无缝钢管探伤方法

合集下载

浅析无缝钢管生产中的无损探伤方法

浅析无缝钢管生产中的无损探伤方法

浅析无缝钢管生产中的无损探伤方法季晓鹏(中冶东方工程技术有限公司上海分公司,上海201203)摘要:通过对目前几种无缝管生产中常用的无损探伤方法进行分析比较,针对无缝钢管生产中对探伤设备的选择提出合理的建议;并对今后钢管无损检测研究方向提出预测。

关键词: 无损探伤,无缝钢管,方法The Study on Inspection Method Of Seamless Steel TubesJI Xiao-peng(BERIS Engineering And Research (Shanghai) Corporation ,Shanghai,201203 China)Abstract: Through the research and comparison on the inspection method of seamless steel tubes, Reasonable suggestion to the inspection device in the production of seamless steel tube is raised and forecast of research direction on the non-destructive inspection of seamless steel tube in future is made.Key words: non-destructive inspection,seamless steel tube,method前言无损探伤的检测方法有很多种,针对表面缺陷有涡流、漏磁、磁粉、渗透和目测等,可以使用超声、射线等方式进行内部探伤,最新还有声发射、声全息、远红外、中子射线、核磁共振和电磁超声等多种方式。

根据涉及到的物理性能基本可以分成几种,通过射线照射下的物理性能的方式称为射线检测(简称:RT);采用弹性波方式的称为超声检测(简称:UT)包括声全息等;利用钢铁的电磁特性的电磁检测包括磁粉(简称:MT)、涡流(简称:ET)、漏磁(简称;EMI);利用金属表面特性的渗透检测(简称:PT)。

无缝钢管超声波探伤分层缺陷

无缝钢管超声波探伤分层缺陷

无缝钢管超声波探伤分层缺陷摘要:对无缝钢管的分层缺陷批量检测无技术指导,认为分层缺陷不允许存在钢管内外表面关键词:无缝钢管,分层缺陷,超声波,标准规范一、分层缺陷的概念钢管分层缺陷是钢锭和连续铸造中残余缩孔和异常的非金属夹杂物,严重的疏松和偏析等冶炼过程中产生的缺陷,在扎制的过程中被扎成片层状,把上下金属隔开成两层或者多层,以及出现未焊合空隙。

分层缺陷是钢中的冶炼缺陷经过扎制变形后在钢材中的现象,引起无缝钢管分层缺陷的主要原因是钢中异常的非金属夹杂物,多发生在碳钢和低合金钢。

二、分层缺陷的超声检测钢管的分层缺陷用超声波探伤或者超声波测厚仪测量厚度。

一般对于承压类钢管分层缺陷检测,超声波检测使用在线检测水柱法快速检测,可提高工作效率,通过多个测厚直探头纵波检测,探头架轴向前进钢管周向旋转,控制在一定螺距内螺旋式扫查,保证百分之百覆盖率。

在线超声波水柱法用水作为耦合剂,每次使用前需要在人工样管上校准分层缺陷灵敏度,通过手动模式找到分层缺陷,位于界面波与第一次反射波之间,增加灵敏度至波高的60%,再加6个dB值作为扫查灵敏度,设置一个分层闸门,当检测钢管时,在界面波与一次波之间有波形超过闸门时,自动被超声波记录数据,通过喷标等方式定位,观察波形形状并记录,超声波波形图如图1,移动测厚闸门至分层缺陷,可测得分层位于钢管表面的深度。

一般需要超声波手探验证分层缺陷,找到分层缺陷位置后用测厚仪测量厚度可得到分层缺陷的位置并加以验证。

质量检测工作是严瑾的,分层缺陷需要多种超声波检测方式验证。

钢管内存在的分层缺陷一般以点状,在管体上大致呈螺旋形分布,测量厚度约为实际厚度的百分之五十到八十,单个分层缺陷范围小,探伤检测难度大,需要检测人员技术要求不断提高。

水柱法A扫描视图包括A扫描波形显示区、当前通道参数调节区及页面导航栏。

A扫描波形显示区用于显示各通道的A扫描波形以及一些常用参数包括增益、范围、闸当前通道参数调节区用于调节当前选中通道的一些常用参数包括增益、范围、闸门起点、闸门宽度、闸门高度等。

无缝钢管探伤报告以及与直缝焊管的明显区别

无缝钢管探伤报告以及与直缝焊管的明显区别

无缝钢管探伤报告以及与直缝焊管的明显区别无缝钢管工业的生产技术不仅发展迅速,而且推陈出新,无缝钢管生产在钢铁工业中占有不可替代的位置。

钢管生产技术的发展开始于自行车制造业的兴起。

19 世纪初期石油的开发,两次世界大战期间舰船、锅炉、飞机的制造,第二次世界大战后火电锅炉的制造,化学工业的发展以及石油天然气的钻采和运输等,都有力地推动着钢管工业在品种、产量和质量上的发展。

第一:大口径无缝钢管探伤现状分析大口径钢管的特点是直径大,壁厚相对较厚,因此根据这一特点充分利用超声检测内部和涡流检测表面和次表面的特点相结合,可实现“无盲区”探伤。

通过采用“钢管原地旋转,检测探头前进的组合方式”,不仅解决检测题目,还解决缩小占用场地的空间。

因此,海内外对于大口径钢管的探伤,一般采用漏磁法或水压实验。

在海内,尚没有机能良好的适合大口径钢管的漏磁探伤设备出品,一旦使用即需要入口。

入口漏磁探伤设备价格昂贵,对于海内的大多数企业难以接受;而水压试验效率低、劳动强度大,特别是当操纵者责任心不高时,水压检修形同虚设。

可见,实现大口径无缝钢管的探伤已经成为冶金钢管行业亟待解决的课题。

水槽式超声检测是采用钢管螺旋前进式,超声探头固定不动。

通过水槽和被检钢管的底部充分水耦合的特点,保证耦合层的厚度不变。

但是由于超声主要检测内部缺陷对表面和次表面缺陷存在盲区,导致无法检测,再加上采用螺旋前进式,对于12m长的钢管需要占空间30m的场地等不足,一直影响钢管检测方法的选择和推广。

穿过式线圈涡流探测的是钢管表面的一个圆周面。

在采用穿过式线圈的涡流探伤中,被检测钢管的直径越大,线圈探测的圆周面积就越大,信噪比就越低。

恰是基于这个原因,钢管涡流探伤尺度划定,采用穿过式线圈的涡流探伤,其外经尺寸不得大于140mm。

除此之外,在大口径钢管穿过式探伤时,钢管的磁化和退磁等都存在一定的难度。

目前我国冶金行业对高压锅炉用无缝钢管检测主要集中应用在φ160mm以下规格,并大多采用传统的穿过式线圈的涡流探伤或者独立水槽式超声检测方法。

无缝钢管验收标准及质量检验方法

无缝钢管验收标准及质量检验方法

无缝钢管验收标准及质量检验方法1.化学成分分析:化学分析法、仪器分析法(红外C—S仪、直读光谱仪、zcP等)。

①红外C—S仪:分析铁合金,炼钢原材料,钢铁中的C、S元素。

②直读光谱仪:块状试样中的C、Si、Mn、P、S、Cr、Mo、Ni、Cn、A1、W、V、Ti、B、Nb、As、S n、Sb、Pb、Bi③N—0仪:气体含量分析N、O2.钢管几何尺寸及外形检查:①钢管壁厚检查:千分尺、超声测厚仪,两端不少于8点并记录。

②钢管外径、椭圆度检查:卡规、游标卡尺、环规,测出最大点、最小点。

③钢管长度检查:钢卷尺、人工、自动测长。

④钢管弯曲度检查:直尺、水平尺(1m)、塞尺、细线测每米弯曲度、全长弯曲度。

⑤钢管端面坡口角度和钝边检查:角尺、卡板.3.钢管表面质量检查:100%①人工肉眼检查:照明条件、标准、经验、标识、钢管转动。

②无损探伤检查:a. 超声波探伤UT:对于各种材质均匀的材料表面及内部裂纹缺陷比较敏感。

标准:GB/T 5777-1996 级别:C5级b. 涡流探伤ET(电磁感应)主要对点状(孔洞形)缺陷敏感。

标准:GB/T 7735-2004级别:B级c. 磁粉MT和漏磁探伤:磁力探伤,适用于铁磁性材料的表面和近表面缺陷的检测。

标准:GB/T 12606-1999 级别: C4级d. 电磁超声波探伤:不需要耦合介质,可以应用于高温高速,粗燥的钢管表面探伤。

e. 渗透探伤:荧光、着色、检测钢管表面缺陷。

4.钢管理化性能检验:①拉伸试验:测应力和变形,判定材料的强度(YS、TS)和塑性指标(A、Z)纵向,横向试样管段、弧型、圆形试样(¢10、¢12.5)小口径、薄壁大口径、厚壁定标距。

