黄金三角形:顶角是360的等腰三角形。
黄金矩形:宽与长的比等于黄金数的矩形知识点3 比例的性质(注意性质立的条件:分母不能为0)(1) 基本性质:①bc ad d c b a =⇔=::;②2::a b b c b a c =⇔=⋅.注:由一个比例式只可化成一个等积式,而一个等积式共可化成八个比例式,如bc ad =,除了可化为d c b a ::=,还可化为d b c a ::=,b a d c ::=,c a d b ::=,c d a b ::=,b d a c ::=,a b c d ::=,a c b d ::=.(2) 更比性质(交换比例的内项或外项):()()()a bc d a c d c b db a d bc a ⎧=⎪⎪⎪=⇔=⎨⎪⎪=⎪⎩,交换内项,交换外项.同时交换内外项(3)反比性质(把比的前项、后项交换): a c b d b da c=⇔=.(4)合、分比性质:a c abcd b d b d±±=⇔=.注:实际上,比例的合比性质可扩展为:比例式中等号左右两个比的前项,后项之间发生同样和差变化比例仍成立.如:⎪⎪⎩⎪⎪⎨⎧+-=+--=-⇒=d c d c b a b a ccd a a b d c b a 等等.(5)等比性质:如果)0(≠++++====n f d b nmf e d c b a ,那么b a n f d b m ec a =++++++++ . 注:①此性质的证明运用了“设k 法”(即引入新的参数k )这样可以减少未知数的个数,这种方法是有关比例计算变形中一种常用方法.②应用等比性质时,要考虑到分母是否为零.③可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.如:ba f db ec a f ed c b a fe d c b a =+-+-⇒=--=⇒==32323322;其中032≠+-f d b . 知识点4 比例线段的有关定理1.三角形中平行线分线段成比例定理:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例.由DE ∥BC 可得:ACAEAB AD EA EC AD BD EC AE DB AD ===或或注:①重要结论:平行于三角形的一边,并且和其它两边相交的直线,所截的三角形的三边......与原三角形三边......对应成比例.②三角形中平行线分线段成比例定理的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例.那么这条直线平行于三角形的第三边.此定理给出了一种证明两直线平行方法,即:利用比例式证平行线.③平行线的应用:在证明有关比例线段时,辅助线往往做平行线,但应遵循的原则是不要破坏条件中的两条线段的比及所求的两条线段的比.2.平行线分线段成比例定理:三条平行线截两条直线,所截得的对应线段成比例. 已知AD ∥BE ∥CF,可得AB DE AB DE BC EF BC EF AB BC BC EF AC DF AB DE AC DF DE EF=====或或或或等.注:平行线分线段成比例定理的推论:平行线等分线段定理:两条直线被三条平行线所截,如果在其中一条上截得的线段相等,那么在另一条上截得的线段也相等。
相似三角形常见模型及经典型例题讲解
第一局部 相似三角形模型分析一、相似三角形判定的根本模型认识〔一〕A 字型、反A 字型〔斜A 字型〕ABCDE〔平行〕CBA DE〔不平行〕〔二〕8字型、反8字型J OADBCAB CD〔蝴蝶型〕〔平行〕 〔不平行〕 〔三〕母子型〔四〕一线三等角型:三等角型相似三角形是以等腰三角形〔等腰梯形〕或者等边三角形为背景 〔五〕一线三直角型: (六)双垂型:二、相似三角形判定的变化模型旋转型:由A 字型旋转得到。
8字型拓展CB EDA共享性GABCEF一线三等角的变形一线三直角的变形第二局部相似三角形典型例题讲解母子型相似三角形例1:如图,梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于点O ,BE ∥CD 交CA 延长线于E . 求证:OE OA OC ⋅=2.例2::如图,△ABC 中,点E 在中线AD 上,ABC DEB ∠=∠.求证:〔1〕DA DE DB ⋅=2; 〔2〕DAC DCE ∠=∠.例3::如图,等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ∥AB ,BG 分别交AD 、AC 于E 、F .求证:EG EF BE ⋅=2.相关练习:1、如图,AD 为△ABC 的角平分线,EF 为AD 的垂直平分线.求证:FC FB FD ⋅=2.2、:AD 是Rt △ABC 中∠A 的平分线,∠C=90°,EF 是AD 的垂直平分线交AD 于M ,EF 、BC 的延长线交于一点N 。
