第3课时 众数与中位数练习

合集下载

平均数,中位数,众数练习题

平均数,中位数,众数练习题

平均数,中位数,众数练习题平均数在现实生活中较为常用,但是它易受极端值的影响,因此在某些情境下,用平均数刻画数据的集中趋势就不太合适,这时就需要选择恰当的统计量刻画数据的集中趋势. 中位数和众数都是刻画数据集中趋势的统计量. 是一个反映数据集中趋势的位置代表值,能够表明一组数据排序最中间的统计量,可以提供这组数据中,约有一半的数据大于(或小于)中位数.众数是表明一组数据出现次数最多的统计量,当一组数据有较多的重复数据时,众数往往是人们所关心的一个统计量,它提供了哪个(或哪些)数据出现的次数最多.一.中位数的概念及计算方法将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则称处于中间位置的数为这组数据的中位数;如果数据的个数是偶数,则称中间两个数据的平均数为这组数据的中位数.如果一组数据中有极端数据,中位数能比平均数更合理地反映该组数据的整体水平.二.众数的概念:一组数据中出现次数最多的数据称为这组数据的众数.三.平均数、众数和中位数这三个统计量的各自特点.1.平均数计算要用到所有的数据,任何一个数据的变动都会相应引起平均数的变动,它能够充分利用所有的数据信息,但它受极端值的影响较大.2.众数是当一组数据中某一数据重复出现较多时,人们往往关心的一个量,众数不受极端值的影响,这是它的一个优势,缺点是当众数有多个且众数的频数相对较小时可靠性小,局限性大.3.中位数仅与数据的排列位置有关,不易受极端值影响,中位数可能出现在所给数据中,也可能不在所给的数据中.当一组数据中的个别数据变动较大时,可用中位数描述其趋势,中位数的计算很少.例1.数据-3,-2,1,3,6,x,5的中位数是1,且x为正整数,那么这组数据的众数是【】A. 2B. 1C. 10D.-2【分析】因为数据-3,-2,1,3,6,x,5的中位数是1,且所给数据的个数是7,是奇数,所以把这些数据按照从小到大排列,数字1应该处在第4的位置上,也就是:-3,-2,,x,1,3,5,6;由此可知x不大于1的正整数,所以x=1.答案为B类型一:表格式呈现数据例2.为了解某班学生每周做家务劳动的时间,某综合实践活动小组对该班9名学生进行了调查,有关数据如下表:则这9名学生每周做家务劳动的时间的众数及中位数分别是【】A.3时,2.5.时 B. 1时,2时 C 3时,3时D. 2 时,2时【分析】根据表格可知:每周不做家务的有2人,做1小时家务的有2人,做2小时家务的有3人,做3小时家务的有1人,做4小时家务的有1人,所以这9名学生每周做家务的时间的众数是:2时;把这9个数据按照从小到大排列,处于第5个数是中位数,也是2时答案为:D类型二.折线图呈现数据,分析数据的集中趋势.例3.为了解九年级学生的体育锻炼的时间,小华调查了某班45名同学一周参加体育锻炼的情况,并把它绘制成折线统计图,如图所示,那么关于该班45名同学一周参加体育锻炼时间的说法错误的是【】A. 众数是9时B. 中位数是9时C. 平均数是9时D.锻炼时间不低于9时的有14名类型三.条形图呈现数据,分析数据的集中趋势.例4.一方有难,八方支援,我国某地发生强烈地震,给当地人民造成了巨大损失,灾难发生后,某中学举行了爱心捐款活动,全校同学纷纷拿出自己的零花钱,踊跃捐款支援灾区人民,小慧对捐款情况进行了抽样调查,抽取了40名同学的捐款数据,把数据进行统计整理后,绘制了条形图如图所示,图中从左到右各长方形高度之比为3:4:5:7:1.(1)捐款20元的同学有名;(2)40名同学捐款数据的中位数是;(3)若该校捐款金额不少于34500元,请估算该校捐款同学的人数至少有多少?练习 1.某校为了解学生“体育大课间”的锻炼效果,中考体育测试结束后,随机从学校720名考生中抽取部分学生的体育测试成绩绘制了条形统计图如图所示,试根据统计图提供的信息,回答下列问题:(1)共抽取了名学生的体育测试成绩进行统计.(2)随机抽取的这部分学生中男生体育成绩的平均分是,众数是;女生体育成绩的中位数是.(3)若将不低于47分的成绩评为优秀,估计这720名考生中,成绩为优秀的学生大约有多少名?练习2.物理老师布置了10道选择题作为课堂练习,如图所示是全班解题情况的统计,做对题数的中位数为,众数为.类型四.扇形图与条形图或表格相结合呈现数据,解答相关问题.例5.为了推动阳光体育运动的广泛开展,引导学生走向操场,走进大自然,走到阳光下,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制了如图所示的统计图,请根据相关信息,解答下列问题:(1)本次接受随机抽样调查的学生人数为,图中的m的值为;(2)求本次调查获取的样本数据的众数和中位数;(3)根据样本数据,若学校计划购买200双运动鞋,建议购买35号运动鞋多少双?例6.某市以泉水闻名,为保护泉水,造福子孙后代,该市积极开展“节水保泉”活动,宁宁利用课余时间对某小区300户居民的用水情况进行了统计,发现5月份各户居民的用水量均比4月份有所下降,宁宁将5月份各户居民的节水节水量(m3)1 1.5 2.5 3户数(户)50 80 100 70量统计整理制成如下的统计表和统计图:(1)300户居民5月份节水量的众数、中位数分别是多少?(2)扇形统计图中α的度数为;(3)该小区300户居民5月份平均每户节约用水多少立方米?二.选择恰当的统计量刻画数据的集中趋势运用平均数,中位数,众数多角度看一个人的成绩,培养学生的自信,激发学生的学习积极性与主动性,例7八年级(1)班三位同学最近的五次数学测验成绩(单位:分)分别是:小华62 94 95 98 98小明62 62 98 99 100小丽40 62 85 99 99他们都认为自己的数学成绩比其他两位同学好,他们比较的依据分别是什么?你认为谁的数学成绩最好呢?【分析】首先将三人的平均数,中位数,众数计算出来,然后再进行比较,做出决定.从平均数看小华的平均分是89.4,高于其他两人,比其他两人的成绩好.所以小华比较的依据是平均数.从中位数看,小明的中位数是98 高于其他两人,比其他两人的成绩好,所以小明比较的依据是中位数.从众数看,小丽的众数是99,比其他两人的成绩好,所以小丽比较的依据是众数.我认为小华的成绩较好,因为小华的平均分是第一名,中位数排第二,众数只比第一名少一分,也就是说小华的每一项的分数都处于较高的水平.例8 某商场服装部为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励.为了确定一个适当的月销售目标,商场服装部统计了每个营业员在某月的销售额(单位:万元),数据如下:17 18 16 13 24 15 28 26 18 1922 17 16 19 32 30 16 14 15 2615 32 23 17 15 15 28 28 16 19(1)月销售额在哪个值的人数最多?中间的月销售额是多少?平均的月销售额是多少?(2)如果想确定一个较高的销售目标,你认为月销售额定为多少合适?说明理由.(3)如果想让一半左右的营业员都能达到销售目标,你认为月销售额定为多少合适?说明理由.例9.下面是某校八年级(2)班两组女生的体重(单位:kg):第1组35 36 38 40 42 42 75第2组35 36 38 40 42 42 45(1)分别求这两组数据的平均数、众数、中位数,并解释它们的实际意义(结果取整数);(2)比较这两组数据的平均数、众数、中位数,谈谈你对它们的认识.例10.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示.分别计算这些运动员成绩的平均数、中位数、众数(结果保留小数点后两位).例11.为了提高农民收入,村干部带领村民自愿投资办起了一个养鸡场,办场时买来的1000只小鸡,经过一段时间精心饲养,可以出售了,下表是这些鸡出售时的质量的统计数据.(1)出售时这些鸡的平均质量是多少(结果保留小数点后一位)?(2)质量在哪个值得鸡最多?(3)中间的质量是多少?例14.下图是交警在一个路口统计的某个时段来往车辆的车速情况.应用你所学的统计知识,写一份简短的报告让交警知道这个时段路口来往车辆的车速情况.例15.下表是某班学生右眼视力的检查结果.视力 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0 人数 1 2 5 4 3 5 1 1 5 9 6 分析上表中的数据,你能得出哪些结论?例16.甲乙两校参加区教育局举办的学生英语口语竞赛,两校参赛人数相等,比赛结束后,发现学生成绩分别为7分、8分、9分、10分(满分10分).依据统计数据绘制了如下尚不完整的统计表和统计图:甲校成绩统计表分数(分)7 8 9 10人数(人)11 0 8(1)在上面扇形统计图中“7分”所在扇形的圆心角的度数是.(2)请你将条形统计图补充完整.(3)经计算,乙校的平均分是8.3分,中位数是8分,请写出甲校的平均分、中位数,并从平均分和中位数的角度分析哪个学校的成绩较好.(4)如果该教育局要组织8人的代表队参加市级团体赛,为便于管理,决定从这两所学校中的一所挑选参赛选手,请你分析,应选哪所学校?例17.某公司10名销售员去年的销售情况如下表:销售额(万元) 3 4 5 6 7 8 10销售员人数(人) 1 3 2 1 1 1 1 (1)求销售额的平均数、众数、中位数;(2)今年公司为了调动员工积极性,提高销售额,准备采用超额有奖的措施,请根据(1)中的结果,通过比较,合理确定今年每个销售员统一的销售额标准是多少万元.例18.学校举行知识竞赛,每班参加比赛人数都为25人,比赛成绩分为A,B,C,D,四个等级,其中相应等级的得分依次记为100分,90分,80分,70分,学校将某年级的(1)班和(2)班的成绩整理,并绘制成如图所示的统计图.请你根据以上提供的信息解答下列问题:(1)此次竞赛中(2)班成绩在C级以上(包括C级)的人数为;(2)请你将表格补充完整:班级平均数(分)中位数(分)众数(分)(1)班87.6分90分(2)班87.6分100分(3)请从优秀选手(B级以及B级以上级别)人数的角度来比较(1)班和(2)班的成绩,哪个班成绩更好?。