注:试样断后伸长率与试样尺寸有关 GB/T 1760②冲击试验:CVN、缺口C型、V型、功J 值J/cm2标准试样10×10×55(mm)非标试样5×10×55(mm)③硬度试验:布氏硬度HB、洛氏硬度HRC、维氏硬度HV等④液压试验:试验压力、稳压时间、 p=2Sδ/D5.钢管工艺性能检验:①压扁试验:圆形试样 C形试样(S/D>0.15) H=(1+2)S/(∝+S/D)L=40~100mm 单位长度变形系数=0.07~0.08②环拉试验:L=15mm 无裂纹为合格③扩口和卷边试验:顶心锥度为30°、40°、60°④弯曲试验:可代替压扁试验(对大口径管而言)6.无缝钢管金相分析:①高倍检验(微观分析)非金属夹杂物100x GB/T 10561 晶粒度:级别、级差组织:M、B、S、T、P、F、A-S脱碳层:内、外A法评级:A类-硫化物 B类-氧化物 C类-硅酸盐 D-球状氧化 DS类②低倍试验(宏观分析):肉眼、放大镜10x以下a. 酸蚀检验法、b. 硫印检验法(管坯检验,显示低培组织及缺陷,如疏松、偏析、皮下气泡、翻皮、白点、夹杂物等。

钢管超声相控阵探伤技术

钢管超声相控阵探伤技术

钢管超声相控阵探伤技术1 超声相控阵检测原理我们知道,常规超声探头是通过楔块的角度来控制超声波束的辐射角度的。

超声探头晶片上各点发射的超声波传播到楔块界面的时间不同(如图1(a )中A 、B 、C 各点),这些新的点源依次延迟向四周辐射超声波,按照惠更斯原理,它们的波前即形成以一定角度传播的超声波波束,如图1(a )所示。

改变楔块角度即可改变楔块界面上各新点源的延迟时间,进而改变波束的辐射角度。

常规超声探头形成聚焦的原理如图1(b )所示,探头弧形晶片上各点发射的超声波以相同的时间传播到晶片圆心,在圆心汇聚而形成波束聚焦。

改变弧形晶片的曲率即可改变晶片上各点声波传播到圆心的时间,进而改变探头的焦距。

超声相控阵检测是在传统的超声波检测的基础上发展起来的技术,它是将一些超声晶片单元排列起来组成阵列,工作时,按照事先设定的先后顺序,依次将发射脉冲馈电给各晶片单元。

这些晶片发射的超声波束遵循惠更斯原理,其波前形成一定角度向前传播,如图2(a )所示,或汇聚在一点或一条线上,如图2(b )所示。

由此可见,通过控制各发射脉冲的延迟时间,可变换超声波的传播方向和形成聚焦,它们替代了传统超声中楔块的作用和弧形晶片的作用。

这就是相控阵超声波的基本原理。

(a) 声束角度 (b) 聚焦图2 相控阵超声探头的发射(a) 声束角度 (b) 聚焦图1 常规超声探头的发射通过控制晶片阵列的激发时间不仅可以改变超声波的传播方向和使超声波产生聚焦,它还可以使超声波束聚焦在不同的深度上(如图3所示)和改变聚焦波束的偏转角度(如图4所示)。

实际上,在超声相控阵检测中主要就是利用它的两大特点:① 声束角度可控,② 可动态聚焦。

2 钢管超声相控阵检测方法目前,在执行API 标准的石油管的超声波探伤中,要求进行纵伤、横伤,测厚和分层的全覆盖检测。

而在一些技术要求更高情况下还要同时进行斜向伤的检测。

由于超声相控阵检测可以灵活、便捷地控制超声声束的入射角度和聚焦深度,所以无缝钢管中各种取向的缺陷很容易利用超声相控阵方法检测出来。

GBT7735-2004 钢管涡流探伤检验方法

GBT7735-2004 钢管涡流探伤检验方法

http://www.industryinspection.com
GB T 3-20 / 7 5 04 7
. 盈L -A-
N 青
中国工业检验检测网
http://www.industryinspection.com
GB T 3-20 / 7 5 04 7
钢管涡流探伤检验方法
1 范围
本标准规定了无缝钢管和焊接钢管( 埋弧焊管除外) 涡流探伤原理、 探伤要求、 探伤方法、 对比试样、
采用不同的涡流探伤技术时的人工缺陷形状, 规定如下:
a 采用穿过式线圈时, ) 试样人工缺陷形状为通孔; b 采用钢管旋转/ ) 扁平式线圈时, 试样人工缺陷形状为通孔或槽 口; c 采用扇形式线圈涡流探伤检测焊缝时 , ) 试样人工缺陷形状为通孔 。 63 对比试样人工缺陷位置 . 63 1 使用穿过式线圈涡流探伤技术时, 比试样上应有 5个径向钻孔 , . . 对 钻透试样钢管的整个壁厚 。 其中位于试样钢管中部且沿圆周方向的 3个孔应彼此间隔 10, 20试样钢管的钻孔在长度方向上相隔距 离应不小于 20 焊接钢管应有 1 0 mm, 个孔位于焊缝上。另一种办法是 , 在试样钢管中部只钻打 1 个孔 ,
涡流检查方法的局限性及其他说明应当注意的是钢管在进行涡流探伤检查时在靠近检测线圈的钢管表面及近表面上其检测灵敏度为最高由于趋肤效应的影响随着与检测线圈之间距离的增加其检测灵敏度将逐渐减小因此对于同样大小的缺陷处于管内壁的缺陷所反应出来的信号幅度将小于外壁上的缺陷检测设备在探测外表面和内表面上缺陷方面的能力是由多种因素所决定的但是最主要取决于被检钢管的壁厚和涡流激励频率及磁饱和强度在一定的磁化强度条件下施加到检测线圈的激励频率决定了所建立的涡流场强度能够穿透钢管壁厚的深度激励频率越高穿透能力越低反之激励频率越低穿透能力越高在选择仪器参数时对被检钢管导电率导磁率等物理参量的影响也应予考虑确切地说采用磁饱和装置的钢管涡流探伤存在着两种检测机理其一是涡流效应其二是漏磁效应此外采用多频涡流检测技术可以在一定程度上兼顾钢管内外壁的检测灵敏度并可同时抑制某些规则的干扰信号如晃动等

钢管涡流探伤报告记录内容

钢管涡流探伤报告记录内容

钢管涡流探伤报告记录内容1. 实验目的本次实验的目的是对钢管进行涡流探伤,通过检测和记录涡流探伤过程中的信号变化,判断钢管表面是否存在缺陷,并对缺陷进行定位和表征。

2. 实验装置与仪器- 涡流探伤系统:由发电机、控制器和传感器组成;- 钢管样品:长度1m,直径10cm,材质为无缝钢管;- 计算机:用于接收和分析实验数据。

3. 实验步骤3.1 准备工作使用超声波清洗仪对钢管表面进行清洗,确保表面无杂质和污垢。

3.2 连接涡流探伤系统将传感器插入探头,并将探头放置在钢管表面。

将控制器和发电机与计算机连接,确保实验装置处于正常工作状态。

3.3 开始涡流探伤启动涡流探伤系统,设定合适的探伤参数(频率、电流、增益等),并开始记录实验数据。

3.4 数据采集通过控制器,系统开始发送电流到探头,产生电磁感应作用。

利用传感器感应到的信号,采集数据,并通过传输到计算机进行处理和分析。

3.5 缺陷定位和表征根据实验数据的变化趋势和特征,判断钢管表面是否存在缺陷。

若存在缺陷,通过分析数据得出缺陷的位置、大小和类型,并记录下来。

3.6 实验结果分析与比对将实验记录与钢管样品的实际情况进行比对,分析实验结果的准确性和可靠性。

若需要,可以进行多次实验并比对结果,以提高实验的可信度。

4. 数据处理与分析通过对采集到的实验数据进行处理和分析,可以获取以下信息:- 缺陷的位置和长度;- 缺陷的形状和类型(如裂纹、气孔等);- 缺陷的深度和宽度等特征。

5. 实验结论与建议根据实验结果和数据分析,得出以下结论:- 钢管表面存在缺陷,主要为裂纹和气孔;- 缺陷的位置多集中在钢管的两侧和焊接部位;- 缺陷的长度和宽度多在合理范围内,对钢管的使用安全性没有明显影响。

