贵州省安顺市2018届中考数学对点突破模拟试卷(一)及参考答案
2018年贵州省安顺市中考数学试题及答案
2018年贵州省安顺市中考数学试题及答案一、选择题(共10个小题,每小题3分,共30分)1.下面四个手机应用图标中是轴对称图形的是( )A .B .C .D . 2.4的算术平方根为( )A .2±B .2C .2±D .23.“五·一”期间,美丽的黄果树瀑布景区吸引大量游客前来游览.经统计,某段时间内来该风景区游览的人数约为36000人,用科学记数法表示36000为( )A .43.610⨯B .60.3610⨯C .40.3610⨯D .33610⨯4.如图,直线//a b ,直线l 与直线a ,b 分别相交于A 、B 两点,过点A 作直线l 的垂线交直线b 于点C ,若158∠=︒,则2∠的度数为( )A .58︒B .42︒C .32︒D .28︒5.如图,点D ,E 分别在线段AB ,AC 上,CD 与BE 相交于O 点,已知AB AC =,现添加以下哪个条件仍不能判定.....ABE ACD ∆≅∆( )A .BC ∠=∠ B .AD AE = C .BD CE = D .BE CD =6.一个等腰三角形的两条边长分别是方程27100x x -+=的两根,则该等腰三角形的周长是( )A .12B .9C .13D .12或97.要调查安顺市中学生了解禁毒知识的情况,下列抽样调查最适合的是( )A .在某中学抽取200名女生B .在安顺市中学生中抽取200名学生C .在某中学抽取200名学生D .在安顺市中学生中抽取200名男生8.已知()ABC AC BC ∆<,用尺规作图的方法在BC 上确定一点P ,使PA PC BC +=,则符合要求的作图痕迹是( )A .B .C .D . 9.已知O e 的直径10CD cm =,AB 是O e 的弦,AB CD ⊥,垂足为M ,且8AB cm =,则AC 的长为( )A .25cm B.45cm C .25cm 或45cm D .23cm 或43cm 10.已知二次函数2(0)y ax bx c a =++≠的图象如图,分析下列四个结论:①0abc <;②240b ac ->;③30a c +>;④22()a c b +<.其中正确的结论有( )A .1个B .2个C .3个D .4个二、填空题(共8个小题,每小题4分,共32分)11.函数1y x =+中自变量x 的取值范围是 . 12.学校射击队计划从甲、乙两人中选拔一人参加运动会射击比赛,在选拔过程中,每人射击10次,计算他们的平均成绩及方差如表,请你根据表中的数据选一人参加比赛,最适合的人选是 .选手甲 乙 平均数(环)9.5 9.5 方差 0.035 0.015 13.不等式组34012412x x +≥⎧⎪⎨-≤⎪⎩的所有整数解的积为 . 14.若22(3)16x m x +-+是关于x 的完全平方式,则m = .15.如图,点1P ,2P ,3P ,4P 均在坐标轴上,且1223PP P P ⊥,2334P P P P ⊥,若点1P ,2P 的坐标分别为(0,1)-,(2,0)-,则点4P 的坐标为 .16.如图,C 为半圆内一点,O 为圆心,直径AB 长为2cm ,60BOC ∠=︒,90BCO ∠=︒,将BOC ∆绕圆心O 逆时针旋转至''B OC ∆,点'C 在OA 上,则边BC 扫过区域(图中阴影部分)的面积为 2cm .(结果保留π)17.如图,已知直线1y k x b =+与x 轴、y 轴相交于P 、Q 两点,与2k y x=的图象相交于(2,)A m -、(1,)B n 两点,连接OA 、OB .给出下列结论:①120k k <;②102m n +=;③AOP BOQ S S ∆∆=;④不等式21k k x b x+>的解集是2x <-或01x <<.其中正确结论的序号是 .18.正方形111A B C O 、2221A B C C 、3332A B C C 、…按如图所示的方式放置.点1A 、2A 、3A 、…和点1C 、2C 、3C 、…分别在直线1y x =+和x 轴上,则点n B 的坐标是 .(n 为正整数)三、解答题(本大题共8小题,满分88分.解答应写出文字说明、证明过程或演算步骤)19.计算:()2020181132tan 60 3.142π-⎛⎫-+-+︒--+ ⎪⎝⎭.20.先化简,再求值:2282442x x x x x ⎛⎫÷-- ⎪-+-⎝⎭,其中2x =.21.如图是某市一座人行天桥的示意图,天桥离地面的高BC 是10米,坡面AC 的倾斜角45CAB ∠=︒,在距A 点10米处有一建筑物HQ .为了方便行人推车过天桥,市政府部门决定降低坡度,使新坡面DC 的倾斜角30BDC ∠=︒,若新坡面下D 处与建筑物之间需留下至少3米宽的人行道,问该建筑物是否需要拆除(计算最后结果保留一位小数). (参考数据:2 1.414≈,3 1.732≈)22.如图,在ABC ∆中,AD 是BC 边上的中线,E 是AD 的中点,过点A 作BC 的平行线交BE的延长线于点F,连接CF.=;(1)求证:AF DC⊥,试判断四边形ADCF的形状,并证明你的结论.(2)若AB AC23.某地2015年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2017年在2015年的基础上增加投入资金1600万元.(1)从2015年到2017年,该地投入异地安置资金的年平均增长率为多少?(2)在2017年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天奖励5元,按租房400天计算,求2017年该地至少有多少户享受到优先搬迁租房奖励.24.某电视台为了解本地区电视节目的收视情况,对部分市民开展了“你最喜爱的电视节目”的问卷调查(每人只填写一项),根据收集的数据绘制了两幅不完整的统计图(如图所示),根据要求回答下列问题:(1)本次问卷调查共调查了________名观众;图②中最喜爱“新闻节目”的人数占调查总人数的百分比为________;(2)补全图①中的条形统计图;(3)现有最喜爱“新闻节目”(记为A ),“体育节目”(记为B ),“综艺节目”(记为C ),“科普节目”(记为D )的观众各一名,电视台要从四人中随机抽取两人参加联谊活动,请用列表或画树状图的方法,求出恰好抽到最喜爱“B ”和“C ”两位观众的概率.25.如图,在ABC ∆中,AB AC =,O 为BC 的中点,AC 与半圆O 相切于点D .(1)求证:AB 是半圆O 所在圆的切线;(2)若2cos 3ABC ∠=,12AB =,求半圆O 所在圆的半径.26.如图,已知抛物线2(0)y ax bx c a =++≠的对称轴为直线1x =-,且抛物线与x 轴交于A 、B 两点,与y 轴交于C 点,其中(1,0)A ,(0,3)C .(1)若直线y mx n =+经过B 、C 两点,求直线BC 和抛物线的解析式;(2)在抛物线的对称轴1x =-上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求出点M 的坐标;(3)设点P 为抛物线的对称轴1x =-上的一个动点,求使BPC ∆为直角三角形的点P 的坐标.2018年贵州省安顺市中考数学试题参考答案一、选择题1-5: DBACD 6-10: ABDCB二、填空题11. 1x >- 12. 乙 13. 0 14. 7或-1 15. (8,0) 16. 4π 17. ②③④ 18. 1(21,2)n n -- 三、解答题19.解:原式12144=-++=.20.解:原式228(2)(2)(2)22x x x x x x ⎡⎤+-=÷-⎢⎥---⎣⎦ 22284(2)2x x x x -+=÷-- 282(2)4x x -=⋅- 22x -. ∵2x =,∴2x =±,2x =舍,当2x =-时,原式21222==---. 21.解:由题意得,10AH =米,10BC =米,在Rt ABC ∆中,45CAB ∠=︒,∴10AB BC ==,在Rt DBC ∆中,30CDB ∠=︒,∴tan BC DB CDB==∠∴()DH AH AD AH DB AB =-=--101020 2.7=-=-≈(米), ∵2.7米3<米,∴该建筑物需要拆除.22.证明:(1)∵E 是AD 的中点,∴AE ED =.∵//AF BC ,∴AFE DBE ∠=∠,FAE BDE ∠=∠,∴AFE DBE ∆≅∆.∴AF DB =.∵AD 是BC 边上的中点,∴DB DC =,∴AF DC =.(2)四边形ADCF 是菱形.理由:由(1)知,AF DC =,∵//AF CD ,∴四边形ADCF 是平行四边形.又∵AB AC ⊥,∴ABC ∆是直角三角形.∵AD 是BC 边上的中线, ∴12AD BC DC ==. ∴平行四边形ADCF 是菱形.23.解:(1)设该地投入异地安置资金的年平均增长率为x ,根据题意得 21280(1)12801600x +=+,解得:0.5x =或 2.5x =-(舍),答:从2015年到2017年,该地投入异地安置资金的年平均增长率为50%;(2)设2017年该地有a 户享受到优先搬迁租房奖励,根据题意得, ∵8100040032000005000000⨯⨯=<,∴1000a >,10008400(1000)54005000000a ⨯⨯+-⨯⨯≥,解得:1900a ≥,答:2017年该地至少有1900户享受到优先搬迁租房奖励.24.解:(1)200,25%.(2)最喜爱“新闻节目”的人数为20050354570---=(人),如图,(3)画树状图为:共有12种等可能的结果,恰好抽到最喜爱“B ”和“C ”两位观众的结果数为2, 所以恰好抽到最喜爱“B ”和“C ”两位观众的概率21126==. 25.(1)证明:如图1,作OE AB ⊥于E ,连接OD 、OA , ∵AB AC =,O 为BC 的中点, ∴CAO BAO ∠=∠.∵AC 与半圆O 相切于点D , ∴OD AC ⊥, ∵OE AB ⊥, ∴OD OE =,∵AB 经过圆O 半径的外端,∴AB 是半圆O 所在圆的切线;(2)∵AB AC =,O 是BC 的中点,∴AO BC ⊥,由2cos3ABC∠=,12AB=,得∴2cos1283OB AB ABC=⋅∠=⨯=.由勾股定理,得2245AO AB OB=-=.由三角形的面积,得1122AOBS AB OE OB AO∆=⋅=⋅,85OB OAOEAB⋅==,半圆O所在圆的半径是85.26.解:(1)依题意得:123baa b cc⎧-=-⎪⎪++=⎨⎪=⎪⎩,解之得:123abc=-⎧⎪=-⎨⎪=⎩,∴抛物线的解析式为223y x x=--+.∵对称轴为1x=-,且抛物线经过(1,0)A,∴把(3,0)B-、(0,3)C分别代入直线y mx n=+,得303m nn-+=⎧⎨=⎩,解之得:13mn=⎧⎨=⎩,∴直线y mx n=+的解析式为3y x=+.(2)直线BC与对称轴1x=-的交点为M,则此时MA MC+的值最小,把1x=-代入直线3y x=+得2y=,∴(1,2)M-.即当点M到点A的距离与到点C的距离之和最小时M的坐标为(1,2)-. (注:本题只求M坐标没说要证明为何此时MA MC+的值最小,所以答案没证明MA MC+的值最小的原因).(3)设(1,)P t -,又(3,0)B -,(0,3)C ,∴218BC =,2222(13)4PB t t =-++=+,2222(1)(3)610PC t t t =-+-=-+,①若点B 为直角顶点,则222BC PB PC +=即:22184610t t t ++=-+解之得:2t =-, ②若点C 为直角顶点,则222BC PC PB +=即:22186104t t t +-+=+解之得:4t =, ③若点P 为直角顶点,则222PB PC BC +=即:22461018t t t ++-+=解之得:13172t +=,23172t -=. 综上所述P 的坐标为(1,2)--或(1,4)-或317(1,)+-或317(1,)--.2018年贵州省安顺市中考数学试题参考答案与试题解析一、选择题(共10个小题,每小题3分,共30分) 1. 下面四个手机应用图标中是轴对称图形的是( )A. B. C. D.【答案】D【解析】分析:分别根据轴对称图形与中心对称图形的性质对各选项进行逐一分析即可. 详解:A 、既不是轴对称图形,也不是中心对称图形,故本选项错误; B 、是中心对称图形,故本选项错误;C 、既不是轴对称图形,也不是中心对称图形,故本选项错误;D 、是轴对称图形,故本选项正确. 故选D .点睛:本题考查的是轴对称图形,熟知轴对称图形是针对一个图形而言的,是一种具有特殊性质图形,被一条直线分割成的两部分沿着对称轴折叠时,互相重合是解答此题的关键.2.4的算术平方根为( )A .2±B .2C .2±D .2 【答案】B【解析】分析:先求得的值,再继续求所求数的算术平方根即可. 详解:∵4=2, 而2的算术平方根是, ∴的算术平方根是, 故选B .点睛:此题主要考查了算术平方根的定义,解题时应先明确是求哪个数的算术平方根,否则容易出现选A 的错误.3.“五·一”期间,美丽的黄果树瀑布景区吸引大量游客前来游览.经统计,某段时间内来该风景区游览的人数约为36000人,用科学记数法表示36000为( ) A .43.610⨯ B .60.3610⨯ C .40.3610⨯ D .33610⨯ 【答案】A【解析】分析:利用科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 详解:36000用科学记数法表示为3.6×104. 故选A .点睛:此题考查了科学记数法的表示方法.科学记数法的表示形式为a ×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.如图,直线//a b ,直线l 与直线a ,b 分别相交于A 、B 两点,过点A 作直线l 的垂线交直线b 于点C ,若158∠=︒,则2∠的度数为( )A. B. C. D.【答案】C【解析】分析:根据直角三角形两锐角互余得出∠ACB=90°-∠1,再根据两直线平行,内错角相等求出∠2即可. 详解:∵AC ⊥BA , ∴∠BAC=90°,∴∠ACB=90°-∠1=90°-58°=32°, ∵直线a ∥b , ∴∠ACB=∠2, ∴∠2=-∠ACB=32°. 故选C .点睛:本题考查了对平行线的性质和三角形内角和定理的应用,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补5.如图,点D ,E 分别在线段AB ,AC 上,CD 与BE 相交于O 点,已知AB AC =,现添加以下哪个条件仍不能判定.....ABE ACD ∆≅∆( )A .BC ∠=∠ B .AD AE = C .BD CE = D .BE CD = 【答案】D【解析】分析:欲使△ABE ≌△ACD ,已知AB=AC ,可根据全等三角形判定定理AAS 、SAS 、ASA 添加条件,逐一证明即可. 详解:∵AB=AC ,∠A 为公共角,A 、如添加∠B=∠C ,利用ASA 即可证明△ABE ≌△ACD ;B 、如添AD=AE ,利用SAS 即可证明△ABE ≌△ACD ;C 、如添BD=CE ,等量关系可得AD=AE ,利用SAS 即可证明△ABE ≌△ACD ;D 、如添BE=CD ,因为SSA ,不能证明△ABE ≌△ACD ,所以此选项不能作为添加的条件. 故选D .点睛:此题主要考查学生对全等三角形判定定理的理解和掌握,此类添加条件题,要求学生应熟练掌握全等三角形的判定定理.6.一个等腰三角形的两条边长分别是方程27100x x -+=的两根,则该等腰三角形的周长是( )A .12B .9C .13D .12或9 【答案】A【解析】试题分析:∵,∴, 即,,①等腰三角形的三边是2,2,5, ∵2+2<5,∴不符合三角形三边关系定理,此时不符合题意;②等腰三角形的三边是2,5,5,此时符合三角形三边关系定理, 三角形的周长是2+5+5=12; 即等腰三角形的周长是12.故选A .考点:1.解一元二次方程-因式分解法;2.三角形三边关系;3.等腰三角形的性质. 7.要调查安顺市中学生了解禁毒知识的情况,下列抽样调查最适合的是( ) A .在某中学抽取200名女生 B .在安顺市中学生中抽取200名学生 C .在某中学抽取200名学生 D .在安顺市中学生中抽取200名男生 【答案】B【解析】分析:根据具体情况正确选择普查或抽样调查方法,并理解有些调查是不适合使用普查方法的.要选择调查方式,需将普查的局限性和抽样调查的必要性结合起来具体分析. 详解:要调查安顺市中学生了解禁毒知识的情况,就对所有学生进行一次全面的调查,费大量的人力物力是得不尝失的,采取抽样调查即可.考虑到抽样的全面性,所以应在安顺市中学生中随机抽取200名学生. 故选B .点睛:本题考查了抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.8.已知()ABC AC BC ∆<,用尺规作图的方法在BC 上确定一点P ,使PA PC BC +=,则符合要求的作图痕迹是( )A. B.C. D.【答案】D【解析】分析:要使PA+PC=BC ,必有PA=PB ,所以选项中只有作AB 的中垂线才能满足这个条件,故D 正确.详解:D 选项中作的是AB 的中垂线, ∴PA=PB , ∵PB+PC=BC , ∴PA+PC=BC 故选D .点睛:本题主要考查了作图知识,解题的关键是根据中垂线的性质得出PA=PB .9.已知O e 的直径10CD cm =,AB 是O e 的弦,AB CD ⊥,垂足为M ,且8AB cm =,则AC 的长为( )A .5cm B .45cm C .25cm 或45cm D .3cm 或43cm 【答案】C【解析】试题解析:连接AC ,AO ,∵⊙O 的直径CD=10cm ,AB ⊥CD ,AB=8cm ,∴AM=AB=×8=4cm ,OD=OC=5cm. 当C 点位置如答1所示时, ∵OA=5cm ,AM=4cm ,CD ⊥AB , ∴cm.∴CM=OC+OM=5+3=8cm. ∴在Rt △AMC 中,cm.当C 点位置如图2所示时,同理可得OM=3cm , ∵OC=5cm ,∴MC=5﹣3=2cm. ∴在Rt △AMC 中,cm .综上所述,AC 的长为cm 或cm.故选C .10.已知二次函数2(0)y ax bx c a =++≠的图象如图,分析下列四个结论:①0abc <;②240b ac ->;③30a c +>;④22()a c b +<.其中正确的结论有( )A .1个B .2个C .3个D .4个 【答案】B【解析】试题解析:①由开口向下,可得又由抛物线与y 轴交于正半轴,可得再根据对称轴在y 轴左侧,得到与同号,则可得故①错误;②由抛物线与x 轴有两个交点,可得 故②正确;③当时, 即……(1) 当时,,即……(2) (1)+(2)×2得,即 又因为所以故③错误; ④因为时,时,所以即所以 故④正确,综上可知,正确的结论有2个. 故选B .二、填空题(共8个小题,每小题4分,共32分) 11.函数1y x =+中自变量x 的取值范围是 . 【答案】【解析】试题解析:根据题意得,x+1>0, 解得x>-1. 故答案为:x>-1..12.学校射击队计划从甲、乙两人中选拔一人参加运动会射击比赛,在选拔过程中,每人射击10次,计算他们的平均成绩及方差如表,请你根据表中的数据选一人参加比赛,最适合的人选是 .选手甲乙平均数(环)9.5 9.5 方差0.0350.015【答案】乙【解析】分析:根据方差的定义,方差越小数据越稳定. 详解:因为S 甲2=0.035>S 乙2=0.015,方差小的为乙, 所以本题中成绩比较稳定的是乙. 故答案为:乙.点睛:本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.13.不等式组34012412x x +≥⎧⎪⎨-≤⎪⎩的所有整数解的积为 .【答案】0 【解析】试题分析:,解不等式①得:,解不等式②得:,∴不等式组的整数解为﹣1,0,1…50,所以所有整数解的积为0,故答案为:0. 考点:一元一次不等式组的整数解.14.若22(3)16x m x +-+是关于x 的完全平方式,则m = . 【答案】7或-1【解析】分析】直接利用完全平方公式的定义得出2(m-3)=±8,进而求出答案. 详解:∵x 2+2(m-3)x+16是关于x 的完全平方式, ∴2(m-3)=±8, 解得:m=-1或7, 故答案为:-1或7.点睛:此题主要考查了完全平方公式,正确掌握完全平方公式的基本形式是解题关键. 15.如图,点1P ,2P ,3P ,4P 均在坐标轴上,且1223PP P P ⊥,2334P P P P ⊥,若点1P ,2P 的坐标分别为(0,1)-,(2,0)-,则点4P 的坐标为 .【答案】【解析】分析:根据相似三角形的性质求出P 3D 的坐标,再根据相似三角形的性质计算求出OP 4的长,得到答案.详解:∵点P 1,P 2的坐标分别为(0,-1),(-2,0), ∴OP 1=1,OP 2=2, ∵Rt △P 1OP 2∽Rt △P 2OP 3, ∴,即,解得,OP 3=4,∵Rt △P 2OP 3∽Rt △P 3OP 4, ∴,即,解得,OP 4=8,则点P 4的坐标为(8,0), 故答案为:(8,0).点睛:本题考查的是相似三角形的判定和性质以及坐标与图形的性质,掌握相似三角形的判定定理和性质定理是解题的关键.16.如图,C 为半圆内一点,O 为圆心,直径AB 长为2cm ,60BOC ∠=︒,90BCO ∠=︒,将BOC ∆绕圆心O 逆时针旋转至''B OC ∆,点'C 在OA 上,则边BC 扫过区域(图中阴影部分)的面积为 2cm .(结果保留π)【答案】【解析】分析:根据已知条件和旋转的性质得出两个扇形的圆心角的度数,再根据扇形的面积公式进行计算即可得出答案.详解:∵∠BOC=60°,△B ′OC ′是△BOC 绕圆心O 逆时针旋转得到的, ∴∠B ′OC ′=60°,△BCO=△B ′C ′O , ∴∠B ′OC=60°,∠C ′B ′O=30°, ∴∠B ′OB=120°, ∵AB=2cm , ∴OB=1cm ,OC ′=, ∴B ′C ′=, ∴S 扇形B ′OB =,∵S 扇形C ′OC =,∴阴影部分面积=S 扇形B ′OB +S △B ′C ′O -S △BCO -S 扇形C ′OC =S 扇形B ′OB -S 扇形C ′OC =.故答案为:.点睛:此题考查了旋转的性质和扇形的面积公式,掌握直角三角形的性质和扇形的面积公式是本题的关键.17.如图,已知直线1y k x b =+与x 轴、y 轴相交于P 、Q 两点,与2k y x=的图象相交于(2,)A m -、(1,)B n 两点,连接OA 、OB .给出下列结论:①120k k <;②102m n +=;③AOP BOQ S S ∆∆=;④不等式21k k x b x+>的解集是2x <-或01x <<.其中正确结论的序号是 .【答案】②③④【解析】分析:根据一次函数和反比例函数的性质得到k1k2>0,故①错误;把A(-2,m)、B(1,n)代入y=中得到-2m=n故②正确;把A(-2,m)、B(1,n)代入y=k1x+b得到y=-mx-m,求得P(-1,0),Q(0,-m),根据三角形的面积公式即可得到S△AOP=S△BOQ;故③正确;根据图象得到不等式k1x+b>的解集是x<-2或0<x<1,故④正确.详解:由图象知,k1<0,k2<0,∴k1k2>0,故①错误;把A(-2,m)、B(1,n)代入y=中得-2m=n,∴m+n=0,故②正确;把A(-2,m)、B(1,n)代入y=k1x+b得,∴,∵-2m=n,∴y=-mx-m,∵已知直线y=k1x+b与x轴、y轴相交于P、Q两点,∴P(-1,0),Q(0,-m),∴OP=1,OQ=m,∴S△AOP=m,S△BOQ=m,∴S△AOP=S△BOQ;故③正确;由图象知不等式k 1x+b >的解集是x <-2或0<x <1,故④正确; 故答案为:②③④.点睛:本题考查了反比例函数与一次函数的交点,求两直线的交点坐标,三角形面积的计算,正确的理解题意是解题的关键.18.正方形111A B C O 、2221A B C C 、3332A B C C 、…按如图所示的方式放置.点1A 、2A 、3A 、…和点1C 、2C 、3C 、…分别在直线1y x =+和x 轴上,则点n B 的坐标是 .(n 为正整数)【答案】【解析】分析:由图和条件可知A 1(0,1)A 2(1,2)A 3(3,4),B 1(1,1),B 2(3,2),Bn 的横坐标为A n+1的横坐标,纵坐标为An 的纵坐标,又A n 的横坐标数列为An=2n-1-1,所以纵坐标为(2n-1),然后就可以求出Bn 的坐标为[A (n+1)的横坐标,An 的纵坐标]. 详解:由图和条件可知A 1(0,1)A 2(1,2)A 3(3,4),B 1(1,1),B 2(3,2), ∴Bn 的横坐标为A n+1的横坐标,纵坐标为An 的纵坐标 又A n 的横坐标数列为An=2n-1-1,所以纵坐标为2n-1,∴Bn 的坐标为[A (n+1)的横坐标,An 的纵坐标]=(2n-1,2n-1). 故答案为:(2n-1,2n-1).点睛:本题主要考查函数图象上点的坐标特征及正方形的性质,解决这类问题首先要从简单图形入手,抓住随着“编号”或“序号”增加时,后一个图形与前一个图形相比,在数量上增加(或倍数)情况的变化,找出数量上的变化规律,从而推出一般性的结论.三、解答题(本大题共8小题,满分88分.解答应写出文字说明、证明过程或演算步骤)19.计算:()220181132tan 60 3.142π-⎛⎫-++︒--+ ⎪⎝⎭.【答案】4.【解析】分析:原式第一项利用乘方的意义计算,第二项利用绝对值的代数意义化简,第三项利用特殊角三角函数值进行计算,第四项利用零指数幂法则计算,最后一项利用负整指数幂法则计算即可得到结果. 详解:原式.点睛:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.先化简,再求值:2282442x x x x x ⎛⎫÷-- ⎪-+-⎝⎭,其中2x =.【答案】,.【解析】分析:先化简括号内的式子,再根据分式的除法进行计算即可化简原式,然后将x=-2代入化简后的式子即可解答本题. 详解:原式=. ∵,∴,舍,当时,原式.点睛:本题考查分式的化简求值,解题的关键是明确分式化简求值的方法.21.如图是某市一座人行天桥的示意图,天桥离地面的高BC 是10米,坡面AC 的倾斜角45CAB ∠=︒,在距A 点10米处有一建筑物HQ .为了方便行人推车过天桥,市政府部门决定降低坡度,使新坡面DC 的倾斜角30BDC ∠=︒,若新坡面下D 处与建筑物之间需留下至少3米宽的人行道,问该建筑物是否需要拆除(计算最后结果保留一位小数). 2 1.414≈3 1.732≈)【答案】该建筑物需要拆除.【解析】分析:根据正切的定义分别求出AB、DB的长,结合图形求出DH,比较即可.详解:由题意得,米,米,在中,,∴,在中,,∴,∴(米),∵米米,∴该建筑物需要拆除.点睛:本题考查的是解直角三角形的应用-坡度坡角问题,掌握锐角三角函数的定义、熟记特殊角的三角函数值是解题的关键.∆中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线22.如图,在ABC交BE的延长线于点F,连接CF.=;(1)求证:AF DC⊥,试判断四边形ADCF的形状,并证明你的结论.(2)若AB AC【答案】(1)证明见解析;(2)四边形是菱形,理由见解析.【解析】试题分析:(1)根据AAS证△AFE≌△DBE,推出AF=BD,即可得出答案;(2)得出四边形ADCF是平行四边形,根据直角三角形斜边上中线性质得出,根据菱形的判定推出即可.试题解析:(1)证明:∵AF∥BC,∴∠AFE=∠DBE,∵E是AD的中点,AD是BC边上的中线,∴AE=DE,BD=CD,在△AFE和△DBE中∴△AFE≌△DBE(AAS),∴AF=BD,∴AF=DC.(2)四边形ADCF是菱形,证明:AF∥BC,AF=DC,∴四边形ADCF是平行四边形,∵AC⊥AB,AD是斜边BC的中线,∴平行四边形ADCF是菱形.点睛:有一组邻边相等的平行四边形是菱形.23.某地2015年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2017年在2015年的基础上增加投入资金1600万元.(1)从2015年到2017年,该地投入异地安置资金的年平均增长率为多少?(2)在2017年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天奖励5元,按租房400天计算,求2017年该地至少有多少户享受到优先搬迁租房奖励.【答案】(1)从年到年,该地投入异地安置资金的年平均增长率为;(2)年该地至少有户享受到优先搬迁租房奖励.【解析】分析:(1)设年平均增长率为x,根据:2015年投入资金给×(1+增长率)2=2017年投入资金,列出方程求解可得;(2)设今年该地有a户享受到优先搬迁租房奖励,根据:前1000户获得的奖励总数+1000户以后获得的奖励总和≥500万,列不等式求解可得.详解:(1)设该地投入异地安置资金的年平均增长率为,根据题意得,解得:或(舍),答:从年到年,该地投入异地安置资金的年平均增长率为;(2)设年该地有户享受到优先搬迁租房奖励,根据题意得,∵,∴,,解得:,答:年该地至少有户享受到优先搬迁租房奖励.点睛:本题主要考查一元二次方程与一元一次不等式的应用,由题意准确抓住相等关系并据此列出方程或不等式是解题的关键.24. 某电视台为了解本地区电视节目的收视情况,对部分市民开展了“你最喜爱的电视节目”的问卷调查(每人只填写一项),根据收集的数据绘制了两幅不完整的统计图(如图所示),根据要求回答下列问题:(1)本次问卷调查共调查了________名观众;图②中最喜爱“新闻节目”的人数占调查总人数的百分比为________;(2)补全图①中的条形统计图;(3)现有最喜爱“新闻节目”(记为A),“体育节目”(记为B),“综艺节目”(记为C),“科普节目”(记为D)的观众各一名,电视台要从四人中随机抽取两人参加联谊活动,请用列表或画树状图的方法,求出恰好抽到最喜爱“B”和“C”两位观众的概率.【答案】(1),;(2)补图见解析;(3)恰好抽到最喜爱“”和“”两位观众的概率为.【解析】分析:(1)用喜欢科普节目的人数除以它所占的百分比即可得到调查的总人数,用喜爱“新闻节目”的人数除以调查总人数得到它所占的百分比;(2)用调查的总人数分别减去喜欢新闻、综艺、科普的人数得到喜欢体育的人数,然后补全图①中的条形统计图;(3)画树状图展示所有12种等可能的结果数,再找出抽到最喜爱“B ”和“C ”两位观众的结果数,然后根据概率公式求解.详解:(1)本次问卷调查共调查的观众数为45÷22.5%=200(人);图②中最喜爱“新闻节目”的人数占调查总人数的百分比为50÷200=25%; (2)最喜爱“新闻节目”的人数为200-50-35-45=70(人), 如图,(3)画树状图为:共有12种等可能的结果数,恰好抽到最喜爱“B ”和“C ”两位观众的结果数为2, 所以恰好抽到最喜爱“B ”和“C ”两位观众的概率=.点睛:本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式求出事件A 或B 的概率.也考查了统计图.25.如图,在ABC ∆中,AB AC =,O 为BC 的中点,AC 与半圆O 相切于点D .(1)求证:AB是半圆O所在圆的切线;(2)若2cos3ABC∠=,12AB=,求半圆O所在圆的半径.【答案】(1)证明见解析;(2)半圆所在圆的半径是.【解析】分析:(1)根据等腰三角形的性质,可得OA,根据角平分线的性质,可得OE,根据切线的判定,可得答案;(2)根据余弦,可得OB的长,根据勾股定理,可得OA的长,根据三角形的面积,可得OE 的长.详解:(1)如图1,作于,连接、,∵,为的中点,∴.∵与半圆相切于点,∴,∵,∴,∵经过圆半径的外端,∴是半圆所在圆的切线;(2)∵,是的中点,∴,由,,得∴.由勾股定理,得.由三角形的面积,得,,半圆所在圆的半径是.点睛:本题考查了切线的判定与性质,利用切线的判定是解题关键,利用面积相等得出关于OE 的长是解题关键.26.如图,已知抛物线2(0)y ax bx c a =++≠的对称轴为直线1x =-,且抛物线与x 轴交于A 、B 两点,与y 轴交于C 点,其中(1,0)A ,(0,3)C .(1)若直线y mx n =+经过B 、C 两点,求直线BC 和抛物线的解析式;(2)在抛物线的对称轴1x =-上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求出点M 的坐标;(3)设点P 为抛物线的对称轴1x =-上的一个动点,求使BPC ∆为直角三角形的点P 的坐标.【答案】(1)抛物线的解析式为,直线的解析式为.(2);(3)的坐标为或或或. 【解析】分析:(1)先把点A ,C 的坐标分别代入抛物线解析式得到a 和b ,c 的关系式,再根据抛物线的对称轴方程可得a 和b 的关系,再联立得到方程组,解方程组,求出a ,b ,c 的值即可得到抛物线解析式;把B 、C 两点的坐标代入直线y=mx+n ,解方程组求出m 和n 的值即可得到直线解析式;(2)设直线BC 与对称轴x=-1的交点为M ,则此时MA+MC 的值最小.把x=-1代入直线y=x+3得y 的值,即可求出点M 坐标;(3)设P (-1,t ),又因为B (-3,0),C (0,3),所以可得BC 2=18,PB 2=(-1+3)2+t 2=4+t 2,PC 2=(-1)2+(t-3)2=t 2-6t+10,再分三种情况分别讨论求出符合题意t 值即可求出点P 的坐标.。