平均数众数中位数测试题及答案-用卷

平均数众数中位数测试题及答案-用卷

平均数众数中位数1题号一二三四总分得分一、选择题(本大题共13小题,共39.0分)1.在某公司的面试中,李明的得分情况为:个人形象89分,工作能力93分,交际能力83分.已知个人形象、工作能力和交际能力的权重为3:4:4,则李明的最终成绩是()A. 96.7分B. 97.1分C. 88.3分D. 265分2.某车间20名工人日加工零件数如表所示:日加工零件数45678人数26543这些工人日加工零件数的众数、中位数、平均数分别是()A. 5、6、5B. 5、5、6C. 6、5、6D. 5、6、63.关于一组数据:1,5,6,3,5,下列说法错误的是()A. 平均数是4B. 众数是5C. 中位数是6D. 方差是3.24.某班学生军训射击,有m人各打中a环,n人各打中b环,那么该班打中a环和b环学生的平均环数是()A. a+bm+n B. 12(am+bn) C. am+bnm+nD. 12(am+bn)5.歌唱比赛有二十位评委给选手打分,统计每位选手得分时,会去掉一个最高分和一个最低分,这样做,肯定不会对所有评委打分的哪一个统计量产生影响()A. 平均分B. 众数C. 中位数D. 极差6.学习全等三角形时,数学兴趣小组设计并组织了“生活中的全等”的比赛,全班同学的比赛结果统计如下表:得分(分) 60 70 80 90 100人数(人) 7 12 10 8 3则得分的众数和中位数分别为()A. 70分,70分B. 80分,80分C. 70分,80分D. 80分,70分7.一组数据5,2,6,9,5,3的众数、中位数、平均数分别是()A. 5,5,6B. 9,5,5C. 5,5,5D. 2,6,58.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩/m 1.50 1.60 1.65 1.70 1.75 1.80人数232341则这些运动员成绩的中位数、众数分别为()A. 1.65、1.70B. 1.65、1.75C. 1.70、1.75D. 1.70、1.709.我市某连续7天的最高气温为:28°,27°,30°,33°,30°,30°,32°,这组数据的平均数和众数分别是()A. ,B. ,C. ,D. ,10.某小组长统计组内5人一天在课堂上的发言次数分别为3,3,0,4,5.关于这组数据,下列说法错误的是()A. 众数是3B. 中位数是0C. 平均数是3D. 方差是2.811.数据2、5、6、0、6、1、8的中位数和众数分别是()A. 0和6B. 0和8C. 5和6D. 5和812.一组数据:1,2,4,2,2,5,这组数据的众数是()A. 1B. 2C. 4D. 513.某市从不同学校随机抽取100名初中生,对“学校统一使用数学教辅用书的册数”进行调查,统计结果如下:册数0123人数13352923关于这组数据,下列说法正确的是()A. 众数是2册B. 中位数是2册C. 极差是2册D. 平均数是2册二、填空题(本大题共6小题,共18.0分)14.已知一组从小到大排列的数据:2,5,x,y,2x,11的平均数与中位数都是7,则这组数据的众数是___________.15.某校规定学生的体育成绩由三部分组成,早晨锻炼及体育课外活动表现占成绩的15%,体育理论测试占35%,体育技能测试占50%,小明的上述三项成绩依次是94分,90分,96分,则小明这学期的体育成绩是_______分.16.三个数-1,a,3的平均数是2,则a的值是______ .17.某校男子足球队队员的年龄分布如图所示,根据图中信息可知,这些队员年龄的中位数是______ 岁.18.一组数3,4,7,4,3,4,5,6,5的众数是______.19.为了了解某班数学成绩情况,抽样调查了13份试卷成绩,结果如下:3个140分,4个135分,2个130分,2个120分,1个100分,1个80分.则这组数据的中位数为______分.三、计算题(本大题共1小题,共6.0分)20.某校八年级全体同学参加了某项捐款活动,随机抽查了部分同学捐款的情况统计如图所示.(1)本次共抽查学生______人,并将条形图补充完整;(2)捐款金额的众数是______,平均数是______;(3)在八年级600名学生中,捐款20元及以上(含20元)的学生估计有多少人?四、解答题(本大题共1小题,共8.0分)21.某跳水队为了解运动员的年龄情况,作了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)本次接受调查的跳水运动员人数为______,图①中m的值为______;(2)求统计的这组跳水运动员年龄数据的平均数、众数和中位数.答案和解析1.【答案】C【解析】解:根据题意得:89×3+93×4+83×4≈88.3,3+4+4故选C.将李明的各项成绩分别乘以其权,再除以权的和,求出加权平均数即可.本题考查了加权平均数,本题易出现的错误是求89,93,83这三个数的平均数,对平均数的理解不正确.2.【答案】D【解析】【分析】本题考查了众数、平均数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.根据众数、平均数和中位数的定义分别进行解答即可.【解答】解:5出现了6次,出现的次数最多,则众数是5;把这些数从小到大排列,中位数第10、11个数的平均数,=6;则中位数是6+62=6.平均数是:4×2+5×6+6×5+7×4+8×320故选D.3.【答案】C【解析】解:A、这组数据的平均数是(1+5+6+3+5)÷5=4,故本选项正确;B、5出现了2次,出现的次数最多,则众数是5,故本选项正确;C、把这组数据从小到大排列为:1,3,5,5,6,最中间的数是5,则中位数是5,故本选项错误;[(1-4)2+(5-4)2+(6-4)2+(3-4)2+(5-4)2]=3.2,故本D、这组数据的方差是:15选项正确;故选:C.分别求出这组数据的平均数、中位数、众数和方差,再分别对每一项进行判断即可.本题考查平均数,中位数,方差的意义.平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.4.【答案】C【解析】【分析】本题主要考查加权平均数,掌握得出射击环数的总数和加权平均数的定义是解题的关键.求出该班所有学生射击的总环数,再根据平均数的定义计算可得.【解答】解:根据题意知m人射击的总环数为am,n人射击的总环数为bn,则该班打中a环和b环学生的平均环数是am+bn,m+n故选:C.5.【答案】C【解析】【分析】本题考查了统计量的选择,属于基础题,相对比较简单,解题的关键在于理解这些统计量的意义.去掉一个最高分和最低分后不会对数据的中间的数产生影响,即中位数.【解答】解:统计每位选手得分时,会去掉一个最高分和一个最低分,这样做不会对数据的中间的数产生影响,即中位数.故选C.6.【答案】C【解析】解:70分的有12人,人数最多,故众数为70分;处于中间位置的数为第20、21两个数,都为80分,中位数为80分.故选:C.根据众数的定义,找到该组数据中出现次数最多的数即为众数;根据中位数定义,将该组数据按从小到大依次排列,处于中间位置的两个数的平均数即为中位数.本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.7.【答案】C【解析】[分析]此题主要考查了众数、中位数和平均数,关键是掌握三种数的概念.根据一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;对于n个数x1,x2,…,x n,则x¯=1(x1+x2+…+x n)就叫做这n个数的算术平均数进行分析和计算可得答案.n[解答]解:众数是5,中位数:5,=5,平均数:5+2+6+9+5+36故选C.8.【答案】C【解析】解:共15名学生,中位数落在第8名学生处,第8名学生的跳高成绩为1.70m,故中位数为1.70;跳高成绩为1.75m的人数最多,故跳高成绩的众数为1.75;故选:C.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.本题为统计题,考查众数与中位数的意义.众数是一组数据中出现次数最多的数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数. 9.【答案】D【解析】解:数据28°,27°,30°,33°,30°,30°,32°的平均数是(28+27+30+33+30+30+32)÷7=30,30出现了3次,出现的次数最多,则众数是30; 故选:D .根据平均数和众数的定义及计算公式分别进行解答,即可求出答案.此题考查了平均数和众数,平均数是指在一组数据中所有数据之和再除以数据的个数,众数是一组数据中出现次数最多的数,难度不大. 10.【答案】B【解析】【解答】解:将数据重新排列为0,3,3,4,5, 则这组数的众数为3,中位数为3,平均数为0+3+3+4+55=3,方差为15×[(0-3)2+2×(3-3)2+(4-3)2+(5-3)2]=2.8,故选:B .【分析】根据方差、众数、平均数、中位数的含义和求法,逐一判断即可.本题考查了众数、中位数、平均数以及方差,解题的关键是牢记概念及公式. 11.【答案】C【解析】【分析】本题考查众数和中位数,解题的关键是明确众数和中位数的定义,会找一组数据的众数和中位数.将题目中的数据按照从小到大排列,从而可以得到这组数据的众数和中位数,本题得以解决. 【解答】解:将2、5、6、0、6、1、8按照从小到大排列是: 0,1,2,5,6,6,8, 位于中间位置的数为5, 故中位数为5,数据6出现了2次,最多,故这组数据的众数是6,中位数是5, 故选C . 12.【答案】B【解析】解:一组数据:1,2,4,2,2,5,这组数据的众数是2, 故选:B .根据众数定义可得答案.此题主要考查了众数,关键是掌握一组数据中出现次数最多的数据叫做众数. 13.【答案】B【解析】解:A 、众数是1册,结论错误,故A 不符合题意; B 、中位数是2册,结论正确,故B 符合题意; C 、极差=3-0=3册,结论错误,故C 不符合题意; D 、平均数是(0×13+1×35+2×29+3×23)÷100=1.62册,结论错误,故D 不符合题意. 故选:B .根据极差、众数、中位数及平均数的定义,依次计算各选项即可作出判断.本题考查了极差、平均数、中位数及众数的知识,属于基础题,掌握各部分的定义及计算方法是解题关键. 14.【答案】5【解析】解:∵一组从小到大排列的数据:2,5,x ,y ,2x ,11的平均数与中位数都是7,∴16(2+5+x +y +2x +11)=12(x +y )=7,解得y =9,x =5,∴这组数据的众数是5. 故答案为5.根据平均数与中位数的定义可以先求出x ,y 的值,进而就可以确定这组数据的众数. 本题主要考查平均数、众数与中位数的定义,平均数是指在一组数据中所有数据之和再除以数据的个数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.一组数据中出现次数最多的数据叫做众数. 15.【答案】93.6【解析】【分析】本题考查了加权平均数的计算.平均数等于所有数据的和除以数据的个数.因为早晨锻炼及体育课外活动表现占成绩的15%,体育理论测试占35%,体育技能测试占50%,利用加权平均数的公式即可求出答案. 【解答】解:由题意知,小明的体育成绩=94×15%+90×35%+96×50%=93.6(分) 故小明的体育成绩是93.6分. 故答案为93.6. 16.【答案】4【解析】【分析】本题主要考查了平均数的计算方法:掌握数据和÷数据的个数=平均数是本题的关键.根据平均数的计算公式列出算式,再进行计算即可得出答案. 【解答】解:∵-1,a ,3的平均数是2,∴(-1+a +3)÷3=2, 解得:a =4; 则a 的值是4; 故答案为4.17.【答案】15【解析】【分析】本题主要考查中位数有关知识,根据中位数的定义即可得. 【解答】解:由图可知共有2+6+8+3+2+1=22人, 则中位数为第11、12人年龄的平均数,即15+152=15(岁),故答案为15.18.【答案】4【解析】解:在这组数据中4出现次数最多,有3次,所以这组数据的众数为4,故答案为:4.根据众数的定义求解可得.本题主要考查众数,解题的关键是掌握求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.19.【答案】135【解析】解:∵13份试卷成绩,结果如下:3个140分,4个135分,2个130分,2个120分,1个100分,1个80分,∴第7个数是135分,∴中位数为135分;故答案为135.根据中位数的定义,把13个数据从大到小排列后,中位数是第7个数.本题主要考查中位数的定义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.20.【答案】(1)50 ,补全条形统计图图形如下:(2)10;13.1×600=132(人)(3)捐款20元及以上(含20元)的学生有:7+450【解析】解:(1)本次抽查的学生有:14÷28%=50(人),则捐款10元的有50-9-14-7-4=16(人),补全条形统计图图形见答案;(2)由条形图可知,捐款10元人数最多,故众数是10;=13.1,故平均数为13.1;这组数据的平均数为:5×9+10×16+15×14+20×7+25×450(3)见答案.【分析】(1)有题意可知,捐款15元的有14人,占捐款总人数的28%,由此可得总人数,将捐款总人数减去捐款5、15、20、25元的人数可得捐10元的人数;(2)从条形统计图中可知,捐款10元的人数最多,可知众数,将50人的捐款总额除以总人数可得平均数;(3)由抽取的样本可知,用捐款20及以上的人数所占比例估计总体中的人数.本题主要考查了条形统计图,扇形统计图,平均数和众数,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.21.【答案】(1)40人,30;(2)平均数=(13×4+14×10+15×11+16×12+17×3)÷40=15(岁),16岁出现12次,次数最多,众数为16岁;按大小顺序排列,中间两个数都为15岁,中位数为15岁【解析】【分析】本题考查了条形统计图,扇形统计图,掌握平均数、众数和中位数的定义是解题的关键.(1)频数÷所占百分比=样本容量,m=100-27.5-25-7.5-10=30;(2)根据平均数、众数和中位数的定义求解即可.【解答】解:(1)4÷10%=40(人),m=100-27.5-25-7.5-10=30;故答案为40人,30.(2)见答案.。

