高三数学随机抽样练习题
随机抽样训练题
个容量为 10 的样本.已知 B 层中每个个体被抽到的概率都为112,则总体
中的个体数为( )
A.40
B.60
C.80
D.120
答案 D
解析 因为用分层随机抽样方法从总体中抽取一个容量为 10 的样 本.由 B 层中每个个体被抽到的概率都为112,知道在抽样过程中每个个体 被抽到的概率是112,所以总体中的个体数为 10÷112=120.故选 D.
差数列,则第二车间生产的产品数为( )
A.800 双
B.1000 双
C.1200 双
D.1500 双
答案 C
解析 因为 a,b,c 成等差数列,所以 2b=a+c,即第二车间抽取的 产品数占抽样产品总数的三分之一,根据分层随机抽样的性质可知,第二 车间生产的产品数应占 12 月份生产总数的三分之一,即为 1200 双皮靴.故 选 C.
答案 分层随机抽样 解析 由于从不同年龄段客户中抽取,故采用分层随机抽样.
12.(2017·江苏高考)某工厂生产甲、乙、丙、丁四种不同型号的产品, 产量分别为 200,400,300,100 件.为检验产品的质量,现用分层抽样的方法 从以上所有的产品中抽取 60 件进行检验,则应从丙种型号的产品中抽取 ________件.
7.(多选)某市为最大限度的吸引“高精尖缺”人才,向全球“招贤 纳士”,推进了人才引入落户政策.随着人口增多,对住房要求也随之 而来,而选择购买商品房时,住户对商品房的户型结构越来越重视,因 此某商品房调查机构随机抽取 n 名市民,针对其居住的户型结构和满意 度进行了调查,如图 1 调查的所有市民中四居室共 200 户,所占比例为13, 二居室住户占16.如图 2 是用分层随机抽样的方法从所有调查的市民的满 意度问卷中,抽取 10%的调查结果绘制成的统计图,则下列说法正确的 是( )
高考数学简单随机抽样专项练习(带答案)
2019届高考数学简单随机抽样专项练习(带答案)设一个总体含有N个个体, 如果通过逐个抽取的方法从中抽取一个样本, 且每次抽取时各个个体被抽到的概率相等, 则这样的抽样方法叫做简单随机抽样。
以下是2019届高考数学简单随机抽样专项练习, 请考生及时练习。
一、选择题1.对于简单随机抽样, 下列说法中正确的有()它要求被抽取样本的总体的个数有限, 以便对其中各个个体被抽取的概率进行分析;它是从总体中逐个地进行抽取, 以便在抽取实践中进行操作;它是一种不放回抽样;它是一种等概率抽样, 不仅每次从总体中抽取一个个体时, 各个个体被抽取的概率相等, 而且在整个抽样过程中, 各个个体被抽取的概率也相等, 从而保证了这种方法抽样的公平性.A.B.C.D.[答案] D[解析] 由简单随机抽样定义得D正确.2.下面的抽样方法是简单随机抽样的是()A.在某年的明信片销售活动中, 规定每100万张为一个开奖组, 通过随机抽样的方式确定号码的后四位为2 709的为三等奖B.某车间包装一种产品, 在自动包装的传送带上, 每隔30分钟抽一包产品, 称其重量是否合格C.某学校分别从行政人员、教师、后勤人员中抽取2人、14人、4人了解学校机构改革的意见D.用抽签法从10件产品中选取3件进行质量检验[答案] D[解析] A.B不是简单随机抽样, 因为抽取的个体间的间隔是固定的, 不具有随意性;C不是简单随机抽样, 因为总体的个体之间差别比较大, 抽取的个体不一定具有代表性;D是简单随机抽样.二、填空题3.某总体共有60个个体, 并且编号为00,01, , 59, 现需从中抽取一个容量为8的样本, 请从随机数表的倒数第5行(下表为随机数表的最后5行)第11.12列的18开始, 依次向下读数, 到最后一行后向右, 直到取足样本为止(大于59及与前面重复的数字跳过), 则抽取样本的号码是________.95 33 95 22 00 18 74 72 00 18 38 79 58 69 32 81 76 80 26 92 82 80 84 25 3990 84 60 79 80 24 36 59 87 38 82 07 53 89 35 56 35 23 79 18 05 98 90 07 3546 40 62 98 80 54 97 20 56 95 15 74 80 08 32 16 46 70 50 80 67 72 16 42 7920 31 89 03 43 38 46 82 68 72 32 14 82 99 70 80 60 47 18 97 63 49 30 21 3071 59 73 05 50 08 22 23 71 77 91 01 93 20 49 82 96 59 26 94 66 39 67 98 60[答案] 18,24,54,38,08,22,23,01[解析] 由随机数表法可得.4.下列抽样方法属于简单随机抽样的有________.①从1000个个体中一次性抽取50个个体作为样本;将1000个个体编号, 并把编号写在形状、大小相同的签上, 然后将号签放在一个足够大的不透明的容器内搅拌均匀,从中逐个抽取50个个体作为样本;从10个乒乓球中抽取3个进行质量检验.首先将乒乓球进行编号0,1,2, , 9, 再将转盘分成10等份, 分别标上整数0,1,2, , 9, 转动转盘, 指针指向的数字是几就取几号个体, 直到抽出3个个体为止.[答案][解析] 简单随机抽样是逐个抽取, 不能是一次性抽取, 所以不属于简单随机抽样;属于简单随机抽样中的抽签法;属于简单随机抽样中的随机数法.故填.三、解答题5.某车间工人加工一种轴共100件, 为了了解这种轴的直径, 要从中抽取10件在同一条件下测量, 如何采用简单随机抽样的方法抽取样本?[分析] 由于本题的调查对象较少, 可采用简单随机抽样方法.简单随机抽样有两种方法:抽签法和随机数法, 所以有两种思路.[解析] 方法一: 抽签法:(1)将100件轴编号为1,2, , 100;(2)做好大小、形状相同的号签, 分别写上这100个号码;(3)将这些号签放在一个不透明的容器内, 搅拌均匀;(4)逐个抽取10个号签;(5)然后测量这10个号签对应的轴的直径.方法二: 随机数法:(1)将100件轴编号为00,01, , 99;(2)在教材表1-2的随机数表中选定一个起始位置, 如从第21行第1个数9开始;(3)规定读数的方向, 如向右读;(4)依次选取10个数为93,12,47,79,57,37,89,18,45,50,则与这10个编号相对应的个体即为所要抽取的样本.6.某次音乐颁奖典礼上, 欲邀请20名内地、港台艺人参加演出, 其中从30名内地艺人中随机挑选10人, 从18名香港艺人中随机挑选6人, 从10名台湾艺人中随机挑选4人, 试用抽签法确定选中的艺人并确定他们的演出顺序.[解析] 第一步: 确定演出人员: 将30名内地艺人从1到30编号, 然后将1到30这30个号码分别写到形状、大小相同的号签上, 然后放在一个不透明的容器中摇匀, 从中逐个抽出10个号签, 相应编号的艺人参加演出, 再运用相同的办法分别从18名香港艺人中抽取6人, 从10 名台湾艺人中抽取4人.第二步: 确定演出顺序: 确定了演出人员后, 再将1到20这20个号码分别写到形状、大小相同的号签上, 用来代表演出的顺序, 然后让每名演出者抽取1个号签, 抽到的号签上的数字就是这名演员的演出顺序.7.为了了解高一(10)班53名同学的牙齿健康状况, 需从中抽取10名做医学检验, 现已对53名同学编号00,01,02, , 50,51,52.从下面所给的随机数表的第1行第3列的5开始从左向右读下去.则选取的号码依次为多少?随机数表如下:0154 3287 6595 4287 53467953 2586 5741 3369 83244597 7386 5244 3578 6241[解析] 从数5, 开始从左向右读下去, 两位两位地读, 在00~52范围内前面没有出现过的记下, 否则跳过, 直到取满10人为止.如下表01 54 32 87 65 95 42 87 53 4679 53 25 86 57 41 33 69 83 2445 97 73 86 52 44 3578 6241选取的号码依次为32,42,46,25,41,33,24,45,52,44.。
高考数学简单随机抽样专题测试(带答案)
2019-2019学年高考数学简单随机抽样专题测试(带答案)简单随机抽样也是指从总体N个单位中任意抽取n个单位作为样本,使每个可能的样本被抽中的概率相等的一种抽样方式。
以下是2019-2019学年高考数学简单随机抽样专题测试,请考生及时练习。
一、选择题1.关于简单随机抽样的特点,有以下几种说法,其中不正确的是()A.要求总体的个数有限B.从总体中逐个抽取C.它一般情况是一种不放回的抽取D.每个个体被抽到的可能性与抽取的顺序有关[答案] D[解析] 在简单随机抽样中,每个个体被抽到的可能性相等,它与抽取的顺序无关,故D错误.2.下列抽样中,用抽签法方便的有()A.从某厂生产的3 000件产品中抽取600件进行质量检验B.从某厂生产的两箱(每箱15件)产品中抽取6件进行质量检验C.从甲、乙两厂生产的两箱(每箱15件)产品中抽取6件进行质量检验D.从某厂生产的3 000件产品中抽取10件进行质量检验[答案] B[解析] 当样本个数比较小且制号签比较方便时,用抽签法.故选B.3.下列说法正确的是()A.抽签法中可一次抽取两个个体B.随机数法中每次只取一个个体C.简单随机抽样是有放回抽样D.抽签法中将号签放入箱子中,可以不搅拌直接抽取[答案] B[解析] 根据简单随机抽样的特点判断.4.下列抽样方法是简单随机抽样的是()A.从50个零件中一次性抽取5个做质量检验B.从50个零件中有放回地抽取5个做质量检验C.从实数集中随机的抽取10个正整数分析奇偶性D.运动员从8个跑道中随机抽取一个跑道[答案] D[解析] 简单随机抽样每个样本是逐个抽取,并且是无放回的抽取,样本总体的容量为有限个,故A、B、C均错.5.用随机数法从100名学生(男生25人)中抽选20人进行评教,某男学生被抽到的概率是()A.0.01B.0.04C.0.2D.0.25[答案] C[解析] 明确是简单随机抽样且每个个体被抽到的概率是相等的,问题的突破口就找到了.因为样本容量为20,总体容量为100,所以总体中每一个个体被抽到的概率为=0.2.6.下列问题中,最适合用简单随机抽样方法抽样的是()A.某单位有员工40人,其中男员工30人,女员工10人,要从中抽8人调查吸烟情况B.从20台电视机中抽取5台进行质量检查C.中央电视台要对春节联欢晚会的收视率进行调查,从全国观众中选10000名观众D.某公司在甲、乙、丙三地分别有120个、80个、150个销售点,要从中抽取35个调查收入情况[答案] B[解析] 根据简单随机抽样的概念及其特点可知当总体中的个体数和样本容量都较小时可采用简单随机抽样.抽出的样本必须准确地反映总体特征.二、填空题7.抽签法中确保样本具有代表性的关键是________.[答案] 搅拌均匀[解析] 在数理统计里,为了使样本具有较好的代表性,设计抽样方法时,最重要的是将总体搅拌均匀,使每个个体有同样的机会被抽到,而抽签法是简单随机抽样,因此在给总体标号后,一定要搅拌均匀.8.某总体容量为M,其中带有标记的有N个,现用简单随机抽样方法从中抽取一个容量为m的样本,则抽取的m个个体中带有标记的个数估计为________.[答案] N[解析] 设m个个体中带有标记的个数为n,根据简单随机抽样的特点知=,解得n=N.三、解答题9.为了了解某校高三期中文、理科数学考试填空题的得分情况,决定从80名文科学生中抽取10名学生,从300名理科学生中抽取50名学生进行分析,请选择合适的抽样方法设计抽样方案.[分析] 应从文、理科学生中分别抽样,由于文科学生总人数较少,抽取的人数也较少,故宜用抽签法,但理科学生人数较多,抽取人数也较多,故抽取理科学生宜用随机数法.[解析] 文科抽样用抽签法,理科抽样用随机数法.抽样过程如下:(1)先抽取10名文科学生:将80名文科学生依次编号为1,2,3,,80;将号码分别写在相同形状、大小的纸片上,制成号签;把80个号签放入同一个容器中,搅拌均匀,每次从中不放回地抽取一个号签,连续抽取10次;与号签上号码相对应的10名学生的填空题得分就构成容量为10的一个样本.(2)再抽取50名理科学生:将300名理科学生依次编号为001,002,,081,082,,300;从随机数表中任选一数字作为读数的起始数字,任选一方向作为读数方向,比如从教材附表的第4行第1列数字1开始向右读,每次读取三位,凡不在001300范围内以及重复的数都跳过去,得到号码125,210,142,188,264,“教书先生”恐怕是市井百姓最为熟悉的一种称呼,从最初的门馆、私塾到晚清的学堂,“教书先生”那一行当怎么说也算是让国人景仰甚或敬畏的一种社会职业。
高中数学:随机抽样
高中数学:随机抽样1.以下抽样方法是简单随机抽样的是(D)A.在某年明信片销售活动中,规定每100万张为一个开奖组,通过随机抽取的方式确定号码的后四位为2 709的为三等奖B.某车间包装一种产品,在自动包装的传送带上,每隔30分钟抽一包产品,称其重量是否合格C.某学校分别从行政人员、教师、后勤人员中抽取2人、14人、4人了解对学校机构改革的意见D.用抽签方法从10件产品中选取3件进行质量检验解析:选项A、B不是简单随机抽样,因为抽取的个体间的间隔是固定的;选项C不是简单随机抽样,因为总体的个体有明显的层次;选项D是简单随机抽样.2.(2019·长春一模)完成下列两项调查:①从某社区125户高收入家庭、280户中等收入家庭、95户低收入家庭中选出100户,调查社会购买能力的某项指标;②从某中学的15名艺术特长生中选出3名调查学习负担情况.宜采用的抽样方法依次是(B)A.①简单随机抽样,②系统抽样B.①分层抽样,②简单随机抽样C.①系统抽样,②分层抽样D.①②都用分层抽样解析:因为社会购买能力的某项指标受到家庭收入的影响,而社区中各个家庭收入差别明显,所以①用分层抽样法;从某中学的15名艺术特长生中选出3名调查学习负担情况,个体之间差别不大,且总体和样本容量较小,所以②用简单随机抽样法.3.(2019·长沙一中测试)某中学有高中生3 500人,初中生1 500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取70人,则n为(A) A.100B.150C.200D.250解析:法一:由题意可得70n -70=3 5001 500,解得n =100. 法二:由题意,抽样比为703 500=150,总体容量为3 500+1 500=5 000,故n =5 000×150=100.4.(2019·湖南怀化模拟)某电视台为了调查“爸爸去哪儿”节目的收视率,现用分层抽样的方法从4 300人中抽取一个样本,这4 300人中青年人1 600人,且中年人人数是老年人人数的2倍,现根据年龄采用分层抽样的方法进行调查,在抽取的样本中青年人有320人,则抽取的样本中老年人的人数为( B )A .90B .180C .270D .360解析:设老年人有x 人,从中抽取y 人,则1 600+3x =4 300,得x =900,即老年人有900人,则9001 600=y 320,得y =180.故选B.5.去年“3·15”,某报社做了一次关于“虚假广告”的调查,在A ,B ,C ,D 四个单位回收的问卷数依次成公差为正数的等差数列,共回收1 000份,因报道需要,再从回收的问卷中按单位分层抽取容量为150的样本,若在B 单位抽取30份问卷,则在D 单位抽取的问卷份数是( C )A .45B .50C .60D .65解析:由于B 单位抽取的问卷是样本容量的15,所以B 单位回收问卷200份.由等差数列知识可得C 单位回收问卷300份,D 单位回收问卷400份,则D 单位抽取的问卷份数是B 单位的2倍,即为60份.6.(2019·泉州质检)某公司员工对户外运动分别持“喜欢”“不喜欢”和“一般”三种态度,其中持“一般”态度的比持“不喜欢”态度的多12人,按分层抽样方法从该公司全体员工中选出部分员工座谈户外运动,如果选出的人有6人对户外运动持“喜欢”态度,有1人对户外运动持“不喜欢”态度,有3人对户外运动持“一般”态度,那么这个公司全体员工中对户外运动持“喜欢”态度的有( A )A .36人B .30人C .24人D .18人解析:设持“喜欢”“不喜欢”“一般”态度的人数分别为6x ,x,3x ,由题意可得3x -x =12,x =6.