2018年贵州省安顺市中考数学试卷
.2018 年贵州省安顺市中考数学试卷一、选择题(每题只有一个正确选项,本题共10 小题,每题 3 分,共 30 分)1.( 3.00 分)( 2018? 安顺)下边四个手机应用图标中是轴对称图形的是()A.B.C.D.2.(3.00 分)(2018? 安顺) 4 的算术平方根是()A.B.C.± 2 D.23.(3.00 分)(2018? 安顺)“五 ? 一”时期,漂亮的黄果树瀑布景区吸引大批旅客前来旅行,经统计,某段时间内来该景色区旅行的人数约为 36000 人,用科学记数法表示 36000 为()A.3.6 × 104B.0.36 ×106C. 0.36 × 104D.36×1034.(3.00 分)(2018? 安顺)如图,直线a∥ b,直线 l 与 a、b 分别订交于 A、B两点,过点 A 作直线 l 的垂线交直线 b 于点 C,若∠ 1=58°,则∠ 2 的度数为()A.58°B.42°C.32°D.28°5.(3.00 分)(2018? 安顺)如图,点D, E 分别在线段 AB,AC上, CD与 BE相交于 O点,已知 AB=AC,现增添以下的哪个条件仍不可以判断△ABE≌△ACD()A.∠ B=∠C B.AD=AE C.BD=CE D.BE=CD6.( 3.00 分)( 2018? 安顺)一个等腰三角形的两条边长分别是方程x2﹣7x+10=0的两根,则该等腰三角形的周长是()7.(3.00 分)(2018? 安顺)要检查安顺市中学生认识禁毒知识的状况,以下抽样检查最合适的是()A.在某中学抽取 200 名女生B.在安顺市中学生中抽取200 名学生C.在某中学抽取 200 名学生D.在安顺市中学生中抽取200 名男生8.(3.00 分)(2018? 安顺)已知△ ABC(AC<BC),用尺规作图的方法在BC上确立一点 P,使 PA+PC=BC,则切合要求的作图印迹是()A.B.C.D.9.(3.00 分)(2018? 安顺)已知⊙ O的直径 CD=10cm,AB是⊙ O的弦, AB⊥ CD,垂足为 M,且 AB=8cm,则 AC的长为()A.2 cm B.4 cm C.2 cm或 4 cm D.2 cm或 4 cm10.( 3.00 分)(2018? 安顺)已知二次函数y=ax2+bx+c(a≠0)的图象如图,剖析以下四个结论:①abc<0;② b2﹣4ac> 0;③ 3a+c>0;④( a+c)2<b2,此中正确的结论有()二、仔细填一填(本大题共8 小题,每题 4 分,满分 32 分,请把答案填在答題卷相应题号的横线上)11.( 4.00 分)( 2018? 安顺)函数 y=中自变量x的取值范围是.12.( 4.00 分)(2018? 安顺)学校射击队计划从甲、乙两人中选拔一人参加运动会射击竞赛,在选拔过程中,每人射击 10 次,计算他们的均匀成绩及方差以下表:选手甲乙均匀数(环)方差请你依据上表中的数据选一人参加竞赛,最合适的人选是.13.(4.00 分)(2018? 安顺)不等式组的全部整数解的积为.14.( 4.00 分)( 2018? 安顺)若 x2+2(m﹣3)x+16 是对于 x 的完好平方式,则m=.15.( 4.00 分)(2018? 安顺)如图,点P1, P2,P3,P4均在座标轴上,且P1P2⊥P2P3,P2P3⊥ P3P4,若点 P1,P2的坐标分别为( 0,﹣ 1),(﹣ 2,0),则点 P4的坐标为.16.( 4.00 分)(2018? 安顺)如图, C 为半圆内一点, O 为圆心,直径 AB长为2cm,∠ BOC=60°,∠ BCO=90°,将△ BOC绕圆心 O逆时针旋转至△ B′OC′,点C′在 OA上,则边 BC扫过地区(图中暗影部分)的面积为cm2..17.(4.00 分)( 2018? 安顺)如图,已知直线 y=k1x+b 与 x 轴、 y 轴订交于 P、Q两点,与 y= 的图象订交于 A(﹣ 2,m)、B(1,n)两点,连结 OA、OB,给出以下结论:① k1k2<0;②m+ n=0;③S△AOP=S△BOQ;④不等式 k1x+b的解集是x <﹣ 2 或 0< x< 1,此中正确的结论的序号是.18.( 4.00 分)(2018? 安顺)正方形 A1B1C1O,A2B2C2C1, A3B3 C3C2,按如图的方式搁置,点 A1, A2,A3和点 C1, C2, C3分别在直线 y=x+1 和 x 轴上,则点 B n 的坐标为.三、专心解一解(本大题共 8 小题,满分 88 分,请仔细读题,沉着思虑解答题应写出必需的文宇说明、证明过程或演算步骤,请把解题过程写在答题卷相应题号的地点)19.( 8.00 分)( 2018? 安顺)计算:﹣ 12018+|﹣2|+ tan60 °﹣(π﹣ 3.14 )0+()﹣2.20.(10.00 分)(2018? 安顺)先化简,再求值:÷(﹣x﹣2),其中 |x|=2 .21.( 10.00 分)(2018? 安顺)如图是某市一座人行天桥的表示图,天桥离地面的高 BC是 10 米,坡面 AC的倾斜角∠ CAB=45°,在距 A 点 10 米处有一建筑物HQ.为了方便行人推车过天桥,市政府部门决定降低坡度,使新坡面 DC的倾斜角∠BDC=30°,若新坡面下 D 处与建筑物之间需留下起码 3 米宽的人行道,问该建筑物能否需要拆掉?(计算最后结果保存一位小数).(参照数据: =1.414 ,=1.732 )22.( 10.00 分)( 2018? 安顺)如图,在△ ABC中, AD 是 BC边上的中线, E 是AD的中点,过点 A 作 BC的平行线交 BE的延伸线于点 F,连结 CF.(1)求证: AF=DC;(2)若 AC⊥AB,试判断四边形 ADCF的形状,并证明你的结论.23.(12.00 分)(2018? 安顺)某地 2015 年为做好“精确扶贫”,投入资本1280 万元用于异地布置,并规划投入资本逐年增添, 2017 年在 2015 年的基础上增添投入资本 1600 万元.(1)从 2015 年到 2017 年,该地投入异地布置资本的年均匀增添率为多少?(2)在 2017 年异地布置的详细实行中,该地计划投入资本不低于 500 万元用于优先搬家租房奖赏,规定前1000 户(含第 1000 户)每户每日奖赏8 元, 1000户此后每户每日奖赏 5 元,按租房 400 天计算,求 2017 年该地起码有多少户享遇到优先搬家租房奖赏.24.( 12.00 分)(2018? 安顺)某电视台为认识当地域电视节目的收视状况,对部分市民展开了“你最喜爱的电视节人目”的问卷检查(每人只填写一项),依据采集的数据绘制了两幅不完好的统计图(以下图),依据要求回答以下问题:( 1)本次问卷检查共检查了名观众;图②中最喜爱“新闻节目”的人数占检查总人数新闻体育综艺科瞽节目的百分比为;(2)补全图①中的条形统计图;(3)现有最喜爱“新闻节为A),“体育节目” (记为B),“综艺节目(记为C),“科普节目”(记为 D)的观众各一名,电视台要从四人中随机抽取两人参加联谊活动,请用列表或画树状图的方法,求出恰巧抽到最喜爱“ B”和“ C”两位观众的概率.25.( 12.00 分)( 2018? 安顺)如图,在△ ABC中, AB=AC, O 为 BC的中点, AC与半圆 O相切于点 D.(1)求证: AB是半圆 O所在圆的切线;(2)若 cos∠ABC= , AB=12,求半圆 O所在圆的半径.26.( 14.00 分)(2018? 安顺)如图,已知抛物线 y=ax2+bx+C( a≠0)的对称轴为直线 x=﹣1,且抛物线与 x 轴交于 A、B 两点,与 y 轴交于 C 点,此中 A(1,0),C(0,3).(1)若直线 y=mx+n经过 B、C 两点,求直线 BC和抛物成的分析式;(2)在抛物线的对称轴 x=﹣1 上找一点 M,使点 M到点 A 的距离与到点 C 的距离之和最小,求出点 M的坐标;(3)设点 P 为抛物线的对称轴 x=﹣1 上的一个动点,求使△ BPC为直角三角形的点 P 的坐标..2018 年贵州省安顺市中考数学试卷参照答案与试题分析一、选择题(每题只有一个正确选项,本题共10 小题,每题 3 分,共 30 分)1.( 3.00 分)( 2018? 安顺)下边四个手机应用图标中是轴对称图形的是()A.B.C.D.【剖析】分别依据轴对称图形与中心对称图形的性质对各选项进行逐个剖析即可.【解答】解: A、既不是轴对称图形,也不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项错误;C、既不是轴对称图形,也不是中心对称图形,故本选项错误;D、是轴对称图形,故本选项正确.应选: D.【评论】本题考察的是轴对称图形,熟知轴对称图形是针对一个图形而言的,是一种拥有特别性质图形,被一条直线切割成的两部分沿着对称轴折叠时,相互重合是解答本题的重点.2.(3.00 分)(2018? 安顺) 4 的算术平方根是()A.B.C.± 2 D.2【剖析】直接利用算术平方根的定义得出即可.【解答】解: 4 的算术平方根是2.应选: D.【评论】本题主要考察了算术平方根的定义,利用算术平方根即为正平方根求出是解题重点.3.(3.00 分)(2018? 安顺)“五 ? 一”时期,漂亮的黄果树瀑布景区吸引大批旅客前来旅行,经统计,某段时间内来该景色区旅行的人数约为36000 人,用科学记数法表示 36000 为()A.3.6 × 104B.0.36 ×106C. 0.36 × 104D.36×103【剖析】利用科学记数法的表示形式为a×10n的形式,此中1≤|a| < 10,n 为整数.确立 n 的值时,要看把原数变为 a 时,小数点挪动了多少位,n 的绝对值与小数点挪动的位数同样.当原数绝对值> 10 时,n 是正数;当原数的绝对值<1 时, n 是负数.【解答】解: 36000 用科学记数法表示为3.6 ×104.应选: A.【评论】本题考察了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,此中 1≤|a| <10,n 为整数,表示时重点要正确确立 a 的值以及 n 的值.4.(3.00 分)(2018? 安顺)如图,直线a∥ b,直线 l 与 a、b 分别订交于 A、B 两点,过点 A 作直线 l 的垂线交直线 b 于点 C,若∠ 1=58°,则∠ 2 的度数为()A.58°B.42°C.32°D.28°【剖析】依据平行线的性质得出∠ACB=∠2,依据三角形内角和定理求出即可.【解答】解:∵直线 a∥b,∴∠ ACB=∠2,∵AC⊥BA,∴∠ BAC=90°,∴∠ 2=∠ACB=180°﹣∠ 1﹣∠ BAC=180°﹣ 90°﹣58°=32°,应选: C.【评论】本题考察了对平行线的性质和三角形内角和定理的应用,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补5.(3.00 分)(2018? 安顺)如图,点D, E 分别在线段 AB,AC上, CD与 BE相交于 O点,已知 AB=AC,现增添以下的哪个条件仍不可以判断△ABE≌△ACD()A.∠ B=∠C B.AD=AE C.BD=CE D.BE=CD【剖析】欲使△ ABE≌△ ACD,已知 AB=AC,可依据全等三角形判断定理AAS、SAS、ASA增添条件,逐个证明即可.【解答】解:∵ AB=AC,∠ A 为公共角,A、如增添∠ B=∠C,利用 ASA即可证明△ ABE≌△ ACD;B、如添 AD=AE,利用 SAS即可证明△ ABE≌△ ACD;C、如添 BD=CE,等量关系可得AD=AE,利用 SAS即可证明△ ABE≌△ ACD;D、如添 BE=CD,因为 SSA,不可以证明△ ABE≌△ ACD,因此此选项不可以作为增添的条件.应选: D.【评论】本题主要考察学生对全等三角形判断定理的理解和掌握,此类增添条件题,要修业生应娴熟掌握全等三角形的判断定理.6.( 3.00 分)( 2018? 安顺)一个等腰三角形的两条边长分别是方程x2﹣7x+10=0的两根,则该等腰三角形的周长是()A.12 B.9C.13D.12 或 9【剖析】求出方程的解,即可得出三角形的边长,再求出即可.【解答】解: x2﹣7x+10=0,(x﹣ 2)(x﹣5)=0,x﹣2=0, x﹣ 5=0,x1=2,x2=5,①等腰三角形的三边是2, 2, 5∵2+2<5,.∴不切合三角形三边关系定理,此时不切合题意;②等腰三角形的三边是2,5, 5,此时切合三角形三边关系定理,三角形的周长是 2+5+5=12;即等腰三角形的周长是12.应选: A.【评论】本题考察了等腰三角形性质、解一元二次方程、三角形三边关系定理的应用等知识,重点是求出三角形的三边长.7.(3.00 分)(2018? 安顺)要检查安顺市中学生认识禁毒知识的状况,以下抽样检查最合适的是()A.在某中学抽取 200 名女生B.在安顺市中学生中抽取200 名学生C.在某中学抽取 200 名学生D.在安顺市中学生中抽取200 名男生【剖析】直接利用抽样检查中抽取的样本能否拥有代表性,从而剖析得出答案.【解答】解: A、在某中学抽取 200 名女生,抽样拥有限制性,不合题意;B、在安顺市中学生中抽取200 名学生,拥有代表性,切合题意;C、在某中学抽取 200 名学生,抽样拥有限制性,不合题意;D、在安顺市中学生中抽取 200 名男生,抽样拥有限制性,不合题意;应选: B.【评论】本题主要考察了抽样检查的意义,正确理解抽样检查是解题重点.8.(3.00 分)(2018? 安顺)已知△ ABC(AC<BC),用尺规作图的方法在 BC 上确立一点 P,使 PA+PC=BC,则切合要求的作图印迹是()A.B..C.D.【剖析】利用线段垂直均分线的性质以及圆的性质分别分得出即可.【解答】解:A、以下图:此时 BA=BP,则没法得出 AP=BP,故不可以得出 PA+PC=BC,故此选项错误;B、以下图:此时PA=PC,则没法得出 AP=BP,故不可以得出PA+PC=BC,故此选项错误;C、以下图:此时CA=CP,则没法得出 AP=BP,故不可以得出PA+PC=BC,故此选项错误;D、以下图:此时 BP=AP,故能得出 PA+PC=BC,故此选项正确;应选: D.【评论】本题主要考察了复杂作图,依据线段垂直均分线的性质得出是解题重点.9.(3.00 分)(2018? 安顺)已知⊙ O的直径 CD=10cm,AB是⊙ O的弦, AB⊥ CD,垂足为 M,且 AB=8cm,则 AC的长为()A.2 cm B.4 cm C.2 cm或 4 cm D.2 cm或 4 cm【剖析】先依据题意画出图形,因为点 C 的地点不可以确立,故应分两种状况进行议论.【解答】解:连结 AC, AO,∵⊙ O的直径 CD=10cm,AB⊥ CD,AB=8cm,∴AM= AB= ×8=4cm, OD=OC=5cm,当 C 点地点如图 1 所示时,∵OA=5cm,AM=4cm,CD⊥ AB,∴ OM===3cm,∴CM=OC+OM=5+3=8cm,∴ AC===4cm;当 C 点地点如图 2 所示时,同理可得OM=3cm,∵ OC=5cm,∴ MC=5﹣ 3=2cm,在 Rt△ AMC中, AC===2cm.应选: C.【评论】本题考察的是垂径定理,依据题意作出协助线,结构出直角三角形是解答本题的重点.10.( 3.00 分)(2018? 安顺)已知二次函数y=ax2+bx+c(a≠0)的图象如图,剖析以下四个结论:①abc<0;② b2﹣4ac> 0;③ 3a+c>0;④( a+c)2<b2,此中正确的结论有()A.1 个 B.2 个 C.3 个 D.4 个【剖析】①由抛物线的张口方向,抛物线与 y 轴交点的地点、对称轴即可确立a、b、c 的符号,即得 abc 的符号;②由抛物线与 x 轴有两个交点判断即可;③分别比较当 x=﹣2 时、 x=1 时, y 的取值,而后解不等式组可得6a+3c<0,即2a+c<0;又因为 a<0,因此 3a+c<0.故错误;④将 x=1 代入抛物线分析式获得a+b+c< 0,再将 x=﹣ 1 代入抛物线分析式获得a﹣b+c>0,两个不等式相乘,依据两数相乘异号得负的取符号法例及平方差公式变形后,获得( a+c)2<b2,【解答】解:①由张口向下,可得a<0,又由抛物线与 y 轴交于正半轴,可得c>0,而后由对称轴在 y 轴左边,获得 b 与 a 同号,则可得 b<0,abc>0,故①错误;②由抛物线与 x 轴有两个交点,可得b2﹣4ac>0,故②正确;③当 x=﹣2 时, y<0,即 4a﹣ 2b+c< 0 (1)当 x=1 时, y<0,即 a+b+c<0 ( 2)( 1) +( 2)× 2 得: 6a+3c<0,即 2a+c<0又∵ a<0,∴a+(2a+c)=3a+c< 0.故③错误;④∵ x=1 时, y=a+b+c< 0, x=﹣1 时, y=a﹣b+c> 0,∴( a+b+c)(a﹣b+c)< 0,即 [ ( a+c)+b][ (a+c)﹣ b]= ( a+c)2﹣ b2<0,∴(a+c)2<b2,故④正确.综上所述,正确的结论有 2个.应选: B.【评论】本题考察了二次函数图象与系数的关系.二次函数y=ax2 +bx+c(a≠0)系数符号由抛物线张口方向、对称轴、抛物线与 y 轴的交点抛物线与 x 轴交点的个数确立.二、仔细填一填(本大题共 8 小题,每题 4 分,满分 32 分,请把答案填在答題卷相应题号的横线上)11.(4.00 分)(2018? 安顺)函数 y=中自变量x的取值范围是x>﹣ 1.【剖析】依据被开方数大于等于0,分母不等于 0 列式计算即可得解.【解答】解:由题意得, x+1>0,解得 x>﹣ 1.故答案为: x>﹣ 1.【评论】本题考察了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不可以为0;(3)当函数表达式是二次根式时,被开方数非负.12.( 4.00 分)(2018? 安顺)学校射击队计划从甲、乙两人中选拔一人参加运动会射击竞赛,在选拔过程中,每人射击 10 次,计算他们的均匀成绩及方差以下表:选手甲乙均匀数(环)方差请你依据上表中的数据选一人参加竞赛,最合适的人选是乙.【剖析】依据方差的定义,方差越小数据越稳固.【解答】解:因为 S 甲2=0.035 >S 乙2 =0.015 ,方差小的为乙,因此本题中成绩比较稳固的是乙.故答案为乙.【评论】本题考察了方差的意义.方差是用来权衡一组数据颠簸大小的量,方差越大,表示这组数据偏离均匀数越大,即颠簸越大,数据越不稳固;反之,方差越小,表示这组数据散布比较集中,各数据偏离均匀数越小,即颠簸越小,数据越稳固.13.( 4.00 分)( 2018? 安顺)不等式组的全部整数解的积为0.【剖析】先分别求出各不等式的解集,再求出其公共解集,在其公共解集内找出切合条件的 x 的全部整数解相乘即可求解..【解答】解:,解不等式①得: x,解不等式②得: x≤50,∴不等式组的整数解为﹣1, 0,150,因此全部整数解的积为0,故答案为: 0.【评论】本题考察的是解一元一次不等式组及求一元一次不等式组的整数解,求不等式的公共解,要按照以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.14.( 4.00 分)( 2018? 安顺)若 x2+2(m﹣3)x+16 是对于 x 的完好平方式,则 m= ﹣1 或 7 .【剖析】直接利用完好平方公式的定义得出2(m﹣3)=±8,从而求出答案.2∴2( m﹣ 3) =± 8,解得: m=﹣1 或 7,故答案为:﹣ 1 或 7.【评论】本题主要考察了完好平方公式,正确掌握完好平方公式的基本形式是解题重点.15.(4.00 分)(2018? 安顺)如图,点P1,P2,P3,P4均在座标轴上,且P1P2⊥ P2P3,P2P3⊥ P3P4,若点 P1,P2的坐标分别为( 0,﹣ 1),(﹣ 2,0),则点 P4的坐标为(8,0).【剖析】依据相像三角形的性质求出 P3D 的坐标,再依据相像三角形的性质计算求出 OP4的长,获得答案.【解答】解:∵点 P1,P2的坐标分别为( 0,﹣ 1),(﹣ 2, 0),∴OP1=1,OP2=2,∵Rt△P1OP2∽Rt △P2OP3,∴=,即=,解得, OP3=4,∵Rt△P2OP3∽Rt △P3OP4,∴=,即=,解得, OP4=8,则点 P4的坐标为( 8,0),故答案为:( 8, 0).【评论】本题考察的是相像三角形的判断和性质以及坐标与图形的性质,掌握相像三角形的判断定理和性质定理是解题的重点.16.( 4.00 分)(2018? 安顺)如图, C 为半圆内一点, O 为圆心,直径 AB长为2cm,∠ BOC=60°,∠ BCO=90°,将△ BOC绕圆心 O逆时针旋转至△ B′OC′,点C′在 OA上,则边 BC扫过地区(图中暗影部分)的面积为π2 cm.【剖析】依据已知条件和旋转的性质得出两个扇形的圆心角的度数,再依据扇形的面积公式进行计算即可得出答案.【解答】解:∵∠ BOC=60°,△ B′OC′是△ BOC绕圆心 O逆时针旋转获得的,∴∠ B′OC′=60°,△ BCO=△B′C′O,∴∠ B′OC=60°,∠ C′B′O=30°,∴∠ B′OB=120°,∵AB=2cm,∴OB=1cm,OC′=,∴B′C′=,∴ S 扇形B′OB==π,S 扇形C′OC==,∵∴暗影部分面积=S 扇形B′OB+S△B′C′O﹣S△BCO﹣ S 扇形C′OC=S 扇形B′OB﹣ S 扇形C′OC=π﹣=π;故答案为:π.【评论】本题考察了旋转的性质和扇形的面积公式,掌握直角三角形的性质和扇形的面积公式是本题的重点.17.(4.00 分)( 2018? 安顺)如图,已知直线 y=k1x+b 与 x 轴、 y 轴订交于 P、Q两点,与 y= 的图象订交于 A(﹣ 2,m)、B(1,n)两点,连结 OA、OB,给出以下结论:① k1k2<0;②m+ n=0;③S△AOP=S△BOQ;④不等式 k1x+b的解集是x <﹣ 2 或 0< x< 1,此中正确的结论的序号是②③④.【剖析】依据一次函数和反比率函数的性质获得 k1k2>0,故①错误;把 A(﹣ 2,m)、B (1,n)代入 y= 中获得﹣ 2m=n故②正确;把 A(﹣ 2,m)、 B( 1, n)代入 y=k1 x+b 获得 y=﹣mx﹣m,求得 P(﹣ 1,0), Q( 0,﹣ m),依据三角形的面积公式即可获得S△AOP=S△BOQ;故③正确;依据图象获得不等式k1 x+b的解集是 x<﹣ 2 或 0< x< 1,故④正确.【解答】解:由图象知, k1<0,k2<0,∴ k1k2>0,故①错误;把 A(﹣ 2,m)、 B( 1, n)代入 y=中得﹣2m=n,∴ m+ n=0,故②正确;把 A(﹣ 2,m)、 B( 1, n)代入 y=k1x+b 得,∴,∵﹣ 2m=n,∴y=﹣mx﹣m,∵已知直线 y=k1 x+b 与 x 轴、 y 轴订交于 P、 Q两点,∴P(﹣ 1,0), Q(0,﹣ m),∴OP=1, OQ=m,∴S△AOP= m, S△BOQ= m,∴S△AOP=S△BOQ;故③正确;由图象知不等式k1 x+b的解集是x<﹣2或0<x<1,故④正确;故答案为:②③④.【评论】本题考察了反比率函数与一次函数的交点,求两直线的交点坐标,三角形面积的计算,正确的理解题意是解题的重点.18.( 4.00 分)(2018? 安顺)正方形 A1B1C1O,A2B2C2C1, A3B3 C3C2,按如图的方式搁置,点 A1, A2,A3和点 C1, C2, C3分别在直线 y=x+1 和 x 轴上,则点 B n 的坐标为(2n﹣1,2n﹣1)..【剖析】依据一次函数图象上点的坐标特点可得出点A1的坐标,联合正方形的性质可得出点 B1的坐标,同理可得出点B2、B3、 B4、的坐标,再依据点的坐标的变化即可找出点B n的坐标.【解答】解:当 x=0 时, y=x+1=1,∴点 A1的坐标为( 0,1).∵四边形 A1B1C1 O为正方形,∴点 B1的坐标为( 1,1).当 x=1 时, y=x+1=2,∴点 A2的坐标为( 1,2).∵四边形 A2B2C2 C1为正方形,∴点 B2的坐标为( 3,2).同理可得:点 A3的坐标为( 3,4),点 B3的坐标为( 7,4),点 A4的坐标为( 7,8),点 B4的坐标为( 15,8),,∴点 B n的坐标为( 2n﹣1,2n﹣1).故答案为:( 2n﹣ 1, 2n﹣1).【评论】本题考察了一次函数图象上点的坐标特点、正方形的性质以及规律型中点的坐标,依据一次函数图象上点的坐标特点联合正方形的性质找出点 B n的坐标是解题的重点.三、专心解一解(本大题共 8 小题,满分 88 分,请仔细读题,沉着思虑解答题应写出必需的文宇说明、证明过程或演算步骤,请把解题过程写在答题卷相应题号的地点)19.( 8.00 分)( 2018? 安顺)计算:﹣ 12018+|﹣2|+ tan60 °﹣(π﹣ 3.14 )0+()﹣2..【剖析】先计算乘方、去绝对值符号、代入三角函数值、计算零指数幂、负整数指数幂,再计算加减即可得.【解答】解:原式 =﹣ 1+2﹣+﹣1+4=4.【评论】本题主要考察是实数的运算,解题的重点是掌握乘方、绝对值性质、三角函数值、零指数幂及负整数指数幂.20.(10.00 分)(2018? 安顺)先化简,再求值:÷(﹣x﹣2),其中 |x|=2 .【剖析】依据分式的减法和除法能够化简题目中的式子,而后依据 |x|=2 即可解答本题.【解答】解:÷(﹣x﹣2)====,∵|x|=2 ,x﹣2≠0,解得, x=﹣2,∴原式=.【评论】本题考察分式的化简求值、绝对值,解答本题的重点是明确分式化简求值的方法.21.( 10.00 分)(2018? 安顺)如图是某市一座人行天桥的表示图,天桥离地面的高 BC是 10 米,坡面 AC的倾斜角∠ CAB=45°,在距 A 点 10 米处有一建筑物HQ.为了方便行人推车过天桥,市政府部门决定降低坡度,使新坡面DC的倾斜.角∠ BDC=30°,若新坡面下 D 处与建筑物之间需留下起码 3 米宽的人行道,问该建筑物能否需要拆掉?(计算最后结果保存一位小数).(参照数据: =1.414 ,=1.732 )【剖析】在 Rt△ ABC、Rt△ DBC中,利用锐角三角函数分别计算DB、AB,而后计算 DH的长,依据 DH与 3 的关系,得结论.【解答】解:由题意知, AH=10米, BC=10米,在 Rt△ ABC中,∵∠ CAB=45°,∴ AB=BC=10米在 Rt△ DBC中,∵∠ CDB=30°,∴ DB==10 (米)∵DH=AH﹣( HB﹣AB)=10﹣ 10 +10=20﹣ 10≈2.7 (米)∴建筑物需要拆掉.【评论】本题考察了锐角三角函数的应用,难度不大.利用线段的和差关系和锐角三角函数,是解决本题的重点.22.( 10.00 分)( 2018? 安顺)如图,在△ ABC中, AD 是 BC边上的中线, E 是AD的中点,过点 A 作 BC的平行线交 BE的延伸线于点 F,连结 CF.(1)求证: AF=DC;(2)若 AC⊥AB,试判断四边形 ADCF的形状,并证明你的结论..【剖析】(1)连结 DF,由 AAS证明△ AFE≌△ DBE,得出 AF=BD,即可得出答案;(2)依据平行四边形的判断得出平行四边形 ADCF,求出 AD=CD,依据菱形的判断得出即可;【解答】(1)证明:连结DF,∵ E 为 AD的中点,∴AE=DE,∵AF∥BC,∴∠AFE=∠DBE,在△ AFE和△ DBE中,,∴△ AFE≌△ DBE(AAS),∴EF=BE,∵ AE=DE,∴四边形 AFDB是平行四边形,∴BD=AF,∵AD为中线,∴ DC=BD,∴ AF=DC;( 2)四边形 ADCF的形状是菱形,原因以下:∵AF=DC,AF∥BC,∴四边形 ADCF是平行四边形,∵AC⊥AB,∴∠ CAB=90°,∵AD为中线,.∴AD= BC=DC,∴平行四边形 ADCF是菱形;【评论】本题考察了平行四边形的判断与性质,菱形、矩形、正方形的判断,全等三角形的性质和判断,直角三角形斜边上中线性质;本题综合性强,由必定难度,利于培育学生的推理能力.23.(12.00 分)(2018? 安顺)某地 2015 年为做好“精确扶贫”,投入资本1280 万元用于异地布置,并规划投入资本逐年增添, 2017 年在 2015 年的基础上增添投入资本 1600 万元.(1)从 2015 年到 2017 年,该地投入异地布置资本的年均匀增添率为多少?(2)在 2017 年异地布置的详细实行中,该地计划投入资本不低于 500 万元用于优先搬家租房奖赏,规定前1000 户(含第 1000 户)每户每日奖赏8 元, 1000户此后每户每日奖赏 5 元,按租房 400 天计算,求 2017 年该地起码有多少户享遇到优先搬家租房奖赏.【剖析】( 1)设该地投入异地布置资本的年均匀增添率为 x,依据 2015 年及 2017 年该地投入异地布置资本,即可得出对于 x 的一元二次方程,解之取其正当即可得出结论;( 2)设 2017 年该地有 a 户享遇到优先搬家租房奖赏,依据投入的总资本 =前 1000户奖赏的资本 +高出 1000 户奖赏的资本联合该地投入的奖赏资本不低于500 万元,即可得出对于 a 的一元一次不等式,解之取此中的最小值即可得出结论.【解答】解:(1)设该地投入异地布置资本的年均匀增添率为x,依据题意得: 1280(1+x)2=1280+1600,解得: x1=0.5=50%, x2 =﹣ 2.5 (舍去).答:从 2015 年到 2017 年,该地投入异地布置资本的年均匀增添率为50%.( 2)设 2017 年该地有 a 户享遇到优先搬家租房奖赏,.依据题意得: 8×1000×400+5× 400(a﹣1000)≥ 5000000,解得: a≥1900.答: 2017 年该地起码有 1900 户享遇到优先搬家租房奖赏.【评论】本题考察了一元二次方程的应用以及一元一次不等式的应用,解题的重点是:(1)找准等量关系,正确列出一元二次方程;(2)依据各数目之间的关系,列出对于 a 的一元一次不等式.24.( 12.00 分)(2018? 安顺)某电视台为认识当地域电视节目的收视状况,对部分市民展开了“你最喜爱的电视节人目”的问卷检查(每人只填写一项),根据采集的数据绘制了两幅不完好的统计图(以下图),依据要求回答以下问题:( 1)本次问卷检查共检查了200名观众;图②中最喜爱“新闻节目”的人数占检查总人数新闻体育综艺科瞽节目的百分比为25% ;(2)补全图①中的条形统计图;(3)现有最喜爱“新闻节为A),“体育节目” (记为B),“综艺节目(记为C),“科普节目”(记为 D)的观众各一名,电视台要从四人中随机抽取两人参加联谊活动,请用列表或画树状图的方法,求出恰巧抽到最喜爱“ B”和“ C”两位观众的概率.【剖析】( 1)用喜爱科普节目的人数除以它所占的百分比即可获得检查的总人数,用“新闻节目”人数除以总人数可得;(2)用检查的总人数分别减去喜爱新闻、综艺、科普的人数获得喜爱体育的人数,而后补全图①中的条形统计图;(3)画树状图展现全部 12 种等可能的结果数,再找出抽到最喜爱“ B”和“ C”两位观众的结果数,而后依据概率公式求解.【解答】解:(1)本次问卷检查的总人数为45÷22.5%=200人,图②中最喜爱“新闻节目”的人数占检查总人数的百分比为×100%=25%,故答案为: 200、25%;(2)“体育”类节目的人数为 200﹣( 50+35+45)=70 人,补全图形以下:( 3)画树状图为:共有 12 种等可能的结果数,恰巧抽到最喜爱“ B”和“ C”两位观众的结果数为2,因此恰巧抽到最喜爱“ B”和“ C”两位观众的概率 = =.【评论】本题考察了列表法与树状图法:经过列表法或树状图法展现全部等可能的结果求出 n,再从中选出切合事件 A 或 B 的结果数目 m,而后依据概率公式求失事件 A 或 B 的概率.也考察了统计图.25.( 12.00 分)( 2018? 安顺)如图,在△ ABC中, AB=AC, O 为 BC的中点, AC 与半圆 O相切于点 D.( 1)求证: AB是半圆 O所在圆的切线;( 2)若 cos∠ABC= , AB=12,求半圆 O所在圆的半径.【剖析】(1)先判断出∠ CAO=∠ BAO,从而判断出 OD=OE,即可得出结论;(2)先求出 OB,再用勾股定理求出 OA,最后用三角形的面积即可得出结论.【解答】解:(1)如图,作 OE⊥AB于 E,连结 OD,OA,∵ AB=AC,点 O是 BC的中点,∴∠ CAO=∠BAO,∵AC与半圆 O相切于 D,∴ OD⊥AC,∵OE⊥AB,∴OD=OE,∵AB径半圆O的半径的外端点,∴ AB是半圆 O所在圆的切线;(2)∵ AB=AC, O是 BC的中点,∴ AO⊥BC,在 Rt△ AOB中, OB=AB? cos∠ABC=12× =8,依据勾股定理得, OA==4 ,由三角形的面积得, S△AOB=AB? OE= OB? OA,∴OE==,即:半圆 O所在圆的半径为.【评论】本题主要考察了切线的性质和判断,等腰三角形的性质,锐角三角函数,勾股定理,三角形的面积的计算方法,求出OB是解本题的重点.26.( 14.00 分)(2018? 安顺)如图,已知抛物线 y=ax2+bx+C( a≠0)的对称轴为直线 x=﹣1,且抛物线与 x 轴交于 A、B 两点,与 y 轴交于 C 点,此中 A(1,0),C(0,3).(1)若直线 y=mx+n经过 B、C 两点,求直线 BC和抛物成的分析式;(2)在抛物线的对称轴 x=﹣1 上找一点 M,使点 M到点 A 的距离与到点 C 的距离之和最小,求出点 M的坐标;(3)设点 P 为抛物线的对称轴 x=﹣1 上的一个动点,求使△ BPC为直角三角形的点 P 的坐标.【剖析】(1)先把点 A,C 的坐标分别代入抛物线分析式获得a 和 b,c 的关系式,再依据抛物线的对称轴方程可得 a 和 b 的关系,再联立获得方程组,解方程组,求出a,b,c 的值即可获得抛物线分析式;把 B、C两点的坐标代入直线 y=mx+n,解方程组求出 m和 n 的值即可获得直线分析式;( 2)设直线 BC与对称轴 x=﹣ 1 的交点为 M,则此时 MA+MC的值最小.把 x=﹣1代入直线 y=x+3 得 y 的值,即可求出点 M坐标;( 3)设 P(﹣22 1,t ),又因为 B(﹣ 3,0),C(0,3),因此可得 BC=18,PB=(﹣22=4+t 22222﹣6t+10,再分三种状况分别议论求1+3) +t,PC=(﹣ 1) +(t ﹣3)=t 出切合题意 t值即可求出点 P 的坐标.【解答】解:(1)依题意得:,。
