2012年贵州省安顺市中考数学试卷及解析
数量和位置变化2012年贵州中考题(附答案)
![数量和位置变化2012年贵州中考题(附答案)](https://img.taocdn.com/s3/m/1783695c5acfa1c7aa00ccf5.png)
数量和位置变化2012年贵州中考题(附答案)贵州各市2012年中考数学试题分类解析汇编专题5:数量和位置变化一、选择题1.(2012贵州安顺3分)在平面直角坐标系xoy中,若A点坐标为(﹣3,3),B点坐标为(2,0),则△ABO的面积为【】A.15B.7.5C.6D.3【答案】D。
【考点】三角形的面积,坐标与图形性质。
【分析】如图,根据题意得,△ABO的底长OB为2,高为3,∴S△ABO=×2×3=3。
故选D。
2.(2012贵州安顺3分)下列说法中正确的是【】A.是一个无理数B.函数的自变量的取值范围是x>﹣1C.若点P(2,a)和点Q(b,﹣3)关于x轴对称,则a﹣b的值为1 D.﹣8的立方根是2【答案】C。
【考点】无理数,函数自变量的取值范围,二次根式有意义的条件,关于x轴对称的点的坐标,立方根。
【分析】A、=3是有理数,故此选项错误;B、函数的自变量的取值范围是x≥﹣1,故此选项错误;C、若点P(2,a)和点Q(b,﹣3)关于x轴对称,则b=2,a=3,故a﹣b=3﹣2=1,故此选项正确;D、﹣8的立方根式﹣2,故此选项错误。
故选C。
3.(2012贵州毕节3分)如图,在平面直角坐标系中,以原点O为位中心,将△ABO扩大到原来的2倍,得到△A′B′O.若点A的坐标是(1,2),则点A′的坐标是【】A.(2,4)B.(,)C.(,)D.(,)【答案】C。
【考点】位似变换,坐标与图形性质。
【分析】根据以原点O为位中心,将△ABO扩大到原来的2倍,即可得出对应点的坐标应应乘以-2,即可得出点A′的坐标:∵点A的坐标是(1,2),∴点A′的坐标是(-2,-4),故选C。
4.(2012贵州六盘水3分)如图是邻居张大爷去公园锻炼及原路返回时离家的距离y(千米)与时间t(分钟)之间的函数图象,根据图象信息,下列说法正确的是【】A.张大爷去时所用的时间少于回家的时间B.张大爷在公园锻炼了40分钟C.张大爷去时走上坡路,回家时直下坡路D.张大爷去时速度比回家时的速度慢【答案】D。
2012年贵州省安顺市中考数学试卷及解析
![2012年贵州省安顺市中考数学试卷及解析](https://img.taocdn.com/s3/m/826b1396336c1eb91a375de8.png)
2012年贵州省安顺市中考数学试卷 一.选择题(共10小题)1. (2011 台州)在2、0、1、2 -2这四个数中,最小的数是() A. 1 2 B. 0C. 1D. ■2考点:有理数大小比较.解答:解:在有理数丄0.1、2 -2中,最大的是1•只有-2是负数,最小的是-2.故选D.2. (2011衡阳)某市在一次扶贫助残活动中,共捐款3185800元,将3185800元用科学记数法表 示(保留两个有效数字)为()A ・ 3.1×106 元B. 3.18×106 元 考点:科学记数法与有效数字. 解答:解 3185800≈3.2×106.故选C.3.1×1O 5 元 C ・ 3.2×106 元 D.3. (2011南通川•算宿的结果是()A ・±3勺兮B.√3 C. ±3 D. 3 考点:立方根.解答:解:V 33=27,故选D.4.(2011张家界)已知1是关于X 的一元二次方程(m - l )x 2+x+l=O 的一个根,则m 的值是()A. 1B. - 1C. 0D. 无法确定考点:一元二次方程的解:一元二次方程的左义.解答:解:根据题意得:(m- 1)+1+1=0,解得:m= - 1.故选B.5. 在平而直角坐标系XOy 中,若A 点坐标为(-3,3).B 点坐标为(2.0),贝仏ABO 的面枳为( )A. 15B. 7.5C. 6D. 3考点:三角形的而积:坐标与图形性质.解答:解:如图,根据题意得,△ ABO的底长OB为2,髙为3,.,.SA ABC)=-×2×3=3.2故选D.6.(2011长沙)一个多边形的内角和是900。
.则这个多边形的边数是()A. 6B. 7C. 8D.9考点:多边形内角与外角.解答:解:设这个多边形的边数为n.则有(n - 2)180o=900o.解得:n=7,•••这个多边形的边数为7.故选B.7.(2011丹东)某一时刻,身髙l∙6m的小明在阳光下的影长是0.4m,同一时刻同一地点测得某旗杆的影长是5m,则该旗杆的髙度是()A・ 1.25m B. IOm C. 20m D・8m考点:相似三角形的应用.解答:解:设该旗杆的髙度为xm,根据题意得,1.6:0.4=x:5,解得 x=20(m).即该旗杆的髙度是20m.故选C.8.在实数314159•申丽.1.010010001...4 21几举中,无理数的()A. 1 个B. 2 个C. 3 个D.4个考点:无理数•解答:解:T 3∕β4=4,无理数有:1.010010001...,π.故选B.9.甲、乙两人在相同的条件下,各射靶10次,经过计算:甲、乙射击成绩的平均数都是8环,甲的方差是1.2,乙的方差是1.8.下列说法中不一定正确的是()A.甲、乙射中的总环数相同B.甲的成绩稳泄C.乙的成绩波动较大D.甲、乙的众数相同考点:方差.解答:解:A 、根据平均数的左义,正确:B 、 根据方差的定义,正确:C 、 根据方差的定义,正确,D 、 一组数据中出现次数最多的数值叫众数.题目没有具体数据,无法确龙众数,错误. 故选D.10. (2012安顺)下列说法中正确的是()A.√5是一个无理数 B.函数『至亘的自变量的取值范围是x>-l 2 C.若点P(2,a)和点Q(b,- 3)关于X 轴对称,则a - b 的值为1 D. - 8的立方根是2考点:关于X 轴、y 轴对称的点的坐标;算术平方根:立方根:无理数:函数自变量的取值范 围. 解答:解:A 、屁3是有理数,故此选项错误;B 、 函数的自变量的取值范用是x≥- 1,⅛此选项错误;2C 、 若点P(2,a)和点Q(b,- 3)关于X 轴对称,则b=2.a=3,故a - b=3 - 2=1,故此选项正确:D 、 - 8的立方根式-2,故此选项错误;故选:C.二.填空题(共8小题)11. (2011 衡阳川-^ι√12+√3=^√3-.考点:二次根式的加减法.解答:解:原式=2∖∕^⅞+V5=3VE12. (2011 宁夏)分解因式:a 3 - a= a(a+l)(a-l). 考点:提公因式法与公式法的综合运用.解答:解:a* - a.=a(a 2 - 1),=a(a+l)(a - 1).13. (2012安顺)以方程组J y=X+1的解为坐标的点(x,y)在第 一 象限.y= - x+2考点:一次函数与二元一次方程(组)・①+②得,2y=3,把珂代入①畤Z解叫.解答:解:y=x+l y= 一 ∑+2因为2»卫>o,2 2根据务象限内点的坐标特点可知,所以点(x,y )在平面直角坐标系中的第一象限.故答案为:一.14. (2011衢州)在一自助夏令营活动中,小明同学从营地A 岀发,要到A 地的北偏东60。
【初中数学】贵州省各市2012年中考数学试题分类解析汇编(实数等12份) 通用6
![【初中数学】贵州省各市2012年中考数学试题分类解析汇编(实数等12份) 通用6](https://img.taocdn.com/s3/m/ddae9186284ac850ad024295.png)
贵州各市2012年中考数学试题分类解析汇编专题8:平面几何基础一、选择题1. (2012贵州贵阳3分)下列图案是一副扑克牌的四种花色,其中既是轴对称图形又是中心对称图形的是【】A.B.C.D.【答案】C。
【考点】轴对称图形和中心称对形。
【分析】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合。
因此,∵根据轴对称图形的定义得出四个图案都是轴对称图形,但是中心对称图形的图形只有C,∴一副扑克牌的四种花色图案中,既是轴对称图形又是中心对称图形的图案是C。
故选C。
2. (2012贵州安顺3分)一个多边形的内角和是900°,则这个多边形的边数是【】A. 6 B. 7 C. 8 D.9【答案】B。
【考点】多边形内角和定理。
【分析】设这个多边形的边数为n,则有(n﹣2)180°=900°,解得:n=7。
∴这个多边形的边数为7。
故选B。
3. (2012贵州毕节3分)下列图形是中心对称图形的是【】A. B. C. D.【答案】B。
【考点】中心称对形。
【分析】根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合。
因此,A、C、D不是中心对称图形,B是中心对称图形。
故选B。
4. (2012贵州毕节3分)下列命题是假命题的是【】A.同弧或等弧所对的圆周角相等B.平分弦的直径垂直于弦C.两条平行线间的距离处处相等D.正方形的两条对角线互相垂直平分【答案】A。
【考点】命题与定理,圆周角定理,垂径定理,平行线之间的距离,正方形的性质。
【分析】分析是否为假命题,可以举出反例;也可以分别分析各题设是否能推出结论,从而利用排除法得出答案:A、错误,同弧或等弧所对的圆周角相等或互补,是假命题;B、平分弦(不是直径)的直径垂直于弦是正确的,是真命题;C、两条平行线间的距离处处相等是正确的,是真命题;D、正方形的两条对角线互相垂直平分是正确的,是真命题。
安顺中考数学试题及答案
![安顺中考数学试题及答案](https://img.taocdn.com/s3/m/9ef82818cdbff121dd36a32d7375a417866fc1ca.png)
安顺中考数学试题及答案本文将为您提供安顺中考数学试题及答案。
试题与答案将按照合适的格式进行呈现,以帮助您更好地理解和应对中考数学题。
**一、选择题(每题4分,共50分)**1. 在一个等差数列中,首项为2,公差为3,前n项和为50,则n 的值是:A. 5B. 8C. 10D. 12答案:C2. 若a:b = 2:3,且b:c = 4:5,则a:b:c的比值为:A. 8:12:15B. 4:6:10C. 6:9:10D. 8:12:16答案:A3. 下列哪个图形不是一个正多边形?A. 正三角形B. 正方形C. 正五边形D. 正六边形答案:D(...以下省略部分选择题...)**二、填空题(每题4分,共40分)**1. 一个线段上有5个点,它们把这个线段分成了几份?答案:42. 两个互为倒数的数的乘积等于多少?答案:-13. 已知等差数列的前两项分别为a1和a4,公差为d,那么a5是多少?答案:a5 = a4 + d(...以下省略部分填空题...)**三、解答题(共40分)**1. 某商店打折促销,原价500元的商品打8.8折,求打折后的价格。
解答:打折后的价格 = 原价 ×打折比例打折后的价格 = 500元 × 0.88 = 440元2. 某车行共有150辆汽车,其中30%为SUV车型,剩下的都为轿车。
求轿车的数量。
解答:轿车的数量 = 总数量 - SUV车的数量轿车的数量 = 150辆 - 30% × 150辆= 150辆 - 0.3 × 150辆= 150辆 - 45辆= 105辆(...以下省略部分解答题...)希望以上提供的安顺中考数学试题及答案能够对您有所帮助。
祝您在中考中取得优异的成绩!。
贵州安顺
![贵州安顺](https://img.taocdn.com/s3/m/b14568cb680203d8ce2f24e0.png)
2012年贵州省安顺市中考数学试卷一.选择题(共10小题)1.(2011台州)在、0、1、﹣2这四个数中,最小的数是()A.B. 0 C. 1 D.﹣2考点:有理数大小比较。
解答:解:在有理数、0、1、﹣2中,最大的是1,只有﹣2是负数,∴最小的是﹣2.故选D.2.(2011衡阳)某市在一次扶贫助残活动中,共捐款3185800元,将3185800元用科学记数法表示(保留两个有效数字)为()A. 3.1×106元B. 3.1×105元C. 3.2×106元D.3.18×106元考点:科学记数法与有效数字。
解答:解:3185800≈3.2×106.故选C.3.(2011南通)计算的结果是()A.±3B. 3C.±3 D.3考点:立方根。
解答:解:∵33=27,∴=3.故选D.4.(2011张家界)已知1是关于x的一元二次方程(m﹣1)x2+x+1=0的一个根,则m的值是()A. 1 B.﹣1 C. 0 D.无法确定考点:一元二次方程的解;一元二次方程的定义。
解答:解:根据题意得:(m﹣1)+1+1=0,解得:m=﹣1.故选B.5.在平面直角坐标系xoy中,若A点坐标为(﹣3,3),B点坐标为(2,0),则△ABO的面积为()A. 15 B. 7.5 C. 6 D.3考点:三角形的面积;坐标与图形性质。
解答:解:如图,根据题意得,△ABO的底长OB为2,高为3,∴S△ABO=×2×3=3.故选D.6.(2011长沙)一个多边形的内角和是900°,则这个多边形的边数是()A. 6 B. 7 C. 8 D.9考点:多边形内角与外角。
解答:解:设这个多边形的边数为n,则有(n﹣2)180°=900°,解得:n=7,∴这个多边形的边数为7.故选B.7.(2011丹东)某一时刻,身髙1.6m的小明在阳光下的影长是0.4m,同一时刻同一地点测得某旗杆的影长是5m,则该旗杆的高度是()A. 1.25m B. 10m C. 20m D.8m考点:相似三角形的应用。
2012年贵州贵阳中考数学试卷-答案
![2012年贵州贵阳中考数学试卷-答案](https://img.taocdn.com/s3/m/b2d74d0cee06eff9aef80749.png)
