最新新课标人教版高中物理选修3-4教案 §13.1 光的反射和折射
人教版高中物理选修(3 4) 13.1《光的反射和折射》参考教案2
人教版高中物理选修(3 4) 13.1《光的反射和折射》参考教案2人教版高中物理选修(3-4)-13.1《光的反射和折射》参考教案2第十三章第一节光的反射和折射【教学目标】(一)知识与技能1.知道光在反射和折射中的光程是可逆的,并能解释和处理相关问题2、掌握光的反射定律与折射定律;知道折射率(指绝对折射率)的定义及其与光速的关系,并能用来进行计算(二)过程与方法通过实验、讨论和教师指导,了解折射定律,知道折射光路是可逆的,能够解释光现象和计算相关问题;体验测量玻璃折射率的实验,体验其中包含的实验方法。
(3)情感态度和价值观通过生活中大量的折射现象的分析,激发学生学习物理知识的热情,并正确认识生活中的自然现象,树立正确的世界观.【教学重点与难点分析】教学要点:重点是光的折射定律和折射率教学难点:如何利用折射定律,折射率与光速的关系,以及光路可逆的知识解决相关问题。
[教学过程](一)提出问题,引入新课实验演示:打开激光演示仪的电源,暂时不要打开开关,将烟雾发生器点燃到光折射演示仪中,将半圆柱形透明玻璃放入相应位置。
打开开关,点燃激光管,让一束激光照射在半圆柱形透明玻璃的平面上,让光通过圆心垂直于平面入射(沿法线入射),观察当光从空气发射到空气和玻璃之间的界面时会发生什么?生观察并回答:一部分光返回到空气中去(反射光),另一部分光会进入到玻璃中去,但传播方向与入射光的传播方向相比,发生偏折。
老师强调:一、光从第1种介质射到它与第2种介质的分界面时,一部分光会返回到第1种介质,这种现象叫光的反射。
另一部分光会进入第2种介质的现象,叫做光的折射。
复习初中学习的光的反射定律和反射光路的可逆性知识。
2、光的反射定律:1、反射光线、入射光线、法线在同一平面内.反射光线,I’面入射光线位于法线的两侧2、反射角等于入射角.在反射中,光路是可逆的师:从刚才的复习可知,我们在初中对于反射的了解已经非常到位了,但对于折射,还只是知道了一些定性的规律,如:折射光线跟入射光线和法线在同一平面内;折射光线和入射光线分居在法线的两侧;当光从空气斜射入水或玻璃中时,折射角小于入射角;当光从水或玻璃斜射入空气中时,折射角大于入射角。
高中物理选修3-4学案:13.1光的反射和折射
[目标定位] 1.理解光的反射定律和折射定律,并能用来解释和计算有关问题.2.理解折射率的物理意义,知道折射率与光速的关系.3.会依据光的反射定律和折射定律作出光路图.4.会用插针法测定玻璃的折射率.一、反射定律和折射定律1.光的反射及反射定律(1)光的反射:光从第1种介质射到它与第2种介质的分界面时,一部分光会________到第1种介质的现象.(2)反射定律:反射光线与入射光线、法线处在____________内,反射光线与入射光线分别位于法线的________;反射角________入射角.(3)在光的反射现象中,光路________.(填“可逆”或“不可逆”) 2.光的折射及折射定律(1)光的折射:光从第1种介质射到它与第2种介质的分界面时,一部分光会进入第2种介质的现象. (2)折射定律折射光线与入射光线、法线处在______________内,折射光线与入射光线分别位于法线的________;入射角的正弦与折射角的正弦成______比,即______________=n 12. (3)与光的反射现象一样,在光的折射现象中,光路也是可逆的. 3.解决光的折射问题的基本思路 (1)根据题意画出正确的光路图.(2)利用几何关系确定光路图中的边、角关系,要注意入射角、折射角是入射光线、折射光线与法线的夹角.(3)利用折射定律n =sin θ1sin θ2等知识列方程,结合数学三角函数的关系进行运算.深度思考光在两种介质的界面发生反射和折射现象时,反射光线、折射光线和入射光线的传播速度是否相同?例1一束光线射到一个玻璃球上,如图1所示.该玻璃球入射角的正弦与折射角的正弦之比是3,光线的入射角是60°.求该束光线射入玻璃球后第一次从玻璃球射出的方向.(用与入射光线的夹角表示)图1解决光的折射问题,首先应正确画出光路图,再利用几何关系确定边、角关系,最后利用折射定律等公式求解.二、折射率(n)1.定义:光从________射入某种介质发生折射时,入射角的________与折射角的________之比,叫做这种介质的绝对折射率,简称折射率,用符号n 表示.2.折射率与光速的关系:某种介质的折射率,等于光在__________的传播速度c 与光在这种介质中的传播速度v 之比,即n =cv . 3.任何介质的折射率n 都大于1. 4.对折射率的理解(1)折射率是一个反映介质的光学性质的物理量,其大小由介质本身及入射光的________决定,与入射角、折射角的大小______关.(填“有”或“无”) (2)“相对折射率”与“绝对折射率”①相对折射率:光从介质1射入介质2时,入射角θ1与折射角θ2的正弦之比叫做介质2对介质1的相对折射率,通常用n 12表示.sin θ1sin θ2=n 12.②绝对折射率:若介质1是真空,则介质2相对真空的折射率叫做该介质的绝对折射率,通常用n 表示.(3)应用n =sin θ1sin θ2计算介质的折射率时,注意θ1为真空中的光线与法线的夹角,不一定为入射角;θ2为介质中光线与法线的夹角,也不一定为折射角.例2(多选)关于折射率,下列说法正确的是()A .根据sin θ1sin θ2=n 12可知,介质的折射率与入射角的正弦成正比B .根据sin θ1sin θ2=n 12可知,介质的折射率与折射角的正弦成反比C .根据n =cv 可知,介质的折射率与光在该介质中的传播速度成反比 D .同一频率的光由真空进入某种介质时,折射率与波长成反比折射率n 反映了介质的光学性质,它的大小只由介质本身和入射光的频率决定,与入射角和折射角的大小无关,切不可认为n 与入射角的正弦成正比,与折射角的正弦成反比.例3(多选)如图2所示,有Ⅰ、Ⅱ、Ⅲ三种介质,光线的传播方向以及光线与介质分界面的夹角由图中标出,由此可以判断()图2A.光在介质Ⅱ中的传播速度最小B.介质Ⅲ的折射率最小C.光在介质Ⅰ中的传播速度最大D.介质Ⅲ的折射率最大三、测定玻璃的折射率1.实验原理用插针法确定光路,找出跟入射光线相对应的折射光线,用量角器测入射角θ1和折射角θ2,根据折射定律计算出玻璃的折射率n =sin θ1sin θ2.2.实验器材两面平行的玻璃砖,方木板,白纸,图钉(若干),大头针四枚,直尺,量角器,铅笔. 3.实验步骤(1)如图3所示,将白纸用图钉钉在平木板上.图3(2)在白纸上画出一条直线aa ′作为界面(线),过aa ′上的一点O 画出界面的法线NN ′,并画一条线段AO 作为入射光线.(3)把长方形玻璃砖放在白纸上,使它的长边跟aa ′对齐,画出玻璃砖的另一边bb ′. (4)在直线AO 上竖直插上两枚大头针P 1、P 2,透过玻璃砖观察大头针P 1、P 2的像,调整视线方向直到P 2的像挡住P 1的像.再在观察者一侧竖直插上两枚大头针P 3、P 4,使P 3挡住P 1、P 2的像,P 4挡住P 3本身及P 1、P 2的像,记下P 3、P 4的位置.(5)移去大头针和玻璃砖,过P 3、P 4所在处作直线O ′B 与bb ′交于O ′,直线O ′B 就代表了沿AO 方向入射的光线通过玻璃砖后的传播方向.(6)连接OO ′,入射角θ1=∠AON ,折射角θ2=∠O ′ON ′,用量角器量出θ1和θ2,从三角函数表中查出它们的正弦值,把这些数据记录在自己设计的表格中.(7)用上述方法测出入射角分别为30°、45°、60°时的折射角,查出它们的正弦值,填入表格中.(8)算出不同入射角下的正弦比值sin θ1sin θ2,最后求出在几次实验中比值sin θ1sin θ2的平均值,即为玻璃砖的折射率. 4.注意事项(1)实验中,玻璃砖在纸上的位置不可移动.(2)不能用手触摸玻璃砖光洁面,更不能把玻璃砖当尺子用.(3)大头钉应竖直插在白纸上,且玻璃砖每一侧两枚大头针P 1与P 2间、P 3与P 4间的距离应适当大些,以减小确定光路方向时造成的误差.(4)实验中入射角不宜过小或过大,否则会使测量误差增大.(5)本实验中如果采用的不是两面平行的玻璃砖,而是采用三棱镜、半圆形玻璃砖等,那么只是出射光线和入射光线不平行,同样能测出折射率.例4在用三棱镜测定玻璃折射率的实验中,先在白纸上放好三棱镜,在棱镜的一侧插入两枚大头针P1和P2,然后在棱镜的另一侧观察,调整视线使P1的像被P2挡住,接着在眼睛所在的一侧插两枚大头针P3、P4,使P3挡住P1、P2的像,P4挡住P3和P1、P2的像,在纸上标出的大头针位置和三棱镜轮廓如图4所示.图4(1)在本题的图上画出所需的光路;(2)为了测出棱镜玻璃的折射率,需要测量的量是________,________,在图上标出它们;(3)计算折射率的公式是________.1.(对折射现象的理解)关于光的折射现象,下列说法中正确的是()A.折射角一定小于入射角B.折射率跟折射角的正弦值成反比C.折射角增大为原来的2倍,入射角也增大为原来的2倍D.折射率大的介质,光在其中的传播速度小2.(折射定律的应用)一条光线从空气射入折射率为2的介质中,入射角为45°,在界面上入射光的一部分被反射,另一部分被折射,则反射光线和折射光线的夹角是()A.75°B.90°C.105°D.120°3.(测定玻璃的折射率)(多选)“测定玻璃的折射率”的实验中,在白纸上放好玻璃砖,aa′和bb′分别是玻璃砖与空气的两个界面,如图5所示.在玻璃砖的一侧插上两枚大头针P1和P2,用“×”表示大头针的位置,然后在另一侧透过玻璃砖观察,并依次插上大头针P3和P4.在插P3和P4时,应使()图5A.P3只挡住P1的像B.P4只挡住P2的像C.P3同时挡住P1、P2的像D.P4挡住P3,同时挡住P1、P2的像4.(折射定律的应用)人造树脂是常用的眼镜镜片材料.如图6所示,光线射在一人造树脂立方体上,经折射后,射在桌面上的P点.已知光线的入射角为30°,OA=5cm,AB=20cm,BP=12cm,求该人造树脂材料的折射率n.图6提醒:完成作业第十三章 1[答案]精析一、1.