初二数学期末测试题
初二数学期末试卷带答案解析
初二数学期末试卷带答案解析考试范围:xxx ;考试时间:xxx 分钟;出题人:xxx 姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.设m =20,n=(-3)2,p =,q =()-1,则m 、n 、p 、q 由小到大排列为A .p <m <q <nB .n <q <m <pC .m <p <q <nD .n <p <m <q 2.已知三角形的两边长分别为4cm 和9cm ,则下列长度的四条线段中能作为第三边的是( )A .13cmB .6cmC .5cmD .4cm3.有如下命题: ①负数没有立方根;②一个实数的立方根不是正数就是负数; ③一个正数或负数的立方根与这个数同号;④如果一个数的立方根是这个数本身,那么这个数是1或0. 其中错误的是( )A .①②③B .①②④C .②③④D .①③④ 4.用反证法证明:a ,b 至少有一个为0,应该假设( ) A .a ,b 没有一个为0B .a ,b 只有一个为0C .a ,b 至多一个为0D .a ,b 两个都为05.据统计,2011年十·一期间,我市某风景区接待中外游客的人数为89740人次,将这个数字保留三个有效数字,用科学记数法可表示为 【 】A .8.97×103B .8.97×104C .9.00×103D .8.97×1056.如图,△ABC 中,AC=25cm ,DE 垂直平分AB ,垂足为E ,交AC 于D ,若△DBC 的周长是35cm ,则BC 边的长为( )A .5cmB .10cmC .15cmD .17.5cm7.(2014•威海)已知点P (3﹣m ,m ﹣1)在第二象限,则m 的取值范围在数轴上表示正确的是( ) A .B .C .D .8.某超市购进了一批不同价格的皮鞋,下表是该超市在近几年统计的平均数据.要使该超市销售皮鞋收入最大,该超市应多购( )的皮鞋A .160元B .140元C .120元D .100 9.对于下列各组条件,不能判定的一组是( )A .,,B .,,C .,,D .,,10.下列描述不属于定义的是( )A .两组对边分别平行的四边形叫做平行四边形;B .正三角形是特殊的等腰三角形;C .在同一平面内三条线段首尾顺次连接得到的图形叫做三角形;D .含有未知数的等式叫做方程 二、判断题11.解方程: (1)(2)x 2-5 =4x12.(本题8分)如下图,在△ABC 中,∠ACB =90°,CD ⊥AB 于D (1) 若AB =5 cm ,BC =3 cm ,求CD 的长(2) 若BD =2,AD =4,求CD 的长13.在制作某种零件时,甲做250个零件与乙做200个零件所用的时间相同,已知甲每小时比乙多做10个零件,则甲、乙每小时各做多少个零件? 14.(本题满分10分)某班为了奖励在学校体育运动会中表现突出的同学,班主任派生活委员小明到文具店为获奖的同学买奖品,小明发现,如果买1本笔记本和3支钢笔,则需要19元;如果买2本笔记本和5支钢笔,则需要33元.(1)求购买每本笔记本和每支钢笔各多少元?(2)班主任给小明的班费只有110元,要奖励24名同学每人一件奖品,则小明至少要购买多少本笔记本?15.水平的地面上有两根电线杆,测量两根电线杆之间的距离,只需测这两根电线杆入地点之间的距离即可。
初二下册数学试卷库期末
一、选择题(每题5分,共25分)1. 下列各数中,是质数的是()A. 29B. 28C. 27D. 302. 下列各数中,是偶数的是()A. 15B. 22C. 19D. 243. 下列各数中,是分数的是()A. 3/2B. 4/5C. 6/7D. 8/94. 下列各数中,是正数的是()A. -3B. 0C. 2D. -55. 下列各数中,是负数的是()A. 5B. -3C. 0D. 2二、填空题(每题5分,共25分)1. 0的相反数是__________。
2. 2的倒数是__________。
3. 下列各数中,最大的数是__________。
A. 2/3B. 3/4C. 4/5D. 5/64. 下列各数中,最小的数是__________。
A. -2B. -3C. -1D. 05. 下列各数中,有理数是__________。
A. √4B. √9C. √16D. √25三、解答题(每题10分,共40分)1. (10分)已知a、b是实数,且a + b = 5,ab = 6,求a² + b²的值。
2. (10分)已知m、n是实数,且m² - 2m + 1 = 0,n² - 2n + 1 = 0,求m + n的值。
3. (10分)已知a、b是实数,且a² + b² = 25,ab = -12,求a - b的值。
4. (10分)已知x、y是实数,且x² + y² = 36,xy = 6,求x + y的值。
四、应用题(每题15分,共30分)1. (15分)某工厂生产一批产品,已知每天生产60件,用了5天生产了300件,求这批产品共有多少件?2. (15分)某市去年的财政收入为100亿元,今年的财政收入比去年增加了20%,求今年的财政收入是多少亿元?五、附加题(10分)1. (10分)已知a、b是实数,且a² + b² = 1,求a + b的最大值。
初中八年级数学上册期末考试题(附答案)
初中八年级数学上册期末考试题(附答案)班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1,则a 的取值范围是( )A .﹣3≤a ≤0B .a ≤0C .a <0D .a ≥﹣32.在平面直角坐标系中,点(3,2)关于x 轴对称的点的坐标为( )A .(3,2)-B .(2,3)-C .(2,3)-D .(3,2)-3.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于( )A .108°B .90°C .72°D .60°4.在平面直角坐标系中,点A (﹣3,2),B (3,5),C (x ,y ),若AC ∥x 轴,则线段BC 的最小值及此时点C 的坐标分别为( )A .6,(﹣3,5)B .10,(3,﹣5)C .1,(3,4)D .3,(3,2)5.下列各组数中,能作为一个三角形三边边长的是( )A .1,1,2B .1,2,4C .2,3,4D .2,3,56.下列长度的三条线段能组成直角三角形的是( )A .3, 4,5B .2,3,4C .4,6,7D .5,11,127.