贵州省贵阳市2012年初中毕业生学业考试试题卷数学答案解析一、选择题 1.【答案】A【解析】解:∵43223-<-<-<<,∴整数4-、2-、2、3中,小于4-的整数是4-,故选A.【提示】根据正数都大于负数,两个负数比较大小,其绝对值大的反而小,得出2和3都大于3-,求出|33|-=,|22|-=,|44|-=,比较即可.【考点】有理数大小比较,绝对值 2.【答案】C【解析】解:将110000用科学记数法表示为:51.110⨯.【提示】科学记数法的表示形式为10n a ⨯的形式,其中1||10a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数. 【考点】科学记数法—表示较大的数 3.【答案】D【解析】解:A.圆锥的主视图、左视图都是等腰三角形,俯视图是圆形,不符合题意,故此选项错误; B.圆柱的主视图、左视图可以都是矩形,俯视图是圆形,不符合题意,故此选项错误; C.三棱柱的主视图、左视图都是矩形,俯视图是三角形,不符合题意,故此选项错误; D.球的三视图都是圆形,故此选项正确.【提示】根据几何体的三种视图,进行选择即可. 【考点】简单几何体的三视图 4.【答案】B【解析】解:A.根据AB DE =,BC EF =和BCA F ∠=∠不能推出ABC DEF △≌△,故本选项错误; B.∵在ABC △和DEF △中AB DE B E BC EF =⎧⎪∠=∠⎨⎪=⎩,∴ABC DEF △≌△()SAS ,故本选项正确; C.∵BC EF ∥,∴F BCA ∠=∠,根据AB DE =,BC EF =和F BCA ∠=∠不能推出ABC DEF △≌△,故本选项错误;D.根据AB DE =,BC EF =和A EDF ∠=∠不能推出ABC DEF △≌△,故本选项错误.【提示】全等三角形的判定方法SAS 是指有两边对应相等,且这两边的夹角相等的两三角形全等,已知AB DE =,BC EF =,其两边的夹角是B ∠和E ∠,只要求出B E ∠=∠即可.【考点】全等三角形的判定 5.【答案】D【解析】解:由题意可得,6100%30%n⨯=,解得,20()n =个. 故估计n 大约有20个.【提示】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解. 【考点】利用频率估计概率 6.【答案】C【解析】解:∵根据轴对称图形的定义得出四个图案都是轴对称图形,但是中心对称图形的图形只有C , ∴一副扑克牌的四种花色图案中,既是轴对称图形又是中心对称图形的图案是C ,故选C.【提示】根据轴对称图形的定义得出四个图案都是轴对称图形,但是中心对称图形的图形只有C ,即可得出答案.【考点】中心对称图形,轴对称图形 7.【答案】A【解析】解:∵由图象可知:一次函数11y k x b =+的图象1l 与22y k x b =+的图象2l 的交点P 的坐标是(2,3)-,∴方程组1122y k x b y k x b =+⎧⎨=+⎩的解是23x y =-⎧⎨=⎩,故选A.【提示】根据图象求出交点P 的坐标,根据点P 的坐标即可得出答案. 【考点】一次函数与二元一次方程(组) 8.【答案】B【解析】解:连接AF ,∵DF 是AB 的垂直平分线,∴AF BF =,∵FD AB ⊥, ∴30AFD BFD ∠=∠=︒,903060B FAB ∠=∠=︒-︒=︒,∵90ACB ∠=︒, ∴30BAC ∠=︒,603030FAC ∠=︒-︒=︒,∵1DE =,∴22AE DE ==, ∵30FAE AFD ∠=∠=︒,∴2EF AE ==,故选B.【提示】连接AF ,求出AF BF =,求出AFD ∠、B ∠,得出30BAC ∠=︒,求出AE ,求出30FAC AFE ∠=∠=︒,推出AE EF =,代入求出即可.【考点】线段垂直平分线的性质,角平分线的性质,含30度角的直角三角形 9.【答案】C【解析】解:由于选的是学生身高较为整齐的,故要选取标准差小的,应从九(1)和九(3)里面选,再根据平均身高约为1.6m 可知只有九(3)符合要求,故选:C.【提示】根据标准差的意义,标准差越小数据越稳定,故比较标准差后可以选出身高比较整齐的班级,再根据平均身高的要求即可作出判断. 【考点】方差,算术平均数,标准差 10.【答案】B【解析】解:由二次函数的图象可知,∵50x -≤≤,∴当2x =-时函数有最大值,6y =最大; 当5x =-时函数值最小,3y =-最小.【提示】直接根据二次函数的图象进行解答即可. 【考点】二次函数的最值 二、填空题 11.【答案】2x ≤ 【解析】移项得:2x ≤.【提示】利用不等式的基本性质,把不等号右边的x 移到左边,合并同类项即可求得原不等式的解集. 【考点】解一元一次不等式 12.【答案】AB CD ∥【解析】解:∵12∠=∠(已知),∴AB CD ∥(内错角相等,两直线平行). 【提示】直接根据平行线的判定定理进行解答即可. 【考点】平行线的判定 13.【答案】二【解析】解:∵正比例函数3y mx =-中,函数y 的值随x 值的增大而增大,∴30m ->,解得0m <, ∴点(,5)P m 在第二象限.【提示】先根据正比例函数3y mx =-中,函数y 的值随x 值的增大而增大判断出3m -的符号,求出m 的取值范围即可判断出P 点所在象限. 【考点】正比例函数的性质,点的坐标 14.【答案】90【解析】解:∵100,80,x ,90,90,∴分为3种情况: ①当众数是90时,∵这组数据的众数与平均数相等, ∴100809090905x ++++=,解得:90x =; ②当众数是80时,即80x =,∵这组数据的众数与平均数相等, ∴100809090805x ++++≠,∴此时不行; ③当众数是100时,即100x =,∵这组数据的众数与平均数相等, ∴1008090901005x ++++≠,∴此时不行; ∵当90x =时,数据为80,90,90,90,100,∴中位数是90,故答案为:90.【提示】分别求出当80x =、90x =、100x =时的x 值,再看看这组数据的众数与平均数是否相等,最后求出这组数据的中位数即可. 【考点】中位数,算术平均数,众数15.【答案】1802n -︒【解析】解:∵在1ABA △中,20B ∠=︒,1AB A B =, ∴1180180208022B BA A ︒-∠︒-︒∠===︒, ∵121A A AC =,1BA A ∠是12A A C △的外角,∴121804022BA A CA A ∠︒∠===︒; 同理可得,3220DA A ∠=︒,4310EA A ∠=︒,∴1802n n A -︒∠=.【提示】先根据等腰三角形的性质求出1BA A ∠的度数,再根据三角形外角的性质及等腰三角形的性质分别求出21CA A ∠,32DA A ∠及43EA A ∠的度数,找出规律即可得出n A ∠的度数. 【考点】等腰三角形的性质,三角形的外角性质 三、解答题 16.【答案】3-【解析】解:原式222222(2)b a b a b ab =++---2222222b a b a b ab --+-=+2ab =,当3a =-,12b =时,原式12(3)32=⨯-⨯=-. 【提示】先根据整式混合运算的法则把原式进行化简,再把3a =-,12b =代入进行计算即可.【考点】整式的混合运算—化简求值17.【答案】《标准》和《解读》的单价各是14元、39元【解析】解:设《标准》的单价为x 元,则《解读》的单价是(25)x +元,由题意得:378105325x x =+, 解得:14x =,经检验14x =是原方程的根,则25251439x +=+=. 答:《标准》和《解读》的单价各是14元、39元.【提示】首先设《标准》的单价为x 元,根据《解读》的单价比《标准》的单价多25元,得出《解读》的单价是(25)x +元,利用两种书数量相同得出等式方程求出即可 【考点】分式方程的应用 18.【答案】(1)560名 (2)84 (3)4.8万人【解析】解:(1)22440%560÷=名;(2)讲解题目的学生数为:5608416822456047684---=-=,补全统计图如图;(3)16816 4.8560⨯=万,答:在试卷讲评课中,“独立思考”的学生约有4.8万人. 【提示】(1)根据扇形统计图专注听讲的百分比与条形统计图中专注听讲的人数,列式计算即可; (2)用被抽查的学生人数减去主动质疑、独立思考、专注听讲的人数,求出讲解题目的人数,然后补全统计图即可;(3)用独立思考的学生的百分比乘以16万,进行计算即可得解. 【考点】条形统计图,用样本估计总体,扇形统计图 19.【答案】74m【解析】解:∵68ACB =︒,34D ∠=︒,ACB ∠是ACD △的外角, ∴683434CAD ACB D ∠=∠-∠=︒-︒=︒,∴CAD D ∠=∠,∴80AC CD ==,在Rt ABC △中,sin68800.92774()AB AC m =⨯︒≈⨯≈. 答:落差AB 为74m .【提示】先根据三角形外角的性质求出CAD ∠的度数,故可得出CAD D ∠=∠,所以80AC CD ==,在Rt ABC △中,由sin68AB AC =⨯︒即可得出结论.【考点】解直角三角形的应用-仰角俯角问题20.【答案】(1)共有9种可能,分别是(2,6),(2,7),(2,8),(4,6),(4,7),(4,8),(6,6),(6,7),(6,8)(2)小红要想在游戏中获胜,她应该选择规则1画树状图如下:共有9种可能,分别是(2,6),(2,7),(2,8),(4,6),(4,7),(4,8),(6,6),(6,7),(6,8);(2)从图表或树状图可知,至少有一次是“6”的情况有5种,所以,小红赢的概率是P(至少有一次是“6”)59=,小莉赢的概率是49,∵5499>,∴此规则小红获胜的概率大,卡片上的数字是球上数字的整数倍的有:(2,6)(2,8)(4,8)(6,6)共4种情况,所以,小红赢的概率是P(卡片上的数字是球上数字的整数倍)49=,小莉赢的概率是59,∵5499>,∴此规则小莉获胜的概率大,∴小红要想在游戏中获胜,她应该选择规则1.【提示】(1)利用列表法或者画出树状图,然后写出所有的可能情况即可;(2)分别求出至少有一次是“6”和“卡片上的数字是球上数字的整数倍”的概率,小红选择自己获胜的概率比小莉获胜的概率大的一种规则即可在游戏中获胜.【考点】列表法与树状图法21.【答案】(1)见解析(2)【解析】(1)证明:∵四边形ABCD是正方形,∴AB AD=,∵AEF△是等边三角形,∴AE AF=,在Rt ABE△和Rt ADF△中,∵AB ADAE AF=⎧⎨=⎩,∴Rt ABE Rt ADF △≌△,∴CE CF =(2)解:连接AC ,交EF 于G 点,∵AEF △是等边三角形,ECF △是等腰直角三角形,∴AC EF ⊥,在Rt AGE △中,1sin30212EG AE =︒=⨯=,∴EC =BE x =,则AB x =Rt ABE △中,222AB BE AE +=,即22(4x x ++=,解得x =,∴AB =ABCD 的周长为4AB =【提示】(1)根据正方形可知AB AD =,由等边三角形可知AE AF =,于是可以证明出ABE ADF △≌△,即可得出CE CF =;(2)连接AC ,交EF 与G 点,由三角形AEF 是等边三角形,三角形ECF 是等腰直角三角形,于是可知AC EF ⊥,求出1EG =,设BE x =,利用勾股定理求出x ,即可求出BC 的上,进而求出正方形的周长. 【考点】正方形的性质,全等三角形的判定与性质,等边三角形的性质,等腰直角三角形 22.【答案】(1)A (3,0)-,B (0,2) (2)12y x=【解析】解:(1)∵223y x =+,∴当0x =时,2y =,当0y =时,3x =-, ∴A 的坐标是(3,0)-,B 的坐标是(0,2).(2)∵A (3,0)-,∴3OA =,∵OB 是ACD △的中位线,∴3OA OD ==,即D 点、C 点的横坐标都是3,把3x =代入223y x =+得:224y =+=,即C 的坐标是(34),, ∵把C 的坐标代入k y x =得:3412k =⨯=,∴反比例函数(0)k y x x=>的关系式是12y x =.【提示】(1)分别把0x =和0y =代入一次函数的解析式,即可求出A ,B 的坐标;(2)根据三角形的中位线求出3OA OD ==,即可得出D ,C 的横坐标是3,代入一次函数的解析式,求出C 的坐标,代入反比例函数的解析式,求出k 即可.【考点】反比例函数与一次函数的交点问题,一次函数图象上点的坐标特征,待定系数法求反比例函数解析式,三角形中位线定理23.【答案】(1(2)1【解析】解:(1)连接AD ,∵AC 是⊙O 的切线,∴AB AC ⊥,∵45C ∠=︒,∴2AB AC ==,∴BC ==AB 是⊙O 的直径,∴90ADB ∠=︒,∴D 是BC 的中点,∴12BD BC =(2)连接OD ,∵O 是AB 的中点,D 是BC 的中点,∴OD 是ABC △的中位线,∴1OD =,∴OD A B ⊥,∴BD AD =,∴BD 与弦BD 组成的弓形的面积等于AD 与弦AD 组成的弓形的面积, ∴1111=212112222ABC ABD S S S AB AC AB OD -=-=⨯2⨯2-⨯⨯=-=△△阴影.【提示】(1)连接AD ,由于AC 是⊙O 的切线,所以AB AC ⊥,再根据45C ∠=︒可知2AB AC ==,由勾股定理可求出BC 的长,由于AB 是⊙O 的直径,所以90ADB ∠=︒,故D 是BC 的中点,故可求出BD 的长度;(2)连接OD ,因为O 是AB 的中点,D 是BC 的中点,所以OD 是ABC △的中位线,所以OD AB ⊥,故BD AD =,所以BD 与弦BD 组成的弓形的面积等于AD 与弦AD 组成的弓形的面积,所以=A B C A B DS S S -△△阴影,故可得出结论.【考点】切线的性质,圆周角定理,扇形面积的计算 24.【答案】(1)6 无数 (2)见解析 (3)见解析【解析】解:(1)根据“面积等分线”的定义知,对于三角形,一定是三角形的面积等分线的是三角形的中线所在的直线;对于平行四边形应该有无数条,只要过两条对角线的交点的直线都可以把平行四边形的面积分成2个相等的部分; 故答案是:6;无数;(2)如图①所示:连接2个矩形的对角线的交点的直线即把这个图形分成2个相等的部分.即OO '为这个图形的一条面积等分线;(3)如图②所示.能,过点B 作BE AC ∥交DC 的延长线于点E ,连接AE .∵BE AC ∥,∴ABC △和AEC △的公共边AC 上的高也相等,∴有ABC AEC S S =△△, ∴ACD ABC ACD AEC AED ABCD S S S S S S =+=+=△△△△△四边形;∵ACD ABC S S >△△,所以面积等分线必与CD 相交,取DE 中点F ,则直线AF 即为要求作的四边形ABCD 的面积等分线.【提示】(1)读懂面积等分线的定义,不难得出:一定是三角形的面积等分线的是三角形的中线所在的直线;平行四边形的一条对角线所在的直线就是平行四边形的一条面积等分线; (2)由(1)知,矩形的一条对角线所在的直线就是矩形的一条面积等分线;(3)能.过点B 作BE AC ∥交DC 的延长线于点E ,连接AE .根据“ABC △和AEC △的公共边AC 上的高也相等”推知ABC AEC S S =△△;然后由“割补法”可以求得ACD ABC ACD ABCD S S S S =+=+△△△四边形AEC AED S S =△△ 【考点】面积及等积变换,平行线之间的距离,三角形的面积,平行四边形的性质,矩形的性质25.【答案】(1)21122y x x -=-(2)125(3)存在,见解析【解析】解:(1)∵(4,0)A -在二次函数212y x x c =-+的图象上, ∴21(4)4)02(c --⨯-+=,解得12c =-,∴二次函数的关系式为21122y x x -=-; (2)∵22211112512(21)12(1)22222y x x x x x =--=-+--=--, ∴顶点M 的坐标为251,2⎛⎫- ⎪⎝⎭,∵(4,0)A -,对称轴为1x =,∴点B 的坐标为(6,0),∴6(4)6410AB =--=+=,∴12512510222ABM S =⨯⨯=△,∵顶点M 关于x 轴的对称点是M′, ∴125221252ABM AMBM S S '==⨯=△四边形; (3)存在抛物线232y x x x ---=,使得四边形AMBM′为正方形.理由如下:令0y =,则2102x x c +=-,设点AB 的坐标分别为12(0),0,()A x B x ,则121212x x -+==,12122cx x c ==,所以,AB =,点M 的纵坐标为:2121241421442c ac b c a ⨯⨯---==⨯, ∵顶点M 关于x 轴的对称点是M′,四边形AMBM′为正方形,2122c -⨯,整理得,24430c c +-=,解得112c =,232c =-,又抛物线与x 轴有两个交点,∴2214(1)402b ac c ∆=-=--⨯>,解得12c <,∴c 的值为32-,故,存在抛物线21322y x x -=-,使得四边形AMBM′为正方形.【提示】(1)把点A 的坐标代入二次函数解析式,计算求出c 的值,即可得解;(2)把二次函数解析式整理成顶点式解析式,根据二次函数的对称性求出点B 的坐标,从而求出AB 的长,再根据顶点坐标求出点M 到x 轴的距离,然后求出ABM △的面积,根据对称性可得2ABM AMBM S S '=△四边形,计算即可得解;(3)令0y =,得到关于x 的一元二次方程,利用根与系数的关系求出AB 的长度,根据抛物线解析式求出顶点M的纵坐标,然后根据正方形的对角线互相垂直平分且相等列式求解,如果关于c的方程有解,则存在,否则不存在.【考点】二次函数综合题11 / 11。
最新贵州省安顺市初中毕业生中考试卷
![最新贵州省安顺市初中毕业生中考试卷](https://img.taocdn.com/s3/m/461a1ba7b0717fd5360cdcef.png)
2012年贵州省安顺市初中毕业生学业招生考试(试卷三)数 学(本卷为数学科试题单,共27个题,满分150分.考试时间120分钟.)一、选择题(本大题共8小题,每小题3分,共24分)1.-2的倒数是 【 】A. 21-B. 21C. -2D. 22.2010年8月7日,甘南藏族自治州舟曲县发生特大山洪泥石流地质灾害,造成重大的经济损失。