《众数和中位数》习题

《众数和中位数》习题

《众数和中位数》习题1.某地区2月份一周测得白天气温分别为15℃,17℃,16℃,18℃,15℃,14℃,15℃,,这组数据的中位数是________,众数是________.2.在数据1,2,4,6,6,10,12中众数是________,中位数是________.3.笑笑进行了9次1分钟仰卧起坐的测试,成绩如下,(单位:个):34,35,30,34,28,34,29,33,31这组数据的中位数是________,众数是________.4.下面是五(1)班男生跳远成绩记录2.6,3.2,2.4,3.1,2.7,2.8,2.7,3,3.1,2.8,2.6,2.9,2.5,2.8,2.8.这组数据中的中位数是________,众数是________.5.已知数据5,3,5,4,6,5,14,下列说法正确的是()A.中位数是4B.众数是14C.中位数与众数都是5D.中位数与平均数都是56.如果一组数据85,x,80,90的中位数是85,那么x是________,如果这组数据的众数是80,那么x是________.7.一个射击手连续射靶10次,其中2次射中7环,3次射中8环,4次射中9环,1次射中10环,则平均每次射中________环,这次设计的众数是________,这次射击的中位数是________环.10.一个射手连续射靶22次,其中3次射中10环,7次射中9环,9次射中8环,3次射中7环.则射中环数的中位数和众数分别为()A.8,9B.8,8C.8.5,8D.8.5,911.对于数据3,3,2,3,6,3,10,3,6,3,2.①这组数据的众数是3;②这组数据的众数与中位数的数值不等;③这组数据的中位数与平均数的数值相等;④这组数据的平均数与众数的数值相等,其中正确的结论有().A.1个B.2个C.3个D.4个12.在某次数学测验中,随机抽取了10份试卷,其成绩如下:85,81,89,81,72,82,77,81,79,83则这组数据的众数、平均数与中位数分别为().A.81,82,81B.81,81,76.5C.83,81,77D.81,81,8113.对于数据组3,3,2,3,6,3,6,3,2中,众数是_______;平均数是______;中位数是______.14.某厂生产一批男衬衫,经过抽样调查70名中年男子,得知所需衬衫型号的人如下表所示:(1)哪一种型号衬衫的需要量最少?(2)这组数据的平均数是多少?这组数据的中位数是多少?这组数据的众数是多少?。

20.2.1 中位数和众数 初中数学华东师大版八年级下册同步课时练习(含答案)

20.2.1 中位数和众数 初中数学华东师大版八年级下册同步课时练习(含答案)

20.2.1 中位数和众数知识点1 中位数1.某校篮球队五名主力队员的身高分别是173,180,181,176,178(单位: cm),将这些数据按从小到大的顺序排列为 ,因为数据的个数是奇数,所以这五名运动员身高的中位数是 .2.一组数据1,3,3,4,4,5的中位数是( )A.3B.3.5C.4和3D.43.学习全等三角形时,某班举行了以“生活中的全等”为主题的测试活动,全班学生的测试成绩统计如下表:得分(分)85899396100人数(人)4615132则这些学生得分的中位数是( )A.89分B.91分C.93分D.96分4.某中学八年级(2)班六组的8名同学在一次排球垫球测试中的成绩如下(单位:个):35 38 42 44 40 47 45 45则这组数据的中位数、平均数分别是( )A.42,42B.43,42C.43,43D.44,435.生命在于运动.运动渗透在生命中的每一个角落,运动的好处就在于让我们的身体保持健康的状态.小明同学用手机软件记录了自己11月份每天健步走的步数(单位:万步),将记录结果绘制成了如图所示的统计图.在小明每天所走的步数数据中,中位数是 万步.6.一名射击运动员在连续射靶时,2次射中10环,8次射中9环,7次射中8环,2次射中7环,1次射中6环,求这组成绩的平均数和中位数.知识点2 众数7.在某次体育测试中,八年级(1)班5名同学的立定跳远成绩(单位:m)分别为:1.81,1.98,2.10,2.30,2.10.在这组数据中, 出现2次,出现的次数最多,所以这组数据的众数为 .8. 据了解,某定点医院收治的7名新型冠状肺炎患者的新冠病毒潜伏期分别为2天、3天、3天、4天、4天、4天、7天,则这7名患者新冠病毒潜伏期的众数和中位数分别为( ) A.4天,4天B.3天,4天C.4天,3天D.3天,7天9. 在某时段有50辆车通过一个雷达测速点,工作人员将测得的车速绘制成如图所示的条形统计图,则这50辆车的车速的众数(单位: km/h)为( )A.60B.50C.40D.1510.受央视《朗读者》节目的影响,某校八年级(2)班近期准备组织一次朗诵活动,语文老师调查了全班学生平均每天的阅读时间,统计结果如下表所示:每天阅读时间(h)0.511.52人数89103则在本次调查中,全班学生平均每天阅读时间的中位数和众数分别是( )A.2 h,1 hB.1 h,1.5 hC.1 h,2 hD.1 h,1 h11.一组数据1,3,2,7,x,2,3的平均数是3,则该组数据的众数为 .12.某校八年级(1)班全体学生2020年初中毕业体育考试的成绩统计如下表:成绩(分)35394244454850人数(人)2566876根据上表中的信息判断下列结论错误的是( )A.该班一共有40名同学B.该班学生这次考试成绩的众数是45分C.该班学生这次考试成绩的中位数是45分D.该班学生这次考试成绩的平均数是45分13. 在光明中学组织的全校师生迎“五四”诗词大赛中,来自不同年级的25名参赛同学的得分情况如图所示,这些成绩的中位数和众数分别是( )A.96分,98分B.97分,98分C.98分,96分D.97分,96分14.某班7个兴趣小组的人数如下:5,6,6,x,7,8,9,已知这组数据的平均数是7,则这组数据的中位数是( )A.6B.6.5C.7D.815.已知一组数据4,3,2,m,n的众数为3,平均数为2,m>n,则n的值为 .16.已知数据a1,a2,a3,a4,a5的平均数是m,且a1>a2>a3>a4>a5>0,则数据a1,a2,a3,-3,a4,a5的平均数和中位数分别是 .17.某商场购进600箱苹果.在出售之前,先从中随机抽出10箱检查,称得10箱苹果的质量(单位:千克)如下:5.0,5.4,4.4,5.3,5.0,5.0,4.8,4.8,4.0,5.3.(1)请指出这10箱苹果质量的平均数、中位数和众数分别是多少;(2)请你根据上述结果估计600箱苹果的质量为多少千克.18.我国是世界上严重缺水的国家之一.为了倡导“节约用水,从我做起”,小刚从他所在班的50名同学中,随机调查了10名同学一年中的家庭月平均用水量(单位:t),并将调查结果绘成了条形统计图(1)求这10名同学的家庭月平均用水量的平均数、众数和中位数;(2)试估计小刚所在班的50名同学的家庭月平均用水量不超过7 t的有多少户.参考答案1.173,176,178,180,181 178 cm2.B [解析] 按从小到大的顺序排列此组数据为1,3,3,4,4,5,处于中间位置的数是3,4,所以这组数据的中位数是(3+4)÷2=3.5.故选B.3.C [解析] 处于中间位置的数为第20,21两个数,都为93分,所以中位数为93分.故选C.4.B [解析] 把这组数据按从小到大的顺序排列得35,38,40,42,44,45,45,47,则这组数据的中位数为=43.=(35+38+42+44+40+47+45+45)=42.故选B.5.1.3 [解析] ∵共有2+8+7+10+3=30(个)数据,∴这组数据的中位数是第15,16个数据的平均数,而第15,16个数据均为1.3万步,则中位数是1.3万步.故答案为1.3.6.解:这组成绩的平均数为(10×2+9×8+8×7+7×2+6×1)÷(2+8+7+2+1)=8.4(环),中位数为=8.5(环).7.2.10 2.108.A9.C [解析] 由条形图知,40出现的次数最多.故选C.10.B11.3 [解析] 根据题意知=3,解得x=3,则这组数据为1,2,2,3,3,3,7,所以众数为3.故答案为3.12.D13.A [解析] 由统计图可知:按从小到大的顺序排列,第13名同学的分数为96分,故中位数为96分,得分人数最多的是98分,共9人,故众数为98分.故选A.14.C [解析] 根据题意,得=7,解得x=8,∴这组数据的中位数是7.故选C.15.-2 [解析] ∵一组数据4,3,2,m,n的众数为3,平均数为2,m>n,∴m=3,∴4+3+2+3+n=2×5,解得n=-2.故答案为-2.16., [解析] ∵数据a1,a2,a3,a4,a5的平均数是m,∴a1+a2+a3+a4+a5=5m,∴数据a1,a2,a3,-3,a4,a5的平均数为(a1+a2+a3-3+a4+a5)÷6=.数据a1,a2,a3,-3,a4,a5按照从小到大的顺序排列为:-3,a5,a4,a3,a2,a1.处在第3,4位的数据的平均数为,∴数据a1,a2,a3,-3,a4,a5的中位数为.故答案为,.17.解:(1)平均数=(5.0+5.4+4.4+5.3+5.0+5.0+4.8+4.8+4.0+5.3)÷10=4.9(千克).因为5.0出现的次数最多,出现了3次,所以众数是5.0千克.将这10个数按从小到大的顺序排列为:4.0,4.4,4.8,4.8,5.0,5.0,5.0,5.3,5.3,5.4,因为第5个数与第6个数的平均数是5.0,所以这10箱苹果质量的中位数是5.0千克.(2)由(1)得平均每箱苹果的质量为4.9千克,所以估计600箱苹果的质量为4.9×600=2940(千克).18.解:(1)观察条形统计图,可知10名同学的家庭月平均用水量的平均数是(6×2+6.5×4+7×1+7.5×2+8×1)÷10=6.8(t).∵在这组数据中,6.5 t出现了4次,出现的次数最多,∴这10名同学的家庭月平均用水量的众数是6.5 t.∵将这组数据按从小到大的顺序排列,其中处于中间位置的两个数都是6.5 t,则=6.5(t),∴这10名同学的家庭月平均用水量的中位数是6.5 t.(2)∵10名同学的家庭中月平均用水量不超过7 t的有7户,∴小刚所在班的50名同学的家庭月平均用水量不超过7 t的有50×=35(户).。

平均数中位数与众数的计算题目

平均数中位数与众数的计算题目

平均数中位数与众数的计算题目1. 以下数据集中,哪个数值是众数?A. 1, 2, 2, 3, 4B. 1, 2, 3, 4, 5C. 1, 2, 2, 3, 3D. 1, 1, 2, 3, 42. 一组数据为 5, 7, 8, 9, 10, 10, 11, 12, 13,计算其众数。