在后续实验中,可以进一步完善实验参数设置,提高涡流探伤系统的灵敏度和准确性。

同时,加强对实验数据的分析能力,提高对缺陷的判断和评估。

无缝钢管涡流探伤和漏磁探伤比较

无缝钢管涡流探伤和漏磁探伤比较

种控制模式:温度模式下,系统根据设定或菜单下载的温度设定来自动控制水的流量;流量模式和手动模式,都必须输入相应的值才行。

F T是流量变送器,它直接把MV1的实际值转化为模拟量输入到PLC进行处理。

5)换向阀(divert valve)EV1、次级阀(secondary valve)EV211-EV213:EV1用来控制冷却水流向水箱或泄流槽内。

在自动模式下,系统根据HMD 信号,自动控制阀门的开与关。

EV211-213次级阀主要是控制喷嘴的水流压力使之达到最大。

在自动状态下(即在RA TIO状态),系统会根据各管路内的水压,自动有序地控制各次级阀的开或关。

6)泄压阀(flume press valve)MV2:位于换向阀的后面,用来控制水流换向到泄压槽内时的水箱回流压力。

一般情况用自动模式(即RA TIO模式),此时系统能自动地根据水流的流量(平均压力/平均流量)来计算压力设定。

7)水清扫阀(water stripper valve)EV3及空气清扫阀(air stripper valve)EV4:EV3和EV4均位于水箱的出口端,它们的功能一是清除轧件从水箱出来时带出的水,二是清除轧件表面的氧化铁皮。

当换向阀开启时,水清扫阀及空气清扫阀也会同时打开,而在换向阀关闭后它们会延时自动关闭。

3 结语MOR G AN系统在高线投产以来,运行稳定、可靠,一般情况下吐丝温度能控制在±10℃的范围内,对高线产品的质量保证起到了至关重要的作用。

但该系统也有不足之处,在温度模式下,控制不是很平稳,这主要是由冷却水压及空气压力的不平稳造成。

而在流量模式和手动模式下,控制效果相当不错。

收稿日期:20050914审稿:朱初标编辑:魏海青 浙江冶金2006年2月 第一期无缝钢管涡流探伤和漏磁探伤比较姚舜刚(浙江省特种设备检验中心 杭州 310020)摘 要:阐述了无缝钢管在轧制过程中产生的表面和内部缺陷的两种探伤方法,即涡流探伤和漏磁探伤。

GB T 5777-1996 无缝钢管超声波探伤检验方法

GB T 5777-1996 无缝钢管超声波探伤检验方法

无缝钢管超声波探伤检验方法Seamless steel pipe and tubing—Methods for ultrasonic testingGB/T5777-1996(eqv ISO9303—1989)前言本标准等效采用国际标准化组织ISO9303:1989(E)《用于压力目的的无缝和焊接(埋弧焊除外)钢管纵向缺陷的全周向超声波检测》,对GB4163—84《不锈钢管超声波探伤方法》和GB5777—86《无缝钢管超声波探伤方法》进行修订并将二者合并。

修订主要内容如下:1.如供需双方无特殊协议,各种用途钢管均改为双向探测,从而可更有效地保证探伤后钢管的实物质量。

2.对比试样上的人工缺陷级别的划分与ISO9303相同。

与GB4163相比,原第三级的7%改为8%,原第五级的15%改为12.5%。

与GB5777相比,增加一个最高级的3%,减少一个最低级的15%,原第四级的12%改为12.5%。

3.在技术内容上与ISO9303相比,增加了很有推广前途的电磁声检测新技术和对探伤设备综合性能的测试要求。

本标准可用于各种用途无缝钢管的超声波探伤检验。

本标准自1997年3月1日实施,同时代替GB4163—84和GB5777—86。

本标准的附录A是标准的附录。

本标准由冶金工业部提出。

本标准由全国钢标准化技术委员会归口。

本标准由首钢总公司特殊钢公司、上海第五钢厂负责起草。

本标准主要起草人:杨学智、刘丁柱、陈燕、王槐祥、倪秀美。

本标准1986年1月首次发布。

国际标准前言ISO(国际标准化组织)是一个国家标准团体(ISO成员体)的世界范围的联盟。

国际标准的准备工作通常是自始至终由ISO专业委员会进行。

每个成员体所感兴趣的题目属于哪个专业委员会即在该委员会中建立适当的组织。

国际组织、政府和非政府、以及ISO中的联络人,同样地参加工作。

ISO与国际电工技术委员会(IEC)合作仔细地研究电工技术标准化中的所有问题。

国际标准草案,同国际标准一样在通过ISO会议正式通过之前先由专业委员会成员体批准。

无缝钢管超声波探伤检验方法【整编】

无缝钢管超声波探伤检验方法【整编】

无缝钢管超声波探伤检验方法(一)无缝钢管超声波探伤检验方法1、范围规定了无缝钢管超声波探伤的原理、方法、对比试样、设备、条件、步骤、结果评定和报告。

适用于各种用途无缝钢管纵向缺陷和横向缺陷的超声波检验。

所述探伤方法主要用于检验破坏了钢管金属连续性的缺陷,但不能有效地检验层状缺陷。

适用于外径等于或大于6mm且壁厚与外径之比不大于0.2的钢管。

2、引用标准YB4082-92钢管自动超声探伤系统综合性能测试方法ZBY230-84A型脉冲反射式超声波探伤仪通用技术条件3、探伤原理超声波探头可实现电能和声能之间的相互转换以及超声波在弹性介质中传播时的物理特性是钢管超声波探伤原理的基础。