就房屋财产损失而言,总面积超过4.7万平方米,经济损失高达212000000元人民币。
212000000用科学记数法应记为 【 】 A. 72.1210⨯ B. 82.1210⨯ C. 92.1210⨯ D. 90.21210⨯3. 下列运算正确的是 【 】 A .22a a a =⋅B .33()ab ab =C .632)(a a =D .5210a a a=÷4.如图,直线l 1∥l 2,则α为 【 】A .150°B .140°C .130°D .120° 5.二元一次方程组2x y x y +=⎧⎨-=⎩的解是 【 】 A .0,2.x y =⎧⎨=⎩ B .2,0.x y =⎧⎨=⎩ C .1,1.x y =⎧⎨=⎩ D .1,1.x y =-⎧⎨=-⎩6..如图,已知双曲线(0)ky k x=<经过直角三角形OAB 斜边 OA 的中点D ,且与直角边AB 相交于点C .若点A 的坐标为 (6-,4),则△AOC 的面积为 【 】A .12B .9C .6D .47.便民商店经营一种商品,在销售过程中,发现一周利润y (元)与每件销售价x (元)之间的关系满足22(20)1558y x =--+,由于某种原因,价格只能15≤x ≤22,那么一周可获得最大利润是 【 】 A .20. B. 1508 C. 1550 D. 1558第4题D C BA P 第6题8.如图,矩形ABCD 中,1AB =,2AD =,M 是CD 的中点,点P 在矩形的边上沿A B C M →→→运动,则APM △的面积y 与点P 经过的路程x 之间的函数关系用图象表示大致是下图中的 【 】A. B. C. D. 二、填空题 (本大题共8小题,每小题3分,共24分) 9.计算818-的结果是 。
2012年贵阳中考数学试题答案解析
![2012年贵阳中考数学试题答案解析](https://img.taocdn.com/s3/m/a5e10ba358fb770bf68a5533.png)
2012年贵州省贵阳市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)2.(3分)(2012•贵阳)在5月份的助残活动中,盲聋哑学校收到社会捐款约110000元,将3.(3分)(2012•贵阳)下列四个几何体中,主视图、左视图与俯视图是全等图形的几何体是4.(3分)(2012•贵阳)如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是()解:A、根据AB=DE,BC=EF和∠BCA=∠F不能推出△ABC≌△DEF,故本选项错误;B、∵在△ABC和△DEF中,∴△ABC≌△DEF(SAS),故本选项正确;C、∵BC∥EF,∴∠F=∠BCA,根据AB=DE,BC=EF和∠F=∠BCA不能推出△ABC≌△DEF,故本选项错误;D、根据AB=DE,BC=EF和∠A=∠EDF不能推出△ABC≌△DEF,故本选项错误.故选B.本题考查了对平行线的性质和全等三角形的判定的应用,注意:有两边对应相等,且这两5.(3分)(2012•贵阳)一个不透明的盒子里有n个除颜色外其它完全相同的小球,其中有6个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后在放回盒子,通过大量重复关系入手,列出方程求解.解:由题意可得,×100%=30%,解得,n=20(个).故估计n大约有20个.故选:D.此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概6.(3分)(2012•贵阳)下列图案是一副扑克牌的四种花色,其中既是轴对称图形又是中心对称.B.C.D.7.(3分)(2012•贵阳)如图,一次函数y=k1x+b1的图象l1与y=k2x+b2的图象l2相交于点P,则方程组的解是().B.C.D.解:∵由图象可知:一次函数y=k1x+b1的图象l1与y=k2x+b2的图象l2的交点P的坐标是(﹣2,3),∴方程组的解是,8.(3分)(2012•贵阳)如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交于BC的延长线于F,若∠F=30°,DE=1,则EF的长是().DAFE=30°,推出AE=EF,代入求出即可.解:连接AF,∵AB的垂直平分线DE交于BC的延长线于F,∴AF=BF,∵FD⊥AB,∴∠AFD=∠BFD=30°,∠B=∠FAB=90°﹣30°=60°,∵∠ACB=90°,∴∠BAC=30°,∠FAC=60°﹣30°=30°,∵DE=1,∴AE=2DE=2,∵∠FAE=∠AFD=30°,∴EF=AE=2,故选B.本题考查了含30度角的直角三角形,线段垂直平分线,角平分线的性质等知识点的应9.(3分)(2012•贵阳)为了参加我市组织的“我爱家乡美”系列活动,某校准备从九年级四个班中选出一个班的7名学生组建舞蹈队,要求各班选出的学生身高较为整齐,且平均身高约为)10.(3分)(2012•贵阳)已知二次函数y=ax2+bx+c(a<0)的图象如图所示,当﹣5≤x≤0时,下列说法正确的是()二、填空题(共5小题,每小题4分,满分20分)11.(4分)(2012•贵阳)不等式x﹣2≤0的解集是x≤2.12.(4分)(2012•贵阳)如图,已知∠1=∠2,则图中互相平行的线段是AB∥CD.13.(4分)(2012•贵阳)在正比例函数y=﹣3mx中,函数y的值随x值的增大而增大,则P (m,5)在第二象限.14.(4分)(2012•贵阳)张老师对同学们的打字能力进行测试,他将全班同学分成五组.经统计,这五个小组平均每分钟打字个数如下:100,80,x,90,90,已知这组数据的众数与平均数相等,那么这组数据的中位数是90.∴=90,∴≠80,∴≠100,15.(4分)(2012•贵阳)如图,在△ABA1中,∠B=20°,AB=A1B,在A1B上取一点C,延长AA1到A2,使得A1A2=A1C;在A2C上取一点D,延长A1A2到A3,使得A2A3=A2D;…,按此做法进行下去,∠A n的度数为.2A13A24A3n 解:∵在△ABA1中,∠B=20°,AB=A1B,∴∠BA1A===80°,∵A1A2=A1C,∠BA1A是△A1A2C的外角,∴∠CA2A1===40°;同理可得,∠DA3A2=20°,∠EA4A3=10°,∴∠A n=.故答案为:.三、解答题(共10小题,满分100分)16.(8分)(2012•贵阳)先化简,再求值:2b2+(a+b)(a﹣b)﹣(a﹣b)2,其中a=﹣3,b=.先根据整式混合运算的法则把原式进行化简,再把a=﹣3,b=代入进行计算即可.解:原式=2b2+a2﹣b2﹣(a2+b2﹣2ab)=2b2+a2﹣b2﹣a2﹣b2+2ab=2ab,当a=﹣3,b=时,原式=2×(﹣3)×=﹣3.本题考查的是整式的化简求出,熟知整式混合运算的法则是解答此题的关键.17.(8分)(2012•贵阳)为了全面提升中小学教师的综合素质,贵阳市将对教师的专业知识每三年进行一次考核.某校决定为全校数学教师每人购买一本义务教育《数学课程标准(2011年版)》(以下简称《标准》),同时每人配套购买一本《数学课程标准(2011年版)解读》(以下简称《解读》),其中《解读》的单价比《标准》的单价多25元.若学校购买《标准》用了378元,购买《解读》用了1053元,请问《标准》和《解读》的单价各是多少元?解:设《标准》的单价为x元,则《解读》的单价是(x+25)元,由题意得:=,解得:x=14,经检验x=14是原方程的根,则x+25=25+14=39.答:《标准》和《解读》的单价各是14元、39元.此题主要考查了分式方程的应用,根据已知表示出两种书的数量,进而得出等式方程是解18.(10分)(2012•贵阳)林城市对教师试卷讲评课中学生参与的深度和广度进行评价,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中学生的参与情况,绘制了如图两幅不完整的统计图,请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了560名学生;(2)请将条形统计图补充完整;(3)如果全市有16万名初中学生,那么在试卷讲评课中,“独立思考”的学生约有多少万人?(3)用独立思考的学生的百分比乘以16万,进行计算即可得解.解:(1)224÷40%=560名;(2)讲解题目的学生数为:560﹣84﹣168﹣224=560﹣476=84,补全统计图如图;(3)×16=4.8万,答:在试卷讲评课中,“独立思考”的学生约有4.8万人.本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到19.(10分)(2012•贵阳)小亮想知道亚洲最大的瀑布黄果树夏季洪峰汇成巨瀑时的落差.如图,他利用测角仪站在C处测得∠ACB=68°,再沿BC方向走80m到达D处,测得∠ADC=34°,求落差AB.(测角仪高度忽略不计,结果精确到1m)20.(10分)(2012•贵阳)在一个不透明的口袋里有分别标注2、4、6的3个小球(小球除数字不同外,其余都相同),另有3张背面完全一样、正面分别写有数字6、7、8的卡片.现从口袋中任意摸出一个小球,再从这3张背面朝上的卡片中任意摸出一张卡片.(1)请你用列表或画树状图的方法,表示出所有可能出现的结果;(2)小红和小莉做游戏,制定了两个游戏规则:规则1:若两次摸出的数字,至少有一次是“6”,小红赢;否则,小莉赢.规则2:若摸出的卡片上的数字是球上数字的整数倍时,小红赢;否则,小莉赢.小红要想在游戏中获胜,她会选择哪一种规则,并说明理由.择自己获胜的概率比小莉获胜的概率大的一种规则即可在游戏中获胜.解:(1)列表如下:画树状图如下:共有9种可能,分别是(2,6),(2,7),(2,8),(4,6),(4,7),(4,8),(6,6),(6,7),(6,8);(2)从图表或树状图可知,至少有一次是“6”的情况有5种,所以,小红赢的概率是P(至少有一次是“6”)=,小莉赢的概率是,∵>,∴此规则小红获胜的概率大,卡片上的数字是球上数字的整数倍的有:(2,6)(2,8)(4,8)(6,6)共4种情况,所以,小红赢的概率是P(卡片上的数字是球上数字的整数倍)=,小莉赢的概率是,∵>,∴此规则小莉获胜的概率大,∴小红要想在游戏中获胜,她应该选择规则1.本题考查了列表法或树状图法,用到的知识点为:概率=所求情况数与总情况数之比.21.(10分)(2012•贵阳)如图,在正方形ABCD中,等边三角形AEF的顶点E、F分别在BC 和CD上.(1)求证:CE=CF;(2)若等边三角形AEF的边长为2,求正方形ABCD的周长.上,进而求出正方形的周长.(1)证明:∵四边形ABCD是正方形,∴AB=AD,∵△AEF是等边三角形,∴AE=AF,在Rt△ABE和Rt△ADF中,∵,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF.又BC=DC,∴BC﹣BE=DC﹣DF,即EC=FC∴CE=CF,(2)解:连接AC,交EF于G点,∵△AEF是等边三角形,△ECF是等腰直角三角形,∴AC⊥EF,在Rt△AGE中,EG=sin30°AE=×2=1,∴EC=,设BE=x,则AB=x+,在Rt△ABE中,AB2+BE2=AE2,即(x+)2+x2=4,解得x=,∴AB=+=,∴正方形ABCD的周长为4AB=2(+).本题考查了正方形的性质,全等三角形的判定与性质,等边三角形的性质和等腰三角形的22.(10分)(2012•贵阳)已知一次函数y=x+2的图象分别与坐标轴相交于A、B两点(如图所示),与反比例函数y=(x>0)的图象相交于C点.(1)写出A、B两点的坐标;(2)作CD⊥x轴,垂足为D,如果OB是△ACD的中位线,求反比例函数y=(x>0)的关系式.的解析式,求出C的坐标,代入反比例函数的解析式,求出k即可.解:(1)∵y=x+2,∴当x=0时,y=2,当y=0时,x=﹣3,∴A的坐标是(﹣3,0),B的坐标是(0,2).(2)∵A(﹣3,0),∴OA=3,∵OB是△ACD的中位线,∴OA=OD=3,即D点、C点的横坐标都是3,把x=3代入y=x+2得:y=2+2=4,即C的坐标是(3,4),∵把C的坐标代入y=得:k=3×4=12,∴反比例函数y=(x>0)的关系式是y=.本题考查了一次函数与反比例函数的交点问题,用待定系数法求反比例函数的解析式,一23.(10分)(2012•贵阳)如图,在⊙O中,直径AB=2,CA切⊙O于A,BC交⊙O于D,若∠C=45°,则(1)BD的长是;(2)求阴影部分的面积.(1)连接AD,由于AC是⊙O的切线,所以AB⊥AC,再根据∠C=45°可知AB=AC=2,由勾股定理可求出BC的长,由于AB是⊙O的直径,所以∠ADB=90°,故D是BC的中点,故可求出BD的长度;(2)连接OD,因为O是AB的中点,D是BC的中点,所以OD是△ABC的中位线,所以OD⊥AB,故=,所以与弦BD组成的弓形的面积等于与弦AD组成的弓形的面积,所以S阴影=S△ABC﹣S△ABD,故可得出结理论.解:(1)连接AD,∵AC是⊙O的切线,∴AB⊥AC,∵∠C=45°,∴AB=AC=2,∴BC===2,∵AB是⊙O的直径,∴∠ADB=90°,∴D是BC的中点,∴BD=BC=;(2)连接OD,∵O是AB的中点,D是BC的中点,∴OD是△ABC的中位线,∴OD=1,∴OD⊥AB,∴=,∴与弦BD组成的弓形的面积等于与弦AD组成的弓形的面积,∴S阴影=S△ABC﹣S△ABD=AB•AC﹣AB•OD=×2×2﹣×2×1=2﹣1=1.本题考查的是切线的性质,涉及到三角形的面积、等腰三角形的性质及三角形中位线定24.(12分)(2012•贵阳)如果一条直线把一个平面图形的面积分成相等的两部分,我们把这条直线称为这个平面图形的一条面积等分线.(1)三角形有无数条面积等分线,平行四边形有无数条面积等分线;(2)如图①所示,在矩形中剪去一个小正方形,请画出这个图形的一条面积等分线;(3)如图②,四边形ABCD中,AB与CD不平行,AB≠CD,且S△ABC<S△ACD,过点A画出四边形ABCD的面积等分线,并写出理由.(2)如图①所示:连接2个矩形的对角线的交点的直线即把这个图形分成2个相等的部分.即OO′为这个图形的一条面积等分线;(3)如图②所示.能,过点B作BE∥AC交DC的延长线于点E,连接AE.∵BE∥AC,∴△ABC和△AEC的公共边AC上的高也相等,∴有S△ABC=S△AEC,∴S四边形ABCD=S△ACD+S△ABC=S△ACD+S△AEC=S△AED;∵S△ACD>S△ABC,所以面积等分线必与CD相交,取DE中点F,则直线AF即为要求作的四边形ABCD的面积等分线.本题考查了学生的阅读理解能力、运用作图工具的能力,以及运用三角形、等底等高性质25.(12分)(2012•贵阳)如图,二次函数y=x2﹣x+c的图象与x轴分别交于A、B两点,顶点M关于x轴的对称点是M′.(1)若A(﹣4,0),求二次函数的关系式;(2)在(1)的条件下,求四边形AMBM′的面积;(3)是否存在抛物线y=x2﹣x+c,使得四边形AMBM′为正方形?若存在,请求出此抛物线的函数关系式;若不存在,请说明理由.解:(1)∵A(﹣4,0)在二次函数y=x2﹣x+c的图象上,∴×(﹣4)2﹣(﹣4)+c=0,解得c=﹣12,∴二次函数的关系式为y=x2﹣x﹣12;(2)∵y=x2﹣x﹣12,=(x2﹣2x+1)﹣﹣12,=(x﹣1)2﹣,∴顶点M的坐标为(1,﹣),∵A(﹣4,0),对称轴为x=1,∴点B的坐标为(6,0),∴AB=6﹣(﹣4)=6+4=10,∴S△ABM=×10×=,∵顶点M关于x轴的对称点是M′,∴S四边形AMBM′=2S△ABM=2×=125;(3)存在抛物线y=x2﹣x﹣,使得四边形AMBM′为正方形.理由如下:令y=0,则x2﹣x+c=0,设点AB的坐标分别为A(x1,0)B(x2,0),则x1+x2=﹣=2,x1•x2==2c,所以,AB==,点M的纵坐标为:==,∵顶点M关于x轴的对称点是M′,四边形AMBM′为正方形,∴=2×,整理得,4c2+4c﹣3=0,解得c1=,c2=﹣,又抛物线与x轴有两个交点,∴△=b2﹣4ac=(﹣1)2﹣4×c>0,解得c<,∴c的值为﹣,故存在抛物线y=x2﹣x﹣,使得四边形AMBM′为正方形.本题综合考查了二次函数的问题,主要利用了待定系数法求函二次数解析式,二次函数的。