若a b a 和b 互为( )A .倒数B .相反数C .负倒数D .有理化因式8.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a ,较短直角边长为b ,若2)21a b +=(,大正方形的面积为13,则小正方形的面积为( )A.3 B.4 C.5 D.69.如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B,则这个一次函数的解析式是()A.y=2x+3 B.y=x﹣3 C.y=2x﹣3 D.y=﹣x+3 10.若b>0,则一次函数y=﹣x+b的图象大致是()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)1123=________.2.已知菱形ABCD的面积是12cm2,对角线AC=4cm,则菱形的边长是______cm.3.已知x、y满足方程组2524x yx y+=⎧⎨+=⎩,则x y-的值为________.4.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B'处,当CEB'△为直角三角形时,BE的长为______。
初二数学期末试卷带答案
初二数学期末试卷带答案考试范围:xxx ;考试时间:xxx 分钟;出题人:xxx 姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.若点在函数(x<0)的图象上,且,则它的图象大致是( )2.下列各组线段中⑴、、;⑵; ⑶;⑷;⑸、、;其中可以构成直角三角形的有( )组。
A .2B .3C .4D .53.如图,一架25分米的梯子,斜立在一竖直的墙上,这时梯的底部距墙底端7分米,如果梯子的顶端沿墙下滑4分米,那么梯的底部将平滑( )A .9分米B .15分米C .5分米D .8分米4.等腰三角形ABC 中,AB=AC ,AD 是角平分线,则“①AD ⊥BC ,②BD=DC ,③∠B=∠C ,④∠BAD=∠CAD”中,结论正确的个数是( ) A .4 B .3 C .2 D .15.已知直线y=(k –2)x+k 不经过第三象限,则k 的取值范围是( ) A .k≠2 B .k>2 C .0<k<2 D .0≤k<26.若正比例函数y =(2-m)x 的函数值y 随x 的增大而减小,则m 的取值范围是( )A .m<0B .m>0C .m<2D .m>2 7.下列各式是二次根式的是( )A. B. C. D.8.下列矩形中,按虚线剪开,既能拼出平行四边形和梯形,又能拼出三角形的是()A B C D9.(2012•南长区一模)如图在正方形网格中,若A(1,1),B(2,0),则C点的坐标为()A.(﹣3,﹣2) B.(3,﹣2) C.(﹣2,﹣3) D.(2,﹣3)10.到△ABC的三条边距离相等的点是△ABC的().A.三条中线交点B.三条角平分线交点C.三条高的交点D.三条边的垂直平分线交点二、判断题11.关于某一条直线对称的两个图形叫轴对称图形.12.请你只用无刻度的直尺按要求作图.(1)如图1,AF、BE是△ABC的角平分线,且相交于点O,请你作出∠C的平分线.(2)如图2,AC与BD相交于O,且∠DAO=∠BAO=∠CBO=∠ABO,请你作出∠AOB的平分线.13.在如图所示的正方形网格中,每个小正方形的边长是,格点三角形(顶点是网格线的交点的三角线)的顶点,的坐标分别为,.(1)请在如图所示的网格平面内做出平面直角坐标系.(2)请作出关于轴对称的.(3)写出点的坐标.14.如图,将长方形ABCD沿着对角线BD折叠,使点C落在处,交AD于点E.(1)试判断△BDE的形状,并说明理由;(2)若,,求△BDE的面积.15.先阅读理解下面的例题,再按要求解答下列问题:例题:解一元二次不等式x2﹣4>0解:∵x2﹣4=(x+2)(x﹣2)∴x2﹣4>0可化为(x+2)(x﹣2)>0由有理数的乘法法则“两数相乘,同号得正”,得①②解不等式组①,得x>2,解不等式组②,得x<﹣2,∴(x+2)(x﹣2)>0的解集为x>2或x<﹣2,即一元二次不等式x2﹣4>0的解集为x>2或x<﹣2.解答下列问题:(1)一元二次不等式x2﹣25>0的解集为;(2)分式不等式的解集为;(3)解一元二次不等式2x2﹣3x<0.三、填空题16.如图,已知▱OABC的顶点A、C分别在直线x=1和x=4上,O是坐标原点,则对角线OB长的最小值为.17.已知点A (a ,b )关于x 轴对称点的坐标是(a ,-12),关于y 轴对称点的坐标 是(5,b ),则A 点的坐标是__________. 18.分解因式:3a +3b =___________19.若点P (1﹣m ,m )在第一象限,则(m ﹣1)x >1﹣m 的解集为 .20.若a ≠0,则。
初二数学期末试题及答案
初二数学期末试题及答案一、选择题(每题2分,共20分)1. 下列哪个选项是偶数?A. 3B. 5C. 2D. 7答案:C2. 一个数的相反数是-5,那么这个数是?A. 5B. -5C. 0D. 10答案:A3. 计算下列算式的结果:\[ 3x - 2x + 5 = \]A. \( x + 5 \)B. \( 5x \)C. \( 3x \)D. \( 2x \)答案:A4. 一个正方形的对角线长度为5,那么它的面积是?A. 12.5B. 25C. 50D. 100答案:A5. 一个圆的半径为3,那么它的周长是?A. 6πB. 9πC. 12πD. 18π答案:C6. 一个数的绝对值是5,那么这个数可以是?A. 5B. -5C. 5或-5D. 0答案:C7. 计算下列算式的结果:\[ \frac{3}{4} + \frac{2}{5} = \]A. \( \frac{17}{20} \)B. \( \frac{15}{20} \)C. \( \frac{13}{20} \)D. \( \frac{11}{20} \)答案:A8. 一个数的立方是64,那么这个数是?A. 4B. -4C. 4或-4D. 8答案:A9. 一个数的平方是9,那么这个数是?A. 3B. -3C. 3或-3D. 9答案:C10. 计算下列算式的结果:\[ 2^3 \times 3^2 = \]A. 108B. 72C. 81D. 54答案:C二、填空题(每题2分,共20分)1. 一个数的平方是36,那么这个数是________。