3. 计算下列数据的中位数:A. 1, 2, 3, 4, 5B. 1, 2, 3, 4, 6C. 1, 2, 3, 5, 6D. 1, 2, 3, 4, 74. 以下数据集中,哪个数值是中位数?A. 1, 2, 3, 4, 5B. 1, 2, 3, 4, 6C. 1, 2, 3, 5, 6D. 1, 2, 3, 4, 75. 计算下列数据的中位数:A. 5, 7, 8, 9, 10, 10, 11, 12, 13B. 1, 2, 3, 4, 5, 6, 7, 8, 9C. 1, 2, 3, 4, 5, 6, 7, 8, 10D. 1, 2, 3, 4, 5, 6, 7, 9, 106. 以下数据集中,哪个数值是平均数?A. 1, 2, 2, 3, 4B. 1, 2, 3, 4, 5C. 1, 2, 2, 3, 3D. 1, 1, 2, 3, 47. 计算下列数据的平均数:A. 5, 7, 8, 9, 10, 10, 11, 12, 13B. 1, 2, 3, 4, 5, 6, 7, 8, 9C. 1, 2, 3, 4, 5, 6, 7, 8, 10D. 1, 2, 3, 4, 5, 6, 7, 9, 108. 以下数据集中,哪个数值是平均数?A. 1, 2, 3, 4, 5B. 1, 2, 3, 4, 6C. 1, 2, 3, 5, 69. 计算下列数据的平均数:A. 5, 7, 8, 9, 10, 10, 11, 12, 13B. 1, 2, 3, 4, 5, 6, 7, 8, 9C. 1, 2, 3, 4, 5, 6, 7, 8, 10D. 1, 2, 3, 4, 5, 6, 7, 9, 1010. 以下数据集中,哪个数值是平均数?A. 1, 2, 2, 3, 4B. 1, 2, 3, 4, 5C. 1, 2, 2, 3, 3D. 1, 1, 2, 3, 411. 计算下列数据的平均数:A. 5, 7, 8, 9, 10, 10, 11, 12, 13B. 1, 2, 3, 4, 5, 6, 7, 8, 9C. 1, 2, 3, 4, 5, 6, 7, 8, 10D. 1, 2, 3, 4, 5, 6, 7, 9, 1012. 以下数据集中,哪个数值是平均数?A. 1, 2, 3, 4, 5C. 1, 2, 3, 5, 6D. 1, 2, 3, 4, 713. 计算下列数据的平均数:A. 5, 7, 8, 9, 10, 10, 11, 12, 13B. 1, 2, 3, 4, 5, 6, 7, 8, 9C. 1, 2, 3, 4, 5, 6, 7, 8, 10D. 1, 2, 3, 4, 5, 6, 7, 9, 1014. 以下数据集中,哪个数值是平均数?A. 1, 2, 2, 3, 4B. 1, 2, 3, 4, 5C. 1, 2, 2, 3, 3D. 1, 1, 2, 3, 415. 计算下列数据的平均数:A. 5, 7, 8, 9, 10, 10, 11, 12, 13B. 1, 2, 3, 4, 5, 6, 7, 8, 9C. 1, 2, 3, 4, 5, 6, 7, 8, 10D. 1, 2, 3, 4, 5, 6, 7, 9, 1016. 以下数据集中,哪个数值是平均数?A. 1, 2, 3, 4, 5B. 1, 2, 3, 4, 6C. 1, 2, 3, 5, 6D. 1, 2, 3, 4, 717. 计算下列数据的平均数:A. 5, 7, 8, 9, 10, 10, 11, 12, 13B. 1, 2, 3, 4, 5, 6, 7, 8, 9C. 1, 2, 3, 4, 5, 6, 7, 8, 10D. 1, 2, 3, 4, 5, 6, 7, 9, 1018. 以下数据集中,哪个数值是平均数?A. 1, 2, 2, 3, 4B. 1, 2, 3, 4, 5C. 1, 2, 2, 3, 3D. 1, 1, 2, 3, 419. 计算下列数据的平均数:A. 5, 7, 8, 9, 10, 10, 11, 12, 13B. 1, 2, 3, 4, 5, 6, 7, 8, 9C. 1, 2, 3, 4, 5, 6, 7, 8, 1020. 以下数据集中,哪个数值是平均数?A. 1, 2, 3, 4, 5B. 1, 2, 3, 4, 6C. 1, 2, 3, 5, 6D. 1, 2, 3, 4, 721. 计算下列数据的平均数:A. 5, 7, 8, 9, 10, 10, 11, 12, 13B. 1, 2, 3, 4, 5, 6, 7, 8, 9C. 1, 2, 3, 4, 5, 6, 7, 8, 10D. 1, 2, 3, 4, 5, 6, 7, 9, 1022. 以下数据集中,哪个数值是平均数?A. 1, 2, 2, 3, 4B. 1, 2, 3, 4, 5C. 1, 2, 2, 3, 3D. 1, 1, 2, 3, 423. 计算下列数据的平均数:A. 5, 7, 8, 9, 10, 10, 11, 12, 13C. 1, 2, 3, 4, 5, 6, 7, 8, 10D. 1, 2, 3, 4, 5, 6, 7, 9, 1024. 以下数据集中,哪个数值是平均数?A. 1, 2, 3, 4, 5B. 1, 2, 3, 4, 6C. 1, 2, 3, 5, 6D. 1, 2, 3, 4, 725. 计算下列数据的平均数:A. 5, 7, 8, 9, 10, 10, 11, 12, 13B. 1, 2, 3, 4, 5, 6, 7, 8, 9C. 1, 2, 3, 4, 5, 6, 7, 8, 10D. 1, 2, 3, 4, 5, 6, 7, 9, 1026. 以下数据集中,哪个数值是平均数?A. 1, 2, 2, 3, 4B. 1, 2, 3, 4, 5C. 1, 2, 2, 3, 3D. 1, 1, 2, 3, 427. 计算下列数据的平均数:A. 5, 7, 8, 9, 10, 10, 11, 12, 13B. 1, 2, 3, 4, 5, 6, 7, 8, 9C. 1, 2, 3, 4, 5, 6, 7, 8, 10D. 1, 2, 3, 4, 5, 6, 7, 9, 1028. 以下数据集中,哪个数值是平均数?A. 1, 2, 3, 4, 5B. 1, 2, 3, 4, 6C. 1, 2, 3, 5, 6D. 1, 2, 3, 4, 729. 计算下列数据的平均数:A. 5, 7, 8, 9, 10, 10, 11, 12, 13B. 1, 2, 3, 4, 5, 6, 7, 8, 9C. 1, 2, 3, 4, 5, 6, 7, 8, 10D. 1, 2, 3, 4, 5, 6, 7, 9, 1030. 以下数据集中,哪个数值是平均数?A. 1, 2, 2, 3, 4B. 1, 2, 3, 4, 5C. 1, 2, 2, 3, 331. 计算下列数据的平均数:A. 5, 7, 8, 9, 10, 10, 11, 12, 13B. 1, 2, 3, 4, 5, 6, 7, 8, 9C. 1, 2, 3, 4, 5, 6, 7, 8, 10D. 1, 2, 3, 4, 5, 6, 7, 9, 1032. 以下数据集中,哪个数值是平均数?A. 1, 2, 3, 4, 5B. 1, 2, 3, 4, 6C. 1, 2, 3, 5, 6D. 1, 2, 3, 4, 733. 计算下列数据的平均数:A. 5, 7, 8, 9, 10, 10, 11, 12, 13B. 1, 2, 3, 4, 5, 6, 7, 8, 9C. 1, 2, 3, 4, 5, 6, 7, 8, 10D. 1, 2, 3, 4, 5, 6, 7, 9, 1034. 以下数据集中,哪个数值是平均数?A. 1, 2, 2, 3, 4C. 1, 2, 2, 3, 3D. 1, 1, 2, 3, 435. 计算下列数据的平均数:A. 5, 7, 8, 9, 10, 10, 11, 12, 13B. 1, 2, 3, 4, 5, 6, 7, 8, 9C. 1, 2, 3, 4, 5, 6, 7, 8, 10D. 1, 2, 3, 4, 5, 6, 7, 9, 1036. 以下数据集中,哪个数值是平均数?A. 1, 2, 3, 4, 5B. 1, 2, 3, 4, 6C. 1, 2, 3, 5, 6D. 1, 2, 3, 4, 737. 计算下列数据的平均数:A. 5, 7, 8, 9, 10, 10, 11, 12, 13B. 1, 2, 3, 4, 5, 6, 7, 8, 9C. 1, 2, 3, 4, 5, 6, 7, 8, 10D. 1, 2, 3, 4, 5, 6, 7, 9, 1038. 以下数据集中,哪个数值是平均数?A. 1, 2, 2, 3, 4B. 1, 2, 3, 4, 5C. 1, 2, 2, 3, 3D. 1, 1, 2, 3, 439. 计算下列数据的平均数:A. 5, 7, 8, 9, 10, 10, 11, 12, 13B. 1, 2, 3, 4, 5, 6, 7, 8, 9C. 1, 2, 3, 4, 5, 6, 7, 8, 10D. 1, 2, 3, 4, 5, 6, 7, 9, 1040. 以下数据集中,哪个数值是平均数?A. 1, 2, 3, 4, 5B. 1, 2, 3, 4, 6C. 1, 2, 3, 5, 6D. 1, 2, 3, 4, 741. 计算下列数据的平均数:A. 5, 7, 8, 9, 10, 10, 11, 12, 13B. 1, 2, 3, 4, 5, 6, 7, 8, 9C. 1, 2, 3, 4, 5, 6, 7, 8, 1042. 以下数据集中,哪个数值是平均数?A. 1, 2, 2, 3, 4B. 1, 2, 3, 4, 5C. 1, 2, 2, 3, 3D. 1, 1, 2, 3, 443. 计算下列数据的平均数:A. 5, 7, 8, 9, 10, 10, 11, 12, 13B. 1, 2, 3, 4, 5, 6, 7, 8, 9C. 1, 2, 3, 4, 5, 6, 7, 8, 10D. 1, 2, 3, 4, 5, 6, 7, 9, 1044. 以下数据集中,哪个数值是平均数?A. 1, 2, 3, 4, 5B. 1, 2, 3, 4, 6C. 1, 2, 3, 5, 6D. 1, 2, 3, 4, 745. 计算下列数据的平均数:A. 5, 7, 8, 9, 10, 10, 11, 12, 13C. 1, 2, 3, 4, 5, 6, 7, 8, 10D. 1, 2, 3, 4, 5, 6, 7, 9, 1046. 以下数据集中,哪个数值是平均数?A. 1, 2, 2, 3, 4B. 1, 2, 3, 4, 5C. 1, 2, 2, 3, 3D. 1, 1, 2, 3, 447. 计算下列数据的平均数:A. 5, 7, 8, 9, 10, 10, 11, 12, 13B. 1, 2, 3, 4, 5, 6, 7, 8, 9C. 1, 2, 3, 4, 5, 6, 7, 8, 10D. 1, 2, 3, 4, 5, 6, 7, 9, 1048. 以下数据集中,哪个数值是平均数?A. 1, 2, 3, 4, 5B. 1, 2, 3, 4, 6C. 1, 2, 3, 5, 6D. 1, 2, 3, 4, 749. 计算下列数据的平均数:A. 5, 7, 8, 9, 10, 10, 11, 12, 13B. 1, 2, 3, 4, 5, 6, 7, 8, 9C. 1, 2, 3, 4, 5, 6, 7, 8, 10D. 1, 2, 3, 4, 5, 6, 7, 9, 1050. 以下数据集中,哪个数值是平均数?A. 1, 2, 2, 3, 4B. 1, 2, 3, 4, 5C. 1, 2, 2, 3, 3D. 1, 1, 2, 3, 4。