定向发射的超声波束在管中传播时遇到缺陷,既产生波的反射又产生波的衰减。

经过探伤仪的信号处理,如采用反射法探伤可获得缺陷回波信号,如采用穿透法探伤可凭借透过波的衰减程度获得缺陷信号。

二者均可由仪器给出定量的缺陷指示。

利用压电效应或电磁感应原理可在管内激发不同类型的超声波。

因此,压电超声和电磁超声均可用于管材超声波检验。

但电磁超声仅适用于铁磁性材料。

4、探伤方法(1)采用横波(或板波)反射法(或穿透法)在探头和钢管相对移动的状态下进行自动检验,只有特殊的大口径钢管才可进行手工检验。

自动或手工检验时均应保证声束对管子全部表面的扫查。

注:自动检验时对钢管两端将不能有效地检验,但此区域应控制在200mm以内。

(2)检验纵向缺陷时声束在管壁内沿圆周方向传播;检验横向缺陷时声束在管壁内滑管轴方向传播。

纵向和横向缺陷的检验均应在管子的两个相反方向上进行。

(3)在需方未提出检验横向缺陷时供方只检验纵向缺陷。

经供需双方协商同意,纵向和横向缺陷的检验均可只在管子的一个方向上进行。

(4)自动或手工检验时均应选用耦合效果良好并无损于钢管表面的耦合介质。

5、对比试样(1)用途对比试样用于探伤设备的调试、综合性能测试和使用过程中的定时校验。

对比试样上的人工缺陷是评定自然缺陷当量的依据,但不应理解为被检出的自然缺陷与人工缺陷的信号幅度相等时二者的尺寸必然相等。

无缝钢管超声波探伤检验方法

无缝钢管超声波探伤检验方法

无缝钢管超声波探伤检验方法探伤原理超声波探头可实现电能和声能之间的相互转换以及超声波在弹性介质中传播时的物理特性是钢管超声波探伤原理的基础。

定向发射的超声波束在管中传播时遇到缺陷,既产生波的反射,又产生波的衰减。

经过探伤仪的信号处理,如采用反射法探伤,可获得缺陷回波信号,如采用穿透法探伤,可凭借透过波的衰减程度获得缺陷信号。

二者均可由仪器给出定量的缺陷指示。

利用压电效应或电磁感应原理可在管内激发不同类型的超声波。

因此,压电超声和电磁超声均可用于管材超声波检验。

但电磁超声仅适用于铁磁性材料。

探伤方法采用横波(或板波)反射法(或穿透法)在探头和钢管相对移动的状态下进行自动检验,只有特殊的大口径钢管才可进行手工检验。

自动或手工检验时均应保证声束对管子全部表面的扫查。

注:自动检验时对钢管两端将不能有效地检验,但此区域应控制在200mm以内。

检验纵向缺陷时声束在管壁内沿圆周方向传播;检验横向缺陷时声束在管壁内沿管轴方向传播。

纵向和横向缺陷的检验均应在管子的两个相反方向上进行。

在需方未提出检验横向缺陷时供方只检验纵向缺陷。

经供需双方协商同意,纵向和横向缺陷的检验均可只在管子的一个方向上进行。

自动或手工检验时均应选用耦合效果良好、并无损于钢管表面的耦合介质。

用途对比试样用于探伤设备的调试、综合性能测试和使用过程中的定时校验。

对比试样上的人工缺陷是评定自然缺陷当量的依据,但不应理解为被检出的自然缺陷与人工缺陷的信号幅度相等时二者的尺寸必然相等。

材料制作对比试样用钢管与被检验钢管应具有相同的名义尺寸并具有相似的化学成分、表面状况、热处理状态和声学性能。

制作对比试样用钢管上不得有影响探伤设备综合性能测试的自然缺陷。

长度对比试样的长度应满足探伤方法和探伤设备的要求。

人工缺陷形状检验纵向缺陷和横向缺陷所用的人工缺陷应分别为平行于管轴的纵向槽口和垂直于管轴的横向槽口,其断面形状均可为矩形或V 形(见图1和图2)。

矩形槽口的两个侧面应相互平行且垂直于槽口底面。

探伤方法、探伤标准及适用范围介绍

探伤方法、探伤标准及适用范围介绍
探伤标准及适用范围
序号 1 探伤方法 适用范围 备注 UT、MT、 本标准适用于在天津ALSTOM生产的所有焊接结构件,但须经业主或其授权业主 TI-IE-010A 天津ALSTOM 焊缝分类及检验 PT、RT 代表同意 本标准适用于母材厚度不小于8mm 的铁素体类钢全焊透熔化焊对接焊缝脉冲反射 钢焊缝手工超声波探 法手工超声波检验, 表面粗糙度要求 GB11345-1989 国标 伤方法和探伤结果分 UT 本标准不适用于铸钢及奥氏体不锈钢焊缝;外径小于159mm的钢管对接焊缝;内 ≤6.3μ m 级 径小于等于200mm的管座角焊缝及外径小于250mm和内外径之比小于80%的纵 向焊缝 本部分适用于承压设备受压元件的制造、安装、在钢检测中对接焊接接头的射线 承压设备无损检测 检测。用于制作焊接接头的金属构材料包括碳素钢、低合金钢、不锈钢、铜及铜 JB/T4730.2-2005 机械行业标准 RT 第2部分:射线检测 合金、铝及铝合金、钛及钛合金、镍及镍合金。承压设备的有关支承件和结构件 的对接焊接接头的射线检测,也可参照使用 标准号 标准种类 标准名称
16 ASME第V卷
ASME
ASME锅炉及压力容器 UT、MT、 标准适用于检测材料、焊缝和加工零部件的表面和内在的瑕疵 无损检测 PT、RT
13 CCH70-3
水力机械铸钢件检验 规范
14 GB/T9443-2007
国标
铸钢件渗透探伤及缺 陷显示迹痕的评级方 法
15 GB/T9444-2007
国标
铸钢件磁粉探伤及质 量评级方法
PT:1级≤6.3μ m,2~5级≤12.5 MT:1 UT、MT、 本标准适用于铸钢件检验。PT探测表面开口型缺陷;MT探测表面及表面下的缺 μ m 级≤6.3μm,2~4 PT、RT 陷;UT、RT检测内部缺陷 级≤12.5μm ,5级 ≤25μ m UT:≤6.3μ m 001、01、1级表 面粗糙度要求≤ 本标准规定了铸钢件渗透探伤方法及缺陷显示迹痕的评级方法! PT 6.3μm,2、3级≤ 本标准适用于铸钢件表面开口缺陷的渗透探伤 50μ m,4、5级 ≤80μ m 001、01级≤3.2 μ m,1级≤6.3μ 本标准适用于导磁钢铸件表面及近表面缺陷的检验和质量评级,当磁场强度等于 m,2级≤12.5μ MT 2.4KA/m时,材料中磁感应强度大于1T的铸钢称为导磁钢" m,3级≤12.5μ m,4级≤50μ m,5级≤100μ m

钢管的无损探伤

钢管的无损探伤

第八章钢管的无损探伤无损探伤是在不损害被检对象的前提下,探测其内部或外表缺陷的现代化检验技术,近年来已被广泛应用于钢管生产中。

用于无缝钢管生产中的无损探伤方法主要有超声波探伤、磁力探伤、涡流探伤以及渗透探伤等。

各种探伤方法都有其一定的使用范围。

随着对钢管质量要求的不断提高,有时需同时使用几种方法进行探伤,以对检验结果进行综合的分析、判断。

几种主要探伤方法的特点及比较见表。

无损探伤在无缝钢管生产中的应用举例如下:)热轧无缝钢管生产)碳钢、合金钢管的冷加工第八篇最新无缝钢管质量控制与检验)不锈钢管的冷加工表钢管无损探伤方法的比较项目超声波法涡流法磁力法磁粉漏磁渗透法基本原理缺陷对超声波的反射和吸收缺陷处漏电流的变化引起感应磁场的变化表面缺陷产生的漏磁对磁粉的吸引表面缺陷产生的漏磁的直接检测显示液对表面裂纹渗透探伤部位表面,内部表面,内部表面(限于磁性材料)表面(限于磁性材料)表面灵敏度很高高较高较高高检测纪录及显示方式自动在线,立即显示自动在线,立即显示着色磁粉显示或荧光磁粉在暗室显示自动在线,立即显示着色液显示或荧光液在暗室显示第一节超声波探伤超声波探伤是一种最基本的无损探伤方法。

它的优点是能发现其他探伤方法不能发现的内部缺陷,能准确地确定缺陷的位置,而且操作简单、迅速。

这种方法的缺点是,不能判断缺陷的性质,对钢管表面粗糙度要求达’’微米。

一、基本原理超声波探伤通常使用’兆赫的高频声波。

声波的频率高,其指向性好,即具有向单方向发射的特性;波长短,小的缺陷也能很好地反射;距离的分辨??’??第八章钢管的无损探伤能力好,缺陷的分辨率高。

超声波探伤用的高频超声波通常用压电材料产生,如水晶、钛酸钡、锆钛酸铅和硫酸锂。

使用前把压电材料切成能够在一定频率下共振的片子即晶片。

将晶片两面都镀上银,作为电极,把高频电压加到这两个电极上时,晶片就在厚度方向产生伸缩,这样就把电振动转变成机械振动而发生超声波(图)。

图超声波的发生电极;电压;晶片反之,将高频机械振动(超声波)传到晶片上时,晶片就被振动,在晶片的两极间产生频率与超声波相等、强度与超声波成正比例的高频电压,这就是超声波的接收。

无缝钢管探伤方法

无缝钢管探伤方法

无缝钢管探伤方法
无缝钢管,那可是工业领域的重要角色啊!但你知道怎么给它们探伤吗?这可不像给人做体检那么简单哦!
无损探伤就像是给无缝钢管做一次超级侦探行动。

射线探伤,就好像给钢管拍了一张超级 X 光照片,任何内部的小瑕疵都别想逃过它的“法眼”。

这不就像我们能透过云层看到大地一样神奇吗?
还有超声探伤,它就像是给钢管发送了特殊的声波信号,通过回波来判断有没有问题。

这多像蝙蝠在黑暗中利用声波来辨别方向和寻找猎物呀!
磁粉探伤呢,就像是给钢管洒上了一层神奇的“魔法粉末”,如果有裂缝之类的缺陷,这些粉末就会乖乖地聚集在那里,让缺陷无所遁形。

渗透探伤则像是给钢管涂了一层特殊的“颜料”,能够让微小的缺陷都显示出来。

每种探伤方法都有自己的独特之处,就像我们每个人都有自己的个性一样!它们互相配合,共同确保无缝钢管的质量。

难道不是吗?如果没有这些探伤方法,我们怎么能放心地使用无缝钢管呢?它们可能会在关键时刻出现问题,那可就糟糕了呀!所以说,这些探伤方法是多么重要啊!它们是保障我们工业安全的重要手段,是不能被忽视的。

我们应该重视它们,不断地改进和完善它们,让无缝钢管的质量更上一层楼!让我们的工业发展得更加稳健!。

BS EN10246-3无缝 焊接钢管涡流探伤.

BS EN10246-3无缝 焊接钢管涡流探伤.