(1)返回(2)同一平面两侧等于(3)可逆2.(2)同一平面两侧正sinθ1 sinθ2深度思考光在不同介质中的传播速度不同.反射光线和入射光线是在同一介质中,故它们两个的传播速度相同;折射光线和入射光线不在同一介质中,故它们两个的传播速度不同.例1与入射光线的夹角为60°[解析]光线射入玻璃球后第一次从玻璃球射出的光路如图所示.由折射定律得sin i1sin r1=n,sin i2 sin r2=1 n.由△AOB为等腰三角形,则i2=r1.由几何关系知r1+∠1=60°,i2+∠2=r2,又由图知,∠3是出射光线相对于入射光线的偏折角,且∠3=∠1+∠2.联立以上各式解得∠3=60°,即第一次从玻璃球射出的光线与入射光线的夹角为60°.二、1.真空正弦正弦 2.真空中 4.(1)频率无例2CD[介质的折射率是一个反映介质光学性质的物理量,由介质本身和光的频率共同决定,与入射角、折射角无关,故选项A、B均错;由于真空中的光速是个定值,故n与v成反比是正确的,这也说明折射率与光在该介质中的传播速度是有联系的,选项C正确;由于v=λf,当f一定时,v与λ成正比,又n与v 成反比,故n与λ也成反比,选项D正确.]例3AB[由相对折射率和绝对折射率的关系可知:n1sin45°=n2sin40°,n2sin26°=n3sin40°,得n2>n1>n3,B项对,D项错;由n=c v可知v2<v1<v3,A项对,C项错.]三、例4 见[解析][解析](1)如图所示,画出通过P 1、P 2的入射光线,交AC 面于O ,画出通过P 3、P 4的出射光线交AB 面于O ′.则光线OO ′就是入射光线P 1P 2在三棱镜中的折射光线.(2)在所画的图上注明入射角θ1和折射角θ2,并画出虚线部分,用量角器量出θ1和θ2. (3)n =sin θ1sin θ2.对点检测 自查自纠 1.D 2.C [高中物理选修3-421如图所示,根据折射定律sin θ1sin θ2=n ,则sin θ2=sin θ1n =sin45°2=12,θ2=30°,反射光线与折射光线的夹角θ=180°-45°-30°=105°,C 正确.]3.CD [在插上大头针P 3时,应使P 3挡住P 1、P 2的像;在插上大头针P 4时,应使P 4挡住P 3,同时挡住P 1、P 2的像.所以选项C 、D 正确.] 4.44914(或n =1.5) [解析] 设折射角为θ2,由折射定律n =sin θ1sin θ2,其中θ1=30° 由几何关系知sin θ2=BP -OA OP,且OP =(BP -OA )2+AB 2 代入数据解得n =44914(或n ≈1.5).。
人教版高中物理选修3-4精品课件 第十三章 1 光的反射和折射
砖的另一边bb'。
课堂篇探究学习
探究一
探究二
探究三
当堂检测
(4)在直线AO上竖直插上两枚大头针P1、P2,透过玻璃砖观察大
头针P1、P2的像,调整视线方向直到P2的像挡住P1的像,再在观察者
一侧竖直插上两枚大头针P3、P4来自使P3挡住P1、P2的像,P4挡住P3及
由图得
sin
n=sin
①
由几何关系得 1.5tan i+3tan i=6
解得
所以
4
tan i=3
4
sin i=
5
②
P 点至树岸边的距离为 3tan i=4
sin r=
4
2
42 +ℎ
③
把②③代入①得 h=5.3 m。
答案:5.3 m
课堂篇探究学习
探究一
探究二
探究三
当堂检测
归纳总结解决光的反射、折射问题的方法
(3)光路可逆性:光由介质射入空气或真空时,折射角θ2大于入射
角θ1。根据光路可逆,可认为光由空气或真空以入射角θ2入射,对应
的折射角为θ1。
在折射现象中,光路是可逆的。
课堂篇探究学习
探究一
探究二
探究三
当堂检测
典例剖析
例题1如图所示,一小孩站在宽6 m的河边,在他正对面的岸边有
一距离河面高度为3 m的树,树的正下方河底有一块石头,小孩向河
课堂篇探究学习
探究一
探究二
探究三
当堂检测
2.数据处理
(1)计算法:通过测量入射角和折射角,然后查数学用表,得出入射
高中物理选修3-4学案3:13.1 光的反射和折射
1 光的反射和折射学习目标1.认识光的反射及折射现象,知道法线、入射角、反射角、折射角的含义2.理解折射定律,会用折射定律解释相关光现象和计算有关问题3.理解折射率的概念,会测定玻璃的折射率学习重点折射定律的应用及折射率的测量学习难点折射定律与光的可逆原理相结合的应用,特别是求解折射率【预习案】一、复习知识:初中学习的光的相关概念及作图的基本方法。
二、教材导读:目标一:反射定律和折射定律【探究1】光从一种介质射入另一种介质时,一般会发生什么样的现象?光的反射:光射到两种介质界面时,有一部分光到介质中的现象。
光的折射:光从一种介质射向另一种介质时,有一部分光会另一种介质的现象。
光的反射定律:反射光线与入射光线、法线处在;反射光线与入射光线分居在;反射角入射角(三线共面,两角相等)。
【探究2】光在折射时遵循什么样的规律?入射角:。
折射角。
光的折射定律:折射光线与入射光线、法线在;折射光线与入射光线分居在;入射角的正弦与折射角的。
即:。
注意:在光的反射和折射现象中,光路是。
目标二:折射率1、光从第1种介质射入第2种介质时,入射角的正弦与折射角的正弦之比n12是个常数,它与入射角、折射角的大小,只与两种介质有关。
2、光从真空射向其它介质时,此常数用表示,对不同的介质,是不同的,它反映介质的性质。
常数n越大,光线从空气斜射入这种介质时偏折的。
3、折射率定义:光从真空射入某种介质发生折射时,入射角的与折射角的之比,叫做这种介质的,简称,用符号表示,即。
4、折射率与速度的关系:光在不同介质中的速度不同,某种介质的折射率还等于光在真空(或空气)中与光在这种介质中的之比,即:。
【探究3】为什么任何介质的折射率n都大于1 ?课后练习:1.一点光源S经平面镜M成像S′,人眼于P点可以观察到S′,如图所示,今在S、M间放一不太大的遮光板N,则()A.S不能在M中成像B.S仍能在M中成像C.人眼观察到S′的亮度将变小D.人眼观察到S′的亮度将不变2.2010年上海世博会,光纤通信网覆盖所有场馆,为各项活动提供了安全可靠的通信服务.光纤通信利用光的全反射将大量信息高速传输.如图所示,一条圆柱形的光导纤维,长为L ,它的玻璃芯的折射率为n 1,外层材料的折射率为n 2,光在空气中的传播速度为c ,若光从它的一端射入,经全反射后从另一端射出所需的最长时间为t ,则下列说法中正确的是(图中所示的φ为全反射的临界角,其中sin φ=n 2n 1)( )A .n 1>n 2,t =n 1Ln 2cB .n 1>n 2,t =n 21Ln 2cC .n 1<n 2,t =n 1Ln 2cD .n 1<n 2,t =n 21Ln 2c3.(2011重庆高考)在一次讨论中,老师问道:“假如水中相同深度处有a 、b 、c 三种不同颜色的单色点光源,有人在水面上方同等条件下观测发现,b 在水下的像最深,c 照亮水面的面积比a 的大.关于这三种光在水中的性质,同学们能做出什么判断?” 有同学回答如下: ①c 光的频率最大 ②a 光的传播速度最小 ③b 光的折射率最大 ④a 光的波长比b 光的短根据老师的假定,以上回答正确的是( ) A .①② B .①③ C .②④D .③④4.(2011福建高考)如图,半圆形玻璃砖置于光屏PQ 的左下方.一束白光沿半径方向从A 点射入玻璃砖,在O 点发生反射和折射,折射光在光屏上呈现七色光带.若入射点由A 向B 缓慢移动,并保持白光沿半径方向入射到O 点,观察到各色光在光屏上陆续消失.在光带未完全消失之前,反射光的强度变化以及光屏上最先消失的光分别是( )A .减弱,紫光B .减弱,红光C .增强,紫光D .增强,红光5.(2011安徽高考)实验表明,可见光通过三棱镜时各色光的折射率n 随波长λ的变化符合科西经验公式:n =A +B λ2+Cλ4,其中A 、B 、C 是正的常量.太阳光进入三棱镜后发生色散的情形如图所示.则()A.屏上c处是紫光B.屏上d处是红光C.屏上b处是紫光D.屏上a处是红光[答案]1.[解析]虽有部分光被遮光板N 遮挡,但仍有光可通过平面镜成像,S ′为虚像不是实际光线的会聚点,因此不涉及到像的亮度问题. [答案]BD2.[解析]光从内芯射向包层时会发生全反射,故内芯的折射率应大于包层的折射率;当内芯射向包层的入射光的入射角等于临界角φ时,光的路线最长,所用时间也最长,设为t max ,此时光束在沿光导纤维方向的速度分量为v sin φ,则光在穿过光导纤维时有L =v sin φt max ,得t max =L v sin φ=n 21L n 2c .[答案]B3.[解析]观察水下点光源的光路图和水面亮圆形成的光路图分别如图(1)和图(2)所示.因b 在水下的像最深,即折射角β最小,由公式n =sin βsin α可知,b 光的折射率n b 最小.c 光照亮水面的面积比a 大,则c 光的临界角大,由公式sin C =1n 可知,则n c <n a ,所以,n b <n c <n a ,a 光的频率最大,a 光的波长最短,由n =cv可知,a 光的传播速度最小.故选项C 正确.[答案]C4.[解析]入射点由A 向B 移动,入射角增大,反射光强度增强,可见光中紫光折射率最大,由sin C =1n 知,紫光临界角最小,最先发生全反射,故紫光先在光屏上消失,C 项正确.[答案]C5.[解析]根据n =A +B λ2+Cλ4知波长越长折射率越小,光线偏折越小.从图可知,d 光偏折最厉害,折射率最大,应是紫光;a 光偏折最轻,折射率最小,应是红光;选项D 正确. [答案]D。
高中物理选修3-4教学设计4:13.1 光的反射和折射教案