贵州安顺初中毕业考试数学试题—-解析版
![贵州安顺初中毕业考试数学试题—-解析版](https://img.taocdn.com/s3/m/53a0be357c1cfad6185fa70e.png)
贵州省安顺市中考数学试卷一、单项选择题(共30分,每小题3分)1、(2011•安顺)﹣4的倒数的相反数是()A、﹣4B、4 C 、﹣D 、2、(2011•安顺)已知地球距离月球表面约为383900千米,那么这个距离用科学记数法表示为(保留三个有效数字)()A、3.84×104千米B、3.84×105千米C、3.84×106千米D、38.4×104千米3、(2011•安顺)如图,己知AB∥CD,BE平分∠ABC,∠CDE=150°,则∠C 的度数是()A、100°B、110°C、120°D、150°4、(2011•安顺)我市某一周的最高气温统计如下表:21世纪教育网最高气温(℃)25 26 27 28天数 1 1 2 3则这组数据的中位数与众数分别是()A 、27,28 B、27.5,28 C、28,27 D、26.5,275、(2008•黄石)若不等式组有实数解,则实数m的取值范围是()A、m≤B、m<C、m>D、m≥6、(2011•安顺)如图是几个小立方块所搭的几何体俯视图,小正方形中的数字表示该位置上小立方块的个数,则这个几何体的主视图是()A、B、C、D、7、(2007•遵义)函数y=﹣中的自变量x的取值范围是()A、x≥0B、x<0且x≠1C、x<0D、x≥0且x≠18、(2006•浙江)在△ABC中,斜边AB=4,∠B=60°,将△ABC绕点B旋转60°,顶点C运动的路线长是()A、B、C、πD、9、(2011•安顺)正方形ABCD边长为1,E、F、G、H分别为边AB、BC、CD、DA上的点,且AE=BF=CG=DH.设小正方形EFGH的面积为y,AE=x.则y关于x的函数图象大致是()A、B、C、D、10、(2011•安顺)一只跳蚤在第一象限及x轴、y轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1)→(1,0)→…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是()A、(4,O)B、(5,0)C、(0,5)D、(5,5)二、填空题(共32分,每小题4分)11、(2011•安顺)分解因式:x3﹣9x=_________.12、(2011•安顺)小程对本班50名同学进行了“我最喜爱的运动项目”的调查,统计出了最喜爱跳绳、羽毛球、篮球、乒乓球、踢毽子等运动项目的人数.根据调查结果绘制了人数分布直方图.若将其转化为扇形统计图,那么最喜爱打篮球的人数所在扇形区域的圆心角的度数为_________°.13、(2011•安顺)已知圆锥的母线长为30,侧面展开后所得扇形的圆心角为120°,则该圆锥的底面半径为_________.14、如图,点E(0,4),O(0,0),C(5,0)在⊙A上,BE是⊙A上的一条弦.则tan∠OBE=_________.15、(2011•安顺)某市今年起调整居民用水价格,每立方米水费上涨20%,小方家去年12月份的水费是26元,而今年5月份的水费是50元.已知小方家今年5月份的用水量比去年12月份多8立方米,设去年居民用水价格为x元/立方米,则所列方程为_________.16、(2011•安顺)如图,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,按图中所示方法将△BCD沿BD折叠,使点C落在AB边的C′点,那么△ADC′的面积是_________.17、(2011•安顺)已知:如图,O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,则P点的坐标为_________.18、(2011•安顺)如图,在Rt△ABC中,∠C=90°,CA=CB=4,分别以A、B、C为圆心,以AC为半径画弧,三条弧与边AB所围成的阴影部分的面积是_________.三、解答题(本大题共9个小题,共88分)19、(2011•安顺)计算:.20、(2011•安顺)先化简,再求值:,其中a=2﹣.21、(2011•安顺)一次数学活动课上,老师带领学生去测一条南北流向的河宽,如图所示,某学生在河东岸点A处观测到河对岸水边有一点C,测得C在A北偏西31°的方向上,沿河岸向北前行40米到达B处,测得C在B北偏西45°的方向上,请你根据以上数据,求这条河的宽度.(参考数值:tan31°≈)22、(2011•安顺)有A、B两个黑布袋,A布袋中有两个完全相同的小球,分别标有数字1和2.B布袋中有三个完全相同的小球,分别标有数字﹣l,﹣2和﹣3.小强从A布袋中随机取出一个小球,记录其标有的数字为a,再从B布袋中随机取出一个小球,记录其标有的数字为b,这样就确定点Q的一个坐标为(a,b).(1)用列表或画树状图的方法写出点Q的所有可能坐标;(2)求点Q落在直线y=x﹣3上的概率.23、(2011•安顺)如图,已知反比例函数的图象经过第二象限内的点A(﹣1,m),AB⊥x轴于点B,△AOB的面积为2.若直线y=ax+b经过点A ,并且经过反比例函数的图象上另一点C(n,一2).(1)求直线y=ax+b的解析式;(2)设直线y=ax+b与x轴交于点M,求AM的长.24、(2011•安顺)某班到毕业时共结余班费1800元,班委会决定拿出不少于270元但不超过300元的资金为老师购买纪念品,其余资金用于在毕业晚会上给50位同学每人购买一件T恤或一本影集作为纪念品.已知每件T恤比每本影集贵9元,用200元恰好可以买到2件T恤和5本影集.(1)求每件T恤和每本影集的价格分别为多少元?(2)有几种购买T恤和影集的方案?25、(2011•安顺)如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE上,且AF=CE=AE.(1)说明四边形ACEF是平行四边形;(2)当∠B满足什么条件时,四边形ACEF是菱形,并说明理由.26、(2011•安顺)已知:如图,在△ABC中,BC=AC,以BC为直径的⊙O与边AB相交于点D,DE⊥AC,垂足为点E.(1)求证:点D是AB的中点;(2)判断DE与⊙O的位置关系,并证明你的结论;(3)若⊙O的直径为18,cosB=,求DE的长.27、(2011•菏泽)如图,抛物线y=x2+bx﹣2与x轴交于A,B两点,与y轴交于C点,且A(﹣1,0).(1)求抛物线的解析式及顶点D的坐标;(2)判断△ABC的形状,证明你的结论;(3)点M(m,0)是x轴上的一个动点,当MC+MD的值最小时,求m的值.答案与评分标准一、单项选择题(共30分,每小题3分)1、(2011•安顺)﹣4的倒数的相反数是()A、﹣4B、4 C 、﹣D 、考点:倒数;相反数。
贵州省安顺市中考数学试题及答案
![贵州省安顺市中考数学试题及答案](https://img.taocdn.com/s3/m/0c13055ee2bd960591c67777.png)
贵州省安顺市初中毕业生学业招生考试特别提示:1、本卷为数学科试题单,共27个题,满分150分.共4页.考试时间120分钟.2、考试采用闭卷形式,用笔在特制答题卡上答题,不能在本题单上作答.3、答题时请仔细阅读答题卡上的注意事项,并根据本题单各题的编号在答题卡上找到答题的对应位置,用规定的笔进行填涂和书写. 一、单项选择题(共30分,每小题3分)1. (2011贵州安顺,1,3分)-4的倒数的相反数是( )A .-4B .4C .-41D .41【答案】D 2.(2011贵州安顺,2,3分)已知地球距离月球表面约为383900千米,那么这个距离用科学记数法表示为(保留三个有效数字)( )A .3.84×104千米B .3.84×105千米C .3.84×106千米D .38.4×104千米 【答案】B 3.(2011贵州安顺,3,3分)如图,己知AB ∥CD ,BE 平分∠ABC ,∠ CDE =150°,则∠C 的度数是( )A .100°B .110°C .120°D .150°【答案】C 4.(2011贵州安顺,4,3分)我市某一周的最高气温统计如下表:最高气温(℃) 25 26 27 28 天 数1 123 则这组数据的中位数与众数分别是( ) A .27,28 B .27.5,28 C .28,27 D .26.5,27【答案】A5.(2011贵州安顺,5,3分)若不等式组⎩⎨⎧≥-≥-0035m x x 有实数解,则实数m 的取值范围是( )A .m ≤35B .m <35C .m >35D .m ≥35【答案】A6. (2011贵州安顺,6,3分)如图是几个小立方块所搭的几何体俯视图,小正方形中的数字表示该位置上小立方块的个数,则这个几何体的主视图是( )第3题图A .B .C .D .【答案】A7. (2011贵州安顺,7,3分)函数1--=x xy 中自变量x 的取值范围是( ) A .x ≥0 B .x <0且x ≠l C .x <0 D .x ≥0且x ≠l【答案】D8. (2011贵州安顺,8,3分)在Rt △ABC 中,斜边AB =4,∠B = 60°,将△ABC 绕点B 按顺时针方向旋转60°,顶点C 运动的路线长是( )A .3πB .32πC .πD .34π 【答案】B9. (2011贵州安顺,9,3分)正方形ABCD 边长为1,E 、F 、G 、H 分别为边AB 、BC 、CD 、DA 上的点,且AE =BF =CG =DH .设小正方形EFGH 的面积为y ,AE =x . 则y 关于x 的函数图象大致是( )A .B .C .D .【答案】C 10.(2011贵州安顺,10,3分)一只跳蚤在第一象限及x 轴、y 轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1) →(1,1) →(1,0)→…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是( ) A .(4,O) B.(5,0) C .(0,5) D .(5,5)【答案】B二、填空题(共32分,每小题4分) 11.(2011贵州安顺,11,4分)因式分解:x 3-9x = .【答案】x ( x -3 )( x +3 ) 12.(2011贵州安顺,12,4分)小程对本班50名同学进行了“我最喜爱的运动项目”的调查,统计出了最喜爱跳绳、羽毛球、篮球、乒乓球、踢毽子等运动项目的人数.根据调查结果绘制了人数分布直方图.若将其转化为扇形统计图,那么最喜爱打篮球的人数所在扇形区域的圆心角的度数为 .第10题图【答案】144º 13.(2011贵州安顺,13,4分)已知圆锥的母线长力30,侧面展开后所得扇形的圆心角为120°,则该圆锥的底面半径为 .【答案】10 14.(2011贵州安顺,14,4分)如图,点E (0,4),O (0,0),C (5,0)在⊙A 上,BE 是⊙A 上的一条弦,则tan ∠OBE = .【答案】541 5.(2011贵州安顺,14,4分)某市今年起调整居民用水价格,每立方米水费上涨20%,小方家去年12月份的水费是26元,而今年5月份的水费是50元.已知小方家今年5月份的用水量比去年12月份多8立方米,设去年居民用水价格为x 元/立方米,则所列方程为 .【答案】826%)201(50=-+xx16.(2011贵州安顺,16,4分)如图,在Rt △ABC 中,∠C =90°,BC =6cm ,AC =8cm ,按图中所示方法将△BCD 沿BD 折叠,使点C 落在AB 边的C ′点,那么△ADC ′的面积是 .【答案】6cm 2 17.(2011贵州安顺,17,4分)已知:如图,O 为坐标原点,四边形OABC 为矩形,A (10,0),C (0,4),点D 是OA 的中点,点P 在BC 上运动,当△ODP 是腰长为5的等腰三角形时,则P 点的坐标第16题图第14题图第12题图为 .【答案】P (3,4)或(2,4)或(8,4) 18.(2011贵州安顺,18,4分)如图,在Rt △ABC 中,∠C =90°,CA =CB =4,分别以A 、B 、C 为圆心,以21AC 为半径画弧,三条弧与边AB 所围成的阴影部分的面积是 .【答案】π28-三、解答题(本大题共9个小题,共88分)19.(2011贵州安顺,19,8分)计算:23860tan 211231-+-+︒-⎪⎭⎫ ⎝⎛---【答案】原式=3223232-+--+=2 .20.(2011贵州安顺,20,8分)先化简,再求值:⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-+-+--142244122a a a a a a a ,其中a =2-3 【答案】原式=a aa a a a a -÷⎥⎦⎤⎢⎣⎡-+---4)2(2)2(12=aa a a a a a a -⋅-+---4)2()2)(2()1(2=2)2(1-a当a =32-时,原式=31.21.(2011贵州安顺,21,8分)一次数学活动课上,老师带领学生去测一条南北流向的河宽,如图所示,某学生在河东岸点A 处观测到河对岸水边有一点C ,测得C 在A 北偏西31°的方向上,沿河岸第18题图第17题图向北前行40米到达B 处,测得C 在B 北偏西45°的方向上,请你根据以上数据,求这条河的宽度.(参考数值:tan 31°≈53)【答案】过点C 作CD ⊥AB 于D ,由题意31=∠DAC ,45=∠DBC ,设CD = BD = x 米,则AD =AB +BD =(40+x )米,在Rt ACD ∆中,tan DAC ∠=AD CD ,则5340=+x x ,解得x = 60(米).22.(2011贵州安顺,22,10分)有A 、B 两个黑布袋,A 布袋中有两个完全相同的小球,分别标有数字1和2.B 布袋中有三个完全相同的小球,分别标有数字-l ,-2和-3.小强从A 布袋中随机取出一个小球,记录其标有的数字为a ,再从B 布袋中随机取出一个小球,记录其标有的数字为b ,这样就确定点Q 的一个坐标为(a ,b ).⑴用列表或画树状图的方法写出点Q 的所有可能坐标; ⑵求点Q 落在直线y =x -3上的概率.【答案】(1)列表或画树状图略,点Q 的坐标有(1,-1),(1,-2),(1,-3),(2,-1),(2,-2),(2,-3);(2)“点Q 落在直线y = x -3上”记为事件,所以3162)(==A P ,即点Q 落在直线y = x -3上的概率为31.23.(2011贵州安顺,23,10分)如图,已知反比例函数xky =的图像经过第二象限内的点A (-1,m ),AB ⊥x 轴于点B ,△AOB 的面积为2.若直线y =ax +b 经过点A ,并且经过反比例函数xky =的图A 第21题图D第21题图象上另一点C (n ,一2).⑴求直线y =ax +b 的解析式;⑵设直线y =ax +b 与x 轴交于点M ,求AM 的长.【答案】(1)∵点A (-1,m )在第二象限内,∴AB = m ,OB = 1,∴221=⋅=∆BO AB S ABO 即:2121=⨯m ,解得4=m ,∴A (-1,4), ∵点A (-1,4),在反比例函数x k y =的图像上,∴4 =1-k,解得4-=k ,∵反比例函数为x y 4-=,又∵反比例函数xy 4-=的图像经过C (n ,2-)∴n42-=-,解得2=n ,∴C (2,-2),∵直线b ax y +=过点A (-1,4),C (2,-2)∴⎩⎨⎧+=-+-=b a b a 224 解方程组得 ⎩⎨⎧=-=22b a∴直线b ax y +=的解析式为22+-=x y ;(2)当y = 0时,即022=+-x 解得1=x ,即点M (1,0)在ABM Rt ∆中,∵AB = 4,BM = BO +OM = 1+1 = 2,由勾股定理得AM =52.24.