贵州省安顺市中考数学试卷(解析版)
1 . .选择题(共10小题)2018年贵州省安顺市中考数学试卷(2018 台州)在一、0、1、2-2这四个数中,最小的数是(A . B. 02-2考点:有理数大小比较。
解答:解:在有理数,0、1、- 2中,2最大的是1,只有-2是负数,二最小的是-2.故选D .2.(2018衡阳)某市在一次扶贫助残活动中,共捐款记数法表示(保留两个有效数字)为()6 5A . 3.1X10°元B. 3.1X105元6 一3.18X0 兀考点:科学记数法与有效数字。
解答:解:3185800^3.2X10°.故选C.C. 13185800元,将3185800元用科学C. 3.2X0°元A . ±3「 B. 3 7C. ±3D3考点:立方根。
解答:解:T 33=27,3.(2018南通)计算的结果是()•••:〒=3.故选D .4. (2018张家界)已知值是()A. 1无法确定考点解答解得故选1是关于x的一元二次方程(C.2x +x+仁0的一个根,则m的一元二次方程的解;解:根据题意得:(m= - 1.B. 元二次方程的定义。
m- 1)+1+1=0 ,5. 在平面直角坐标系△ ABO的面积为(A . xoy)中,若A点坐标为(- 3, 3), B点坐标为(2, 0),则15 B. 7.5 C. 63考点:三角形的面积;坐标与图形性质。
解答:解:如图,根据题意得,△ ABO的底长OB为2,高为3,二S A ABO=— >"2X3=3 .2故选D .A . 6 B. 7 C. 8 D.9考点:多边形内角与外角。
解答:解:设这个多边形的边数为n,则有(n- 2)180°900 °解得:n=7,•••这个多边形的边数为7.故选B .7.(2018丹东)某一时刻,身髙1.6m的小明在阳光下的影长是0.4m,同一时刻同一地点测得某旗杆的影长是5m,则该旗杆的高度是()A . 1.25m B. 10m C. 20m D8m考点:相似三角形的应用。
2018年贵州省安顺市中考数学试题及参考答案
2018年贵州省安顺市中考数学试题及参考答案一、选择题(本大题共10小题,每小题3分,共30分)1.下面四个手机应用图标中是轴对称图形的是()A.B.C.D.【知识考点】轴对称图形.【思路分析】分别根据轴对称图形与中心对称图形的性质对各选项进行逐一分析即可.【解答过程】解:A、既不是轴对称图形,也不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项错误;C、既不是轴对称图形,也不是中心对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选:D.【总结归纳】本题考查的是轴对称图形,熟知轴对称图形是针对一个图形而言的,是一种具有特殊性质图形,被一条直线分割成的两部分沿着对称轴折叠时,互相重合是解答此题的关键.2.4的算术平方根是()A.B C.±2D.2【知识考点】算术平方根.【思路分析】直接利用算术平方根的定义得出即可.【解答过程】解:4的算术平方根是2.故选:D.【总结归纳】此题主要考查了算术平方根的定义,利用算术平方根即为正平方根求出是解题关键.3.“五•一”期间,美丽的黄果树瀑布景区吸引大量游客前来游览,经统计,某段时间内来该风景区游览的人数约为36000人,用科学记数法表示36000为()A.3.6×104B.0.36×106C.0.36×104D.36×103【知识考点】科学记数法—表示较大的数.【思路分析】利用科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答过程】解:36000用科学记数法表示为3.6×104.故选:A.【总结归纳】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.如图,直线a∥b,直线l与a、b分别相交于A、B两点,过点A作直线l的垂线交直线b于点C,若∠1=58°,则∠2的度数为()A.58°B.42°C.32°D.28°【知识考点】平行线的性质.【思路分析】根据平行线的性质得出∠ACB=∠2,根据三角形内角和定理求出即可.【解答过程】解:∵直线a∥b,∴∠ACB=∠2,∵AC⊥BA,∴∠BAC=90°,∴∠2=∠ACB=180°﹣∠1﹣∠BAC=180°﹣90°﹣58°=32°,故选:C.【总结归纳】本题考查了对平行线的性质和三角形内角和定理的应用,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补5.如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD()A.∠B=∠C B.AD=AE C.BD=CE D.BE=CD【知识考点】全等三角形的判定.【思路分析】欲使△ABE≌△ACD,已知AB=AC,可根据全等三角形判定定理AAS、SAS、ASA添加条件,逐一证明即可.【解答过程】解:∵AB=AC,∠A为公共角,A、如添加∠B=∠C,利用ASA即可证明△ABE≌△ACD;B、如添AD=AE,利用SAS即可证明△ABE≌△ACD;C、如添BD=CE,等量关系可得AD=AE,利用SAS即可证明△ABE≌△ACD;D、如添BE=CD,因为SSA,不能证明△ABE≌△ACD,所以此选项不能作为添加的条件.故选:D.【总结归纳】此题主要考查学生对全等三角形判定定理的理解和掌握,此类添加条件题,要求学生应熟练掌握全等三角形的判定定理.6.一个等腰三角形的两条边长分别是方程x2﹣7x+10=0的两根,则该等腰三角形的周长是()A.12B.9C.13D.12或9【知识考点】解一元二次方程﹣因式分解法;三角形三边关系;等腰三角形的性质.【思路分析】求出方程的解,即可得出三角形的边长,再求出即可.【解答过程】解:x2﹣7x+10=0,(x﹣2)(x﹣5)=0,x﹣2=0,x﹣5=0,x1=2,x2=5,①等腰三角形的三边是2,2,5∵2+2<5,∴不符合三角形三边关系定理,此时不符合题意;②等腰三角形的三边是2,5,5,此时符合三角形三边关系定理,三角形的周长是2+5+5=12;即等腰三角形的周长是12.故选:A.【总结归纳】本题考查了等腰三角形性质、解一元二次方程、三角形三边关系定理的应用等知识,关键是求出三角形的三边长.7.要调查安顺市中学生了解禁毒知识的情况,下列抽样调查最适合的是()A.在某中学抽取200名女生B.在安顺市中学生中抽取200名学生C.在某中学抽取200名学生D.在安顺市中学生中抽取200名男生【知识考点】全面调查与抽样调查.【思路分析】直接利用抽样调查中抽取的样本是否具有代表性,进而分析得出答案.【解答过程】解:A、在某中学抽取200名女生,抽样具有局限性,不合题意;B、在安顺市中学生中抽取200名学生,具有代表性,符合题意;C、在某中学抽取200名学生,抽样具有局限性,不合题意;D、在安顺市中学生中抽取200名男生,抽样具有局限性,不合题意;故选:B.【总结归纳】此题主要考查了抽样调查的意义,正确理解抽样调查是解题关键.8.已知△ABC(AC<BC),用尺规作图的方法在BC上确定一点P,使PA+PC=BC,则符合要求的作图痕迹是()A.B.C.D.【知识考点】作图—复杂作图.【思路分析】利用线段垂直平分线的性质以及圆的性质分别分得出即可.【解答过程】解:A、如图所示:此时BA=BP,则无法得出AP=BP,故不能得出PA+PC=BC,故此选项错误;B、如图所示:此时PA=PC,则无法得出AP=BP,故不能得出PA+PC=BC,故此选项错误;C、如图所示:此时CA=CP,则无法得出AP=BP,故不能得出PA+PC=BC,故此选项错误;D、如图所示:此时BP=AP,故能得出PA+PC=BC,故此选项正确;故选:D.【总结归纳】此题主要考查了复杂作图,根据线段垂直平分线的性质得出是解题关键.9.已知⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=8cm,则AC 的长为()A.B.C.或D.或【知识考点】垂径定理;勾股定理.【思路分析】先根据题意画出图形,由于点C的位置不能确定,故应分两种情况进行讨论.【解答过程】解:连接AC,AO,∵⊙O的直径CD=10cm,AB⊥CD,AB=8cm,∴AM=AB=×8=4cm,OD=OC=5cm,当C点位置如图1所示时,∵OA=5cm,AM=4cm,CD⊥AB,∴OM===3cm,∴CM=OC+OM=5+3=8cm,∴AC===4cm;当C点位置如图2所示时,同理可得OM=3cm,∵OC=5cm,∴MC=5﹣3=2cm,在Rt△AMC中,AC===2cm.故选:C.【总结归纳】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.10.已知二次函数y=ax2+bx+c(a≠0)的图象如图,分析下列四个结论:①abc<0;②b2﹣4ac>0;③3a+c>0;④(a+c)2<b2,其中正确的结论有()A.1个B.2个C.3个D.4个【知识考点】二次函数图象与系数的关系.【思路分析】①由抛物线的开口方向,抛物线与y轴交点的位置、对称轴即可确定a、b、c 的符号,即得abc的符号;②由抛物线与x轴有两个交点判断即可;③分别比较当x=﹣2时、x=1时,y的取值,然后解不等式组可得6a+3c<0,即2a+c<0;又因为a<0,所以3a+c<0.故错误;④将x=1代入抛物线解析式得到a+b+c<0,再将x=﹣1代入抛物线解析式得到a﹣b+c>0,两个不等式相乘,根据两数相乘异号得负的取符号法则及平方差公式变形后,得到(a+c)2<b2,【解答过程】解:①由开口向下,可得a<0,又由抛物线与y轴交于正半轴,可得c>0,然后由对称轴在y轴左侧,得到b与a同号,则可得b<0,abc>0,故①错误;②由抛物线与x轴有两个交点,可得b2﹣4ac>0,故②正确;③当x=﹣2时,y<0,即4a﹣2b+c<0 (1)当x=1时,y<0,即a+b+c<0 (2)(1)+(2)×2得:6a+3c<0,即2a+c<0又∵a<0,∴a+(2a+c)=3a+c<0.故③错误;④∵x=1时,y=a+b+c<0,x=﹣1时,y=a﹣b+c>0,∴(a+b+c)(a﹣b+c)<0,即[(a+c)+b][(a+c)﹣b]=(a+c)2﹣b2<0,y=∴(a+c)2<b2,故④正确.综上所述,正确的结论有2个.故选:B.【总结归纳】本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c(a≠0)系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.二、细心填一填(本大题共8小题,每小题4分,满分32分)11.函数中自变量x的取值范围是.【知识考点】E4:函数自变量的取值范围.【思路分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答过程】解:由题意得,x+1>0,解得x>﹣1.故答案为:x>﹣1.【总结归纳】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.12.学校射击队计划从甲、乙两人中选拔一人参加运动会射击比赛,在选拔过程中,每人射击10次,计算他们的平均成绩及方差如下表:选手甲乙平均数(环)9.59.5方差0.0350.015请你根据上表中的数据选一人参加比赛,最适合的人选是.【知识考点】方差;算术平均数.【思路分析】根据方差的定义,方差越小数据越稳定.【解答过程】解:因为S甲2=0.035>S乙2=0.015,方差小的为乙,所以本题中成绩比较稳定的是乙.故答案为乙.【总结归纳】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.13.不等式组34012412xx+⎧⎪⎨-⎪⎩≥≤的所有整数解的积为.【知识考点】一元一次不等式组的整数解.【思路分析】先分别求出各不等式的解集,再求出其公共解集,在其公共解集内找出符合条件的x的所有整数解相乘即可求解.【解答过程】解:,解不等式①得:x,解不等式②得:x≤50,∴不等式组的整数解为﹣1,0,1…50,所以所有整数解的积为0,故答案为:0.【总结归纳】本题考查的是解一元一次不等式组及求一元一次不等式组的整数解,求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.14.若x2+2(m﹣3)x+16是关于x的完全平方式,则m=.【知识考点】完全平方式.【思路分析】直接利用完全平方公式的定义得出2(m﹣3)=±8,进而求出答案.【解答过程】解:∵x2+2(m﹣3)x+16是关于x的完全平方式,∴2(m﹣3)=±8,解得:m=﹣1或7,故答案为:﹣1或7.【总结归纳】此题主要考查了完全平方公式,正确掌握完全平方公式的基本形式是解题关键.15.如图,点P1,P2,P3,P4均在坐标轴上,且P1P2⊥P2P3,P2P3⊥P3P4,若点P1,P2的坐标分别为(0,﹣1),(﹣2,0),则点P4的坐标为(8,0).【知识考点】相似三角形的判定与性质;坐标与图形性质.【思路分析】根据相似三角形的性质求出P3D的坐标,再根据相似三角形的性质计算求出OP4的长,得到答案.【解答过程】解:∵点P1,P2的坐标分别为(0,﹣1),(﹣2,0),∴OP1=1,OP2=2,∵Rt△P1OP2∽Rt△P2OP3,∴=,即=,解得,OP3=4,∵Rt△P2OP3∽Rt△P3OP4,∴=,即=,解得,OP4=8,则点P4的坐标为(8,0),故答案为:(8,0).【总结归纳】本题考查的是相似三角形的判定和性质以及坐标与图形的性质,掌握相似三角形的判定定理和性质定理是解题的关键.16.如图,C为半圆内一点,O为圆心,直径AB长为2cm,∠BOC=60°,∠BCO=90°,将△BOC绕圆心O逆时针旋转至△B′OC′,点C′在OA上,则边BC扫过区域(图中阴影部分)的面积为cm2.【知识考点】扇形面积的计算;旋转的性质.【思路分析】根据已知条件和旋转的性质得出两个扇形的圆心角的度数,再根据扇形的面积公式进行计算即可得出答案.【解答过程】解:∵∠BOC=60°,△B′OC′是△BOC绕圆心O逆时针旋转得到的,∴∠B′OC′=60°,△BCO=△B′C′O , ∴∠B′OC=60°,∠C′B′O=30°, ∴∠B′OB=120°, ∵AB=2cm , ∴OB=1cm ,OC′=,∴B′C′=,∴S 扇形B′OB ==π,S 扇形C′OC ==,∵∴阴影部分面积=S 扇形B′OB +S △B′C′O ﹣S △BCO ﹣S 扇形C′OC =S 扇形B′OB ﹣S 扇形C′OC =π﹣=π;故答案为:π.【总结归纳】此题考查了旋转的性质和扇形的面积公式,掌握直角三角形的性质和扇形的面积公式是本题的关键.17.如图,已知直线y=k 1x+b 与x 轴、y 轴相交于P 、Q 两点,与2k y x=的图象相交于A (﹣2,m )、B (1,n )两点,连接OA 、OB ,给出下列结论:①k 1k 2<0;②m+12n =0;③S △AOP =S △BOQ ;④不等式21kk x b x+>的解集是x <﹣2或0<x <1,其中正确的结论的序号是 .【知识考点】反比例函数与一次函数的交点问题.【思路分析】根据一次函数和反比例函数的性质得到k 1k 2>0,故①错误;把A (﹣2,m )、B (1,n )代入y=中得到﹣2m=n 故②正确;把A (﹣2,m )、B (1,n )代入y=k 1x+b得到y=﹣mx ﹣m ,求得P (﹣1,0),Q (0,﹣m ),根据三角形的面积公式即可得到S △AOP =S △BOQ ;故③正确;根据图象得到不等式k1x+b的解集是x<﹣2或0<x<1,故④正确.【解答过程】解:由图象知,k1<0,k2<0,∴k1k2>0,故①错误;把A(﹣2,m)、B(1,n)代入y=中得﹣2m=n,∴m+n=0,故②正确;把A(﹣2,m)、B(1,n)代入y=k1x+b得,∴,∵﹣2m=n,∴y=﹣mx﹣m,∵已知直线y=k1x+b与x轴、y轴相交于P、Q两点,∴P(﹣1,0),Q(0,﹣m),∴OP=1,OQ=m,∴S△AOP=m,S△BOQ=m,∴S△AOP=S△BOQ;故③正确;由图象知不等式k1x+b的解集是x<﹣2或0<x<1,故④正确;故答案为:②③④.【总结归纳】本题考查了反比例函数与一次函数的交点,求两直线的交点坐标,三角形面积的计算,正确的理解题意是解题的关键.18.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图的方式放置,点A1,A2,A3…和点C1,C2,C3…分别在直线y=x+1和x轴上,则点B n的坐标为.【知识考点】一次函数图象上点的坐标特征;规律型:点的坐标.【思路分析】根据一次函数图象上点的坐标特征可得出点A1的坐标,结合正方形的性质可得出点B1的坐标,同理可得出点B2、B3、B4、…的坐标,再根据点的坐标的变化即可找出点B n 的坐标.【解答过程】解:当x=0时,y=x+1=1, ∴点A 1的坐标为(0,1). ∵四边形A 1B 1C 1O 为正方形, ∴点B 1的坐标为(1,1). 当x=1时,y=x+1=2, ∴点A 2的坐标为(1,2). ∵四边形A 2B 2C 2C 1为正方形, ∴点B 2的坐标为(3,2).同理可得:点A 3的坐标为(3,4),点B 3的坐标为(7,4),点A 4的坐标为(7,8),点B 4的坐标为(15,8),…, ∴点B n 的坐标为(2n ﹣1,2n ﹣1). 故答案为:(2n ﹣1,2n ﹣1).【总结归纳】本题考查了一次函数图象上点的坐标特征、正方形的性质以及规律型中点的坐标,根据一次函数图象上点的坐标特征结合正方形的性质找出点B n 的坐标是解题的关键. 三、解答题(本大题共8小题,满分88分)19.(8分)计算:()2201811|2|tan 60 3.142π-⎛⎫-++︒--+ ⎪⎝⎭.【知识考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【思路分析】先计算乘方、去绝对值符号、代入三角函数值、计算零指数幂、负整数指数幂,再计算加减即可得.【解答过程】解:原式=﹣1+2﹣+﹣1+4=4.【总结归纳】本题主要考查是实数的运算,解题的关键是掌握乘方、绝对值性质、三角函数值、零指数幂及负整数指数幂.20.(10分)先化简,再求值:2282442x x x x x ⎛⎫÷-- ⎪-+-⎝⎭,其中|x|=2. 【知识考点】分式的化简求值;绝对值.【思路分析】根据分式的减法和除法可以化简题目中的式子,然后根据|x|=2即可解答本题. 【解答过程】解:÷(﹣x ﹣2)====,∵|x|=2,x﹣2≠0,解得,x=﹣2,∴原式=.【总结归纳】本题考查分式的化简求值、绝对值,解答本题的关键是明确分式化简求值的方法.21.(10分)如图是某市一座人行天桥的示意图,天桥离地面的高BC是10米,坡面AC的倾斜角∠CAB=45°,在距A点10米处有一建筑物HQ.为了方便行人推车过天桥,市政府部门决定降低坡度,使新坡面DC的倾斜角∠BDC=30°,若新坡面下D处与建筑物之间需留下至少3米宽的人行道,问该建筑物是否需要拆除?(计算最后结果保留一位小数).(参=1.414=1.732)【知识考点】解直角三角形的应用﹣坡度坡角问题.【思路分析】在Rt△ABC、Rt△HBC中,利用锐角三角函数分别计算DB、AB,然后计算DH的长,根据DH与3的关系,得结论.【解答过程】解:由题意知,AH=10米,BC=10米,在Rt△ABC中,∵∠CAB=45°,∴AB=BC=10米在Rt△HBC中,∵∠CDB=30°,∴DB==10(米)∵DH=AH﹣(HB﹣AB)=10﹣10+10=20﹣10≈2.7(米)∴建筑物需要拆除.【总结归纳】本题考查了锐角三角函数的应用,难度不大.利用线段的和差关系和锐角三角函数,是解决本题的关键.22.(10分)如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC 的平行线交BE的延长线于点F,连接CF.(1)求证:AF=DC;(2)若AC⊥AB,试判断四边形ADCF的形状,并证明你的结论.【知识考点】全等三角形的判定与性质.【思路分析】(1)连接DF,由AAS证明△AFE≌△DBE,得出AF=BD,即可得出答案;(2)根据平行四边形的判定得出平行四边形ADCF,求出AD=CD,根据菱形的判定得出即可;【解答过程】(1)证明:连接DF,∵E为AD的中点,∴AE=DE,∵AF∥BC,∴∠AFE=∠DBE,在△AFE和△DBE中,,∴△AFE≌△DBE(AAS),∴EF=BE,∵AE=DE,∴四边形AFDB是平行四边形,∴BD=AF,∵AD为中线,∴DC=BD,∴AF=DC;(2)四边形ADCF的形状是菱形,理由如下:∵AF=DC,AF∥BC,∴四边形ADCF是平行四边形,∵AC⊥AB,∴∠CAB=90°,∵AD为中线,∴AD=BC=DC,∴平行四边形ADCF是菱形;【总结归纳】本题考查了平行四边形的判定与性质,菱形、矩形、正方形的判定,全等三角形的性质和判定,直角三角形斜边上中线性质;本题综合性强,由一定难度,利于培养学生的推理能力.23.(12分)某地2015年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2017年在2015年的基础上增加投入资金1600万元.(1)从2015年到2017年,该地投入异地安置资金的年平均增长率为多少?(2)在2017年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天奖励5元,按租房400天计算,求2017年该地至少有多少户享受到优先搬迁租房奖励.【知识考点】一元二次方程的应用;一元一次不等式的应用.【思路分析】(1)设该地投入异地安置资金的年平均增长率为x,根据2015年及2017年该地投入异地安置资金,即可得出关于x的一元二次方程,解之取其正值即可得出结论;(2)设2017年该地有a户享受到优先搬迁租房奖励,根据投入的总资金=前1000户奖励的资金+超出1000户奖励的资金结合该地投入的奖励资金不低于500万元,即可得出关于a的一元一次不等式,解之取其中的最小值即可得出结论.【解答过程】解:(1)设该地投入异地安置资金的年平均增长率为x,根据题意得:1280(1+x)2=1280+1600,解得:x1=0.5=50%,x2=﹣2.5(舍去).答:从2015年到2017年,该地投入异地安置资金的年平均增长率为50%.(2)设2017年该地有a户享受到优先搬迁租房奖励,根据题意得:8×1000×400+5×400(a﹣1000)≥5000000,解得:a≥1900.答:2017年该地至少有1900户享受到优先搬迁租房奖励.【总结归纳】本题考查了一元二次方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据各数量之间的关系,列出关于a的一元一次不等式.24.(12分)某电视台为了解本地区电视节目的收视情况,对部分市民开展了“你最喜爱的电视节人目”的问卷调查(每人只填写一项),根据收集的数据绘制了两幅不完整的统计图(如图所示),根据要求回答下列问题:(1)本次问卷调查共调查了名观众;图②中最喜爱“新闻节目”的人数占调查总人数新闻体育综艺科瞽节目的百分比为;(2)补全图①中的条形统计图;(3)现有最喜爱“新闻节为A),“体育节目”(记为B),“综艺节目(记为C),“科普节目”(记为D)的观众各一名,电视台要从四人中随机抽取两人参加联谊活动,请用列表或画树状图的方法,求出恰好抽到最喜爱“B”和“C”两位观众的概率.【知识考点】列表法与树状图法;扇形统计图;条形统计图.【思路分析】(1)用喜欢科普节目的人数除以它所占的百分比即可得到调查的总人数,用“新闻节目”人数除以总人数可得;(2)用调查的总人数分别减去喜欢新闻、综艺、科普的人数得到喜欢体育的人数,然后补全图①中的条形统计图;(3)画树状图展示所有12种等可能的结果数,再找出抽到最喜爱“B”和“C”两位观众的结果数,然后根据概率公式求解.【解答过程】解:(1)本次问卷调查的总人数为45÷22.5%=200人,图②中最喜爱“新闻节目”的人数占调查总人数的百分比为×100%=25%,故答案为:200、25%;(2)“体育”类节目的人数为200﹣(50+35+45)=70人,补全图形如下:(3)画树状图为:共有12种等可能的结果数,恰好抽到最喜爱“B”和“C”两位观众的结果数为2,所以恰好抽到最喜爱“B”和“C”两位观众的概率==.【总结归纳】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.也考查了统计图.25.(12分)如图,在△ABC中,AB=AC,O为BC的中点,AC与半圆O相切于点D.(1)求证:AB是半圆O所在圆的切线;(2)若cos∠ABC=23,AB=12,求半圆O所在圆的半径.【知识考点】切线的判定与性质;等腰三角形的性质;圆周角定理;解直角三角形.【思路分析】(1)先判断出∠CAO=∠BAO,进而判断出OD=OE,即可得出结论;(2)先求出OB,再用勾股定理求出OA,最后用三角形的面积即可得出结论.【解答过程】解:(1)如图,作OE⊥AB于E,连接OD,OA,∵AB=AC,点O是BC的中点,∴∠CAO=∠BAO,∵AC与半圆O相切于D,∴OD⊥AC,∵OE⊥AB,∴OD=OE,∵AB径半圆O的半径的外端点,∴AB是半圆O所在圆的切线;(2)∵AB=AC,O是BC的中点,∴AO⊥BC,在Rt△AOB中,OB=AB•cos∠ABC=12×=8,根据勾股定理得,OA==4,由三角形的面积得,S△AOB=AB•OE=OB•OA,∴OE==,即:半圆O所在圆的半径为.【总结归纳】此题主要考查了切线的性质和判定,等腰三角形的性质,锐角三角函数,勾股定理,三角形的面积的计算方法,求出OB是解本题的关键.26.(14分)如图,已知抛物线y=ax2+bx+C(a≠0)的对称轴为直线x=﹣1,且抛物线与x 轴交于A、B两点,与y轴交于C点,其中A(1,0),C(0,3).(1)若直线y=mx+n经过B、C两点,求直线BC和抛物成的解析式;(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.【知识考点】二次函数综合题.【思路分析】(1)先把点A,C的坐标分别代入抛物线解析式得到a和b,c的关系式,再根据抛物线的对称轴方程可得a和b的关系,再联立得到方程组,解方程组,求出a,b,c 的值即可得到抛物线解析式;把B、C两点的坐标代入直线y=mx+n,解方程组求出m和n 的值即可得到直线解析式;(2)设直线BC与对称轴x=﹣1的交点为M,则此时MA+MC的值最小.把x=﹣1代入直线y=x+3得y的值,即可求出点M坐标;(3)设P(﹣1,t),又因为B(﹣3,0),C(0,3),所以可得BC2=18,PB2=(﹣1+3)2+t2=4+t2,PC2=(﹣1)2+(t﹣3)2=t2﹣6t+10,再分三种情况分别讨论求出符合题意t值即可求出点P的坐标.【解答过程】解:(1)依题意得:,解之得:,∴抛物线解析式为y=﹣x2﹣2x+3∵对称轴为x=﹣1,且抛物线经过A(1,0),∴把B(﹣3,0)、C(0,3)分别代入直线y=mx+n,得,解之得:,∴直线y=mx+n的解析式为y=x+3;(2)设直线BC与对称轴x=﹣1的交点为M,则此时MA+MC的值最小.把x=﹣1代入直线y=x+3得,y=2,∴M(﹣1,2),即当点M到点A的距离与到点C的距离之和最小时M的坐标为(﹣1,2);(3)设P(﹣1,t),又∵B(﹣3,0),C(0,3),∴BC2=18,PB2=(﹣1+3)2+t2=4+t2,PC2=(﹣1)2+(t﹣3)2=t2﹣6t+10,①若点B为直角顶点,则BC2+PB2=PC2即:18+4+t2=t2﹣6t+10解之得:t=﹣2;②若点C为直角顶点,则BC2+PC2=PB2即:18+t2﹣6t+10=4+t2解之得:t=4,③若点P为直角顶点,则PB2+PC2=BC2即:4+t2+t2﹣6t+10=18解之得:t1=,t2=;综上所述P的坐标为(﹣1,﹣2)或(﹣1,4)或(﹣1,)或(﹣1,).【总结归纳】本题综合考查了二次函数的图象与性质、待定系数法求函数(二次函数和一次函数)的解析式、利用轴对称性质确定线段的最小长度、难度不是很大,是一道不错的中考压轴题.。
贵州省安顺市2018年中考数学真题试题(含解析)
B、如添 AD=AE,利用 SAS即可证明△ ABE≌△ ACD;
C、如添 BD=CE,等量关系可得 AD=AE,利用 SAS即可证明△ ABE≌△ ACD;
D、如添 BE=CD,因为 SSA,不能证明△ ABE≌△ ACD,所以此选项不能作为添加的条件.