求证:(1)△AME ∽△NMD; (2)ND 2=NC ·NB3、:如图,在△ABC 中,∠ACB=90°,CD ⊥AB 于D ,E 是AC 上一点,CF ⊥BE 于F 。
求证:EB ·DF=AE ·DB4.在∆ABC 中,AB=AC ,高AD 与BE 交于H ,EF BC ⊥,垂足为F ,延长AD 到G ,使DG=EF ,M 是AH 的中点。
相似三角形常见模型与经典型例题讲解之欧阳术创编
第一部分相似三角形模型分析二、相似三角形判定的基本模型认识(一)A字型、反A字型(斜A字型)B(平行)B(不平行)(二)8字型、反8字型BCBC(蝴蝶型)(平行)(不平行)(三)母子型(四)一线三等角型:三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景(五)一线三直角型:(六)双垂型:三、相似三角形判定的变化模型旋转型:由A 字型旋转得到。
8字型拓展CB EDA共享性GABEF一线三等角的变形一线三直角的变形第二部分相似三角形典型例题讲解母子型相似三角形例1:如图,梯形ABCD中,AD∥BC,对角线AC、BD交于点O,BE∥CD交CA延长线于E.求证:OEOAOC⋅=2.例2:已知:如图,△ABC中,点E在中线AD上,ABCDEB∠=∠.求证:(1)DADEDB⋅=2;(2)DACDCE∠=∠.例3:已知:如图,等腰△ABC中,AB=AC,AD⊥BC于D,CG∥AB,BG分别交AD、AC于E、F.求证:EGEFBE⋅=2.相关练习:1、如图,已知AD为△ABC的角平分线,EF为AD的垂直平分线.求证:FCFBFD⋅=2.2、已知:AD是Rt△ABC中∠A的平分线,∠C=90°,EF是AD的垂直平分线交AD于M,EF、BC的延长线交于一点N。
求证:(1)△AME∽△NMD; (2)ND2=NC·NB3、已知:如图,在△ABC中,∠ACB=90°,CD⊥AB于D,E是AC上一点,CF⊥BE于F。
求证:EB·DF=AE·DB4.在∆ABC中,AB=AC,高AD与BE交于H,EF BC⊥,垂足为F,延长AD到G,使DG=EF,M是AH的中点。
求证:∠=︒GBM905.(本题满分14分,第(1)小题满分4分,第(2)、(3)小题满分各5分)已知:如图,在Rt△ABC中,∠C=90°,BC=2,AC=4,P是斜边AB上的一个动点,PD⊥AB,交边AC于点D(点D与点A、C都不重A CDEBBMEA合),E 是射线DC 上一点,且∠EPD =∠A .设A 、P 两点的距离为x ,△BEP 的面积为y . (1)求证:AE =2PE ;(2)求y 关于x 的函数解析式,并写出它的定义域; (3)当△BEP 与△ABC 相似时,求△BEP 的面积.双垂型1、如图,在△ABC 中,∠A=60°,BD 、CE 分别是AC 、AB 上的高求证:(1)△ABD ∽△ACE ;(2)△ADE ∽△ABC ;(3)BC=2ED2、如图,已知锐角△ABC ,AD 、CE 分别是BC 、AB 边上的高,△ABC 和△分别是27和3,DE=62,求:点B 到直线AC 的距离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一部分相似三角形模型分析一、相似三角形判定的基本模型认识(一)A字型、反A字型(斜A字型)B(平行)B(不平行)(二)8字型、反8字型BCBC(蝴蝶型)(平行)(不平行)(三)母子型B(四)一线三等角型:三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景(五)一线三直角型:(六)双垂型:CAD二、相似三角形判定的变化模型旋转型:由A 字型旋转得到。