13、1光的反射和折射的教学设计教学目标一、知识目标1.知道反射定律的确切含义,并能用来解释有关现象.2.知道反射现象中光路是可逆的,并能用来处理有关问题.3.知道平面镜成像特点及作图方法.4.理解折射定律的确切含义,并能用来解释有关的光现象和计算有关的问题.[5.知道折射光路是可逆的,并能用来处理有关的问题.6.知道折射率的定义及其与光速的关系,并能用来进行有关的计算.二、能力目标1.会用反射定律解释有关现象和处理有关问题.2.会用折射定律计算有关的问题,能理解折射率与光速的关系,并能用来进行有关的计算.三、德育目标1.通过观察演示实验,培养学生的观察、概括能力,通过相关物理量变化规律的教学,培养学生分析、推理能力.2.渗透物理研究和学习的科学态度教育.●教学重点光的折射定律.折射率概念.●教学难点光的折射定律和折射率的应用.●教学方法本节课成功的关键在于做好实验.通过实验先定性观察再定量测量,引导学生对测量数据进行分析、归纳.再来领略前人所做的思考从而领会数据分析的几种常用方法——比值法、乘积法、加减法、图象法等,为学生今后对实验数据的处理打开思路.最后通过例题练习巩固所学内容.教学过程一、引入新课我们已经知道了,光在同一均匀介质中是沿着直线传播的,那么,当介质不均匀或当光从一种介质进入另一种介质中时,会发生什么现象呢?[学生]反射,折射[教师]对,这一节课,我们先简要地复习光的反射,再深入地研究光的折射现象.二、新课教学(一)光的反射现象反射定律1.介绍光学演示仪,指明观察对象——光在从一种介质(空气)进入另一种介质(玻璃)时发生的现象(半圆柱玻璃砖直面柱心正对入射光)2.演示:光在到达空气和玻璃的交界面处时,一部分光被反射回空气中,另一部分光进入玻璃继续传播,但传播方向发生了改变.3.学生边观察边回忆反射定律:转动光具盘以改变入射角,让前排学生读出几组入射角和反射角数据.两者相等.同时提醒学生注意.光具盘面是竖直的,在这个面上同时能看到反射光线和入射光线.说明两线共面,又因为法线也在这个面内.故三线共面.4.归纳反射定律:三线共面两角相等.5.反射光路可逆(二)平面镜成像及作图1.让学生回忆平面镜成像的特点:正立、等大、异侧、虚像、对称.2.教师简述平面镜成像原理、作图方法并予以示范.a.平面镜成像原理:如图,光点S入射到平面镜的光线,其反射光线的反向延长线的交点即为S的像,人眼根据光沿直线传播的经验,感觉反射光都是从S′发出的.b.平面镜成像作图.讲:两条光线即可确定像点的位置.所以无需多画.步骤是:(1)由对称性确定像点的位置;(2)任意画两条入射光线;(3)过像点作出对应的两条反射光线;(4)若是作物体AB的成像光路图,则只需作出A、B点的成像光路图.连接A、B点即可.(三)折射定律师:光从空气射入玻璃这一介质时,传播方向发生了改变,我们把这种光从一种介质进入另一种介质时,传播方向发生改变的现象,叫做光的折射。
高中物理选修3-4学案2:13.1 光的反射和折射
1 光的反射和折射【学习目标】1、掌握光的折射定律2、了解介质的折射率与光速的关系;3、掌握介质的折射率的概念.【重点难点】光的折射定律;测量光的折射率【课前预习】一、反射及反射定律(1)光的反射:光从一种介质射到它与另一种介质的时,一部分光会返回到第一种介质的现象。
(2)反射定律:反射光线与入射光线、法线在,反射光线与入射光线分别位于法线的;反射角入射角。
二、折射及折射定律(1)光的折射:光从一种介质照射到两种介质的时,一部分光进入另一种介质的现象。
(2)折射定律:折射光线与入折射光线、法线处在内,折射光线与入折射光线分别位于的两侧,入射角与折射角的正弦成正比,即 (3)光路可逆性:在光的反射现象和折射现象中,光路都是的。
三、折射率:(1)定义:光从射入某种介质发生折射时,入射角的正弦值与折射角的正弦值之比,叫该介质的绝对折射率,简称折射率,用表示。
(2)定义: (3)折射率与光速的关系:光在不同介质中的不同,且都光在真空中的传播速度;某种介质的折射率等于光在的速度与光在的速度之比,即。
【预习检测】1θ2θ1221sin sin n =θθ1θ2θn 21sin sin θθ=n vc n =1.光的反射定律:__________、__________和法线在同一平面内,并分居法线两侧,_______角等于___________角。
2.光的折射定律:________、_________和法线在同一平面内,并分居法线两侧,________________与________________成正比。
3.某种介质的折射率等于光在___________中的传播速度c 与光在____________中的传播速度v 的比值,即n=__________。
4.如图所示,平面镜AB 水平放置,入射光线PO 与AB 夹角为30°,当AB 转过20°角至A ′B ′位置时,下列说法正确的是 ( )A .入射角等于50°B .入射光线与反射光线的夹角为80°C .反射光线与平面镜的夹角为40°D .反射光线与AB 的夹角为60°5.在平面镜中看到的时钟钟面的像如图所示,则此时钟所指的时刻为 ( )A .9∶20B .3∶40C .2∶40D .4∶50▲ 堂中互动▲【典题探究】【例1】如图所示,光线以入射角θ1从空气射向折射率n=玻璃表面.2(1)当入射角θ1=45°时,反射光线与折射光线间的夹角θ为多少?(2)当入射角θ1为多少时,反射光线和折射光线垂直?【拓展】:分析解决光的折射问题的一般方法:(1)根据题意画出正确的光路图;(2)利用几何关系确定光路中的边、角关系,要注意入射角、折射角的确定;(3)利用反射、折射定律求解;(4)注意在折射现象中,光路是可逆的.变式训练1:光线从空气射向玻璃砖,当入射光线与玻璃砖表面成30°角时折射光线与反射光线恰好垂直,则此玻璃砖的折射率是( )A. B. C. D.变式训练2:如图所示,激光液面控制仪的原理是:固定的一束激光AO 以入射角i 照射到液面上,反射光OB 射到水平的光屏上,屏上用光电管将光讯号转变成电讯号,电讯号输入控制系统用以控制液面高度,如果发现点B 在屏上向右移动了Δs 的距离到B′,由此可知液面(填“升高”或“降低”).232/23/3【例2】在测定玻璃的折射率的实验中,对一块两面平行的玻璃砖,用插针法找出与入射光线对应的出射光线,现有甲、乙、丙、丁四位同学分别做出如图所示的四组插针结果. (1)从图上看,肯定把大头针插错了的同学是________.(2)从图上看,测量结果准确度最高的同学是________.方法小结:光线透过平行玻璃砖时出射光线与入射光线平行,且从空气射入玻璃时,入射角大于折射角,因而光线透出时相当于入射光线向右下侧发生偏移,另外,插针确定光路时,入射角稍大些好且插针相距稍远些好.变式训练1:如图所示,在用插针法测定玻璃折射率的实验中,以下各说法正确的是()A.P1、P2及P3、P4之间的距离适当大些,可以提高准确度B.P1、P2及P3、P4之间的距离取得小些,可以提高准确度C.入射角i适当大些,可以提高准确度D.入射角太大,入射光线会在玻璃砖的内表面发生全反射,使实验无法进行变式训练2:如图所示中一半圆形玻璃外面插下P1、P2、P3、P4四个大头针,P3、P4可挡住P1、P2所成的像,已知O、P2、P1在一直线上,O、P3、P4也在一直线上,P1、P4点分别为(1,)、(-,-1),则折射率为___________________,若将玻璃砖绕O点在纸面上旋转15°,仍要P4挡住P2、P1像,则P4′点的坐标为______________.问题探究问题:如何设计实验,探究影响玻璃折射率大小的因素?导思:在做此实验时,为了使测定结果更为准确,有以下几点需要注意:(1)插针P1与P2、P3与P4的间距要适当的大些,不要靠得太近,选择玻璃砖时,宽度宜大些,这样可减小确定光路方向时出现的误差,提高测量的准确度.(2)入射角不能太小(接近0°)也不能太大(接近90°),因为入射角太小时,折射角就会更小,测量时相对误差增大;入射角太大时,导致反射光太强、折射光太弱,不易观察,很难确定P3、P4的位置.(3)如果通过插针P1、P2的连线的光线射向玻璃右侧,且入射角又大于某一数值,会出现隔着玻璃砖沿P2、P1方向观察不到P1、P2两插针情况,此时的光路图如图2所示,遇到这种现象,可将玻璃砖沿aa′界面向右平移.(4)实验中一旦玻璃砖宽度所定的界面线aa′和bb′画好后,放置的玻璃砖就不要随便移动,如果玻璃砖稍微斜移动,测得的折射率肯定发生变化.如果稍微上下平移了玻璃砖对测量结果没有影响,其光路如图3所示.33(5)本实验中如果采用的不是两面平行的玻璃砖而采用三棱镜、半圆形玻璃砖,只是出射光与入射光不平行,但一样能测出折射率.探究:实验,照图4那样,先在白纸上画一条直线aa′作为界面,过aa′上的一点O 画出界面的法线NN′,并画一条线段AO 作为入射光线,然后把长方形玻璃砖放在白纸上,使它的长边跟 aa′对齐,画出玻璃砖的另一边bb′,在线段AO 上竖直地插上两枚大头针P 1、P 2,透过玻璃观察大头针P 1、P 2的像,调整视线的方向,直到P 1的像被P 2挡住,再在观察的这一侧插两枚大头针P 3、P 4,使P 3挡住P 1、P 2的像,P 4挡住P 1、P 2的像及P 3,记下P 3、P 4的位置.移去大头针和玻璃砖,过P 3、P 4引直线O′B ,与bb′交于O′,直线O′B 就代表了沿AO 方向入射的光线透过玻璃砖后的传播方向,连接OO′,OO′就是折射光线的方向,入射角i=∠AON ,折射角r=∠O′ON′.用量角器量出入射角和折射角,从三角函数表中查出它们的正弦值,把这些数据记入自己设计的表格里.用上面的方法分别求出入射角是15°、30°、45°、60°、75°时的折射角,查出入射角和折射角的正弦值,把这些数据也记在表格里.算出不同入射角的的值,比较一下,看它们是否接近于一个常数,求出几次实验中测得的的平均值,就是玻璃的折射率. 探究结论:通过实验探究,可以发现,当入射角分别取不同值时,折射角也不同,但ri sin sin ri sin sin r isin sin的值近似相等,所以说介质对光的折射率的大小由介质本身的性质决定,与入射角和折射角的大小无关.——★ 参 考 答 案 ★——【预习检测】1、反射光线,入射光线,入射,反射2、折射光线,入射光线,入射角的正弦,折射角的正弦3、真空,该介质,4、B5、C ▲ 堂中互动▲【典题探究】【例1】思路[解析]设折射角为θ2, 由n===,所以θ2=30°,又θ1′=45°,则反射光线与折射光线的夹角θ=180°-θ1′-θ2=105°.(2)当反射光线和折射光线垂直时,θ1′+θ2=90°,n==i=s=tanθ1 则入射角θ1=arctan .变式训练1:[答案]B变式训练2:[答案]降低【例2】思路[解析]由上图可知,乙图中出射线向左上侧偏移不符合实际,肯定插错了,甲、丙和丁相比较,前面两者入射角及两个插针间距比图丁小些,故丁同学测量最准确.[答案](1)乙(2)丁变式训练1:[答案]:B,C变式训练2:[答案]: (-,+1)cv 21sin sin θθ2sin θ21245sin sin 1==οn θ21sin sin θθ'11sin sin θθ21cos sin θθ233。