答案:6或-62. 如果一个角的补角是60°,那么这个角的度数是________。
答案:120°3. 一个数的立方是27,那么这个数是________。
答案:34. 一个数的绝对值是8,那么这个数是________。
答案:8或-85. 计算下列算式的结果:\( \frac{1}{2} \times 4 = \)________。
初二数学期末试卷(XXX版)
初二数学期末试卷(XXX版)初二数学期末试卷(XXX版)班级。
姓名:得分。
时刻:60分钟一、填空题(每题3分,计30分)1、625的算术平方根是25,平方根是±25.2、-27的立方根是-3.3、比较大小:5-11 < 22.4、点A(-3,4)关于原点对称的点的坐标为(3,-4)。
5、关于函数y=-3x+2,y的值随x值的增大而减小。
6、已知二元一次方程2x-3y=1中,若x=3时,y=1时,则x=4,y=-1.7、数据1,4,3,4,3,2,5,5,2,5的平均数为3.4,众数为5,中位数为4.8、直线y=-x与y=-x+6的位置关系为平行。
9、在平行四边形,矩形,菱形,正方形中,是轴对称图形的有矩形和正方形。
10、已知等腰梯形的一个内角等于70°,则其他三个内角的度数为70°,70°,40°。
二、选择题(每题3分,计30分)11、在实数-1/π,8,3-8,-√3/3.518,-0.xxxxxxxx32…中,无理数√3的个数是1.答案:A12、下列函数中,y的值随x的值增大而增大的函数是y=x-2.答案:C13、下列说法不正确的是-1的平方根是-1.答案:C14、某公司市场营销部的个人月收入与其每月销售量成一次函数关系,其图象如图(一)所示,由图中给出的信息可知,营销人员没有销售时的收入是310元。
答案:A15、如图(二),先对折矩形得折痕MN,再MMD折纸使折线过点B,且使得A在MN上,这时折线EB与BC所成的角为45°。
答案:B16、四边形ABCD的对角线AC、BD交于点O,设有以下判定:①AB=BC;②∠DAB=90°;③BO=DO;④矩形ABCD;⑤菱形ABCD;⑥正方形ABCD,则下列推理中不正确的是矩形ABCD。
答案:D17、若 $4x+1=m(x-2)+n(x-5)$,则 $m,n$ 的值是(选项缺失)18、已知三个二元一次方程 $3x-y-7=0$,$2x+3y-1=0$,$y=kx-9$ 有公共解,则 $k$ 的值为(选项缺失)19、已知 $x_1=5$,$x_2=8$,$x_3=11$,则$x_1+x_2+x_3$ 的值是 24.20、已知 $x=2$,则下列四个式子中一定正确的是$x=2$ 和 $x^3=8$。
初二数学期末试卷带答案解析
初二数学期末试卷带答案解析考试范围:xxx ;考试时间:xxx 分钟;出题人:xxx 姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.某特警对为了选拔“神枪手”举行射击比赛,最后由甲、乙两名战士进入决赛,两人各射靶10次,经过统计计算,甲、乙两名战士的总成绩都是99.68环,甲的方差是0.28,乙的方差是0.21,则下列说法中,正确的是( )A .甲的成绩比乙的成绩稳定B .乙的成绩比甲的成绩稳定C .甲、乙两人成绩的稳定性相同D .无法确定谁的成绩更稳定 2.一次函数的图象如右图所示,则k 、b 的值为( )A .k >0, b >0B .k >0, b <0C .k <0, b >0D .k <0, b <0 3.下列标志既是轴对称图形又是中心对称图形的是( ) A .B .C .D .4.下列每组数分别表示三根木棒的长度,将它们首尾连接后,不能摆成三角形的一组是( )A .2,3,5B .3,4,6C .4,5,7D .5,6,85.在ΔABC 和ΔDEF 中,已知∠C=∠D ,∠B=∠E ,要判断这两个三角形全等,还需添加条件( )A .AB=EDB .AB=FDC .AC=FD D .∠A =∠F . 6.若把分式中的x 、y 都扩大2倍,则分式的值 ( )A .扩大为原来的2倍B .不变C.缩小为原来的2倍D.缩小为原来的4倍7.等腰三角形的一个外角为80°,则它的底角为()A.100° B.80° C.40° D.100°或40°8.下列式子中,属于最简二次根式的是()A. B. C. D.9.下列调查中,适合采用全面调查(普查)方式的是()A.对某班50名同学视力情况的调查B.对元宵节期间市场上汤圆质量情况的调查C.对某类烟花爆竹燃放质量情况的调查D.对重庆嘉陵江水质情况的调查10.已知a,b都是正数,化简,正确的结果是()A. B. C. D.二、判断题11.如图:已知等边△ABC中,D是AC的中点,E是BC延长线上的一点,且CE=CD,DM⊥BC,垂足为M,求证:M是BE的中点.12.计算:(1);(2)13.如图,点E,F在BC上,AB=DC,∠A=∠D ,∠B =∠C .求证:BE =FC.14.如图,已知是的边上一点,,交于点,若,求证:。
初二数学期末试卷及答案
一、选择题(每题4分,共20分)1. 下列各数中,有理数是()A. √16B. √-1C. √4/3D. √-92. 若a=2,b=-3,则a²+b²的值是()A. 5B. 13C. 1D. 03. 在下列函数中,反比例函数是()A. y=2x+1B. y=x²C. y=3/xD. y=√x4. 若x=3,则方程2x-5=0的解是()A. x=1B. x=2C. x=3D. x=45. 在直角坐标系中,点A(2,3)关于y轴的对称点是()A.(-2,3)B.(2,-3)C.(-2,-3)D.(2,3)二、填空题(每题5分,共25分)6. 5的平方根是______,-5的平方根是______。
7. 若a=5,b=-3,则a²+b²的值是______。
8. 函数y=3x+2的斜率是______,截距是______。
9. 若x=2,则方程2x+5=0的解是______。
10. 在直角坐标系中,点B(-4,5)关于原点的对称点是______。
三、解答题(每题10分,共30分)11. (1)求下列各数的倒数:√3,-5/2,1/4。
(2)计算:-2/3 + 3/4 - 5/6。
12. (1)已知三角形ABC中,AB=6cm,BC=8cm,AC=10cm,求三角形ABC的面积。
(2)已知一次函数y=kx+b的图象经过点(2,-3)和点(-1,5),求该一次函数的解析式。