故选 D.
点睛:此题主要考查学生对全等三角形判定定理的理解和掌握,此类添加条件题,要求学生应熟练掌握全
时刻给自己打一打气,阿 Q 一下,这样把对自己的期待放低一些,心态就平稳了,也就高兴了,这可以使
得思路更顺畅,而超水平发挥也就很正常了。
04 别看他人答题的速度 考场上不要左顾右盼,观察别人做题的进度,万一人家比自己快,会给自己压力。在考场上和比较熟悉的
老师、同学可以主动打个招呼。即使是不认识的老师,也可问候一声“老师好”
1 时,
n 是正数;当原数的绝对值< 1 时, n 是负数. 详解: 36000 用科学记数法表示为 3.6 ×10 4.
故选 A. 点睛:此题考查了科学记数法的表示方法.科学记数法的表示形式为
a×10 n 的形式,其中 1≤|a| < 10, n
为整数,表示时关键要正确确定 a 的值以及 n 的值.
即考试时间的规划,答题的原则,遇到问题时的心理准备与应对方法、如何调节自己的在答题方案等等。
计划不如变化快,我们的计划要随着试题的难易程度随时调整,目的是在有限的时间里有质有量的完成每
一道试题。要随机而动,在发卷后的
5 分钟里,要先浏览一下第二卷的试卷结构和试题的分布、难易程度
等等,初步制定出本试卷的答题计划和答题顺序。先易后难,先熟后生,这就要充分利用这
∴∠ ACB=90° - ∠ 1=90° -58 ° =32°,
2018年安顺市中考数学试题含答案
2018年安顺市初中毕业生学业、升学(高中、中职、五年制专科)招生考试数学科试题一、选择题(共10个小题,每小题3分,共30分)1.下面四个手机应用图标中是轴对称图形的是()A.B.C.D.的算术平方根为()A.C.2±D.23.“五·一”期间,美丽的黄果树瀑布景区吸引大量游客前来游览.经统计,某段时间内来该风景区游览的人数约为36000人,用科学记数法表示36000为()A.43.610⨯B.60.3610⨯C.40.3610⨯D.33610⨯4.如图,直线//a b ,直线l 与直线a ,b 分别相交于A 、B 两点,过点A 作直线l 的垂线交直线b 于点C ,若158∠=︒,则2∠的度数为()A.58︒B.42︒C.32︒D.28︒5.如图,点D ,E 分别在线段AB ,AC 上,CD 与BE 相交于O 点,已知AB AC =,现添加以下哪个条件仍不能判定.....ABE ACD ∆≅∆()A.B C ∠=∠B.AD AE=C.BD CE =D.BE CD=6.一个等腰三角形的两条边长分别是方程27100x x -+=的两根,则该等腰三角形的周长是()A.12B.9C.13D.12或97.要调查安顺市中学生了解禁毒知识的情况,下列抽样调查最适合的是()A.在某中学抽取200名女生B.在安顺市中学生中抽取200名学生C.在某中学抽取200名学生D.在安顺市中学生中抽取200名男生8.已知()ABC AC BC ∆<,用尺规作图的方法在BC 上确定一点P ,使PA PC BC +=,则符合要求的作图痕迹是()A.B.C.D.9.已知O 的直径10CD cm =,AB 是O 的弦,AB CD ⊥,垂足为M ,且8AB cm =,则AC 的长为()A.B.C.或D.或10.已知二次函数2(0)y ax bx c a =++≠的图象如图,分析下列四个结论:①0abc <;②240b ac ->;③30a c +>;④22()a c b +<.其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题(共8个小题,每小题4分,共32分)11.函数y =中自变量x 的取值范围是.12.学校射击队计划从甲、乙两人中选拔一人参加运动会射击比赛,在选拔过程中,每人射击10次,计算他们的平均成绩及方差如表,请你根据表中的数据选一人参加比赛,最适合的人选是.选手甲乙平均数(环)9.59.5方差0.0350.01513.不等式组34012412x x +≥⎧⎪⎨-≤⎪⎩的所有整数解的积为.14.若22(3)16x m x +-+是关于x 的完全平方式,则m =.15.如图,点1P ,2P ,3P ,4P 均在坐标轴上,且1223PP P P ⊥,2334P P P P ⊥,若点1P ,2P 的坐标分别为(0,1)-,(2,0)-,则点4P 的坐标为.16.如图,C 为半圆内一点,O 为圆心,直径AB 长为2cm ,60BOC ∠=︒,90BCO ∠=︒,将BOC ∆绕圆心O 逆时针旋转至''BOC ∆,点'C 在OA 上,则边BC 扫过区域(图中阴影部分)的面积为2cm .(结果保留π)17.如图,已知直线1y k x b =+与x 轴、y 轴相交于P 、Q 两点,与2k y x=的图象相交于(2,)A m -、(1,)B n 两点,连接OA 、OB .给出下列结论:①120k k <;②102m n +=;③AOP BOQ S S ∆∆=;④不等式21k k x b x+>的解集是2x <-或01x <<.其中正确结论的序号是.18.正方形111A B C O 、2221A B C C 、3332A B C C 、…按如图所示的方式放置.点1A 、2A 、3A 、…和点1C 、2C 、3C 、…分别在直线1y x =+和x 轴上,则点n B 的坐标是.(n 为正整数)三、解答题(本大题共8小题,满分88分.解答应写出文字说明、证明过程或演算步骤)19.计算:()220181132tan 60 3.142π-⎛⎫--+︒--+ ⎪⎝⎭.20.先化简,再求值:2282442x x x x x ⎛⎫÷-- ⎪-+-⎝⎭,其中2x =.21.如图是某市一座人行天桥的示意图,天桥离地面的高BC 是10米,坡面AC 的倾斜角45CAB ∠=︒,在距A 点10米处有一建筑物HQ .为了方便行人推车过天桥,市政府部门决定降低坡度,使新坡面DC 的倾斜角30BDC ∠=︒,若新坡面下D 处与建筑物之间需留下至少3米宽的人行道,问该建筑物是否需要拆除(计算最后结果保留一位小数).2 1.414≈3 1.732≈)22.如图,在ABC ∆中,AD 是BC 边上的中线,E 是AD 的中点,过点A 作BC 的平行线交BE 的延长线于点F ,连接CF .(1)求证:AF DC =;(2)若AB AC ⊥,试判断四边形ADCF 的形状,并证明你的结论.23.某地2015年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2017年在2015年的基础上增加投入资金1600万元.(1)从2015年到2017年,该地投入异地安置资金的年平均增长率为多少?(2)在2017年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天奖励5元,按租房400天计算,求2017年该地至少有多少户享受到优先搬迁租房奖励.24.某电视台为了解本地区电视节目的收视情况,对部分市民开展了“你最喜爱的电视节目”的问卷调查(每人只填写一项),根据收集的数据绘制了两幅不完整的统计图(如图所示),根据要求回答下列问题:(1)本次问卷调查共调查了________名观众;图②中最喜爱“新闻节目”的人数占调查总人数的百分比为________;(2)补全图①中的条形统计图;(3)现有最喜爱“新闻节目”(记为A ),“体育节目”(记为B ),“综艺节目”(记为C ),“科普节目”(记为D )的观众各一名,电视台要从四人中随机抽取两人参加联谊活动,请用列表或画树状图的方法,求出恰好抽到最喜爱“B ”和“C ”两位观众的概率.25.如图,在ABC ∆中,AB AC =,O 为BC 的中点,AC 与半圆O 相切于点D .(1)求证:AB 是半圆O 所在圆的切线;(2)若2cos 3ABC ∠=,12AB =,求半圆O 所在圆的半径.26.如图,已知抛物线2(0)y ax bx c a =++≠的对称轴为直线1x =-,且抛物线与x 轴交于A 、B 两点,与y 轴交于C 点,其中(1,0)A ,(0,3)C .(1)若直线y mx n =+经过B 、C 两点,求直线BC 和抛物线的解析式;(2)在抛物线的对称轴1x =-上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求出点M 的坐标;(3)设点P 为抛物线的对称轴1x =-上的一个动点,求使BPC ∆为直角三角形的点P 的坐标.2018年安顺市初中毕业生学业、升学(高中、中职、五年制专科)招生考试数学学科参考答案一、选择题1-5:DBACD6-10:ABDCB二、填空题11.1x >-12.乙13.014.7或-115.(8,0)16.4π17.②③④18.1(21,2)nn --三、解答题19.解:原式12144=-+-+=.20.解:原式228(2)(2)(2)22x x x x x x ⎡⎤+-=÷-⎢⎥---⎣⎦22284(2)2x x x x -+=÷--282(2)4x x -=⋅-22x -.∵2x =,∴2x =±,2x =舍,当2x =-时,原式21222==---.21.解:由题意得,10AH =米,10BC =米,在Rt ABC ∆中,45CAB ∠=︒,∴10AB BC ==,在Rt DBC ∆中,30CDB ∠=︒,∴tan BCDB CDB==∠,∴()DH AH AD AH DB AB =-=--101020 2.7=-=-≈(米),∵2.7米3<米,∴该建筑物需要拆除.22.证明:(1)∵E 是AD 的中点,∴AE ED =.∵//AF BC ,∴AFE DBE ∠=∠,FAE BDE ∠=∠,∴AFE DBE ∆≅∆.∴AF DB =.∵AD 是BC 边上的中点,∴DB DC =,∴AF DC =.(2)四边形ADCF 是菱形.理由:由(1)知,AF DC =,∵//AF CD ,∴四边形ADCF 是平行四边形.又∵AB AC ⊥,∴ABC ∆是直角三角形.∵AD 是BC 边上的中线,∴12AD BC DC ==.∴平行四边形ADCF 是菱形.23.解:(1)设该地投入异地安置资金的年平均增长率为x ,根据题意得21280(1)12801600x +=+,解得:0.5x =或 2.5x =-(舍),答:从2015年到2017年,该地投入异地安置资金的年平均增长率为50%;(2)设2017年该地有a 户享受到优先搬迁租房奖励,根据题意得,∵8100040032000005000000⨯⨯=<,∴1000a >,10008400(1000)54005000000a ⨯⨯+-⨯⨯≥,解得:1900a ≥,答:2017年该地至少有1900户享受到优先搬迁租房奖励.24.解:(1)200,25%.(2)最喜爱“新闻节目”的人数为20050354570---=(人),如图,(3)画树状图为:共有12种等可能的结果,恰好抽到最喜爱“B ”和“C ”两位观众的结果数为2,所以恰好抽到最喜爱“B ”和“C ”两位观众的概率21126==.25.(1)证明:如图1,作OE AB ⊥于E ,连接OD 、OA ,∵AB AC =,O 为BC 的中点,∴CAO BAO ∠=∠.∵AC 与半圆O 相切于点D ,∴OD AC ⊥,∵OE AB ⊥,∴OD OE =,∵AB 经过圆O 半径的外端,∴AB 是半圆O所在圆的切线;(2)∵AB AC =,O 是BC 的中点,∴AO BC ⊥,由2cos 3ABC ∠=,12AB =,得∴2cos 1283OB AB ABC =⋅∠=⨯=.由勾股定理,得2245AO AB OB =-=由三角形的面积,得11AOB S AB OE OB AO ∆=⋅=⋅,853OB OA OE AB ⋅==,半圆O 所在圆的半径是853.26.解:(1)依题意得:1203ba abc c ⎧-=-⎪⎪++=⎨⎪=⎪⎩,解之得:123a b c =-⎧⎪=-⎨⎪=⎩,∴抛物线的解析式为223y x x =--+.∵对称轴为1x =-,且抛物线经过(1,0)A ,∴把(3,0)B -、(0,3)C 分别代入直线y mx n =+,得303m n n -+=⎧⎨=⎩,解之得:13m n =⎧⎨=⎩,∴直线y mx n =+的解析式为3y x =+.(2)直线BC 与对称轴1x =-的交点为M ,则此时MA MC +的值最小,把1x =-代入直线3y x =+得2y =,∴(1,2)M -.即当点M 到点A 的距离与到点C 的距离之和最小时M 的坐标为(1,2)-.(注:本题只求M 坐标没说要证明为何此时MA MC +的值最小,所以答案没证明MA MC +的值最小的原因).(3)设(1,)P t -,又(3,0)B -,(0,3)C ,∴218BC =,2222(13)4PB t t =-++=+,2222(1)(3)610PC t t t =-+-=-+,①若点B 为直角顶点,则222BC PB PC +=即:22184610t t t ++=-+解之得:2t =-,②若点C 为直角顶点,则222BC PC PB +=即:22186104t t t +-+=+解之得:4t =,③若点P 为直角顶点,则222PB PC BC +=即:22461018t t t ++-+=解之得:13172t +=,23172t =.综上所述P 的坐标为(1,2)--或(1,4)-或3(1,2+-或3(1,2--.。
2018贵州安顺中考数学解析
2018年贵州省安顺市初中毕业、升学考试数学学科(满分150分,考试时间120分钟)一、选择题(共10个小题,每小题3分,共30分)2.(T2,F3)4的算术平方根为( )A.2±B. 2C. ±2D. 2【答案】B【解析】由算术平方根的定义可知,4=2,2的算术平方根为2.【知识点】算术平方根的定义.3. (2018贵州安顺,T3,F3)“五•一”期间,美丽的黄果树瀑布景区吸引大量游客前来游览.经统计,某段时 间内来该风景区游览的人数约为36000人,用科学记数法表示36000为( )A. 3.6⨯l04B. 0.36⨯l06C. 0.36⨯104D. 36⨯103【答案】A【解析】由科学记数法的定义可知,36000=3.6⨯104.【知识点】科学记数法.4.(2018贵州安顺,T4,F3)如图,直线a //b ,直线l 与直线a, b 分别相交于A ,B 两点,过点A 作直线l 的垂线交直线b 于点C,若∠1=58°,则∠2的度数为( )A. 58°B. 42°C. 32°D. 28°【答案】C【解析】由直线a //b ,过点A 作直线l 的垂线交直线b 于点C ,得∠1+∠2+90°=180°,∵∠1=58°,∴∠2=180°-58°-90°=32°.【知识点】平行线的性质.1. (2018贵州安顺,T1,F3)下面四个手机应用图标中是轴对称图形的是( )A B C D 【答案】D【解析】由轴对称图形的定义可知,选项D 的图形有对称轴所以是轴对称图形.【知识点】轴对称图形的性质.5.(2018贵州安顺,T5,F3)如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定.....△ABE≌△ACD( )A.∠B=∠CB. AD = AEC. BD = CED. BE=CD【答案】D【解析】选项A,当AB=AC,∠A=∠A,∠B=∠C时,△ABE≌△ACD(ASA),故此选项不符合题意;选项B,当AB=AC,∠A=∠A,AE=AD时,△ABE≌△ACD(SAS),故此选项不符合题意;选项C,由AB=AC,BD=CE,得AB-AD=AD,AC-CE=AE,即AD=AE, △ABE≌△ACD(SAS),故此选项不符合题意;选项D,当AB=AC,∠A=∠A,BE=CD时,不能判定△ABE与△ACD全等,故此选项符合题意. 故答案选D.【知识点】全等三角形的判定定理.6.(2018贵州安顺,T6,F3)一个等腰三角形的两条边长分别是方程x2 -7x+10 = 0的两根,则该等腰三角形的周长是()A. 12B. 9C. 13D. 12或9【答案】A【解析】解x2-7x+10 = 0,得x=2或5.已知在等腰三角形中,有两腰相等,且两边之和大于第三边,∴腰长为5,底边长为2.∴该等腰三角形的周长为5+5+2=12.【知识点】解一元二次方程,三角形两边的和大于第三边.7.(2018贵州安顺,T7,F3)要调查安顺市中学生了解禁毒知识的情况,下列抽样调查最适合的是()A.在某中学抽取200名女生B.在安顺市中学生中抽取200名学生C.在某中学抽取200名学生D.在安顺市中学生中抽取200名男生【答案】B【解析】在抽样调查中,抽取的样本必须能客观地反映总体的情况,选项A,样本特指某中学和女生,不符合题意;选项B,样本符合题意;选项C,样本特指某中学,不符合题意;选项D,样本特指男生,不符合题意.故选B.【知识点】抽样调查的可靠性.8.(2018贵州安顺,T8,F3)已知△ABC (AC<BC),用尺规作图的方法在BC上确定一点P,使 PA+PC = BC,则符合要求的作图痕迹是()【答案】D【解析】选项A ,该作图痕迹表示AB=PB ,不符合题意;选项B ,该作图痕迹表示作线段AC 的垂直平分线交BC 于点P ,即PA=PC ,不符合题意;选项C ,该作图痕迹表示AC=PC ,不符合题意;选项D ,该作图痕迹表示作线段AB 的垂直平分线交BC 于点P ,即PA=PB ,故PA+PC=BC,符合题意.故选D.【知识点】尺规作图.9. (2018贵州安顺,T9,F3)已知e O 的直径CD = 10cm ,AB 是e O 的弦,AB 丄CD,垂足为M , 且AB = 8cm,则AC 的长为( )A. B.C.或 cmD. 或 【答案】C【解析】由题可知,直径CD =10cm ,AB 丄CD, AB = 8cm,当点M 在线段OC 上时,OA =OC =5cm ,AM =4cm.∵OA ²=AM ²+OM ²,∴OM =3cm ,即CM =OC -OM =2cm.由勾股定理,得AC ²=AM ²+CM ²=当点M 在线段OD 上时,CM =OC +CM =8cm.由勾股定理,得AC ²=AM ²+CM ²=故AC 的长为或【知识点】垂径定理,勾股定理.10. (2018贵州安顺,T10,F3)已知二次函数20(0)ax bx c a ++=≠的图象如图,分析下列四个结论:①abc <0;②b 2-4ac >0;③3a + c >0;④(a + c )2 < b 2.其中正确的结论有( )A. 1个B. 2个C. 3个D. 4个【答案】B 【解析】由图象可知,开口向下,则a <0,对称轴在x 轴负半轴,则2b a-<0,即b <0,抛物线交y 轴正半轴,则c >0,即abc >0,故①错误;抛物线与x 轴有两个交点,则∆>0,即b ²-4ac>0,故②正确;当x=-2时,y <0,即4a-2b+c <0(1),当x=1时,y <0,即a+b+c <0(2),(1)+(2)×2,得6a+3c <0,∵a <0,∴a+(2a+c )<0,故③错误;∵x=1时,y=a+b+c <0,x=-1时,y=a-b+c >0,∴(a+b+c )(a-b+c )=(a+c )²-b ²<0.∴(a+c )²<b ²,故④正确.综上所述,正确的结论有2个,故选B.【知识点】二次函数图象与系数的关系.二、填空题(共8个小题,每小题4分,共32分)11. (2018贵州安顺,T11,F4)函数1y x =+x 的取值范围是_______. 【答案】x >-1 1x +0,由二次根式的定义可知,x+1≥0,解得x >-1.【知识点】分式有意义的条件,二次根式有意义的条件.12. (2018贵州安顺,T12,F4)学校射击队计划从甲、乙两人中选拔一人参加运动会射击比赛,在选拔过程中,每人射击10次,计算他们的平均成绩及方差如右表,请你根据选手 甲 乙平均数(环)9.5 9.5 方差0.035 0.015【答案】乙【解析】由表格中的数据可知,甲、乙两人的平均数都是9.5环,甲的方差>乙的方差.∵方差越大,数据的波动越大;方差越小,数据的波动越小,∴乙的成绩比较稳定.∴最合适的人选是乙.【知识点】方差.13. (2018贵州安顺,T13,F4)不等式组340,12412x x +≥⎧⎪⎨-≤⎪⎩的所有整数解的积为___. 【答案】0【解析】解340, 124 1. 2xx+≥⎧⎪⎨-≤⎪⎩解得425.32x-≤≤∵在解集中包含整数0,∴所有整数解的积为0.【知识点】解一元一次不等式组.14.(2018贵州安顺,T14,F4)若22(3)16x m x+-+是关于x的完全平方式,则m=_______. 【答案】7或-1【解析】∵22(3)16x m x+-+是关于x的完全平方式,∴(m-3)²=16.解得m=7或-1. 【知识点】完全平方式的特点,解一元二次方程.15.(2018贵州安顺,T15,F4)如图,点1P,2P,3P,4P均在坐标轴上,且1P2P⊥2P3P,2P3P⊥3P4P,若点1P,2P的坐标分别为(0,-1),(-2,0),则点4P的坐标为________.【答案】(8,0)【解析】∵1P2P⊥2P3P,2P3P⊥3P4P,x轴⊥y轴,点1P,2P的坐标分别为(0,-1),(-2,0),∴Rt△12POP∽Rt△23P OP∽Rt△34P OP,1OP=1,2OP=2.∴1223OP OPOP OP=,3234OPOPOP OP=.即3122OP=,解得3OP=4,4244OP=解得4OP=8.∵点4P在x轴正半轴,∴点4P的坐标为(8,0).【知识点】相似三角形的判定与性质,坐标与图形性质.16.(2018贵州安顺,T16,F4)如图,C为半圆内一点,O为圆心,直径AB长为2cm,∠BOC = 60°, ∠BCO = 90°, 将△BOC绕圆心O逆时针旋转至△B’OC',点C'在OA上,则边BC扫过区域(图中阴影部分)的面积为______cm2.(结果保留π)第16题图 【答案】4π 【解析】∵∠BOC=60°,△B 'OC'是△BOC 绕圆心O 逆时针旋转得到的,∴∠B 'OC'=60°,△BOC ≌△B 'OC'.∵∠BCO=90°,∴∠B 'C'O=90°,∠B 'OC=60°,∠C' B 'O=30°.∴∠B 'OB=120°.∵AB=2cm ,cos ∠BOC=12OC OB =,∴OB=1cm ,OC=OC ’=12.∴π⨯π==2扇形'12013603B OB S cm ²,π⨯π==2扇形'1120()236012C OC S cm ².∵阴影部分的面积=扇形'B OB S +△''B OC S -(△BOC S +扇形'C OC S )=π3-π12=π4cm ².故答案为π4. 【知识点】旋转的性质,扇形面积的计算,特殊角的三角函数值.17. (2018贵州安顺,T17,F4)如图,已知直线=+1y k x b 与x 轴、y 轴相交于P 、Q 两点,与2=k y x的图象相交于A (-2,m )、B (1,n )两点,连接OA 、OB ,给出下列结论:①12k k <0;②102+=m n ;③=△△AOP BOQ S S ;④不等式21>+k k x b x 的解集是x <-2或0<x <1,其中正确结论的序号是_________.【答案】②③④【解析】由图象知,1k <0,2k <0,∴12k k >0,故①错误;把A (-2,m )、B (1,n )代入2=k y x 中得2k =-2m=n ,∴102+=m n ,故②正确;把A (-2,m )、B (1,n )代入1=+y k x b 中得112,.=-+⎧⎨=+⎩m k b n k b 解得1,32.3-⎧=⎪⎪⎨+⎪=⎪⎩n m k n m b ∵-2m=n ,∴y=-mx-m.∵直线1=+y k x b 与x 轴、y 轴相交于P 、Q 两点,∴P (-1,0)、Q (0,-m ).∴OP=1,OQ=m.∴1=2△AOP S m ,1=2△B OQ S m ,即=△△AOP BOQ S S ,故③正确;由图象知,不等式21>+k k x b x 的解集是x <-2或0<x <1,故④正确.故②③④正确.【知识点】反比例函数与一次函数的图象与性质.18. (2018贵州安顺,T18,F4)正方形111A B C O 、2221A B C C 、3332A B C C 、…按如图所示的 方式放置.点1A 、2A 、3A …和点1C 、C 2、C 3、…分别在直线y = X + 1 和x 轴上,则点n B 的坐标是______. (n 为正整数)【答案】1(21,2)--n n【解析】当x=0时,y=x+1=1,∴点1A 的坐标为(0,1).∵四边形111A B C O 为正方形,∴点1B 的坐标为(1,1).当x=1时,y=x+1=2,∴点2A 的坐标为(1,2).∵四边形2221A B C C 为正方形,∴点2B 的坐标为(3,2).同理,可得点3A 的坐标为(3,4),点3B 的坐标为(7,4),……,点n A 的坐标为11(21,2)---n n ,点n B 的坐标为1(21,2)--n n .故答案为1(21,2)--n n .【知识点】一次函数图象上点的坐标特征,正方形的性质,探索规律.三、解答题(本大题共8小题,满分88分,解答应写出必要的文字说明或演算步骤)19. (2018贵州安顺,T19,F8)计算:201812-++tan60°021( 3.14)()2--π-+ 【思路分析】先化简每一项再计算.【解题过程】解:原式【知识点】有理数的乘方,绝对值,特殊角三角函数值.20. (2018贵州安顺,T20,F10)先化简,再求值:2844÷-+x x 2(2)2---x x x , 其中2=x【思路分析】原式括号内的式子通分,然后将除法统一为乘法运算,再约分、化简成最简分式,解出x 的值,将不符合分式意义的值舍去,最后代入符合分式意义的值求值即可.【解题过程】解:原式 =228(2)(2)(2)22⎡⎤+-÷-⎢⎥---⎣⎦x x x x x x =22284(2)2-+÷--x x x x =28(2)⨯-x 24-x =22-x , ∵2=x ,∴2=±x .∵x-2≠0,∴x=2舍去,即x=-2.当x=-2时,22-x =-12. 【知识点】分式化简求值.21.(2018贵州安顺,T21,F10)如图是某市一座人行天桥的示意图,天桥离地面的髙BC 是10米,坡面AC 的倾斜角∠CAB =45°,在 距A 点10米处有一建筑物HQ.为了方便行人推车过天桥,市政府部门决定降低坡度,使新坡面DC 的倾 斜角∠BDC=30°,若新坡面下D 处与建筑物之间需留下至少3米宽的人行道,问该建筑物是否需要拆除 (计算最后结果保留一位小数).(【思路分析】根据题意,得AH=10米,BC=10米,在Rt △ABC 中,由于∠CAB=45°,可得AB=BC=10米.在Rt △DBC 中利用锐角三角函数求出DB ,进而可以求出DH 的长,即可得出结论.【解题过程】解:由题意得,AH=10米,BC=10米,在Rt △ABC 中,∠CAB=45°,∴AB=BC=10米.在Rt △DBC 中,∠CDB=30°,∴DB=tan ∠=BC CDB米. ∴DH=AH-AD=AH-(DB-AB)=10-2.7(米). ∵2.7米<3米,∴该建筑物需要拆除.【知识点】解直角三角形的应用—坡度,锐角三角函数的定义.22.(2018贵州安顺,T22,F10)如图,在△ABC 中,AD 是BC 边上的中线,E 是AD 的中点,过点A 作BC 的平行线交BE 的延长线于点F ,连接CF .(1) 求证:AF=DC ;(2) 若AB 丄AC ,试判断四边形ADCF 的形状,并证明你的结论.【思路分析】(1)先根据平行线的性质推出∠AFE=∠DBE ,∠FAE=∠BDE,再根据点E 是线段AD 的中点推出AE=DE,然后根据AAS 推出△FAE ≌△BDE ,进而得出AF=DB,最后根据AD 是BC 边上的中线,得出AF=DC;(2)由AB ⊥AC 得出△ABC 是直角三角形,根据直角三角形斜边上的中线等于斜边的一半可知AD=DC,由(1)的结论可知,AF=DC=AD,再根据AF ∥BC ,得出四边形ADCF 是菱形.【解题过程】证明:(1)∵AF ∥BC ,∴∠AFE=∠DBE ,∠FAE=∠BDE.∵E 是AD 的中点,∴AE=DE. 有.∠=∠⎧⎪∠=∠⎨⎪=⎩AFE DBE FAE BDE AE DE ,,∴△FAE ≌△BDE.∴AF=DB.∵AD 是BC 边上的中线,∴DB=DC.∴AF=DC.(2)四边形ADCF是菱形.理由:∵AB⊥AC,∴△ABC是直角三角形,∠BAC=90°.∵AD是BC边上的中线,∴AD=BD=CD.∴AF=DC=AD.∵AF∥BC,∴四边形ADCF是菱形.【知识点】平行线的性质,全等三角形的判定与性质,直角三角形的中线,菱形的判定定理.23.(2018贵州安顺,T23,F12)某地2015年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2017年在2015年的基础上增加投入资金1600万元.(1)从2015年到2017年,该地投入异地安置资金的年平均增长率为多少?(2)在2017年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天奖励5元,按租房400天计算,求2017年该地至少有多少户享受到优先搬迁租房奖励.