钢管非破坏性试验---第3部分: 无缝钢管和焊接钢管(埋弧焊除外)的自动涡流探伤欧洲标准EN 10246-3: 1999 为英国标准状态.国家标准前言该英国标准为官方英语版本的EN10246-3:1999.该英国标准包含BS 3889-1:1983的元素. 标准附件A中完整列出EN 10246的部分. 该标准部分代替了BS 3889-1:1983, 并且当所有相关部分被发布时BS 3889-1: 1983将被撤回.英国参与的准备工作被委托给技术委员会,承压用钢的ISE/73, 承压钢管的ISE/73/1, 责任如下:---协助咨询者理解文本---向负责的欧洲委员会提交任何关于解释或改变建议的查询, 并保持英国的利益通报---监视相关的国际和欧洲发展并在英国发布它们代表该委员会的组织架构清单可以通过向委员会秘书要求获得相关引用本文所提及到的国际或欧洲出版实施的英国标准可以在BSI 标准中”国际标准对照索引”中找到, 或者通过使用BSI 标准文件电子目录的”查找”设置找到.仅英国标准不意味着包括合同所有必须的条款.符合英国标准本身并不赋予法律义务的豁免权页面摘要这份文件包括封面, 封二和EN标准的标题页第2至第14页, 封三及封底文档最后一次发行时显示BSI版权声明发布以来下达的修改修改编号日期意见钢管非破坏性试验---第3部分: 无缝钢管和焊接钢管(埋弧焊除外)的自动涡流探伤该欧洲标准于1999年10月6日被CEN通过CEN成员必须遵守CEN/CENELEC 内部规定,保证赋予本欧洲标准的国家标准状态没有发生改变.该欧洲标准拥有三种官方版本(英语, 法语, 德语). 其他任何语言的版本需由CEN成员负责翻译并且知悉中央秘书处的状态和官方版本一致.以CEN 成员为国家标准主体的有, 澳大利亚, 比利时, 捷克, 丹麦, 芬兰, 法国, 德国, 希腊, 冰岛, 爱尔兰, 意大利, 卢森堡, 荷兰, 挪威, 葡萄牙, 西班牙, 瑞典, 瑞士和英国.内容前言 (3)1 范围 (4)2 引用标准 (4)3 一般要求 (4)4 试验方法 (4)5 参考标准 (7)6 设备校准和检查 (10)7 接收标准 (11)8 检测报告 (12)附件A(信息) EN 10246标准的钢管非破坏性试验部分的表格 (13)附件B(信息) 与涡流探伤方法有联系的限制准则 (14)本欧洲标准已由技术委员会ECISS/TC 29 “钢管和钢管用配件”处编制, 其秘书由UNI担任.本欧洲标准将被赋予国家标准地位且在2000年5月前以相同文本附件的形式发布. 和国家标准有冲突的将在2000年5月前被撤销.本欧洲标准已由欧盟委员会和欧洲自由贸易协会按CEN授权制备. 本欧洲标准被认为是这些应用和产品标准的支持标准. 这些应用和产品本身支持一些新方法指令的安全性要求, 同时提供参考给本欧洲标准.按照CEN/CENELEC内部规定, 下面国家标准的组织成员必须遵守本欧洲标准: 澳大利亚, 比利时, 捷克, 丹麦, 芬兰, 法国, 德国, 希腊, 冰岛, 爱尔兰, 意大利, 卢森堡, 荷兰, 挪威, 葡萄牙, 西班牙, 瑞典, 瑞士和英国.这部分EN 10246 标准规定了无缝管和焊管自动涡流试验的要求, 除埋弧焊管的探伤外. 本标准规定了接收等级, 过程校准并且给出了测试局限的指导.这部分EN 10246标准应用于外径大于等于4mm管件的检查.欧洲标准EN 10246 “钢管的非破坏性试验”包含部分体现在附件A中.2 引用标准这部分EN 10246 包含了已标记日期和未标记日期的参考文件, 来源于其他出版文献. 这些引用标准被引用于文本中适当的地方, 并且在后面列出其出版文献. 对已标记日期的, 近期有变更或任何应用于EN 10246这部分标准的出版文献的变更, 只有当文件变更或修改时才被包含. 对于未标记日期的参考, 出版物最新版本将被引出应用.EN 20286-2 极限和适用情况的ISO系统–第2部分: 标准公差等级表和孔及杆极限偏差表(ISO 286-2: 1988)ENV 10220 无缝管和焊接管- 尺寸及单位长度重量.ISO 235 Parallel shank jobber and stub series drills and Morse taper shank drills.3一般要求3.1这部分EN 10246标准覆盖的涡流试验通常在管件完成初加工过程后实施.3.2用于试验的管件应当被充分校直并且没有外界杂物影响试验的有效性.4试验方法4.1管件将采用以下适当的技术通过涡流试验方法进行探伤:a)同芯带卷技术- 全范围(见图表1);b)管件旋转/展平带卷技术- 全范围(见图表2);c)分割带卷技术- 仅焊接管(见图表3).意识到管件两端可能有一短截无法测试. 任何未测试的端部将按照适用的产品标准要求处理.注意: 涡流试验方法的限制指导见附件B.4.2当测试的管件使用同芯带卷技术时, 最大测试管件外径严格规定为177.8 mm.测试中的相关速度变化范围不得超过+ 10%.注意1: 这里强调测试灵敏度最大值位于邻近测试带卷的管件表面并且随着壁厚的增加而减小(见附件B).注意2: 结构用方管和矩形管, 其最大尺寸的对角线为177.8mm时可用此方法进行测试.4.3当测试的管件使用旋转/展平带卷技术时, 管件和展平的带卷应当相对移动, 那样整个管件表面能被扫描到.测试中的相对移动速度变化不得超过+ 10.注意: 这里强调只有外表面破裂缺陷能被这种技术探测到.4.4当测试的管件使用分割带卷技术时, 测试带卷应当保持焊缝成适合队列, 那样整个焊缝能被扫描到. 这里对使用此技术的最大管件外径没有严格要求.测试中的相应速度变化不得超过+ 10%.注意: 这里强调测试灵敏度最大值位于邻近测试带卷的管件表面并且随着壁厚的增加而减小(见附件B).4.5 设备应当有能力区分可接受或有疑问的管件, 通过将喷码和/或分拣系统联系到触发/警报水平.1= 副线圈1 2=基本带卷3= 副线圈2 4=管件注意: 上面图表由多带卷输送简化而来, 它包括例如分离基本带卷, 差速带卷, 校准带卷图表1: 同芯带卷技术简化图(a) 旋转展平带卷技术( b) 旋转管件技术(线性管件通过旋转展平带卷集中移动) (管件螺旋运动过程中,线性展平带卷沿管件长度或固定带卷方向穿过)1= 展平带卷旋转; 2=展平带卷; 3=管件4= 管件旋转5=固定展平带卷6=转动辊注意: a) 和b)中的展平带卷可以有不同形态, 例如: 单带卷, 不同配置的多带卷, 取决于所用的设备和其他因素.图表2: 旋转/展平带卷技术简化图(螺旋扫描)1= 焊缝2=副线圈3=基本线圈4= 副线圈2 5=管件6= 带卷注意: 上面图表中的带卷分割可以有不同形态, 取决于所用设备和将要检测的产品.图表3: 焊缝的分割带卷测试方法简化图5参考标准5.1通则5.1.1这部分EN 10246标准中定义的参考标准为校准非破坏性试验设备的便捷标准. 这份标准的尺寸不应被翻译成用这些设备可探测缺陷的中等尺寸.5.1.2使用参考标准出台成管状试件的检测设备应进行校准. 试验样件应指定相同的管件直径, 壁厚和表面粗糙度, 并具有相似的电磁特性.注意: 在特殊案例中, 例如测试热管或使用包含连续生产线, 可以修改校准或使用校准检查程序, 按照协议.5.1.3各种测试技术所用参考标准如下:a)采用同芯带卷技术时参考孔定义如5.2b)采用分割带卷技术时参考孔定义如5.3c)采用旋转/展平带卷技术时参考孔定义如5.45.2同芯带卷技术5.2.1当使用同芯带卷技术时, 测试工件应当含有三个圆孔, 圆孔呈放射状钻穿全工件厚度. 这三个孔圆周分布且每个孔之间间隔120度, 同时在试件的端部须有足够的纵向分离, 以便获得清晰可辨的信号指示.或者, 只有一个孔时应钻通全部试件厚度, 同时在校准和校准检查中, 工件应通过与定位孔成0度, 9度, 18度和27度的设备.5.2.2用来生产这些孔的钻具直径取决于表1所示管件的外径.参考孔的直径应当被验证并且钻具直径小于1mm时指定钻孔直径不能超过0.1mm, 钻具直径大于或等于1mm时指定钻孔直径不能超过0.2mm.表1: 接收等级和相应的管件直径尺寸的外头生产基准孔(同芯带卷技术)指定外径D1)mm钻具尺寸接收等级2) mm 指定外径D1)mm钻具尺寸接收等级2)mmE1H E2H E3H E4HD<=1010<D<=20 20<D<=44.5 44.5<D<=76.1 76.1<D<=177.8 177.8<D 3)0.60.70.81.01.21.20.70.81.01.21.41.40.81.01.31.62.02.0D<=26.926.9<D<=48.348.3<D<=63.563.5<D<=114.3114.3<D<=139.7139.7<D<=177.8177.8<D 3)1.21.72.22.73.23.73.71)按照ENV 102202)公差按照ISO 235(工作系列) 和EN 20286-2(h8)3)该表格仅应用于分割带卷技术5.3分割带卷技术5.3.1当使用同芯带卷技术时, 测试工件应当含有一个单独圆孔, 圆孔呈放射状钻穿全工件厚度.5.3.2基准孔应与试件端部有充分距离, 以便获得清晰可辨的信号指示.5.3.3用来生产这些孔的钻具直径取决于表1所示管件的外径. 基准孔应按表5.2进行验证.5.4旋转展平带卷技术5.4.1当使用旋转展平带卷技术时, 试件的外表面应包含一个纵向参考缺口.5.4.2基准孔应与试件端部有充分距离, 以便获得清晰可辨的信号指示.5.4.3参考缺口应为”N”形(参见图4), 并应平行于管件轴向. 两边应平齐, 同时底部与边部成直角.w= 宽度d=深度图表4: “N”形缺口5.4.4参考缺口应通过机械加工、电火花腐蚀或其他方法来成形.注意: 可以是圆形底部或者缺口底角是圆形的.5.4.5缺口尺寸应当如下:a)宽度w(见图表4)不应大于参考缺口的深度b)深度d(见图表4)应在表2中给出, 具有以下限制:-最小缺口深度: 0.5 mm-最大缺口深度: 1.5 mmc) 缺口深度公差参考+ 15%.d) 长度应当至少为每个独立传感器宽度的两倍,最大50mm。