13. (1)已知数列{an}中,a₁=1,a₂=3,a₃=5,…,求第10项a₁₀。
(2)已知等差数列{bn}中,b₁=2,公差d=3,求第5项b₅。
四、应用题(每题15分,共30分)14. 小明骑自行车从家出发去学校,已知家到学校的距离为6km。
小明骑自行车的速度为15km/h,步行速度为4km/h。
若小明先骑自行车行驶2km,然后步行剩余的路程,求小明从家到学校需要的时间。
15. 某商店销售两种商品,甲商品每件售价为50元,乙商品每件售价为30元。
数学初二期末试卷含答案
一、选择题(每题4分,共40分)1. 下列各数中,有理数是()A. √3B. πC. -√4D. 2/32. 已知a=2,b=-3,那么a-b的值是()A. -5B. 5C. 1D. -13. 如果a+b=0,那么a和b互为()A. 相等B. 相反数C. 同号D. 异号4. 在下列各式中,正确的是()A. (a+b)²=a²+2ab+b²B. (a-b)²=a²-2ab+b²C. (a+b)²=a²-2ab+b²D. (a-b)²=a²+2ab-b²5. 下列各式中,绝对值最小的是()A. |2|B. |-2|C. |0|D. |2/3|6. 已知函数f(x)=2x+1,那么f(-1)的值是()A. 1B. -1C. 3D. -37. 下列各式中,根号内的代数式有意义的是()A. √(x-1)B. √(x²+1)C. √(-x)D. √(x+2)8. 已知a、b、c是三角形的三边,那么下列不等式中成立的是()A. a+b+c<0B. a+b>cC. a+c>bD. b+c<a9. 在下列各函数中,一次函数是()A. y=2x²+1B. y=x+3C. y=3/xD. y=√x10. 已知函数f(x)=x²-4x+4,那么f(2)的值是()A. 0B. 2C. 4D. 6二、填空题(每题5分,共25分)11. 如果a=5,那么a²的值是__________。
12. 如果x-3=0,那么x的值是__________。
13. 已知a=2,b=-3,那么a²+b²的值是__________。
14. 在下列各数中,无理数是__________。
15. 已知函数f(x)=3x-2,那么f(1)的值是__________。
初二上册数学期末考试题及答案
初二上册数学期末考试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是二次根式?A. √2B. 2√3C. √8D. √(-1)2. 一个数的平方根是它本身的数是?A. 0B. 1C. -1D. 23. 以下哪个选项是正比例函数?A. y = 2x + 3B. y = 3xC. y = x^2D. y = 1/x4. 一个等腰三角形的底边长为6,腰长为5,那么这个三角形的周长是多少?A. 16B. 21C. 26D. 315. 一个数的立方根是它本身的数是?B. 1C. -1D. 86. 一个数的倒数是它本身的数是?A. 1B. -1C. 0D. 27. 一个直角三角形的两个直角边分别是3和4,那么这个三角形的斜边长是多少?A. 5B. 6C. 7D. 88. 以下哪个选项是反比例函数?A. y = 2xB. y = 1/xC. y = x^2D. y = x + 19. 一个数的平方是它本身的数是?A. 0B. 1C. -1D. 210. 一个等边三角形的边长为5,那么这个三角形的周长是多少?B. 15C. 20D. 25二、填空题(每题3分,共30分)1. 一个数的平方根是它本身的数有______和______。
2. 一个数的立方根是它本身的数有______、______和______。
3. 一个数的倒数是它本身的数有______和______。
4. 一个等腰三角形的底边长为8,腰长为5,那么这个三角形的周长是______。
5. 一个直角三角形的两个直角边分别是5和12,那么这个三角形的斜边长是______。
6. 一个数的平方是它本身的数有______和______。
7. 一个等边三角形的边长为6,那么这个三角形的周长是______。
8. 一个数的立方是它本身的数有______、______和______。
9. 一个直角三角形的两个直角边分别是6和8,那么这个三角形的斜边长是______。
初二数学期末试卷带答案解析
初二数学期末试卷带答案解析考试范围:xxx ;考试时间:xxx 分钟;出题人:xxx 姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.下列四组线段中,可以构成直角三角形的是( ) A .4,4,6 B .5,12,13 C .6,6,6 D .6,24,252.如图,ABCD 是边长为1的正方形,对角线AC 所在的直线上有两点M 、N ,使∠MBN=1350,则MN 的最小值是不是( )A .1+B .2+C .3+D .23.若把一次函数y=2x﹣3,向下平移3个单位长度,得到图象解析式是()A .y=2xB .y=2x ﹣6C .y=5x ﹣3D .y=﹣x ﹣3 4.已知不等式组只有一个整数解,则a 的取值范围一定只能为A .a≤1B .0≤a <1C .0<a≤1D .0<a <15.如图,已知△ABC 中,AB ∥EF ,DE ∥BC ,则图中相等的同位角有( )A .2组B .三组C .四组D .五组6.如图,观察图形,找出规律,确定第四个图形是( )7.如图,直线l为等腰梯形ABCD的对称轴,点P在直线l上,且PC+PB 最小,则点P应位于A.点P1处 B.点P2处 C.点P3处 D.点P4处8.不等式的非负整数解有()个A.4 B.6 C.5 D.无数9.代数式中,分式有()个。
A.1 B.2 C.3 D.410.在实数,-,-3.14,0,π,2.61611611161…(每两个6之间依次多一个1),中,无理数有()A.1 个 B.2个 C.3个 D.4个二、判断题11.因式分解:(1);(2).12.判断:×===6()13.若展开式中不含和项,求的值。
14.计算:(1);(2)15.先化简再求值:,其中x取﹣1、+1、﹣2、﹣3中你认为合理的数。
初二数学期末模拟试卷