(完整版)平均数、众数、中位数练习题

(完整版)平均数、众数、中位数练习题

平均数、众数、中位数练习题、选择题经理决定本周进女装时多进一些红色的,可用来解释这一现象的统计知识是()A.平均数B.中位数C.众数D.方差2. 一家鞋店在一段时间内销售了某种女鞋30 双,各种尺码的销售量如下表:如果鞋店要购进100双这种女鞋,那么购进24厘米、24.5 厘米和25 厘米三种女鞋数量之和最合.适..的是().A.20 双B.30 双C.50 双D.80 双3. 某公司员工的月工资如下表:A .2200 元1800 元1600 元B.2000 元1600 元1800 元C .2200 元1600 元1800 元D.1600 元1800 元1900 元4. 某商场试销一种新款衬衫,一周内销售情况如下表所示:商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最有意义的是()A .平均数B.众数C.中位数D.方差5. 跳远比赛中,所有15 位参赛者的成绩互不相同,在已知自己成绩的情况下,要想知道自己是否进入前8 名,只需要知道所有参赛者成绩的()A .平均数B.众数C.中位数D.方差6. 在一次数学单元考试中,某小组7 名同学的成绩(单位:分)分别是:65,80,70,90,95,100,70. 则这组数据的中位数是A.90B.85C.80D.707. 某鞋店销售一款新式女鞋,试销期间对该款不同尺码女鞋的销售量统计如下表:该店经理如果想要了解哪种尺码的女鞋销售量最大,那么他应关注的统计量是()A. 平均数B.众数C. 中位数D. 方差8. 某一公司共有51 名员工(包括经理),经理的工资高于其他员工的工资. 今年经理的工资从去年的200 000 元增加到225 000 元,而其他员工的工资同去年一样,这样,这家公司所有员工今年工资的平均数和中位数与去年相比将会()A.平均数和中位数不变B. 平均数增加,中位数不变C.平均数不变,中位数增大D. 平均数和中位数都增大9. 有9名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前 4 名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这9 名同学成绩的()A .众数B .中位数C .平均数D .极差、填空题10. 东海县素有“水晶之乡”的美誉.某水晶商店一段时间内销售了各种不同价格的水晶项链 75 条, 其价格和销售数量如价格(元) 20 25 30 35 40 50 70 80 100 150 销售数量(条)1396731664211. 某市广播电视局欲招聘播音员一名,对 A 、B 两名候选人进行了两项素质测试.两人的两项测试成绩如右表所示:根据实际需要,广播电视局将面试、综合知识测试的得分按 3∶ 2 的比例计算两人的总成绩,那么(填 A 或 B )将被录用 .12. 四次测试小丽每分钟做仰卧起坐的次数分别为: 50、 45、48、 47,这组 数据的中位数为 ___________ .13. 甲、乙、丙、丁四支足球队在世界杯预选赛中的进球数分别为: 9、 9、11、7, 则这组数据的 :①众数为 ____________________ ; ②中位数为 ______________ ; ③平均数为 ____________ 14. 李红同学为了在中考体育加试中取得好成绩,每天自己在家里练习做一分钟仰卧起坐,妈妈统计了 她一个星期做的次数: 30、28、24、30、25、30、22. 则李红同学一个星期做仰卧起坐的次数的中位数 和众数分别是 . 三、应用题15. 某校八年级( 1)班 50 名学生参加 2007 年贵阳市数学质量监控考试,全班学生的成绩统计如下表:成绩(分) 7174 78 80 82 83 85 86 88 90 91 92 94 人数 1235453784332(1)该班学生考试成绩的众数是 .(3 分) (2)该班学生考试成绩的中位数是 .(4 分)(3)该班张华同学在这次考试中的成绩是 83 分,能不能说张华同学的成绩处于全班中游偏上水平?试说明理由.(3 分)16. 某校高中一年级组建篮球队,对甲、乙两名备选同学 进行定位投篮测试,每次投 10 个球,共投 10 次. 甲、乙两名同学测试情况如图所示: (1)根据图中所提供的信息填写下表: (2)如果你是高一学生会文体委员, 会选择哪名同学进入篮球队?请说明理由.平均数众数 方差甲1.2 乙2.2测试项目 测试成绩AB面试 90 95 综合知识 测试8580投中个数17. 星期天上午,茱萸湾动物园熊猫馆来了甲、乙两队游客,两队游客的年龄如下表所示:1)根据上述数据完成下表:平均数中位数 众数方差甲队游客年龄1515乙队游客年龄15471.4(2)根据前面的统计分析,回答下列问题:①能代表甲队游客一般年龄的统计量是 _______________________________________ ②平均数能较好地反映乙队游客的年龄特征吗?为什么?18. 某中学初三( 1)班、(2)班各选 5 名同学参加“爱我中华”演讲比赛,其预赛成绩(满分 100 分) 如图所示:1)根据上图信息填写下表:2)根据两班成绩的平均数和中位数,分析19. 如图是某中学男田径队队员年龄结构条形统计图,根据图中信息解答下列问题: 1)田径队共有多少人?2)该队队员年龄的众数和中位数分别是多少? 3)该队队员的平均年龄是多少?乙队: 年龄 13 14 15 16 17 13 人数 2 1 4 1 22年龄 345 6 54 57人数1 2 2311( 3)如果每班各选 2 名同学参加决赛,你认为哪个班 实力更强些?请说明理由 .平均数中位数众数初三( 1)班8585初三( 2)班8580甲队:20. 在烟台市举办的“读好书、讲礼仪”活动中,东华学校积极行动,各班图书角的新书、好书不断增多. 除学校购买外,还有师生捐献的图书. 下面是七年级(1)班全体同学捐献图书的情况统计图:请你根据以上统计图中的信息,解答下列问题:(1)该班有学生多少人?(2)补全条形统计图;(3)七(1)班全体同学所捐图书的中位数和众数分别是多少?四、猜想、探究题21. 某校欲招聘一名数学教师,学校对甲、乙、丙三位候选人进行了三项能力测试,各项测试成绩满分均为100 分,根据结果择优录用.三位候选人的各项测试成绩如下表所示:测试项目测试成绩甲乙丙教学能力857373科研能力707165组织能力647284(1)如果根据三项测试的平均成绩,谁将被录用,说明理由;(2)根据实际需要,学校将教学、科研和组织三项能力测试得分按5∶3∶2 的比例确定每人的成绩,谁将被录用,说明理由.1、有一棵奇妙的树,原来只有1 个树枝,第一年长出1 个树枝,第二年每个树枝分别长出1 个新枝,第三年每个树枝又都分别长出1 个新枝,照这样计算,第五年这棵树一共有几个树枝?2、阿米巴原虫(一种寄生虫)是用简单分裂的方式(一分为二)繁殖的,每分裂一次要用 3 分钟。

小学五年级数学下册《众数、中位数和平均数》的练习

小学五年级数学下册《众数、中位数和平均数》的练习

众数与平均数、中位数的比较
定义:众数是一组数据中出现次数最多的数。
特点:众数不受极端值影响,但可能不唯一。
与平均数的比较:平均数是一组数据的总和除以数据的个数,受极端值影响较大。
与中位数的比较:中位数是将一组数据从小到大排列后,位于中间位置的数。中位数不受极端 值和数据个数的影响。
Part Two
答案:平均数
进阶练习题答案
答案:正确 答案:正确 答案:正确 答案:错误
综合练习题答案
练习题1:答案 为B,因为这组 数据中出现次数 最多的数是20, 所以众数是20。
练习题2:答案 为C,因为这组 数据按从小到大 排列后,位于中 间位置的数是25, 所以中位数是25。
练习题3:答案 为A,因为这组 数据的平均数是 (20+25+30+ 35+40)/5=27, 所以平均数是27。
众数的计算方法
定义:一组数据中出现次数最多的数 计算方法:将数据按照大小顺序排列,出现次数最多的数即为众数 注意事项:如果数据中出现次数最多的数有多个,则众数不止一个 举例:如数据1、2、3、4、4、4、5、6的众数是4和6
众数的应用场景
市场营销:了解消费者的喜好,制定销售策略 数据分析:在大量数据中找出最频繁出现的数值,用于预测趋势 人力资源:评估员工绩效,找出表现最佳和最差的部分员工 金融投资:分析股票、基金等金融产品的价格波动,找出潜在的投资机会
● 题目:一组数据1、2、3、4、5的中位数是( )。 解析:中位数是第3个数和第4个数的平均数,即(3+4)/2=3.5。 ● 解析:中位数是第3个数和第4个数的平均数,即(3+4)/2=3.5。
Part Five
练习题答案

初中数学浙教版八年级下册第3章 数据分析初步3.2 中位数和众数-章节测试习题(8)

初中数学浙教版八年级下册第3章 数据分析初步3.2 中位数和众数-章节测试习题(8)