物理人教版选修3-4学案第十三章第1节光的反射和折射_1
1.光的反射和折射1.通过实例分析掌握光的反射定律与光的折射定律。
2.理解折射率的定义及其与光速的关系。
3.学会用光的折射、反射定律来处理有关问题。
从空气中看水中的物体,感觉变浅了,把铅笔放入有水的玻璃杯中好像折断了,这些现象在初中我们就学过,叫做光的折射。
那么光的折射到底是怎么一回事呢?怎样描述光的折射呢?提示:光从一种介质进入到另一种介质时,光的传播方向发生了改变,这种现象叫折射现象,用折射率来描述介质对光的折射情况。
1.反射及反射定律(1)光的反射:光从一种介质照射到与另一种介质的______时,一部分光会____到第一种介质的现象。
(2)反射定律:反射光线与入射光线、法线处在____平面内,反射光线与入射光线分别位于法线的____;反射角____入射角。
(3)光路的可逆性:在光的反射中,光路是____的。
2.折射及折射定律(1)光的折射:光从一种介质照射到与另一种介质的分界面时,一部分光____另一种介质的现象。
(2)折射定律:折射光线与入射光线、法线处在____平面内,折射光线与入射光线分别位于法线的____;入射角θ1的正弦与折射角θ2的正弦成____,即sin θ1sin θ2=n 12(n 12是比例常数)。
(3)光路的可逆性:在光的折射中,光路是____的。
3.折射率(1)定义:光从____射入某种介质发生折射时,______的正弦与______的正弦之比,叫做这种介质的绝对折射率,简称折射率,用符号n 表示。
(2)定义式:n =sin θ1sin θ2。
(3)物理意义:是一个与介质有关的常数,反映介质的________。
(4)用光速表示的折射率公式:________,某种介质的折射率,等于光在____中传播的速度c 与光在这种____中的传播速度v 之比。
4.实验:测定玻璃的折射率[实验目的]测定玻璃的折射率[实验原理]如图所示,当光线AO 以一定入射角θ1穿过两面平行的玻璃砖时,通过插针法找出跟入射光线AO 对应的出射光线的O ′B ,从而画出折射光线OO ′,量出折射角θ2,再根据__________算出玻璃的折射率。
高中物理选修3-4教学设计6:13.1 光的反射和折射教案
13.1光的反射和折射1、教学目标一、知识与技能1.知道反射定律的确切含义,并能用来解释有关现象.2.知道反射现象中光路是可逆的,并能用来处理有关问题.3.知道平面镜成像特点及作图方法.4.理解折射定律的确切含义,并能用来解释有关的光现象和计算有关的问题.5.知道折射光路是可逆的,并能用来处理有关的问题.6.知道折射率的定义及其与光速的关系,并能用来进行有关的计算.二、过程与方法1.会用反射定律解释有关现象和处理有关问题.2.会用折射定律计算有关的问题,能理解折射率与光速的关系,并能用来进行有关的计算.三、情感态度与价值观1.通过观察演示实验,培养观察、概括能力,通过相关物理量变化规律的教学,培养分析、推理能力.2.渗透物理研究和学习的科学态度教育.2、教学重点光的折射定律.折射率概念.3、教学难点光的折射定律和折射率的应用.4、教学过程:1)课堂导入我们在初中已学过光的折射规律:折射光线跟入射光线和法线在同一平面内;折射光线和入射光线分居在法线的两侧;当光从空气斜射入水或玻璃中时,折射角小于入射角;当光从水或玻璃斜射入空气中时,折射角大于入射角.初中学的光的折射规律只是定性地描述了光的折射现象,而我们今天要定量地进行研究.2)重点讲解(一)光的反射现象及反射定律1.介绍光学演示仪,指明观察对象——光在从一种介质(空气)进入另一种介质(玻璃)时发生的现象(半圆柱玻璃砖直面柱心正对入射光)2.演示:光在到达空气和玻璃的交界面处时,一部分光被反射回空气中,另一部分光进入玻璃继续传播,但传播方向发生了改变.3.学生边观察边回忆反射定律:转动光具盘以改变入射角,让前排学生读出几组入射角和反射角数据.两者相等.同时提醒学生注意.光具盘面是竖直的,在这个面上同时能看到反射光线和入射光线.说明两线共面,又因为法线也在这个面内.故三线共面.4.归纳反射定律:三线共面两角相等.5.反射光路可逆(二)光的折射现象及折射定律1.实验观察变为看折射光和入射光的相对位置及折射角和入射角关系的观察:a.让学生观察折射光.入射光及界面的法线也是共面的.b.光从空气进入玻璃时,入射角增大.折射角也增大,但入射角始终大于折射角.2.定量测量5组数据,仿照课本列出原始数据表(可让前排的学生读取数据.但要先明确法线)3.分析测量数据:(建议入射角分别取10°,20°,30°,40°,50°)人类从积累入射角与折射角的数据到找出两者之间的定量关系,经历了近1500年的时间。
高中物理13.1光的反射和折射学案新人教版选修3_4
13.1 光的反射和折射学案(人教版选修3-4)1.光从一种介质射到它与另一种介质的____________时,一部分或全部光会返回到原介质的现象,叫反射现象.发生反射现象时,反射光线与入射光线、法线在________________内,反射光线与入射光线分别位于法线的________;反射角________入射角.这就是光的________________.2.光从一种介质射到它与另一种介质的____________时,一部分光进入另一种介质的现象,叫折射现象.发生折射现象时,折射光线与入射光线、法线处在________________ 内,折射光线与入射光线分别位于________的两侧;入射角的正弦与折射角的正弦成正比,即________________________.3.光从真空射入某种介质发生折射时,入射角的________与折射角的________之比,叫做这种介质的绝对折射率,简称折射率,用符号n表示.4.关于光的折射现象,说法正确的是( )A.光的传播方向发生改变的现象叫光的折射B.折射定律是托勒密发现的C.人观察盛水容器的底部,发现水变浅了D.若光从空气射入液体中,它的传播速度一定增大5.若某一介质的折射率较大,那么( )A.光由空气射入该介质时折射角较大B.光由空气射入该介质时折射角较小C.光在该介质中的速度较大D.光在该介质中的速度较小6.如果光以同一入射角从真空射入不同介质,则折射率越大的介质( )A.折射角越大,表示这种介质对光线的偏折作用越大B.折射角越大,表示这种介质对光线的偏折作用越小C.折射角越小,表示这种介质对光线的偏折作用越大D.折射角越小,表示这种介质对光线的偏折作用越小概念规律练知识点一折射现象的定性分析1.假设地球表面不存在大气层,那么人们观察到的日出时刻与实际存在大气层的情况相比( )A.将提前B.将延后C.某些区域将提前,在另一些地区将延后D.不变2.一个人站在湖边,观察离岸一段距离的水下的一条鱼,这个人看到的鱼的位置和鱼在水下真实的位置相比较,下列说法中正确的是( )A.在鱼真实位置的正上方某处B.在鱼真实位置上方偏向观察者的某处C.在鱼真实位置下方偏向观察者的某处D.所给条件不足,无法确定观察到的鱼的位置知识点二 对折射率的理解3.关于折射率,下列说法正确的是( )A .根据sin θ1sin θ2=n 12可知,介质的折射率与入射角的正弦成正比B .根据sin θ1sin θ2=n 12可知,介质的折射率与折射角的正弦成反比C .根据n =cv可知,介质的折射率与介质中的光速成反比D .同一频率的光由第一种介质进入第二种介质时,折射率与介质中波长成反比 4.两图1束不同频率的单色光a 、b 从空气平行射入水中,发生了如图1所示的折射现象(α>β).下列结论中正确的是( )A .在水中的传播速度,光束a 比光束b 大B .在水中的传播速度,光束a 比光束b 小C .水对光束a 的折射率比水对光束b 的折射率小D .水对光束a 的折射率比水对光束b 的折射率大 知识点三 测定玻璃的折射率 5.在图2用两面平行的玻璃砖测定玻璃折射率的实验中,其实验光路如图2所示,对实验中的一 些具体问题,下列说法正确的是( )A .为了减少作图误差,C 和D 的距离应适当取大一些B .为了减少测量误差,A 、B 连线与法线NN′的夹角应适当大一些C .若A 、B 的距离较大时,通过玻璃砖会看不到A 、B 的像D .若A 、B 连线与法线NN′间夹角过大时,有可能在bb′一侧看不清A 、B 的像6.某同学做测定玻璃的折射率的实验,操作时将玻璃砖的界线aa′、bb′画好后误用 另一块宽度稍窄的玻璃砖,如图3所示.实验中除仍用原界线外,其余操作都正确,则 测得的玻璃的折射率将( )图3A .偏大B .偏小C .不影响结果D .不能确定方法技巧练折射定律的应用技巧图47.一半径为R 的1/4球体放置在水平桌面上,球体由折射率为3的透明材料制成.现 有一束垂直于过球心O 的竖直平面内的光线,平行于桌面射到球体表面上,折射入球体 后再从竖直表面射出,如图4所示.已知入射光线与桌面的距离为3R/2.求出射角θ.8.一长直杆长1.5 m ,垂直立于底部平坦、水面平静无波的游泳池中,露出水面部分高0.3 m ,当阳光以与水面成37°的夹角入射时,杆在游泳池底部所成的影长为多少?(已知水的折射率n =43.)参考答案课前预习练1.分界面 同一平面 两侧 等于 反射定律2.分界面 同一平面 法线 sin θ1sin θ2=n 123.正弦 正弦 4.C5.D [由n =sin θ1sin θ2可知,光由空气射入介质时的折射角是由折射率n 和入射角i 共同决定的,所以A 、B 均错.由n =cv可知,介质的折射率越大,光在该介质中的速度越小,故C 错,D 正确.]6.C [根据折射率的定义n =sin θ1sin θ2,在入射角相同的情况下,折射角越小的介质,其折射率越大,该介质对光线的偏折作用越大;反之,折射角越大的介质,其折射率越小,该介质对光线的偏折作用越小.