(2011贵州安顺,24,10分)某班到毕业时共结余班费1800元,班委会决定拿出不少于270元但不超过300元的资金为老师购买纪念品,其余资金用于在毕业晚会上给50位同学每人购买一件T 恤或一本影集作为纪念品.已知每件T 恤比每本影集贵9元,用200元恰好可以买到2件T 恤和5本影集.⑴求每件T 恤和每本影集的价格分别为多少元? ⑵有几种购买T 恤和影集的方案? 【答案】(1)设T 恤和影集的价格分别为元和元.则x y ⎩⎨⎧=+=-200529y x y x 第23题图解得答:T 恤和影集的价格分别为35元和26元.(2)设购买T 恤件,则购买影集 (50-) 本,则解得,∵为正整数,∴= 23,24,25, 即有三种方案.第一种方案:购T 恤23件,影集27本;第二种方案:购T 恤24件,影集26本;第三种方案:购T 恤25件,影集25本. 25.(2011贵州安顺,25,10分)如图,在△ABC 中,∠ACB =90°,BC 的垂直平分线DE 交BC 于D ,交AB 于E ,F 在DE 上,且AF =CE =AE .⑴说明四边形ACEF 是平行四边形;⑵当∠B 满足什么条件时,四边形ACEF 是菱形,并说明理由.【答案】(1)证明:由题意知∠FDC =∠DCA = 90°.∴EF ∥CA ∴∠AEF =∠EAC ∵AF = CE = AE ∴∠F =∠AEF =∠EAC =∠ECA 又∵AE = EA ∴△AEC ≌△EAF ,∴EF = CA ,∴四边形ACEF 是平行四边形 . (2)当∠B =30°时,四边形ACEF 是菱形 .理由是:∵∠B =30°,∠ACB =90°,∴AC =AB 21,∵DE 垂直平分BC ,∴ BE =CE又∵AE =CE ,∴CE =AB 21,∴AC =CE ,∴四边形ACEF 是菱形.26.(2011贵州安顺,26,12分)已知:如图,在△ABC 中,BC =AC ,以BC 为直径的⊙O 与边AB 相交于点D ,DE ⊥AC ,垂足为点E .⑴求证:点D 是AB 的中点;⑵判断DE 与⊙O 的位置关系,并证明你的结论;⑶若⊙O 的直径为18,cosB =31,求DE 的长.⎩⎨⎧==2635y x t t ()15305026351500≤-+≤t t 92309200≤≤t t t 第25题图【答案】(1)证明:连接CD ,则CD AB ⊥, 又∵AC = BC , CD = CD , ∴ACD Rt ∆≌BCD Rt ∆∴AD = BD , 即点D 是AB 的中点.(2)DE 是⊙O 的切线 .理由是:连接OD , 则DO 是△ABC 的中位线,∴DO ∥AC , 又∵DE AC ⊥; ∴DE DO ⊥ 即DE 是⊙O 的切线;(3)∵AC = BC , ∴∠B =∠A , ∴cos ∠B = cos ∠A =31, ∵ cos ∠B =31=BC BD , BC = 18,∴BD = 6 , ∴AD = 6 , ∵ cos ∠A =31=AD AE , ∴AE = 2,在AED Rt ∆中,DE =2422=-AE AD .27.(2011贵州安顺,27,12分)如图,抛物线y =21x 2+bx -2与x 轴交于A 、B 两点,与y 轴交于C 点,且A (一1,0).⑴求抛物线的解析式及顶点D 的坐标; ⑵判断△ABC 的形状,证明你的结论;⑶点M (m ,0)是x 轴上的一个动点,当CM +DM 的值最小时,求m 的值.第26题图第26题图【答案】(1)∵点A (-1,0)在抛物线y =21x 2 + bx -2上,∴21× (-1 )2 + b × (-1) –2 = 0,解得b =23-∴抛物线的解析式为y =21x 2-23x -2. y =21x 2-23x -2 =21 ( x 2 -3x - 4 ) =21(x -23)2-825,∴顶点D 的坐标为 (23, -825).(2)当x = 0时y = -2, ∴C (0,-2),OC = 2。
2012年贵州省黔西南州中考数学试题(含答案)
![2012年贵州省黔西南州中考数学试题(含答案)](https://img.taocdn.com/s3/m/7aa5d593866fb84ae55c8d51.png)
x+3(10-x)=14,解得,x=8。
则 10-x=10-8=2。∴应生产 A 种产品 8 件,B 种产品 2 件。
(2)设应生产 A 种产品 x 件,则生产 B 种产品有 10-x 件,根据题意,得
2x + 5(10 − x) 44
x
+
3(10
−
x
)
>14
,解得:2≤x<8。
∴可以采用的方案有 6 种方案:生产 A 产品 2 件,B 产品 8 件; A 产品 3 件, B 产
五、(本大题 12 分) 23、近几年兴义市加大中职教育投入力度,取得了良好的社会效果。某校随机调查了九年级 a 名学生升学 意向,并根据调查结果绘制如图的两幅不完整的统计图。
请你根据图中信息解答下列问题:
(1)a=
;
(2)扇形统计图中,“职高”对应的扇 形的圆心角 α=
;
(3)请补全条形 统计图;[来源:学科网ZXXK] (4)若该校九年级有学生 900 名,估计该校共有多少名毕业生的升学意向是职高。
5、袋子了有 3 个红 球和 2 个蓝球,它们只有颜色上的区别,从袋子中随机地取出一个球 ,取出红球的概
率是【 】
(A) 2 5
(B) 3 5
(C) 2 3
(D) 3 2
【答案】B。
6、如图,⊙O 是△ABC 的外接圆,已知∠ABO=40°,则∠ACB 的大小为【 】
(A)40° (B)30° 【答案】C。
16、已知 −2xm−1y3 和 1 xn ym+n 是同类项,则 (n − m)2012 =
2
▲。
【答案】1。
17、如图,在梯形 ABCD 中,AD//BC,对角线 AC、BD 相交于点 O,若 AD=1,BC=3,△AOD 的面积
中考数学试题及答案安顺
![中考数学试题及答案安顺](https://img.taocdn.com/s3/m/e1b9310aef06eff9aef8941ea76e58fafab045ed.png)
中考数学试题及答案安顺一、选择题1. 已知两个相似三角形的对应角分别为60°和40°,则这两个三角形的相应边长比为()A. √3 : 1B. 3 : 4C. 4 : 3D.1 : √3答案:B2. 若a:b=3:4,且a+b=35,则a的值为()A. 12B. 15C. 18D. 20答案:A3. 若函数y=2x-1,求当x=3时,y的取值为()A. 5B. 2C. 6D. 7答案:D4. 某商品原价100元,现在打8折出售,买家还可以使用一张优惠券,优惠券的折扣为5折。
则买家最终需要支付的金额为()A. 40元B. 44元C. 48元D. 52元5. 《蓝天在哪里》是一个科普类图书,售价为15元每本。
学校购买该书时,享受的折扣为原价的20%。
如果学校购买了40本《蓝天在哪里》,那么学校要支付的费用为()A. 240元B. 260元C. 280元D. 300元答案:B二、填空题6. 2002年的中考历史科目满分为100分,小明得了80分,他的得分是全市平均得分的()倍。
答案:0.87. 用5个相同的正方体拼出下面的图形,至少需要加载的小正方体的个数为()。
答案:138. [(-2)²+6]×(1-2×4)+9=( )答案:219. 已知直角三角形的两个直角边长分别为3cm和5cm,求斜边的长。
答案:√34cm10. 已知函数y=kx-2,当x=3时,y=-1。
求k的值。
三、解答题11. 现有一边长为8cm的正方形ABCD,通过连接AC和BD两条对角线,求正方形的对角线长。
解:由勾股定理得:对角线长d=√((8cm)²+(8cm)²)=√(64cm²+64cm²)=√(128cm²)=8√2cm。
答案:8√2cm12. 一根杆长10m,分别在距离地面4m和6m处分成两段,用绳子把杆的两端绑在地面上,求绳子的最短长度。
2012贵州贵阳卷中考数学试卷+答案
![2012贵州贵阳卷中考数学试卷+答案](https://img.taocdn.com/s3/m/07de8a947c1cfad6195fa79d.png)
2013年贵阳市初中毕业生学业考试试题卷数学试题(含答案全解全析)(满分:150分时间:120分钟)第Ⅰ卷(选择题,共30分)一、选择题(以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,每小题3分,共30分)1.3的倒数是()A.-3B.3C.-D.2.2013年5月在贵阳召开的“第十五届中国科协年会”中,贵州省签下总金额达790亿元的项目,790亿元用科学记数法表示为()A.79×10亿元B.7.9×102亿元C.7.9×103亿元D.0.79×103亿元3.如图,将直线l1沿着AB的方向平移得到直线l2,若∠1=50°,则∠2的度数是()A.40°B.50°C.90°D.130°4.在端午佳节到来之前,儿童福利院对全体小朋友爱吃哪几种粽子作调查,以决定最终买哪种粽子.下面的调查数据中最值得关注的是()A.方差B.平均数C.中位数D.众数5.一个几何体的三视图如图所示,则这个几何体摆放的位置是()6.某校学生小亮每天骑自行车上学时都要经过一个十字路口,该十字路口有红、黄、绿三色交通信号灯,他在路口遇到红灯的概率为,遇到绿灯的概率为,那么他遇到黄灯的概率为()A. B. C. D.7.如图,P是∠α的边OA上一点,点P的坐标为(12,5),则tanα等于()A. B. C. D.8.如图,M是Rt△ABC的斜边BC上异于B、C的一定点,过M点作直线截△ABC,使截得的三角形与△ABC相似,这样的直线共有()A.1条B.2条C.3条D.4条9.如图,在直径为AB的半圆O上有一动点P从A点出发,按顺时针方向绕半圆匀速运动到B 点,然后再以相同的速度沿着直径回到A点停止,线段OP的长度d与运动时间t之间的函数关系用图象描述大致是()10.在矩形ABCD中,AB=6,BC=4,有一个半径为1的硬币与边AB、AD相切,硬币从如图所示的位置开始,在矩形内沿着边AB、BC、CD、DA滚动到开始的位置为止,硬币自身滚动的圈数大约是()A.1圈B.2圈C.3圈D.4圈第Ⅱ卷(非选择题,共120分)二、填空题(每小题4分,共20分)11.方程3x+1=7的解是.12.在一个不透明的袋子中有10个除颜色外均相同的小球,通过多次摸球试验后,发现摸到白球的频率约为40%,估计袋中白球有个.13.如图,AD、AC分别是☉O的直径和弦,∠CAD=30°,B是AC上一点,BO⊥AD,垂足为O, BO=5cm,则CD等于cm.14.直线y=ax+b(a>0)与双曲线y=相交于A(x1,y1),B(x2,y2)两点,则x1y1+x2y2的值为.15.已知二次函数y=x2+2mx+2,当x>2时,y的值随x值的增大而增大,则实数m的取值范围是.三、解答题16.(本题满分6分)先化简,再求值:-÷-,其中x=1.17.(本题满分10分)现有两组相同的扑克牌,每组两张,两张牌的牌面数字分别是2和3.从每组牌中各随机摸出一张牌,称为一次试验.(1)小红与小明用一次试验做游戏,如果摸到的牌面数字相同小红获胜,否则小明获胜.请用列表法或画树状图的方法说明这个游戏是否公平?(5分)(2)小丽认为:“在一次试验中,两张牌的牌面数字和可能为4,5,6三种情况,所以出现‘和为4’的概率是”,她的这种看法是否正确?说明理由.(5分)18.(本题满分10分)在一次综合实践活动中,小明要测某地一座古塔AE的高度.如图,已知塔基AB的高为4m,他在C处测得塔基顶端B的仰角为30°,然后沿AC方向走5m到达D点,又测得塔顶E的仰角为50°.(人的身高忽略不计)(1)求A、C的距离;(结果保留根号)(5分)(2)求塔高AE.(结果保留整数)(5分)19.(本题满分10分)贵阳市“有效学习儒家文化”课题于今年4月结题,在这次结题活动中,甲、乙两校师生共150人进行了汇报演出.小林将甲、乙两校参加各项演出的人数绘制成如下不完整的统计图表,根据提供的信息解答下列问题:(1)m=,n=;(4分)(2)计算乙校的扇形统计图中“话剧”的圆心角度数;(3分)(3)哪个学校参加“话剧”的师生人数多?说明理由.(3分)甲校参加汇报演出的师生人数统计表甲、乙两校参加汇报演出的师生人数统计图已知:如图,在菱形ABCD中,F是BC上的任意一点,连结AF交对角线BD于点E,连结EC.(1)求证:AE=EC;(5分)(2)当∠ABC=60°,∠CEF=60°时,点F在线段BC上的什么位置?说明理由.(5分)21.(本题满分10分)2010年底某市汽车拥有量为100万辆,而截止到2012年底,该市的汽车拥有量已达到144万辆.(1)求2010年底至2012年底该市汽车拥有量的年平均增长率;(5分)(2)该市交通部门为控制汽车拥有量的增长速度,要求到2013年底全市汽车拥有量不超过...155.52万辆.预计2013年报废的汽车数量是2012年底汽车拥有量的10%,求2012年底至2013年底该市汽车拥有量的年增长率要控制在什么范围才能达到要求.(5分)已知:如图,AB是☉O的弦,☉O的半径为10,OE、OF分别交AB于点E、F,OF的延长线交☉O于点D,且AE=BF,∠EOF=60°.(1)求证:△OEF是等边三角形;(5分)(2)当AE=OE时,求阴影部分的面积.(结果保留根号和π)(5分)23.(本题满分10分)已知:直线y=ax+b过抛物线y=-x2-2x+3的顶点P,如图所示.(1)顶点P的坐标是;(3分)(2)若直线y=ax+b经过另一点A(0,11),求出该直线的表达式;(3分)(3)在(2)的条件下,若有一条直线y=mx+n与直线y=ax+b关于x轴成轴对称,求直线y=mx+n 与抛物线y=-x2-2x+3的交点坐标.(4分)在△ABC中,BC=a,AC=b,AB=c,设c为最长边.当a2+b2=c2时,△ABC是直角三角形;当a2+b2≠c2时,利用代数式a2+b2和c2的大小关系,探究△ABC的形状(按角分类).(1)当△ABC三边长分别为6,8,9时,△ABC为三角形;当△ABC三边长分别为6,8,11时,△ABC为三角形;(4分)(2)猜想:当a2+b2c2时,△ABC为锐角三角形;当a2+b2c2时,△ABC为钝角三角形;(4分)(3)判断当a=2,b=4时,△ABC的形状,并求出对应的c的取值范围.(4分)25.(本题满分12分)如图,在平面直角坐标系中,有一条直线l:y=-x+4与x轴、y轴分别交于点M、N,一个高为3的等边三角形ABC,边BC在x轴上,将此三角形沿着x轴的正方向平移.(1)在平移过程中,得到△A1B1C1,此时顶点A1恰好落在直线l上,写出A1点的坐标;(4分)(2)继续向右平移,得到△A2B2C2,此时它的外心P恰好落在直线l上,求P点的坐标;(4分)(3)在直线l上是否存在这样的点,与(2)中的A2、B2、C2任意两点能同时构成三个等腰三角形.如果存在,求出点的坐标;如果不存在,说明理由.(4分)答案全解全析:1.D 因为3×=1,故选D.2.B 将790写成a×10n的形式,其中a=7.9,n是比整数位数少1的数,n=3-1=2,故790亿元=7.9×102亿元,故选B.3.B 因为l1∥l2,所以∠2=∠1=50°,故选B.4.D 众数是一组数据中出现次数最多的数,故选D.5.A 根据三视图的位置特征及画图时“看不见的用虚线”可知A选项几何体摆放位置符合,故选A.6.D 1--=,故选D.7.C 作PB⊥x轴于点B,在Rt△POB中,OB=12,PB=5,所以tan α==.故选C.8.C 由三角形相似的条件可知,在Rt△ABC中,分别过点M作AC、AB、BC的垂线构造出的三角形与△ABC相似,故选C.9.A 当点P在上做匀速运动时,d=圆的半径;当点P在线段OB上运动时,d逐渐减小;当点P在线段AO上运动时,d逐渐增大;当点P与点O重合时,d=0,故选A.10.B 由题意得硬币的圆心是在矩形ABCD内与各边相距均为1的矩形EFGH上运动,易知HE=2,EF=4,矩形EFGH的周长为12,因为硬币沿直线滚动一圈,圆心移动的距离等于矩形EFGH的周长,所以硬币自身滚动的圈数==≈2,故选B..11.