章节测试题1.【答题】某学习小组7位同学,为玉树地重灾区捐款,捐款金额分别为:5元,10元,6元,6元,7元,8元,9元,则这组数据的中位数与众数分别为()A. 6,6B. 7,6C. 7,8D. 6,8【答案】B【分析】首先把所给数据按从小到大的顺序重新排序,然后利用中位数和众数的定义就可以求出结果.【解答】把已知数据按从小到大的顺序排序后为5元,6元,6元,7元,8元,9元,10元,∴中位数为7∵6这个数据出现次数最多,∴众数为6.选B.2.【答题】某篮球队员12名队员的年龄情况统计如下表:则这12名队员的众数和中位数分别是()A. 23岁,21岁B. 23岁,22岁C. 21岁,22岁D. 21岁,23岁【答案】C【分析】众数就是出现次数最多的数,而中位数就是大小处于中间位置的数,根据、定义即可求解.【解答】21出现的次数最多,因而众数是:21岁;12个数,处于中间位置的是21和23,因而中位数是:22岁.选C.3.【答题】某班5位同学参加“改革开放30周年”系列活动的次数依次为:1、2、3、3、3,则这组数据的众数和中位数分别是()A. 2;2B. 2.4;3C. 3;2D. 3;3【答案】D【分析】众数是一组数据中出现次数最多的数,在这一组数据中3是出现次数最多的,故众数是3;处于这组数据中间位置的那个数是3,那么由中位数的定义可知,这组数据的中位数是3.【解答】在这一组数据中3是出现次数最多的,故众数是3;处于这组数据中间位置的那个数是3,那么由中位数的定义可知,这组数据的中位数是3.选D.4.【答题】某校九年级学生参加体育测试,一组10人的引体向上成绩如下表:这组同学引体向上个数的众数与中位数依次是()A. 9和10B. 9.5和10C. 10和9D. 10和9.5【答案】D【分析】众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解.【解答】在这一组数据中10是出现次数最多的,故众数是10;处于这组数据中间位置的那个数是9、10,那么由中位数的定义可知,这组数据的中位数是(9+10)÷2=9.5.∴这组同学引体向上个数的众数与中位数依次是10和9.5.选D.5.【答题】已知一组数据:11,15,13,12,15,15,16,15.令这组数据的众数为a,中位数为b,则a______b.A. >B. <C. =【答案】C【分析】根据中位数和众数的定义分别求出a,b即可.【解答】在这一组数据中15是出现次数最多的,故a=15;而将这组数据从小到大的顺序排列(11,12,13,15,15,15,15,16),处于中间位置的数是15、15,那么由中位数的定义可知,这组数据的中位数是b=(15+15)÷2=15.∴a=b.故选C.6.【答题】某篮球队12名队员的年龄如表:年龄(岁)18 19 20 21人数 5 4 1 2则这12名队员年龄的众数和平均数分别是()A. 18,19B. 19,19C. 18,19.5D. 19,19.5【答案】A【分析】根据众数及平均数的概念求解.【解答】年龄为18岁的队员人数最多,众数是18;平均数==19.选A.7.【答题】在九年级某次体育测试中,某班参加仰卧起坐测试的一组女生(每组8人)成绩如下(单位:次/分):45、44、45、42、45、46、48、45,则这组数据的平均数、众数分别为()A. 44、45B. 45、45C. 44、46D. 45、46【答案】B【分析】根据平均数的定义计算这组数据的平均数,由于数据中45出现了4次,出现次数最多,则可根据众数的定义得到这组数据的众数为45.【解答】解:数据的平均数=(45+44+45+42+45+46+48+45)=45,数据中45出现了4次,出现次数最多,∴这组数据的众数为45.选B.8.【答题】七年级学生完成课题学习“从数据谈节水”后,积极践行“节约用水,从我做起”,下表是从七年级400名学生中选出10名学生统计各自家庭一个月的节水情况:节水量(m3)0.2 0.25 0.3 0.4 0.5家庭数(个) 1 2 2 4 1那么这组数据的众数和平均数分别是()A. 0.4和0.34B. 0.4和0.3C. 0.25和0.34D. 0.25和0.3 【答案】A【分析】根据众数及平均数的定义,结合表格信息即可得出答案.【解答】解:将数据按从大到小的顺序排列为:0.2,0.25,0.25,0.3,0.3,0.4,0.4,0.4,0.4,0.5,则众数为:0.4;平均数为:(0.2+0.25+0.25+0.3+0.3+0.4+0.4+0.4+0.4+0.5)=0.34.选A.9.【答题】某校初三5名学生中考体育测试成绩如下(单位:分):12、13、14、15、14,这组数据的众数和平均数分别为()A. 13,14B. 14,13.5C. 14,13D. 14,13.6【分析】观察这组数据发现14出现的次数最多,进而得到这组数据的众数为14,将五个数据相加求出之和,再除以5即可求出这组数据的平均数.【解答】解:∵这组数据中,12出现了1次,13出现了1次,14出现了2次,15出现了1次,∴这组数据的众数为14,∵这组数据分别为:12、13、14、15、14,∴这组数据的平均数x==13.6.选D.10.【答题】某外贸公司要出口一批食品罐头,标准质量为每听454克,现抽去10听样品进行检测,它们的质量与标准质量的差值(单位:克)如下:-10,+5,0,+5,0,0,-5,0,+5,+10.则这10听罐头质量的平均数及众数为()A. 454,454B. 455,454C. 454,459D. 455,0【答案】B【分析】首先求得-10,+5,0,+5,0,0,-5,0,+5,+10这10个数的平均数以及众数,然后分别加上454克,即可求解.【解答】解:平均数是:454+(-10+5+0+5+0+0-5+0+5+10)=454+1=455克,-10,+5,0,+5,0,0,-5,0,+5,+10的众数是0,因而这10听罐头的质量的众数是:454+0=454克.11.【答题】某课外学习小组有5人,在一次数学测验中的成绩分别是:120,100,135,100,125,则他们的成绩的平均数和众数分别是()A. 116和100B. 116和125C. 106和120D. 106和135【答案】A【分析】众数的定义求解;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;再利用平均数的求法得出答案.【解答】在这一组数据中100是出现次数最多的,故众数是100;他们的成绩的平均数为:(120+100+135+100+125)÷5=116.选A.12.【答题】某班主任老师为了对学生乱花钱的现象进行教育指导,对班里每位同学一周大约花钱数额进行了统计,如下表:根据这个统计可知,该班学生一周花钱数额的众数、平均数是()A. 15,14B. 18,14C. 25,12D. 15,12【答案】A【分析】根据众数、平均数的概念求得结果,判定正确选项.【解答】∵众数是数据中出现次数最多的数,∴该班学生一周花钱数额的众数为15;∵平均数是指在一组数据中所有数据之和再除以数据的个数,∴该班学生一周花钱数额的平均数=(5×7+10×12+15×18+20×10+25×3)÷50=14.选A.13.【答题】某班六名同学在一次知识抢答赛中,他们答对的题数分别是:7,5,6,8,7,9.这组数据的平均数和众数分别是()A. 7,7B. 6,8C. 6,7D. 7,2【答案】A【分析】根据平均数和众数的概念直接求解,再判定正确选项.【解答】平均数=(7+5+6+8+7+9)÷6=7;数据7出现了2次,次数最多,∴众数是7.选A.14.【答题】王老师为了了解本班学生课业负担情况,在班中随机调查了10名学生,他们每人上周平均每天完成家庭作业所用的时间分别是(单位:小时):1.5,2,2,2,2.5,2.5,2.5,2.5,3,3.5.则这10个数据的平均数和众数分别是()A. 2.4,2.5B. 2.4,2C. 2.5,2.5D. 2.5,2【答案】A【分析】根据平均数的定义,以及众数的定义就可以解决.【解答】解:∵这10名学生每人上周平均每天完成家庭作业所用的时间分别是(单位:小时):1.5,2,2,2,2.5,2.5,2.5,2.5,3,3.5,则根据平均数的计算公式可得:=2.4.这组数据中,2.5出现了4次,是出现次数最多的,即这组数据的众数是2.5.选A.15.【答题】益阳市某年6月上旬的最高气温如下表所示:日期 1 2 3 4 5 6 7 8 9 10最高气温30 28 30 32 34 32 26 30 33 35(℃)那么这10天的最高气温的平均数和众数分别是()A. 32,30B. 31,30C. 32,32D. 30,30【答案】B【分析】根据众数,平均数的定义就可以解答.【解答】平均数是:(30+28+30+32+34+32+26+30+33+35)÷10=31;30出现3次是最多的数,∴众数为30.选B.16.【答题】为了解初三学生的体育锻炼时间,小华调查了某班45名同学一周参加体育锻炼的情况,并把它绘制成折线统计图(如图所示).那么关于该班45名同学一周参加体育锻炼时间的说法错误的是()A. 众数是9B. 中位数是9C. 平均数是9D. 锻炼时间不低于9小时的有14人【答案】D【分析】此题根据众数,中位数,平均数的定义解答.【解答】由图可知,锻炼9小时的有18人,∴9在这组数中出现18次为最多,∴众数是9.把数据从小到大排列,中位数是第23位数,第23位是9,∴中位数是9.平均数是(7×5+8×8+9×18+10×10+11×4)÷45=9,∴平均数是9.由以上可知A、B、C都对,故D错.选D.17.【答题】已知某校女子田径队23人年龄的平均数和中位数都是13岁,但是后来发现其中一位同学的年龄登记错误,将14岁写成15岁,经重新计算后,正确的平均数为a岁,中位数为b岁,则下列结论中正确的是()A. a<13,b=13B. a<13,b<13C. a>13,b<13D. a>13,b=13 【答案】A【分析】根据平均数的计算公式求出正确的平均数,再与原来的平均数进行比较,得出a的值,根据中位数的定义得出最中间的数还是13岁,从而选出正确答案.【解答】∵原来的平均数是13岁,∴13×23=299(岁),∴正确的平均数a=≈12.97<13,∵原来的中位数13岁,将14岁写成15岁,最中间的数还是13岁,∴b=13;选A.18.【答题】某班数学兴趣小组10名同学的年龄情况如下表:年龄(岁)12 13 14 15人数 1 4 4 1则这10名同学年龄的平均数和中位数分别是()A. 13.5,13.5B. 13.5,13C. 13,13.5D. 13,14【答案】A【分析】根据中位数及平均数的定义求解即可.【解答】将各位同学的成绩从小到大排列为:12,13,13,13,13,14,14,14,14,15,中位数是=13.5,平均数是=13.5.选A.19.【答题】在一次信息技术考试中,抽得6名学生的成绩(单位:分)如下:8,8,10,8,7,9,则这6名学生成绩的中位数是()A. 7B. 8C. 9D. 10【答案】B【分析】根据中位数的定义,把把这组数据从小到大排列,找出最中间的数即可.【解答】把这组数据从小到大排列为:7,8,8,8,9,10,最中间两个数的平均数是(8+8)÷2=8,则中位数是8.选B.20.【答题】为响应“节约用水”的号召,小刚随机调查了班级35名同学中5名同学家庭一年的平均用水量(单位:吨),记录如下:8,9,8,7,10,这组数据的平均数和中位数分别是()A. 8,8B. 8.4,8C. 8.4,8.4D. 8,8.4【答案】B【分析】根据中位数和平均数的定义求解即可.【解答】解:这组数据按从小到大的顺序排列为:7,8,8,9,10,则中位数为:8,平均数为:=8.4.选B.。

初二平均数中位数众数方差练习题

初二平均数中位数众数方差练习题

初二平均数中位数众数方差练习题1. 某班级有10个学生,他们的身高分别是:150cm, 152cm, 148cm, 155cm, 160cm, 145cm, 155cm, 150cm, 157cm, 153cm。

请计算该班级学生的平均身高、中位数、众数和方差。

解答:平均身高:(150 + 152 + 148 + 155 + 160 + 145 + 155 + 150 + 157 + 153) ÷ 10 = 153.5cm中位数:首先将身高从小到大排序:145cm, 148cm, 150cm, 150cm, 152cm, 153cm, 155cm, 155cm, 157cm, 160cm中位数为中间的数值,也就是150cm。

众数:众数是指出现次数最多的数值。

在这个例子中,150cm和155cm各出现了两次,其他的数值只出现了一次,因此众数有两个,即150cm 和155cm。

方差:方差是用来衡量数据的离散程度,是每个数据值与平均值的差的平方的平均值。

计算方差的方法如下:1) 计算各个数据值与平均值的差的平方:(150 - 153.5)^2 = 9.02(152 - 153.5)^2 = 2.25(148 - 153.5)^2 = 29.02(155 - 153.5)^2 = 2.25(160 - 153.5)^2 = 42.02(145 - 153.5)^2 = 71.02(155 - 153.5)^2 = 2.25(150 - 153.5)^2 = 9.02(157 - 153.5)^2 = 12.02(153 - 153.5)^2 = 0.252) 计算差的平方的平均值:(9.02 + 2.25 + 29.02 + 2.25 + 42.02 + 71.02 + 2.25 + 9.02 + 12.02 + 0.25) ÷ 10 ≈ 21.12因此,该班级学生身高的方差约为21.12。

第六章 第3课时 中位数与众数(一)

第六章 第3课时 中位数与众数(一)

第3课时 中位数与众数(一)1.已知一组数据为5,6,8,6,8,8,8,则这组数据的众数是______,平均数是_________________.2.如图是小敏同学6次数学测验的成绩统计表,则该同学6次成绩的中位数是( ) A .60分 B .70分 C .75分 D .80分3) A .10、9 B .10、11 C .11、9 D .11、104.如果一组数据2,3,3,x ,4,4,6的众数是3,那么它的中位数是________________. 5.一组数据23,27,20,18,x ,12的中位数是21,那么x=_____________.6.某学校开展纪念国庆60周年系列活动,举办了演讲、书法、作文、手抄报、小品、漫画六项比赛(每个同学限报一项),学生参赛情况如下表:根据统计表,回答下列问题: (1)请补充完成统计表.(2)本次参加比赛的总人数是___________人.(3)手抄报作品与漫画作品的获奖人数分别是6人和3人,你认为“手抄报作品比漫画作品的获奖率高”这种说法是否正确?请说明你的理由.7.九年级某班十名男同学“俯卧撑”的测试成绩(单位:次)分别是9,14,10,15,7,9,16,10,1l ,9.这组数据的众数、中位数、平均数依次是 ( ) A .9、10、11 B .10、11、9 C .9、1l 、10 D .10、9、118.一名射击运动员连续打靶8次,命中的环数如图所示。