8字型拓展CB EDA共享性GBEF一线三等角的变形一线三直角的变形第二部分相似三角形典型例题讲解母子型相似三角形例1:如图,梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于点O ,BE ∥CD 交CA 延长线于E . 求证:OE OA OC ⋅=2.例2:已知:如图,△ABC 中,点E 在中线AD 上,ABC DEB ∠=∠.求证:(1)DA DE DB ⋅=2; (2)DAC DCE ∠=∠.例3:已知:如图,等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ∥AB ,BG 分别交AD 、AC 于E 、F .求证:EG EF BE ⋅=2.相关练习:1、如图,已知AD 为△ABC 的角平分线,EF 为AD 的垂直平分线.求证:FC FB FD ⋅=2.AC DE B2、已知:AD是Rt△ABC中∠A的平分线,∠C=90°,EF是AD的垂直平分线交AD于M,EF、BC的延长线交于一点N。
求证:(1)△AME∽△NMD; (2)ND2=NC·NB3、已知:如图,在△ABC中,∠ACB=90°,CD⊥AB于D,E是AC上一点,CF⊥BE于F。
求证:EB·DF=AE·DB4.在∆ABC中,AB=AC,高AD与BE交于H,EF BC⊥,垂足为F,延长AD到G,使DG=EF,M是AH的中点。
求证:∠=︒GBM905.(本题满分14分,第(1)小题满分4分,第(2)、(3)小题满分各5分)已知:如图,在Rt△ABC中,∠C=90°,BC=2,AC=4,P是斜边AB上的一个动点,PD⊥AB,交边AC 于点D(点D与点A、C都不重合),E是射线DC上一点,且∠EPD=∠A.设A、P两点的距离为x,△BEP的面积为y.(1)求证:AE=2PE;(2)求y关于x的函数解析式,并写出它的定义域;(3)当△BEP与△ABC相似时,求△BEP的面积.双垂型ABPD E(第25题图)GMFEHDCBADC1、如图,在△ABC 中,∠A=60°,BD 、CE 分别是AC 、AB 上的高 求证:(1)△ABD ∽△ACE ;(2)△ADE ∽△ABC ;(3)BC=2ED2、如图,已知锐角△ABC ,AD 、CE 分别是BC 、AB 边上的高,△ABC 和△BDE求:点B 到直线AC 的距离。
C共享型相似三角形1、△ABC 是等边三角形,D 、B 、C 、E 在一条直线上,∠DAE=︒120,已知BD=1,CE=3,,求等边三角形的边长.2、已知:如图,在Rt △ABC 中,AB =AC ,∠DAE =45°.求证:(1)△ABE ∽△ACD ;(2)CD BE BC ⋅=22.一线三等角型相似三角形例1:如图,等边△ABC 中,边长为6,D 是BC 上动点,∠EDF =60° (1)求证:△BDE ∽△CFD (2)当BD =1,FC =3时,求BE例2:(1)在ABC ∆中,5==AC AB ,8=BC ,点P 、Q 分别在射线CB 、AC 上(点P 不与点C 、点B 重合),且保持ABC APQ ∠=∠.①若点P 在线段CB 上(如图),且6=BP ,求线段CQ 的长;②若x BP =,y CQ =,求y 与x 之间的函数关系式,并写出函数的定义域;(2)正方形ABCD 的边长为5(如下图),点P 、Q 分别在直线..CB 、DC 上(点P 不与点C 、点B 重合),且保持︒=∠90APQ .当1=CQ 时,求出线段BP 的长.例3:已知在梯形ABCD 中,AD ∥BC ,AD <BC ,且AD =5,AB =DC =2.(1)如图8,P 为AD 上的一点,满足∠BPC =∠A .ABC备用图ABC DCADBEFABCDAB CPQABC备用图ABCD①求证;△ABP ∽△DPC ②求AP 的长.(2)如果点P 在AD 边上移动(点P 与点A 、D 不重合),且满足∠BPE =∠A ,PE 交直线BC 于点E ,同时交直线DC 于点Q ,那么①当点Q 在线段DC 的延长线上时,设AP =x ,CQ =y ,求y 关于x 的函数解析式,并写出函数的定义域;②当CE =1时,写出AP 的长.CBADCBA D例4:如图,在梯形ABCD 中,AD ∥BC ,6AB CD BC ===,3AD =.点M 为边BC 的中点,以M 为顶点作EMF B ∠=∠,射线ME 交腰AB 于点E ,射线MF 交腰CD 于点F ,联结EF . (1)求证:△MEF ∽△BEM ;(2)若△BEM 是以BM 为腰的等腰三角形,求EF 的长; (3)若EF CD ⊥,求BE 的长.