一、选择题(每题4分,共40分)1. 下列各数中,属于有理数的是()A. √9B. √-16C. πD. 0.1010010001……2. 已知a、b是相反数,那么a+b的值是()A. 0B. aC. -bD. 2a3. 下列各数中,能被3整除的是()A. 12.3B. 23.4C. 45.6D. 56.74. 如果一个长方体的长、宽、高分别为a、b、c,那么它的体积是()A. abcB. a+b+cC. a²+b²+c²D. a²b²c²5. 下列图形中,是轴对称图形的是()A. 等腰三角形B. 平行四边形C. 矩形D. 等边三角形6. 下列等式中,正确的是()A. (a+b)² = a² + b²B. (a-b)² = a² - b²C. (a+b)² = a² + 2ab + b²D. (a-b)² = a² - 2ab + b²7. 已知一元二次方程ax²+bx+c=0(a≠0)的判别式Δ=b²-4ac,当Δ=0时,方程有两个相等的实数根,则a、b、c的关系是()A. a=0,b=0,c=0B. a≠0,b=0,c≠0C. a=0,b≠0,c≠0D. a≠0,b≠0,c≠08. 下列各数中,绝对值最小的是()A. -5B. -4C. 0D. 39. 已知直线l的斜率为2,那么直线l的倾斜角α的取值范围是()A. 0°<α<90°B. 0°≤α<90°C. 0°<α≤90°D. 0°≤α≤90°10. 在平面直角坐标系中,点P的坐标为(2,-3),点Q的坐标为(-1,5),则线段PQ的中点坐标是()A. (1,2)B. (1,-2)C. (3,2)D. (3,-2)二、填空题(每题5分,共25分)11. -3的相反数是__________。
初二期末数学考试卷附答案
初二期末数学考试卷附答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.25的平方根是A.5B.-5C.±5D.±52.下列图形中,是中心对称图形的是3.某射击小组有20人,教练根据他们某次射击的数据绘制成如图所示的统计图,则这组数据的众数和中位数分别是A.7,7B.8,7.5C.7,7.5D.8,6.54.如图,两个较大正方形的面积分别为225、289,则字母A所代表的正方形的面积为A.4B.8C.16D.645.化简2x2-1÷1x-1的结果是A.2x-1B.2xC.2x+1D.2(x+1)6.不等式组x-1≤02x+4>0的解集在数轴上表示为7.如果关于x的不等式(a+1)x>a+1的解集为x<1,则a的取值范围是A.a<0B.a<-1C.a>1D.a>-18.实数a在数轴上的位置如图所示,则(a-4)2+(a-11)2化简后为A.7B.-7C.2a-15D.无法确定9.若方程Ax-3+Bx+4=2x+1(x-3)(x+4)那么A、B的值A.2,1B.1,2C.1,1D.-1,-110.已知长方形ABCD中,AB=3,AD=9,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为A.6B.8C.10D.1211.如图,△ABC绕点A顺时针旋转45°得到△AB′C′,若∠BAC=90°,AB=AC=2,则图中阴影部分的面积等于A.2-2B.1C.2D.2-l12.如图,△ABC中,∠ACB=90°,AC>BC,分别以△ABC的边AB、BC、CA为一边内△ABC外作正方形ABDE、BCMN、CAFG,连接EF、GM、ND,设△AEF、△BND、△CGM的面积分别为S1、S2、S3,则下列结论正确的是A.Sl=S2=S3B.S1=S2<S3C.Sl=S3<S2D.S2=S3<Sl第II卷(非选择题共102分)二、填空题(本大题共6个小题.每小题4分,共24分.把答案填在答题卡的横线上.)13.计算:8一2=______________.14.分解因式:a2-6a+9=______________.15.当x=______时,分式x2-9(x-1)(x-3)的值为0.16.已知a+b=3,a2b+ab2=1,则ab=____________?17.如图,一只蚂蚁沿着边长为2的正方体表面从点4出发,经过3个面爬到点B,如果它运动的路径是最短的,则最短路径的是长为__________________.18.如图,在四边形ABCD中,AD=4,CD=3,∠ABC=∠ACB=∠ADC=45°,则BD的长为______________.三、解答题(本大题共9个小厦,共78分,解答应写出文字说明,证明过程或演算步骤.)19.(本小题满分6分)计算:(1)18+22-3(2)a+2a-2÷1a2—2a20.(本小题满分6分)(1)因式分解:m3n―9mn.(2)求不等式x-22≤7-x3的正整数解21.(本小题满分8分)(1)解方程:1-2__-2=2+32-x(2)解不等式组4x―3>__+4<2x一1,并把解集在数轴上表示出来22.(本小题满分10分)(1)如图1,△ABC是边长为2的等边三角形,将△ABC沿直线BC向右平移,使点B与点C重合,得到△DCE,连接BD,交AC于点F.求线段BD的长.(2)一次环保知识竞赛共有25道题,规定答对一道题得4分,答错或不答一道题扣1分.在这次竞赛中,小明被评为优秀(85分或85分以上),小明至少答对了几道题?23.(本小题满分8分)济南与北京两地相距480千米,乘坐高铁列车比乘坐普通快车能提前4小时到达.已知高铁列车的平均行驶速度是普通快车的3倍,求高铁列车的平均行驶速度.24.(本小题满分6分)标签:先化简再求值:(x+1一3x-1)__-1x-2,其中x=-22+225.(本小题满分10分)某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核,甲、乙、丙各项得分如下表:笔试面试体能甲__乙__丙__(1)根据三项得分的平均分,从高到低确定三名应聘者的排名顺序.(2)该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,并按60%,30%,10%的比例计入总分,根据规定,请你说明谁将被录用.26.(本小题满分12分)如图,在四边形ABCD中,对角线AC,BD交于点E,∠BAC=90°,∠CED=45°,∠DCE=30°,DE=2,BE=22.(1)求CD的长:(2)求四边形ABCD的面积27.(本小题满分12分)已知,点D是等边△ABC内的任一点,连接OA,OB,OC.(1)如图1,己知∠AOB=150°,∠BOC=120°,将△BOC绕点C按顺时针方向旋转60°得△ADC.①∠DAO的度数是_______________②用等式表示线段OA,OB,OC之间的数量关系,并证明;(2)设∠AOB=α,∠BOC=β.