BS EN10246-3无缝 焊接钢管涡流探伤

BS EN10246-3无缝 焊接钢管涡流探伤

钢管非破坏性试验---第3部分: 无缝钢管和焊接钢管(埋弧焊除外)的自动涡流探伤欧洲标准EN 10246-3: 1999 为英国标准状态.国家标准前言该英国标准为官方英语版本的EN10246-3:1999.该英国标准包含BS 3889-1:1983的元素. 标准附件A中完整列出EN 10246的部分. 该标准部分代替了BS 3889-1:1983, 并且当所有相关部分被发布时BS 3889-1: 1983将被撤回.英国参与的准备工作被委托给技术委员会,承压用钢的ISE/73, 承压钢管的ISE/73/1, 责任如下:---协助咨询者理解文本---向负责的欧洲委员会提交任何关于解释或改变建议的查询, 并保持英国的利益通报---监视相关的国际和欧洲发展并在英国发布它们代表该委员会的组织架构清单可以通过向委员会秘书要求获得相关引用本文所提及到的国际或欧洲出版实施的英国标准可以在BSI 标准中”国际标准对照索引”中找到, 或者通过使用BSI 标准文件电子目录的”查找”设置找到.仅英国标准不意味着包括合同所有必须的条款.符合英国标准本身并不赋予法律义务的豁免权页面摘要这份文件包括封面, 封二和EN标准的标题页第2至第14页, 封三及封底文档最后一次发行时显示BSI版权声明发布以来下达的修改钢管非破坏性试验---第3部分: 无缝钢管和焊接钢管(埋弧焊除外)的自动涡流探伤该欧洲标准于1999年10月6日被CEN通过CEN成员必须遵守CEN/CENELEC 内部规定,保证赋予本欧洲标准的国家标准状态没有发生改变.该欧洲标准拥有三种官方版本(英语, 法语, 德语). 其他任何语言的版本需由CEN成员负责翻译并且知悉中央秘书处的状态和官方版本一致.以CEN 成员为国家标准主体的有, 澳大利亚, 比利时, 捷克, 丹麦, 芬兰, 法国, 德国, 希腊, 冰岛, 爱尔兰, 意大利, 卢森堡, 荷兰, 挪威, 葡萄牙, 西班牙, 瑞典, 瑞士和英国.内容前言 (3)1 范围 (4)2 引用标准 (4)3 一般要求 (4)4 试验方法 (4)5 参考标准 (7)6 设备校准和检查 (10)7 接收标准 (11)8 检测报告 (12)附件A(信息) EN 10246标准的钢管非破坏性试验部分的表格 (13)附件B(信息) 与涡流探伤方法有联系的限制准则 (14)本欧洲标准已由技术委员会ECISS/TC 29 “钢管和钢管用配件”处编制, 其秘书由UNI担任.本欧洲标准将被赋予国家标准地位且在2000年5月前以相同文本附件的形式发布. 和国家标准有冲突的将在2000年5月前被撤销.本欧洲标准已由欧盟委员会和欧洲自由贸易协会按CEN授权制备. 本欧洲标准被认为是这些应用和产品标准的支持标准. 这些应用和产品本身支持一些新方法指令的安全性要求, 同时提供参考给本欧洲标准.按照CEN/CENELEC内部规定, 下面国家标准的组织成员必须遵守本欧洲标准: 澳大利亚, 比利时, 捷克, 丹麦, 芬兰, 法国, 德国, 希腊, 冰岛, 爱尔兰, 意大利, 卢森堡, 荷兰, 挪威, 葡萄牙, 西班牙, 瑞典, 瑞士和英国.这部分EN 10246 标准规定了无缝管和焊管自动涡流试验的要求, 除埋弧焊管的探伤外. 本标准规定了接收等级, 过程校准并且给出了测试局限的指导.这部分EN 10246标准应用于外径大于等于4mm管件的检查.欧洲标准EN 10246 “钢管的非破坏性试验”包含部分体现在附件A中.2 引用标准这部分EN 10246 包含了已标记日期和未标记日期的参考文件, 来源于其他出版文献. 这些引用标准被引用于文本中适当的地方, 并且在后面列出其出版文献. 对已标记日期的, 近期有变更或任何应用于EN 10246这部分标准的出版文献的变更, 只有当文件变更或修改时才被包含. 对于未标记日期的参考, 出版物最新版本将被引出应用.EN 20286-2 极限和适用情况的ISO系统–第2部分: 标准公差等级表和孔及杆极限偏差表(ISO 286-2: 1988)ENV 10220 无缝管和焊接管- 尺寸及单位长度重量.ISO 235 Parallel shank jobber and stub series drills and Morse taper shank drills.3一般要求3.1这部分EN 10246标准覆盖的涡流试验通常在管件完成初加工过程后实施.3.2用于试验的管件应当被充分校直并且没有外界杂物影响试验的有效性.4试验方法4.1管件将采用以下适当的技术通过涡流试验方法进行探伤:a)同芯带卷技术- 全范围(见图表1);b)管件旋转/展平带卷技术- 全范围(见图表2);c)分割带卷技术- 仅焊接管(见图表3).意识到管件两端可能有一短截无法测试. 任何未测试的端部将按照适用的产品标准要求处理.注意: 涡流试验方法的限制指导见附件B.4.2当测试的管件使用同芯带卷技术时, 最大测试管件外径严格规定为177.8 mm.测试中的相关速度变化范围不得超过+ 10%.注意1: 这里强调测试灵敏度最大值位于邻近测试带卷的管件表面并且随着壁厚的增加而减小(见附件B).注意2: 结构用方管和矩形管, 其最大尺寸的对角线为177.8mm时可用此方法进行测试.4.3当测试的管件使用旋转/展平带卷技术时, 管件和展平的带卷应当相对移动, 那样整个管件表面能被扫描到.测试中的相对移动速度变化不得超过+ 10.注意: 这里强调只有外表面破裂缺陷能被这种技术探测到.4.4当测试的管件使用分割带卷技术时, 测试带卷应当保持焊缝成适合队列, 那样整个焊缝能被扫描到. 这里对使用此技术的最大管件外径没有严格要求.测试中的相应速度变化不得超过+ 10%.注意: 这里强调测试灵敏度最大值位于邻近测试带卷的管件表面并且随着壁厚的增加而减小(见附件B).4.5 设备应当有能力区分可接受或有疑问的管件, 通过将喷码和/或分拣系统联系到触发/警报水平.1= 副线圈1 2=基本带卷3= 副线圈2 4=管件注意: 上面图表由多带卷输送简化而来, 它包括例如分离基本带卷, 差速带卷, 校准带卷图表1: 同芯带卷技术简化图(a) 旋转展平带卷技术( b) 旋转管件技术(线性管件通过旋转展平带卷集中移动) (管件螺旋运动过程中,线性展平带卷沿管件长度或固定带卷方向穿过)1= 展平带卷旋转; 2=展平带卷; 3=管件4= 管件旋转5=固定展平带卷6=转动辊注意: a) 和b)中的展平带卷可以有不同形态, 例如: 单带卷, 不同配置的多带卷, 取决于所用的设备和其他因素.图表2: 旋转/展平带卷技术简化图(螺旋扫描)1= 焊缝2=副线圈3=基本线圈4= 副线圈2 5=管件6= 带卷注意: 上面图表中的带卷分割可以有不同形态, 取决于所用设备和将要检测的产品.图表3: 焊缝的分割带卷测试方法简化图5参考标准5.1通则5.1.1这部分EN 10246标准中定义的参考标准为校准非破坏性试验设备的便捷标准. 这份标准的尺寸不应被翻译成用这些设备可探测缺陷的中等尺寸.5.1.2使用参考标准出台成管状试件的检测设备应进行校准. 试验样件应指定相同的管件直径, 壁厚和表面粗糙度, 并具有相似的电磁特性.注意: 在特殊案例中, 例如测试热管或使用包含连续生产线, 可以修改校准或使用校准检查程序, 按照协议.5.1.3各种测试技术所用参考标准如下:a)采用同芯带卷技术时参考孔定义如5.2b)采用分割带卷技术时参考孔定义如5.3c)采用旋转/展平带卷技术时参考孔定义如5.45.2同芯带卷技术5.2.1当使用同芯带卷技术时, 测试工件应当含有三个圆孔, 圆孔呈放射状钻穿全工件厚度. 这三个孔圆周分布且每个孔之间间隔120度, 同时在试件的端部须有足够的纵向分离, 以便获得清晰可辨的信号指示.或者, 只有一个孔时应钻通全部试件厚度, 同时在校准和校准检查中, 工件应通过与定位孔成0度, 9度, 18度和27度的设备.5.2.2用来生产这些孔的钻具直径取决于表1所示管件的外径.参考孔的直径应当被验证并且钻具直径小于1mm时指定钻孔直径不能超过0.1mm, 钻具直径大于或等于1mm时指定钻孔直径不能超过0.2mm.5.3分割带卷技术5.3.1当使用同芯带卷技术时, 测试工件应当含有一个单独圆孔, 圆孔呈放射状钻穿全工件厚度.5.3.2基准孔应与试件端部有充分距离, 以便获得清晰可辨的信号指示.5.3.3用来生产这些孔的钻具直径取决于表1所示管件的外径. 基准孔应按表5.2进行验证.5.4旋转展平带卷技术5.4.1当使用旋转展平带卷技术时, 试件的外表面应包含一个纵向参考缺口.5.4.2基准孔应与试件端部有充分距离, 以便获得清晰可辨的信号指示.5.4.3参考缺口应为”N”形(参见图4), 并应平行于管件轴向. 两边应平齐, 同时底部与边部成直角.w= 宽度d=深度图表4: “N”形缺口5.4.4参考缺口应通过机械加工、电火花腐蚀或其他方法来成形.注意: 可以是圆形底部或者缺口底角是圆形的.5.4.5缺口尺寸应当如下:a)宽度w(见图表4)不应大于参考缺口的深度b)深度d(见图表4)应在表2中给出, 具有以下限制:-最小缺口深度: 0.5 mm-最大缺口深度: 1.5 mmc) 缺口深度公差参考+ 15%.d) 长度应当至少为每个独立传感器宽度的两倍,最大50mm。