∴持“喜欢”态度的有6x =36(人).7.(2019·石家庄模拟)某校为了解1 000名高一新生的身体生长状况,用系统抽样法(按等距的规则)抽取40名同学进行检查,将学生从1~1 000进行编号,现已知第18组抽取的号码为443,则第一组用简单随机抽样抽取的号码为( C )A .16B .17C .18D .19解析:因为从1 000名学生中抽取一个容量为40的样本,所以系统抽样的分段间隔为1 00040=25,设第一组随机抽取的号码为x ,则抽取的第18组编号为x +17×25=443,所以x =18.8.采用系统抽样方法从1 000人中抽取50人做问卷调查,将他们随机编号1,2,…,1 000.适当分组后在第一组采用简单随机抽样的方法抽到的号码为8.若抽到的50人中,编号落入区间[1,400]的人做问卷A ,编号落入区间[401,750]的人做问卷B ,其余的人做问卷C ,则抽到的人中,做问卷C 的人数为( A )A .12B .13C .14D .15解析:根据系统抽样的特点可知,所有做问卷调查的人的编号构成首项为8,公差d =1 00050=20的等差数列{a n },∴通项公式a n =8+20(n -1)=20n -12,令751≤20n -12≤1 000,得76320≤n ≤2535,又∵n ∈N *,∴39≤n ≤50,∴做问卷C 的共有12人.9.(2019·江苏南京联合体学校调研)为检验某校高一年级学生的身高情况,现采用先分层抽样后简单随机抽样的方法,抽取一个容量为210的样本,已知每个学生被抽到的概率为0.3,且男女生的比是4∶3,则该校高一年级女生的人数是300.解析:抽取的高一年级女生的人数为210×37=90,则该校高一年级女生的人数为90÷0.3=300,故答案为300.10.(2019·湖北重点中学适应模拟)某校高三年级共有30个班,学校心理咨询室为了了解同学们的心理状况,将每个班编号,依次为1到30,现用系统抽样的方法抽取5个班进行调查,若抽到的编号之和为75,则抽到的最小的编号为3.解析:系统抽样的抽取间隔为305=6.设抽到的最小编号为x ,则x +(6+x )+(12+x )+(18+x )+(24+x )=75,所以x =3.11.一个总体中有90个个体,随机编号0,1,2,…,89,依从小到大的编号顺序平均分成9个小组,组号依次为1,2,3,…,9.现用系统抽样方法抽取一个容量为9的样本,规定:如果在第1组随机抽取的号码为m ,那么在第k 组中抽取的号码个位数字与m +k 的个位数字相同,若m =8,则在第8组中抽取的号码是76.解析:由题意知m =8,k =8,则m +k =16,也就是第8组抽取的号码个位数字为6,十位数字为8-1=7,故抽取的号码为76.12.某企业三个分厂生产同一种电子产品,三个分厂产量分布如图所示,现在用分层抽样方法从三个分厂生产的该产品中共抽取100件做使用寿命的测试,则第一分厂应抽取的件数为50;由所得样品的测试结果计算出一、二、三分厂取出的产品的使用寿命平均值分别为1 020小时、980小时、1 030小时,估计这个企业所生产的该产品的平均使用寿命为1_015小时.解析:第一分厂应抽取的件数为100×50%=50;该产品的平均使用寿命为1 020×0.5+980×0.2+1 030×0.3=1 015.13.(2019·安徽安庆一中模拟)某中学有高中生960人,初中生480人,为了了解学生的身体状况,采用分层抽样的方法,从该校学生中抽取容量为n 的样本,其中高中生有24人,那么n 等于 ( D )A .12B .18C .24D .36解析:根据分层抽样方法知n 960+480=24960,解得n =36. 14.(2019·云南玉溪一中一模)总体由编号为01,02,03,…,49,50的50个个体组成,利用随机数表(以下摘取了随机数表中第1行和第2行)选取5个个体,选取方法是从随机数表第1行的第9列和第10列数字开始由左向右读取,则选出来的第4个个体的编号为( B )6667 40 67 14 64 05 71 95 86 11 05 6409 68 76 83 20 37 90 5716 00 11 66 14 90 84 45 11 75 73 88 05 90 52 27 41 14 86A .05B .09C .11D .20解析:从随机数表第1行的第9列和第10列数字开始,依次是14,05,11,09,则第四个数字是09,故选B.15.为了调研雄安新区的空气质量状况,某课题组对雄县、容城、安新三县空气质量进行调查,按地域特点在三县内设置空气质量观测点.已知三县内观测点的个数分别为6,y ,z ,依次构成等差数列,且6,y ,z +6成等比数列,若采用分层抽样的方法抽取12个观测点的数据,则应从容城抽取的观测点的数据个数为( C )A .8B .6C .4D .2解析:∵6,y ,z 依次构成等差数列,且6,y ,z +6成等比数列,∴⎩⎪⎨⎪⎧ 6+z =2y ,y 2=6(z +6),解得⎩⎪⎨⎪⎧y =12,z =18.若采用分层抽样的方法抽取12个观测点的数据,则应从容城抽取的观测点的数据个数为126+12+18×12=4,故选C.16.某高中在校学生有2 000人.为了响应“阳光体育运动”的号召,学校开展了跑步和登山的比赛活动.每人都参与而且只能参与其中一项比赛,各年级参与比赛的人数情况如下表:其中a ∶b ∶c =2∶3∶5,全校参与登山的人数占总人数的25.为了了解学生对本次活动的满意程度,从中抽取一个200人的样本进行调查,则从高二年级参与跑步的学生中应抽取的人数为36.解析:根据题意可知,样本中参与跑步的人数为200×35=120,所以从高二年级参与跑步的学生中应抽取的人数为120×32+3+5=36.。
【高中数学】《2.1 随机抽样(2)》测试题
【高中数学】《2.1 随机抽样(2)》测试题【高中数学】《2.1随机抽样(2)》测试题一、多项选择题1.(2021重庆)某校高中三年级年级有男生500人,女生400人,为了解该年级学生的健康情况,从男生中任意抽取25人,从女生中任意抽取20人进行调查.这种抽样方法是().a、简单随机抽样法B.抽签法C.随机数表法D.分层抽样法考查目的:考查分层抽样的概念及其适用范围.回答:D解析:当总体存在很大的差异时,若使用系统抽样,抽取的可能都是男生,或都是女生,样本的代表性可能会很差.一般地,这种情况下我们使用分层抽样,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本.2.(2022重庆文本)单位现有职工750人,其中青年职工350人,中年职工250人,老年职工150人。
为了了解本单位员工的健康状况,采用分层抽样的方法抽取样本,如果样本中有7名年轻员工,样本量为()a.7b.15c.25d.35目的:检验分层抽样概念的灵活应用答案:b.分析:年轻工人、中年工人和老年工人的比例为7:5:3,因此样本量为3.(2021湖北)某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号为1,2,…,270,并将整个编号依次分为10段,如果抽得号码有下列四种情况:①7,34,61,88,115,142,169,196,223,250;②5,9,100,107,111,121,180,195,200,265;③11,38,65,92,119,146,173,200,227,254;④30,57,84,111,138,165,192,219,246,270.以下关于上述样本的结论中,正确的是()a.②③都不能为系统抽样b.②④都不能为分层抽样C① ④ 可能是分层抽样。
高中试卷-9.1 随机抽样 同步练习(Word版含解析)(含答案)
随机抽样练习1.某社区有500个家庭,其中高收入家庭125户,中等收入家庭280户,低收入家庭95户.为了调查社会购买力的某项指标,要从中抽取一个容量为100户的样本,记作①;某学校高一年级有12名女运动员,要从中选出3人调查学习负担情祝,记作②.那么完成上述两项调查应采用的抽样方法是( )A.①用简单随机抽样法,②用分层随机抽样法B.①用简单随机抽样法,②用简单随机抽样法C.①用分层随机抽样法,②用简单随机抽样法D.①用分层随机抽样法,②用分层随机抽样法2.某林场有树苗30000棵,其中松树苗4000棵,为调查树苗的生长情况,采用分层抽样的方法抽取一个容量为150的样本,则样本中松树苗的数量为( )A.30B.25C.20D.153.为了掌握你所在地区本年度空气质量变化的情况,最适宜的收集数据的方法是( )A.通过调查获取数据B.通过试验获取数据C.通过观察获取数据D.通过查询获得数据4.某地区共有10万户居民,该地区城市住户与农村住户之比为4:6.根据分层随机抽样(样本量按比例分配)的方法,调查了该地区1000户居民电脑拥有情况,调查结果如表所示,那么可以估计该地区农村住户中无电脑的总户数约为( )城市农村有电脑360户450户无电脑40户150户A.1.5万户B.4.5万户C.1.76万户D.0.27万户5.某工厂生产甲、乙、丙三种型号的产品,产品数量之比为2:3:5,现按型号用分层随机抽样的方法随机抽取容量为n的样本.若抽到24件乙型号产品,则n等于( )A.80B.70C.60D.506.某社会学专业的大学生为调查某村庄372户,共1511位村民的年龄情况,从该村档案室中抽查掌握了200位村民的基本信息.关于调查目的,下列说法正确的是( )A.1511位村民是总体B.该村的每位村民是个体C.被抽到的200位村民是样本D.本次抽查获得了200个样本的观测数据7.某市为了分析全市10800名高一学生的数学考试成绩,共抽取25本试卷,每本都是30份,则样本容量是( )A.30B.25C.750D.108008.我国古代数学有一衰分问题:今有北乡八千一百人,西乡七千四百八十八人,南乡六千九百一十二人,凡三乡,发役三百人,则北乡遣( )。
随机抽样
随机抽样1.为了了解某地参加高考数学考试的12000名学生的成绩,从中抽取了400名学生的成绩进行统计分析.在这个问题中,12000名学生成绩的全体是( )A.总体B.个体C.从总体中抽取的一个样本D.样本的容量2.对于简单随机抽样,个体被抽到的机会().A.相等B.不相等C.不确定D.与抽取的次数有关3.已知总体容量为106,若用随机数表法抽取一个容量为10的样本,下面对总体的编号正确的是().A.1,2,…,106 B.01,…,105 C.00,01,…,105 D.000,001,…,1054.下列问题中,最适合用简单随机抽样方法的是().A.某电影院有32排座位,每排有40个座位,座位号是1~40.有一次报告会坐满了听众,报告会结束以后为听取意见,要留下32名听众进行座谈B.从10台冰箱中抽出3台进行质量检查C.某学校有在编人员160人,其中行政人员16人,教师112人,后勤人员32人.教育部门为了解学校机构改革意见,要从中抽取一个容量为20的样本D.某乡农田有山地8000亩,丘陵12000亩,平地24000亩,洼地4000亩,现抽取农田480亩估计全乡农田平均产量5.为了了解参加一次知识竞赛的1252名学生的成绩,决定采用系统抽样的方法抽取一个容量为50的样本.那么总体中应随机剔除的个体数目是().A.2 B.4 C.5 D.66.现从已编号(1~50)的50部新生产的赛车中随机抽取5部进行检验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的5部赛车的编号可能是().A.5,10,15,20,25 B.8,18,28,38,48C.5,8,11,14,17 D.4,8,12,16,207.某校有高中生900人,其中高一年级300人,高二年级200人,高三年级400人,用分层抽样法抽取一个容量为45的样本,那么高一、高二、高三各年级的抽取人数分别为().A.15,5,25 B.15,15,15 C.10,5,30 D.15,10,208.某校共有学生2 000名,各年级男、女生人数如下表,已知在全校学生中随机抽取1名,抽到二年级女生的机会是).A.24 B.18 C.16 D.129.一个总体中有100个个体,随机编号为0,1,2,…,99,依编号顺序平均分成10个小组,组号分别为1,2,3,…,10。
高中数学随堂小练(13)随机抽样(含解析)
(13)随机抽样1、在“世界读书日”前夕,为了了解某地5000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析,在这个问题中,5000名居民的阅读时间的全体是( )2、下列抽样中,用抽签法方便的是( )3、对于简单随机抽样,下列说法中正确的是( )①它要求被抽取样本的总体的个体数有限;②它是从总体中逐个进行抽取的,在实践中操作起来也比较方便;③它是一种不放回抽样;④它是一种等可能抽样,在整个抽样过程中,每个个体被抽到的机会相等,从而保证了这种抽样方法的公平性.A.①②③B.①②④C.①③④D.①②③④4、某学校有800名新生,其中有500名男生,300名女生.为了了解学生的身体素质,现用分层抽样的方法从中抽取16人进行检查,则应从男生中抽取( )5、某车间生产,,A B C 三种不同型号的产品,产量之比分别为5::3k ,为检验产品的质量,现用分层抽样的方法抽取一个容量为120的样本进行检验,已知B 种型号的产品共抽取了24件,则C 种型号的产品抽取的件数为( )A .12B .24C .36D .606、某校高三分为甲、乙两个级部,现用分层抽样的方法从高三中抽取30名老师去参加教研会,已知乙级部中每个老师被抽到的可能性都为13则高三的全体老师的个数为( ) A. 10 B. 30 C. 60 D. 907、某校高一年级有男生540人,女生360人,用分层抽样的方法从高一年级的学生中随机抽取25名学生进行问卷调查,则应抽取的女生人数为( )8、总体中个体数为M ,其中带有标记的有N 个,要从中抽取K 个入样,用随机抽样的方法进行抽取,则抽取的样本中带有标记的个数约为( ) A.NK M B.KM N C.MN K D.N9、我国古代数学名著《数学九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为( )A. 134石B. 169石C. 338石D. 1365石10、一个总体分为,,A B C 三层,用分层抽样的方法从总体中抽取一个容量为50的样本,已知B 层中每个个体被抽到的概率都为112,则总体中个体的个数为( )11、某工厂生产A B C ,,三种不同型号的产品,产品数量之比依次为235∶∶.现用分层抽样的方法抽取一个容量为n 的样本,其中样本中A 型号产品有16件,那么此样本的容量n __________.12、采用简单随机抽样法,从含有6个个体的总体中抽取一个容器为2的样本,则每个个体被抽到的可能性为___________.13、2019年7月25日起,福州正式启动垃圾分类收集违规行为查处专项行动为了了解该市某校不同年级的学生对“执行垃圾分类”的看法,拟采用分层抽样的方法,从该校三个年级的学生中抽取一个容量为320的样本进行调查.已知该校高一年级、高二年级、高三年级的人数之比为6:5:5,则应从高一年级的学生中抽取 名.14、某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200件,400件,300件,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取__________件.15、一企业有职工500人,其中不到35岁的有125人,3549岁的有280人,50岁及以上的有95人,为了了解该单位职工年龄与身体状况的有关指标,从中抽100名职工作为样本,应该怎样抽取?