①当α,β满足什么关系时,OA+OB+OC有最小值?请在图2中画出符合条件的图形,并说明理由;②若等边△ABC的边长为1,直接写出OA+OB+OC的最小值.一、选择题题号____答案__ACADA二、填空题13.14.(a-3)215.-316.17.18.三.解答题:19.解:(1)=1分=2分=13分(2)=5分=6分20.解:(1)m3n-9mn.=1分=2分=3分(2)解:3(x-2)≤2(7-x)4分3x-6≤14-2x5x≤20x≤45分∴这个不等式的正整数解为1、2、3、4.6分21.(1)1分2分3分经检验是增根,原方程无解4分(2),解:解不等式①得:x>1,5分解不等式②得:x>5,6分∴不等式组的解集为x>5,7分在数轴上表示不等式组的解集为:.8分22.(1)解:∵正△ABC沿直线BC向右平移得到正△DCE∴BE=2BC=4,BC=CD,DE=AC=2,∠E=∠ACB=∠DCE=∠ABC=60°2分∴∠DBE=∠DCE=30°3分∴∠BDE=90°4分在Rt△BDE中,由勾股定理得5分(2)解:设小明答对了x道题,6分4x-(25-x)≥858分x≥229分所以,小明至少答对了22道题.10分23.解:设普通快车的速度为xkm/h,由题意得:1分3分=44分x=805分经检验x=80是原分式方程的解6分3x=3×80=2407分答:高铁列车的平均行驶速度是240km/h.8分24.解:=1分=2分=3分=4分当=时5分原式==6分25.解:(1)=(83+79+90)÷3=84,=(85+80+75)÷3=80,=(80+90+73)÷3=81.3分从高到低确定三名应聘者的排名顺序为:甲,丙,乙;4分(2)∵该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,∴甲淘汰,5分乙成绩=85×60%+80×30%+75×10%=82.5,7分丙成绩=80×60%+90×30%+73×10%=82.3,9分标签:∴乙将被录取.10分26解:(1)过点D作DH⊥AC,1分∵∠CED=45°,∴∠EDH=45°,∴∠HED=∠EDH,∴EH=DH,3分∵EH2+DH2=DE2,DE=,∴EH2=1,∴EH=DH=1,5分又∵∠DCE=30°,∠DHC=90°,∴DC=26分(2)∵在Rt△DHC中,7分∴12+HC2=22,∴HC=,8分∵∠AEB=∠CED=45°,∠BAC=90°,BE=2,∴AB=AE=2,9分∴AC=2+1+=3+,10分∴S四边形ABCD=S△BAC+S△DAC11分=×2×(3+)+×1×(3+)=12分27.解:(1)①90°.2分②线段OA,OB,OC之间的数量关系是.3分如图1,连接OD.4分∵△BOC绕点C按顺时针方向旋转60°得△ADC,∴△ADC≌△BOC,∠OCD=60°.∴CD=OC,∠ADC=∠BOC=120°,AD=OB.∴△OCD是等边三角形,5分∴OC=OD=CD,∠COD=∠CDO=60°,∵∠AOB=150°,∠BOC=120°,∴∠AOC=90°,∴∠AOD=30°,∠ADO=60°.∴∠DAO=90°.6分在Rt△ADO中,∠DAO=90°,∴.(2)①如图2,当α=β=120°时,OA+OB+OC有最小值.8分作图如图2,9分如图2,将△AOC绕点C按顺时针方向旋转60°得△A’O’C,连接OO’.∴△A′O′C≌△AOC,∠OCO′=∠ACA′=60°.∴O′C=OC,O′A′=OA,A′C=BC,∠A′O′C=∠AOC.∴△OCO′是等边三角形.10分∴OC=O′C=OO′,∠COO′=∠CO′O=60°.∵∠AOB=∠BOC=120°,∴∠AOC=∠A′O′C=120°.∴∠BOO′=∠OO′A′=180°.∴四点B,O,O′,A′共线.∴OA+OB+OC=O′A′+OB+OO′=BA′时值最小.11分②当等边△ABC的边长为1时,OA+OB+OC的最小值A′B=.12分。
初二数学期末试题及答案
初二数学期末试题及答案一、选择题(每题2分,共20分)1. 下列哪个数是无理数?A. -3B. 0C. πD. 12. 如果一个直角三角形的两条直角边分别为3和4,那么斜边的长度是:A. 5B. 6C. 7D. 83. 以下哪个表达式的结果不是整数?A. 2^3B. 5^2C. 4^2D. 3^14. 一个数的平方根是4,那么这个数是:A. 16B. 8C. -16D. 45. 以下哪个是质数?A. 2B. 4C. 6D. 86. 一个数的绝对值是5,这个数可能是:A. 5B. -5C. 5或-5D. 都不是7. 一个数的倒数是1/2,这个数是:A. 2B. 1/2C. 1D. 2/18. 以下哪个是偶数?A. 1B. 2C. 3D. 59. 一个数的立方根是2,这个数是:A. 8B. 4C. 2D. 610. 以下哪个是完全平方数?A. 10B. 9C. 11D. 12答案:1-5 C A A A A,6-10 C A C B B二、填空题(每题2分,共20分)11. 一个数的平方是25,这个数是_________。
12. 如果a和b互为相反数,那么a+b=_________。
13. 一个数的绝对值是7,这个数可以是_________或_________。
14. 一个数的倒数是2,这个数是_________。
15. 一个数的立方是27,这个数是_________。
16. 直角三角形的斜边长是13,一条直角边是5,另一条直角边是_________。
17. 一个数的平方根是2或-2,这个数是_________。
18. 一个数的立方根是-3,这个数是_________。
19. 一个数的相反数是-8,这个数是_________。
20. 一个数的绝对值是0,这个数是_________。
答案:11. ±5 12. 0 13. 7 -7 14. 1/2 15. 3 16. 12 17. 4 18. -27 19. 8 20. 0三、计算题(每题5分,共15分)21. 计算下列表达式的值:(2+3)×(5-3)22. 计算下列表达式的值:(-4)^2 - 3×423. 计算下列表达式的值:√(9×16) + √(25)答案:21. 10 22. 16 - 12 = 4 23. √144 + 5 = 12 + 5 = 17四、解答题(每题5分,共20分)24. 一个直角三角形的两条直角边长分别是6cm和8cm,求斜边的长度。