【思路分析】(1)设该地投入异地安置资金的年平均增长率为x,根据2015年投入的资金×(1+平均增长率)²=2017年投入的资金,列出方程求解即可;(2)设2017年该地有a户享受到优先搬迁租房奖励,根据前1000户活的的奖励总数+1000户以后获得的奖励总和≥5000000,列出不等式求解即可.【解题过程】解:(1)设该地投入异地安置资金的年平均增长率为x,根据题意得1280(1+x)²=1280+1600,解得x=0.5或x=-2.5(舍).答:从2015年到2017年,该地投入异地安置资金的年平均增长率为50%.(2)设2017年该地有a户享受到优先搬迁租房奖励,∵8×1000×400=3200000<5000000,∴a>1000.根据题意得1000×8×400+(a-1000)×5×400≥5000000,解得a≥1900.答:2017年该地至少有1900户享受到优先搬迁租房奖励.【知识点】一元二次方程的应用,一元一次不等式的应用.24.(2018贵州安顺,T24,F12)某电视台为了解本地区电视节目的收视情况,对部分市民开展了“你最喜爱的电视节目”的问卷调查(每人只填写一项),根据收集的数据绘制了两幅不完整的统计图(如图所示),根据要求回答下列问题:(1)本次问卷调查共调查了______名观众;图②中最喜爱“新闻节目”的人数占调查总人数的百分比为_______;(2) 补全图①中的条形统计图;(3) 现有最喜爱“新闻节目”(记为A),“体育节目”(记为B)“综艺节目” (记为C),“科普节目”(记为D)的观众各一名,电视台要从四人中随机抽取两人参加联谊活动,请用列表或画树状图的方法,求出恰好抽到最喜爱“B”和“C”两位观众的概率.第24题图【思路分析】(1)根据两幅统计图中喜爱“科普节目”的人数÷它所占的百分比=本次调查的总人数,求解;再根据喜爱“新闻节目”的人数÷总人数=它所占的百分比,求解;(2)可根据总人数-图①中3组数据的和=喜爱“体育节目”的人数,求解,再根据求得的数据画图;(3)可根据题意列表或画出树状图,找出符合抽到“B”和“C”的次数除以列出所有可能的总次数即可.【解题过程】解:(1)45÷22.5%=200(名),50÷200×100%=25%.∴答案为200,25%;(2)最喜爱“体育节目”的人数为200-50-32-45=70(人),画图如下:第24题答图(3)画树状图如下:共有12种等可能的结果,恰好抽到最喜爱“B”和“C”两位观众的结果数为2,∴恰好抽到最喜爱“B”和“C”两位观众的概率=21=126.【知识点】扇形统计图,条形统计图,列表法和树状图法,概率.25.(2018贵州安顺,T25,F12)如图,在△ABC中,AB=AC,O为BC的中点,AC与半圆O 相切于点D.(1)求证:AB是半圆0所在圆的切线;(2)若cos∠ABC=23,AB = 12,求半圆O所在圆的半径.【思路分析】(1)作OE⊥AB于E,连接OD、OA,根据等腰三角形的性质可得OA是顶角平分线,再根据角平分线的性质可得OE=OD,最后根据切线的判定定理得出结论;(2)可根据余弦,得出OB的长,再根据勾股定理,得出OA的长,最后根据三角形面积,得出OE的长.【解题过程】解:(1)证明:如图,作OE⊥AB于E,连接OD、OA,第25题答图∵AB=AC,O为BC的中点,∴∠CAO=∠BAO.∵AC 与半圆O 相切于点D ,∴OD ⊥AC.∵OE ⊥AB ,∴OD=OE ,即OE 等于半径长.∵AB 经过半圆O 半径的外端E ,∴AB 是半圆O 所在圆的切线.(2)解:∵AB=AC,O 是BC 的中点,∴AO ⊥BC.由cos ∠ABC=23,AB=12,得OB=AB g cos ∠ABC=8. 由勾股定理,得224 5.AO AB OB -= 由三角形的面积,得11,22AOB S AB OE OB AO ==g g △ ∴OE=85OB OA AB =g 即半圆O 85. .【知识点】等腰三角形的性质,角平分线的性质,切线的判定定理与性质,余弦,勾股定理,三角形面积公式.26. (2018贵州安顺,T26,F14)如图,已知抛物线20(0)ax bx c a ++=≠的对称轴为直线x=-1,且抛物线与x 轴交于A 、B 两点,与y 轴交于C 点,其中 A(1, 0),C (0, 3).(1)若直线y=mx+n 经过B 、C 两点,求直线BC 和抛物线的解析式;(2)在抛物线的对称轴X =-1上找一个点M ,使点M 到点A 的距离与到点C 的距离之和最小,求出点M 的坐标;(3)设点P 为抛物线的对称轴x=-1上的一个动点,求使△BPC 为直角三角形的点P的坐标.第26题图【思路分析】(1)根据抛物线的对称轴是x=-1,A (1,0),可求出点B 的坐标,联系C (0,3)利用两点式即可求出直线y=mx+n 的解析式;把点A 、C 的坐标分别代入抛物线解析式得到a 和b ,c 的关系式,再根据抛物线的对称轴方程可得a 和b 的关系式,联立得到方程组,解出a ,b 和c 的值即可得到抛物线的解析式;(2)由于点M 在抛物线的对称轴上,∴点M 到点B 的距离和到点A 的距离相等,要使MB+MC 的值最小,就是使点B 、M 、C 三点共线即可,即对称轴与直线BC 的交点就是要求的点M 位置,进而求出点M 的坐标即可;(3)设出点P 的坐标为(-1,t ),再根据点B 、C 的坐标得出BC ²=18,PB ²=4+t ²,PC ²=t ²-6t+10,然后根据直角顶点分三种情况讨论,最后求出符合题意的t 值即可求出点P 的坐标.【解题过程】解:(1)∵抛物线的对称轴是直线x=-1,A (1,0),∴点B 的坐标为(-3,0).把B (-3,0)、C (0,3)分别代入直线y=mx+n 中,得30,3.m n n -+=⎧⎨=⎩解得1,3.m n =⎧⎨=⎩∴直线y=mx+n 的解析式为y=x+3. 将A (1,0)和C (0,3)代入20ax bx c ++=,得a+b+c=0,c=3.由对称轴公式,得2b a-=-1,. 有1,20,3.b a a b c c ⎧-=-⎪⎪++=⎨⎪=⎪⎩解得1,2,3.a b c =-⎧⎪=-⎨⎪=⎩∴抛物线的解析式为223y x x =--+.(2)由于点M 在抛物线的对称轴上,∴点M 到点B 的距离和到点A 的距离相等,要使MB+MC 的值最小,就是使点B 、M 、C 三点共线即可,即对称轴与直线BC 的交点就是要求的点M 位置.把x=-1代入直线y=x+3,得y=2.∴M (-1,2),即当点M 到点A 的距离与到点C 的距离之和最小时M的坐标为(-1,2).(3)设P 的坐标为(-1,t ),又∵B (-3,0)、C (0,3),∴BC ²=(-3)²+3²=18,PB ²=(-1+3)²+t ²=4+t ²,PC ²=(-1)²+(t-3)²=t ²-6t+10.①若点B 为直角顶点,则BC ²+PB ²=PC ²,即18+4+t ²=t ²-6t+10,解得t=-2;②若点C 为直角顶点,则BC ²+PC ²= PB ²,即18+ t ²-6t+10=4+t ²,解得t=4;③若点P 为直角顶点,则PB ²+PC ²=BC ²,即4+t ²+ t ²-6t+10=18,解得132t +=,232t =综上所述,点P 的坐标为(-1,-2)或(-1,4)或(-1,32)或(-1,32-). 【知识点】待定系数法,二次函数图象的性质,勾股定理,解一元二次方程.。
贵州省安顺市2018年中考数学真题试题(含解析)含答案
贵州省安顺市2018年中考数学真题试题一、选择题(共10个小题,每小题3分,共30分)1. 下面四个手机应用图标中是轴对称图形的是()A. B. C. D.【答案】D【解析】分析:分别根据轴对称图形与中心对称图形的性质对各选项进行逐一分析即可.详解:A、既不是轴对称图形,也不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项错误;C、既不是轴对称图形,也不是中心对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选D.点睛:本题考查的是轴对称图形,熟知轴对称图形是针对一个图形而言的,是一种具有特殊性质图形,被一条直线分割成的两部分沿着对称轴折叠时,互相重合是解答此题的关键.2. 的算术平方根为()A. B. C. D.【答案】B【解析】分析:先求得的值,再继续求所求数的算术平方根即可.详解:∵=2,而2的算术平方根是,∴的算术平方根是,故选B.点睛:此题主要考查了算术平方根的定义,解题时应先明确是求哪个数的算术平方根,否则容易出现选A 的错误.3. “五²一”期间,美丽的黄果树瀑布景区吸引大量游客前来游览.经统计,某段时间内来该风景区游览的人数约为人,用科学记数法表示为()A. B. C. D.【答案】A【解析】分析:利用科学记数法的表示形式为a³10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.详解:36000用科学记数法表示为3.6³104.故选A.点睛:此题考查了科学记数法的表示方法.科学记数法的表示形式为a³10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.4. 如图,直线,直线与直线,分别相交于、两点,过点作直线的垂线交直线于点,若,则的度数为()A. B. C. D.【答案】C【解析】分析:根据直角三角形两锐角互余得出∠ACB=90°-∠1,再根据两直线平行,内错角相等求出∠2即可.详解:∵AC⊥BA,∴∠BAC=90°,∴∠ACB=90°-∠1=90°-58°=32°,∵直线a∥b,∴∠ACB=∠2,∴∠2=-∠ACB=32°.故选C.点睛:本题考查了对平行线的性质和三角形内角和定理的应用,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补5. 如图,点,分别在线段,上,与相交于点,已知,现添加以下哪个条件仍不能...判定..()A. B. C. D.【答案】D【解析】分析:欲使△ABE≌△ACD,已知AB=AC,可根据全等三角形判定定理AAS、SAS、ASA添加条件,逐一证明即可.详解:∵AB=AC,∠A为公共角,A、如添加∠B=∠C,利用ASA即可证明△ABE≌△ACD;B、如添AD=AE,利用SAS即可证明△ABE≌△ACD;C、如添BD=CE,等量关系可得AD=AE,利用SAS即可证明△ABE≌△ACD;D、如添BE=CD,因为SSA,不能证明△ABE≌△ACD,所以此选项不能作为添加的条件.故选D.点睛:此题主要考查学生对全等三角形判定定理的理解和掌握,此类添加条件题,要求学生应熟练掌握全等三角形的判定定理.6. 一个等腰三角形的两条边长分别是方程的两根,则该等腰三角形的周长是()A. B. C. D. 或【答案】A【解析】试题分析:∵,∴,即,,①等腰三角形的三边是2,2,5,∵2+2<5,∴不符合三角形三边关系定理,此时不符合题意;②等腰三角形的三边是2,5,5,此时符合三角形三边关系定理,三角形的周长是2+5+5=12;即等腰三角形的周长是12.故选A.考点:1.解一元二次方程-因式分解法;2.三角形三边关系;3.等腰三角形的性质.7. 要调查安顺市中学生了解禁毒知识的情况,下列抽样调查最适合的是()A. 在某中学抽取名女生B. 在安顺市中学生中抽取名学生C. 在某中学抽取名学生D. 在安顺市中学生中抽取名男生【答案】B【解析】分析:根据具体情况正确选择普查或抽样调查方法,并理解有些调查是不适合使用普查方法的.要选择调查方式,需将普查的局限性和抽样调查的必要性结合起来具体分析.详解:要调查安顺市中学生了解禁毒知识的情况,就对所有学生进行一次全面的调查,费大量的人力物力是得不尝失的,采取抽样调查即可.考虑到抽样的全面性,所以应在安顺市中学生中随机抽取200名学生.故选B.点睛:本题考查了抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.8. 已知,用尺规作图的方法在上确定一点,使,则符合要求的作图痕迹是()A. B.C. D.【答案】D【解析】分析:要使PA+PC=BC,必有PA=PB,所以选项中只有作AB的中垂线才能满足这个条件,故D正确.详解:D选项中作的是AB的中垂线,∴PA=PB,∵PB+PC=BC,∴PA+PC=BC故选D.点睛:本题主要考查了作图知识,解题的关键是根据中垂线的性质得出PA=PB.9. 已知的直径,是的弦,,垂足为,且,则的长为()A. B. C. 或 D. 或【答案】C【解析】试题解析:连接AC,AO,∵⊙O的直径CD=10cm,AB⊥CD,AB=8cm,∴AM=AB=³8=4c m,OD=OC=5cm.当C点位置如答1所示时,∵OA=5cm,AM=4cm,CD⊥AB,∴cm.∴CM=OC+OM=5+3=8cm.∴在Rt△AMC中,cm.当C点位置如图2所示时,同理可得OM=3cm,∵OC=5cm,∴MC=5﹣3=2cm.∴在Rt△AMC中,cm.综上所述,AC的长为cm或cm.故选C.10. 已知二次函数的图象如图,分析下列四个结论:①;②;③;④.其中正确的结论有()A. 个B. 个C. 个D. 个【答案】B【解析】试题解析:①由开口向下,可得又由抛物线与y轴交于正半轴,可得再根据对称轴在y轴左侧,得到与同号,则可得故①错误;②由抛物线与x轴有两个交点,可得故②正确;③当时,即 (1)当时,,即 (2)(1)+(2)³2得,即又因为所以故③错误;④因为时,时,所以即所以故④正确,综上可知,正确的结论有2个.故选B.二、填空题(共8个小题,每小题4分,共32分)11. 函数中自变量的取值范围是__________.【答案】【解析】试题解析:根据题意得,x+1>0,解得x>-1.故答案为:x>-1..12. 学校射击队计划从甲、乙两人中选拔一人参加运动会射击比赛,在选拔过程中,每人射击次,计算他们的平均成绩及方差如表,请你根据表中的数据选一人参加比赛,最适合的人选是__________.【答案】乙【解析】分析:根据方差的定义,方差越小数据越稳定.详解:因为S甲2=0.035>S乙2=0.015,方差小的为乙,所以本题中成绩比较稳定的是乙.故答案为:乙.点睛:本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.13. 不等式组的所有整数解的积为__________.【答案】0【解析】试题分析:,解不等式①得:,解不等式②得:,∴不等式组的整数解为﹣1,0,1…50,所以所有整数解的积为0,故答案为:0.考点:一元一次不等式组的整数解.14. 若是关于的完全平方式,则__________.【答案】7或-1【解析】分析】直接利用完全平方公式的定义得出2(m-3)=±8,进而求出答案.详解:∵x2+2(m-3)x+16是关于x的完全平方式,∴2(m-3)=±8,解得:m=-1或7,故答案为:-1或7.点睛:此题主要考查了完全平方公式,正确掌握完全平方公式的基本形式是解题关键.15. 如图,点,,,均在坐标轴上,且,,若点,的坐标分别为,,则点的坐标为__________.【答案】【解析】分析:根据相似三角形的性质求出P3D的坐标,再根据相似三角形的性质计算求出OP4的长,得到答案.详解:∵点P1,P2的坐标分别为(0,-1),(-2,0),∴OP1=1,OP2=2,∵Rt△P1OP2∽Rt△P2OP3,∴,即,解得,OP3=4,∵Rt△P2OP3∽Rt△P3OP4,∴,即,解得,OP4=8,则点P4的坐标为(8,0),故答案为:(8,0).点睛:本题考查的是相似三角形的判定和性质以及坐标与图形的性质,掌握相似三角形的判定定理和性质定理是解题的关键.16. 如图,为半圆内一点,为圆心,直径长为,,,将绕圆心逆时针旋转至,点在上,则边扫过区域(图中阴影部分)的面积为__________.(结果保留)【答案】【解析】分析:根据已知条件和旋转的性质得出两个扇形的圆心角的度数,再根据扇形的面积公式进行计算即可得出答案.详解:∵∠BOC=60°,△B′OC′是△BOC绕圆心O逆时针旋转得到的,∴∠B′OC′=60°,△BCO=△B′C′O,∴∠B′OC=60°,∠C′B′O=30°,∴∠B′OB=120°,∵AB=2cm,∴OB=1cm,OC′=,∴B′C′=,∴S扇形B′OB=,∵S扇形C′OC=,∴阴影部分面积=S扇形B′OB+S△B′C′O-S△BCO-S扇形C′OC=S扇形B′OB-S扇形C′OC=.故答案为:.点睛:此题考查了旋转的性质和扇形的面积公式,掌握直角三角形的性质和扇形的面积公式是本题的关键.17. 如图,已知直线与轴、轴相交于、两点,与的图象相交于、两点,连接、.给出下列结论:①;②;③;④不等式的解集是或.其中正确结论的序号是__________.【答案】②③④【解析】分析:根据一次函数和反比例函数的性质得到k1k2>0,故①错误;把A(-2,m)、B(1,n)代入y=中得到-2m=n故②正确;把A(-2,m)、B(1,n)代入y=k1x+b得到y=-mx-m,求得P(-1,0),Q(0,-m),根据三角形的面积公式即可得到S△AOP=S△BOQ;故③正确;根据图象得到不等式k1x+b>的解集是x<-2或0<x<1,故④正确.详解:由图象知,k1<0,k2<0,∴k1k2>0,故①错误;把A(-2,m)、B(1,n)代入y=中得-2m=n,∴m+n=0,故②正确;把A(-2,m)、B(1,n)代入y=k1x+b得,∴,∵-2m=n,∴y=-mx-m,∵已知直线y=k1x+b与x轴、y轴相交于P、Q两点,∴P(-1,0),Q(0,-m),∴OP=1,OQ=m,∴S△AOP=m,S△BOQ=m,∴S△AOP=S△BOQ;故③正确;由图象知不等式k1x+b>的解集是x<-2或0<x<1,故④正确;故答案为:②③④.点睛:本题考查了反比例函数与一次函数的交点,求两直线的交点坐标,三角形面积的计算,正确的理解题意是解题的关键.18. 正方形、、、…按如图所示的方式放置.点、、、…和点、、、…分别在直线和轴上,则点的坐标是__________.(为正整数)【答案】【解析】分析:由图和条件可知A1(0,1)A2(1,2)A3(3,4),B1(1,1),B2(3,2),Bn的横坐标为A n+1的横坐标,纵坐标为An的纵坐标,又A n的横坐标数列为An=2n-1-1,所以纵坐标为(2n-1),然后就可以求出Bn的坐标为[A(n+1)的横坐标,An的纵坐标].详解:由图和条件可知A1(0,1)A2(1,2)A3(3,4),B1(1,1),B2(3,2),∴Bn的横坐标为A n+1的横坐标,纵坐标为An的纵坐标又A n的横坐标数列为An=2n-1-1,所以纵坐标为2n-1,∴Bn的坐标为[A(n+1)的横坐标,An的纵坐标]=(2n-1,2n-1).故答案为:(2n-1,2n-1).点睛:本题主要考查函数图象上点的坐标特征及正方形的性质,解决这类问题首先要从简单图形入手,抓住随着“编号”或“序号”增加时,后一个图形与前一个图形相比,在数量上增加(或倍数)情况的变化,找出数量上的变化规律,从而推出一般性的结论.三、解答题(本大题共8小题,满分88分.解答应写出文字说明、证明过程或演算步骤)19. 计算:.【答案】4.【解析】分析:原式第一项利用乘方的意义计算,第二项利用绝对值的代数意义化简,第三项利用特殊角三角函数值进行计算,第四项利用零指数幂法则计算,最后一项利用负整指数幂法则计算即可得到结果.详解:原式.点睛:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20. 先化简,再求值:,其中.【答案】,.【解析】分析:先化简括号内的式子,再根据分式的除法进行计算即可化简原式,然后将x=-2代入化简后的式子即可解答本题.详解:原式=.∵,∴,舍,当时,原式.点睛:本题考查分式的化简求值,解题的关键是明确分式化简求值的方法.21. 如图是某市一座人行天桥的示意图,天桥离地面的高是米,坡面的倾斜角,在距点米处有一建筑物.为了方便行人推车过天桥,市政府部门决定降低坡度,使新坡面的倾斜角,若新坡面下处与建筑物之间需留下至少米宽的人行道,问该建筑物是否需要拆除(计算最后结果保留一位小数).(参考数据:,)【答案】该建筑物需要拆除.【解析】分析:根据正切的定义分别求出AB、DB的长,结合图形求出DH,比较即可.详解:由题意得,米,米,在中,,∴,在中,,∴,∴(米),∵米米,∴该建筑物需要拆除.点睛:本题考查的是解直角三角形的应用-坡度坡角问题,掌握锐角三角函数的定义、熟记特殊角的三角函数值是解题的关键.22. 如图,在中,是边上的中线,是的中点,过点作的平行线交的延长线于点,连接.(1)求证:;(2)若,试判断四边形的形状,并证明你的结论.【答案】(1)证明见解析;(2)四边形是菱形,理由见解析.【解析】试题分析:(1)根据AAS证△AFE≌△DBE,推出AF=BD,即可得出答案;(2)得出四边形ADCF是平行四边形,根据直角三角形斜边上中线性质得出,根据菱形的判定推出即可.试题解析:(1)证明:∵AF∥BC,∴∠AFE=∠DBE,∵E是AD的中点,AD是BC边上的中线,∴AE=DE,BD=CD,在△AFE和△DBE中∴△AFE≌△DBE(AAS),∴AF=BD,∴AF=DC.(2)四边形ADCF是菱形,证明:AF∥BC,AF=DC,∴四边形ADCF是平行四边形,∵AC⊥AB,AD是斜边BC的中线,∴平行四边形ADCF是菱形.点睛:有一组邻边相等的平行四边形是菱形.23. 某地年为做好“精准扶贫”,投入资金万元用于异地安置,并规划投入资金逐年增加,年在年的基础上增加投入资金万元.(1)从年到年,该地投入异地安置资金的年平均增长率为多少?(2)在年异地安置的具体实施中,该地计划投入资金不低于万元用于优先搬迁租房奖励,规定前户(含第户)每户每天奖励元,户以后每户每天奖励元,按租房天计算,求年该地至少有多少户享受到优先搬迁租房奖励.【答案】(1)从年到年,该地投入异地安置资金的年平均增长率为;(2)年该地至少有户享受到优先搬迁租房奖励.【解析】分析:(1)设年平均增长率为x,根据:2015年投入资金给³(1+增长率)2=2017年投入资金,列出方程求解可得;(2)设今年该地有a户享受到优先搬迁租房奖励,根据:前1000户获得的奖励总数+1000户以后获得的奖励总和≥500万,列不等式求解可得.详解:(1)设该地投入异地安置资金的年平均增长率为,根据题意得,解得:或(舍),答:从年到年,该地投入异地安置资金的年平均增长率为;(2)设年该地有户享受到优先搬迁租房奖励,根据题意得,∵,∴,,解得:,答:年该地至少有户享受到优先搬迁租房奖励.点睛:本题主要考查一元二次方程与一元一次不等式的应用,由题意准确抓住相等关系并据此列出方程或不等式是解题的关键.24. 某电视台为了解本地区电视节目的收视情况,对部分市民开展了“你最喜爱的电视节目”的问卷调查(每人只填写一项),根据收集的数据绘制了两幅不完整的统计图(如图所示),根据要求回答下列问题:(1)本次问卷调查共调查了________名观众;图②中最喜爱“新闻节目”的人数占调查总人数的百分比为________;(2)补全图①中的条形统计图;(3)现有最喜爱“新闻节目”(记为),“体育节目”(记为),“综艺节目”(记为),“科普节目”(记为)的观众各一名,电视台要从四人中随机抽取两人参加联谊活动,请用列表或画树状图的方法,求出恰好抽到最喜爱“”和“”两位观众的概率.【答案】(1),;(2)补图见解析;(3)恰好抽到最喜爱“”和“”两位观众的概率为.【解析】分析:(1)用喜欢科普节目的人数除以它所占的百分比即可得到调查的总人数,用喜爱“新闻节目”的人数除以调查总人数得到它所占的百分比;(2)用调查的总人数分别减去喜欢新闻、综艺、科普的人数得到喜欢体育的人数,然后补全图①中的条形统计图;(3)画树状图展示所有12种等可能的结果数,再找出抽到最喜爱“B”和“C”两位观众的结果数,然后根据概率公式求解.详解:(1)本次问卷调查共调查的观众数为45÷22.5%=200(人);图②中最喜爱“新闻节目”的人数占调查总人数的百分比为50÷200=25%;(2)最喜爱“新闻节目”的人数为200-50-35-45=70(人),如图,(3)画树状图为:共有12种等可能的结果数,恰好抽到最喜爱“B”和“C”两位观众的结果数为2,所以恰好抽到最喜爱“B”和“C”两位观众的概率=.点睛:本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.也考查了统计图.25. 如图,在中,,为的中点,与半圆相切于点.(1)求证:是半圆所在圆的切线;(2)若,,求半圆所在圆的半径.【答案】(1)证明见解析;(2)半圆所在圆的半径是.【解析】分析:(1)根据等腰三角形的性质,可得OA,根据角平分线的性质,可得OE,根据切线的判定,可得答案;(2)根据余弦,可得OB的长,根据勾股定理,可得OA的长,根据三角形的面积,可得OE的长.详解:(1)如图1,作于,连接、,∵,为的中点,∴.∵与半圆相切于点,∴,∵,∴,∵经过圆半径的外端,∴是半圆所在圆的切线;(2)∵,是的中点,∴,由,,得∴.由勾股定理,得.由三角形的面积,得,,半圆所在圆的半径是.点睛:本题考查了切线的判定与性质,利用切线的判定是解题关键,利用面积相等得出关于OE的长是解题关键.26. 如图,已知抛物线的对称轴为直线,且抛物线与轴交于、两点,与轴交于点,其中,.(1)若直线经过、两点,求直线和抛物线的解析式;(2)在抛物线的对称轴上找一点,使点到点的距离与到点的距离之和最小,求出点的坐标;(3)设点为抛物线的对称轴上的一个动点,求使为直角三角形的点的坐标.【答案】(1)抛物线的解析式为,直线的解析式为.(2);(3)的坐标为或或或.【解析】分析:(1)先把点A,C的坐标分别代入抛物线解析式得到a和b,c的关系式,再根据抛物线的对称轴方程可得a和b的关系,再联立得到方程组,解方程组,求出a,b,c的值即可得到抛物线解析式;把B、C两点的坐标代入直线y=mx+n,解方程组求出m和n的值即可得到直线解析式;(2)设直线BC与对称轴x=-1的交点为M,则此时MA+MC的值最小.把x=-1代入直线y=x+3得y的值,即可求出点M坐标;(3)设P(-1,t),又因为B(-3,0),C(0,3),所以可得BC2=18,PB2=(-1+3)2+t2=4+t2,PC2=(-1)2+(t-3)2=t2-6t+10,再分三种情况分别讨论求出符合题意t值即可求出点P的坐标.详解:(1)依题意得:,解之得:,∴抛物线的解析式为.∵对称轴为,且抛物线经过,∴把、分别代入直线,得,解之得:,∴直线的解析式为.(2)直线与对称轴的交点为,则此时的值最小,把代入直线得,∴.即当点到点的距离与到点的距离之和最小时的坐标为.(注:本题只求坐标没说要证明为何此时的值最小,所以答案没证明的值最小的原因). (3)设,又,,∴,,,①若点为直角顶点,则即:解之得:,②若点为直角顶点,则即:解之得:,③若点为直角顶点,则即:解之得:,.综上所述的坐标为或或或.点睛:本题综合考查了二次函数的图象与性质、待定系数法求函数(二次函数和一次函数)的解析式、利用轴对称性质确定线段的最小长度、难度不是很大,是一道不错的中考压轴题.。
2018年贵州省安顺市中考数学试卷(带答案解析)
图象相交于 A(﹣2,m)、B(1,n)两点,连接 OA、OB,给出下列结论:①k1k2 <0;②m+ n=0;③S△AOP=S△BOQ;④不等式 k1x+b> 的解集是 x<﹣2 或 0<x <1,其中正确的结论的序号是 k2<0, ∴k1k2>0,故①错误; 把 A(﹣2,m)、B(1,n)代入 y= 中得﹣2m=n,
S 扇形 C′OC=
t t =,
∵
∴阴影部分面积=S 扇形 B′OB+S△B′C′O﹣S△BCO﹣S 扇形 C′OC=S 扇形 B′OB﹣S 扇形 C′OC= π﹣ = π;
故答案为: π.
17.(4 分)如图,已知直线 y=k1x+b 与 x 轴、y 轴相交于 P、Q 两点,与 y= 的
第 8页(共 18页)
项错误;
C、如图所示:此时 CA=CP,则无法得出 AP=BP,故不能得出 PA+PC=BC,故此选
项错误;
D、如图所示:此时 BP=AP,故能得出 PA+PC=BC,故此选项正确;
故选:D.
9.(3 分)已知⊙O 的直径 CD=10cm,AB 是⊙O 的弦,AB⊥CD,垂足为 M,且 AB=8cm,则 AC 的长为( )
选拔过程中,每人射击 10 次,计算他们的平均成绩及方差如下表:
选手
甲
乙
平均数(环)
9.5
9.5
方差
0.035
0.015
请你根据上表中的数据选一人参加比赛,最适合的人选是 乙 .
【解答】解:因为 S 甲 2=0.035>S 乙 2=0.015,方差小的为乙, 所以本题中成绩比较稳定的是乙.
故答案为乙.
由图象知不等式 k1x+b> 的解集是 x<﹣2 或 0<x<1,故④正确; 故答案为:②③④.