答案以及解析1答案及解析:答案:A解析:根据统计中总体、个体、样本、样本容量的相关定义直接进行判断.调查的目的是“了解某地5000名居民某天的阅读时间”,所以“5000名居民的阅读时间的全体”是调查的总体.2答案及解析:答案:B解析:A总体容量较大,样本容量也较大,不适宜用抽签法;B总体容量较小,样本容量也较小,可用抽签法;C甲、乙两厂生产的两箱产品有明显区别,不能用抽签法;D总体容量较大,不适宜用抽签法.故选B.3答案及解析:答案:D解析:由简单随机抽样的特点知,①②③④全部正确.4答案及解析:答案:A解析:50016800n=男得10n=男5答案及解析:答案:C解析:∵某工厂生产A. B. C三种不同型号的产品,产品数量之比依次为5::3k,现用分层抽样方法抽出一个容量为120的样本,A种型号产品共抽取了24件,∴2412053kk=++,解得2k=,∴C 种型号产品抽取的件数为:243362⨯=.6答案及解析:答案:D 解析:因为乙级部中每个老师被抽到的可能性都为13,所以高三中每个老师被抽到的可能性都为130903÷=7答案及解析:答案:B解析:设应抽取的女生人数为x ,则25360540360x =+,解得10x =8答案及解析:答案:A解析:因随机抽样的特点是每个个体被抽到的机会都是均等的,故样本中带有标记的个数约为N K M⨯.9答案及解析:答案:B解析:设这批米内夹谷的个数为x ,则由题意并结合简单随机抽样可知, 282541534x =,即281534169254x =⨯≈,故应选B.10答案及解析:答案:D解析:运用分层抽样的方法,在不同层中每个个体被抽到的概率相等,都等于样本容量总体容量.设总体中个体的个数为N ,则50112N =,解得600N =.故选D.11答案及解析:答案:80 解析:216235n ⨯=++所以80n =12答案及解析: 答案:13解析:简单随机抽样中每个个体被抽到的可能性相同,都为样本容量个体总数.本题中的样本容量为2,个体总数为6,所以每个个体被抽到的可能性为13.13答案及解析:答案:120解析:因为该校高一年级、高二年级、高三年级的人数之比为6:5:5,所以应从高一年级的学生中抽取的人数为6320120655⨯=++.14答案及解析:答案:18 解析:∵60320040030010050==+++样本容量总体个数,∴应从丙种型号的产品中抽取33001850⨯=(件).15答案及解析:答案:用分层抽样来抽取样本,步骤是:(1)分成,按年龄将职工分成三层:不到35岁的职工;35岁至49岁的职工;50岁及50岁以上的职工;(2)确定每层抽取个体的个数,因为抽样比为10015005=,所以在不到35岁的职工中抽1125255⨯=(人);在35岁至49岁的职工中抽1280565⨯=(人);在50岁及50岁以上的职工中抽195195⨯=(人); (3)在各层分别按抽签法或随机数表法抽取样本;(4)综合每层抽样,组成样本.。
人教A版高中数学第九章第1节《随机抽样》训练题 (8)(含答案解析)
第九章第1节《随机抽样》训练题 (8)一、单选题1.某中学高一、高二和高三各年级人数见表,采用分层抽样的方法调查学生的视力状况,在抽取的样本中,高二年级有20人,那么该样本中高三年级的人数为()A.16B.18C.22D.402.某工厂为了对40个零件进行抽样调查,将其编号为00,01,…,38,39.现要从中选出5个,利用下面的随机数表,从第一行第3列开始,由左至右依次读取,则选出来的第5个零件编号是()0347 4373 8636 9647 3661 4698 6371 6233 2616 8045 6011 14109577 7424 6762 4281 1457 2042 5332 3732 2707 3607 5124 5179A.36B.16C.11D.143.某单位有老年人28人,中年人36人,青年人81人,为了调查他们的身体状况,需从他们中抽取一个容量为16的样本,最适合抽取样本的方法是()A.简单随机抽样B.系统抽样C.分层抽样D.先从老年人中剔除一人,然后分层抽样4.下列抽样方法是简单随机抽样的是()A.从平面直角坐标系中抽取5个点作为样本B.可口可乐公司从仓库的1000瓶可乐中一次性抽取20瓶进行质量检查C.某连队从200名战士中,挑选出50名最优秀的战士参加抢险救灾D.从10个手机中不放回地随机抽取2个进行质量检验(假设10个手机已编好号,对编号随机抽取)5.为了调查全国人口的寿命,抽查了11个省(市)的2500 名城镇居民,这2500名城镇居民的寿命的全体是()A.总体B.个体C.样本D.样本容量6.高一年级有男生510人,女生490人,小明按男女比例进行分层随机抽样,总样本量为100.则在男生中抽取的样本量为()A.48B.51C.50D.497.某校高二年级有男生600人,女生500人,为了解该年级学生的体育达标情况,从男生中任意抽取30人,从女生中任意抽取25人进行调查.这种抽样方法是()A.系统抽样法B.抽签法C.随机数法D.分层抽样法8.某学校有小学生126人,初中生280人,高中生95人,为了调查学生的近视情况,从他们当中抽取一个容量为100的样本,采用何种方法较为恰当()A.简单随机抽样B.系统抽样C.分层抽样D.先从小学生中剔除1人然后再分层抽样9.某工厂利用随机数表对生产的600个零件进行抽样测试,先将600个零件进行编号,编号分别为001,002, ,599,600,从中抽取60个样本,如下提供随机数表的第5行到第7行:若从表中第6行第6列开始向右依次读取3个数据,则得到的第8个样本编号为()A.324B.345C.577D.57810.甲、乙两套设备生产的同类型产品共4 800件,采用分层抽样的方法从中抽取一个容量为80的样本进行质量检测.若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为()件.A.1800B.1600C.1900D.100011.某单位员工按年龄分为A,B,C三组,其人数之比为5∶4∶1,现用分层抽样的方法从总体中抽取一个容量为20的样本,则B组应抽取的人数为()A.2B.4C.8D.1012.某校选修乒乓球课程的学生中,高一年级有50名,高二年级有30名.现用分层抽样的方法在这80名学生中抽取一个样本,已知在高一年级的学生中抽取了10名,则在高二年级的学生中应抽取的人数为()A.6B.8C.10D.1213.现有以下两项调查:∶某装订厂平均每小时大约装订图书362册,要求检验员每小时抽取40册图书,检查其装订质量状况;∶某市有大型、中型与小型的商店共1500家,三者数量之比为1∶5∶9.为了调查全市商店每日零售额情况,抽取其中15家进行调查.完成∶∶这两项调查宜采用的抽样方法依次是()A.简单随机抽样法,分层抽样法B.分层抽样法,简单随机抽样法C.分层抽样法,系统抽样法D.系统抽样法,分层抽样法14.一支田径队有男运动员56人,女运动员42人,按性别进行分层,用分层随机抽样的方法从全体运动员中抽出一个容量为N的样本,如果样本按比例分配,男运动员抽取的人数为16人,则N 为()A.16B.20C.24D.2815.为调查德克士各分店的经营状况,某统计机构用分层随机抽样的方法,从A,B,C三个城市中抽取若干家德克士分店组成样本进行深入研究,有关数据见下表:(单位:个)则样本量为()A.12B.10C.6D.416.从某市参加升学考试的学生中随机抽查1000名学生的数学成绩进行统计分析,在这个问题中,下列说法正确的是()A.总体指的是该市参加升学考试的全体学生B.样本是指1000名学生的数学成绩C.样本容量指的是1000名学生D.个体指的是1000名学生中的每一名学生17.对于简单随机抽样,每个个体被抽到的机会()A.相等B.不相等C.与抽样次序有关D.不确定18.从一个容量为m(3m≥,m N∈)的总体中抽取一个容量为3的样本,当选取简单随机抽样方法抽取样本时,总体中每个个体被抽中的可能性是13,则选取分层随机抽样方法抽取样本时,总体中每个个体被抽中的可能性是()A.15B.14C.12D.1319.某企业生产甲、乙、丙三种不同型号的产品,产品数量之比依次为2:3:5,现用分层抽样方法抽出一个容量为n的样本,样本中甲型号产品有12件,则此样本的容量为()A.40B.60C.80D.12020.某奶制品工厂某天甲、乙、丙、丁四类奶制品的产量分别为2000盒、1250盒、1250盒、500盒.若按产量比例用分层随机抽样的方法抽取一个样本容量为60的样本,则样本中甲类奶制品的数量为()A.6盒B.15盒C.20盒D.24盒21.某班有男生20人,女生30人,用分层抽样的方法从该班抽取10 人参加志愿者活动,则应抽取的女生人数为()A.3B.4C.7D.622.2020年一场突如其来的新冠肺炎疫情让全世界生灵涂炭、经济停顿,应对新冠肺炎的有效办法之一就是接种疫苗.目前常见的国产疫苗有3种,生产厂家分别是国药集团武汉生物研究所(国药武汉)国药集团北京生物研究所(国药北京)、科兴控股生物技术有限公司(科兴生物).某地分别从这三家厂家采购了30000支、20000支、50000支疫苗用于接种,每人要接种两支,且需接种同一厂家生产的疫苗,所有疫苗都接种完后,某同学为调查疫苗接种的效果采用分层抽样的方法从所有已接种人员中抽取部分个体进行调查,若已知他调查的人员中,接种科兴生物疫苗的人数比接种国药北京疫苗的人数多150,那么他所抽取的样本容量是()A.250B.500C.750D.100023.某中学高一有男生600人,若按性别比例用分层抽样的方法从高一全体学生中抽取一个容量为120的样本,样本中的女生人数为48,则该中学高一共有学生()A.800人B.900人C.1000人D.1200人24.下列情况中,适合用全面调查的是()A.检查某人血液中的血脂含量B.调查某地区的空气质量状况C.乘客上飞机前的安检D.调查某市市民对垃圾分类处理的意识25.某全日制大学共有学生5600人,其中专科生有1300人,本科生有3000人,研究生有1300人,现采用分层抽样的方法调查学生利用因特网查找学习资料的情况,抽取的样本为280人,则应在专科生、本科生与研究生这三类学生中分别抽取()A.65人,150人,65人B.30人,150人,100人C.93人,94人,93人D.80人,120人,80人26.交通管理部门为了解机动车驾驶员(简称驾驶员)对新法规“开车不喝酒,喝酒不开车”的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查,假设四个社区总人数为N,其中甲社区有驾驶员96人,若在甲、乙、丙、丁四个社区抽取人数分别为12,21,25、43,则这四个社区驾驶员的总人数N为()A.101B.808C.1212D.212127.我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息、住房租金、赡养老人等六项专项附加扣除,某单位老年、中年、青年员工分别有80人、100人、120人,现采用分层随机抽样的方法,从该单位上述员工中抽取30人调查专项附加扣除的享受情况,则应该从青年员工中抽取的人数为()A.8人B.10人C.12人D.18人28.某校有老师200人,男学生1200人,女学生1000人.现用分层抽样的方法从所有师生中抽取一个容量为n的样本;已知从女学生中抽取的人数为80人,则n的值为()A.120B.192C.200D.24029.(1)某小区有800户家庭,其中高收入家庭200户,中等收入家庭480户,低收入家庭120户,为了解有关家用轿车购买力的某个指标,从中抽取一个容量为100的样本;(2)从10名学生中抽取3名参加座谈会.问题和抽样方法配对正确的是()A.(1)简单随机抽样法,(2)分层随机抽样法B.(1)分层随机抽样法,(2)简单随机抽样法C.(1)简单随机抽样法,(2)简单随机抽样法D.(1)分层随机抽样法,(2)分层随机抽样法30.总体由编号为00,01,…,28,29的30个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第6列和第7列开始由左到右依次选取两个数字.则选出来的第5个个体的编号为()0842 2689 5319 6450 9303 2320 9025 6015。
备考2020年高考数学复习:54随机抽样
备考2020年高考数学复习:54随机抽样一、单选题(共10题;共20分)1.某校期末考试后,为了分析该校高一年级1000名学生的学习成绩,从中随机抽取了100名学生的成绩单,就这个问题来说,下面说法中正确的是()A. 1000名学生是总体B.每名学生是个体C.每名学生的成绩是所抽取的一个样本D.样本的容量是1002. (2019.卷I)某学校为了解1000名新生的身体素质,将这些学生编号为1,2,……,1000。
从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是()A. 8号学生B. 200号学生C. 616号学生D. 815号学生3.某班有50名学生,编号从1到50,现在从中抽取5人进行体能测试,用系统抽样确定所抽取的第一个样本编号为3,则第四个样本编号是()A. 13B. 23C. 33D. 434.总体由编号为01, 02,…,19, 20的20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为()7包16罐02U144弘907283204-见449358200362374815.某学校为了了解本校学生的上学方式,在全校范围内随机抽查部分学生,了解到上学方式主要有:——结伴步行,一一自行乘车,一一家人接送,一一其他方式,并将收集的数据整理绘制成如下两幅不完整的统计图.根据图中信息,求得本次抽查的学生中类人数是()A. 30B. 40C. 42D. 486.某公司生产,,三种不同型号的轿车,产量之比依次为,为检验该公司的产品质量,用分层抽样的方法抽取一个容量为的样本,若样本中种型号的轿车比种型号的轿车少8辆,贝U ()A. 96B. 72C. 48D. 367.某工厂利用随机数表对生产的600个零件进行抽样测试,先将600个零件进行编号,编号分别为从中抽取个样本,如下提供随机数表的第行到第行:若从表中第行第列开始向右依次读取个数据,则得到的第个样本编号()A. B. C. D.8.一支由学生组成的校乐团有男同学人,女同学人,若用分层抽样的方法从该乐团的全体同学中抽取人参加某项活动,则抽取到的男同学人数为()A. B. C. D.9.某校有高中生1470人,现采用系统抽样法抽取49人作问卷调查,将高一、高二、高三学生(高一、高二、高三分别有学生495人、493人、482人)按1,2,3,…,14编号,若第一组用简单随机抽样的方法抽取的号码为23,则所抽样本中高二学生的人数为()A. 15B. 16C. 17D. 1810.某校共有学生2000名,各年级男、女生人数如右表.已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的女学生人数为()A. 24B. 16C. 12D. 8二、填空题(共8题;共8分)11.某学校高一年级举行选课培训活动,共有1024名学生、家长、老师参加,其中家长256人.学校按学生、家长、老师分层抽样,从中抽取64人,进行某问卷调查,则抽到的家长有人12.某课题组进行城市空气质量调查,按地域把24个城市分成甲、乙、丙三组,对应的城市数分别为4, 12, 8,若用分层抽样抽取6个城市,则丙组中应抽取的城市数为。
高三数学随机抽样试题
高三数学随机抽样试题1.某私立校共有3600人,其中高中部、初中部、小学部的学生人数成等差数列递增,已知公差为600,现在按1:100的抽样比,用分层抽样的方法抽取样本,则应抽取小学部学生人数为 .【答案】18【解析】根据等差数列的性质可知,公差为600,连续的三项何为3600,可知中间的初中部的学生为1200,那么高中部为600,小学部为1800,则可知按照比例1:100的抽样比,那么小学生抽取的人数为1800,答案为18.【考点】分层抽样点评:考查了分层抽样的概念和等比例性质的运用,属于基础题。