则这组数据的众数与中位数分别为 ( ) A .9、8 B .8、9C .8、8.5D .8.5、99在这组数据中,众数是______________,中位数是______________.10.已知一组数据从大到小排列为一1,0,4,x ,6,15,且这组数据的中位数为5,那么数据的众数为_________________.11.5个整数从小到大排列,其中中位数是4,如果这组数据的唯一众数是6,则这5个整数的和的最大值可能是________________.12.已知数据a ,a ,b ,c ,d ,b ,c ,c ,且a<b<c<d ,则这组数据的众数为_____,中位数为___________,平均数为_____________. 13(2)商店这两个月出售的各种规格的空调,众数是__________匹.(3)在研究六月份的进货时,商店经理决定_________匹的空调要多进,________匹的空调要少进.参考答案1.8 7 2.C 3.D 4.3 5.22 6.(1)75 24 30 (2)300 (3)不正确 7.A 8.C 9.170 165 10.6 11.21 12.c2b c+ 2238a b c d +++13.(1)56 (2)1.2 (3)1.2 2。

【例题与讲解】中位数与众数

【例题与讲解】中位数与众数

中位数与众数1.中位数一般地,n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数.一组数据的中位数是唯一的.它可以是这组数据中的数也可以是这组数据外的数.在计算一组数据的中位数时,其步骤为:(1)将这组数据按从小到大(或从大到小)的顺序排列;(2)找到处在最中间位置的一个数或最中间的两个数的平均数即为中位数.谈重点确定中位数求中位数时,一定要先按大小顺序将数据排列,再找中位数,当数据的个数是偶数时,中位数是中间两个数的平均数;当数据的个数是奇数时,正中间的数是中位数.【例1-1】求下列数据的中位数.(1)2,3,14,16,7,8,10,11,13;(2)11,9,7,5,3,1,10,14.分析:求一组数据的中位数时,既可以由小到大排列,也可以由大到小排列,结果数据的个数是偶数,则为最中间两个数据的平均数;如果是奇数,则为最中间一个数据的值.解:(1)将已知数据按从小到大的顺序重新排列:2,3,7,8,10,11,13,14,16.故这组数据的中位数为10.(2)将已知数据按从小到大的顺序重新排列:1,3,5,7,9,10,11,14.∵中间的两个数是7和9,它们的平均数是8,∴这组数据的中位数是8.【例1-2】求数据6,5,4,7,8,10,3的中位数.一般地,一组数据中出现次数最多的那个数据叫做这组数据的众数.一组数据可以有不止一个众数,也可以没有众数.若几个数据出现的次数相同,并且比其他数据出现的次数都多,那么这几个数据都是这组数据的众数;当所有的数出现的次数一样多时,无众数.辩误区区分众数与次数众数是一组数据中出现次数最多的数,而不是该数据出现的次数.【例2-1】某商店有200 L,215 L,185 L,180 L四种型号的冰箱,一段时间内共销售58台,其中四个型号分别售6台,30台,14台,8台,在研究电冰箱出售情况时,商店经理关心这组数据的平均数吗他关心的是什么分析:销售量的多少是商店经理最关心的一个问题,因此在这个问题中平均数不再是考查的主要对象,这组数据的众数是215 L,说明这种型号的电冰箱销量最好,这才是商店经理最为关心的.解:商店经理不关心这组数据的平均数,他关心的是众数,也就是哪种型号的电冰箱销量最好.【例2-2】求数据6,-2,0,6,6,-3,6,2的众数.3.平均数、中位数和众数的关系平均数、中位数和众数都是描述一组数据的集中趋势的特征数,但又具有不同的统计意义.平均数是反映个体的平均水平,从个体的平均水平能估计总体状况.因而平均数应用最为广泛.中位数仅与数据的排列位置有关,某些数据的变动对中位数没有影响.中位数可能出现在所给的数据中,也可能不在所给数据中.当一组数据中个别数据变动较大时,可用它来描述其集中趋势.众数反映各数据出现的次数,其大小只与这组数据中的部分数据有关,当一组数据中有不少数据多次重复出现时,其众数往往更能反映问题.【例3】某乡镇企业生产部有技术工人15人,生产部为了合理制定产品的每月生产定额,统计了这15人某月的加工零件个数:(1)(2)假如生产部负责人把每位工人的月加工零件数定为260件,你认为这个定额是否合理,为什么解:(1)平均数:260(件),中位数:240(件),众数:240(件).(2)不合理.因为表中数据显示,每月能完成260件的人数一共是4人,还有11人不能达到此定额,尽管260是平均数,但不利于调动多数员工的积极性.因为240既是中位数,又是众数,是大多数人能达到的定额,故定额为240较为合理.4.平均数、中位数、众数的应用(1)应用平均数时,所有数据都参加运算,它能充分地利用数据所提供的信息;但当一组数据中存在极大值或极小值时,平均数将不能准确表示数据的集中情况.(2)应用中位数时,计算较简单,不会受到极大值或极小值存在的影响,但不能充分利用所有数据信息.(3)应用众数,某些情况下,人们最关心、最重视的是出现次数最多的数据,这种情况下,应用众数简单而且能够直接满足人们的需求,但当各个数据的重复次数大致相等时,众数往往没有特别意义.点评:求中位数应注意的几点:(1)求中位数时需先将数据按从小到大或从大到小排序.(2)当数据有奇数个时,中位数就是排序后最中间位置上的数;当数据有偶数个时,中位数就是排序后最中间两个数据的平均数.(3)当数据分组排列时,应按数据总个数求中位数,而不能按小组数求中位数.【例4】三个生产日光灯管的厂家在广告中宣称,他们生产的日光灯管在正常情况下,灯管的使用寿命为12个月.工商部门为了检查他们宣传的真实性,从三个厂家各抽取11只日光灯管进行检测,灯管的使用寿命(单位:月)如下:位数、众数)进行宣传(2)如果三种产品的售价一样,作为顾客的你会选购哪个厂家的产品请说明理由.解:(1)甲厂的广告利用了统计中的平均数.乙厂的广告利用了统计中的众数.丙厂的广告利用了统计中的中位数.(2)选购甲厂的产品.理由是甲厂生产的灯管的使用寿命的平均数能较真实地反映灯管的使用寿命.或选用丙厂的产品.理由是丙厂生产的灯管的使用寿命有一半以上超过12个月.。

第六章第3课时 中位数与众数(1)

第六章第3课时 中位数与众数(1)

第3课时中位数与众数(1)预学目标1.从教材“奥运会中两运动员的10次射击数据”的情境中初步了解:当个别数据与其他数据差异很大时,“平均数”有时不能准确地反映“平均水平”.2.阅读中位数的概念,从中体会中位数的计算步骤:(1)按大小顺序排列(从大到小或从小到大);(2)找出中间位置的一个数据或计算中间两个数据的平均数.3.阅读众数的定义并能根据它求出所给数据的众数,理解众数可能有一个或几个,也可能没有.4.当数据用统计表或统计图表示时,要能从表中或图中正确识别出这组数据具体是哪些数,总个数是多少,然后灵活选用计算方法.知识梳理1.中位数的计算:设有n个数据,首先将这n个数据由小到大(或由大到小)依次排列.若n是奇数,则第12n个数据是这组数据的中位数;若n是偶数,则第2n和第(2n+1)个数据的平均数是这组数据的中位数.例如:(1)数据320,250,280,293,307,从小到大排列为_______、_______、_______、_______、_______,排列后数据中第_______个是中位数,是_______;(2)数据6,2,5,4,3,1,从小到大排列为_______、_______、_______、_______、_______,中位数是_______和_______的平均数,是_______.2.众数的计算:一组数据中重复出现次数最多的那个数据是这组数据的众数,例如:(1)数据3,2,3,1,0,其中出现次数最多的数据是_______,因此众数是_______;(2)数据3,2,3,1,2,其中出现次数最多的数据是_______、_______,因此众数是_______.例题精讲例1 某校为了了解七年级学生的身高情况(单位:cm,精确到1 cm),抽查了部分学生,将所得数据处理后分成七组(每组只含最低值,不含最高值),并制成下面两个图表(部分).根据以下信息可知,样本的中位数落在( )A.第二组B.第三组C.第四组D.第五组提示:根据表和扇形图知:第二组12人占总人数的12%,求出总人数,进而根据所占百分比求出第三、五、六组的人数,将表补充完整.解答:C.点评:可求出共有100人,其中第三组18人,前三组共有(6+12+18)人,即36人,因此前三组身高数据共有36个.因为第四组有26人,所以第50个和第51个数据均在第四组,它们的平均数仍在第四组,此题的关键是发现图和表中都有具体数据的是第二组.例2 某男子排球队20名队员的身高如下表,则此男子排球队20名队员身高的众数和中位数分别是( )A.186、186 B.186、187 C.208、188 D.188、187提示:此题要先确定20个数据分别是什么,再根据定义计算.解答:B.点评:此题若改为填空题,则要避免把众数误填为6.中位数是中间两个数据的平均数.热身练习1.在一次“爱心互助”捐款活动中,某班第一小组7名同学捐款的金额(单位:元)分别为:6、3、6、5、5、6、9,则这组数据的中位数和众数分别是( )A.5、5 B.6、5 C.6、6 D.5、62.王老师为了了解本班学生课业负担情况,在班中随机调查了10名学生,他们每人上周平均每天完成家庭作业所用的时间(单位:小时)分别是:1.5、2、2、2、2.5、2.5、2.5、2.5,3、3.5,则这10个数据的平均数和众数分别是( )A.2.4、2.5 B.2.4、2 C.2.5、2.5 D.2.5、23.“只要人人都献出一点爱,世界将变成美好的人间”.在今年的“慈善一日捐”活动中,济南市某中学八年级(3)班50名学生自发组织献爱心捐款活动,班长将捐款情况进行了统计,并绘制成了统计图.根据右图提供的信息,捐款金额的众数和中位数分别是( )A.20、20 B.30、20C.30、30 D.20、304.某中学篮球队12名队员的年龄情况如下:则这个队队员年龄的众数和中位数分别是( )A.15、16 B.15、15 C.15、15.5 D.16、155.已知一组数据2,1,x,7,3,5,3,2的众数是2,则这组数据的中位数是( ) A.2 B.2.5 C.3 D.5参考答案1.C 2.A 3.C 4.A 5.B。

中位数和众数同步练习(原卷解析卷)

中位数和众数同步练习(原卷解析卷)