〖汇总3套试卷〗安顺市2018年中考数学模拟试题
中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,则平移的距离和旋转角的度数分别为()A.4,30°B.2,60°C.1,30°D.3,60°【答案】B【解析】试题分析:∵∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,∴∠A′B′C=60°,AB=A′B′=A′C=4,∴△A′B′C是等边三角形,∴B′C=4,∠B′A′C=60°,∴BB′=6﹣4=2,∴平移的距离和旋转角的度数分别为:2,60°故选B.考点:1、平移的性质;2、旋转的性质;3、等边三角形的判定2.图(1)是一个长为2m,宽为2n(m>n)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是()A.2mn B.(m+n)2C.(m-n)2D.m2-n2【答案】C【解析】解:由题意可得,正方形的边长为(m+n),故正方形的面积为(m+n)1.又∵原矩形的面积为4mn,∴中间空的部分的面积=(m+n)1-4mn=(m-n)1.故选C.3.如图所示的图形,是下面哪个正方体的展开图()A.B.C.D.【答案】D【解析】根据展开图中四个面上的图案结合各选项能够看见的面上的图案进行分析判断即可.【详解】A. 因为A选项中的几何体展开后,阴影正方形的顶点不在阴影三角形的边上,与展开图不一致,故不可能是A:B. 因为B选项中的几何体展开后,阴影正方形的顶点不在阴影三角形的边上,与展开图不一致,故不可能是B ;C .因为C选项中的几何体能够看见的三个面上都没有阴影图家,而展开图中有四个面上有阴影图室,所以不可能是C.D. 因为D选项中的几何体展开后有可能得到如图所示的展开图,所以可能是D ;故选D.【点睛】本题考查了学生的空间想象能力, 解决本题的关键突破口是掌握正方体的展开图特征.4.五个新篮球的质量(单位:克)分别是+5、﹣3.5、+0.7、﹣2.5、﹣0.6,正数表示超过标准质量的克数,负数表示不足标准质量的克数.仅从轻重的角度看,最接近标准的篮球的质量是()A.﹣2.5 B.﹣0.6 C.+0.7 D.+5【答案】B【解析】求它们的绝对值,比较大小,绝对值小的最接近标准的篮球的质量.【详解】解:|+5|=5,|-3.5|=3.5,|+0.7|=0.7,|-2.5|=2.5,|-0.6|=0.6,∵5>3.5>2.5>0.7>0.6,∴最接近标准的篮球的质量是-0.6,故选B.【点睛】本题考查了正数和负数,掌握正数和负数的定义以及意义是解题的关键.5.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是()A.12B.14C.16D.112【答案】C【解析】画树状图求出共有12种等可能结果,符合题意得有2种,从而求解. 【详解】解:画树状图得:∵共有12种等可能的结果,两次都摸到白球的有2种情况,∴两次都摸到白球的概率是:21126.故答案为C.【点睛】本题考查画树状图求概率,掌握树状图的画法准确求出所有的等可能结果及符合题意的结果是本题的解题关键.6.如图,△ABC绕点A顺时针旋转45°得到△AB′C′,若∠BAC=90°,AB=AC=2,则图中阴影部分的面积等于( )A.22B.1 C2D2﹣l【答案】D【解析】∵△ABC绕点A顺时针旋转45°得到△A′B′C′,∠BAC=90°,2,∴BC=2,∠C=∠B=∠CAC′=∠C′=45°,2,∴AD⊥BC,B′C′⊥AB,∴AD=12BC=1,2AC′=1,∴DC′=AC′2-1,∴图中阴影部分的面积等于:S△AFC′-S△DEC′=12×1×1-12×2-1)22-1,故选D.【点睛】此题主要考查了旋转的性质以及等腰直角三角形的性质等知识,得出AD,AF,DC′的长是解题关键.7.一元二次方程mx2+mx﹣12=0有两个相等实数根,则m的值为()A.0 B.0或﹣2 C.﹣2 D.2【答案】C【解析】由方程有两个相等的实数根,得到根的判别式等于0,求出m的值,经检验即可得到满足题意m 的值.【详解】∵一元二次方程mx1+mx﹣12=0有两个相等实数根,∴△=m1﹣4m×(﹣12)=m1+1m=0,解得:m=0或m=﹣1,经检验m=0不合题意,则m=﹣1.故选C.【点睛】此题考查了根的判别式,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式的值等于0,方程有两个相等的实数根;根的判别式的值小于0,方程没有实数根.8.如图,小明为了测量河宽AB,先在BA延长线上取一点D,再在同岸取一点C,测得∠CAD=60°,∠BCA=30°,AC=15 m,那么河AB宽为()A.15 m B.53m C.103m D.123m【答案】A【解析】过C作CE⊥AB,Rt△ACE中,∵∠CAD=60°,AC=15m,∴∠ACE=30°,AE=12AC=12×15=7.5m,CE=AC•cos30°=15×32=1532,∵∠BAC=30°,∠ACE=30°,∴∠BCE=60°,∴BE=CE•tan60°=1532×3=22.5m,∴AB=BE﹣AE=22.5﹣7.5=15m,故选A.【点睛】本题考查的知识点是解直角三角形的应用,关键是构建直角三角形,解直角三角形求出答案.9.在平面直角坐标系中,已知点A(﹣4,2),B(﹣6,﹣4),以原点O为位似中心,相似比为12,把△ABO缩小,则点A的对应点A′的坐标是()A.(﹣2,1)B.(﹣8,4)C.(﹣8,4)或(8,﹣4)D.(﹣2,1)或(2,﹣1)【答案】D【解析】根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k,即可求得答案.【详解】∵点A(-4,2),B(-6,-4),以原点O为位似中心,相似比为12,把△ABO缩小,∴点A的对应点A′的坐标是:(-2,1)或(2,-1).故选D.【点睛】此题考查了位似图形与坐标的关系.此题比较简单,注意在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标比等于±k.10.如图,将矩形ABCD沿对角线BD折叠,点C落在点E处,BE交AD于点F,已知∠BDC=62°,则∠DFE 的度数为()A.31°B.28°C.62°D.56°【答案】D【解析】先利用互余计算出∠FDB=28°,再根据平行线的性质得∠CBD=∠FDB=28°,接着根据折叠的性质得∠FBD=∠CBD=28°,然后利用三角形外角性质计算∠DFE的度数.【详解】解:∵四边形ABCD为矩形,∴AD∥BC,∠ADC=90°,∵∠FDB=90°-∠BDC=90°-62°=28°,∵AD∥BC,∴∠CBD=∠FDB=28°,∵矩形ABCD沿对角线BD折叠,∴∠FBD=∠CBD=28°,∴∠DFE=∠FBD+∠FDB=28°+28°=56°.故选D.【点睛】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.二、填空题(本题包括8个小题)11.《九章算术》是我国古代数学名著,书中有下列问题:“今有勾五步,股十二步,问勾中容方几何?”其意思为:“今有直角三角形,勾(短直角边)长为5步,股(长直角边)长为12步,问该直角三角形能容纳的正方形边长最大是多少步?”该问题的答案是______步.【答案】60 17.【解析】如图,根据正方形的性质得:DE∥BC,则△ADE∽△ACB,列比例式可得结论. 【详解】如图,∵四边形CDEF是正方形,∴CD=ED,DE∥CF,设ED=x,则CD=x,AD=12-x,∵DE∥CF,∴∠ADE=∠C,∠AED=∠B,∴△ADE∽△ACB,∴DEBC =ADAC,∴x5=12-x12,∴x=6017,故答案为6017.【点睛】本题考查了相似三角形的判定和性质、正方形的性质,设未知数,构建方程是解题的关键.12.将一次函数2y x=-的图象平移,使其经过点(2,3),则所得直线的函数解析式是______.【答案】1y x=+【解析】试题分析:解:设y=x+b,∴3=2+b,解得:b=1.∴函数解析式为:y=x+1.故答案为y=x+1.考点:一次函数点评:本题要注意利用一次函数的特点,求出未知数的值从而求得其解析式,求直线平移后的解析式时要注意平移时k的值不变.13.方程22310x x+-=的两个根为1x、2x,则1211+x x的值等于______.【答案】1.【解析】根据一元二次方程根与系数的关系求解即可.【详解】解:根据题意得1232x x+=-,1212x x=-,所以1211+x x=1212x xx x+=3212--=1.故答案为1.【点睛】本题考查了根与系数的关系:若1x、2x是一元二次方程20ax bx c++=(a≠0)的两根时,12bx xa+=-,12c x x a=. 14.因式分解:a 2b-4ab+4b=______.【答案】2(2)b a -【解析】先提公因式b ,然后再运用完全平方公式进行分解即可.【详解】a 2b ﹣4ab+4b=b (a 2﹣4a+4)=b (a ﹣2)2,故答案为b (a ﹣2)2. 【点睛】本题考查了利用提公因式法与公式法分解因式,熟练掌握完全平方公式的结构特征是解本题的关键. 15.如图是测量河宽的示意图,AE 与BC 相交于点D ,∠B=∠C=90°,测得BD=120m ,DC=60m ,EC=50m ,求得河宽AB=______m .【答案】1【解析】由两角对应相等可得△BAD ∽△CED ,利用对应边成比例即可得两岸间的大致距离AB 的长.【详解】解:∵∠ADB=∠EDC ,∠ABC=∠ECD=90°, ∴△ABD ∽△ECD ,∴AB BD EC CD=, 即BD EC AB CD⨯= , 解得:AB=1205060⨯ =1(米). 故答案为1.【点睛】本题主要考查了相似三角形的应用,用到的知识点为:两角对应相等的两三角形相似;相似三角形的对应边成比例.16.如图,已知点A (a ,b ),0是原点,OA=OA 1,OA ⊥OA 1,则点A 1的坐标是 .【答案】(﹣b,a)【解析】解:如图,从A、A1向x轴作垂线,设A1的坐标为(x,y),设∠AOX=α,∠A1OD=β,A1坐标(x,y)则α+β="90°sinα=cosβ" cosα="sinβ" sinα==cosβ=同理cos α==sinβ=所以x=﹣b,y=a,故A1坐标为(﹣b,a).【点评】重点理解三角函数的定义和求解方法,主要应用公式sinα=cosβ,cosα=sinβ.17.如果一个正多边形的中心角为72°,那么这个正多边形的边数是.【答案】5【解析】试题分析:中心角的度数=360n︒36072n︒︒=,5n=考点:正多边形中心角的概念.18.如图,点A是双曲线y=﹣9x在第二象限分支上的一个动点,连接AO并延长交另一分支于点B,以AB为底作等腰△ABC,且∠ACB=120°,点C在第一象限,随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y=kx上运动,则k的值为_____.【答案】1【解析】根据题意得出△AOD∽△OCE,进而得出AD OD OAEO CE OC==,即可得出k=EC×EO=1.【详解】解:连接CO,过点A作AD⊥x轴于点D,过点C作CE⊥x轴于点E,∵连接AO 并延长交另一分支于点B ,以AB 为底作等腰△ABC ,且∠ACB=120°,∴CO ⊥AB ,∠CAB=10°,则∠AOD+∠COE=90°,∵∠DAO+∠AOD=90°,∴∠DAO=∠COE ,又∵∠ADO=∠CEO=90°,∴△AOD ∽△OCE , ∴AD OD OA EO CE OC == =tan60°=3 , ∴AOD EOC S S ∆∆=()23 =1, ∵点A 是双曲线y=-9x 在第二象限分支上的一个动点, ∴S △AOD =12×|xy|=92 , ∴S △EOC =32 ,即12×OE×CE=32, ∴k=OE×CE=1,故答案为1.【点睛】本题主要考查了反比例函数与一次函数的交点以及相似三角形的判定与性质,正确添加辅助线,得出△AOD ∽△OCE 是解题关键.三、解答题(本题包括8个小题)19.如图,平行四边形ABCD 的对角线AC ,BD 相交于点O ,EF 过点O 且与AB 、CD 分别交于点E 、F .求证:OE =OF .【答案】见解析【解析】由四边形ABCD 是平行四边形,根据平行四边形对角线互相平分,即可得OA=OC,易证得△AEO≌△CFO,由全等三角形的对应边相等,可得OE=OF.【详解】证明:∵四边形ABCD是平行四边形,∴OA=OC,AB∥DC,∴∠EAO=∠FCO,在△AEO和△CFO中,EAO FCOOA OCAOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△AEO≌△CFO(ASA),∴OE=OF.【点睛】本题考查了平行四边形的性质和全等三角形的判定,属于简单题,熟悉平行四边形的性质和全等三角形的判定方法是解题关键.20.如图,在▱ABCD中,DE⊥AB,BF⊥CD,垂足分别为E,F.求证:△ADE≌△CBF;求证:四边形BFDE 为矩形.【答案】(1)证明见解析;(2)证明见解析.【解析】(1)由DE与AB垂直,BF与CD垂直,得到一对直角相等,再由ABCD为平行四边形得到AD=BC,对角相等,利用AAS即可的值;(2)由平行四边形的对边平行得到DC与AB平行,得到∠CDE为直角,利用三个角为直角的四边形为矩形即可的值.【详解】解:(1)∵DE⊥AB,BF⊥CD,∴∠AED=∠CFB=90°,∵四边形ABCD为平行四边形,∴AD=BC,∠A=∠C,在△ADE和△CBF中,{AED CFB A CAD BC∠=∠∠=∠=,∴△ADE≌△CBF(AAS);(2)∵四边形ABCD为平行四边形,∴CD∥AB,∴∠CDE+∠DEB=180°,∵∠DEB=90°,∴∠CDE=90°,∴∠CDE=∠DEB=∠BFD=90°,则四边形BFDE 为矩形.【点睛】本题考查1.矩形的判定;2.全等三角形的判定与性质;3.平行四边形的性质.21.如图(1),AB=CD ,AD=BC ,O 为AC 中点,过O 点的直线分别与AD 、BC 相交于点M 、N ,那么∠1与∠2有什么关系?请说明理由;若过O 点的直线旋转至图(2)、(3)的情况,其余条件不变,那么图(1)中的∠1与∠2的关系成立吗?请说明理由.【答案】详见解析.【解析】(1)根据全等三角形判定中的“SSS”可得出△ADC ≌△CBA ,由全等的性质得∠DAC=∠BCA ,可证AD ∥BC ,根据平行线的性质得出∠1=∠1;(1)(3)和(1)的证法完全一样.先证△ADC ≌△CBA 得到∠DAC=∠BCA ,则DA ∥BC ,从而∠1=∠1.【详解】证明:∠1与∠1相等.在△ADC 与△CBA 中,AD BC CD AB AC CA =⎧⎪=⎨⎪=⎩,∴△ADC ≌△CBA .(SSS )∴∠DAC=∠BCA .∴DA ∥BC .∴∠1=∠1.②③图形同理可证,△ADC ≌△CBA 得到∠DAC=∠BCA ,则DA ∥BC ,∠1=∠1.22.如图,在长方形OABC 中,O 为平面直角坐标系的原点,点A 坐标为(a ,0),点C 的坐标为(0,b ),且a 、b 4a -﹣6|=0,点B 在第一象限内,点P 从原点出发,以每秒2个单位长度的速度沿着O ﹣C ﹣B ﹣A ﹣O 的线路移动.a= ,b= ,点B 的坐标为 ;当点P 移动4秒时,请指出点P 的位置,并求出点P 的坐标;在移动过程中,当点P 到x 轴的距离为5个单位长度时,求点P 移动的时间.【答案】(1)4,6,(4,6);(2)点P 在线段CB 上,点P 的坐标是(2,6);(3)点P 移动的时间是2.5秒或5.5秒.【解析】试题分析:(1460.a b --=可以求得,a b 的值,根据长方形的性质,可以求得点B 的坐标;(2)根据题意点P 从原点出发,以每秒2个单位长度的速度沿着O C B A O ----的线路移动,可以得到当点P 移动4秒时,点P 的位置和点P 的坐标;(3)由题意可以得到符合要求的有两种情况,分别求出两种情况下点P 移动的时间即可.试题解析:(1)∵a 、b 460.a b --=∴a−4=0,b−6=0,解得a=4,b=6,∴点B 的坐标是(4,6),故答案是:4,6,(4,6);(2)∵点P 从原点出发,以每秒2个单位长度的速度沿着O−C−B−A−O 的线路移动,∴2×4=8,∵OA=4,OC=6,∴当点P 移动4秒时,在线段CB 上,离点C 的距离是:8−6=2,即当点P 移动4秒时,此时点P 在线段CB 上,离点C 的距离是2个单位长度,点P 的坐标是(2,6);(3)由题意可得,在移动过程中,当点P 到x 轴的距离为5个单位长度时,存在两种情况,第一种情况,当点P 在OC 上时,点P 移动的时间是:5÷2=2.5秒,第二种情况,当点P 在BA 上时,点P 移动的时间是:(6+4+1)÷2=5.5秒,故在移动过程中,当点P 到x 轴的距离为5个单位长度时,点P 移动的时间是2.5秒或5.5秒.23.已知A (﹣4,2)、B (n ,﹣4)两点是一次函数y=kx+b 和反比例函数y=m x图象的两个交点.求一次函数和反比例函数的解析式;求△AOB 的面积;观察图象,直接写出不等式kx+b ﹣m x >0的解集.【答案】(1)反比例函数解析式为y=﹣8x,一次函数的解析式为y=﹣x ﹣1;(1)6;(3)x <﹣4或0<x <1. 【解析】试题分析:(1)先把点A 的坐标代入反比例函数解析式,即可得到m=﹣8,再把点B 的坐标代入反比例函数解析式,即可求出n=1,然后利用待定系数法确定一次函数的解析式;(1)先求出直线y=﹣x ﹣1与x 轴交点C 的坐标,然后利用S △AOB =S △AOC +S △BOC 进行计算;(3)观察函数图象得到当x <﹣4或0<x <1时,一次函数的图象在反比例函数图象上方,据此可得不等式的解集.试题解析:(1)把A (﹣4,1)代入,得m=1×(﹣4)=﹣8,所以反比例函数解析式为,把B (n ,﹣4)代入,得﹣4n=﹣8,解得n=1,把A (﹣4,1)和B (1,﹣4)代入y=kx+b ,得:,解得:,所以一次函数的解析式为y=﹣x ﹣1;(1)y=﹣x ﹣1中,令y=0,则x=﹣1,即直线y=﹣x ﹣1与x 轴交于点C (﹣1,0),∴S △AOB =S △AOC +S △BOC =×1×1+×1×4=6; (3)由图可得,不等式的解集为:x <﹣4或0<x <1.考点:反比例函数与一次函数的交点问题;待定系数法求一次函数解析式.24.如图,在平面直角坐标系xOy 中,函数(0)k y x x=>的图象与直线2y x =-交于点A(3,m).求k 、m 的值;已知点P(n ,n)(n>0),过点P 作平行于x 轴的直线,交直线y=x-2于点M ,过点P 作平行于y 轴的直线,交函数(0)k y x x=> 的图象于点N. ①当n=1时,判断线段PM 与PN 的数量关系,并说明理由;②若PN≥PM ,结合函数的图象,直接写出n 的取值范围.【答案】(1) k的值为3,m的值为1;(2)0<n≤1或n≥3.【解析】分析:(1)将A点代入y=x-2中即可求出m的值,然后将A的坐标代入反比例函数中即可求出k 的值.(2)①当n=1时,分别求出M、N两点的坐标即可求出PM与PN的关系;②由题意可知:P的坐标为(n,n),由于PN≥PM,从而可知PN≥2,根据图象可求出n的范围.详解:(1)将A(3,m)代入y=x-2,∴m=3-2=1,∴A(3,1),将A(3,1)代入y=kx,∴k=3×1=3,m的值为1.(2)①当n=1时,P(1,1),令y=1,代入y=x-2,x-2=1,∴x=3,∴M(3,1),∴PM=2,令x=1代入y=3x,∴y=3,∴N(1,3),∴PN=2∴PM=PN,②P(n,n),点P在直线y=x上,过点P作平行于x轴的直线,交直线y=x-2于点M,M(n+2,n),∴PM=2,∵PN≥PM,即PN≥2,∴0<n≤1或n≥3点睛:本题考查反比例函数与一次函数的综合问题,解题的关键是求出反比例函数与一次函数的解析式,本题属于基础题型.25.如图,二次函数232(0) 2y ax x a=-+≠的图象与x轴交于A、B两点,与y轴交于点C,已知点A (﹣4,0).求抛物线与直线AC的函数解析式;若点D(m,n)是抛物线在第二象限的部分上的一动点,四边形OCDA的面积为S,求S关于m的函数关系式;若点E为抛物线上任意一点,点F为x轴上任意一点,当以A、C、E、F为顶点的四边形是平行四边形时,请求出满足条件的所有点E的坐标.【答案】(1)122y x=+(1)S=﹣m1﹣4m+4(﹣4<m<0)(3)(﹣3,1)、(3412-,﹣1)、(3412-+,﹣1)【解析】(1)把点A的坐标代入抛物线的解析式,就可求得抛物线的解析式,根据A,C两点的坐标,可求得直线AC的函数解析式;(1)先过点D作DH⊥x轴于点H,运用割补法即可得到:四边形OCDA的面积=△ADH的面积+四边形OCDH 的面积,据此列式计算化简就可求得S关于m的函数关系;(3)由于AC确定,可分AC是平行四边形的边和对角线两种情况讨论,得到点E与点C的纵坐标之间的关系,然后代入抛物线的解析式,就可得到满足条件的所有点E的坐标.【详解】(1)∵A (﹣4,0)在二次函数y=ax 1﹣32x+1(a≠0)的图象上, ∴0=16a+6+1,解得a=﹣12, ∴抛物线的函数解析式为y=﹣12x 1﹣32x+1; ∴点C 的坐标为(0,1),设直线AC 的解析式为y=kx+b ,则04{2k b b=-+=, 解得1{22k b ==, ∴直线AC 的函数解析式为:122y x =+; (1)∵点D (m ,n )是抛物线在第二象限的部分上的一动点,∴D (m ,﹣12m 1﹣32m+1), 过点D 作DH ⊥x 轴于点H ,则DH=﹣12m 1﹣32m+1,AH=m+4,HO=﹣m , ∵四边形OCDA 的面积=△ADH 的面积+四边形OCDH 的面积,∴S=12(m+4)×(﹣12m 1﹣32m+1)+12(﹣12m 1﹣32m+1+1)×(﹣m ), 化简,得S=﹣m 1﹣4m+4(﹣4<m <0);(3)①若AC 为平行四边形的一边,则C 、E 到AF 的距离相等,∴|y E |=|y C |=1,∴y E =±1.当y E =1时,解方程﹣12x 1﹣32x+1=1得, x 1=0,x 1=﹣3,∴点E 的坐标为(﹣3,1);当y E =﹣1时,解方程﹣12x 1﹣32x+1=﹣1得,x 1=3412--,x 1=3412-+, ∴点E 的坐标为(3412--,﹣1)或(3412-+,﹣1); ②若AC 为平行四边形的一条对角线,则CE ∥AF ,∴y E =y C =1,∴点E 的坐标为(﹣3,1).综上所述,满足条件的点E 的坐标为(﹣3,1)、(3412--,﹣1)、(3412-+,﹣1).26.甲、乙两名队员的10次射击训练,成绩分别被制成下列两个统计图.并整理分析数据如下表:平均成绩/环 中位数/环 众数/环 方差 甲a 7 7 1.2 乙 7b 8 c(1)求a ,b ,c 的值;分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?【答案】(1)a=7,b=7.5,c=4.2;(2)见解析.【解析】(1)利用平均数的计算公式直接计算平均分即可;将乙的成绩从小到大重新排列,用中位数的定义直接写出中位数即可;根据乙的平均数利用方差的公式计算即可;(2)结合平均数和中位数、众数、方差三方面的特点进行分析.【详解】(1)甲的平均成绩a=516274829112421⨯+⨯+⨯+⨯+⨯++++=7(环),∵乙射击的成绩从小到大重新排列为:3、4、6、7、7、8、8、8、9、10,∴乙射击成绩的中位数b=7+82=7.5(环),其方差c=110×[(3-7)2+(4-7)2+(6-7)2+2×(7-7)2+3×(8-7)2+(9-7)2+(10-7)2]=110×(16+9+1+3+4+9)=4.2;(2)从平均成绩看甲、乙二人的成绩相等均为7环,从中位数看甲射中7环以上的次数小于乙,从众数看甲射中7环的次数最多而乙射中8环的次数最多,从方差看甲的成绩比乙的成绩稳定;综合以上各因素,若选派一名队员参加比赛的话,可选择乙参赛,因为乙获得高分的可能更大.【点睛】本题考查的是条形统计图和方差、平均数、中位数、众数的综合运用.熟练掌握平均数的计算,理解方差的概念,能够根据计算的数据进行综合分析.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,圆弧形拱桥的跨径12AB =米,拱高4CD =米,则拱桥的半径为( )米A .6.5B .9C .13D .15【答案】A【解析】试题分析:根据垂径定理的推论,知此圆的圆心在CD 所在的直线上,设圆心是O .连接OA .根据垂径定理和勾股定理求解.得AD=6设圆的半径是r , 根据勾股定理, 得r 2=36+(r ﹣4)2,解得r=6.5考点:垂径定理的应用.2.不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是( ) A .摸出的是3个白球B .摸出的是3个黑球C .摸出的是2个白球、1个黑球D .摸出的是2个黑球、1个白球【答案】A【解析】由题意可知,不透明的袋子中总共有2个白球,从袋子中一次摸出3个球都是白球是不可能事件,故选B.3.如图,在△ABC 中,BC=8,AB 的中垂线交BC 于D ,AC 的中垂线交BC 于E ,则△ADE 的周长等于( )A .8B .4C .12D .16【答案】A【解析】∵AB 的中垂线交BC 于D ,AC 的中垂线交BC 于E , ∴DA=DB ,EA=EC ,则△ADE 的周长=AD+DE+AE=BD+DE+EC=BC=8, 故选A .4.若2<2a-<3,则a的值可以是()A.﹣7 B.163C.132D.12【答案】C【解析】根据已知条件得到4<a-2<9,由此求得a的取值范围,易得符合条件的选项.【详解】解:∵2<2a-<3,∴4<a-2<9,∴6<a<1.又a-2≥0,即a≥2.∴a的取值范围是6<a<1.观察选项,只有选项C符合题意.故选C.【点睛】考查了估算无理数的大小,估算无理数大小要用夹逼法.5.关于x的正比例函数,y=(m+1)23mx-若y随x的增大而减小,则m的值为()A.2 B.-2 C.±2 D.-1 2【答案】B【解析】根据正比例函数定义可得m2-3=1,再根据正比例函数的性质可得m+1<0,再解即可.【详解】由题意得:m2-3=1,且m+1<0,解得:m=-2,故选:B.【点睛】此题主要考查了正比例函数的性质和定义,关键是掌握正比例函数y=kx(k≠0)的自变量指数为1,当k <0时,y随x的增大而减小.6.下列“慢行通过,注意危险,禁止行人通行,禁止非机动车通行”四个交通标志图(黑白阴影图片)中为轴对称图形的是()A.B.C.D.【答案】B【解析】根据轴对称图形的概念对各选项分析判断即可得出答案.【详解】A.不是轴对称图形,故本选项错误;B.是轴对称图形,故本选项正确;C.不是轴对称图形,故本选项错误;D.不是轴对称图形,故本选项错误.故选B.7.估计19273⨯-的运算结果应在哪个两个连续自然数之间()A.﹣2和﹣1 B.﹣3和﹣2 C.﹣4和﹣3 D.﹣5和﹣4 【答案】C【解析】根据二次根式的性质,可化简得19273⨯-=3﹣33=﹣23,然后根据二次根式的估算,由3<23<4可知﹣23在﹣4和﹣3之间.故选C.点睛:此题主要考查了二次根式的化简和估算,关键是根据二次根式的性质化简计算,再二次根式的估算方法求解.8.如图,直线m⊥n,在某平面直角坐标系中,x轴∥m,y轴∥n,点A的坐标为(-4,2),点B的坐标为(2,-4),则坐标原点为()A.O1B.O2C.O3D.O4【答案】A【解析】试题分析:因为A点坐标为(-4,2),所以,原点在点A的右边,也在点A的下边2个单位处,从点B来看,B(2,-4),所以,原点在点B的左边,且在点B的上边4个单位处.如下图,O1符合.考点:平面直角坐标系.9.把不等式组24030xx-≥⎧⎨->⎩的解集表示在数轴上,正确的是()A .B .C .D .【答案】A【解析】分别求出各个不等式的解集,再求出这些解集的公共部分并在数轴上表示出来即可.【详解】2x40 30x-≥⎧⎨-⎩①>②由①,得x≥2,由②,得x<1,所以不等式组的解集是:2≤x<1.不等式组的解集在数轴上表示为:.故选A.【点睛】本题考查的是解一元一次不等式组.熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.10.如图,在下列条件中,不能判定直线a与b平行的是()A.∠1=∠2 B.∠2=∠3 C.∠3=∠5 D.∠3+∠4=180°【答案】C【解析】解:A.∵∠1与∠2是直线a,b被c所截的一组同位角,∴∠1=∠2,可以得到a∥b,∴不符合题意B.∵∠2与∠3是直线a,b被c所截的一组内错角,∴∠2=∠3,可以得到a∥b,∴不符合题意,C.∵∠3与∠5既不是直线a,b被任何一条直线所截的一组同位角,内错角,∴∠3=∠5,不能得到a∥b,∴符合题意,D.∵∠3与∠4是直线a,b被c所截的一组同旁内角,∴∠3+∠4=180°,可以得到a∥b,∴不符合题意,故选C.【点睛】本题考查平行线的判定,难度不大. 二、填空题(本题包括8个小题)11.如图,平面直角坐标系中,矩形OABC 的顶点A (﹣6,0),C (0,23).将矩形OABC 绕点O 顺时针方向旋转,使点A 恰好落在OB 上的点A 1处,则点B 的对应点B 1的坐标为_____.【答案】(-23,6)【解析】分析:连接OB 1,作B 1H ⊥OA 于H ,证明△AOB ≌△HB 1O ,得到B 1H=OA=6,OH=AB=23,得到答案.详解:连接OB 1,作B 1H ⊥OA 于H ,由题意得,OA=6,3则tan ∠BOA=33AB OA =, ∴∠BOA=30°, ∴∠OBA=60°,由旋转的性质可知,∠B 1OB=∠BOA=30°, ∴∠B 1OH=60°, 在△AOB 和△HB 1O ,111B HO BAOB OH ABO OB OB ∠∠⎧⎪∠∠⎨⎪⎩===, ∴△AOB ≌△HB 1O , ∴B 1H=OA=6,3 ∴点B 1的坐标为(3,6), 故答案为(36).点睛:本题考查的是矩形的性质、旋转变换的性质,掌握矩形的性质、全等三角形的判定和性质定理是解题的关键.A B C D E的五个小客车收费出口,假定各收费出口每20分12.高速公路某收费站出城方向有编号为,,,,钟通过小客车的数量分别都是不变的.同时开放其中的某两个收费出口,这两个出口20分钟一共通过的小客车数量记录如下:A B C D E五个收费出口中,每20分钟通过小客车数量最多的一个出口的编号是___________. 在,,,,【答案】B【解析】利用同时开放其中的两个安全出口,20分钟所通过的小车的数量分析对比,能求出结果.【详解】同时开放A、E两个安全出口,与同时开放D、E两个安全出口,20分钟的通过数量发现得到D 疏散乘客比A快;同理同时开放BC与CD进行对比,可知B疏散乘客比D快;同理同时开放BC与AB进行对比,可知C疏散乘客比A快;同理同时开放DE与CD进行对比,可知E疏散乘客比C快;同理同时开放AB与AE进行对比,可知B疏散乘客比E快;所以B口的速度最快故答案为B.【点睛】本题考查简单的合理推理,考查推理论证能力等基础知识,考查运用求解能力,考查函数与方程思想,是基础题.13.因式分解:9a2﹣12a+4=______.【答案】(3a﹣1)1【解析】直接利用完全平方公式分解因式得出答案.【详解】9a1-11a+4=(3a-1)1.故答案是:(3a﹣1)1.【点睛】考查了公式法分解因式,正确运用公式是解题关键.14=_______________.,再合并同类二次根式即可得解.=.. 【点睛】本题考查了二次根式的运算,正确对二次根式进行化简是关键.15.关于x 的一元二次方程x 2-2x +m -1=0有两个相等的实数根,则m 的值为_________ 【答案】2.【解析】试题分析:已知方程x 2-2x 1m +-=0有两个相等的实数根,可得:△=4-4(m -1)=-4m +8=0,所以,m =2.考点:一元二次方程根的判别式.16.已知实数m ,n 满足23650m m +-=,23650n n +-=,且m n ≠,则n mm n+= . 【答案】225-. 【解析】试题分析:由m n ≠时,得到m ,n 是方程23650x x +-=的两个不等的根,根据根与系数的关系进行求解.试题解析:∵m n ≠时,则m ,n 是方程3x 2﹣6x ﹣5=0的两个不相等的根,∴2m n +=,53mn =-. ∴原式=22m n mn +=2()2m n mn mn +-=2522()223553-⨯-=--,故答案为225-. 考点:根与系数的关系.17.若A (﹣3,y 1),B (﹣2,y 2),C (1,y 3)三点都在y=1x-的图象上,则y l ,y 2,y 3的大小关系是_____.(用“<”号填空) 【答案】y 3<y 1<y 1【解析】根据反比例函数的性质k <0时,在每个象限,y 随x 的增大而增大,进行比较即可. 【详解】解:k=-1<0,∴在每个象限,y 随x 的增大而增大, ∵-3<-1<0, ∴0<y 1<y 1. 又∵1>0 ∴y 3<0 ∴y 3<y 1<y 1故答案为:y 3<y 1<y 1 【点睛】本题考查的是反比例函数的性质,理解性质:当k >0时,在每个象限,y 随x 的增大而减小,k <0时,在每个象限,y 随x 的增大而增大是解题的关键.18.如图,长方形纸片ABCD 中,AB=4,BC=6,将△ABC 沿AC 折叠,使点B 落在点E 处,CE 交AD 于点F ,则△AFC 的面积等于___.【答案】263【解析】由矩形的性质可得AB=CD=4,BC=AD=6,AD//BC ,由平行线的性质和折叠的性质可得∠DAC=∠ACE ,可得AF=CF ,由勾股定理可求AF 的长,即可求△AFC 的面积. 【详解】解:四边形ABCD 是矩形AB CD 4∴==,BC AD 6==,AD//BC DAC ACB ∠∠∴=,折叠ACB ACE ∠∠∴=, DAC ACE ∠∠∴= AF CF ∴=在Rt CDF 中,222CF CD DF =+,22AF 16(6AF)∴=+-,13AF 3∴=AFC 111326S AF CD 42233∴=⨯⨯=⨯⨯=.故答案为:263. 【点睛】本题考查了翻折变换,矩形的性质,勾股定理,利用勾股定理求AF 的长是本题的关键. 三、解答题(本题包括8个小题)19.为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的32倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.甲、乙两工程队每天能改造道路的长度分别是多少米?若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天? 【答案】(1)乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米.(2)10。