答案x=2解析∵3x+1=7,∴3x=6,∴x=2.12.答案 4解析设白球有x个,则×100%=40%,得x=4.13.答案5解析在☉O中,AD为直径,∴∠C=90°.∵BO⊥AD,∠A=30°,∴AO==°=5(cm), ∴AD=2AO=10(cm),∴CD=AD=5(cm).14.答案 6解析因为A、B两点在双曲线y=上,故x1y1=3,x2y2=3,所以x1y1+x2y2=6.15.答案m≥-2解析由a=1,知抛物线开口向上,在对称轴右侧y随x的增大而增大.抛物线对称轴为x=-=-m,由题意知,,-有解集x>2,∴-m≤2,即m≥-2.评析本题考查二次函数图象的性质,不等式组的解集.根据图象确定不等式组解集是本题的关键,属较难题.16.解析原式=-×-(3分)=.(5分)当x=1时,原式=2.(6分)17.解析(1)列表正确或画树状图正确给2分.P(小红获胜)=P(数字相同)=,(3分)P(小明获胜)=P(数字不同)=.(4分)∵P 小红获胜)=P(小明获胜),∴这个游戏公平.(5分)(2)不正确.(6分)因为“和为4”只出现了一次,由列表或树状图可知和的情况总共有4种, 故“和为4”的概率应为.(10分)18.解析(1)在Rt△ABC中,∠ACB=30°,AB=4 m,∵tan∠ACB=,(2分)=4(m).∴AC==°答:A、C的距离为4 m.(5分)(2)在Rt△ADE中,∠ADE=50°,AD= 5+4)m,(6分)∵tan∠ADE=,(8分)∴AE=AD tan∠ADE= 5+4 ×tan 50°≈14 m .答:塔高AE约14 m.(10分)19.解析(1)25;38%.(4分)2 360°× 1-60%-10% =108°,∴圆心角为108°. 7分)(3)(150-50 ×30%=30 人).(9分)∵30>25,∴乙校参加“话剧”的师生人数多.(10分)20.解析(1)证明:连结AC.(1分)∵BD是菱形ABCD的对角线,∴BD所在直线垂直平分AC,(3分)∴AE=EC. 5分)(2)点F是线段BC的中点.(6分)理由:∵菱形ABCD中,AB=BC,又∵∠ABC=60°,∴△ABC是等边三角形,∠BAC=60°. 7分)∵AE=EC,∠CEF=60°,∴∠EAC=30°, 8分)∴AF是△ABC的角平分线.(9分)∵AF交BC于点F,∴AF是△ABC的BC边上的中线,∴点F是线段BC的中点.(10分)21.解析(1)设2010年底至2012年底该市汽车拥有量的年平均增长率为x.(1分) 由题意得100(1+x)2=144,(3分)解得x1=0.2=20%,x2=-2.2(不合题意,舍去).答:2010年底至2012年底该市汽车拥有量的年平均增长率为20%.(5分)(2)设2012年底至2013年底该市汽车拥有量的年增长率为y.(6分)由题意得144(1+y)-144×10%≤155.52, 8分)解得y≤0.18. 9分)答:2012年底至2013年底该市汽车拥有量的年增长率不超过18%才能达到要求.(10分) 22.解析(1)证明:作OC⊥AB于点C,(1分)∴AC=BC. 2分)∵AE=BF,∴EC=FC. 3分)∵OC⊥EF,∴OE=OF. 4分)∵∠EOF=60°,∴△OEF是等边三角形.(5分)(2)在等边三角形OEF中,∠OEF=∠EOF=60°,又AE=OE,∴∠A=∠AOE=30°,∴∠AOF=90°. 6分)∵AO=10,∴OF=,(7分)S△AOF=××10=,(8分)S扇形AOD=×102=25π,(9分)∴S阴影=S扇形AOD-S△AOF=25π-.(10分)评析本题考查等边三角形的判定,直角三角形的性质、扇形面积公式,属中等难度题.23.解析(1)P(-1,4).(3分)(2)将点P(-1,4),A(0,11)代入y=ax+b得-,.(4分)解得,.(5分)∴这条直线的表达式为y=7x+11.(6分)3 ∵直线y=mx+n与直线y=7x+11关于x轴成轴对称,∴y=mx+n过点P'(-1,-4),A'(0,-11),(7分)∴--,-,解得-,-,∴y=-7x-11.(8分)令-7x-11=-x2-2x+3,(9分)解得x1=7,x2=-2,此时y1=-60,y2=3,∴直线y=mx+n与抛物线y=-x2-2x+3的交点坐标为(7,-60),(-2,3).(10分)评析本题考查二次函数、一次函数的相关知识,待定系数法求一次函数解析式,并通过解方程(组)考查学生的计算能力.24.解析(1)锐角;钝角.(4分)(2)>;<.(8分)3 ∵c为最长边,∴4≤c<6. 9分)①a2+b2>c2,即c2<20,0<c<2,∴当4≤c<2时,这个三角形是锐角三角形.(10分)②a2+b2=c2,即c2=20,c=2,∴当c=2时,这个三角形是直角三角形.(11分)③a2+b2<c2,即c2>20,c>2,∴当2<c<6时,这个三角形是钝角三角形.(12分)评析本题是以三角形知识为背景的类比探究型题目.考查三角形的三边关系、勾股定理、三角形的分类,属中等难度题.25.解析(1)A1(,3).(4分)(2)设P(x,y),连结A2P并延长交x轴于点H,连结B2P.(5分)在等边三角形A2B2C2中,高A2H=3,∴A2B2=2,HB2=.(6分)∵点P是等边三角形A2B2C2的外心,∴∠PB2H=30°,∴PH=1,即y=1.(7分)将y=1代入y=-x+4,解得x=3,∴P 3,1).(8分)3 ∵点P是△A2B2C2的外心,∴PA2=PB2,PB2=PC2,PC2=PA2,△PA2B2、△PB2C2、△PA2C2是等腰三角形,∴点P满足条件,由(2)得P(3,1).(9分)由(2)得,C2(4,0),点C2满足直线l:y=-x+4的关系式,∴点C2与点M重合,∴∠PMB2=30°.设点Q满足条件,△QA2B2、△B2QC2、△A2QC2能构成等腰三角形,此时QA2=QB2,B2Q=B2C2,A2Q=A2C2,作QD⊥x轴于D点,连结QB2.∵QB2=2,∠QB2D=2∠PMB2=60°,∴QD=3,∴Q ,3).(10分)设点S满足条件,△SA2B2、△C2B2S、△C2A2S能构成等腰三角形,此时SA2=SB2,C2B2=C2S,C2A2=C2S,作SF⊥x轴于F点.∵SC2=2,∠SC2B2=∠PMB2=30°,∴SF=,∴S 4-3,).(11分)设点R满足条件,△RA2B2、△C2B2R、△C2A2R能构成等腰三角形,此时RA2=RB2,C2B2=C2R,C2A2=C2R.作RE⊥x轴于E点.∵RC2=2,∠RC2E=∠PMB2=30°,∴ER=,∴R 3+4,-).答:存在四个点,分别是P(3,1),Q(,3),S(4-3,),R(3+4,-).(12分)评析本题考查等边三角形、直角三角形以及与一次函数有关的计算,熟练解含30°角的直角三角形是关键,合理分类是本题的难点.本题综合性强,属难题.。
【初中数学】贵州省各市2012年中考数学试题分类解析汇编(实数等12份) 通用10
![【初中数学】贵州省各市2012年中考数学试题分类解析汇编(实数等12份) 通用10](https://img.taocdn.com/s3/m/013ca21267ec102de2bd898d.png)
贵州各市2012年中考数学试题分类解析汇编专题3:方程(组)和不等式(组)一、选择题1. (2012贵州安顺3分)已知1是关于x 的一元二次方程(m ﹣1)x 2+x+1=0的一个根,则m 的值是【 】A . 1B . ﹣1 C. 0 D . 无法确定 【答案】B 。
【考点】一元二次方程的解,一元二次方程的定义。
【分析】根据题意得:(m ﹣1)+1+1=0,解得:m=﹣1。
故选B 。
2. (2012贵州毕节3分)分式方程2124=x 1x+1x 1---的解是【 】 A .x=0 B .x=-1 C .x=±1 D .无解 【答案】D 。
【考点】解分式方程。
【分析】先去分母,求出整式方程的解再把所得整式方程的解代入公分母进行检验即可:去分母得,(x+1)-2(x-1)=4,解得x=-1,把x=-1代入公分母得,x 2-1=1-1=0,故x=-1是原方程的增根,此方程无解。
故选D 。
3. (2012贵州六盘水3分)已知不等式x ﹣1≥0,此不等式的解集在数轴上表示为【 】A .B .C .D .【答案】C 。
【考点】解一元一次不等式,在数轴上表示不等式的解集。
【分析】根据不等式的性质求出不等式的解集,再在数轴上表示出不等式的解集即可:∵x ﹣1≥0,∴x≥1。
不等式的解集在数轴上表示的方法:>,≥向右画;<,≤向左画,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示。
因此不等式x≥1即x ﹣1≥0在数轴上表示正确的是C 。
故选C 。
4. (2012贵州黔南4分)把不等式x+24>的解表示在数轴上,正确的是【 】A .B .C .D .【答案】B 。
【考点】解一元一次不等式,在数轴上表示不等式的解集。
【分析】利用解不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1,解不等式:移项得x >4-2,合并同类项得x >2。
不等式的解集在数轴上表示的方法:>,≥向右画;<,≤向左画,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示。
安顺市中考数学试题及答案
![安顺市中考数学试题及答案](https://img.taocdn.com/s3/m/a751ce32be1e650e52ea99c3.png)
一、选择题(共30分,每小题3分)1. D 2 .B 3. C 4. C 5.A 6.B 7.A 8.A 9.D 10.D二、填空题(共32分,每小题4分)11、-1 12、2 13、))((b a b a a -+ 14、25 15、6 16、76 17、B 18,30三、解答题(共88分)19.解:3235322(6')12(8')2222=∙-∙+=-+=原式 20.解:()()()()()()2222242(3')6'2222x x x x x x -+-⎡⎤-=∙+=⎢⎥-⎣⎦原式或 ()2254415(8')222x x --===时,21.解:解①得2<x (3′) 解②得1-≥x(6′) ∴12x -≤<(7′) ∴所求不等式组的整数解为:-1. 0.1 . (8′) 22.解:(1)50,20 (4′) (2)103(7′)(3)依题意,有= 18 . (8′)解得x ≈530 . 经检验,x =530是原方程的解.答:每张乒乓球门票的价格约为530元. (10′)说明:学生答案在区间[528,530]内都得满分。
23.解:(1)∵点A (1,1)在反比例函数x 2ky =的图象上,∴k=2.∴反比例函数的解析式为:x 1y =. (3′)一次函数的解析式为:b x 2y +=.∵点A (1,1)在一次函数b x 2y +=的图象上 ∴1b -=.∴一次函数的解析式为1x 2y -= (6′)(2)∵点A (1,1) ∴∠AOB=45o .∵△AOB 是直角三角形 ∴点B 只能在x 轴正半轴上.① 当∠OB 1A=90 o 时,即B 1A ⊥OB 1.∵∠AOB 1=45o ∴B 1A= OB 1 . ∴B 1(1,0).(8′)② 当∠O A B 2=90 o 时,∠AOB 2=∠AB 2O=45o ,∴B 1 是OB 2中点, ∴B 2(2,0). (10′)综上可知,B 点坐标为(1,0)或(2,0).24. 解:(1)设成人人数为x 人,则学生人数为(12-x)人. 则 (1′)35x + 235(12 –x )= 350 (4′)解得:x = 8 (7′)故:学生人数为12 – 8 = 4 人, 成人人数为8人. (8′)(2)如果买团体票,按16人计算,共需费用:35×0.6×16 = 336元336﹤350 所以,购团体票更省钱。
贵州省安顺市中考数学试卷(内含答案详析)
![贵州省安顺市中考数学试卷(内含答案详析)](https://img.taocdn.com/s3/m/04df61f1f18583d0486459cd.png)
安庆市七级数学下学期期末考试试卷数学(考试时间共120分钟,满分120分)准考证号:__________ 姓名:________ 座位号:___________一、选样题(本题共10小题,每小题3分,共30分)1.(3分)(贵州安顺)一个数的相反数是3,则这个数是()A.﹣ B.C.﹣3 D.3分析:两数互为相反数,它们的和为0.解答:解:设3的相反数为x.则x+3=0,x=﹣3.故选C.点评:本题考查的是相反数的概念,两数互为相反数,它们的和为0.2.(3分)(贵州安顺)地球上的陆地而积约为149000000km2.将149000000用科学记数法表示为()A. 1.49×106 B.1.49×107 C.1.49×108 D.1.49×109考点:科学记数法—表示较大的数..分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:149 000 000=1.49×108,故选:C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(贵州安顺)下列四个图形中,既是轴对称图形又是中心对称图形的是()A.1个B.2个C.3个D.4个考点:中心对称图形;轴对称图形..分析:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合,结合选项所给的图形即可得出答案.解答:解:①既是轴对称图形,也是中心对称图形,故正确;②是轴对称图形,不是中心对称图形,故错误;③既是轴对称图形,也是中心对称图形,故正确;④既不是轴对称图形,也不是中心对称图形,故错误.综上可得共有两个符合题意.故选B.点评:本题考查轴对称及中心对称的定义,属于基础题,掌握好中心对称图形与轴对称图形的概念是关键.4.(3分)(贵州安顺)用直尺和圆规作一个角等于已知角,如图,能得出∠A′O′B′=∠AOB 的依据是()A.(SAS)B.(SSS)C.(ASA)D.(AAS)考点:作图—基本作图;全等三角形的判定与性质..分析:我们可以通过其作图的步骤来进行分析,作图时满足了三条边对应相等,于是我们可以判定是运用SSS,答案可得.解答:解:作图的步骤:①以O为圆心,任意长为半径画弧,分别交OA、OB于点C、D;②任意作一点O′,作射线O′A′,以O′为圆心,OC长为半径画弧,交O′A′于点C′;③以C′为圆心,CD长为半径画弧,交前弧于点D′;④过点D′作射线O′B′.所以∠A′O′B′就是与∠AOB相等的角;作图完毕.在△OCD与△O′C′D′,,∴△OCD≌△O′C′D′(SSS),∴∠A′O′B′=∠AOB,显然运用的判定方法是SSS.故选:B.点评:本题考查了全等三角形的判定与性质;由全等得到角相等是用的全等三角形的性质,熟练掌握三角形全等的性质是正确解答本题的关键.5.(3分)(贵州安顺)如图,∠A0B的两边0A,0B均为平面反光镜,∠A0B=40°.在0B 上有一点P,从P点射出一束光线经0A上的Q点反射后,反射光线QR恰好与0B平行,则∠QPB的度数是()A.60° B.80° C.100°D.120°考点:平行线的性质..专题:几何图形问题.分析:根据两直线平行,同位角相等、同旁内角互补以及平角的定义可计算即可.解答:解:∵QR∥OB,∴∠AQR=∠AOB=40°,∠PQR+∠QPB=180°;∵∠AQR=∠PQO,∠AQR+∠PQO+∠RQP=180°(平角定义),∴∠PQR=180°﹣2∠AQR=100°,∴∠QPB=180°﹣100°=80°.故选B.点评:本题结合反射现象,考查了平行线的性质和平角的定义,是一道好题.6.