无缝钢管探伤检测标准

无缝钢管探伤检测标准

无缝钢管探伤检测标准
无缝钢管的探伤检测包括多个方面,具体的检测标准和流程可能因不同的应用场景和材料而有所不同。

以下是一些常见的检测标准:
1. 钢管弯曲度检查:可以采用细线或仪器测量每米或全长的弯曲度。

2. 钢管端面角度和钝边检查:可以使用角尺或其他测量工具进行测量。

3. 钢管表面质量检查:可以通过人工肉眼检查、无损探伤等方法进行检测。

其中,无损探伤包括超声波探伤、涡流探伤、磁粉探伤、漏磁探伤、电磁超声波探伤和渗透探伤等。

这些方法可以检测出钢管表面和近表面的缺陷,如裂纹、孔洞、夹杂物等。

4. 钢管理化性能检验:包括拉伸试验、弯曲试验、冲击试验、硬度试验等,以测定钢管的机械性能和工艺性能。

这些试验可以判定材料的强度、塑性、韧性、硬度等指标,以及评估钢管在加工和使用过程中的性能表现。

具体的检测标准可以根据相关行业标准和规范进行选择和执行,以确保无缝钢管的质量和可靠性。

无缝钢管超声波探伤操作流程

无缝钢管超声波探伤操作流程

无缝钢管超声波探伤操作流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!无缝钢管超声波探伤是一种无损检测方法,通过对无缝钢管进行超声波探伤,可以发现钢管内部的裂纹、夹杂物、缩孔等缺陷,确保钢管的质量和安全。

无缝钢管探伤检测报告

无缝钢管探伤检测报告

无缝钢管探伤检测报告一、引言无缝钢管是广泛用于石油、天然气、化工等行业的重要材料。

为了确保无缝钢管的质量和安全性能,必须进行探伤检测。

本报告将详细介绍无缝钢管探伤检测的步骤和方法。

二、准备工作1.器材准备:无缝钢管探伤检测需要使用超声波探伤仪、磁粉探伤仪等器材。

在进行探伤前,要确保这些器材的正常运行并进行校准。

2.检测区域准备:将待检测的无缝钢管清洁干净,并将其放置在适当的位置,以便进行全面的探伤检测。

三、超声波探伤检测1.设置超声波探伤仪:根据无缝钢管的材质和厚度,调整超声波探伤仪的参数。

通常情况下,选择适当的频率和增益,并确保探头与钢管表面的接触良好。

2.进行超声波探伤:将超声波探头沿着钢管表面缓慢移动,同时观察超声波探伤仪上的显示。

如有异常信号出现,即可能存在缺陷或裂纹。

3.记录异常信号:对于检测到的异常信号,应及时记录其位置、形状和大小等信息。

可以使用标记工具在钢管表面标注,以便后续的分析和评估。

四、磁粉探伤检测1.准备磁粉检测剂:选取适当的磁粉检测剂,并按照说明书中的要求进行配置和混合。

确保磁粉检测剂的质量和浓度符合要求。

2.施加磁场:使用磁粉探伤仪产生磁场,并将其施加在待检测的无缝钢管上。

确保磁场的强度和方向均匀分布,以提高探测效果。

3.观察磁粉沉积:将磁粉检测剂均匀撒布在钢管表面,观察是否出现磁粉沉积。

如有磁粉沉积,即可能存在裂纹或缺陷。

4.记录磁粉沉积情况:对于检测到的磁粉沉积,应及时记录其位置、形状和大小等信息。

同样可以使用标记工具在钢管表面标注,以便后续的分析和评估。

五、数据分析与评估1.收集探伤数据:将超声波和磁粉探伤的结果整理和汇总,包括异常信号和磁粉沉积的位置、形状和大小等信息。

2.分析异常信号:对于超声波探伤中检测到的异常信号,可以使用相关软件进行进一步的分析和处理。

通过比对参考数据和经验规范,评估其可能的缺陷类型和程度。

3.评估磁粉沉积:对于磁粉探伤中检测到的磁粉沉积,可以使用显微镜等工具进行观察和测量。

管材超声波探伤 II级

管材超声波探伤 II级
cL2=5900M/S,cS2=3230m/s.求偏心距x。
解(1)求偏心距
R=21,r=R-t=21-4=17
例2:水浸聚焦探伤Φ 60*8小径管,声透镜曲率半 径r’=36mm,求偏心距x和水层厚度H。
2.2.2探测条件的确定
1)探头;小径管水浸探伤,一般采用聚焦探头,聚焦探头分为 线聚焦和点 聚焦,一般钢管采用线聚焦探头。对于薄壁管,为了提高检测能力,也可以 用点聚焦探头,探头的频率为2.5---5.0MHZ .聚焦探头声透镜的曲率半径r 应符合条件: r=[(c1-c2)/c1]*F
大口径管曲率半径较大, 探头与管壁声耦合较好, 通常采用接触法探伤,批 量较大时也可采用水浸探 伤,采用接触法探伤时, 若管径不太大,为了实现 更好的耦合,需将探头斜 锲磨成与管材表面相吻合 的曲面,也可在探头前加 装与管材吻合良好的滑块, 如图5.30所示。
探头前加装滑块
3.1探测方法的选择
大口径管成型方法很多;如穿孔法.高速挤压法.锻造法和焊接法等。 因此大口径管内缺陷比较复杂,既可能有平行于轴线的径向和周向缺陷; 又可能有垂直于轴线的径向缺陷。不同类型的缺陷需要采用不同的方法
来探测。常用的方法有纵波垂直探伤法,横波周向,轴向探伤法。
1)纵波垂直探伤法;如 图5.31所示,对于与管轴 平行的周向缺陷,一般采
用纵波单直探头或联合双
直探头探伤。当缺陷较小 时,缺陷波F与底波B同时 出现。这时可根据F波的 高度来评价缺陷的当量大
小。当缺陷较大时,底波 B将会消失,这时可用半 波高度法来测定缺陷的面 积大小。
管材中常见缺陷与加工方法有关。无缝钢管中常见的缺陷有裂纹.折 叠.夹层等。焊管中常见缺陷与焊缝类似,一般为裂纹.气孔.夹渣.未 焊透等.锻轧管常见缺陷与锻件类似,一般为裂纹、白点、重皮等。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