(汇总3份试卷)2018年安顺市中考综合测试数学试题
中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.分别写有数字0,﹣1,﹣2,1,3的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到负数的概率是()A.15B.25C.35D.45【答案】B【解析】试题分析:根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 因此,从0,﹣1,﹣2,1,3中任抽一张,那么抽到负数的概率是2 5 .故选B.考点:概率.2.﹣3的绝对值是()A.﹣3 B.3 C.-13D.13【答案】B【解析】根据负数的绝对值是它的相反数,可得出答案.【详解】根据绝对值的性质得:|-1|=1.故选B.【点睛】本题考查绝对值的性质,需要掌握非负数的绝对值是它本身,负数的绝对值是它的相反数.3.已知平面内不同的两点A(a+2,4)和B(3,2a+2)到x轴的距离相等,则a的值为( )A.﹣3 B.﹣5 C.1或﹣3 D.1或﹣5【答案】A【解析】分析:根据点A(a+2,4)和B(3,2a+2)到x轴的距离相等,得到4=|2a+2|,即可解答.详解:∵点A(a+2,4)和B(3,2a+2)到x轴的距离相等,∴4=|2a+2|,a+2≠3,解得:a=−3,故选A.点睛:考查点的坐标的相关知识;用到的知识点为:到x轴和y轴的距离相等的点的横纵坐标相等或互为相反数.4.如图是由5个大小相同的正方体搭成的几何体,这个几何体的俯视图是()A.B.C.D.【答案】A【解析】分析:根据从上面看得到的图形是俯视图,可得答案.详解:从上面看第一列是两个小正方形,第二列是一个小正方形,第三列是一个小正方形,故选:A.点睛:本题考查了简单组合体的三视图,从上面看得到的图形是俯视图.5.已知关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=2,x2=4,则m+n的值是()A.﹣10 B.10 C.﹣6 D.2【答案】D【解析】根据“一元二次方程x2+mx+n=0的两个实数根分别为x1=2,x2=4”,结合根与系数的关系,分别列出关于m和n的一元一次不等式,求出m和n的值,代入m+n即可得到答案.【详解】解:根据题意得:x1+x2=﹣m=2+4,解得:m=﹣6,x1•x2=n=2×4,解得:n=8,m+n=﹣6+8=2,故选D.【点睛】本题考查了根与系数的关系,正确掌握根与系数的关系是解决问题的关键.6.如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则CDM周长的最小值为()A.6 B.8 C.10 D.12【答案】C【解析】连接AD ,由于△ABC 是等腰三角形,点D 是BC 边的中点,故AD ⊥BC ,再根据三角形的面积公式求出AD 的长,再再根据EF 是线段AC 的垂直平分线可知,点C 关于直线EF 的对称点为点A ,故AD 的长为CM+MD 的最小值,由此即可得出结论. 【详解】连接AD ,∵△ABC 是等腰三角形,点D 是BC 边的中点, ∴AD ⊥BC , ∴S △ABC =12BC•AD=12×4×AD=16,解得AD=8, ∵EF 是线段AC 的垂直平分线, ∴点C 关于直线EF 的对称点为点A , ∴AD 的长为CM+MD 的最小值,∴△CDM 的周长最短=(CM+MD )+CD=AD+12BC=8+12×4=8+2=1. 故选C . 【点睛】本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键. 7.已知⊙O 的半径为5,若OP=6,则点P 与⊙O 的位置关系是( ) A .点P 在⊙O 内 B .点P 在⊙O 外C .点P 在⊙O 上D .无法判断【答案】B【解析】比较OP 与半径的大小即可判断. 【详解】r 5=,d OP 6==,d r ∴>,∴点P 在O 外,故选B . 【点睛】本题考查点与圆的位置关系,记住:点与圆的位置关系有3种.设O 的半径为r ,点P 到圆心的距离OP d =,则有:①点P 在圆外d r ⇔>;②点P 在圆上d r ⇔=;①点P 在圆内d r ⇔<.8.下列事件中必然发生的事件是( )A .一个图形平移后所得的图形与原来的图形不全等B .不等式的两边同时乘以一个数,结果仍是不等式C .200件产品中有5件次品,从中任意抽取6件,至少有一件是正品D .随意翻到一本书的某页,这页的页码一定是偶数 【答案】C【解析】直接利用随机事件、必然事件、不可能事件分别分析得出答案.【详解】A 、一个图形平移后所得的图形与原来的图形不全等,是不可能事件,故此选项错误; B 、不等式的两边同时乘以一个数,结果仍是不等式,是随机事件,故此选项错误;C 、200件产品中有5件次品,从中任意抽取6件,至少有一件是正品,是必然事件,故此选项正确;D 、随意翻到一本书的某页,这页的页码一定是偶数,是随机事件,故此选项错误; 故选C . 【点睛】此题主要考查了随机事件、必然事件、不可能事件,正确把握相关定义是解题关键.9.如图,抛物线y=-x 2+mx 的对称轴为直线x=2,若关于x 的-元二次方程-x 2+mx-t=0 (t 为实数)在l<x<3的范围内有解,则t 的取值范围是( )A .-5<t≤4B .3<t≤4C .-5<t<3D .t>-5【答案】B【解析】先利用抛物线的对称轴方程求出m 得到抛物线解析式为y=-x 2+4x ,配方得到抛物线的顶点坐标为(2,4),再计算出当x=1或3时,y=3,结合函数图象,利用抛物线y=-x 2+4x 与直线y=t 在1<x <3的范围内有公共点可确定t 的范围.【详解】∵ 抛物线y=-x 2+mx 的对称轴为直线x=2, ∴222(1)b ma -=-=⨯-, 解之:m=4, ∴y=-x 2+4x ,当x=2时,y=-4+8=4, ∴顶点坐标为(2,4),∵ 关于x 的-元二次方程-x 2+mx-t=0 (t 为实数)在l<x<3的范围内有解, 当x=1时,y=-1+4=3,当x=2时,y=-4+8=4,∴ 3<t≤4,故选:B【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.10.空气的密度为0.00129g/cm3,0.00129这个数用科学记数法可表示为()A.0.129×10﹣2B.1.29×10﹣2C.1.29×10﹣3D.12.9×10﹣1【答案】C【解析】试题分析:0.00129这个数用科学记数法可表示为1.29×10﹣1.故选C.考点:科学记数法—表示较小的数.二、填空题(本题包括8个小题)11.如图,折叠长方形纸片ABCD,先折出对角线BD,再将AD折叠到BD上,得到折痕DE,点A的对应点是点F,若AB=8,BC=6,则AE的长为_____.【答案】3【解析】先利用勾股定理求出BD,再求出DF、BF,设AE=EF=x.在Rt△BEF中,由EB2=EF2+BF2,列出方程即可解决问题.【详解】∵四边形ABCD是矩形,∴∠A=90°.∵AB=8,AD=6,∴BD22=+=1.68∵△DEF是由△DEA翻折得到,∴DF=AD=6,BF=2.设AE=EF=x.在Rt△BEF中,∵EB2=EF2+BF2,∴(8﹣x)2=x2+22,解得:x=3,∴AE=3.故答案为:3.【点睛】本题考查了矩形的性质、勾股定理等知识,解题时,我们常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.12.把多项式x3﹣25x分解因式的结果是_____【答案】x(x+5)(x﹣5).【解析】分析:首先提取公因式x,再利用平方差公式分解因式即可.详解:x3-25x=x(x2-25)=x(x+5)(x-5).故答案为x(x+5)(x-5).点睛:此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.13.近年来,我国持续大面积的雾霾天气让环保和健康问题成为焦点.为进一步普及环保和健康知识,我市某校举行了“建设宜居成都,关注环境保护”的知识竞赛,某班的学生成绩统计如下:则该办学生成绩的众数和中位数分别是()A.70分,80分B.80分,80分C.90分,80分D.80分,90分【答案】B.【解析】试题分析:众数是在一组数据中,出现次数最多的数据,这组数据中80出现12次,出现的次数最多,故这组数据的众数为80分;中位数是一组数据从小到大(或从大到小)排列后,最中间的那个数(最中间两个数的平均数).因此这组40个按大小排序的数据中,中位数是按从小到大排列后第20,21个数的平均数,而第20,21个数都在80分组,故这组数据的中位数为80分.故选B.考点:1.众数;2.中位数.14.不等式组20262xx->⎧⎨->⎩①②的解是________.【答案】x>4【解析】分别解出不等式组中的每一个不等式,然后根据同大取大得出不等式组的解集.【详解】由①得:x>2;由②得:x>4;∴此不等式组的解集为x>4;故答案为x>4.【点睛】考查了解一元一次不等式组,一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.15.计算:2(a-b)+3b=___________.【答案】2a+b.【解析】先去括号,再合并同类项即可得出答案.【详解】原式=2a-2b+3b=2a+b.故答案为:2a+b.16.若点(a,b)在一次函数y=2x-3的图象上,则代数式4a-2b-3的值是__________【答案】1【解析】根据题意,将点(a,b)代入函数解析式即可求得2a-b的值,变形即可求得所求式子的值.【详解】∵点(a,b)在一次函数y=2x-1的图象上,∴b=2a-1,∴2a-b=1,∴4a-2b=6,∴4a-2b-1=6-1=1,故答案为:1.【点睛】本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,利用一次函数的性质解答.17.如果点A(-1,4)、B(m,4)在抛物线y=a(x-1)2+h上,那么m的值为_____.【答案】1【解析】根据函数值相等两点关于对称轴对称,可得答案.【详解】由点A(﹣1,4)、B(m,4)在抛物线y=a(x﹣1)2+h上,得:(﹣1,4)与(m,4)关于对称轴x=1对称,m﹣1=1﹣(﹣1),解得:m=1.故答案为:1.【点睛】本题考查了二次函数图象上点的坐标特征,利用函数值相等两点关于对称轴对称得出m﹣1=1﹣(﹣1)是解题的关键.18.如图,点A在双曲线kyx上,AB⊥x轴于B,且△AOB的面积S△AOB=2,则k=______.【答案】-4【解析】:由反比例函数解析式可知:系数k x y =⋅, ∵S △AOB =2即122k x y =⋅=,∴224k xy ==⨯=; 又由双曲线在二、四象限k <0,∴k=-4 三、解答题(本题包括8个小题)19.如图,△ABC 三个定点坐标分别为A (﹣1,3),B (﹣1,1),C (﹣3,2).请画出△ABC 关于y 轴对称的△A 1B 1C 1;以原点O 为位似中心,将△A 1B 1C 1放大为原来的2倍,得到△A 2B 2C 2,请在第三象限内画出△A 2B 2C 2,并求出S △A1B1C1:S △A2B2C2的值.【答案】(1)见解析;(2)图见解析;14. 【解析】(1)根据网格结构找出点A 、B 、C 关于y 轴的对称点A 1、B 1、C 1的位置,然后顺次连接即可. (2)连接A 1O 并延长至A 2,使A 2O=2A 1O ,连接B 1O 并延长至B 2,使B 2O=2B 1O ,连接C 1O 并延长至C 2,使C 2O=2C 1O ,然后顺次连接即可,再根据相似三角形面积的比等于相似比的平方解答. 【详解】解:(1)△A 1B 1C 1如图所示. (2)△A 2B 2C 2如图所示.∵△A 1B 1C 1放大为原来的2倍得到△A 2B 2C 2,∴△A 1B 1C 1∽△A 2B 2C 2,且相似比为12. ∴S △A1B1C1:S △A2B2C2=(12)2=14.20.计算:﹣14﹣2×(﹣3)2+327÷(﹣13)如图,小林将矩形纸片ABCD沿折痕EF翻折,使点C、D分别落在点M、N的位置,发现∠EFM=2∠BFM,求∠EFC的度数.【答案】(1)﹣10;(2)∠EFC=72°.【解析】(1)原式利用乘方的意义,立方根定义,乘除法则及家减法法则计算即可;(2)根据折叠的性质得到一对角相等,再由已知角的关系求出结果即可.【详解】(1)原式=﹣1﹣18+9=﹣10;(2)由折叠得:∠EFM=∠EFC,∵∠EFM=2∠BFM,∴设∠EFM=∠EFC=x,则有∠BFM=12 x,∵∠MFB+∠MFE+∠EFC=180°,∴x+x+12x=180°,解得:x=72°,则∠EFC=72°.【点睛】本题考查了实数的性质及平行线的性质,解题的关键是熟练掌握实数的运算法则及平行线的性质. 21.如图所示,AC=AE,∠1=∠2,AB=AD.求证:BC=DE.【答案】证明见解析.【解析】试题分析:由1=2∠∠,可得,CAB EAD ∠=∠,,AC AE AB AD ==则可证明ABC ADE ≅,因此可得.BC DE = 试题解析:1=2∠∠,12,EAB EAB ∴∠+∠=∠+∠即CAB EAD ∠=∠,在ABC 和ADE 中,{AC AECAB EAD AB AD=∠=∠=(),ABC ADE SAS ∴≅.BC DE ∴= 考点:三角形全等的判定.22.关于x 的一元二次方程x 2﹣x ﹣(m+2)=0有两个不相等的实数根.求m 的取值范围;若m 为符合条件的最小整数,求此方程的根. 【答案】(1)m >94-;(2)x 1=0,x 2=1. 【解析】解答本题的关键是是掌握好一元二次方程的根的判别式. (1)求出△=5+4m >0即可求出m 的取值范围;(2)因为m=﹣1为符合条件的最小整数,把m=﹣1代入原方程求解即可. 【详解】解:(1)△=1+4(m +2) =9+4m >0∴94m >-. (2)∵m 为符合条件的最小整数,∴m=﹣2.∴原方程变为2=0x x - ∴x 1=0,x 2=1.考点:1.解一元二次方程;2.根的判别式.23.如图,在Rt △ABC 中,∠C=90°,翻折∠C ,使点C 落在斜边AB 上某一点D 处,折痕为EF (点E 、F 分别在边AC 、BC 上)若△CEF 与△ABC 相似.①当AC=BC=2时,AD的长为;②当AC=3,BC=4时,AD的长为;当点D是AB的中点时,△CEF与△ABC相似吗?请说明理由.【答案】解:(1)①2.②95或52.(2)当点D是AB的中点时,△CEF与△ABC相似.理由见解析.【解析】(1)①当AC=BC=2时,△ABC为等腰直角三角形;②若△CEF与△ABC相似,分两种情况:①若CE:CF=3:4,如图1所示,此时EF∥AB,CD为AB边上的高;②若CF:CE=3:4,如图2所示.由相似三角形角之间的关系,可以推出∠A=∠ECD与∠B=∠FCD,从而得到CD=AD=BD,即D点为AB的中点;(2)当点D是AB的中点时,△CEF与△ABC相似.可以推出∠CFE=∠A,∠C=∠C,从而可以证明两个三角形相似.【详解】(1)若△CEF与△ABC相似.①当AC=BC=2时,△ABC为等腰直角三角形,如答图1所示,此时D为AB边中点,AD=22AC=2.②当AC=3,BC=4时,有两种情况:(I)若CE:CF=3:4,如答图2所示,∵CE:CF=AC:BC,∴EF∥BC.由折叠性质可知,CD⊥EF,∴CD⊥AB,即此时CD为AB边上的高.在Rt△ABC中,AC=3,BC=4,∴BC=1.∴cosA=35.∴AD=AC•cosA=3×35=95.(II)若CF:CE=3:4,如答图3所示.∵△CEF∽△CAB,∴∠CEF=∠B.由折叠性质可知,∠CEF+∠ECD=90°.又∵∠A+∠B=90°,∴∠A=∠ECD,∴AD=CD.同理可得:∠B=∠FCD,CD=BD.∴AD=BD.∴此时AD=AB=12×1=52.综上所述,当AC=3,BC=4时,AD的长为95或52.(2)当点D是AB的中点时,△CEF与△CBA相似.理由如下:如图所示,连接CD,与EF交于点Q.∵CD是Rt△ABC的中线∴CD=DB=12AB,∴∠DCB=∠B.由折叠性质可知,∠CQF=∠DQF=90°,∴∠DCB+∠CFE=90°,∵∠B+∠A=90°,∴∠CFE=∠A,又∵∠ACB=∠ACB,∴△CEF∽△CBA.24.如图,已知A,B两点在数轴上,点A表示的数为-10,OB=3OA,点M以每秒3个单位长度的速度从点A向右运动.点N以每秒2个单位长度的速度从点O向右运动(点M、点N同时出发)数轴上点B对应的数是______.经过几秒,点M、点N分别到原点O的距离相等?【答案】(1)1;(2)经过2秒或2秒,点M、点N分别到原点O的距离相等【解析】试题分析:(1)根据OB=3OA,结合点B的位置即可得出点B对应的数;(2)设经过x秒,点M、点N分别到原点O的距离相等,找出点M、N对应的数,再分点M、点N在点O两侧和点M、点N重合两种情况考虑,根据M、N的关系列出关于x的一元一次方程,解之即可得出结论.试题解析:(1)∵OB=3OA=1,∴B对应的数是1.(2)设经过x秒,点M、点N分别到原点O的距离相等,此时点M对应的数为3x-2,点N对应的数为2x.①点M、点N在点O两侧,则2-3x=2x,解得x=2;②点M 、点N 重合,则,3x-2=2x ,解得x=2.所以经过2秒或2秒,点M 、点N 分别到原点O 的距离相等.25.作图题:在∠ABC 内找一点P ,使它到∠ABC 的两边的距离相等,并且到点A 、C 的距离也相等.(写出作法,保留作图痕迹)【答案】见解析【解析】先作出∠ABC 的角平分线,再连接AC ,作出AC 的垂直平分线,两条平分线的交点即为所求点.【详解】①以B 为圆心,以任意长为半径画弧,分别交BC 、AB 于D 、E 两点;②分别以D 、E 为圆心,以大于12DE 为半径画圆,两圆相交于F 点; ③连接AF ,则直线AF 即为∠ABC 的角平分线; ⑤连接AC ,分别以A 、C 为圆心,以大于12AC 为半径画圆,两圆相交于F 、H 两点; ⑥连接FH 交BF 于点M ,则M 点即为所求.【点睛】本题考查的是角平分线及线段垂直平分线的作法,熟练掌握是解题的关键. 26.如图,男生楼在女生楼的左侧,两楼高度均为90m ,楼间距为AB ,冬至日正午,太阳光线与水平面所成的角为32.3,女生楼在男生楼墙面上的影高为CA ;春分日正午,太阳光线与水平面所成的角为55.7,女生楼在男生楼墙面上的影高为DA ,已知42CD m =.()1求楼间距AB ;()2若男生楼共30层,层高均为3m ,请通过计算说明多少层以下会受到挡光的影响?(参考数据:sin32.30.53≈,cos32.30.85≈,tan32.30.63≈,sin55.70.83≈,cos55.70.56≈,tan55.7 1.47)≈【答案】(1)AB 的长为50m ;(2)冬至日20层(包括20层)以下会受到挡光的影响,春分日6层(包括6层)以下会受到挡光的影响.【解析】()1如图,作CM PB ⊥于M ,DN PB ⊥于.N 则AB CM DN ==,设.AB CM DN xm ===想办法构建方程即可解决问题.()2求出AC ,AD ,分两种情形解决问题即可.【详解】解:()1如图,作CM PB ⊥于M ,DN PB ⊥于.N 则AB CM DN ==,设AB CM DN xm ===.在Rt PCM 中,()tan32.30.63PM x x m =⋅=,在Rt PDN 中,()tan55.7 1.47PN x x m =⋅=,42CD MN m ==,1.470.6342x x ∴-=,50x ∴=,AB ∴的长为50m .()2由()1可知:31.5PM m =,()904231.516.5AD m ∴=--=,9031.558.5AC =-=,16.53 5.5÷=,58.5319.5÷=,∴冬至日20层(包括20层)以下会受到挡光的影响,春分日6层(包括6层)以下会受到挡光的影响.【点睛】考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.已知点P(a,m),Q(b,n)都在反比例函数y=2x的图象上,且a<0<b,则下列结论一定正确的是()A.m+n<0 B.m+n>0 C.m<n D.m>n 【答案】D【解析】根据反比例函数的性质,可得答案.【详解】∵y=−2x的k=-2<1,图象位于二四象限,a<1,∴P(a,m)在第二象限,∴m>1;∵b>1,∴Q(b,n)在第四象限,∴n<1.∴n<1<m,即m>n,故D正确;故选D.【点睛】本题考查了反比例函数的性质,利用反比例函数的性质:k<1时,图象位于二四象限是解题关键.2.小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达.若设走路线一时的平均速度为x千米/小时,根据题意,得A.B.C.D.【答案】A【解析】若设走路线一时的平均速度为x千米/小时,根据路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达可列出方程.解:设走路线一时的平均速度为x千米/小时,3.如图,把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,若∠2=40°,则图中∠1的度数为()A.115°B.120°C.130°D.140°【答案】A【解析】解:∵把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,∴∠BFE=∠EFB',∠B'=∠B=90°.∵∠2=40°,∴∠CFB'=50°,∴∠1+∠EFB'﹣∠CFB'=180°,即∠1+∠1﹣50°=180°,解得:∠1=115°,故选A.4.在六张卡片上分别写有13,π,1.5,5,0,2六个数,从中任意抽取一张,卡片上的数为无理数的概率是()A.16B.13C.12D.56【答案】B【解析】无限不循环小数叫无理数,无理数通常有以下三种形式:一是开方开不尽的数,二是圆周率π,三是构造的一些不循环的数,如1.010010001……(两个1之间0的个数一次多一个).然后用无理数的个数除以所有书的个数,即可求出从中任意抽取一张,卡片上的数为无理数的概率.【详解】∵这组数中无理数有 ,2共2个,∴卡片上的数为无理数的概率是21=63.故选B.【点睛】本题考查了无理数的定义及概率的计算.5.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是( )A.CB=CD B.∠BCA=∠DCAC.∠BAC=∠DAC D.∠B=∠D=90°【解析】由图形可知AC=AC,结合全等三角形的判定方法逐项判断即可.【详解】解:在△ABC和△ADC中∵AB=AD,AC=AC,∴当CB=CD时,满足SSS,可证明△ABC≌△ACD,故A可以;当∠BCA=∠DCA时,满足SSA,不能证明△ABC≌△ACD,故B不可以;当∠BAC=∠DAC时,满足SAS,可证明△ABC≌△ACD,故C可以;当∠B=∠D=90°时,满足HL,可证明△ABC≌△ACD,故D可以;故选:B.【点睛】本题考查了全等三角形的判定方法,熟练掌握判定定理是解题关键.6.我国古代数学家刘徽用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.如图所示的几何体是可以形成“牟合方盖”的一种模型,它的俯视图是()A.B.C.D.【答案】A【解析】根据俯视图即从物体的上面观察得得到的视图,进而得出答案.【详解】该几何体的俯视图是:.故选A.【点睛】此题主要考查了几何体的三视图;掌握俯视图是从几何体上面看得到的平面图形是解决本题的关键.7.如图,点P是菱形ABCD的对角线AC上的一个动点,过点P垂直于AC的直线交菱形ABCD的边于M、N两点.设AC=2,BD=1,AP=x,△AMN的面积为y,则y关于x的函数图象大致形状是( )A.B.C.D.【答案】C【解析】△AMN的面积=AP×MN,通过题干已知条件,用x分别表示出AP、MN,根据所得的函数,利用其图象,可分两种情况解答:(1)0<x≤1;(2)1<x<2;解:(1)当0<x≤1时,如图,在菱形ABCD中,AC=2,BD=1,AO=1,且AC⊥BD;∵MN⊥AC,∴MN∥BD;∴△AMN∽△ABD,∴=,即,=,MN=x;∴y=AP×MN=x2(0<x≤1),∵>0,∴函数图象开口向上;(2)当1<x<2,如图,同理证得,△CDB∽△CNM,=,即=,MN=2-x;∴y=AP×MN=x×(2-x),y=-x2+x;∵-<0,∴函数图象开口向下;综上答案C的图象大致符合.故选C.本题考查了二次函数的图象,考查了学生从图象中读取信息的数形结合能力,体现了分类讨论的思想.8.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②乙走完全程用了32分钟;③乙用16分钟追上甲;④乙到达终点时,甲离终点还有300米其中正确的结论有()A.1个B.2个C.3个D.4个【答案】A【解析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.【详解】由图可得,甲步行的速度为:240÷4=60米/分,故①正确,乙走完全程用的时间为:2400÷(16×60÷12)=30(分钟),故②错误,乙追上甲用的时间为:16﹣4=12(分钟),故③错误,乙到达终点时,甲离终点距离是:2400﹣(4+30)×60=360米,故④错误,故选A.【点睛】本题考查了函数图象,弄清题意,读懂图象,从中找到必要的信息是解题的关键.9.二次函数y=3(x﹣1)2+2,下列说法正确的是()A.图象的开口向下B.图象的顶点坐标是(1,2)C.当x>1时,y随x的增大而减小D.图象与y轴的交点坐标为(0,2)【答案】B【解析】由抛物线解析式可求得其开口方向、顶点坐标、最值及增减性,则可判断四个选项,可求得答案.【详解】解:A、因为a=3>0,所以开口向上,错误;B、顶点坐标是(1,2),正确;C、当x>1时,y随x增大而增大,错误;D、图象与y轴的交点坐标为(0,5),错误;故选:B.【点睛】考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x﹣h)2+k中,对称轴为x=h,顶点坐标为(h,k).10.已知关于x,y的二元一次方程组231ax byax by+=⎧⎨-=⎩的解为11xy=⎧⎨=-⎩,则a﹣2b的值是()A.﹣2 B.2 C.3 D.﹣3 【答案】B【解析】把11xy=⎧⎨=-⎩代入方程组231ax byax by+=⎧⎨-=⎩得:231a ba b-=⎧⎨+=⎩,解得:4313 ab⎧=⎪⎪⎨⎪=-⎪⎩,所以a−2b=43−2×(13-)=2.故选B.二、填空题(本题包括8个小题)11.如图,在Rt△AOB中,直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,将△AOB绕点B逆时针旋转90°后,得到△A′O′B,且反比例函数y=kx的图象恰好经过斜边A′B的中点C,若S ABO=4,tan∠BAO =2,则k=_____.【答案】1【解析】设点C坐标为(x,y),作CD⊥BO′交边BO′于点D,∵tan∠BAO=2,∴=2,∵S△ABO=12•AO•BO=4,∴AO=2,BO=4,∵△ABO≌△A'O'B,∴AO=A′O′=2,BO=BO′=4,∵点C为斜边A′B的中点,CD⊥BO′,∴CD=12A′O′=1,BD=12BO′=2,∴x=BO﹣CD=4﹣1=3,y=BD=2,∴k=x·y=3×2=1.故答案为1.12.如图,在平面直角坐标系中,以点O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M,N为圆心.大于12MN的长为半径画弧,两弧在第二象限内交于点p(a,b),则a与b的数量关系是________.【答案】a+b=1.【解析】试题分析:根据作图可知,OP为第二象限角平分线,所以P点的横纵坐标互为相反数,故a+b=1. 考点:1角平分线;2平面直角坐标系.13.已知扇形的圆心角为120°,弧长为6π,则扇形的面积是_____.【答案】27π【解析】试题分析:设扇形的半径为r.则1206180rππ=,解得r=9,∴扇形的面积=21209360π⨯=27π.故答案为27π.考点:扇形面积的计算.14.如图,DA⊥CE于点A,CD∥AB,∠1=30°,则∠D=_____.【答案】60°【解析】先根据垂直的定义,得出∠BAD=60°,再根据平行线的性质,即可得出∠D的度数.【详解】∵DA⊥CE,∴∠DAE=90°,∵∠1=30°,∴∠BAD=60°,又∵AB∥CD,∴∠D=∠BAD=60°,故答案为60°.【点睛】本题主要考查了平行线的性质以及垂线的定义,解题时注意:两直线平行,内错角相等.15.在一个不透明的布袋中装有4个白球和n 个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球,摸到白球的概率是13,则n =_____. 【答案】1【解析】根据白球的概率公式44n +=13列出方程求解即可. 【详解】不透明的布袋中的球除颜色不同外,其余均相同,共有n+4个球,其中白球4个, 根据古典型概率公式知:P (白球)=44n +=13. 解得:n=1,故答案为1.【点睛】此题主要考查了概率公式的应用,一般方法为:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n. 16.如果抛物线y=﹣x 2+(m ﹣1)x+3经过点(2,1),那么m 的值为_____.【答案】2【解析】把点(2,1)代入y=﹣x 2+(m ﹣1)x+3,即可求出m 的值.【详解】∵抛物线y=﹣x 2+(m ﹣1)x+3经过点(2,1),∴1= -4+2(m-1)+3,解得m=2,故答案为2.【点睛】本题考查了二次函数图象上点的坐标特征,解题的关键是找出二次函数图象上的点的坐标满足的关系式. 17.如图,在平面直角坐标系中,点P(﹣1,a)在直线y =2x+2与直线y =2x+4之间,则a 的取值范围是_____.【答案】0a 2<<【解析】计算出当P 在直线y 2x 2=+上时a 的值,再计算出当P 在直线y 2x 4=+上时a 的值,即可得答案.【详解】解:当P 在直线y 2x 2=+上时,()a 212220=⨯-+=-+=,当P 在直线y 2x 4=+上时,()a 214242=⨯-+=-+=,则0a 2<<.故答案为0a 2<<【点睛】此题主要考查了一次函数与一元一次不等式,关键是掌握函数图象经过的点,必能使解析式左右相等. 18.每一层三角形的个数与层数的关系如图所示,则第2019层的三角形个数为_____.【答案】2.【解析】设第n 层有a n 个三角形(n 为正整数),根据前几层三角形个数的变化,即可得出变化规律“a n =2n ﹣2”,再代入n =2029即可求出结论.【详解】设第n 层有a n 个三角形(n 为正整数),∵a 2=2,a 2=2+2=3,a 3=2×2+2=5,a 4=2×3+2=7,…,∴a n =2(n ﹣2)+2=2n ﹣2.∴当n =2029时,a 2029=2×2029﹣2=2.故答案为2.【点睛】本题考查了规律型:图形的变化类,根据图形中三角形个数的变化找出变化规律“a n =2n ﹣2”是解题的关键.三、解答题(本题包括8个小题)19.为响应“学雷锋、树新风、做文明中学生”号召,某校开展了志愿者服务活动,活动项目有“戒毒宣传”、“文明交通岗”、“关爱老人”、“义务植树”、“社区服务”等五项,活动期间,随机抽取了部分学生对志愿者服务情况进行调查,结果发现,被调查的每名学生都参与了活动,最少的参与了1项,最多的参与了5项,根据调查结果绘制了如图所示不完整的折线统计图和扇形统计图.被随机抽取的学生共有多少名?在扇形统计图中,求活动数为3项的学生所对应的扇形圆心角的度数,并补全折线统计图;该校共有学生2000人,估计其中参与了4项或5项活动的学生共有多少人?【答案】(1)被随机抽取的学生共有50人;(2)活动数为3项的学生所对应的扇形圆心角为72°,(3)参与了4项或5项活动的学生共有720人.【解析】分析:(1)利用活动数为2项的学生的数量以及百分比,即可得到被随机抽取的学生数;(2)利用活动数为3项的学生数,即可得到对应的扇形圆心角的度数,利用活动数为5项的学生数,即可补全折线统计图;(3)利用参与了4项或5项活动的学生所占的百分比,即可得到全校参与了4项或5项活动的学生总数.详解:(1)被随机抽取的学生共有14÷28%=50(人);(2)活动数为3项的学生所对应的扇形圆心角=1050×360°=72°,活动数为5项的学生为:50﹣8﹣14﹣10﹣12=6,如图所示:(3)参与了4项或5项活动的学生共有12+650×2000=720(人).点睛:本题主要考查折线统计图与扇形统计图及概率公式,根据折线统计图和扇形统计图得出解题所需的数据是解题的关键.20.如图,在一笔直的海岸线l上有A、B两个码头,A在B的正东方向,一艘小船从A码头沿它的北偏西60°的方向行驶了20海里到达点P处,此时从B码头测得小船在它的北偏东45°的方向.求此时小船到B码头的距离(即BP的长)和A、B两个码头间的距离(结果都保留根号).。