(3分)(贵州安顺)已知等腰三角形的两边长分別为a、b,且a、b满足+(2a+3b ﹣13)2=0,则此等腰三角形的周长为()A.7或8 B.6或1O C.6或7 D.7或10考点:等腰三角形的性质;非负数的性质:偶次方;非负数的性质:算术平方根;解二元一次方程组;三角形三边关系..分析:先根据非负数的性质求出a,b的值,再分两种情况确定第三边的长,从而得出三角形的周长.解答:解:∵|2a﹣3b+5|+(2a+3b﹣13)2=0,∴,解得,当a为底时,三角形的三边长为2,3,3,则周长为8;当b为底时,三角形的三边长为2,2,3,则周长为7;综上所述此等腰三角形的周长为7或8.故选A.点评:本题考查了非负数的性质、等腰三角形的性质以及解二元一次方程组,是基础知识要熟练掌握.7.(3分)(贵州安顺)如果点A(﹣2,y1),B(﹣1,y2),C(2,y3)都在反比例函数的图象上,那么y1,y2,y3的大小关系是()A.y1<y3<y2 B.y2<y1<y3 C.y1<y2<y3 D.y3<y2<y1考点:反比例函数图象上点的坐标特征..分析:分别把x=﹣2,x=﹣1,x=2代入解析式求出y1、y2、y3根据k>0判断即可.解答:解:分别把x=﹣2,x=﹣1,x=2代入解析式得:y1=﹣,y2=﹣k,y3=,∵k>0,∴y2<y1<y3.故选B.点评:本题主要考查对反比例函数图象上点的坐标特征的理解和掌握,能根据k>0确定y1、y2、y3的大小是解此题的关键.8.(3分)(贵州安顺)已知圆锥的母线长为6cm,底面圆的半径为3cm,则此圆锥侧面展开图的圆心角是()A.30° B.60° C.90° D.180°考点:圆锥的计算..分析:根据弧长=圆锥底面周长=6π,圆心角=弧长×180÷母线长÷π计算.解答:解:由题意知:弧长=圆锥底面周长=2×3π=6πcm,扇形的圆心角=弧长×180÷母线长÷π=6π×180÷6π=180°.故选D.点评:本题考查的知识点为:弧长=圆锥底面周长及弧长与圆心角的关系.解题的关键是熟知圆锥与扇形的相关元素的对应关系.9.(3分)(贵州安顺)如图,在Rt△ABC中,∠C=90°,∠A=30°,E为AB上一点且AE:EB=4:1,EF⊥AC于F,连接FB,则tan∠CFB的值等于()A.A B.C.D.考点:锐角三角函数的定义..分析: tan∠CFB的值就是直角△BCF中,BC与CF的比值,设BC=x,则BC与CF就可以用x表示出来.就可以求解.解答:解:根据题意:在Rt△ABC中,∠C=90°,∠A=30°,∵EF⊥AC,∴EF∥BC,∴∵AE:EB=4:1,∴=5,∴=,设AB=2x,则BC=x,AC=x.∴在Rt△CFB中有CF=x,BC=x.则tan∠CFB==.故选C.点评:本题考查锐角三角函数的概念:在直角三角形中,正弦等于对比斜;余弦等于邻边比斜边;正切等于对边比邻边.10.(3分)(贵州安顺)如图,MN是半径为1的⊙O的直径,点A在⊙O上,∠AMN=30°,点B为劣弧AN的中点.点P是直径MN上一动点,则PA+PB的最小值为()A.B.1C.2D.2考点:轴对称-最短路线问题;勾股定理;垂径定理..分析:作点B关于MN的对称点B′,连接OA、OB、OB′、AB′,根据轴对称确定最短路线问题可得AB′与MN的交点即为PA+PB的最小时的点,根据在同圆或等圆中,同弧所对的圆心角等于圆周角的2倍求出∠AON=60°,然后求出∠BON=30°,再根据对称性可得∠B′ON=∠BON=30°,然后求出∠AOB′=90°,从而判断出△AOB′是等腰直角三角形,再根据等腰直角三角形的性质可得AB′=OA,即为PA+PB的最小值.解答:解:作点B关于MN的对称点B′,连接OA、OB、OB′、AB′,则AB′与MN的交点即为PA+PB的最小时的点,PA+PB的最小值=AB′,∵∠AMN=30°,∴∠AON=2∠AMN=2×30°=60°,∵点B为劣弧AN的中点,∴∠BON=∠AON=×60°=30°,由对称性,∠B′ON=∠BON=30°,∴∠AOB′=∠AON+∠B′ON=60°+30°=90°,∴△AOB′是等腰直角三角形,∴AB′=OA=×1=,即PA+PB的最小值=.故选A.点评:本题考查了轴对称确定最短路线问题,在同圆或等圆中,同弧所对的圆心角等于圆周角的2倍的性质,作辅助线并得到△AOB′是等腰直角三角形是解题的关键.二、填空题(本题共8小题,每题4分,共32分)11.(4分)(贵州安顺)函数y=中,自变量x的取值范围是x≥﹣2且x≠0.考点:函数自变量的取值范围..分析:根据被开方数大于等于0,分母不等于0列式计算即可得解.解答:解:由题意得,x+2≥0且x≠0,解得x≥﹣2且x≠0.故答案为:x≥﹣2且x≠0.点评:本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.12.(4分)(2014•怀化)分解因式:2x2﹣8=2(x+2)(x﹣2).考点:提公因式法与公式法的综合运用..分析:先提取公因式2,再对余下的多项式利用平方差公式继续分解.解答:解:2x2﹣8=2(x2﹣4)=2(x+2)(x﹣2).故答案为:2(x+2)(x﹣2).点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.13.(4分)(贵州安顺)已知一组数据1,2,3,4,5的方差为2,则另一组数据11,12,13,14,15的方差为2.考点:方差..分析:根据方差的性质,当一组数据同时加减一个数时方差不变,进而得出答案.解答:解:∵一组数据1,2,3,4,5的方差为2,∴则另一组数据11,12,13,14,15的方差为2.故答案为:2.点评:此题主要考查了方差的性质,正确记忆方差的有关性质是解题关键.14.(4分)(贵州安顺)小明上周三在超市恰好用10元钱买了几袋牛奶,周日再去买时,恰遇超市搞优惠酬宾活动,同样的牛奶,每袋比周三便宜0.5元,结果小明只比上次多用了2元钱,却比上次多买了2袋牛奶.若设他上周三买了x袋牛奶,则根据题意列得方程为(x+2)(﹣0.5)=12.考点:由实际问题抽象出分式方程..分析:关键描述语为:“每袋比周三便宜0.5元”;等量关系为:周日买的奶粉的单价×周日买的奶粉的总数=总钱数.解答:解:设他上周三买了x袋牛奶,则根据题意列得方程为:(x+2)(﹣0.5)=12.故答案为:(x+2)(﹣0.5)=12.点评:此题主要考查了由实际问题抽象出分式方程,列方程解应用题的关键步骤在于找相等关系.15.(4分)(贵州安顺)求不等式组的整数解是﹣1,0,1.考点:一元一次不等式组的整数解..分析:先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求其整数解即可.解答:解:解x﹣3(x﹣2)≤8,x﹣3x≤2,解得:x≥﹣1,解5﹣x>2x,解得:x<2,∴不等式组的解集为﹣1≤x<2,则不等式组的整数解为﹣1,0,1.故答案为:﹣1,0,1.点评:此题考查了不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.16.(4分)(贵州安顺)如图,矩形ABCD沿着直线BD折叠,使点C落在C′处,BC′交AD于点E,AD=8,AB=4,则DE的长为5.考点:翻折变换(折叠问题)..分析:设DE=x,则AE=8﹣x.根据折叠的性质和平行线的性质,得∠EBD=∠CBD=∠EDB,则BE=DE=x,根据勾股定理即可求解.解答:解:设DE=x,则AE=8﹣x.根据折叠的性质,得∠EBD=∠CBD.∵AD∥BC,∴∠CBD=∠ADB.∴∠EBD=∠EDB.∴BE=DE=x.在直角三角形ABE中,根据勾股定理,得x2=(8﹣x)2+16x=5.即DE=5.点评:此题主要是运用了折叠的性质、平行线的性质、等角对等边的性质和勾股定理.17.(4分)(贵州安顺)如图,∠AOB=45°,过OA上到点O的距离分别为1,3,5,7,9,11,…的点作OA的垂线与OB相交,得到并标出一组黑色梯形,它们的面积分别为S1,S2,S3,S4,….观察图中的规律,第n(n为正整数)个黑色梯形的面积是Sn=8n﹣4.考点:直角梯形..专题:压轴题;规律型.分析:由∠AOB=45°及题意可得出图中的三角形都为等腰直角三角形,且黑色梯形的高都是2;根据等腰直角三角形的性质,分别表示出黑色梯形的上下底,找出第n个黑色梯形的上下底,利用梯形的面积公式即可表示出第n个黑色梯形的面积.解答:解:∵∠AOB=45°,∴图形中三角形都是等腰直角三角形,从图中可以看出,黑色梯形的高都是2,第一个黑色梯形的上底为:1,下底为:3,第2个黑色梯形的上底为:5=1+4,下底为:7=1+4+2,第3个黑色梯形的上底为:9=1+2×4,下底为:11=1+2×4+2,则第n个黑色梯形的上底为:1+(n﹣1)×4,下底为:1+(n﹣1)×4+2,故第n个黑色梯形的面积为:×2×[1+(n﹣1)×4+1+(n﹣1)×4+2]=8n﹣4.故答案为:8n﹣4.点评:此题考查了直角梯形的性质与等腰直角三角形的性质.此题属于规律性题目,难度适中,注意找到第n个黑色梯形的上底为:1+(n﹣1)×4,下底为1+(n﹣1)×4+2是解此题的关键.18.(4分)(贵州安顺)如图,二次函数y=ax2+bx+c(a>0)图象的顶点为D,其图象与x轴的交点A、B的横坐标分别为﹣1,3.与y轴负半轴交于点C,在下面五个结论中:①2a﹣b=0;②a+b+c>0;③c=﹣3a;④只有当a=时,△ABD是等腰直角三角形;⑤使△ACB为等腰三角形的a值可以有四个.其中正确的结论是③④.(只填序号)考点:抛物线与x轴的交点;二次函数图象与系数的关系;等腰三角形的判定..分析:先根据图象与x轴的交点A,B的横坐标分别为﹣1,3确定出AB的长及对称轴,再由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解答:解:①∵图象与x轴的交点A,B的横坐标分别为﹣1,3,∴AB=4,∴对称轴x=﹣=1,即2a+b=0.故①错误;②根据图示知,当x=1时,y<0,即a+b+c<0.故②错误;③∵A点坐标为(﹣1,0),∴a﹣b+c=0,而b=﹣2a,∴a+2a+c=0,即c=﹣3a.故③正确;④当a=,则b=﹣1,c=﹣,对称轴x=1与x轴的交点为E,如图,∴抛物线的解析式为y=x2﹣x﹣,把x=1代入得y=﹣1﹣=﹣2,∴D点坐标为(1,﹣2),∴AE=2,BE=2,DE=2,∴△ADE和△BDE都为等腰直角三角形,∴△ADB为等腰直角三角形.故④正确;⑤要使△ACB为等腰三角形,则必须保证AB=BC=4或AB=AC=4或AC=BC,当AB=BC=4时,∵AO=1,△BOC为直角三角形,又∵OC的长即为|c|,∴c2=16﹣9=7,∵由抛物线与y轴的交点在y轴的负半轴上,∴c=﹣,与2a+b=0、a﹣b+c=0联立组成解方程组,解得a=;同理当AB=AC=4时∵AO=1,△AOC为直角三角形,又∵OC的长即为|c|,∴c2=16﹣1=15,∵由抛物线与y轴的交点在y轴的负半轴上,∴c=﹣与2a+b=0、a﹣b+c=0联立组成解方程组,解得a=;同理当AC=BC时在△AOC中,AC2=1+c2,在△BOC中BC2=c2+9,∵AC=BC,∴1+c2=c2+9,此方程无解.经解方程组可知只有两个a值满足条件.故⑤错误.综上所述,正确的结论是③④.故答案是:③④.点评:本题考查了二次函数y=ax2+bx+c的图象与系数的关系:当a>0,抛物线开口向上;抛物线的对称轴为直线x=﹣;抛物线与y轴的交点坐标为(0,c).三、解答题(本题共8小题,共88分)19.(8分)(贵州安顺)计算:(﹣2)0+()﹣1+4cos30°﹣|﹣|考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值..专题:计算题.分析:原式第一项利用零指数幂法则计算,第二项利用负指数幂法则计算,第三项利用特殊角的三角函数值计算,最后一项利用绝对值的代数意义化简,计算即可得到结果.解答:解:原式=1+3+4×﹣2=4.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.(10分)(贵州安顺)先化简,再求值:(x+1﹣)÷,其中x=2.考点:分式的化简求值..分析:将括号内的部分通分,再将除法转化为乘法,因式分解后约分即可化简.解答:解:原式=[﹣]•=•=•=﹣,当x=2时,原式=﹣=3.点评:本题考查了分式的化简求值,熟悉因式分解和分式除法法则是解题的关键.21.(10分)(贵州安顺)天山旅行社为吸引游客组团去具有喀斯特地貌特征的黄果树风景区旅游,推出了如下收费标准(如图所示):某单位组织员工去具有喀斯特地貌特征的黄果树风景区旅游,共支付给旅行社旅游费用27000元,请问该单位这次共有多少名员工去具有喀斯特地貌特征的黄果树风景区旅游?考点:一元二次方程的应用..分析:首先根据共支付给旅行社旅游费用27000元,确定旅游的人数的范围,然后根据每人的旅游费用×人数=总费用,设该单位这次共有x名员工去黄果树风景区旅游.即可由对话框,超过25人的人数为(x﹣25)人,每人降低20元,共降低了20(x﹣25)元.实际每人收了[1000﹣20(x﹣25)]元,列出方程求解.解答:解:设该单位去具有喀斯特地貌特征的黄果树旅游人数为x人,则人均费用为1000﹣20(x﹣25)元由题意得x[1000﹣20(x﹣25)]=27000整理得x2﹣75x+1350=0,解得x1=45,x2=30.当x=45时,人均旅游费用为1000﹣20(x﹣25)=600<700,不符合题意,应舍去.当x=30时,人均旅游费用为1000﹣20(x﹣25)=900>700,符合题意.答:该单位这次共有30名员工去具有喀斯特地貌特征的黄果树风景区旅游.点评:考查了一元二次方程的应用.此类题目贴近生活,有利于培养学生应用数学解决生活中实际问题的能力.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.22.(10分)(贵州安顺)如图,点A(m,m+1),B(m+3,m﹣1)是反比例函数(x >0)与一次函数y=ax+b的交点.求:(1)反比例函数与一次函数的解析式;(2)根据图象直接写出当反比例函数的函数值大于一次函数的函数值时x的取值范围.考点:反比例函数与一次函数的交点问题..专题:待定系数法.分析:(1)根据反比例函数的特点k=xy为定值,列出方程,求出m的值,便可求出反比例函数的解析式;根据m的值求出A、B两点的坐标,用待定实数法便可求出一次函数的解析式.(2)根据函数图象可直接解答.解答:解:(1)由题意可知,m(m+1)=(m+3)(m﹣1).解,得m=3.(2分)∴A(3,4),B(6,2);∴k=4×3=12,∴.(3分)∵A点坐标为(3,4),B点坐标为(6,2),∴,∴,∴y=﹣x+6.(5分)(2)根据图象得x的取值范围:0<x<3或x>6.(7分)点评:此题考查的是反比例函数图象上点的坐标特点及用待定系数法求一次函数及反比例函数的解析式,比较简单.23.(12分)(贵州安顺)已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E,(1)求证:四边形ADCE为矩形;(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.考点:矩形的判定;角平分线的性质;等腰三角形的性质;正方形的判定..专题:证明题;开放型.分析:(1)根据矩形的有三个角是直角的四边形是矩形,已知CE⊥AN,AD⊥BC,所以求证∠DAE=90°,可以证明四边形ADCE为矩形.(2)根据正方形的判定,我们可以假设当AD=BC,由已知可得,DC=BC,由(1)的结论可知四边形ADCE为矩形,所以证得,四边形ADCE为正方形.解答:(1)证明:在△ABC中,AB=AC,AD⊥BC,∴∠BAD=∠DAC,∵AN是△ABC外角∠CAM的平分线,∴∠MAE=∠CAE,∴∠DAE=∠DAC+∠CAE=180°=90°,又∵AD⊥BC,CE⊥AN,∴∠ADC=∠CEA=90°,∴四边形ADCE为矩形.