2.某高中学校有高一学生400人,高二学生300人,高三学生300人,现通过分层抽样抽取一个容量为n的样本,已知每个学生被抽到的概率为0.2,则n=;【答案】200【解析】由,得.【考点】分层抽样.点评:本题考查分层抽样方法,涉及等可能事件的概率计算,是简单题;熟悉分层抽样方法的定义即可.3.一支田径队有男运动员28人,女运动员21人,现按性别用分层抽样的方法,从中抽取14位运动员进行健康检查,则男运动员应抽取________人.【答案】8【解析】男女运动员人数的比是,所以要抽取14人,需要抽取男运动员人.【考点】本小题主要考查分层抽样.点评:应用分层抽样抽取样本时,关键是找出各层的比例,按比例抽取即可.4.(本小题满分13分)某校高三(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答下列问题:(Ⅰ)求全班人数及分数在之间的频数;(Ⅱ)不看茎叶图中的具体分数,仅根据频率分布直方图估计该班的平均分数;(Ⅲ)若要从分数在之间的试卷中任取两份分析学生失分情况,在抽取的试卷中,求至少有一份分数在之间的概率.【答案】(Ⅰ)全班人数为25人,分数在之间频数为4;Ⅱ);Ⅲ). 【解析】(Ⅰ),即全班人数为25人,分数在之间频数为4 4分(Ⅱ)平均分数估计值 8分(Ⅲ)记这6份试卷代号分别为1,2,3,4,5,6.其中5,6是之间的两份,则所有可能的抽取情况有: 1,2 1,3 1,4 1,5 1,62,3 2,4 2,5 2,63,4 3,5 3,64,5 4,65,6 10分其中含有5或6的有9个,故. 13分【考点】本题考查了概率求法、统计.茎叶图、频率分布直方图的认识与应用点评:此类问题常常考查统计学知识,包括茎叶图,频率分布直方图,统计案例(线性回归分析和独立性检验).他们之间的综合问题更应引起重视,以及与概率等知识综合在一起进行设计试题是近几年高考的一种命题趋势5.某校有教师160人,男学生960人,女学生800人,现用分层抽样的方法从所有教师中抽取一个容量为n的样本,已知从女学生中抽取的人数为80人,则n的值为。
高中数学9.1.1《简单随机抽样》基础过关练习题
第九章 9.1 9.1.1A 级——基础过关练1.在“世界读书日”前夕,为了了解某地5 000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析,在这个问题中,5 000名居民的阅读时间的全体是( )A .总体B .个体C .样本量D .从总体中抽取的一个样本【答案】A 【解析】根据题意,结合总体、样本、个体、样本容量的定义可知,5 000名居民的阅读时间的全体是总体.2.(2019年哈尔滨第三中学期末)总体由编号为01,02,03,…,19,20的20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第3列开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( )78 16 65 72 08 02 63 14 07 02 43 69 97 28 01 9832 04 92 34 49 35 82 00 36 23 48 69 69 38 74 81A .08B .07C .02D .01【答案】B 【解析】从随机数表第1行的第3列开始由左到右依次选取两个数字中小于20的编号,依次为16,08,02,14,07,则第5个个体的编号为07.故选B .3.下列抽样方法是简单随机抽样的是( )A .某工厂从老年、中年、青年职工中按2∶5∶3的比例选取职工代表B .从实数集中逐个抽取10个数分析能否被2整除C .福利彩票用摇奖机摇奖D .规定凡买到明信片的最后几位号码是“6637”的人获三等奖【答案】C 【解析】简单随机抽样要求总体个数有限,从总体中逐个进行不放回抽样,每个个体有相同的可能性被抽到,分析可知选C .4.(2019年天津期末)已知m 个数的平均数为a ,n 个数的平均数为b ,用这m +n 个数的平均数为( )A .a +b 2B .a +b m +nC .ma +nb a +bD .ma +nb m +n【答案】D 【解析】m 个数的平均数为a ,n 个数的平均数为b ,则这m +n 个数的平均数为x =ma +nb m +n.故选D . 5.为了了解参加运动会的2 000名运动员的年龄情况,从中抽取20名运动员的年龄进行统计分析.下列说法中正确的为( )①2 000名运动员的年龄是总体;②每个运动员的年龄是个体;③所抽取的20名运动员的年龄是一个样本;④样本量为2 000;⑤每个运动员被抽到的机会相等.A .①⑤B .④⑤C .③④⑤D .①②③⑤【答案】D 【解析】样本容量为20,④错误.①②③⑤正确.6.下列调查的样本合理的是________.①在校内发出一千张印有全校各班级的选票,要求被调查学生在其中一个班级旁画“√”,以了解最受欢迎的教师是谁;②从一万多名工人中,经过选举,确定100名代表,然后投票表决,了解工人们对厂长的信任情况;③到老年公寓进行调查,了解全市老年人的健康状况;④为了了解全班同学每天的睡眠时间,在每个小组中各随机抽取3名学生进行调查.【答案】②④ 【解析】①中样本不具有代表性、有效性,在班级前画“√”与了解最受欢迎的老师没有关系;③中样本缺乏代表性;而②④是合理的样本.7.用随机数表法从100名学生(男生25人)中抽选20人进行评教,某男学生被抽到的概率是________.【答案】15 【解析】简单随机抽样是等可能性抽样,每个个体被抽到的概率都是20100=15. 8.齐鲁风采“七乐彩”的中奖号码是从分别标有1,2,…,30的三十个小球中逐个不放回地摇出7个小球来按规则确定中奖情况,这种从30个号码中选7个号码的抽样方法是________.【答案】抽签法 【解析】三十个小球相当于号签,搅拌均匀后逐个不放回地抽取,这是典型的抽签法.9.某校2018级高一年级有50位任课教师,为了调查老师的业余兴趣情况,打算抽取一个样本量为5的样本,问此样本若采用抽签法将如何获得?解:首先,把50位任课教师编上号码:01,02,03,…,50.制作50个形状、大小均相同的号签(号签可以用小球、卡片、纸条等制作),然后将这些号签放在一个不透明的箱子里,进行均匀搅拌.抽签时,每次从中抽出1个号签,不放回,连续抽取5次,就得到一个容量为5的样本.10.某企业调查消费者对某产品的需求量,要从95户居民中抽选10户居民,用随机数法抽选样本时,应如何操作?附部分随机数表:85 38 44 05 2748 98 76 06 0216 08 52 99 7161 27 94 30 2192 98 02 77 6826 91 62 77 83解:第一步:将95户居民编号,每一户一个编号,即01~95.第二步:随机确定抽样的起点和抽样的顺序.如假定从第1行第6列开始读取,读数顺序从左往右,每次读两位.(横的数列称为“行”,纵的数列称为“列”).第三步:将编号范围内的数取出,编号范围外或重复的数去掉.得到的样本号码是:40,52,74,89,87,60,21,85,29,16.由此产生10个样本号码,编号为这些号码的居民家庭就是抽样调查的对象.B级——能力提升练11.下列问题中,最适合用简单随机抽样方法抽样的是()A.某电影院有32排座位,每排有40个座位,座位号是1~40,有一次报告会坐满了听众,报告会结束后为听取意见,要留下32名听众进行座谈B.从10台冰箱中抽出3台进行质量检查C.某学校有在编人员160人,其中行政人员16人,教师112人,后勤人员32人,教育部门为了解在编人员对学校机构改革的意见,要从中抽取一个样本量为20的样本D.某乡农田有:山地800公顷,丘陵1 200公顷,平地2 400公顷,洼地400公顷,现抽取农田48公顷估计全乡农田平均每公顷产量【答案】B【解析】A的总体容量较大,用简单随机抽样法比较麻烦;B的总体容量较少,用简单随机抽样法比较方便;C由于学校各类人员对这一问题的看法可能差异很大,不宜采用简单随机抽样法;D总体容量大,且各类田地的差别很大,也不宜采用简单随机抽样法.12.某总样本量为M ,其中带有标记的有N 个,现用简单随机抽样的方法从中抽取一个样本量为m 的样本,则抽取的m 个个体中带有标记的个数估计为( )A .mN MB .mM NC .MN mD .N【答案】A 【解析】由随机抽样的意义可得x N =m M ,故x =mN M,即抽取的m 个个体中带有标记的个数估计为mN M. 13.(2020年荆门月考)某学校为了调查学生的学习情况,由每班随机抽取5名学生进行调查,若一班有50名学生,将每一学生编号从01到50,请从随机数表的第1行第5列(如表为随机数表的前2行)开始,依次向右,直到取足样本,则第五个编号为________.78 16 65 14 08 02 63 14 07 02 43 69 97 28 01 9832 04 92 34 49 35 82 00 36 23 48 69 69 38 74 81【答案】43 【解析】根据应用随机数表取样本数据的特征知,依次抽取的5个数据分别为14,08,02,07,43.所以第5个编号为43.14.一个布袋中有6个同样质地的小球,从中不放回地抽取3个小球,则某一特定小球被抽到的可能性是________;第三次抽取时,剩余小球中的某一特定小球被抽到的可能性是________.【答案】12 14 【解析】因为简单随机抽样时每个个体被抽到的可能性为36=12,所以某一特定小球被抽到的可能性是12.因为此抽样是不放回抽样,所以第一次抽样时,每个小球被抽到的可能性均为16;第二次抽取时,剩余5个小球中每个小球被抽到的可能性均为15;第三次抽取时,剩余4个小球中每个小球被抽到的可能性均为14. 15.为制定本市高一、高二、高三年级学生校服的生产计划,有关部门准备对180名高中男生的身高作调查,现有三种调查方案:方案一:测量少年体校中180名男子篮球、排球队员的身高;方案二:查阅有关外地180名高中男生身高的统计资料;方案三:在本市的市区任选两所中学、郊区任选一所中学,在这三所学校有关的年级中,用抽签的方法分别选出20名男生,然后测量他们的身高.为了达到估计本市高中这三个年级男生身高分布的目的,你认为采用上述哪一种调查方案比较合理,为什么?解:方案三比较合理,理由如下:方案一中,少年体校的男子篮球、排球的运动员的身高一定高于一般的情况,因此无法用测量的结果去估计总体的结果.方案二中,用外地学生的身高也不能准确地反映本地学生身高的实际情况.方案三中的抽样方法符合简单随机抽样,因此用方案三比较合理.16.为了检验某种产品的质量,决定从40件产品中抽取10件进行检查,如何用简单随机抽样抽取样本?(下面抽取了第5行到9行的随机数表)16 22 77 94 3949 54 43 54 8217 37 93 23 7887 35 20 96 4384 26 34 91 6484 42 17 53 3157 24 55 06 8877 04 74 47 6721 76 33 50 2583 92 12 06 7663 01 63 78 5916 95 55 67 1998 10 50 71 7512 86 73 58 0744 39 52 38 79解:(方法一,抽签法)①将这40件产品编号为01,02, (40)②做好大小、形状相同的号签,分别写上这40个号码;③将这些号签放在一个不透明的容器内,搅拌均匀;④连续抽取10个号签;⑤然后对这10个号签对应的产品检验.(方法二,随机数法)①将40件产品编号,可以编为00,01,02,…,38,39;②在随机数表中任选一个数作为开始,例如从第7行第9列的数8开始;③从选定的数8开始向右读下去,得到一个两位数字号码88,由于88>39,将它去掉;继续向右读,得到77,由于77>39,将它去掉;继续向右读,得到04,将它取出;继续下去,又得到21,33,25,12,06,01,16,19,10,至此,10个样本号码已经取满,于是,所要抽取的样本号码是04,21,33,25,12,06,01,16,19,10.C级——探索创新练17.从某批零件中抽取50个,然后再从这50个中抽取40个进行合格检查,发现合格产品有36个,则该产品的合格率为()A.36%B.72%C.90%D.25%【答案】C 【解析】3640×100%=90%. 18.某校高一共有10个班,编号1至10,某项调查要从中抽取三个班作为样本,现用抽签法抽取样本,每次抽取一个号码,共抽3次,设五班第一次抽到的可能性为a ,第二次被抽到的可能性为b ,则( )A .a =310,b =29B .a =110,b =19C .a =310,b =310D .a =110,b =110【答案】D 【解析】由简单随机抽样的定义知,每个个体在每次抽取中都有相同的可能性被抽到,故五班在每次抽样中被抽到的可能性都是110.。
(完整版)高中数学随机抽样同步练习新课标人教版必修3(B).docx
随机抽样同步练习一、选择题1.对于简单随机抽样,个体被抽到的机会A. 相等B. 不相等C.不确定D. 与抽取的次数有关2.抽签法中确保样本代表性的关键是A. 制签B.搅拌均匀C.逐一抽取D. 抽取不放回3.用随机数表法从 100 名学生(男生 25 人)中抽选 20 人进行评教,某男学生被抽到的机率是1111A. 100B.25C.5D. 44.某校有 40 个班,每班 50 人,每班选派 3 人参加“学代会”,在这个问题中样本容量是A.40B.50C.120D.1505.从某批零件中抽取 50 个,然后再从 50 个中抽出 40 个进行合格检查,发现合格品有 36 个,则该批产品的合格率为A.36%B.72%C.90%D.25%6.为了解 1200 名学生对学校教改试验的意见,打算从中抽取一个容量为 30 的样本,考虑采用系统抽样,则分段的间隔k 为A.40B.30C.20D.127.从 N个编号中要抽取 n 个号码入样,若采用系统抽样方法抽取,则分段间隔应为A.NB.nC.[N]D.[N]+1n n n8.下列说法正确的个数是①总体的个体数不多时宜用简单随机抽样法②在总体均分后的每一部分进行抽样时,采用的是简单随机抽样③百货商场的抓奖活动是抽签法④整个抽样过程中,每个个体被抽取的机率相等(有剔除时例外)A.1B.2C.3D.49.某单位有职工 160 人,其中业务员有 104 人,管理人员 32 人,后勤服务人员 24 人,现用分层抽样法从中抽取一容量为 20 的样本,则抽取管理人员A.3 人B.4人C.7人D.12人10.问题:①有 1000 个乒乓球分别装在 3 个箱子内,其中红色箱子内有 500 个,蓝色箱子内有200 个,黄色箱子内有 300 个,现从中抽取一个容量为 100 的样本;②从 20 名学生中选出 3 名参加座谈会 .方法:Ⅰ . 随机抽法Ⅱ.系抽法Ⅲ.分抽法.其中与方法能配的是A. ①Ⅰ,②ⅡB.①Ⅲ,②ⅠC.①Ⅱ,②ⅢD. ①Ⅲ,②Ⅱ11.一个年有 12 个班,每个班的同学从 1 至 50 排学号,了交流学,要求每班学号 14 的同学留下行交流,里运用的是A. 分抽B.抽抽C.随机抽D.系抽12.某校高中生共有 900 人,其中高一年 300 人,高二年 200 人,高三年 400 人,采用分抽抽取一个容量 45 的本,那么高一、高二、高三各年抽取人数分A.15 ,5,25B.15 ,15,15C.10,5,30D.15,10,20二、填空1.从 50 个品中抽取 10 个行,体个数 _______,本容量 ______.2.一个体的 60 个个体的号 0, 1, 2,⋯, 59,要从中抽取一个容量 10 的本,根据号按被 6 除余 3 的方法,取足本,抽取的本号是______________.3.某校高二年有 260 名学生,学校打算从中抽取 20 名行心理 . 完成上述两工作,采用的抽方法是 ______________.4.某班学生的平均身高,从 50 名学生中抽取 5 名,抽方法: _____________,如果男女身高有著不同(男生 30 人,女生 20 人),抽方法: ______________.5.