故C 正确.]课堂探究练 1.B解析 [假如地球周围没有大气层,太阳光将沿直线传播,如图所示,在地球上B 点的人将在太阳到达A′点时看到日出;而地球表面有大气层时,由于空气的折射率大于1,并且离地球表面越近,大气层的密度越大,折射率越大,太阳光将沿如图所示AB 曲线进入在B 处的人眼中,使在B 处的人看到了日出.但在B 处的人认为光是沿直线传播的,认为太阳位于地平线上的A′点,而此时太阳还在地平线以下,相当于日出时刻提前了,所以无大气层时日出的时间将延后.]点评 将大气层看成数层折射率由上到下(地球表面)依次增大的均匀介质层叠合而成的;光由折射率较小的介质斜射向折射率较大的介质时,光线将向法线偏折.以上两点即可确定光在大气中的传播情况.2.B [如图所示,人在岸上看离岸一段距离的水下的鱼,应是从鱼的位置发出的光(实际上是鱼的反射光),经折射后射入人的眼睛,看到的是鱼的像.把鱼看做一个发光点S ,人看到的是折射光线的反向延长线交于发光点S 的右上方S′点,这说明人看到的是鱼的虚像,且位置是偏向右上方,所以选项B 正确.]点评 此类题目,要根据题意画出光路图,再根据光路图解决题目中提出的问题. 3.CD [介质的折射率n 与入射角θ1及折射角θ2的正弦无关,即A 、B 错;介质的折射率与介质的光学性质和光在介质中的速度有关,C 正确;光由一种介质进入另一种介质频率不变,由n =c v =λ真f λ介f =λ真λ介得折射率与介质中的波长成反比,D 正确.]点评 折射率由介质的性质和入射光的频率共同决定(第7节内容).4.AC [由公式n =sin θ1sin θ2,可得折射率n a <n b ,C 正确,D 错误.由v =cn,n a <n b 知v a >v b ,A 正确,B 错误.]点评 ①折射率是反映介质光学性质的物理量,它是由介质的性质和入射光的频率共同决定的,同一介质对确定的单色光而言,对应的折射率一定,不同介质对同一单色光(频率一定)的折射率一般是不相同的,折射率是用比值定义的物理量n =sin θ1sin θ2,其中“θ1”表示光在空气中的入射角,在sin θ1一定的条件下,折射率较大的介质中,光线的折射角的正弦值sin θ2较小.可见,光的折射率表示在折射现象中折射光线相对于入射光线偏折程度的物理量.②公式n =cv表示了真空中光速c 和光在介质中的速度v 与折射率n 的关系,折射率较大的介质中,光速较小.5.ABD [实验时,尽可能将大头针竖直插在纸上,且A 和B 之间,B 与O 之间,C 与D 之间,C 与O′之间距离要稍大一些,入射角θ1应适当大一些,以减小测量角度的误差,但入射角不宜太大,也不宜太小.]点评 测定玻璃折射率的原理为:用插针法确定光路,找出与入射光线相应的出射光线,就能在玻璃砖中画出对应的折射光线,从而可以测出一组对应的入射角和折射角,根据折射定律便可求出玻璃的折射率.6.B [如图所示,由于所画玻璃砖的宽度比实际宽度大,使入射点向左移,折射点向右移,使得所画折射角比实际折射角大,故测得的折射率偏小.]点评 这类题目,一般是由于作图所得的折射角不准确造成的误差.解答此类问题时,要根据题意画出实际的光路图,与实验中的光路图相比较得出折射角的变化,即可得到准确的答案.7.60°解析 设入射光线与1/4球体的交点为C ,连接OC ,OC 即为入射点的法线.因此,图中的角α为入射角.过C 点作球体水平表面的垂线,垂足为B.依题意,∠COB=α.又由△OBC 知sin α=BC OC =32RR =32,α=60°.设光线在C 点的折射角为β,由折射定律得sin αsin β=3,由以上两式得β=30°.由几何关系知,光线在球体的竖直表面上的入射角γ(如图)为30°.由折射定律得sin γsin θ=13,因此sin θ=32,θ=60°.8.1.3 m解析 依题意作图如图所示,依据折射定律n =sin θ1sin θ2,得sin θ2=sin θ1n =sin 53°43=35,∠θ2=37°,影长s =0.3×tan 53° m +1.2×tan 37° m =0.3×43 m +1.2×34 m =1.3 m .方法总结 利用光路图解决光的折射问题的方法:(1)根据题意画出正确的光路图.首先要找到入射的界面,同时准确地作出法线,再根据折射定律和入射光线画出折射光线,找到入射角和折射角,要注意入射角、折射角是入射光线、折射光线与法线的夹角.(2)利用几何关系确定光路图中的边、角关系,与折射定律n =sin θ1sin θ2中的各量准确对应,比如一定要确定准哪个角在分子上、哪个角在分母上.(3)利用折射定律n =sin θ1sin θ2、折射率与光速的关系n =cv列方程,结合数学三角函数的关系进行运算.。
[精品]新人教选修3-4高中物理第十三章第1节光的折射优质课教案
选修3-4第十三章第1节《光的折射》一、教材分析本节课是光的第一小节,教材在节前首先介绍了光的发展史。
正文直接由生活中的反射和折射现象回顾初中所知识——反射定律和折射现象,接着由光的折射现象中折射角与入射角的定性关系直接给出了光的折射定律。
折射定律是研究几何光的重要法宝,是全章的重点,折射率是掌握折射定律的关键,也是难点。
高中阶段只研究在两种介质中并且其中一种介质是空气的两界面间的折射情况及所遵循的规律。
二、教目标1、通过观察实验,了解光的反射和折射现象,并能规范做光路图。
2、通过对实验据的分析,探究折射角与入射角的关系并归纳折射定律。
3、通过比较光从空气射入不同介质(玻璃和空气)时,入射角的正弦与折射角的正弦比值的不同引出折射率的概念和解其物意义,并能用解释光现象和计算有关的问题。
4、知道折射率与光速的关系,并能用进行计算。
5、知道在光的反射和折射现象中光路是可逆的,建立光路是可逆的的观点并能用此处有关的问题。
三、教重点难点重点:折射定律的得出过程以及对光的折射率的解难点:折射率的解,折射定律与光路可逆原的综合运用四、情分析(根据个人情况写)五、教方法实验观察、论分析、案导六、课前准备光的折射演示器,多媒体课件,直尺七、课时安排:1课时八、教过程(一)预习检查、总结疑惑检查落实了生的预习情况并了解了生的疑惑,使教具有了针对性。
(二)情景导入、展示目标。
1.多媒体播放各种光的奇妙美丽的现象。
(创设情景)2.介绍光的发展史:从17世纪波、粒二种说,到19世纪波动说的完美,再到二十世纪的波粒二象性。
3.介绍本书安排的知识:物光和几何光三)合作探究、精讲点拨一、反射定律结合实验现象回忆光的反射现象和光的反射定律:反射光线与入射光线、法线处在同一平面内,反射光线与入射光线分别位于法线的两侧;反射角等于入射角。
二、折射定律1、插针法体现光路图:生回顾光的反射定律和折射定律。
激励个别生主动用实物放置体现光的反射定律和折射定律,并请生放置体现的具体含义。
高中物理 第十三章 光 1 光的反射和折射教案 新人教版选修3-4-新人教版高中选修3-4物理教案
1 光的反射和折射1.光的反射(1)反射现象:光从第1种介质射到它与第2种介质的分界面时,一部分光会返回到第1种介质的现象.(2)反射定律:反射光线与入射光线、法线处在同一平面内,反射光线与入射光线分别位于法线的两侧;反射角等于入射角. (3)在光的反射现象中,光路是可逆的. 2.光的折射(1)折射现象:光从第1种介质射到它与第2种介质的分界面时,一部分光会进入第2种介质的现象.(2)折射定律(如图1所示)图1折射光线与入射光线、法线处在同一平面内,折射光线与入射光线分别位于法线的两侧;入射角的正弦与折射角的正弦成正比,即sin θ1sin θ2=n 12(式中n 12是比例常数).(3)在光的折射现象中,光路是可逆的. 二、折射率 1.定义光从真空射入某种介质发生折射时,入射角的正弦与折射角的正弦之比,叫做这种介质的绝对折射率,简称折射率.即n =sin θ1sin θ2.2.折射率与光速的关系某种介质的折射率,等于光在真空中的传播速度c 与光在这种介质中的传播速度v 之比,即n =c v.3.理解由于c >v ,故任何介质的折射率n 都大于(填“大于”“小于”或“等于”)1. 1.判断下列说法的正误.(1)光从一种介质进入另一种介质时,传播方向一定发生变化.( × ) (2)入射角增大为原来的2倍,折射角和反射角也都增大为原来的2倍.( × ) (3)介质的折射率越大,光在这种介质中传播速度越快.( × )(4)由折射率的定义式n =sin θ1sin θ2得出,介质的折射率与入射角θ1的正弦成正比,与折射角θ2的正弦成反比.( × )2.一束光从真空进入某介质,方向如图2所示,则该介质的折射率为________,若光在真空中的传播速度为c ,则光在该介质中的传播速度为________.图2答案222c 一、反射定律和折射定律在岸上往平静的水面观察,我们既可以看见水中的鱼,又可以看见岸上树的倒影. (1)这两种现象产生的原因相同吗?(2)有经验的渔民叉鱼时,不是正对着看到的鱼去叉,而是对着所看到鱼的下方叉,这是为什么?答案 (1)不相同.看见水中的鱼是光的折射现象,看见岸上树的倒影是光的反射现象. (2)从鱼上反射的光线由水中进入空气时,在水面上发生折射,折射角大于入射角,折射光线进入人眼,人眼会逆着折射光线的方向看去,就会觉得鱼变浅了,所以叉鱼时要对着所看到的鱼的下方叉.1.光的传播方向:当光从一种介质垂直进入另一种介质时,传播方向不变;斜射时,传播方向改变.2.光的传播速度:光从一种介质进入另一种介质时,传播速度一定发生变化. 当光垂直界面入射时,光的传播方向虽然不变,但光传播的速度发生变化.3.入射角与折射角的大小关系:当光从折射率小的介质斜射入折射率大的介质时,入射角大于折射角,当光从折射率大的介质斜射入折射率小的介质时,入射角小于折射角. 4.反射定律和折射定律应用的步骤 (1)根据题意画出光路图.(2)利用几何关系确定光路图中的边、角关系,要注意入射角、反射角、折射角均是光线与法线的夹角.(3)利用反射定律、折射定律及几何规律列方程求解.例1 光线以60°的入射角从空气射入玻璃中,折射光线与反射光线恰好垂直.