(2)当△ABC满足∠BAC=90°时,四边形ADCE是一个正方形.理由:∵AB=AC,∴∠ACB=∠B=45°,∵AD⊥BC,∴∠CAD=∠ACD=45°,∴DC=AD,∵四边形ADCE为矩形,∴矩形ADCE是正方形.∴当∠BAC=90°时,四边形ADCE是一个正方形.点评:本题是以开放型试题,主要考查了对矩形的判定,正方形的判定,等腰三角形的性质,及角平分线的性质等知识点的综合运用.24.(12分)(贵州安顺)学校举办一项小制作评比活动.作品上交时限为3月1日至30日,组委会把同学们交来的作品按时间顺序每5天组成一组,对每一组的作品件数进行统计,绘制成如图所示的统计图.已知从左到右各矩形的高度比为2:3:4:6:4:1.第三组的件数是12.请你回答:(1)本次活动共有60件作品参赛;各组作品件数的众数是12件;(2)经评比,第四组和第六组分别有10件和2件作品获奖,那么你认为这两组中哪个组获奖率较高?为什么?(3)小制作评比结束后,组委会决定从4件最优秀的作品A、B、C、D中选出两件进行全校展示,请用树状图或列表法求出刚好展示作品B、D的概率.考点:频数(率)分布直方图;众数;列表法与树状图法..分析:(1)直接利用频数除以频率=总数进而得出答案,再利用众的定义求出即可;(2)利用总数乘以频率=频数,进而分别求出获奖概率得出答案;(3)利用树状图列举出所有可能,进而得出答案.解答:解:(1)由题意可得出,本次活动参赛共有:12÷=12÷=60(件),各组作品件数的众数是12;故答案为:60,12;(2)∵第四组有作品:60×=18(件),第六组有作品:60×=3(件),∴第四组的获奖率为:=,第四组的获奖率为:;∵<,∴第六组的获奖率较高;(3)画树状图如下:,由树状图可知,所有等可能的结果为12种,其中刚好是(B,D)的有2种,所以刚好展示作品B、D的概率为:P==.点评:此题主要考查了频数分布直方图的应用以及众的定义以及树状图法求概率等知识,正确画出树状图是解题关键.25.(12分)(贵州安顺)如图,已知AB是⊙O的直径,BC是⊙O的弦,弦ED⊥AB于点F,交BC于点G,过点C的直线与ED的延长线交于点P,PC=PG.(1)求证:PC是⊙O的切线;(2)当点C在劣弧AD上运动时,其他条件不变,若BG2=BF•BO.求证:点G是BC 的中点;(3)在满足(2)的条件下,AB=10,ED=4,求BG的长.考点:切线的判定与性质;勾股定理;圆周角定理;相似三角形的判定与性质..专题:几何综合题.分析:(1)连OC,由ED⊥AB得到∠FBG+∠FGB=90°,又PC=PD,则∠1=∠2,而∠2=∠FGB,∠4=∠FBG,即可得到∠1+∠4=90°,根据切线的判定定理即可得到结论;(2)连OG,由BG2=BF•BO,即BG:BO=BF:BG,根据三角形相似的判定定理得到△BGO∽△BFG,由其性质得到∠OGB=∠BFG=90°,然后根据垂径定理即可得到点G是BC 的中点;(3)连OE,由ED⊥AB,根据垂径定理得到FE=FD,而AB=10,ED=4,得到EF=2,OE=5,在Rt△OEF中利用勾股定理可计算出OF,从而得到BF,然后根据BG2=BF•BO即可求出BG.解答:(1)证明:连OC,如图,∵ED⊥AB,∴∠FBG+∠FGB=90°,又∵PC=PG,∴∠1=∠2,而∠2=∠FGB,∠4=∠FBG,∴∠1+∠4=90°,即OC⊥PC,∴PC是⊙O的切线;(2)证明:连OG,如图,∵BG2=BF•BO,即BG:BO=BF:BG,而∠FBG=∠GBO,∴△BGO∽△BFG,∴∠OGB=∠BFG=90°,即OG⊥BG,∴BG=CG,即点G是BC的中点;(3)解:连OE,如图,∵ED⊥AB,∴FE=FD,而AB=10,ED=4,∴EF=2,OE=5,在Rt△OEF中,OF===1,∴BF=5﹣1=4,∵BG2=BF•BO,∴BG2=BF•BO=4×5,∴BG=2.点评:本题考查了切线的判定定理:过半径的外端点与半径垂直的直线是圆的切线.也考查了垂径定理、勾股定理以及三角形相似的判定与性质.26.(14分)(贵州安顺)如图,在平面直角坐标系中,四边形ABCD是等腰梯形,AD∥BC,AB=DC,BC在x轴上,点A在y轴的正半轴上,点A,D的坐标分别为A(0,2),D(2,2),AB=2,连接AC.(1)求出直线AC的函数解析式;(2)求过点A,C,D的抛物线的函数解析式;(3)在抛物线上有一点P(m,n)(n<0),过点P作PM垂直于x轴,垂足为M,连接PC,使以点C,P,M为顶点的三角形与Rt△AOC相似,求出点P的坐标.考点:二次函数综合题..分析:(1)先在Rt△ABO中,运用勾股定理求出OB===2,得出B(﹣2,0),再根据等腰梯形的对称性可得C点坐标为(4,0),又A(0,2),利用待定系数法即可求出直线AC的函数解析式;(2)设所求抛物线的解析式为y=ax2+bx+c,将A,C,D三点的坐标代入,利用待定系数法即可求出抛物线的函数解析式;(3)先由点P(m,n)(n<0)在抛物线y=﹣x2+x+2上,得出m<﹣2或m>4,n=﹣m2+m+2<0,于是PM=m2﹣m﹣2.由于∠PMC=∠AOC=90°,所以当Rt△PCM与Rt△AOC相似时,有==或==2.再分两种情况进行讨论:①若m<﹣2,则MC=4﹣m.由==,列出方程=,解方程求出m的值,得到点P的坐标为(﹣4,﹣4);由==2,列出方程=2,解方程求出m的值,得到点P的坐标为(﹣10,﹣28);②若m>4,则MC=m﹣4.由==时,列出方程=,解方程求出m的值均不合题意舍去;由==2,列出方程=2,解方程求出m的值,得到点P的坐标为(6,﹣4).解答:解:(1)由A(0,2)知OA=2,在Rt△ABO中,∵∠AOB=90°,AB=2,∴OB===2,∴B(﹣2,0).根据等腰梯形的对称性可得C点坐标为(4,0).设直线AC的函数解析式为y=kx+n,则,解得,∴直线AC的函数解析式为y=﹣x+2;(2)设过点A,C,D的抛物线的函数解析式为y=ax2+bx+c,则,解得,∴y=﹣x2+x+2;(3)∵点P(m,n)(n<0)在抛物线y=﹣x2+x+2上,∴m<﹣2或m>4,n=﹣m2+m+2<0,∴PM=m2﹣m﹣2.∵Rt△PCM与Rt△AOC相似,∴==或==2.①若m<﹣2,则MC=4﹣m.当==时,=,解得m1=﹣4,m2=4(不合题意舍去),此时点P的坐标为(﹣4,﹣4);当==2时,=2,解得m1=﹣10,m2=4(不合题意舍去),此时点P的坐标为(﹣10,﹣28);②若m>4,则MC=m﹣4.当==时,=,解得m1=4,m2=0,均不合题意舍去;当==2时,=2,解得m1=6,m2=4(不合题意舍去),此时点P的坐标为(6,﹣4);综上所述,所求点P的坐标为(﹣4,﹣4)或(﹣10,﹣28)或(6,﹣4).点评:本题是二次函数的综合题型,其中涉及到的知识点有利用待定系数法求一次函数、二次函数的解析式,勾股定理,等腰梯形的性质,相似三角形的性质,难度适中.利用分类讨论、数形结合及方程思想是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)如果点P由点A开始沿AB边以1cm/s的速度向终点B移动,同时点Q由点B开始沿BC边以2cm/s的速度向终点C移动.
①移动开始后第t秒时,设△PBQ的面积为S,试写出S与t之间的函数关系式,并写出t的取值范围.
②当S取得最大值时,在抛物线上是否存在点R,使得以P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出R点的坐标;如果不存在,请说明理由.
则 ,
解得x=10,
经检验,x=10是原方程的解.
答:原计划每天铺设管道10米.
22.(2011台州)丁丁想在一个矩形材料中剪出如图阴影所示的梯形,作为要制作的风筝的一个翅膀.请你根据图中的数据帮丁丁计算出BE、CD的长度(精确到个位, ≈1.7).
考点:解直角三角形的应用.
解答:解:由∠ABC=120°可得∠EBC=60°,在Rt△BCE中,CE=51,∠EBC=60°,
C、若点P(2,a)和点Q(b,﹣3)关于x轴对称,则b=2,a=3,故a﹣b=3﹣2=1,故此选项正确;
D、﹣8的立方根式﹣2,故此选项错误;
故选:C.
二.填空题(共8小题)
11.(2011衡阳)计算: + =3 .
考点:二次根式的加减法.
解答:解:原式=2 + =3 .
12.(2011宁夏)分解因式:a3﹣a=a(a+1)(a﹣1).
A.甲、乙射中的总环数相同B.甲的成绩稳定
C.乙的成绩波动较大D.甲、乙的众数相同
考点:方差.
解答:解:A、根据平均数的定义,正确;
B、根据方差的定义,正确;
C、根据方差的定义,正确,
D、一组数据中出现次数最多的数值叫众数.题目没有具体数据,无法确定众数,错误.
故选D.
10.(2012安顺)下列说法中正确的是()
(1)图中格点△A′B′C′是由格点△ABC通过怎样的变换得到的?
(2)如果以直线a、b为坐标轴建立平面直角坐标系后,点A的坐标为(﹣3,4),请写出格点△DEF各顶点的坐标,并求出△DEF的面积.
考点:作图-平移变换;三角形的面积.
解答:解:(1)图中格点△A′B′C′是由格点△ABC向右平移7个单位长度得到的;
2012年贵州省安顺市中考数学试卷
一.选择题(共10小题)
1.(2011台州)在 、0、1、﹣2这四个数中,最小的数是()
A. B.0C.1D.﹣2
考点:有理数大小比较.
解答:解:的是﹣2.
故选D.
2.(2011衡阳)某市在一次扶贫助残活动中,共捐款3185800元,将3185800元用科学记数法表示(保留两个有效数字)为()
=﹣4.
20.(2011荆州)解不等式组.并把解集在数轴上表示出来.
.
考点:解一元一次不等式组;在数轴上表示不等式的解集.
解答:解:不等式①去分母,得x﹣3+6≥2x+2,
移项,合并得x≤1,
不等式②去括号,得1﹣3x+3<8﹣x,
移项,合并得x>﹣2,
∴不等式组的解集为:﹣2<x≤1.
数轴表示为:
A.3.1×106元B.3.1×105元C.3.2×106元D.3.18×106元
考点:科学记数法与有效数字.
解答:解:3185800≈3.2×106.
故选C.
3.(2011南通)计算 的结果是()
A.±3 B.3 C.±3D.3
考点:立方根.
解答:解:∵33=27,
∴ =3.
故选D.
4.(2011张家界)已知1是关于x的一元二次方程(m﹣1)x2+x+1=0的一个根,则m的值是()
21.(2011张家界)张家界市为了治理城市污水,需要铺设一段全长为300米的污水排放管道,铺设120米后,为了尽可能减少施工对城市交通所造成的影响,后来每天的工作量比原计划增加20%,结果共用了27天完成了这一任务,求原计划每天铺设管道多少米?
考点:分式方程的应用.
解答:解:设原计划每天铺设管道x米,
体育兴趣小组对应扇形圆心角的度数为: ;
(3)参加科技小组学生”的概率为: .
25.如图,在⊙O中,直径AB与弦CD相交于点P,∠CAB=40°,∠APD=65°.
(1)求∠B的大小;
(2)已知AD=6求圆心O到BD的距离.
考点:圆周角定理;三角形内角和定理;垂径定理.
解答:解:(1)∵∠APD=∠C+∠CAB,
(2)如果以直线a、b为坐标轴建立平面直角坐标系后,点A的坐标为(﹣3,4),则格点△DEF各顶点的坐标分别为D(0,﹣2),E(﹣4,﹣4),F(3,﹣3),
S△DEF=S△DGF+S△GEF= ×5×1+ ×5×1=5
或=7×2﹣ ×4×2﹣ ×7×1﹣ ×3×1=14﹣4﹣ ﹣ =5.
24.(2012安顺)我市某中学为推进素质教育,在七年级设立了六个课外兴趣小组,下面是六个兴趣小组的频数分布直方图和扇形统计图,请根据图中提供的信息回答下列问题:
∴a>b>c.
故答案为:a>b>c.
17.在镜中看到的一串数字是“ ”,则这串数字是309087.
考点:镜面对称.
解答:解;拿一面镜子放在题目所给数字的对面,很容易从镜子里看到答案是309087
故填309087.
18.(2009湛江)已知2+ =22× ,3+ =32× ,4+ =42× …,若8+ =82× (a,b为正整数),则a+b=71.
解答:解:如图,根据题意得,
△ABO的底长OB为2,高为3,
∴S△ABO= ×2×3=3.
故选D.
6.(2011长沙)一个多边形的内角和是900°,则这个多边形的边数是()
A.6B.7C.8D.9
考点:多边形内角与外角.
解答:解:设这个多边形的边数为n,
则有(n﹣2)180°=900°,
解得:n=7,
∴这个多边形的边数为7.
故选B.
7.(2011丹东)某一时刻,身髙1.6m的小明在阳光下的影长是0.4m,同一时刻同一地点测得某旗杆的影长是5m,则该旗杆的高度是()
A.1.25mB.10mC.20mD.8m
考点:相似三角形的应用.
解答:解:设该旗杆的高度为xm,根据题意得,1.6:0.4=x:5,
根据各象限内点的坐标特点可知,
所以点(x,y)在平面直角坐标系中的第一象限.
故答案为:一.
14.(2011衢州)在一自助夏令营活动中,小明同学从营地A出发,要到A地的北偏东60°方向的C处,他先沿正东方向走了200m到达B地,再沿北偏东30°方向走,恰能到达目的地C(如图),那么,由此可知,B、C两地相距200m.
点Q坐标(6,﹣6)
若以P、B、Q、R为顶点的四边形是平行四边形,有如下三种情况:
(Ⅰ)当点R在BQ的左边,且在PB下方时,点R的坐标(3,﹣18),将(3,﹣18)代入抛物线的解析式中,满足解析式,所以存在,点R的坐标就是(3,﹣18),
(Ⅱ)当点R在BQ的左边,且在PB上方时,点R的坐标(3,﹣6),将(3,﹣6)代入抛物线的解析式中,不满足解析式,所以点R不满足条件.
考点:相似三角形的判定.
解答:解:∵∠1=∠2,∴∠1+∠BAE=∠2+∠BAE,即∠DAE=∠CAB.
当∠D=∠C或∠E=∠B或 = 时,△ADE∽△ACB.
16.如图,a,b,c三种物体的质量的大小关系是a>b>c.
考点:一元一次不等式的应用.
解答:解:∵2a=3b,
∴a>b,
∵2b>3c,
∴b>c,
考点:提公因式法与公式法的综合运用.
解答:解:a3﹣a,
=a(a2﹣1),
=a(a+1)(a﹣1).
13.(2012安顺)以方程组 的解为坐标的点(x,y)在第一象限.
考点:一次函数与二元一次方程(组).
解答:解: ,
①+②得,2y=3,
y= ,
把y= 代入①得, =x+1,
解得:x= ,
因为 0, >0,
考点:规律型:数字的变化类.
解答:解:根据题意可知a=8,b=82﹣1=63,
∴a+b=71.
三.解答题(共8小题)
19.(2012安顺)计算:﹣22﹣ +|1﹣4sin60°|+( )0.
考点:实数的运算;零指数幂;特殊角的三角函数值.
解答:解:原式=﹣4﹣2 +|1﹣4× |+1
=﹣4﹣2 +2 ﹣1+1
考点:解直角三角形的应用-方向角问题.
解答:解:由已知得:
∠ABC=90°+30°=120°,
∠BAC=90°﹣60°=30°,
∴∠ACB=180°﹣∠ABC﹣∠BAC=180°﹣120°﹣30°=30°,
∴∠ACB=∠BAC,
∴BC=AB=200.
故答案为:200.
15.(2010临沂)如图,∠1=∠2,添加一个条件使得△ADE∽△ACB∠D=∠C或∠E=∠B或 = .
(Ⅲ)当点R在BQ的右边,且在PB上方时,点R的坐标(9,﹣6),将(9,﹣6)代入抛物线的解析式中,不满足解析式,所以点R不满足条件.
综上所述,点R坐标为(3,﹣18).
(1)七年级共有320人;
(2)计算扇形统计图中“体育”兴趣小组所对应的扇形圆心角的度数;
(3)求“从该年级中任选一名学生,是参加科技小组学生”的概率.
考点:条形统计图;扇形统计图;概率公式.
解答:解:(1)64÷20%=320(人);
(2)体育兴趣小组人数为320﹣48﹣64﹣32﹣64﹣16=96,
A.1B.﹣1C.0D.无法确定
考点:一元二次方程的解;一元二次方程的定义.