一个工厂有若干,今采用分抽方法从全厂某天的2048 件品中抽取一个容量128 的本行量 . 若一一天生256 件品,从抽取的品件数______________.三、解答1.某中学高一年有 400 人,高二年有 320 人,高三年有 280 人,以每人被抽取的机率0.2 ,向中学抽取一个容量n 的本,求 n 的 .2.某校高一年有 43 名足球运,要从中抽出 5 人抽学担情况 . 用两种随机抽方法分取 .3.体育彩票000001~100000号中,凡彩票号最后三位数345 的中一等,采用的是系统抽样法吗?为什么?4.采用系统抽样法,从 121 人中抽取一个容量为 12 人的样本,求每人被抽取的机率 .5.某校 500 名学生中, O型血有 200 人,A 型血有 125 人,B 型血有 125 人,AB型血有 50 人,为了研究血型与色弱的关系,需从中抽取一个容量为20 的样本 . 按照分层抽样方法抽取样本,各种血型的人分别抽多少?写出抽样过程 .6. 某网站欲调查网民对当前网页的满意程度,在登录的所有网民中,收回有效帖子共 50000 份,其中持各种态度的份数如下表所示 .很满意满意一般不满意10800124001560011200为了了解网民的具体想法和意见,以便决定如何更改才能使网页更完美,打算从中抽选500份,为使样本更具有代表性,每类中各应抽选出多少份?参考答案一、选择题1. A2.B3.C4.C5.C6.A7. C8. C9. B 10. B 11. D 12. D二、填空1.50 102.3,9,15,21, 27,33,39, 45,51, 573.系抽4. 随机抽分抽5. 16三、解答n1.解:∵ 400 320280=0.2 ,∴ n=200.2.解:抽法:以姓名制,在容器中拌均匀,每次从中抽取一个,抽取5 次,从而得到一容量 5 的人本 .随机数表法:以 00, 01,02,⋯, 42 逐个号,拿出随机数表前先确定起始位置,确定数方向(可以向上、向下、向右或向左),数在体号内的取出,而数不在内的和已取出的不算,依次下去,直至得到容量 5 的本 .3.解:是系抽,系抽的步可概括体号,确定隔体分段,在第一段内确定起始个体号,每段内取等几步. 抽符合系抽的特点.4.解:系抽无有无剔除都是等机率抽,故机率12 .1215.解:用分抽方法抽 .∵20=2,∴ 200·2=8, 125·2=5,50·2=2.500 50505050故 O型血抽 8 人, A 型血抽 5 人, B 型血抽 5 人, AB型血抽 2 人. 各种血型的抽取可用随机抽(如 AB型)或系抽(如 A 型),直至取出容量 20 的本 .6.解:首先确定抽取比例,然后再根据各份数确定各要抽取的份数.∵500= 1,∴10800=108,12400=124,15600=156,11200=112.50000 100100100100100故四种度分抽取108、 124、156、112 份行 .。
高中数学-随机抽样专题强化训练(解析版)
高中数学-随机抽样专题强化训练学校:___________姓名:___________班级:___________考号:___________一、单选题1.某小区人数约30000人,创城期间,需对小区居民进行分层抽样调查,样本中有幼龄120人,青壮龄330人,老龄150人,则该小区老龄人数的估计值为()A.3300B.4500C.6000D.75002.在中国共产党建党100周年之际,某中学组织了“党史知识竞赛”活动,已知该校共有高中学生2700人,用分层抽样的方法从该校高中学生中抽取一个容量为45的样本参加活动,其中高一年级抽取了16人,则该校高一年级学生人数为()A.1680B.1020C.960D.7203.通过随机抽样用样本频率分布估计总体分布的过程中,下列说法正确的是(). A.总体容量越大,可能估计越精确B.样本容量大小与估计结果无关C.样本容量越大,可能估计越精确D.样本容量越小,可能估计越精确4.某班有50名同学,将他们编号为01,02,03,…,49,50,现需抽取10位同学参加志愿者活动,利用随机数表从中抽取10个个体,下面提供的是随机数表的第5、6两行:8978086734690586130561098546796382203797 6746071473947034852279534809765413499376若从表中第5行第9列开始自左向右依次读取两位数字,则抽取的第5个个体的编号是()A.13B.09C.46D.205.支田径队有男运动员56人,女运动员42人,用分层抽样的方法从全体运动员中抽出一个容量为28的样本,则从中抽取的男运动员的人数为()A.8B.12C.16D.326.下列抽样方法是简单随机抽样的是A.坛子中有1个大球,4个小球,搅拌均匀后,从中随机摸出一个球B.在校园里随意选三名同学进行调查C.在剧院里抽取三名观众调查,将所有座号写在同样的纸片上,放入箱子搅匀后逐个抽取,共取三张D.买彩票时随手写几组号7.总体由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取6个个体,选取方法从随机数表第1行的第5列和第6列数字开始由左到右依次选取两A.07B.04C.02D.018.下列调查采用的调查方式合适的是()A.为了了解炮弹的杀伤力,采用普查的方式B.为了了解全国中学生的睡眠状况,采用普查的方式C.为了了解人们保护水资源的意识,采用抽样调查的方式D.2016年10月17日7时30分,载人飞船“神舟十一号”在酒泉卫星发射中心由长征二号FY11运载火箭成功发射,发射前要对其零部件进行检查,采用抽样调查的方式9.当前,我省正分批修建经济适用房以解决低收入家庭住房紧张问题.已知甲、乙、丙三个社区现分别有低收入家庭360户、270户、180户,若第一批经济适用房中有90套住房用于解决这三个社区中90户低收入家庭的住房问题,先采用分层抽样的方法决定各社区户数,则应从乙社区中抽取低收入家庭的户数为()A.30B.40C.20D.3610.为了解某市高三毕业生升学考试中数学成绩的情况,从参加考试的学生中随机地抽查了1000名学生的数学成绩进行统计分析,在这个问题中,下列说法正确的是()A.总体指的是该市参加升学考试的全体学生B.个体指的是1000名学生中的每一名学生C.样本容量指的是1000名学生D.样本是指1000名学生的数学升学考试成绩二、多选题11.要考查某种品牌的850颗种子的发芽率,从中抽取50颗种子进行实验,利用随机数表法抽取种子,先将850颗种子按001,002,…,850进行编号,如果从随机数表第2行第2列的数开始并向右读,下列选项中属于最先检验的4颗种子中一个的是________.(下面抽取了随机数表第1行至第3行)()03 47 43 73 86 36 96 47 36 61 46 98 63 71 62 33 26 16 80 45 60 11 14 10 9597 74 94 67 74 42 81 14 57 20 42 53 32 37 32 27 07 36 07 51 24 51 79 89 7316 76 62 27 66 56 50 26 71 07 32 90 79 78 53 13 55 38 58 59 88 97 54 14 1012.为了了解参加运动会的2000名运动员的年龄情况,从中抽取了20名运动员的年龄进行统计分析.就这个问题,下列说法中正确的有()A.2000名运动员是总体;B.所抽取的20名运动员是一个样本;C.样本容量为20;D.每个运动员被抽到的机会相等. 13.(多选题)下列调查方式不合适的是()A.为了了解某型号炮弹的杀伤力,采用普查的方式B.为了了解全国中学生的睡眠状况,采用普查的方式C.为了了解人们保护水资源的意识,采用抽查的方式D.对载人航天器“神舟十号”零部件的检查,采用抽查的方式14.某工厂生产甲、乙、丙三种不同型号的产品,产量分别为360、240、120,为检验产品的质量,现需从以上所有产品中抽取一个容量为60的样本进行检验,则下列说法正确的是()A.如果采用系统抽样的方法抽取,不需要先剔除个体B.如果采用分层抽样的方法抽取,需要先剔除个体C.如果采用系统抽样的方法抽取,抽取过程不需要运用简单随机抽样的方法D.如果采用分层抽样的方法抽取时,所有产品被抽中的概率相等15.某地区公共部门为了调查本地区中学生的吸烟情况,对随机抽出的编号为1~1000的1000名学生进行了调查.调查中使用了两个问题,问题1:您的编号是否为奇数?问题2:您是否吸烟?被调查者随机从设计好的随机装置(内有除颜色外完全相同的白球100个,红球100个)中摸出一个小球:若摸出白球则回答问题1,若摸出红球则回答问题2,共有270人回答“是”,则下述正确的是()A.估计被调查者中约有520人吸烟B.估计约有20人对问题2的回答为“是”C.估计该地区约有4%的中学生吸烟D.估计该地区约有2%的中学生吸烟三、填空题16.某大型超市有120员工人,其中男性员工90人,现管理部门按性别采用分层抽样的方法从超市的所有员工中抽取n人进行问卷调查,若抽取到的男性员工比女性员工多4人,则n=______.17.某工厂共有n名工人,为了调查工人的健康情况,从中随机抽取20名工人作为调查对象,若每位工人被抽到的可能性为15,则n=________.18.某个年级有男生390人,女生210人,现在用分层抽样的方法从该年级全体学生中抽取一个容量为20的样本,则此样本中女生人数为___________.19.假设要考查某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验,利用随机数表抽取样本时,先将800袋牛奶按000,001,…,799进行编号,如果从随机数表第8行第7列的数开始向右读,请你衣次写出最先检测的5袋牛奶的编号_________________________________________(下面摘取了随机数表第7行至第9行).84 42 17 53 3157 24 55 06 8877 04 74 47 6721 76 33 50 2583 92 12 06 7663 01 63 78 5916 95 56 67 1998 10 50 71 7512 86 73 58 0744 39 52 38 7933 21 12 34 2978 64 56 07 8252 42 07 44 3815 51 00 13 4299 66 02 79 5420.某电视台在因特网上就观众对某一节目的喜爱程度进行调查,参加调查的总人数为12 000人,其中持各种态度的人数如下表所示:电视台为了进一步了解观众的具体想法和意见,打算从中再抽取60人进行更为详细的调查,各种态度应抽取的人数分别为____.21.为了了解学生对某时政要闻的知晓程度,某校决定从高三和高二两个年级的学生中用分层抽样的方法抽取48人进行问卷调查.已知高三年级学生有540人,高二年级学生有420人,则在高三年级中抽取的人数是___________.22.某研究性学习小组要进行城市空气质量调查,按地域把48个城市分成甲、乙、丙三组,其中甲、乙两组的城市数分别为8和24,若用分层抽样从这48个城市抽取12个进行调查,则丙组中应抽取的城市数为___________.23.已知一组数据6,7,8,8,9,10,则该组数据的方差是____.24.为了解网课学习效果,组织了一次网上测试.并利用分层抽样的方法从高中3个年级的学生中随机抽取了150人的测试成绩,其中高一、高二年级各抽取了40人,50人,若高三年级有学生1200人,则该高中共有学生_________人.25.利用分层抽样的方法在学生总数为800的年级中抽取20名同学,其中抽到的女生人数为8人,则该年级男生人数为__________.四、解答题26.某单位有员工500人,其中35岁以下的有125人,35岁~49岁的有280人,50岁以上的有95人.为了调查员工的身体状况,要从中抽取一个容量为100的样本,如何进行抽取?27.某校高中学生有900人,校医务室想对全体高中学生的身高情况做一次调查,为了不影响正常教学活动,准备抽取50名学生作为调查对象.校医务室若从高一年级中抽取50名学生的身高来估计全校高中学生的身高,你认为这样的调查结果会怎样?该问题中的总体和样本是什么?28.某公司想调查一下本公司员工对某项规章制度的意见,由于本公司车间工人工作任务繁重,负责该项事务的公司办公室向本公司的50名中层及以上领导干部派发了问卷,统计后便得到了调查意见,公司办公室获取数据的途径是什么?你认为该调查结果具有代表性吗?为什么?29.(1)甲在本次飞镖游戏中的成绩为8,6,7,7,8,10,9,8,7,8.求甲在本次游戏中的平均成绩.(2)在了解全校学生每年平均阅读多少本文学经典名著时,甲同学抽取了一个容量为10的样本,并算得样本的平均数为5;乙同学抽取了一个容量为8的样本,并算得样本的平均数为6.已知甲、乙两同学抽取的样本合在一起组成一个容量为18的样本,求合在一起后的样本均值.30.树立和践行“绿水青山就是金山银山,坚持人与自然和谐共生”的理念越来越深入人心,已形成了全民自觉参与,造福百姓的良性循环.据此,某网站推出了关于生态文明建设进展情况的调查,大量的统计数据表明,参与调查者中关注此问题的约占80%.现从参与调查的人群中随机选出200人,并将这200人按年龄分组:第1组[)15,25,第2组[)25,35,第3组[)35,45,第4组[)45,55,第5组[)55,65,得到的频率分布直方图如图所示:(1)求a 的值;(2)求出样本的平均数(同一组数据用该区间的中点值作代表);(3)现在要从年龄较小的第1,2组中用分层抽样的方法抽取5人,再从这5人中随机抽取3人进行问卷调查,求第2组中抽到2人的概率.31.2021年,是中国共产党建党百年华诞.为迎接建党100周年,某单位组织全体党员开展“学党史,知党情,感党恩”系列活动.在学党史知识竞赛中,共设置20个小题,每个小题5分.随机对100名党员的成绩进行统计,成绩均在[75,100]内,现将成绩分成5组,按照下面分组进行统计分析:第1组[75,80),第2组[80,85),第3组[85,90),第4组[90,95),第5组[95,100],并绘制成如图所示的频率分布直方图.已知甲、乙、丙分别在第3,4,5组,现在用分层抽样的方法在第3,4,5组共选取6人(包含甲、乙、丙)参加党史知识抢答赛.(1)求这100人的平均得分(同一组数据用该区间的中点值作代表);(2)求第4组选取参加抢答赛的人数;(3)若从参加抢答赛的6人中随机选取两人参加上级部门的党史知识复赛,求甲、乙、丙3人至多有一人被选取的概率.32.有人说:“如果抽样方法设计得好,用样本进行视力调查与对24300名学生进行视力普查的结果差不多.而且对于想要掌握学生视力状况的教育部门来说,节省了人力、物力和财力,抽样调查更可取.”你认为这种说法有道理吗?为什么?33.某年级100名学生期中考试数学成绩(单位:分)的频率分布直方图如图所示,其中成绩分组区间是[50,60),[60,70),[70,80),[80,90),[90,100].(1)求图中a的值,并根据频率分布直方图估计这100名学生数学成绩的平均分;(2)从[70,80)和[80,90)分数段内采用分层抽样的方法抽取5名学生,求在这两个分数段各抽取的人数;(3)现从第(2)问中抽取的5名同学中任选2名参加某项公益活动,求选出的两名同学均来自[70,80)分数段内的概率.34.语音交互是人工智能的方向之一,现在市场上流行多种可实现语音交互的智能音箱.主要代表有小米公司的“小爱同学”智能音箱和阿里巴巴的“天猫精灵”智能音箱,它们可以通过语音交互满足人们的部分需求.某经销商为了了解不同智能音箱与其购买者性别之间的关联程度,从某地区随机抽取了100名购买“小爱同学”和100名购买“天猫精灵”的人,具体数据如下:(1)若该地区共有13000人购买了“小爱同学”,有12000人购买了“天猫精灵”,试估计该地区购买“小爱同学”的女性比购买“天猫精灵”的女性多多少人?(2)根据列联表,能否有95%的把握认为购买“小爱同学”、“天猫精灵”与性别有关?