(真空中的光速c =3.0×108m/s) (1)画出折射光路图;(2)求出玻璃的折射率和光在玻璃中的传播速度; (3)当入射角变为45°时,折射角的正弦值为多大? (4)当入射角增大或减小时,玻璃的折射率是否变化? 答案 (1)见解析图 (2) 3 3×108m/s(3)66(4)不变 解析 (1)光路图如图所示,其中AO 为入射光线,OB 为折射光线. (2)由题意,n =sin θ1sin θ2,又θ1=60°,θ1+θ2=90°,得n = 3.设玻璃中光速为v ,由n =c v得v =3×108m/s.(3)当入射角为45°时,介质折射率不变,由n =sin θ1′sin θ2′,得sin θ2′=sin θ1′n =sin45°3=66.(4)不变化,因为折射率是由介质和入射光频率共同决定的物理量,与入射角的大小无关. 例2 如图3所示为某种透明介质的截面图,△AOC 为等腰直角三角形,BC 为半径R =12cm 的四分之一圆弧,AB 与水平屏幕MN 垂直并接触于A 点.一束红光射向圆心O ,在AB 分界面上的入射角i =45°,结果在水平屏幕MN 上出现两个亮斑.已知该介质对红光的折射率为n =233,求两个亮斑与A 点间的距离分别为多少.图3答案 见解析解析 光路图如图所示,设折射光斑为P 1,折射角为r , 根据折射定律得n =sin rsin i,可得sin r =63. 由几何关系可得:tan r =R AP 1, 解得AP 1=62cm ,设反射光斑为P 2,由几何知识可得△OAP 2为等腰直角三角形,故AP 2=12cm. 提示:入射角、折射角、反射角均以法线为标准确定,注意法线与界面的区别. 二、折射率如表所示是在探究光由真空射入某种透明介质发生折射的规律时得到的实验数据.请在表格基础上思考以下问题:(1)(2)当入射角与折射角发生变化时,有没有保持不变的量(误差允许范围内)? 答案 (1)折射角增大.(2)入射角的正弦值和折射角的正弦值之比保持不变. 1.对折射率的理解 (1)折射率n =sin θ1sin θ2,θ1为真空中的光线与法线的夹角,不一定为入射角;而θ2为介质中的光线与法线的夹角,也不一定为折射角.(2)折射率n 是反映介质光学性质的物理量,它的大小由介质本身和光的频率共同决定,与入射角、折射角的大小无关,与介质的密度没有必然联系.2.折射率与光速的关系:n =cv(1)光在介质中的传播速度v 跟介质的折射率n 有关,由于光在真空中的传播速度c 大于光在任何其他介质中的传播速度v ,所以任何介质的折射率n 都大于1. (2)某种介质的折射率越大,光在该介质中的传播速度越小.例3 一束单色光由空气进入水中,则该光在空气和水中传播时( ) A .速度相同,波长相同 B .速度不同,波长相同 C .速度相同,频率相同 D .速度不同,频率相同答案 D解析 同一单色光在不同的介质内传播过程中,光的频率不会发生改变;水的折射率大于空气的折射率,由公式v =c n可以判断,该单色光进入水中后传播速度减小,又v =λf ,该单色光进入水中后波长变短,故选项D 正确.例4 如图4,某同学在一张水平放置的白纸上画了一个小标记“·”(图中O 点),然后用横截面为等边三角形ABC 的三棱镜压在这个标记上,小标记位于AC 边上.D 位于AB 边上,过D 点作AC 边的垂线交AC 于F .该同学在D 点正上方向下顺着直线DF 的方向观察,恰好可以看到小标记的像;过O 点作AB 边的垂线交直线DF 于E ;DE =2cm ,EF =1cm.求三棱镜的折射率.(不考虑光线在三棱镜中的反射)图4答案3解析 过D 点作AB 边的法线NN ′,连接OD ,则∠ODN =α为O 点发出的光线在D 点的入射角;设该光线在D 点的折射角为β,如图所示.根据折射定律有n =sin βsin α①式中n 为三棱镜的折射率 由几何关系可知β=60°②∠EOF =30°③ 在△OEF 中有EF =OE sin∠EOF ④由③④式和题给条件得OE =2cm⑤根据题给条件可知,△OED 为等腰三角形,有α=30°⑥由①②⑥式得n = 3.[学科素养] 例4这道高考题考查了折射定律、作图能力、光在三棱镜中的传播问题及相关的知识点.通过解题,学生回顾了折射定律,锻炼了作图能力,让物理概念和规律在头脑中得到提炼和升华,体现了“物理观念”“科学思维”等学科素养.针对训练 两束平行的细激光束垂直于半圆柱玻璃的平面射到半圆柱玻璃上,如图5所示.已知其中一束光沿直线穿过玻璃,它的入射点是O ,另一束光的入射点为A ,穿过玻璃后两条光线交于P 点.已知玻璃半圆截面的半径为R ,OA =R2,OP =3R .求玻璃材料的折射率.图5答案3解析 画出光路图如图所示.其中一束光沿直线穿过玻璃,可知O 点为圆心.另一束光从A 点沿直线进入玻璃,设在半圆面上的入射点为B ,入射角为θ1,折射角为θ2,由几何关系可得:sin θ1=OA OB =12,解得:θ1=30°.由几何关系可知:BP =R ,折射角为:θ2=60°.由折射定律得玻璃材料的折射率为:n =sin θ2sin θ1=sin60°sin30°= 3. 1.(光的折射现象)(多选)(2017·苍南高二检测)根据图6中的漫画,判断下列说法中正确的是( )图6A .人看到的是鱼的实像,位置变浅了些B .人看到的是鱼的虚像,位置变浅了些C .鱼看到的是人的实像,位置偏低了些D .鱼看到的是人的虚像,位置偏高了些 答案 BD解析 人看到的是鱼发出的光线经过水面折射后进入人眼,射入人眼的光线的反向延长线相交后形成的虚像,光线从水射向空气中时,折射角大于入射角,作出从鱼S 1发出的两条光线,将折射光线反向延长,得到的交点为人所看到的鱼的虚像S 1′,如图所示,可以看出虚像的位置变浅了,B 正确,A 错误;同理,鱼看到的是人发出的光线经过水面折射形成的虚像,根据光路可逆原理,鱼看到人的虚像的位置偏高了,D 正确,C 错误. 2.(折射率的理解)(多选)关于折射率,下列说法正确的是( ) A .根据sin θ1sin θ2=n 12可知,介质的折射率与入射角的正弦成正比B .根据sin θ1sin θ2=n 12可知,介质的折射率与折射角的正弦成反比C .根据n =cv可知,介质的折射率与光在该介质中的传播速度成反比D .同一频率的光由真空进入不同介质中时,折射率与光在介质中的波长成反比 答案 CD解析 介质的折射率是一个反映介质光学性质的物理量,由介质本身和光的频率共同决定,与入射角、折射角无关,故选项A 、B 均错误;由于真空中的光速c 是定值,故折射率n 与传播速度v 成反比,选项C 正确;由于v =λf ,当频率f 一定时,速度v 与波长λ成正比,又折射率n 与速度v 成反比,故折射率n 与波长λ也成反比,选项D 正确.3.(折射定律的应用)(多选)(2018·台州上学期期末)如图7所示,一玻璃柱体的横截面为半圆形,细的单色光束从空气射向柱体的O 点(半圆的圆心),产生反射光束1和透射光束2.已知玻璃折射率为3,入射角为45°.现保持入射光不变,将半圆柱绕通过O 点垂直于图面的轴线顺时针转过15°,如图中虚线所示,则( )图7A .光束1转过15°B .光束1转过30°C .光束2转过的角度小于15°D .光束2转过的角度大于15° 答案 BC4.(折射率的计算)如图8所示为直角三棱镜的截面图,一条光线平行于BC 边入射,经棱镜折射后从AC 边射出.已知∠A =θ=60°,光在真空中的传播速度为c .求:图8(1)该棱镜材料的折射率; (2)光在棱镜中的传播速度.答案 (1) 3 (2)33c 解析 (1)作出完整的光路如图所示. 根据几何关系可知φ=∠B =30°, 所以α=60°.根据折射定律有n =sin αsin β=sin θsin γ,又因为α=θ=60°,所以β=γ. 又β+γ=60°,故β=γ=30°. 则n =sin60°sin30°= 3.(2)光在棱镜中的传播速度v =cn =33c . 一、选择题考点一 光的反射现象和折射现象1.(2018·海宁检测)假设地球表面不存在大气层,那么人们观察到的日出时刻与实际存在大气层的情况相比( ) A .将提前 B .将延后C .在某些地区将提前,在另一些地区将延后D .不变 答案 B解析 如图所示,假设地球表面不存在大气层,则地球上M 处的人只能等到太阳运动到S 处才看见日出,而地球表面存在大气层时,太阳运动到S ′处,阳光经大气层折射后射到M 点,故M 处的人在太阳运动到S ′处就能看见日出,不存在大气层时观察到的日出时刻与实际存在大气层的情况相比将延后,B 正确.2.如图1所示是一束光从空气射向某介质在界面上发生反射和折射现象的光路图,下列判断中正确的是( )图1A .AO 是入射光线,OB 为反射光线,OC 为折射光线 B .BO 是入射光线,OC 为反射光线,OA 为折射光线 C .CO 是入射光线,OB 为反射光线,OA 为折射光线D .条件不足,无法确定 答案 C解析 法线与界面垂直,根据反射角等于入射角,折射光线和入射光线位于法线两侧,可知CO 为入射光线,OB 为反射光线,OA 为折射光线.故C 正确.3.如图2所示,井口大小和深度均相同的两口井,一口是枯井(图甲),一口是水井(图乙,水面在井口之下),两井底部各有一只青蛙,则( )图2A .水井中的青蛙觉得井口大些,晴天的夜晚,水井中的青蛙能看到更多的星星B .枯井中的青蛙觉得井口大些,晴天的夜晚,水井中的青蛙能看到更多的星星C .水井中的青蛙觉得井口小些,晴天的夜晚,枯井中的青蛙能看到更多的星星D .两只青蛙觉得井口一样大,晴天的夜晚,水井中的青蛙能看到更多的星星 答案 B解析 由于井口边沿的约束,而不能看到更大的范围,据此作出边界光线如图所示. 由图可看出α>γ,所以枯井中的青蛙觉得井口大些;β>α,所以水井中的青蛙可看到更多的星星,故选项B 正确,A 、C 、D 错误.4.(多选)(2018·桐庐高二检测)如图3所示,把由同种材料(玻璃)制成的厚度为d 的立方体A 和半径为d 的半球体B 分别放在报纸上,从正上方(对B 来说是最高点)竖直向下分别观察A 、B 中心处报纸上的字,下列说法正确的是( )图3A .看到A 中的字比B 中的字高 B .看到B 中的字比A 中的字高C .