2018年贵州省安顺市中考数学对点突破模拟试卷(1)含答案解析
2018年贵州省安顺市中考数学对点突破模拟试卷(1)一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列说法不正确的是()A.0既不是正数,也不是负数B.绝对值最小的数是0C.绝对值等于自身的数只有0和1D.平方等于自身的数只有0和12.(3分)据悉,超级磁力风力发电机可以大幅度提升风力发电效率,但其造价高昂,每座磁力风力发电机,其建造花费估计要 5 300万美元,“5 300万”用科学记数法可表示为()A.5.3×103B.5.3×104C.5.3×107D.5.3×1083.(3分)下面的计算正确的是()A.3a﹣2a=1 B.a+2a2=3a3C.﹣(a﹣b)=﹣a+b D.2(a+b)=2a+b 4.(3分)如图是用八块完全相同的小正方体搭成的几何体,从左面看几何体得到的图形是()A.B.C.D.5.(3分)如图,若AB∥CD,则∠α、∠β、∠γ之间关系是()A.∠α+∠β+∠γ=180°B.∠α+∠β﹣∠γ=360°C.∠α﹣∠β+∠γ=180°D.∠α+∠β﹣∠γ=180°6.(3分)若干名工人某天生产同一种玩具,生产的玩具数整理成条形图(如图所示).则他们生产的玩具数的平均数、中位数、众数分别为()A.5,5,4 B.5,5,5 C.5,4,5 D.5,4,47.(3分)如图,在矩形ABCD中,AD=10,AB=14,点E为DC上一个动点,若将△ADE沿AE折叠,当点D的对应点D′落在∠ABC的角平分线上时,则点D′到AB的距离为()A.6 B.6或8 C.7或8 D.6或78.(3分)已知一元二次方程ax2+bx+c=0(a≠0)中,下列说法:①若a+b+c=0,则b2﹣4ac>0;②若方程两根为﹣1和2,则2a+c=0;③若方程ax2+c=0有两个不相等的实根,则方程ax2+bx+c=0必有两个不相等的实根;④若b=2a+c,则方程有两个不相等的实根.其中正确的有()A.①②③B.①②④C.②③④D.①②③④9.(3分)如图,在Rt△ABO中,斜边AB=1,若OC∥BA,∠AOC=36°,则()A.点B到AO的距离为sin54°B.点A到OC的距离为sin36°s in54°C.点B到AO的距离为tan36°D.点A到OC的距离为cos36°sin54°10.(3分)如图,若a<0,b>0,c<0,则抛物线y=ax2+bx+c的大致图象为()A.B.C.D.二.填空题(共8小题,满分32分,每小题4分)11.(4分)分解因式(xy﹣1)2﹣(x+y﹣2xy)(2﹣x﹣y)=.12.(4分)已知函数,则x取值范围是.13.(4分)如图,△ABC中,AC=5,BC=12,AB=13,CD是AB边上的中线.则CD=.14.(4分)计算=.15.(4分)若x2+kx+81是完全平方式,则k的值应是.16.(4分)如图,在直角△OAB中,∠AOB=30°,将△OAB绕点O逆时针旋转90°得到△OA1B1,若AB=2,则点B走过的路径长为.17.(4分)如图,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,F是CD上一点,DF=1,在对角线AC上有一点P,连接PE,PF,则PE+PF的最小值为.来源学。
贵州省安顺市2018年中考数学试题(含答案)
2018年安顺市初中毕业生学业、升学(高中、中职、五年制专科)招生考试 数学科试题一、选择题(共10个小题,每小题3分,共30分)1.下面四个手机应用图标中是轴对称图形的是( )A .B .C .D .)A .BC .2±D .23.“五·一”期间,美丽的黄果树瀑布景区吸引大量游客前来游览.经统计,某段时间内来该风景区游览的人数约为36000人,用科学记数法表示36000为( )A .43.610⨯ B .60.3610⨯ C .40.3610⨯ D .33610⨯4.如图,直线//a b ,直线l 与直线a ,b 分别相交于A 、B 两点,过点A 作直线l 的垂线交直线b 于点C ,若158∠=︒,则2∠的度数为( )A .58︒B .42︒C .32︒D .28︒5.如图,点D ,E 分别在线段AB ,AC 上,CD 与BE 相交于O 点,已知AB AC =,现添加以下哪个条件仍不能判定.....ABE ACD ∆≅∆( )A .BC ∠=∠ B .AD AE = C .BD CE = D .BE CD =6.一个等腰三角形的两条边长分别是方程27100x x -+=的两根,则该等腰三角形的周长是( ) A .12 B .9 C .13 D .12或9 7.要调查安顺市中学生了解禁毒知识的情况,下列抽样调查最适合的是( ) A .在某中学抽取200名女生 B .在安顺市中学生中抽取200名学生 C .在某中学抽取200名学生 D .在安顺市中学生中抽取200名男生8.已知()ABC AC BC ∆<,用尺规作图的方法在BC 上确定一点P ,使P A P C B C +=,则符合要求的作图痕迹是( )A .B .C .D . 9.已知O 的直径10CD cm =,AB 是O 的弦,AB CD ⊥,垂足为M ,且8AB cm =,则AC 的长为( )A .B .C .或D .或10.已知二次函数2(0)y ax bx c a =++≠的图象如图,分析下列四个结论:①0abc <;②240b ac ->;③30a c +>;④22()a c b +<.其中正确的结论有( )A .1个B .2个C .3个D .4个二、填空题(共8个小题,每小题4分,共32分)11.函数y =x 的取值范围是 . 12.学校射击队计划从甲、乙两人中选拔一人参加运动会射击比赛,在选拔过程中,每人射击10次,计算他们的平均成绩及方差如表,请你根据表中的数据选一人参加比赛,最适合的人选是 .13.不等式组34012412x x +≥⎧⎪⎨-≤⎪⎩的所有整数解的积为 .14.若22(3)16x m x +-+是关于x 的完全平方式,则m =.15.如图,点1P ,2P ,3P ,4P 均在坐标轴上,且1223PP P P ⊥,2334P P P P ⊥,若点1P ,2P 的坐标分别为(0,1)-,(2,0)-,则点4P 的坐标为 .16.如图,C 为半圆内一点,O 为圆心,直径AB 长为2cm ,60BOC ∠=︒,90BCO ∠=︒,将B O C ∆绕圆心O 逆时针旋转至''B OC ∆,点'C 在OA 上,则边BC 扫过区域(图中阴影部分)的面积为2cm .(结果保留π)17.如图,已知直线1y k x b =+与x 轴、y 轴相交于P 、Q 两点,与2k y x=的图象相交于(2,)A m -、(1,)B n 两点,连接OA 、OB .给出下列结论: ①120k k <;②102m n +=;③AOP BOQ S S ∆∆=;④不等式21k k x b x+>的解集是2x <-或01x <<. 其中正确结论的序号是 .18.正方形111A B C O 、2221A B C C 、3332A B C C 、…按如图所示的方式放置.点1A 、2A 、3A 、…和点1C 、2C 、3C 、…分别在直线1y x =+和x 轴上,则点n B 的坐标是 .(n 为正整数)三、解答题(本大题共8小题,满分88分.解答应写出文字说明、证明过程或演算步骤)19.计算:()22018112tan 60 3.142π-⎛⎫-+︒--+ ⎪⎝⎭.20.先化简,再求值:2282442x x x x x ⎛⎫÷-- ⎪-+-⎝⎭,其中2x =. 21.如图是某市一座人行天桥的示意图,天桥离地面的高BC 是10米,坡面AC 的倾斜角45CAB ∠=︒,在距A 点10米处有一建筑物HQ .为了方便行人推车过天桥,市政府部门决定降低坡度,使新坡面DC 的倾斜角30BDC ∠=︒,若新坡面下D 处与建筑物之间需留下至少3米宽的人行道,问该建筑物是否需要拆除(计算最后结果保留一位小数).≈)≈ 1.7321.414∆中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线22.如图,在ABC于点F,连接CF.=;(1)求证:AF DC⊥,试判断四边形ADCF的形状,并证明你的结论.(2)若AB AC23.某地2015年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2017年在2015年的基础上增加投入资金1600万元.(1)从2015年到2017年,该地投入异地安置资金的年平均增长率为多少?(2)在2017年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天奖励5元,按租房400天计算,求2017年该地至少有多少户享受到优先搬迁租房奖励.24.某电视台为了解本地区电视节目的收视情况,对部分市民开展了“你最喜爱的电视节目”的问卷调查(每人只填写一项),根据收集的数据绘制了两幅不完整的统计图(如图所示),根据要求回答下列问题:(1)本次问卷调查共调查了________名观众;图②中最喜爱“新闻节目”的人数占调查总人数的百分比为________;(2)补全图①中的条形统计图;(3)现有最喜爱“新闻节目”(记为A ),“体育节目”(记为B ),“综艺节目”(记为C ),“科普节目”(记为D )的观众各一名,电视台要从四人中随机抽取两人参加联谊活动,请用列表或画树状图的方法,求出恰好抽到最喜爱“B ”和“C ”两位观众的概率.25.如图,在ABC ∆中,AB AC =,O 为BC 的中点,AC 与半圆O 相切于点D .(1)求证:AB 是半圆O 所在圆的切线; (2)若2cos 3ABC ∠=,12AB =,求半圆O 所在圆的半径. 26.如图,已知抛物线2(0)y ax bx c a =++≠的对称轴为直线1x =-,且抛物线与x 轴交于A 、B 两点,与y 轴交于C 点,其中(1,0)A ,(0,3)C .(1)若直线y mx n =+经过B 、C 两点,求直线BC 和抛物线的解析式;(2)在抛物线的对称轴1x =-上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求出点M 的坐标;(3)设点P 为抛物线的对称轴1x =-上的一个动点,求使BPC ∆为直角三角形的点P 的坐标.2018年安顺市初中毕业生学业、升学(高中、中职、五年制专科)招生考试数学学科参考答案一、选择题1-5: DBACD 6-10: ABDCB二、填空题11. 1x >- 12. 乙 13. 0 14. 7或-1 15. (8,0) 16.4π 17. ②③④ 18. 1(21,2)n n -- 三、解答题19.解:原式12144=-++=.20.解:原式228(2)(2)(2)22x x x x x x ⎡⎤+-=÷-⎢⎥---⎣⎦22284(2)2x x x x -+=÷-- 282(2)4x x -=⋅-22x -. ∵2x =,∴2x =±,2x =舍, 当2x =-时,原式21222==---.21.解:由题意得,10AH =米,10BC =米, 在Rt ABC ∆中,45CAB ∠=︒, ∴10AB BC ==,在Rt DBC ∆中,30CDB ∠=︒,∴tan BCDB CDB==∠∴()DH AH AD AH DB AB =-=--101020 2.7=-=-≈(米), ∵2.7米3<米, ∴该建筑物需要拆除.22.证明:(1)∵E 是AD 的中点,∴AE ED =. ∵//AF BC ,∴AFE DBE ∠=∠,FAE BDE ∠=∠, ∴AFE DBE ∆≅∆. ∴AF DB =.∵AD 是BC 边上的中点,∴DB DC =, ∴AF DC =.(2)四边形ADCF 是菱形. 理由:由(1)知,AF DC =,∵//AF CD ,∴四边形ADCF 是平行四边形. 又∵AB AC ⊥,∴ABC ∆是直角三角形. ∵AD 是BC 边上的中线, ∴12AD BC DC ==. ∴平行四边形ADCF 是菱形.23.解:(1)设该地投入异地安置资金的年平均增长率为x ,根据题意得21280(1)12801600x +=+,解得:0.5x =或 2.5x =-(舍),答:从2015年到2017年,该地投入异地安置资金的年平均增长率为50%; (2)设2017年该地有a 户享受到优先搬迁租房奖励,根据题意得, ∵8100040032000005000000⨯⨯=<,∴1000a >,10008400(1000)54005000000a ⨯⨯+-⨯⨯≥,解得:1900a ≥,答:2017年该地至少有1900户享受到优先搬迁租房奖励. 24.解:(1)200,25%.(2)最喜爱“新闻节目”的人数为20050354570---=(人),如图,(3)画树状图为:共有12种等可能的结果,恰好抽到最喜爱“B ”和“C ”两位观众的结果数为2, 所以恰好抽到最喜爱“B ”和“C ”两位观众的概率21126==. 25.(1)证明:如图1,作OE AB ⊥于E ,连接OD 、OA , ∵AB AC =,O 为BC 的中点, ∴CAO BAO ∠=∠.∵AC 与半圆O 相切于点D , ∴OD AC ⊥, ∵OE AB ⊥, ∴OD OE =,∵AB 经过圆O 半径的外端,∴AB 是半圆O 所在圆的切线;(2)∵AB AC =,O 是BC 的中点,∴AO BC ⊥,由2cos 3ABC ∠=,12AB =,得∴2cos 1283OB AB ABC =⋅∠=⨯=.由勾股定理,得AO =由三角形的面积,得1122AOB S AB OE OB AO ∆=⋅=⋅,OB OA OE AB ⋅==,半圆O. 26.解:(1)依题意得:1203ba abc c ⎧-=-⎪⎪++=⎨⎪=⎪⎩,解之得:123a b c =-⎧⎪=-⎨⎪=⎩,∴抛物线的解析式为223y x x =--+. ∵对称轴为1x =-,且抛物线经过(1,0)A , ∴把(3,0)B -、(0,3)C 分别代入直线y mx n =+,得303m n n -+=⎧⎨=⎩,解之得:13m n =⎧⎨=⎩,∴直线y mx n =+的解析式为3y x =+.(2)直线BC 与对称轴1x =-的交点为M ,则此时MA MC +的值最小,把1x =-代入直线3y x =+得2y =,∴(1,2)M -.即当点M 到点A 的距离与到点C 的距离之和最小时M 的坐标为(1,2)-.(注:本题只求M 坐标没说要证明为何此时MA MC +的值最小,所以答案没证明MA MC +的值最小的原因).(3)设(1,)P t -,又(3,0)B -,(0,3)C ,∴218BC =,2222(13)4PB t t =-++=+,2222(1)(3)610PC t t t =-+-=-+,①若点B 为直角顶点,则222BC PB PC +=即:22184610t t t ++=-+解之得:2t =-, ②若点C 为直角顶点,则222BC PC PB +=即:22186104t t t +-+=+解之得:4t =, ③若点P 为直角顶点,则222PB PC BC +=即:22461018t t t ++-+=解之得:1t =232t =综上所述P 的坐标为(1,2)--或(1,4)-或3(1,)2+-或3(1,2-.。
18 中考数学卷(贵州省安顺市专用)原卷
绝密★启用前|学科网考试研究中心命制备战2021年中考数学【名校地市好题必刷】全真模拟卷(贵州安顺专用)第十八模拟同学你好!答题前请认真阅读以下内容:1.全卷共8页,共25道小题,满分150分,答题时间120分钟,考试形式为闭卷.2.一律在答题卡相应位置作答,在试题卷上答题视为无效.一、选择题(本题共10小题,每小题3分,共30分)1.以下是清华大学、北京大学、上海交通大学、浙江大学的校徽,其中是轴对称图形的是()A. B.C. D.2.下列式子是最简二次根式的是()A. B. C. D.3.为了积极应对新冠肺炎疫情,商务部会同多部委于2020年2月4日组织投放14000吨中央储备肉,以增加市场肉类供应.其中14000用科学记数法表示为()A.14×103B.0.14×105C.1.4×104D.14×1044.如图,已知直线a★b,直线c分别交直线a,b于点A,B,在直线b上取点C,连接AC.若★1=130°,★2=100°,则★3的度数为()A.50°B.40°C.30°D.20°5.如图,在★ABC和★DEC中,已知CB=CE,还需添加两个条件才能使★ABC★★DEC,不能添加的一组条件是()A.AB=DE,★B=★EB.AB=DE,AC=DCC.AB=DE,★A=★DD.★A=★D,★B=★E6.x=﹣2是关于x的一元二次方程2x2+3ax﹣2a2=0的一个根,则a的值为()A.1或4B.﹣1或﹣4C.﹣1或4D.1或﹣47.为了解我区八年级2000名学生期中数学考试情况,从中抽取了400名学生的数学成绩进行统计,下列说法正确的是()A.这种调查方式是普查B.每名学生的数学成绩是个体C.2000名学生是总体D.400名学生是总体的一个样本8.已知★AOB,求作射线OC,使OC平分★AOB,那么作法的合理顺序是()★作射线OC;★在射线OA和OB上分别截取OD、OE,使OD=OE;★分别以D、E为圆心,大于DE的长为半径在★AOB内作弧,两弧交于点C.A.★★★B.★★★C.★★★D.★★★9.如图,AB是★O的直径,弦CD与AB垂直,垂足为点E,连接CO并延长交★O于点F,★CDB=30°,CD=2,则图中阴影部分的面积为()A. B. C. D.2π﹣10.如图所示为抛物线y=ax2+bx+c(a≠0)在坐标系中的位置,以下六个结论:★a>0;★b>0;★c>0;★b2﹣4ac>0;★a+b+c<0;★2a+b>0.其中正确的个数是()A.3B.4C.5D.6二、填空题(本题共5小题,每小题4分,共20分)11.直线y=2x+3与x轴的交点坐标是.12.对垃圾进行分类投放,能提高垃圾处理和再利用的效率,减少污染,保护环境.小明为了解所在小区居民各类生活垃圾的投放情况,随机调查了该小区50户家庭某一天各类生活垃圾的投放量,统计得出这50户家庭各类生活垃圾的投放总量是120千克,根据扇形统计图,这一天投放的可回收垃圾约千克.13.不等式组无解,则a的取值范围为.14.某市某楼盘准备以每平方米7200元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米5832元的均价开盘销售.则平均每次下调的百分率为.15.如图,点A在射线OX上,OA=2.若将OA绕点O按逆时针方向旋转30°到OB,那么点B的位置可以用(2,30°)表示.若将OB延长到C,使OC=3,再将OC按逆时针方向继续旋转55°到OD,那么点D的位置可以用(,)表示.16.如图,把三角板中30°角的顶点A放在半径为3的★O上移动,三角板的长直角边和斜边与★O始终相交,且交点分别为P、Q,则长为.17.如图,在方格纸中(小正方形的边长为1),反比例函数y=的图象与直线AB的交点A、B在图中的格点上,点C是反比例函数图象上的一点,且与点A、B组成以AB为底的等腰★,则点C的坐标为.18.甲、乙两车从A地出发,匀速驶向B地.甲车以80km/h的速度行驶1h后,乙车才沿相同路线行驶.乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y(km)与乙车行驶时间x(h)之间的函数关系如图所示.下列说法:★乙车的速度是120km/h;★m=160;★点H 的坐标是(7,80);★n=7.4.其中说法正确的是(填写序号).三、解答题(本题共10小题,共100分)19.计算:﹣12﹣++(π﹣3.14)0.20.先化简,再求代数式÷的值,其中x=.21.西安市某学校的数学探究小组利用无人机在操场上开展测量教学楼高度的活动,如图,此时无人机在离地面30米的点D处,操控者站在点A处,无人机测得点A的俯角为37°,测得教学楼楼顶点C处的俯角为45°,又经过人工测量得到操控者和教学楼BC的距离为57米,求教学楼BC的高度.(注:点A,B,C,D都在同一平面上,无人机大小忽略不计.参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)22.如图,平行四边形ABCD的对角线相交于点O,直线EF过点O分别交BC,AD于点E、F、G、H分别为OB、OD的中点,求证:四边形GEHF是平行四边形.23.某商场将进货价为30元的台灯以40元售出,平均每月能售出600个.调查表明:这种台灯的售价每上涨1元,其销售量就将减少10个.为了实现平均每月10000元的销售利润,商场决定采取调控价格的措施,扩大销售量,减少库存,这种台灯的售价应定为多少元?这时应进台灯多少个?24.为庆祝建国70周年,推出许多新影片,全国人民掀起了看电影的热潮.为此,某电影公司派出了若干业务员到几个社区作随机调查,了解市民对电影A《中国机长》、B《我和我的祖国》、C《决胜时刻》、D《烈火英雄》的喜爱程度.业务员小王,将自己的调查结果进行分类并绘制成如下的统计图,请你结合图中所给信息解答下列问题:(说明:A《中国机长》、B《我和我的祖国》、C《决胜时刻》、D《烈火英雄》)(1)请把条形统计图补充完整;扇形统计图中D类所在的扇形的圆心角度数是;(2)小易打算从喜欢《我和我的祖国》的5位山城人民(两男三女)中,抽取两人分别赠送电影票一张,问抽到一男一女的概率是多少?25.如图,AB是★O的直径,C为★O上一点,连接AC,BC,CE★AB于点E,点D是AB延长线上一点,CB平分★ECD.(1)判断CD与★O有怎样的位置关系,并说明理由;(2)若AD=2cm,sin★BCE=,则直接写出CD的长为.26.如图,已知二次函数y=ax2+bx+c的图象经过点A(﹣1,0),B(4,0),E(1,3),与y轴交于点C.(1)求该二次函数表达式;(2)判断★ABC的形状,并说明理由;(3)P为第一象限内该二次函数图象上一动点,过P作PQ★AC,交直线BC于点Q,作PM★y轴交BC 于M.★求证:★PQM★★COA;★求线段PQ的长度的最大值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
19. 计算:|﹣ |+(π﹣2017)0﹣2sin30°+3﹣1 .
20. 先化简,再求值:
,其中m是方程x2+x﹣3=0的根.
21. 已知,如图,点D是△ABC的边AB的中点,四边形BCED是平行四边形,
(1) 求证:四边形ADCE是平行四边形; (2) 当△ABC满足什么条件时,平行四边形ADCE是矩形? 22. 如图,一次函数y=k1x+b与反比例函数y= 的图象交于A(2,m),B(n,﹣2)两点.过点B作BC⊥x轴,垂足 为C,且S△ABC=5.
A . 5,5,4 B . 5,5,5 C . 5,4,5 D . 5,4,4 7. 如图,在矩形ABCD中,AD=10,AB=14,点E为DC上一个动点,若将△ADE沿AE折叠,当点D的对应点D′落在∠ ABC的角平分线上时,则点D′到AB的距离为( )
A . 6 B . 6或8 C . 7或8 D . 6或7 8. 已知一元二次方程ax2+bx+c=0(a≠0)中,下列说法: ①若a+b+c=0,则b2﹣4ac>0;②若方程两根为﹣1和2,则2a+c=0;③若方程ax2+c=0有两个不相等的实根,则方程 ax2+bx+c=0必有两个不相等的实根;④若b=2a+c,则方程有两个不相等的实根.其中正确的有( ) A . ①②③ B . ①②④ C . ②③④ D . ①②③④
进甲、乙两种零件有几种方案?请你设计出来.
24. 抚顺某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B ,C,D四个等级.请根据两幅统计图中的信息回答下列问题:
(1) 本次抽样调查共抽取了多少名学生? (2) 求测试结果为C等级的学生数,并补全条形图; (3) 若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D等级的学生有多少名? (4) 若从体能为A等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画
直线AD与经过B、E、C三点的抛物线交于F、G两点,与其对称轴交于M,点P为线段FG上一个动点(与F、G不重合), PQ∥y轴与抛物线交于点Q.
(1) 求经过B、E、C三点的抛物线的解析式; (2) 判断△BDC的形状,并给出证明;当P在什么位置时,以P、O、C为顶点的三角形是等腰三角形,并求出此时 点P的坐标; (3) 若抛物线的顶点为N,连接QN,探究四边形PMNQ的形状:①能否成为菱形; ②能否成为等腰梯形?若能,请直接写出点P的坐标;若不能,请说明理由. 参考答案 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14.
15. 16. 17. 18. 19. 20.
21.
22.
23.
24.
25. 26.
A.
B.
C.
D.
5. 如图,若AB∥CD,则∠α、∠β、∠γ之间关系是( )
A . ∠α+∠β+∠γ=180° B . ∠α+∠β﹣∠γ=360° C . ∠α﹣∠β+∠γ=180° D . ∠α+∠β﹣∠γ=180° 6. 若干名工人某天生产同一种玩具,生产的玩具数整理成条形图(如图所示).则他们生产的玩具数的平均数、中位数 、众数分别为( )
15. 若x2+kx+81是完全平方式,则k的值应是________. 16. 如图,在直角△OAB中,∠AOB=30°,将△OAB绕点O逆时针旋转90°得到△OA1B1 , 若AB=2,则点B走过的路 径长为________.
17. 如图,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,F是CD上一点,DF=1,在对角 线AC上有一点P,连接PE,PF,则PE+PF的最小值为________.
A.Βιβλιοθήκη B.C.D.
二、填空题
11. 分解因式(xy﹣1)2﹣(x+y﹣2xy)(2﹣x﹣y)=________.
12. 已知函数
,则x取值范围是________.
13. 如图,△ABC中,AC=5,BC=12,AB=13,CD是AB边上的中线.则CD=________.
14. 计算
=________.
(1) 求一次函数与反比例函数的解析式; (2) 根据所给条件,请直接写出不等式k1x+b> 的解集; (3) 若P(p,y1),Q(﹣2,y2)是函数y= 图象上的两点,且y1≥y2,求实数p的取值范围. 23. 跃壮五金商店准备从宁云机械厂购进甲、乙两种零件进行销售.若每个甲种零件的进价比每个乙种零件的进价少2 元,且用80元购进甲种零件的数量与用100元购进乙种零件的数量相同. (1) 求每个甲种零件、每个乙种零件的进价分别为多少元? (2) 若该五金商店本次购进甲种零件的数量比购进乙种零件的数量的3倍还少5个,购进两种零件的总数量不超过95 个,该五金商店每个甲种零件的销售价格为12元,每个乙种零件的销售价格为15元,则将本次购进的甲、乙两种零件全部 售出后,可使销售两种零件的总利润(利润=售价-进价)超过371元,通过计算求出跃壮五金商店本次从宁云机械厂购
贵州省安顺市2018届中考数学对点突破模拟试卷(一)
一、单选题
1. 下列说法不正确的是( ) A . 0既不是正数,也不是负数 B . 绝对值最小的数是0 C . 绝对值等于自身的数只有0和1 D . 平方等于自身的数只有0和1 2. 据悉,超级磁力风力发电机可以大幅度提升风力发电效率,但其造价高昂,每座磁力风力发电机,其建造花费估计 要5 300万美元,“5 300万”用科学记数法可表示为( ) A . 5.3×103 B . 5.3×104 C . 5.3×107 D . 5.3×108 3. 下面的计算正确的是( ) A . 6a﹣5a=1 B . a+2a2=3a3 C . ﹣(a﹣b)=﹣a+b D . 2(a+b)=2a+b 4. 如图是用八块完全相同的小正方体搭成的几何体,从左面看几何体得到的图形是( )
树状图的方法求所抽取的两人恰好都是男生的概率.
25. 如图,AB是⊙O的直径,⊙O与AC相交于点D,∠BAC=45°,AB=BC.
(1) 求证:BC是⊙O的切线; (2) 若⊙O的半径为2cm,求图中阴影部分的面积. 26. 如图,平面直角坐标系中,点A、B、C在x轴上,点D、E在y轴上,OA=OD=2,OC=OE=4,B为线段OA的中点,
18. 在平面直角坐标系中,智多星做走棋的游戏,其走法是:棋子从原点出发,第1步向上走1个单位,第2步向上走2 个单位,第3步向右走1个单位,第4步向上走1个单位……依此类推,第n步的走法是:当n被3除,余数为2时,则向上走2 个单位;当走完第2018步时,棋子所处位置的坐标是________
三、解答题
9. 如图,在Rt△ABO中,斜边AB=1,若OC∥BA,∠AOC=36°,则( )
A . 点B到AO的距离为sin54° B . 点A到OC的距离为sin36°sin54° C . 点B到AO的距离为tan36° D . 点A到OC的距离为cos36°sin5 4°
10. 如图,若a<0,b>0,c<0,则抛物线y=ax2+bx+c的大致图象为( )