附:()()()()()22n ad bcKa b c d a c b d-=++++参考答案:1.D【解析】【分析】求得小区中老龄人数所占比例,根据分层抽样的方法,即可求解.【详解】由题意,其中小区中老龄人数所占比例为1501 1203301504=++,所以该小区老龄人数的估计值为1 3000075004⨯=人.故选:D.2.C【解析】【分析】利用分层抽样的等比例性质,即可求该校高一年级学生人数.【详解】由分层抽样的等比例性质知:该校高一年级学生人数为16 270096045⨯=人.故选:C3.C【解析】【分析】用样本频率估计总体分布的过程中,对于同一个总体,样本容量越大,则估计越准确,据此可以作出判断.【详解】∵用样本频率估计总体分布的过程中,估计的是否准确与总体的数量无关,只与样本容量在总体中所占的比例有关,∵样本容量越大,估计的越准确,故选:C.【点睛】本题考查用样本估计总体,侧重考查对基础知识的理解和掌握,属于基础题.4.C【解析】【分析】利用随机数表取数的规则求解.【详解】利用随机数表从第5行第9列开始自左向右依次读取两位数字,在编号范围内把重复的编号剔除掉,得到的编号依次为34,05,13,09,46.所以抽取的第5个个体的编号是46.故选:C.5.C【解析】【分析】先求出分层抽样的抽样比,然后用男运动员人数乘上抽样比求出高三学生人数即可得到结论.【详解】解:抽样比=282 56427=+∵抽到男生的人数=56×27==16【点睛】本题主要考查分层抽样的应用,根据比例关系是解决本题的关键6.C【解析】根据简单随机抽样的定义直接判断即可.【详解】解析:A不是,因为球大小不同,造成不公平.B,D不是,因为“随意选”“随手写”并不说明对每个个体机会均等.C符合随机抽样的定义,是简单随机抽样.【点睛】本题考查了简单随机抽样的定义,属于基础题.7.B【解析】【分析】首先根据题意找到第一个数字65,因为有20个个体,故舍去.然后再按照由左到右依次选取两个数字,即可找到第6个数字.【详解】由题知:第一个数为65,不符合条件,第二个数为72,不符合条件,第三个数为08,符合条件,以下符合条件的数字依次是02,14,07,01,04,故第6个数字为04.故选:B【点睛】本题主要考查随机数表法,熟练掌握随机数表法的步骤为解题的关键,属于简单题.8.C【解析】【分析】根据普查和抽样调查的适用情况不同,作出判断.【详解】普查工作量大,有时受客观条件限制,无法对所有个体进行调查,有时调查具有破坏性,不允许普查;抽样调查范围小,节约时间、人力、物力和财力,但必须注意调查的对象具有代表性和广泛性;综上可知,只有选项C的调查方式合适.故选C.【点睛】本题考查对普查和抽样调查的适用条件的判断,难度较易.9.A【解析】【分析】先求出每个个体被抽到的概率,再由乙社区的低收入家庭数量乘以每个个体被抽到的概率,即可求解【详解】每个个体被抽到的概率为901 3602701809=++,乙社区由270户低收入家庭,故应从乙中抽取低收入家庭的户数为1 270309⨯=,故选:A【点睛】本题考查分层抽样的应用,属于基础题10.D【解析】利用总体、个体、样本和样本容量的定义,逐一判断选项的正误即可.【详解】在本题研究的这个问题中,总体是该市高三毕业生的数学成绩,不是全体学生,个体是指每名学生的成绩,不是每一名学生,样本容量是1000,不是1000名学生,故ABC错误;了解某市高三毕业生升学考试中学生的数学成绩的情况,因此样本是指随机抽取的这1000名学生的数学成绩,D正确.故选:D.11.ACD【解析】【分析】依据题意结合随机数表法直接读数并满足号码不大于850即可.【详解】依据题意可知:向右读数依次为:774,946,774,428,114,572,042,533,…所以最先检验的4颗种子符合条件的为:774,428,114,572故选:ACD【点睛】本题考查简单随机抽样中的随机数表法,掌握读数的方法,属基础题.12.CD【解析】【分析】根据总体、样本、总体容量、样本容量等概念及在整个抽样过程中每个个体被抽到的机会均等即可求解.【详解】由已知可得,2000名运动员的年龄是总体,20名运动员的年龄是样本,总体容量为2000,样本容量为20,在整个抽样过程中每个运动员被抽到的机会均为1100,所以A、B 错误,C、D正确.故选:CD.【点睛】本题主要考查总体、样本、总体容量、样本容量等概念及抽样的公平性问题,属基础题. 13.ABD【解析】【分析】根据被调查的对象的属性即可判定是需要抽查还是普查.【详解】了解炮弹的杀伤力,采用普查方式就全销毁了,只能采用抽查方式;了解全国学生睡眠状况,采用普查方式费时费力,也是不必要的,应采用抽查方式;了解人们保护水资源的意识,采用普查方式费时费力,也是不必要的,应采用抽查方式;对于航天器零部件的检查,必须做到万无一失,应当采用普查的方式.故选:ABD.【点睛】本题考查普查与抽查的区别,关键是根据被调查对象的特征决定,属简单题.14.AD【解析】【分析】根据系统抽样和分层抽样的特点即可分别判断.【详解】由题中数据可知,无论是运用系统抽样还是分层抽样,都不需要先剔除个体,A正确,B 错误.系统抽样确定起始号时需要用到简单随机抽样,C错误.分层抽样时,所有个体被抽到的机会均等,D正确.故选:AD.15.BC【解析】【分析】 根据题意知被调查者回答第一个问题的概率为12,其编号是奇数的概率也是12,计算可得随机抽出的1000名学生中回答第一个问题且为“是”的学生数, 由此求出回答第二个问题且为是的人数,由此估计此地区中学生吸烟人数的百分比,进而估计出被调查者中吸烟的人数,判断选项可得结论.【详解】随机抽出的1000名学生中,回答第一个问题的概率是12, 其编号是奇数的概率也是12, 所以回答问题1且回答是的人数为11100025022⨯⨯=;所以回答第二个问题,且为是的人数27025020-=; 由此估计此地区中学生吸烟人数的百分比为204%500=; 估计被调查者中约有10004%40⨯=人吸烟;故表述正确的是BC .故选:BC .【点睛】本题考查了简单随机抽样方法的应用问题,是中档题.16.8【解析】【分析】计算出分层抽样的抽样比,根据抽出男、女人数之间的关系,可得结果.【详解】总共有120人,男性员工90人,所以女性员工有30人由总共抽出n 人,所以抽样比为:120n , 则男性员工抽了: 390=1204n n ⨯女性员工抽了:30=1204n n ⨯,又抽取到的男性员工比女性员工多4人,所以3444n n-=,则8n=故答案为:8【点睛】本题考查计算分层抽样抽取的总人数,掌握分层抽样中抽样比的概念,属基础题. 17.100【解析】【分析】抽取人数除以总人数,即得每位工人被抽到的概率,结合已知,得到关于n的方程,求解即得.【详解】解:∵该工厂共有n名工人,随机抽取20名,∵每名工人被抽到的概率为20n,∵2015n=,解得100n=,故答案为:100.【点睛】本题考查简单随机抽样中事件的概率,等可能事件的概率问题,属基础题. 18.7【解析】【分析】根据女生所占比例计算出正确结论.【详解】此样本中女生人数为210207390210⨯=+人.故答案为:719.785667199810507【解析】【详解】解:因为根据随机数表法,按照从随机数表第8行第7列的数开始向右读,那么符合编号范围内的要,同时重复出现的只要第一个数字,那么可以得到结论.20.12人、23人、20人和5人.【解析】【详解】采用分层抽样的方法,抽样比为60 12000.“很喜爱”的有2 435人,应抽取2 435×6012000≈12(人);“喜爱”的有4 567人,应抽取4 567×6012000≈23(人);“一般”的有3 926人,应抽取3 926×6012000≈20(人);“不喜爱”的有1 072人,应抽取1 072×6012000≈5(人).因此,采用分层抽样的方法在“很喜爱”、“喜爱”、“一般”、“不喜爱”的人中应分别抽取12人、23人、20人和5人.21.27【解析】【分析】算出高三年级占总人数的比例,结合比例关系即可求解.【详解】540:4209:7=,故高三年级中抽取的人数是9482716⨯=人.故答案为:27. 22.4【解析】【详解】试题分析:丙组中应抽取的城市数为16124 48⨯=.考点:分层抽样.【方法点晴】分层抽样是将总体按照一定标志分成若干层,分别从各层中抽检一定数量样本,最后汇总推算所需的总体估计量的一种统计抽样技术.分层抽样一般有三个步骤:第一,将样本分层;第二,确定在每个层次上总体的比例(或抽样比);第三,利用这个比例,可计算出样本中每组(层)应调查的人数;第四,调查者必须从每层中抽取独立简单随机样本.23.53. 【解析】【分析】由题意首先求得平均数,然后求解方差即可.【详解】 由题意,该组数据的平均数为678891086+++++=, 所以该组数据的方差是22222215[(68)(78)(88)(88)(98)(108)]63-+-+-+-+-+-=. 【点睛】本题主要考查方差的计算公式,属于基础题.24.3000【解析】先求出高三年级抽取的人数为60人,由分层抽样的性质可得答案.【详解】由已知高三年级抽取的学生人数为:150405060--=人.设该校高中的学生总数为n ,则601501200n=,解得3000n = 所以该高中共有学生3000故答案为:300025.480【解析】【详解】由于样本容量为20,则抽到的男生的人数为12人,则该年级男生人数为1220×800=480,故答案为480.26.答案见解析【解析】【分析】根据分层抽样的特征以及分层抽样比即可求解.【详解】因为员工按年龄分为三个层,各层的身体状况有明显的差异,所以为了使样本具有代表性,需要采用分层抽样.抽样比为1∵5,即每5人中抽取一人.35岁以下:125×15=25(人),35岁~49岁:280×15=56(人),50岁以上:95×15=19(人).27.结果一定是片面的;这个问题涉及的调查对象的总体是某校全体高中学生的身高,其中准备抽取的50名学生的身高是样本.【解析】【分析】因为要对全体高中学生做调查,故要分年级调查,以及要考虑性别,所以这个调查是片面的,再根据总体和样本的定义即可判断该问题中的总体和样本.【详解】由于学生的身高会随着年龄的增长而增高,校医务室想了解全校高中学生的身高情况,在抽样时应当关注高中各年级学生的身高,并且还要分性别进行抽查.如果只抽取高一的学生,结果一定是片面的.这个问题涉及的调查对象的总体是某校全体高中学生的身高,其中准备抽取的50名学生的身高是样本.28.通过调查获取数据的;不具有代表性;答案见解析.【解析】【分析】由于公司想调查一下本公司员工对某项规章制度的意见,但公司办公室向本公司的50名中层及以上领导干部派发了问卷,而不是公司员工,那么调查对象就不对,故不合理.【详解】公司办公室是通过调查获取数据的.但是这些数据不具有代表性.因为公司的规章制度往往是领导干部制定的,而这部分员工的意见不能很好地代表全体员工,所以结果是片面的,不合理的,不具有代表性.29.(1)7.8(2)49 9【解析】【分析】(1)根据数据平均数的计算公式,准确计算,即可求解.(2)根据题意,根据数据平均数的概念和计算公式,即可求解合在一起后的样本均值.【详解】(1)由题意,根据数据平均数的计算公式,可得: 甲在本次游戏中的平均成绩为637489107.810+⨯+⨯++=. (2)由题意,甲同学抽取了一个容量为10的样本,并算得样本的平均数为5;乙同学抽取了一个容量为8的样本,并算得样本的平均数为6, 则合在一起后的样本均值为10586504849108189⨯+⨯+==+. 30.(1)0.035a =;(2)41.5岁;(3)35【解析】【分析】(1)由频率分布直方图即能求出a ;(2)由频率分布直方图即能求出平均数和中位数;(3)第1,2,3组的人数分别为20人,30人,从第1,2组中用分层抽样的方法抽取5人,则第1,2组抽取的人数分别为2人,3人,再利用列举法即可求出.【详解】(1)由()100.0100.0150.0300.0101a ⨯++++=,得0.035a =.(2)平均数为;200.1300.15400.35500.3600.141.5⨯+⨯+⨯+⨯+⨯=岁;(3)第1,2,3组的人数分别为20人,30人,从第1,2组中用分层抽样的方法抽取5人,则第1,2组抽取的人数分别为2人,3人,分别记为12123,,,,a a b b b .设从5人中随机抽取3人,为121122123112(,,),(,,),(,,),(,,),a a b a a b a a b a b b ,113123212213223123(,,),(,,),(,,),(,,),(,,),(,,),a b b a b b a b b a b b a b b b b b 共10个基本事件,从而第2组中抽到2人的概率63=105. 【点睛】。
高考数学一轮复习简单随机抽样专题复习题(带答案)
高考数学一轮复习简单随机抽样专题复习题(带答案)简单随机抽样是指从总体N个单位中任意抽取n个单位作为样本,使每个可能的样本被抽中的概率相等的一种抽样方式。
以下是简单随机抽样专题复习题,请考生认真练习。
一、选择题1.对于简单随机抽样,下列说法中正确的有()它要求被抽取样本的总体的个数有限,以便对其中各个个体被抽取的概率进行分析;它是从总体中逐个地进行抽取,以便在抽取实践中进行操作;它是一种不放回抽样;它是一种等概率抽样,不仅每次从总体中抽取一个个体时,各个个体被抽取的概率相等,而且在整个抽样过程中,各个个体被抽取的概率也相等,从而保证了这种方法抽样的公平性.A. B.C. D.[答案] D[解析] 由简单随机抽样定义得D正确.2.下面的抽样方法是简单随机抽样的是()A.在某年的明信片销售活动中,规定每100万张为一个开奖组,通过随机抽样的方式确定号码的后四位为2 709的为三等奖B.某车间包装一种产品,在自动包装的传送带上,每隔30分钟抽一包产品,称其重量是否合格C.某学校分别从行政人员、教师、后勤人员中抽取2人、14人、4人了解学校机构改革的意见D.用抽签法从10件产品中选取3件进行质量检验[答案] D[解析] A、B不是简单随机抽样,因为抽取的个体间的间隔是固定的,不具有随意性;C不是简单随机抽样,因为总体的个体之间差别比较大,抽取的个体不一定具有代表性;D是简单随机抽样.二、填空题3.某总体共有60个个体,并且编号为00,01,,59,现需从中抽取一个容量为8的样本,请从随机数表的倒数第5行(下表为随机数表的最后5行)第11、12列的18开始,依次向下读数,到最后一行后向右,直到取足样本为止(大于59及与前面重复的数字跳过),则抽取样本的号码是________.95 33 95 22 00 18 74 72 00 18 38 79 58 69 32 81 76 80 26 92 82 80 84 25 3990 84 60 79 80 24 36 59 87 38 82 07 53 89 35 56 35 23 79 18 05 98 90 07 3546 40 62 98 80 54 97 20 56 95 15 74 80 08 32 16 46 70 50 80 67 72 16 42 7920 31 89 03 43 38 46 82 68 72 32 14 82 99 70 80 60 47 18 97 63 49 30 21 3071 59 73 05 50 08 22 23 71 77 91 01 93 20 49 82 96 59 26 94 66 39 67 98 60[答案] 18,24,54,38,08,22,23,01[解析] 由随机数表法可得.4.下列抽样方法属于简单随机抽样的有________.①从1000个个体中一次性抽取50个个体作为样本;将1000个个体编号,并把编号写在形状、大小相同的签上,然后将号签放在一个足够大的不透明的容器内搅拌均匀,从中逐个抽取50个个体作为样本;从10个乒乓球中抽取3个进行质量检验.首先将乒乓球进行编号0,1,2,,9,再将转盘分成10等份,分别标上整数0,1,2,,9,转动转盘,指针指向的数字是几就取几号个体,直到抽出3个个体为止.