看到A 、B 中的字一样高D .A 中的字比没有玻璃时的高,B 中的字和没有玻璃时一样高 答案 AD解析 如图所示,B 中心处的字反射的光线经半球体向外传播时,传播方向不变,故人看到字的位置是字的真实位置.而放在A 中心处的字经折射,人看到的位置比真实位置要高,A 、D 正确.考点二 折射率及折射定律5.(多选)光从空气斜射进入介质中,比值sin θ1sin θ2=常数,这个常数( )A .与介质有关B .与折射角的大小无关C .与入射角的大小无关D .与入射角的正弦成正比,与折射角的正弦成反比 答案 ABC解析 介质的折射率与介质和入射光的频率有关,与入射角、折射角的大小均无关,选项A 、B 、C 正确,D 错误.6.(2018·嘉兴一中高二期中)如图4所示,一束光线通过一水平界面从某介质射入真空,已知入射光线与界面的夹角为60°,折射光线与界面的夹角为45°,则该介质的折射率为( )图4A.62B.63C.2D.22答案 C7.(2018·嘉兴高级中学高二第二学期期中)如图5所示,玻璃棱镜的截面为等腰三角形,顶角a 为30°.一束光线垂直于ab 面射入棱镜,又从ac 面射出.出射光线与入射光线之间的夹角为30°,则此棱镜材料的折射率是( )图5A.32B.32C.33D. 3 答案 D解析 光线在ac 界面上发生折射,入射角为30°,折射角为60°,根据光的折射定律可知:n =sin60°sin30°=3,故选D.8.(多选)两束不同频率的单色光a 、b 从空气平行射入水中,发生了如图6所示的折射现象(α>β).下列结论中正确的是( )图6A .在水中的传播速度,光束a 比光束b 大B .在水中的传播速度,光束a 比光束b 小C .水对光束a 的折射率比水对光束b 的折射率小D .水对光束a 的折射率比水对光束b 的折射率大 答案 AC解析 由公式n =sin θ1sin θ2,可得折射率n a <n b ,C 正确,D 错误;由v =c n,n a <n b 知v a >v b ,A 正确,B 错误.9.如图7所示,直角三棱镜ABC 的一个侧面BC 紧贴在平面镜上,∠BAC =β.从点光源S 发出的细光束SO 射到棱镜的另一侧面AC 上,适当调整入射光SO 的方向,当SO 与AC 成α角时,其折射光与镜面发生一次反射,从AC 面射出后恰好与SO 重合,则此棱镜的折射率为( )图7A.cos αcos βB.cos αsin βC.sin αcos βD.sin αsin β答案 A解析 由题意可知,细光束SO 经AC 面折射后,折射光线垂直于BC ,经平面镜反射后,从AC 面射出来,则恰好与SO 重合,故此棱镜的折射率n =sin (90°-α)sin (90°-β)=cos αcos β. 10.现代高速公路上的标志牌都使用“回归反光膜”制成,夜间行车时,它能把车灯射出的光逆向反射,使标志牌上的字特别醒目.这种“回归反光膜”是用球体反射元件制成的,如图8所示,反光膜内均匀分布着直径为10μm 的细玻璃珠,所用玻璃的折射率为3,为使入射的车灯光线经玻璃珠折射→反射→再折射后恰好和入射光线平行,那么第一次入射的入射角应是( )图8A .15°B.30°C.45°D.60°答案 D解析 已知入射光线和出射光线平行,所以光在三个界面上改变了传播方向,光线在玻璃珠的内表面反射时具有对称性,由此可作出光路图如图所示.由几何关系可知i =2r ①根据折射定律有n =sin i sin r =3② 由①②可得i =60°.二、非选择题11.如图9所示是一个透明圆柱体的横截面,其半径为R ,折射率是3,AB 是一条直径.今有一束光,平行AB 方向射向圆柱体.若有一条入射光线经折射后恰好经过B 点.图9(1)请用直尺画出该入射光线经折射后到B 点的光路图;(2)求这条入射光线到AB 的距离.答案 (1)见解析图 (2)32R 解析 (1)光路图如图所示.(2)设入射角为α,折射角为β,根据折射定律有n =sin αsin β=3, 由几何关系2β=α,可得β=30°,α=60°,所以CD =R sin α=32R . 12.如图10所示,△ABC 为直角三角形棱镜的横截面,∠ABC =30°.有一细光束MN 射到AC 面上,且MN 与AC 面的夹角也为30°,该光束从N 点进入棱镜后再经BC 面反射,最终从AB 面上的O 点射出,其出射光线OP 与BC 面平行.图10(1)作出棱镜内部的光路图(不必写出作图过程);(2)求出此棱镜的折射率.答案 (1)见解析图 (2) 3解析 (1)光路图如图所示:(2)根据折射定律n =sin θ1sin θ2 n =sin θ4sin θ3因为θ1=θ4=60°,所以θ3=θ2.又由几何关系知2θ3=60°,所以θ3=30°.n =sin θ4sin θ3=sin60°sin30°= 3. 13.如图11,一玻璃工件的上半部是半径为R 的半球体,O 点为球心;下半部是半径为R 、高为2R 的圆柱体,圆柱体底面镀有反射膜.有一平行于中心轴OC 的光线从半球面射入,该光线与OC 之间的距离为0.6R .已知最后从半球面射出的光线恰好与入射光线平行(不考虑多次反射).求该玻璃的折射率.图11答案 1.43解析 如图,根据光路的对称性和可逆性可知,与入射光线相对于OC 轴对称的出射光线一定与入射光线平行.故从半球面射入的折射光线,将从圆柱体底面中心C 点反射.设光线在半球面的入射角为i ,折射角为r .由折射定律有sin i =n sin r ①由几何关系,入射点的法线与OC 的夹角为i .由正弦定理有sin r 2R =sin (i -r )R② 由题设条件和几何关系有sin i =L R ③式中L 是入射光线与OC 间的距离,L =0.6R .由②③式和题给数据得sin r =6205④ 由①③④式和题给数据得 n = 2.05≈1.43.。
1光的反射和折射-人教版选修3-4教案
光的反射和折射-人教版选修3-4教案一、教学目标1.了解光的反射和折射的基本概念。
2.熟悉平面镜和球面镜的特点、成像规律及其应用。
3.掌握透镜的种类、性质和成像的基本公式。
4.能够解决简单的光学问题。
二、教学重点1.光的反射和折射的概念和规律。
2.平面镜和球面镜的成像规律及其应用。
3.透镜的种类、性质和成像的基本公式。
三、教学难点1.球面镜的成像规律。
2.透镜的成像公式。
四、教学内容1. 光的反射光线垂直入射到镜面上,反射光线和入射光线在反射面法线上的投影互相重合。
光的反射是铜镜、水面、玻璃等不透明物体所表现的基本特性。
2. 光的折射光在介质之间传播时,由于光速的变化而改变传播的方向。
光的折射是指光线经过不同密度介质时改变传播方向的现象。
3. 平面镜平面镜是由平面玻璃或透明板在一面附着上铝或其他金属制成的镜子,是最简单的光学元件。
平面镜有以下特点:1.光线入射平面镜上的法线和镜面成等角。
2.光线被平面镜反射后,入射和反射两条光线与法线成等角,并在法线上对称。
3.平面镜不会引起光线的聚焦和分散,只能产生虚像。
4. 球面镜球面镜是由一块球面的内侧或外侧镀上一层反光材料而制成的光学元件。
球面镜有以下特点:1.光线入射时,法线、光线入射点和球心三点在同一条直线上。
2.球面镜内侧反射和外侧反射的特点不同。
3.球面镜能够聚光或发散光线,产生实像或虚像。
5. 透镜透镜是一种光学元件,可以将光线的传播方向改变,并能产生实像或虚像。
透镜有以下种类:1.凸透镜:中央较厚,边缘较薄,能使平行光线聚焦,形成实像。
2.凹透镜:中央较薄,边缘较厚,能使平行光线散开,形成虚像。
3.双凸透镜和双凹透镜:两面都是曲面,都能形成实像和虚像。
透镜的成像公式为:透镜成像公式透镜成像公式其中,s1为物距,s2为像距,f为透镜的焦距。
五、教学方法1.讲授法:讲解相关知识点,加强学生对光学知识的理解。
2.实验法:展示光的反射和折射的实验,让学生亲手进行实验。
1光的反射和折射-人教版选修3-4教案
光的反射和折射-人教版选修3-4教案学习目标
•了解光线在平面镜中的反射规律,并能应用反射规律解决与平面镜有关的问题;
•掌握光线在凸面镜中的折射规律,并能应用公式、图像解决与凸面镜有关的问题;
•了解光线在光密介质和光疏介质中传播的规律,并能应用公式、图像解决与介质有关的问题。
学习内容
一、光线在平面镜中的反射规律
1.光线的入射角与反射角相等;
2.入射光线、法线、反射光线都在同一平面内;
3.反射光线的方向与入射光线相对称。
二、光线在凸面镜中的折射规律
1.光线从一种介质斜入另一种介质中,会发生折射;
2.折射光线、法线、入射光线都在同一平面内;
3.根据斯涅尔定律,可以求得入射角、折射角以及两介质之间的折射率。
三、光线在光密介质和光疏介质中传播的规律
1.光线从光疏介质入射到光密介质中时,会向法线方向偏折;
2.光线从光密介质入射到光疏介质中时,会离开法线方向;
3.根据折射率公式,可以求得两种介质之间的折射率。
学习方法
1.学习前理清思路,先了解基本概念,以便掌握全局;
2.针对不同情况可以使用不同的解题方法,例如平行光、撇点光、遥远物体的解题法不同;
3.多做习题,熟能生巧,通过反复练习将学过的知识加以巩固。
学习评价
通过本次学习,学生应该掌握光的反射和折射规律,能够应用这些规律解决与平面镜、凸面镜、介质等相关的问题,能够理解和解释现实世界中的一些光学现象,可以通过搜集和整理资料,如动手做实验等方式提高对光的认识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【教学目标】一.知识目标:1、理解折射定律的确切含义,并能用来解释光现象和计算有关的问题;2、理解折射率(指绝对折射率)的定义,以及折射率是反映介质光学性质的物理量;3、知道折射率与光速的关系,并能用来进行计算。
二.能力目标:1.能在学习光的传播和反射的基础上提出新的问题,培养提出问题的能力;2.通过实验观察、认识折射现象,培养学生初步观察的能力;3.使学生进一步了解科学探究活动过程,培养学生初步的探究能力;4. 体验由折射引起的错觉。
三.情感目标:1.有与他人交流和合作的精神、敢于提出自己不同的见解;2.逐步领略折射现象的美妙,获得对自然现象的热爱、亲近的感觉;3.借助课堂小实验、多媒体课件和丰富的网上资料,培养学生热爱物理、热爱科学的情感。