3.2 中位数和众数同步练习一.选择题(共8小题)1.一组6个数:15,16,18,20,22,22,则这组数据的中位数是()A.22B.20C.19D.182.一组数据﹣1,﹣3,2,4,0,2的众数是()A.0B.1C.2D.33.某住宅小区六月份1日至5日每天用水量变化情况如图所示.那么这5天用水量的中位数是()A.30吨B.36吨C.32吨D.34吨4.为了了解阳光居民小区“全民健身”活动的开展情况,某志愿者随机调查了该小区50名成年居民一周的体育锻炼时间,并将数据进行整理后绘制成如图所示的统计图,则这50人一周体育锻炼时间的众数是()A.6小时B.20人C.10小时D.3人5.一组数据按从小到大排列为2,4,8,x,10,14.若这组数据的中位数为9,则x是()A.6B.8C.9D.106.某鞋店先后卖出7双某品牌的运动鞋,其尺码依次为(单位:码):40,39,40,41,42,41,41,则这组数据的众数是()A.39B.40C.41D.427.某地区汉字听写大赛中,10名学生得分情况如下表:分数50859095人数3421那么这10名学生所得分数的中位数和众数分别是()A.85和85B.85.5和85C.85和82.5D.85.5和808.样本数据3,a,4,b,8的平均数是5,众数是3,则这组数据的中位数是()A.2B.3C.4D.8二.填空题(共6小题)9.已知一组数据是3,4,7,a,中位数为4,则a=.10.一组数据2、3、5、6、x的平均数正好也是这组数据的中位数,那么正整数x为.11.某鞋店一周内销售了某种品牌的男鞋60双,各种尺码的销售量统计如下:尺码/cm23.52424.52525.52626.5销量/双376161882由此你能给这家鞋店提供的进货建议是.12.在振华中学书香文化节中,参加绘画作品评选20名同学所交作品份数如下表,则这20名同学所交作品份数的中位数是份.13.在九年级体育考试中,某校某班参加仰卧起坐测试的8名女生成绩如下(单位:次/分):44,45,42,48,46,43,47,45,则这组数据的众数为.14.若一组数据1,3,4,5,x中,有唯一的众数是1,这组数据的中位数是.三.解答题(共4小题)15.甲乙两位同学参加数学综合素质测试,各项成绩如下表:(单位:分)数与代数空间与图形统计与概率综合与实践学生甲93938990学生乙94929486(1)分别计算甲、乙同学成绩的中位数;(2)如果数与代数,空间与图形,统计与概率,综合与实践的成绩按4:3:1:2计算,那么甲、乙同学的数学综合素质成绩分别为多少分?16.某品牌汽车的销售公司有营销人员14人,销售部为制定营销人员的月销售汽车定额,统计了这14人在某月的销售量如下表:销售辆数201713854人数112532(1)这14位销售员该月销售某品牌汽车的平均数、众数和中位数各是多少辆?(2)销售部经理把每位销售员每月销售汽车定额为9辆,你认为是否合理?为什么?如果不合理,请你设计一个比较合理的销售定额,并说明理由.17.某商场服装部为了调动营业员的积极性,计划实行目标管理,根据目标完成的情况对营业员进行适当的奖励,为了确定一个恰当的年销售目标,商场服装部统计了每位营业员在去年的销售额(单位:万元),并且计划根据统计制定今年的奖励制度.下面是根据统计的销售额绘制的统计表:人数1374年销售额(万元)10853根据以上信息,回答下列问题:(1)年销售额在万元的人数最多,年销售额的中位数是万元,平均年销售额是万元;(2)如果想让一半左右的营业员都能获得奖励,你认为年销售额定位多少合适?说明理由;(3)如果想确定一个较高的奖励目标,你认为年销售额定位多少比较合适?说明理由.18.某射击队为了解运动员的年龄情况,作了一次年龄调查,根据射击运动员的年龄(单位:岁),绘制出如图的统计图.(1)求m的值;(2)该射击队运动员年龄是众数是.(3)求该射击队运动员的平均年龄;(4)若该射击队有13岁运动员2人,则该射击队中14岁运动员有几人?。

典型例题:中位数与众数

典型例题:中位数与众数

中位数与众数的拓展1、某公司销售部有营销人员15人,销售部为了制定某种商品的月销售定额,统计了这15人某月的销售量如下:每人销售件数 1800 510 250 210 150 120人数 1 1 3 5 3 2(1)这15位营销人员该月销售的中位数、众数是多少(2)计算这15位营销人员该月销售的平均数.(3)假设营销部负责人把每位营销员的月销售额定为320件,你认为是否合理,为什么如果不合理,请你制定一个较合理的销售定额,并说明理由.答案:(1)210 210 (2)320(3)合理.因为由(2)可知,15个人的月平均销售额为320件,所以,这样定较为合理.2、某地举办体操比赛,由7位评委现场给运动员打分,已知7位评委给某运动员的评分如下:评委1号2号3号4号5号6号7号评分请你利用所学的统计知识,给出这个运动员的最后得分(精确到).答案:(1)求出平均分x≈;(2)去掉一个最高分和一个最低分,求得平均分x≈;(3)取中位数;(4)取众数.这些分数都可以作为这名运动员的最后得分.本题考查统计知识的应用.确定运动员得分的途径很多,依据的标准、考察目的的不同,答案不一定相同.3、某车间准备采取每月任务定额,超产有奖的措施提高工作效率,为制定一个恰当的生产定额,从该车间200名工人中随机抽取20人统计其某月产量如下:(1)请应用所学的统计知识。

为制定生产定额的管理者提供有用的参考数据;(2)你认为管理者将每月每人的生产定额定为多少最合适为什么(3)估计该车间全年可生产零件多少个答案:在确定生产定额时,需参考的数据应当有:平均数、众数、中位数。

合理的生产定额应确定在使多数人经过努力能够完成或超额完成的基础上。

如果将众数280定为生产定额,则绝大多数工人不需太努力就可完成任务,但不利于提高工作效率;若将平均数305定为生产定额,则多数工人不可能超产,甚至完不成定额,会挫伤工人的积极性。

解:(1)平均数305,国位数290,众数280;(2)取中位数290作为生产定额较合适,原因是这个定额使多数工人经过努力能完成或超额完成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

众数与中位数练习
教学内容:
实验教科书青岛版小学数学六年级上册第91-96页
教学目标:
1.理解众数与中位数的意义。

2.使学生会求一组数据的众数与中位数。

3.培养同学们的实践能力、创新意识和求真的科学态度。

教学重难点:
重点:使学生通过练习掌握众数与中位数的概念.。

难点:熟练的求一组数据的众数与中位数。

教学具准备:投影仪
教学过程:
一、问题回顾,再现新知。

复习:
1.说说什么是众数?什么是中位数?
两名学生口答。

2.说说平均数、众数中位数的联系与区别?
多让学生说一说,然后集体归纳:(教师板书)
众数、中位数与平均数从不同的角度描述了一组数据的集中趋势.其中,平均数的应用最为广泛。

(1)平均数的大小与一组数据里的每个数据均有关系,其中任何数据的变动都会相应引起平均数的变动。

(2)众数着眼于对各数据出现次数的考察,其大小只与这组数据中的部分数据有关.当一组数据中有不少数据多次重复出现时,其众数往往是我们关心的一种统计量。

(3)中位数则仅与数据的排列位置有关,因此某些数据的变动对它的中位数没有影响.当一组数据中的个别数据变动较大时,可用它来描述其集中趋势。

二、分层练习、巩固提高
(一)基本练习。

1. 7.7、8.4、6.3、7.0、6.4、7.0、8.6、9.1这组数据的众数是( ),中位数是( ),平均数是( )。

2.对于数据组2、4、4、5、3、9、4、5、1、8,其众数、中位数与平均数分别是( ), ( ), ( )。

(二)提高练习。

1.某市举行一次少年滑冰比赛,各年龄组的参赛人数如下表所示:
年龄组 13岁 14岁 15岁 16岁
参赛人数 5 19 12 14
1)求全体参赛选手年龄的众数、中位数;
2)小明说,他所在年龄组的参赛人数占全体 参赛人数的25
7.你认为小明是哪个年龄组的选手?请说明理由。

2.(1)下面是10名工人一天内生产同一种零件的件数。

15 17 14 10 15 19 17 16 14 12
求这一天10天工人生产零件件数的中位数,并说说它的实际意义。

(2)甲、乙两个旅游团队,对于的年龄如下。

(单位:岁)
甲团:13、13、14、17、15、15、16、17、17
乙团:13、14、15、15、15、16、15、54、57
甲、乙团旅游的平均年龄各是多少岁?中位数各是多少岁?众数各是多少岁?
让学生独立求,全班汇报交流。

(三)综合练习、应用新知
1.小华所在小组的同学们拥有的课外书的数量如下(单位;本)
7、27、13、18、26、25、19、26、27、28、11、17
这组数据的平均数、中位数、众数各是多少?
你认为哪个数据更能代表这组同学拥有的课外书的一般水
平?
2.六(1)班要在王英和李红两位同学中选一名去参加全校1分钟跳绳比赛。

她俩10次练习的成绩如下:
王英:200、218、198、204、209、215、238、196、210、211
李红:196、188、256、206、233、182、193、210、212、199
这两组数据的平均数、中位数和众数各是多少?
根据统计数据,你认为派谁去参加比赛更加合适?
学生独立解决,汇报交流。

3.某校7名女生跳远成绩如下:2.06、 1.90 、1.74、 2.52、 1.89 、1.78 、1.83
1)分别求出这组数据的平均数与中位数。

2)哪个数代表这组数据的一般水平更合适?
3)如果1.89m(含1.89m)以上为合格,有多少名学生合格了?超过半数了吗?
4)如果再增加一名成绩是1.94m的同学,这组数据的中位数是几?
三、梳理总结、提升认识。

通过练习你对所学知识又有了哪些新的认识?还有什么问题没有解决?
学生交流回顾。

总结:
1.中位数的求法
(1)先将这组数据排序,从大到小或从小到大排列都行。

(2)若数据个数是奇数个,那么最中间的那个数就是这组数据的中位数;若数据个数是偶数个,那么最中间的那两个数的平均数就是着这组数据的中位数。

2.众数:一组数据中出现次数最多的数,叫做这组数据的众数。

平均数与一组数据中的每一个数据都有关系,容易受到极端数据的影响。

当一组数据中有不少数据多次重复出现时,我们往往更关心它的众数。

注意事项:
(1)在一组数据中,众数可能不止一个,也可能没有众数。

(2)众数是一组数据中的原数据,而不是某数据出现的次数。

3.平均数、众数和中位数的区别
(1)平均数的大小与一组数据里的每个数据均有关系,其中任何数据的变动都会相应引起平均数的变动。

(2)众数着眼于对各数据出现次数的考察,其大小只与这组数据中的部分数据有关.当一组数据中有不少数据多次重复出现时,其众数往往是我们关心的一种
统计量。

(3)中位数则仅与数据的排列位置有关,因此某些数据的变动对它的中位数没有影响.当一组数据中的个别数据变动较大时,可用它来描述其集中趋势。

板书设计、
众数与中位数练习
1.众数
2.中位数
使用说明:
1、教学反思,回味课堂,我觉得亮点之处有
(1)本练习设计充分运用教材资源并适当的进行了拓展,符合学生认知规律,让学生自身经历获得对数学事实和经验的认识,有利于调动学生的积极性,获得愉快的情感。

(2)注重加强基础知识基本技能的练习,结合实际更好的理解和应用众数和中位数两个统计量。

2、使用建议。

在强调平均数与中位数哪个数代表一组数据的一般水平更合适时,一定要强调好以下几点:
(1)平均数是先用总数除以份数。

平均数的大小与一组数据里的每个数都有关系。

(2)中位数是先按大小顺序排列,找出最中间的数。

中位数则仅与一组数据排列位置有关。

(3)当一组数据中没有特别偏大或偏小的数据时,平均数和中位数这两个统计量都能较好地反映该组数据的一般情况。

(4)当一组数据有特别偏大或偏小的数据时,选用中位数来表示该组数据的一般情况比较合适。

3、需要破解的问题
如何有效快速的从统计表和统计图中找出一组数据的中位数。

相关文档
最新文档