[答案][解析] 简单随机抽样是逐个抽取,不能是一次性抽取,所以不属于简单随机抽样;属于简单随机抽样中的抽签法;属于简单随机抽样中的随机数法.故填.三、解答题5.某车间工人加工一种轴共100件,为了了解这种轴的直径,要从中抽取10件在同一条件下测量,如何采用简单随机抽样的方法抽取样本?[分析] 由于本题的调查对象较少,可采用简单随机抽样方法.简单随机抽样有两种方法:抽签法和随机数法,所以有两种思路.[解析] 方法一:抽签法:(1)将100件轴编号为1,2,,100;(2)做好大小、形状相同的号签,分别写上这100个号码;(3)将这些号签放在一个不透明的容器内,搅拌均匀;(4)逐个抽取10个号签;(5)然后测量这10个号签对应的轴的直径.方法二:随机数法:(1)将100件轴编号为00,01,,99;(2)在教材表1-2的随机数表中选定一个起始位置,如从第21行第1个数9开始;(3)规定读数的方向,如向右读;(4)依次选取10个数为93,12,47,79,57,37,89,18,45,50,则与这10个编号相对应的个体即为所要抽取的样本.6.某次音乐颁奖典礼上,欲邀请20名内地、港台艺人参加演出,其中从30名内地艺人中随机挑选10人,从18名香港艺人中随机挑选6人,从10名台湾艺人中随机挑选4人,试用抽签法确定选中的艺人并确定他们的演出顺序.[解析] 第一步:确定演出人员:将30名内地艺人从1到30编号,然后将1到30这30个号码分别写到形状、大小相同的号签上,然后放在一个不透明的容器中摇匀,从中逐个抽出10个号签,相应编号的艺人参加演出,再运用相同的办法分别从18名香港艺人中抽取6人,从10 名台湾艺人中抽取4人.第二步:确定演出顺序:确定了演出人员后,再将1到20这20个号码分别写到形状、大小相同的号签上,用来代表演出的顺序,然后让每名演出者抽取1个号签,抽到的号签上的数字就是这名演员的演出顺序.7.为了了解高一(10)班53名同学的牙齿健康状况,需从中抽取10名做医学检验,现已对53名同学编号00,01,02,,50,51,52.从下面所给的随机数表的第1行第3列的5开始从左向右读下去.则选取的号码依次为多少?随机数表如下:0154 3287 6595 4287 53467953 2586 5741 3369 83244597 7386 5244 3578 6241[解析] 从数5,开始从左向右读下去,两位两位地读,在00~52范围内前面没有出现过的记下,否则跳过,直到取满10人为止.如下表01 54 32 87 65 95 42 87 53 4679 53 25 86 57 41 33 69 83 2445 97 73 86 52 44 3578 6241选取的号码依次为32,42,46,25,41,33,24,45,52,44.简单随机抽样专题复习题及答案的全部内容就是这些,查字典数学网希望对考生复习数学有帮助。
高中数学 9.1 随机抽样 课后练习、课时练习
一、单选题1. 某工厂利用随机数表对生产的50个零件进行抽样测试,先将50个零件进行编号,编号分别为01,02,…,50,从中抽取5个样本,下面提供随机数表的第1行到第2行:66674037 14640571 11056509 95866876 8320379057160311 63149084 45217573 88059052 23594310若从表中第1行第一个数字1开始向右依次读取数据,则得到的第4个样本编号是()A.05 B.09 C.14 D.202. 在社区公益活动中,某单位有40名志愿者参与了报名,先将这40名志愿者进行编号,编号为01,02,…,40,从这40名志愿者中抽取10人参加一项活动,选取方法是从随机数表第1行的第4列开始由左到右依次选两个数字,则选出来的第6个样本编号为()972974836721345267459176245172498563244 377950031417197200304658711420518713682A.32 B.24 C.17 D.373. 某公司甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点.为了调查产品销售的情况,需从这600个销售点中抽取一个容量为60的样本,记这项调查为①;在丙地区中有20个特大型销售点,要从中抽取7个调查其收入和售后服务等情况,记这项调查为②.则完成①、②这两项调查宜采用的抽样方法依次是()A.分层抽样法,系统抽样法B.分层抽样法,简单随机抽样法C.系统抽样法,分层抽样法D.简单随机抽样法,分层抽样法4. 总体由编号为01,02,…,29,30的30个个体组成.利用下面的随机数表选取4个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出的第4个个体的编号为()7806 6572 0802 6314 0247 1821 98003204 9234 4935 3623 4869 6938 7481A.02 B.14 C.18 D.295. 某企业策划部门有男、女职员共100人,其中男职员40人,用分层抽样的方法,从该部门随机选取20人参加某项活动,则应选取的男、女职员人数分别是()A.8和12 B.9和11 C.12和8 D.11和96. 为了调查北京市2015年家庭收入情况,在该问题中总体是()A.北京市B.北京市所有家庭的收入C.北京市的所有人口D.北京市的工薪阶层二、多选题7. 电动汽车的推广势在必行,全球新能源汽车行业快速发展.2020年1月到2020年12月某地公共电动车充电桩保有量如下:2020年各月公共充电桩保有量(单位:台)则下列说法正确的是()A.2020年各月公共充电桩保有量一直保持增长态势B.2020年5月较2020年4月公共充电桩保有量增加超过1万台C.2020年2月到2020年3月,公共充电桩保有量增幅最大D.2020年下半年各月公共充电桩保有量均突破45万台8. 下列抽查,适合抽样调查的是()A.进行某一项民意测验B.调查某化工厂周围5个村庄是否受到污染C.调查黄河的水质情况D.调查某药品生产厂家一批药品的质量情况三、填空题9. 总店为了了解全部432家分店三月的零售状况,让所有分店长提交三月的零售数据.此次调查的总体的容量是______.10. 某地区有高中学校所,初中学校所,小学学校所,现采用分层抽样的方法从这些学校中抽取所学校对学生进行体质健康检查,则应抽取初中学校________所.11. 一个总体含有100个个体,以简单随机抽样方式从该总体中抽取一个容量为30的样本,则指定的某个个体被抽到的概率为______.12. 某口罩生产工厂为了了解口罩的质量,现利用随机数表对生产的50只口罩进行抽样检测,先将50只口罩进行编号为,从中抽取10个样本,如图提供随机数表的第2行到第3行.若从表中第3行第3列和第4列开始向右读取数据,则得到的第3个样本编号是___________.四、解答题13. 用简单随机抽样方法从全班36名学生中选取5名学生.请设计一种掷骰子的方法完成这项抽样.14. 数据的平均数为,数据的平均数为,证明:.15. 下列问题中,采用怎样的抽样方法较为合理?(1)从10台冰箱中抽取3台进行质量检查.(2)某学校有160名教职工,其中教师120名,行政人员16名,后勤人员24名.为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本. (3)某公司1个季度共有22984份运货单,这些运货单上的运费相差很大.现要对这个季度的运货单进行审计,从中抽取一定量的运货单加以审核.16. 在规划大众健身器材时,需要考虑民众对现有器材的使用和满意程度.这时的总体是什么?你计划如何开展这项调查?。
高三总复习数学检测题 随机抽样、常用统计图表
随机抽样、常用统计图表A级——基础达标1.我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1 534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为() A.134石B.169石C.338石D.1 365石解析:B由随机抽样的含义,该批米内夹谷约为28254×1 534≈169(石).2.某学院A,B,C三个专业共有1 200名学生,为了调查这些学生勤工俭学的情况,拟采用分层随机抽样的方法抽取一个容量为120的样本,已知该学院的A专业有380名学生,B专业有420名学生,则应在该学院的C专业抽取的学生人数为() A.30 B.40C.50 D.60解析:B C专业的学生有 1 200-380-420=400(名),由分层随机抽样知应抽取120×4001 200=40(名).3.某工厂利用随机数表对生产的50个零件进行抽样测试,先将50个零件进行编号,编号分别为01,02,…,50,从中抽取5个样本,下面提供随机数表的第1行到第2行:66 67 40 37 14 64 05 71 11 05 65 09 95 86 6857 16 03 11 63 14 90 84 45 21 75 73 88 05 90若从表中第1行第9列开始向右依次读取数据,则得到的第4个样本编号是() A.10 B.09C.71 D.20解析:B从随机数表第1行的第9列数字开始由左向右每次连续读取2个数字,删除超出范围及重复的编号,符合条件的编号有14,05,11,09,所以选出来的第4个个体的编号为09,故选B.4.某市气象部门根据2021年各月的每天最高气温平均值与最低气温平均值(单位:℃)数据,绘制如下折线图:那么,下列叙述不正确的是( )A .各月最高气温平均值与最低气温平均值总体呈正相关B .全年中2月份的最高气温平均值与最低气温平均值的差值最大C .全年中各月最低气温平均值不高于10 ℃的月份有5个D .从2021年7月至12月该市每天最高气温平均值与最低气温平均值呈下降趋势 解析:D 对于A 项,根据折线图可以发现除2月份外,各月最低气温平均值越高,最高气温平均值也越高,总体呈正相关,A 项正确;对于B 项,通过折线图观察,2月份的两个点距离最大,B 项正确;对于C 项,各月最低气温平均值不高于10 ℃的有1月,2月,3月,11月,12月,共有5个月,C 项正确;对于D 项,观察折线图可知,7月份到8月份气温在上升,D 项错误.5.(多选)为了比较甲、乙两名学生的数学学科素养的各项能力指标值(满分为5分,分值高者为优),绘制了如图所示的六维能力雷达图,例如图中甲的数学抽象指标值为4,乙的数学抽象指标值为5,则下面叙述正确的是( )A .甲的逻辑推理能力指标值优于乙的逻辑推理能力指标值B .甲的数学建模能力指标值优于乙的直观想象能力指标值C .乙的六维能力指标值整体水平优于甲的六维能力指标值整体水平D .甲的数学运算能力指标值优于甲的直观想象能力指标值解析:AC 对于选项A ,甲的逻辑推理能力指标值为4,优于乙的逻辑推理能力指标值为3,故A 正确;对于选项B ,甲的数学建模能力指标值为3,乙的直观想象能力指标值为5,所以乙的直观想象能力指标值优于甲的数学建模能力指标值,故B 错误;对于选项C ,甲的六维能力指标值的平均值为16×(4+3+4+5+3+4)=236,乙的六维能力指标值的平均值为16×(5+4+3+5+4+3)=4,236<4,故C 正确;对于选项D ,甲的数学运算能力指标值为4,甲的直观想象能力指标值为5,所以甲的数学运算能力指标值不优于甲的直观想象能力指标值,故D 错误.故选A 、C .6.(2022·珠海三模)已知样本容量为200,在样本的频率分布直方图中,共有n 个小矩形,若中间一个小矩形的面积等于其余(n -1)个小矩形面积和的13,则该组的频数为________.解析:设除中间一个小矩形外的(n -1)个小矩形面积的和为p ,则中间一个小矩形面积为13p ,p +13p =1,p =34,则中间一个小矩形的面积等于13p =14,200×14=50,即该组的频数为50.答案:507.某校为了解学生的身体素质情况,采用按年级分层随机抽样的方法,从高一、高二、高三学生中抽取一个300人的样本进行调查,已知高一、高二、高三学生人数之比为k ∶5∶4,抽取的样本中高一学生为120人,则k 的值为________.解析:由题意可知,120300=k k +5+4,解得k =6. 答案:68.(2022·深圳模拟)如图,从参加环保知识竞赛的学生中抽出60名,将其成绩(均为整数)整理后画出的频率分布表和频率分布直方图如下,回答下列问题:(1)分别求出a ,b ,x ,y 的值,并补全频率分布直方图;(2)估计这次环保知识竞赛的平均分.解:(1)a =6,b =9,x =0.15,y =0.25,补全频率分布直方图如图,(2)用各组中值估计平均分为44.5×0.1+54.5×0.15+64.5×0.15+74.5×0.3+84.5×0.25+94.5×0.05=70.5.故这次环保知识竞赛的平均分约为70.5.B 级——综合应用9.(多选)某地区公共部门为了调查本地区中学生的吸烟情况,对随机抽出的编号为1~1 000的1 000名学生进行了调查.调查中使用了两个问题,问题1:您的编号是否为奇数?问题2:您是否吸烟?被调查者随机从设计好的随机装置(内有除颜色外完全相同的白球100个,红球100个)中摸出一个小球:若摸出白球则回答问题1,若摸出红球则回答问题2,共有270人回答“是”,则下述正确的是( )A .估计被调查者中约有520人吸烟B .估计约有20人对问题2的回答为“是”C .估计该地区约有4%的中学生吸烟D .估计该地区约有2%的中学生吸烟解析:BC 随机抽出的1 000名学生中,回答第一个问题的概率是12, 其编号是奇数的概率也是12, 所以回答问题1且回答是的人数大约为1 000×12×12=250,所以回答第二个问题,且为是的人数大约为270-250=20, 由此估计此地区中学生吸烟人数的百分比为20500=4%,估计被调查者中约有1 000×4%=40(人)吸烟,故表述正确的是B 、C . 故选B 、C .10.(2022·重庆高三模拟)某工厂的三个车间在12月份共生产了3 600双皮靴,在出厂前要检查这批产品的质量,决定采用分层随机抽样的方法进行抽取,若从第一、二、三车间抽取的产品数分别为a ,b ,c ,且a ,b ,c 构成等差数列,则第二车间生产的产品数为________.解析:因为a ,b ,c 成等差数列,所以2b =a +c .所以b a +b +c =13.所以第二车间抽取的产品数占抽样产品总数的13.根据分层随机抽样的性质,可知第二车间生产的产品数占总数的13,即为13×3 600=1 200. 答案:1 20011.2021年7月1日是中国共产党成立100周年纪念日,某市3 000名市民参加“建党100周年”相关知识比赛,成绩统计如图所示.(1)求a 的值,并估计该市参加考试的3 000名市民中,成绩在[80,90)内的人数;(2)若在本次比赛中前1 500名参加复赛,则进入复赛的市民的分数应当如何制定(结果用分数表示).解:(1)依题意,(2a +3a +7a +6a +2a )×10=1,解得a =0.005.故成绩在[80,90)内的频率为0.3,故所求人数为3 000×0.3=900.(2)依题意,要前1 500名市民参加复赛,即求该组数据的中位数,所以分数为70+(0.5-0.1-0.15)÷0.035=7717.C 级——迁移创新12.为了解户籍性别对生育三胎选择倾向的影响,某地从育龄人群中随机抽取了容量为100的调查样本,其中城镇户籍与农村户籍各50人;男性60人,女性40人,绘制不同群体中倾向选择生育三胎与选择不生育三胎的人数比例图(如图所示),其中阴影部分表示倾向选择生育三胎的对应比例,则下列叙述中错误的是( )A.是否倾向选择生育三胎与户籍有关B.是否倾向选择生育三胎与性别无关C.倾向选择生育三胎的人员中,男性人数与女性人数相同D.倾向选择不生育三胎的人员中,农村户籍人数少于城镇户籍人数解析:C由不同群体中倾向选择生育三胎与倾向选择不生育三胎的人数比例图知:在A中,城镇户籍倾向选择生育三胎的比例为40%,农村户籍倾向选择生育三胎的比例为80%,∴是否倾向选择生育三胎与户籍有关,故A正确;在B中,男性倾向选择生育三胎的比例为60%,女性倾向选择生育三胎的比例为60%,∴是否倾向选择生育三胎与性别无关,故B正确;在C中,男性倾向选择生育三胎的比例为60%,人数为60×60%=36人,女性倾向选择生育三胎的比例为60%,人数为40×60%=24人,∴倾向选择生育三胎的人员中,男性人数比女性人数多,故C错误;在D中,倾向选择不生育三胎的人员中,农村户籍人数为50×(1-80%)=10人,城镇户籍人数为50×(1-40%)=30人,∴倾向选择不生育三胎的人员中,农村户籍人数少于城镇户籍人数,故D正确.故选C.13.阅读下列材料,回答后面问题:在2014年12月30日CCTV13播出的“新闻直播间”节目中,主持人说:“……假如此次亚航失联航班QZ8501被证实失事的话,2014年航空事故死亡人数将达到1 320人.尽管如此,航空安全专家还是提醒:飞机仍是相对安全的交通工具.①世界卫生组织去年公布的数据显示,每年大约有124万人死于车祸,而即使在航空事故死亡人数最多的一年,也就是1972年,其死亡数字也仅为3_346人;②截至2014年9月,每百万架次中有2.1次(指飞机失事),乘坐汽车的百万人中其死亡人数在100人左右.”对上述航空专家给出的①、②两段表述(划线部分),你认为不能够支持“飞机仍是相对安全的交通工具”的所有表述序号为________.解析:表述①虽是同类数据,但反映不出乘车出行和乘飞机出行的总人数的关系;表述②两个数据不是同一类数据,这与每架次飞机的乘机人数有关;但是可以做如下大致估算,考虑平均每架次飞机的乘机人数为x,这样每百万人乘机死亡人数2.1人,要远远少于乘车每百万人中死亡人数.答案:①。