【教学重点】光的折射定律、折射率。
折射率是反映介质光学性质的物理量,由介质本身来决定。
【教学难点】1.了解光在发生折射时,光路的可逆性;2.解释有关光的折射现象。
【教学难点的突破】1、设置实验,让学生有切身体会;2、引导学生自己作出光路图来解释光的各种折射现象。
【教学过程】一、创设情景、引入新课1.多媒体播放各种光的奇妙美丽的现象。
2.光的发展史:从17世纪波、粒二种学说,到19世纪波动说的完美,再到二十世纪的波粒二象性。
二光的反射定律学生回忆光的反射现象和光的反射定律:反射光线与入射光线、法线处在同一平面内,反射光线与入射光线分别位于法线的两侧;反射角等于入射角。
三光的折射1、回忆光的折射现象:折射光线、入射光线、法线在同一平面内;折射光线和入射光线分居法线两侧。
2、重做光的折射演示实验,定性演示折射角和入射角的关系:①入射角增大,折射角增大; ② 入射角减小,折射角减小。
3、折射角和入射角之间到底有什么定量关系呢?我们又怎样找到这些物理量呢? 学生分组实验:两面实验器材:平行的玻璃砖,大头针,量角器,三角板,白纸。
学生讨论怎样测得入射角和折射角。
引导学生做实验: ①光是沿直线传播的,现在我们没有激光等各种光源,怎么利用现有的实验器材确定一条光线? ②怎样确定入射光线和折射光线?尤其是玻璃中的折射光线怎么确定下来?③请设计一个表格记录实验数据。
并猜测入射角和折射角的函数关系,可能是θ1 /θ2、sin θ1 /sin θ2或tan θ1/tan θ2…… 实验并记录数据、数据处理:实验次数 1 2 3 4 5 6 7 8 入射角θ1 折射角θ2 θ1/θ2 sin θ1 /sin θ2 tan θ1/tan θ2在实验的基础上,师生共同讨论,比较不同组得到的结论,总结出结论:21sin sin θθ=常量(记做n )5.光的折射定律:折射光线与入射光线、法线处在同一平面内,折射光线与入射光线分别位于法线的两侧;入射角的正弦与折射角的正弦成正比, 即2112sin sin θθ=n 。
四 折射率向学生展示不同介质的折射率介质金刚石二氧化碳 玻璃水晶岩盐 酒精 水 空气 Sin θ1/sin θ2 2.42 1.631.5-1.8 1.551.551.361.331.00028通过数据对比,请学生猜想入射角与折射角正弦之比跟哪些因素有关。
——跟介质有关。
教师总结:光从一种介质射入另一种介质时,虽然入射角的正弦跟折射角的正弦之比为一常数n ,但是对不同的介质来说,这个常数n 是不同的。
这个常数n 跟介质有关系,是一个反映介质的光学性质的物理量,我们把它叫做介质的折射率。
折射率:把光从真空射入某种介质发生折射时,入射角的正弦与折射角的正弦之比,叫做这种介质的绝对折射率,简称折射率。
学生猜测为什么光进入不同的介质,折射率就不一样呢?——光在不同介质中的速度不同,这正是发生折射的原因。
介质的折射率n 与光在其中传播速度有关,vcn =。
可见,n >1,且n 没有单位。
教师提醒学生注意以下几点: ①n 12是比例常数,它是反映介质的光学性质的物理量。
对于同一介质无论θ1、θ2怎么变化,21sin sin θθ是不变的。
②对于不同介质21sin sin θθ的值是不同的。
③并不是所有入射角的正弦与折射角的正弦之比都大于1。
演示实验:观察激光从空气射入玻璃砖的光路及由玻璃砖射向空气的光路,并使后者的入射角与前者的折射角相等。
学生通过观察总结出: a.在光的折射现象里,光路是可逆的。
b.让他们利用这种性质论证“当光由介质射入空气时sin θ1是否与sin θ2成正比及比例常数是多少”。
思考: 为什么又说vcn =>1 ? ④真空本身的折射率 = 1,通常认为空气的折射率也为1。
五 光的折射的应用1.什么人在水上看到物体的像,比实际物体位置偏上,感觉水比较浅。
2.假设地球表面不存在大气层,那么人们观察到的日出时刻与存在大气层的情况相比( ) A.将提前 B.将延后 C.在某些地区将提前,在另一些地区将延后 D.不变3.光在某种介质中的传播速度是2.122×108m/s ,当光线以30°入射角由该介质射入空气时,折射角为多少?4.如图一个储油桶的底面直径与高均为d 。
当桶内没有油时,从某点A恰能看到桶底边缘的某点B。
当桶内油的深度等于桶高的一半时,仍沿AB方向看去,恰好看到桶低上的点c ,CB两点距离d/4。
求油的折射率和光在油中传播的速度。
六 课堂小结1、 光的折射光的折射定律 三线共面 sin θ1 / sin θ2=常数 2内容:(1)反映介质对光的偏折作用,n 越大光线偏折越厉害(2)定义式sin θ1 / sin θ2=n --光从真空中进入介质 (3)决定式: n = c/v ( n>1)七 板书设计第十三章 光 第一节 光的折射一 光的反射定律:反射光线与入射光线、法线处在同一平面内,反射光线与入射光线分别位于法线的两侧;反射角等于入射角。
二 光的折射定律:折射光线与入射光线、法线处在同一平面内,折射光线与入射光线分别位于法线的两侧;入射角的正弦与折射角的正弦成正比。
即 2112sin sin θθ=n . 注意:①n 12是比例常数,表示光从介质1入射介质2时,入射角的正弦与折射角的正弦之比②它是反映介质的光学性质的物理量.对于同一介质无论θ1、θ2怎么变化,sin θ1/sin θ2是不变的.③对于不同介质sin θ1/sin θ2的值是不同的.三 折射率:把光从真空射入某种介质发生折射时,入射角的正弦与折射角的正弦之比,叫做这种介质的绝对折射率。
简称折射率。
用n 表示④介质的折射率n 与光在其中传播速度有关, vc n =. 由此可知光在不同介质中传播光速大小是不同的.八 教学反思BC MABA这节课中,学生通过提出问题,然后设计实验、做实验、实验数据的处理、得出结论等一系列的操作过程,体验了探究规律的过程,从中掌握探索自然科学规律的方法。
这样的教学充分体现了学生在”做中学”,”学中悟”的现代教育思想和教育理念。
高中新课程物理教学设计与案例—光的折射教学设计【教学课题】《光的折射》【教材分析】本节课是光学的第一小节,首先介绍了光学的发展史,然后在初中所学知识的基础上直接给出了光的反射定律和光的折射定律。
本小节重点应放在折射定律的得出过程以及对光的折射率的理解。
光的折射定律是几何光学的三大基本规律之一(另外两个规律是光的直线传播规律和光的反射定律),是研究几何光学的重要法宝。
高中阶段只研究在两种介质中并且其中一种介质是空气的两界面间的折射情况及所遵循的规律。
在应用时,一定要注意作图.突出几何的特点。
【学生分析】学生在初中已经学过光的反射和折射,但没有深入学习过光的折射所遵循的定量关系。
学生已具备一定的实验操作技能,对物理学的研究方法已有一定的了解,在自主学习、合作探究等方面的能力有了一定提高。
对于本节课的教学中学生可能会出现的思维障碍与困惑是:因为vcn ,所以入射角的正弦与折射角的正弦之比都大于1。
要解决这个问题,比较好的办法是通过实验让学生切身感受到在光的折射现象里,光路是可逆的,当光由介质射入空气时入射角的正弦与折射角的正弦之比反而小于1。
【教学过程设计思想】符:4、简单介绍人们对光的折射的认识过程。
这个问题,在很长的时间里一直使人们感到困惑。
公元140年,希腊天文学家托勒密得出实验结果后,只是从数据的表面简单寻找比例关系,因此只能得出:折射角与入射角成正比(事实上,只在小角度情况下成立)。
1611年开普勒对折射现象和透镜的原理作了广泛的研究,写成了《折光学》,正确地指出:只在小角度情况下,入射角与折射角成正比。
同时通过光的可逆性,从反面倒推得出结论,并通过实验发现了全反射现象。
但是他未能得出更一般的、内在的规律。
最终在1621年,由荷兰数学家斯涅耳采用了与开普勒基本相同的实验方法。
找到了入射角和折射角之间的关系n =21sin sin θθ 由此我们可以看到:一个物理定律的得出往往经历一个漫长、曲折的过程,需要坚韧的创新精神,做前人没有做过的事。
在前辈先哲的探索过程中一定有许多尝试、失败、再尝试。
这就是发现过程,其中充满着创新思维的火花。
卷I (共75分) 听力部分(第一节)I. 听句子,选出句子中所包含的信息。
(共5小题,每小题1分,计5分) ( )1. A. pick B. sick C. thick ( )2. A. May 6 B. May 16 C. May 26 ( )3. A. give up B. find out C. give out( )4. A. Jim was able to speak English well when he was five. B. Jim couldn’t speak English at the age of five. C. Jim could sing well at the age of five. ( )5. A. Judy is an animal doctor. B. Judy wants to be an animal doctor. C. Judy used to be an animal doctor. II. 听句子,选出该句的最佳答语。
(共5小题,每小题1分,计5分) ( )6. A. Making the plan. B. Make the plan. C. Do some cooking.( )7. A. How about giving away to poor children? B. I don’t like them.C. You look beautiful in them.( )8. A. I don ’t have a bike. B. No problem. C. You can borrow mine.( )9. A. Because it ’s bad. B. I like the signs. C. Good idea.( )10. A. Yes, I ’d love to.B. Being a volunteer is wonderful.C. Sor ry, I’m not.III. 听对话和问题,选择正确答案。