相关练习:1、如图,在△ABC 中,8==AC AB ,10=BC ,D 是BC 边上的一个动点,点E 在AC 边上,且C ADE ∠=∠.(2) 如果x BD =,y AE =,求y 与x 的函数解析式,并写出自变量x 的定义域; (3) 当点D 是BC 的中点时,试说明△ADE 是什么三角形,并说明理由.2、如图,已知在△ABC 中, AB =AC =6,BC =5,D 是AB 上一点,BD =2,E 是BC 上一动点,联结DE ,并作DEF B ∠=∠,射线EF 交线段AC 于F .(1)求证:△DBE ∽△ECF ; (2)当F 是线段AC 中点时,求线段BE 的长; (3)联结DF ,如果△DEF 与△DBE 相似,求FC 的长.3、已知在梯形ABCD 中,AD ∥BC ,AD <BC ,且BC =6,AB =DC =4,点E 是AB 的中点.(1)如图,P 为BC 上的一点,且BP =2.求证:△BEP ∽△CPD ; (2)如果点P 在BC 边上移动(点P 与点B 、C 不重合),且满足∠EPF =∠C ,PF 交直线CD 于点F ,同时交直线AD 于点M ,那么 ①当点F 在线段CD 的延长线上时,设BP =x ,DF =y ,求y 关于x 的函数解析式,并写出函数的定义域; ②当BEP DMF S S ∆∆=49时,求BP 的长.4、如图,已知边长为3的等边ABC ∆,点F 在边BC 上,1CF =,点E 是射线BA 上一动点,以线段EF 为边向右侧作等边EFG ∆,直线,EG FG 交直线AC 于点,M N , (1)写出图中与BEF ∆相似的三角形;BCEDCBA (第25题 EDCB A (备用图)(2)证明其中一对三角形相似;(3)设,BE x MN y ==,求y 与x 之间的函数关系式,并写出自变量x 的取值围; (4)若1AE =,试求GMN ∆的面积.一线三直角型相似三角形例1、已知矩形ABCD 中,CD=2,AD=3,点P 是AD 上的一个动点,且和点A,D 不重合,过点P 作CP PE ⊥,交边AB 于点E,设y AE x PD ==,,求y 关于x 的函数关系式,并写出x 的取值围。
例2、在ABC ∆中,O BC AC C ,3,4,90===∠o是AB 上的一点,且52=AB AO ,点P 是AC 上的一个动点,OP PQ ⊥交线段BC 于点Q ,(不与点B,C 重合),设y CQ x AP ==,,试求y 关于x 的函数关系,并写出定义域。
【练习1】在直角ABC ∆中,43tan ,5,90===∠B AB C o,点D 是BC 的中点,点E 是AB 边上的动点,DE DF ⊥交射线AC 于点F (1)、求AC 和BC 的长 (2)、当BC EF //时,求BE 的长。
(3)、连结EF,当DEF ∆和ABC ∆相似时,求BE 的长。
备用图QBPAE CDF A BC E F A B C E【练习2】在直角三角形ABC 中,D BC AB C ,,90==∠o是AB 边上的一点,E 是在AC 边上的一个动点,(与A,C 不重合),DF DE DF ,⊥与射线BC 相交于点F.(1)、当点D 是边AB 的中点时,求证:DF DE =(2)、当m DBAD =,求DF DE 的值 (3)、当21,6===DB AD BC AC ,设y BF x AE ==,,求y 关于x 的函数关系式,并写出定义域【 练习4】]如图,在ABC ∆中,90C ∠=︒,6AC =,3tan 4B =,D 是BC 边的中点,E 为AB 边上的一个动点,作90DEF ∠=︒,EF 交射线BC 于点F .设BE x =,BED ∆的面积为y .(1)求y 关于x 的函数关系式,并写出自变量x 的取值围;(2)如果以B 、E 、F 为顶点的三角形与BED ∆相似,求BED ∆的面积.【 练习5】、(2009年黄浦一模25)如图,在梯形ABCD 中,CD AB , 34tan ,4,2===C AD AB ,P DAB ADC ,900=∠=∠是腰BC 上一个动点(不含点B 、C ),作AP PQ ⊥交CD 于点Q .(图1)Q PD C B A Q P D C B A (1)求BC 的长与梯形ABCD 的面积;(2)当DQ PQ =时,求BP 的长;(图2)(3)设y CQ x BP ==,,试求y 关于x 的函数解析式,并写出定义域.(图1)(图2)。