(完整版)《随机抽样》高考题精选
。
若用分层抽样方法,则 40 岁以下年龄段应抽取
人. 【答案】37, 20
莄 18.(2014 广东理)已知某地区中小学生人数和近视情况分别如图 1 和图 2 所示,为了解该 地区中小学生的近视形成原因,用分层抽样的方法抽取 2%的学生进行调查,则样本容量 和抽取的高中生近视人数分别为(A)
节 A、200,20
薃
C. p1 p3 p2
B. p2 p3 p1 D. p1 p2 p3
蚁 11. (2014 重庆文)某中学有高中生 3500 人,初中生 1500 人,为了解学生的学习情况,用
分层抽样的方法从该校学生中抽取一个容量为 n 的样本。已知从高中生中抽取 70 人,则 n 为(A)
羅 A.100
芃 377
葿 370
螄生人数为( C )
膁 A.24
B.18 C.16
D.12
表1
膇 17.(2009 广东文)某单位 200 名职工的年龄
芄分布情况如图,现要从中抽取 40 名职工作样
袁本,用系统抽样法,将全体职工随机按 1-200
蚈编号,并按编号顺序平均分为 40 组(1-5 号,
袆 6-10 号…,196-200 号).若第 5 组抽出的号码为 22,则第 8 组抽出的号码应是
6572
0802
6314
0702
4369
9728
0198
聿 3204
923449358200Fra bibliotek3623
4869
6938
7481
肈 A.08
B.07
C.02
D.01
螅 13. (2013 新课标Ⅰ理)为了解某地区的中小学生视力情况,拟从该地区的中小学生中抽取 部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较 大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是
高考数学专题9.1随机抽样原卷版
9.1 随机抽样运用一抽样方法的选择1.(2019·内蒙古高二月考)完成下列抽样调查,较为合理的抽样方法依次是( )①从30件产品中抽取3件进行检查;②某校高中三个年级共有2460人,其中高一830人、高二820人、高三810人,为了了解学生对数学的建议,拟抽取一个容量为300的样本;③某剧场有28排,每排有32个座位,在一次报告中恰好坐满了听众,报告结束后,为了了解听众意见,需要请28名听众进行座谈.A.简单随机抽样,系统抽样,分层抽样;B.分层抽样,系统抽样,简单随机抽样;C.系统抽样,简单随机抽样,分层抽样;D.简单随机抽样,分层抽样,系统抽样;(2)(2018·全国高一课时练习)下列调查方式合适的是()A.为了了解炮弹的杀伤力,采用普查的方式B.为了了解全国中学生的睡眠状况,采用普查的方式C.为了了解人们保护水资源的意识,采用抽样调查的方式D.对载人航天器“神舟十号”零部件的检查,采用抽样调查的方式(3)(2019·河北鹿泉区第一中学高二开学考试)为了了解全校1740名学生的身高情况,从中抽取140名学生进行测量,下列说法正确的是A.总体是1740 B.个体是每一个学生C.样本是140名学生D.样本容量是140【举一反三】1.下列说法不正确的是()A.普查是对所有的对象进行调查B.样本不一定是从总体中抽取的,没有抽取的个体也可能是样本C.当调查的对象很少时,普查是很好的调查方式,但当调查的对象很多时,普查要耗费大量的人力、物力和财力D.普查不是在任何情况下都能实现的2.下列调查采用的调查方式合适的是()A.为了了解炮弹的杀伤力,采用普查的方式B.为了了解全国中学生的睡眠状况,采用普查的方式C.为了了解人们保护水资源的意识,采用抽样调查的方式D.2016年10月17日7时30分,载人飞船“神舟十一号”在酒泉卫星发射中心由长征二号FY11运载火箭成功发射,发射前要对其零部件进行检查,采用抽样调查的方式3.(2019·全国高一)在“世界读书日”前夕,为了了解某地5000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析.在这个问题中,5000名居民的阅读时间的全体是()A.总体B.个体C.样本的容量D.从总体中抽取的一个样本4.(2018·江苏高二月考(文))为测试一批新出厂的小米手机质量,从上产线上随机选取了200部手机进行测试,在这个问题中,样本指的是( )A.小米手机B.200 C.200部小米手机 D.200部小米手机的质量运用二简单随机抽样【例2】(2020·全国高三专题练习)福利彩票“双色球”中红色球由编号为01,02,…,33的33个球组成,某彩民利用下面的随机数表选取6组数作为6个红色球的编号,选取方法是从随机数表(如下)第1行的第6列数字开始由左到右依次选取两个数字,则选出来的第6个红色球的编号为( )A.23 B.09 C.02 D.17【举一反三】1.(2020·全国高三专题练习)福利彩票“双色球”中红球的号码可以从01,02,03,…,32,33这33个两位号码中选取,小明利用如下所示的随机数表选取红色球的6个号码,选取方法是从第1行第9列的数字开始,从左到右依次读取数据,则第四个被选中的红色球的号码为()A.12 B.33C.06 D.162.(2020·全国高三专题练习)总体由编号01,,02,…,19,20的20个个体组成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
随机抽样练习题一、选择题1、要从其中有50个红球的1 000个球中,采用按颜色分层抽样的方法抽得100个进行分析,则应抽得红球个数为( )A.20个B.10个C.5个D.45个2、某学院有四个饲养房,分别养有18,54,24,48只白鼠.某项实验需抽取24只白鼠,你认为最合适的抽样方法为( )A.在每个饲养房各取6只B.把所有白鼠都加上编有不同号码的颈圈,用随机抽样法确定24只C.在四个饲养房分别随机抽取3,9,4,8只D.先确定这四个饲养房应分别抽取3,9,4,8只样品,再由各饲养房自己加号码颈圈,用简单随机抽样法确定各自要抽取的对象3、分层抽样又称为类型抽样,即将相似的个体归入一类(层),然后每层抽若干构成样本,所以分层抽样为保证每个个体等可能入样,必须进行( )A.每层等可能抽样B.每层不等可能抽样C.所有层用同一抽样比,每层等可能抽样D.所有层抽同样多样本容量,等可能抽样4、某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号1,2,…,270,并将整个编号依次分为10段.如果抽得号码有下列四种情况:①7,34,61,88,115,142,169,196,223,250;②5,9,100,107,111,121,180,195,200,265;③11,38,65,92,119,146,173,200,227,254;④30,57,84,111,138,165,192,219,246,270.关于上述样本的下列结论中,正确的是( )A.②③都不能为系统抽样B.②④都不能为分层抽样C.①④都可能为系统抽样D.①③都可能为分层抽样5、某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年组依次统一编号为1、2、...、270,使用系统抽样时,将学生统一随机编号1、2、 (270)并将整个编号依次分为10段.如果抽得号码有下列四种情况:①7,34,61,88,115,142,169,196,223,250;②5,9,100,107,111,121,180,195,200,265;③11,38,65,92,119,146,173,200,227,254;④30,57,84,111,138,165,192,219,246,270.关于上述样本的下列结论中,正确的是( )A.②③都不能为系统抽样 B.②④都不能为分层抽样C.①④都可能为系统抽样 D.①③都可能为分层抽样6、下列抽样不是系统抽样的是()A.从标有1—15号的15个小球中任选3个作为样本,按从小号到大号排序,随机确定起点i,以后为i+5, i+10(超过15则从1再数起)号入样B.工厂生产的产品,用传送带将产品送入包装车间前,检验人员从传送带上每隔五分钟抽一件产品检验C.搞某一市场调查,规定在商场门口随机抽一个人进行询问,直到调查到事先规定的调查人数为止D.电影院调查观众的某一指标,通知每排(每排人数相等)座位号为14的观众留下来座谈7、从某年级500名中抽取60名进行体重的统计分析,对于这个问题,下列说法正确的是 ( )A.500名是总体 B.每个被抽查的是个体C.抽取的60名体重是一个样本 D.抽取的60名体重是样本容量8、在抽样过程中,每次抽取的个体不再放回总体的为不放回抽样,那么分层抽样、系统抽样、简单随机抽样三种抽样中,为不放回抽样的有 ( )A.0个 B.1个 C.2个 D.3个9、为了考查5000发炮弹的杀伤半径,现从中抽取10发进行考查,则每发炮弹被抽到的概率为()A.B. C.D.二、填空题1、为了了解某地区癌症的发病情况,从该地区的5 000人中抽取200人进行统计分析,在这个问题中5 000是指______________________.2、某学校共有教师490人,其中不到40岁的有140人.为了解普通话在该校教师中的推广普及情况,用分层抽样的方法,从全体教师中抽取一个样本容量为70人的样本进行普通话水平测试,其中在不到40岁的教师中应抽取的人数是_________.3、某校有老师200人,男学生1200人,女学生1000人.现用分层抽样的方法从所有师生中抽取一个容量为n的样本.已知女学生中抽取的人数为80人,则n =。
4、一工厂生产了某种产品16800件,它们来自甲、乙、丙3条生产线。
为检查这批产品的质量,决定采用分层抽样的方法进行抽样,已知从甲、乙、丙3条生产线抽取的个数组成一个等差数列,则乙生产线生产了件产品。
5、上海大众汽车厂生产了A、B、C三种不同型号的小轿车,产量分别1 200辆、6 000辆、2 000辆,为检验这三种型号的轿车质量,现在从中抽取46辆进行检验,那么应采用___________抽样方法,其中B型号车应抽查___________辆.三、解答题1、一批产品中,有一级品100个,二级品60个,三级品40个,请从这批产品中用分层抽样法抽取一个容量为20的样本.2、某校高中三年级的295名学生已经编号为1,2,…,295,为了了解学生的学习情况,要按1∶5的比例抽取一个样本,用系统抽样的方法进行抽取,并写出过程.3、从40件产品中抽取10件进行检查,请分别用抽签法和随机数表法抽出产品,并写出抽样过程.1、参考答案与解析:解析:50×=5(个).答案:C2、参考答案与解析:解析:依据公平性原则,根据实际情况确定适当的取样方法是本题的主旨.A中对四个饲养房平均摊派,但由于各饲养房所养数量不一,从而造成了各个体入选概率的不均衡,是错误的方法;B中保证了各个体入选概率的相等,但由于没有注意到处在四个不同环境中会产生不同差异,不如采用分层抽样可靠性高,且统一编号、统一选择加大了工作量;C中总体采用了分层抽样,但在每个层次中没有考虑到个体的差异(如健壮程序、灵活程序),貌似随机实则各个体概率不等.答案:D3、参考答案与解析:思路分析:根据分层抽样是一种等可能抽样的特点可知选A. 答案:A4、参考答案与解析:思路分析:由定义可知,①③是分层抽样;②为系统抽样;④为随机抽样.故选D.答案:D5、参考答案与解析:解析:因为③可以为系统抽样,所以选项A不对;因为②为分层抽样,所以选项B不对;因为④不为系统抽样,所以选项C不对.故选D. 答案:D6、参考答案与解析:分析:C中,因为事先不知道总体,抽样方法不能保证每个个体按事先规定的概率入样,所以不是系统抽样.答案:C7、参考答案与解析:思路解析:本题要注意区分总体、个体、样本、样本容量的概念,要特别搞清楚研究对象是什么,本题研究的是体重.答案:C8、答案与解析:思路解析:不放回抽样是三种抽样的共同点.答案:D9、参考答案与解析:C二、1、参考答案与解析:总体容量2、参考答案与解析:思路分析:70×=20.答案:203、参考答案与解析:思路解析:由题意知,每个人被抽到的几率为=,故n=(200+1200+1000)×=192。
4、参考答案与解析:思路解析:设甲、乙、丙各生产了、、件。
因为、、成等差数列,所以2=+,且++=16800,因此==5600。
答案:56005、参考答案与解析:解析:因为抽取的不同型号的3种轿车,所以应采用分层抽样方法.又共生产汽车9 200辆,而B型车有6 000辆,所以占的比例为,所以B型车应抽查×46=30辆. 答案:分层 30三、1、、参考答案与解析:解析:一级品、二级品、三级品有明显差异,对调查研究产品有比较大的影响,所以选用分层抽样法.因为一级、二级、三级品个数之比为5∶3∶2,所以需要从一级品中抽取×20=10(个),二级品中抽取×20=6(个),二级品中抽取×20=4(个).将一级品的100个产品按00,01,02,…,99,编号;将二级品的60个产品按00,01,02, …,59,编号;将三级品的40个产品按00,01,02, …,39,编号,采用随机数法,分别从中抽取10个,6个,4个,这样就得到一个容量为20的样本.2、参考答案与解析:分析:按1∶5分段,每段5人,共分59段,每段抽取一人,关键是确定第1段的编号.解:抽样过程是:(1)按照1∶5的比例,应该抽取的样本容量为295÷5=59,我们把259名同学分成59组,每组5人,第一组是编号为1—5的5名学生,第2组是编号为6—10的5名学生,依次下去,59组是编号为291—295的5名学生;(2)采用简单随机抽样的方法,从第一组5名学生中抽出一名学生,不妨设编号为l(l≤5);(3)按照一定的规则抽取样本.抽取的学生编号为l+5k(k=0,1,2,…,58),得到59个个体作为样本,如当k=3时的样本编号为3,8,13,…,288,293.3、参考答案与解析:解:(1)抽签法①先将40件产品编号,从00编到39;②把号码写在形状、大小均相同的号签上;③将号签放在某个箱子中充分搅拌,然后依次从箱子中取出10个号签,按这10个号签上的号码取出对应产品,即得样本.(2)随机数表法①先将40件产品编号,从00编到39;②在随机数表中任选一数,例如第8行第7列的数7;③从选定的数7开始向右读,逐次选出16,19,10,12,07,39,38,33,21,34.即得到容量为10的样本.。