初二数学下册期末考试试卷及答案
专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个正方形的边长为a,则它的对角线长是()A. a/2B. a√2C. 2aD. a²2. 下列函数中,哪一个不是二次函数?()A. y = 2x² 3x + 1B. y = x² + 4C. y = 3x + 2D. y = 5x² 4x + 13. 在直角坐标系中,点(3, 4)位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限4. 若一个等腰三角形的底边长为10cm,腰长为13cm,则这个三角形的面积是()A. 60cm²B. 78cm²C. 84cm²D. 90cm²5. 下列哪个数是无理数?()A. √9B. √16C. √3D. √1二、判断题(每题1分,共5分)6. 若a > b,则a² > b²。
()7. 两个等腰直角三角形的面积一定相等。
()8. 一次函数的图像是一条直线。
()9. 二次函数的图像是一个抛物线。
()10. 两个负数相乘的结果是正数。
()三、填空题(每题1分,共5分)11. 若一个圆的半径为r,则这个圆的面积是______。
12. 一次函数y = 3x 5的图像与y轴的交点是______。
13. 二次函数y = x² 4x + 4的顶点坐标是______。
14. 若一个等腰三角形的底边长为8cm,腰长为10cm,则这个三角形的高是______。
15. 两个相同的数相乘,结果是这个数的______。
四、简答题(每题2分,共10分)16. 请简述勾股定理的内容。
17. 什么是等腰三角形?请给出一个例子。
18. 请解释一次函数的图像是一条直线的原理。
19. 什么是二次函数的顶点?如何找到它?20. 请解释无理数的概念,并给出一个例子。
五、应用题(每题2分,共10分)21. 一个长方形的长度是10cm,宽度是5cm,求这个长方形的面积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二数学期末测试题一、选择题1. 下列说法错误的是( ) A.1)1(2=- B. 2的平方根是2±C.()1133-=-D.()232)3(-⨯-=-⨯-2.如图,一场大风后,一棵与地面垂直的树在离地面1m 处的A 点折断,树尖B 点触地,经测量BC=3m ,那么树高是( )A . 4mB .10mC .(10+1)mD .(10+3)m3.如图,数轴上与1、2两个实数对应的点分别为A 、B ,点C 与点B 关于点A 对称(即AB=AC ),则点C表示的数是( )A 、22- B 、12- C 、21-D 、222-4.下列说法正确的有( )(1)带根号的数是无理数;(2)无理数是带根号的数;(3)开方开不尽的都是无理数;(4)无理数都是开方开不尽的;(5)无理数是无限小数;(6)无限小数是无理数。
A. 2个B. 3个C. 4个D. 5个 5.如图,已知函数y = x + b 和y = ax + 3的图像交点为P ,• 则不等式x + b > ax + 3的解集为___________.6.y=kx +(k -3)的图象不可能是()7.如下图,梯子AB 靠在墙上。
梯子的底端A 到墙根O 的距离为2m ,梯子的顶端B 到地面的距离为7m ,现将梯子的底端A 向外移动到A ',使梯子的底端A 到墙根O 的距离等于3m ,同时梯子的顶端B 下降到B',那么BB'( )A. 小于1m B. 大于1mC.等于1mD. 小于或等于1m8、如图中的图象(折线ABCDE)描述了一汽车在某一直路上的行驶过程中,汽车离出发地的距离s(千米)和行驶时间t(小时)之间的变量关系,根据图中提供的信息,给出下列说法:①汽车共行驶了120千米;②汽车在行驶BAC3题21xA OC B 第2题 第7题途中停留了0.5小时;③汽车在每个行驶过程中的平均速度为380千米/时;④汽车自出发后3小时至4.5小时之间行驶的速度在逐渐减小.其中正确的说法共有( ) A.1个 B.2个 C.3个 D.4个9、已知:如图1,点G 是BC 的中点,点H 在AF 上,动点P 以每秒2cm 的速度沿图1的边线运动,运动路径为:G C D E F H →→→→→,相应的ABP △的面积2(cm )y 关于运动时间(s)t 的函数图象如图2.若6cm AB =,则下列四个结论中正确的个数有( )①图1中的BC 长是8cm , ②图2中的M 点表示第4秒时y 的值为224cm ,③图1中的CD 长是4cm , ④图2中的N 点表示第12秒时y 的值为218cm .A .1个B .2个C .3个D .4个10、在同一坐标系中,对于以下几个函数 ①y=-x -1 ②y=x+1 ③y=-x+1 ④y=-2(x+1)的图象有四种说法 ⑴ 过点(-1,0)的是①和③、 ⑵ ②和④的交点在y 轴上、⑶ 互相平行的是①和③、⑷ 关于x 轴对称的是②和③。
那么正确说法的个数是( ) A .4个 B .3个 C .2个 D 。
1个二、填空题11.如图所示的长方体是某种饮料的纸质包装盒,规格为5×6×12(单位:㎝),在上盖中开有一孔便于插吸管,吸管长为15㎝, 小孔到图中边AB 距离为1㎝,到上盖中与AB 相邻的两边距离相等,设插入吸管后露在盒外面的管长为h ㎝,则h 的最小值是_______________㎝。
12.如图,两个高度相等且底面直径之比为1∶2的圆柱形水杯,甲杯装满液体,乙杯是空杯.若把甲杯中的液体全部倒入乙杯,则乙杯中的液面与图中点P 的距离是 .13.在△ABC 中,AB=13,AC=15,高AD=12,则S △ABC 是 14、二元一次方程组437(1)3x y kx k y +=⎧⎨+-=⎩的解x ,y 的值相等,则k 为_____AB1256 吸管第12题图Oyx y 1y 2y 3第15题图图1A FE D C G B H 2(cm )y (s)t MNO 图2 2 4 7 12 第9题15.已知直线y 1=x ,y 2=31x +1,y 3=-43x +4的图象如图所示,若三条直线两两相交构成三角形,则三角形的面积为三、解答题16、已知x 、y 为实数,,214422-+-+-=x x x y 求y x 43+17.直线483y x =-+与x 轴、y 轴分别交于点A 和点B ,M 是OB 上的一点, 若将△ABM 沿AM 折叠,点B 恰好落在x 轴上的点B '处,求直线AM 的解析式.18、两个容器装水,第一个容器有49升水,第二个容器有56升水,如果将第二个容器的水倒满第一个容器,那么第二个容器剩下的水是这个容器的21;如果将第一个容器的水倒满第二个容器,那么第一个容器剩下的水是这个容器的容量的31,求这两个容器的容积。