无缝钢管探伤方法
无缝钢管超声波探伤检验方法—GB/T 5777 1996
无缝钢管超声波探伤检验方法—GB/T 5777 1996 代替— GB 4163 1984 — GB 5777 1986 1范围本标准规定了无缝钢管超声波探伤的原理,方法,对比试样,设备,条件,步骤,结果评定和报告. 本标准适用于各种用途无缝钢管纵向缺陷和横向缺陷的超声波检验.本标准所述探伤方法主要用于检验破坏了钢管金属连续性的缺陷,但不能有效地检验层状缺陷. 本标准适用于外径等于或大于且壁厚与外径之比不大于的钢管.壁厚与6mm 0.2 外径之比大于的钢管的检验,需由供需双方按本标准附录商定特殊的方法
无缝钢管超声波探伤检验方法引用标准下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文.本标准出
版时,所示版本均为有效.所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性. —钢管自动超声探伤系统综合性能测试方法YB 4082 1992 —型脉冲反射式超声波探伤仪通用技术条件
无缝钢管超声波探伤检验方法探伤原理
超声波探头可实现电能和声能之间的相互转换以及超声波在弹性介质中传播时的物理特性是钢管超声波探伤原理的基础.定向发射的超声波束在管中传播时遇到缺陷,既产生波的反射又产生波的衰减.经过探伤仪的信号处理,如采用反射法探伤可获得缺陷回波信号,如采用穿透法探伤可凭借透过波的衰减程度获得缺陷信号.二者均可由仪器给出定量的缺陷指示. 利用压电效应或电磁感应原理可在管内激发不同类型的超声波.因此,压电超声和电磁超声均可用于管材超声波检验.但电磁超声仅适用于铁磁性材料
无缝钢管超声波探伤检验方法
采用横波或板波反射法或穿透法在探头和钢管相对移动的状态下进行自动检验,只有特殊的大口径钢管才可进行手工检验.自动或手工检验时均应保证声束对管子全部表面的扫查. 注:自动检验时对钢管两端将不能有效地检验,但此区域应控制在以内.200mm 4.2 检验纵向缺陷时声束在管壁内沿圆周方向传播;检验横向缺陷时声束在管壁内沿管轴方向传播.纵向和横向缺陷的检验均应在管子的两个相反方向上进行. 4.3 在需方未提出检验横向缺陷时供方只检验纵向缺陷.经供需双方协商同意,纵向和横向缺陷的检验均可只在管子的一个方向上进行. 4.4 自动或手工检验时均应选用耦合效果良好并无损于钢管表面的耦合介质
无缝钢管超声波探伤检验方法对比试样—GB/T 5777 1996 用途对比试样用于探伤设备的调试,综合性能测试和使用过程中的定时校验.对比试样上的人工缺陷是评定自然缺陷当无缝钢管超声波探伤检验方法—GB/T 5777 1996 代替— GB 4163 1984 — GB 5777 1986 1范围本标准规定了无缝钢管超声波探伤的原理,方法,对比试样,设备,条件,步骤,结果评定和报告. 本标准适用于各种用途无缝钢管纵向缺陷和横向缺陷的超声波检验.本标准所述探伤方法主要用于检验破坏了钢管金属连续性的缺陷,但不能有效地检验层状缺陷. 本标准适用于外径等于或大于且壁厚与外径之比不大于的钢管.壁厚与6mm 0.2 外径之比大于的钢管的检验,需由供需双方按本标准附录商定特殊的方法
无缝钢管超声波探伤检验方法引用标准下列标准所包含的条文,通过在本标
准中引用而构成为本标准的条文.本标准出
版时,所示版本均为有效.所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性. —钢管自动超声探伤系统综合性能测试方法YB 4082 1992 —型脉冲反射式超声波探伤仪通用技术条件
无缝钢管超声波探伤检验方法探伤原理
超声波探头可实现电能和声能之间的相互转换以及超声波在弹性介质中传播时的物理特性是钢管超声波探伤原理的基础.定向发射的超声波束在管中传播时遇到缺陷,既产生波的反射又产生波的衰减.经过探伤仪的信号处理,如采用反射法探伤可获得缺陷回波信号,如采用穿透法探伤可凭借透过波的衰减程度获得缺陷信号.二者均可由仪器给出定量的缺陷指示. 利用压电效应或电磁感应原理可在管内激发不同类型的超声波.因此,压电超声和电磁超声均可用于管材超声波检验.但电磁超声仅适用于铁磁性材料
无缝钢管超声波探伤检验方法
采用横波或板波反射法或穿透法在探头和钢管相对移动的状态下进行自动检验,只有特殊的大口径钢管才可进行手工检验.自动或手工检验时均应保证声束对管子全部表面的扫查. 注:自动检验时对钢管两端将不能有效地检验,但此区域应控制在以内.200mm 4.2 检验纵向缺陷时声束在管壁内沿圆周方向传播;检验横向缺陷时声束在管壁内沿管轴方向传播.纵向和横向缺陷的检验均应在管子的两个相反方向上进行. 4.3 在需方未提出检验横向缺陷时供方只检验纵向缺陷.经供需双方协商同意,纵向和横向缺陷的检验均可只在管子的一个方向上进行. 4.4 自动或手工检验时均应选用耦合效果良好并无损于钢管表面的耦合介质
无缝钢管超声波探伤检验方法对比试样—GB/T 5777 1996 用途对比试样用于探伤设备的调试,综合性能测试和使用过程中的定时校验.对比试样上的人工缺陷是评定自然缺陷当
无缝钢管的实际应用范围实例
无缝钢管是一种具有中空截面、周边没有接缝的长条钢材。

钢管具有中空截面,大量用作输送流体的管道,如输送石油、天然气、煤气、水及某些固体物料的管道等。

无缝钢管与圆钢等实心钢材相比,在抗弯抗扭强度相同时,重量较轻,是一种经济截面钢材,广泛用于制造结构件和机械零件,如石油钻杆、汽车传动轴、自行车架以及建筑施工中用的钢脚手架等。

用钢管制造环形零件,可提高材料利用率,简化制造工序,节约材料和加工工时,如滚动轴承套圈、千斤顶套等,目前已广泛用钢管来制造。

无缝钢管是一种具有中空截面、周边没有接缝的长条钢材。

钢管具有中空截面,大量用作输送流体的管道,如输送石油、天然气、煤气、水及某些固体物料的管道等。

无缝钢管与圆钢等实心钢材相比,在抗弯抗扭强度相同时,重量较轻,是一种经济截面钢材,广泛用于制造结构件和机械零件,如石油钻杆、汽车传动轴、自行车架以及建筑施工中用的钢脚手架等。

用钢管制造环形零件,可提高材料利用率,简化制造工序,节约材料和加工工时,如滚动轴承套圈、千斤顶套等,目前已广泛用钢管来制造。

无缝钢管报关企业注册登记许可
无缝钢管报关企业注册登记许可
钢管经贸网专业 20#无缝钢管 45#无缝钢管
一、申请文件材料
申请报关企业注册登记许可,应当提交下列文件材料:
报关企业注册登记许可申请书;
《企业法人营业执照》副本或者《企业名称预先核准通知书》复印件;
企业章程;
出资证明文件复印件;
所聘报关从业人员的《报关员资格证》复印件;
从事报关服务业可行性研究报告;
报关业务负责人工作简历;
报关服务营业场所所有权证明、租赁证明;
其他与申请注册登记许可相关的材料。

二、申请场所
申请人应当到所在地海关提出申请并递交申请注册登记许可材料。

三、办理时限
所在地海关受理申请后,应当根据法定条件和程序进行全面审查,并于受理注册登记许可申请之日起二十日内审查完毕,将审查意见和全部申请材料报送直属海关。

直属海关应当自收到所在地海关报送的审查意见之日起二十日内作出决定。

四、关于委托申请
申请人可以委托代理人提出注册登记许可申请。

申请人委托代理人代为提出申请的,应当出具授权委托书。

授权委托书应当具体载明下列事项,由委托人签章并注明委托日期:
委托人及代理人的简要情况。

委托人或者代理人是法人或者其他组织的,应当载明名称、地址、电话、邮政编码、法定代表人或者负责人的姓名、职务;委托人或者代理人是自然人的,应当载明姓名、性别、年龄、职业、地址、电话及邮政编码;
代为提出注册登记许可申请、递交申请材料、收受法律文书等委托事项及权限;
委托代理起止日期;
法律、行政法规及海关规章规定应当载明的其他事项。

无缝钢管报关企业注册登记许可
钢管经贸网专业 20#无缝钢管 45#无缝钢管
一、申请文件材料
申请报关企业注册登记许可,应当提交下列文件材料:
报关企业注册登记许可申请书;
《企业法人营业执照》副本或者《企业名称预先核准通知书》复印件;
企业章程;
出资证明文件复印件;
所聘报关从业人员的《报关员资格证》复印件;
从事报关服务业可行性研究报告;
报关业务负责人工作简历;
报关服务营业场所所有权证明、租赁证明;
其他与申请注册登记许可相关的材料。

二、申请场所
申请人应当到所在地海关提出申请并递交申请注册登记许可材料。

三、办理时限
所在地海关受理申请后,应当根据法定条件和程序进行全面审查,并于受理注册登记许可申请之日起二十日内审查完毕,将审查意见和全部申请材料报送直属海关。

直属海关应当自收到所在地海关报送的审查意见之日起二十日内作出决定。

四、关于委托申请
申请人可以委托代理人提出注册登记许可申请。

申请人委托代理人代为提出申请的,应当出具授权委托书。

授权委托书应当具体载明下列事项,由委托人签章并注明委托日期:
委托人及代理人的简要情况。

委托人或者代理人是法人或者其他组织的,应当载明名称、地址、电话、邮政编码、法定代表人或者负责人的姓名、职务;委托人或者代理人是自然人的,应当载明姓名、性别、年龄、职业、地址、电话及邮政编码;
代为提出注册登记许可申请、递交申请材料、收受法律文书等委托事项及权限;
委托代理起止日期;
法律、行政法规及海关规章规定应当载明的其他事项。

资料来源:。

相关文档
最新文档