19、经营户小熊在某蔬菜批发市场上了解到以下信息:蔬菜品种 红辣黄西红茄批发价(元∕千克 4 1. 1.6 1.零售价(元∕千克51.2.01.他共用128元钱从市场上批发了红辣椒和西红柿共50千克到菜市场去卖,当天用零售价卖完。
(1)请计算出小熊批发的红辣椒和西红柿各多少千克? (2)请计算出小熊能赚多少钱?20、三五三七鞋厂为了了解初中学生穿鞋的鞋号情况,对红华中学初二(1)班的20名男生所穿鞋号统计如下表:(1)写出男生鞋号数据的平均数、中位数、众数;(2)在平均数、中位数和众数中,鞋厂最感兴趣的是什么?21、已知某商品进价是每只14元,每月平均销量y(百只)与销售价x(元)的关系如图。
(1)求y关于x的函数关系式。
(2)当售价是每只19.5元时,销售这商品每月可获利多少元?(3)当每只售价分别是19.5元和22元时,试比较该店每月获利的多少,为了使得每月获利多,你认为售价应该是多少元?22、有一种螃蟹,从海上捕获后不放养最多只能存活两天,如果放养在塘内,可以延长存活时间,但每天也有一定数量的蟹死去,假设放养期内蟹的个体重量基本保持不变.现有一经销商,按市场价收购了这种活蟹1000千克放养在塘内,此时市场价为每千克30元.据测算,此后每千克活蟹的市场价每天可上升1元,但是,放养一天需各种费用支出400元,且平均每天还有10千克蟹死去,假定死蟹均于当天售出,售价都是每千克20元.(1)设x天后每千克活蟹的市场价为P元,写出P关于x的函数关系式;(2)如果放养x天后将活蟹一次性出售,并记1000千克蟹的销售总额为Q元,写Q出关于x的函数关系式;该经销商将这批蟹放养多少天后出售可获最大利润(利润=销售总额-收购成本-费用)?最大利润是多少?23、如图所示,在直角坐标系中,矩形ABCD的边AD在x轴上,点A在原点,AB=3,AD=5.若矩形以每秒2个单位长度沿x轴正方向作匀速运动.同时点P从A点出发以每秒1个单位长度沿A-B-C -D的路线作匀速运动.当P点运动到D点时停止运动,矩形ABCD也随之停止运动.(1)求P点从A点运动到D点所需的时间;(2)设P点运动时间为t(秒)。
①当t=5时,求出点P 的坐标;②若△OAP的面积为S,试求出S与t之间的函数关系式(并写出相应的自变量t的取值范围).24.某山区有23名中、小学生因贫困失学需要捐助, 资助一名中学生的学习费用需要a 元,一名小学生 的学习费用需要b 元,某校学生积极捐款,初中各年级学生捐款数额与用其恰好捐助贫困中学生和小学生人数的部分情况如下表:初一年级 初二年级 初三年级 捐款数额(元) 4000 4200 7400 捐助贫困中学生(名) 2 3 捐助贫困小学生人数(名) 43(1)求a 、b 的值;(2)初三年级学生的捐款解决了其余贫困中小学生的学习费用,请将初三年级学生可捐助的贫困中、小学生人数直接填入上表中?25、如图所示,L 1,L 2分别表示一种白灯和节能灯的费用y (费用=灯的售价+电费,单位:元)与照明时间x(h)的函数关系图像,假设两种灯的使用寿命都是2000h ,照明的效果一样。
(1)根据图像分别求出L 1,L 2的函数关系式;(2)当照明时间为多少时,两种灯的费用相等;(3)小亮房间计划照明2500小时,他买了一个白灯和一个节能灯,请你帮他设计最省钱的用灯方法。
26、我市某乡A ,B 两村盛产苹果,A •村有苹果200 t ,B 村有苹果300 t .现将这些苹果运到C ,D 两个冷藏仓库,•已知C 仓库可储存240 t ,D 仓库可储存260 t ;从A 村运往C ,D 两处的费用分别为每吨20元和25元,从B 村运往C ,D 两处的费用分别为每吨15元和18元,设从A 村运往C 仓库的苹果重量为x t ,A ,B •两村运往两仓库的苹果运输费用分别为y A 元和y B 元. (1)求出y B ,y A 与x 之间的函数关系式;y A = ________________________,y B = ________________________. (2)试讨论A ,B 两村中,哪个村的运费较少;(3)考虑到B 村的经济承受能力,B 村的苹果运费不得超过4830元.在这种情况下,请问怎样调运,才能使两村运费之和最小?求出这个最小值.500 2000 L 1L 2 1720 26 x/h y/元27、已知:如图10,平面直角坐标系中,A(1,0),B(0,1),C(-1,0),过点C的直线交y轴于点D,交线段AB于点E。
(1)求∠OAB的度数及直线AB的解析式;(2)若△OCD与△BDE的面积相等,①求直线CE的解析式;②若y轴上的一点P满足∠APE=45°,请直接写出点P的坐标。
28.如图,直角坐标系中,点A的坐标为(1,0),以线段OA为边在第四象限内作等边△AOB,点C 为x正半轴上一动点(OC>1),连接BC,以线段BC为边在第四象限内作等边△CBD,直线DA交y 轴于点E.(1)△OBC与△ABD全等吗?判断并证明你的结论;(2)随着点C位置的变化,点E的位置是否会发生变化?若没有变化,求出点E的坐标;若有变化,请说明理由.29、某商场计划拨款9万元从厂家购进50台电冰箱,已知该厂家生产三种不同型号的电冰箱,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.(1)某商场同时购进其中两种不同型号电冰箱共50台,用去9万元,请你研究一下商场的进货方案;(2)该商场销售一台甲种电冰箱可获得150元,销售一台乙种电冰箱可获利200元,销售一台丙种冰箱可获利250元,在同时购进两种不同型号的方案中,为使销售时获利最多,你选择哪种进货方案?30、某校办厂生产了一批新产品,现有两种销售方案,方案一:在这学期开学时售出该批产品,可获利30000元,然后将该批产品的投入资金和已获利30000元进行再投资,到这学期结束时再投资又可获利4.8%;方案二:在这学期结结束时售出该批产品,可获利35940元,但要付投入资金的0.2%作保管费,问:(1)当该批产品投入资金是多少元时,方案一和方案二的获利是一样的?(2)按所需投入资金的多少讨论方案一和方案二哪个获利多。