卢瑟福散射实验1 (3)
卢瑟福散射实验
卢瑟福散射卢瑟福散射实验是近代物理学发展史上具有重大影响的实验,它的作用在于由此发现并提出了原子的核式模型,使人类对微观世界的认识进入了新的里程。
后来,人们进而创造了一种用粒子的散射来研究物质结构的新实验方法——卢瑟福散射。
现在该方法成为材料科学,特别是微电子应用领域的重要实验方法之一。
19世纪末20世纪初,原子结构开始成为物理学研究的前沿,人们对原子模型曾有各种猜测和设想,其中比较有影响的是美国物理学家汤姆孙(J. J. Thomson )的电子分布模型,该模型认为正电荷均匀地分布在整个原子球内,一定数目的电子“镶嵌”在这个球体或球面上,电子可以在它们的平衡位置附近振动,从而发出特定频率的电磁波。
这个模型似乎可以解释当时已观察到的原子光谱,但很多其它实验不能解释,事实很快否定了这一模型。
1909年,卢瑟福(Lord Ernest Rutherford )和其合作者盖革(H. Gelger )与马斯顿(E. Marsden )用天然放射性Ra 所发出的α粒子打到Pt 箔上,发现绝大部分α粒子平均只偏转2º~3º,但大约有1/8000的α粒子散射角大于90º,甚至接近180º,即发现存在大角度散射的物理现象。
用当时的汤姆孙模型无法解释大角度的散射,卢瑟福认为原子中的正电荷应该是紧密地集中在一起的,当α粒子碰到这点时就被弹了回来。
由于具有对物理现象深刻的洞察力,卢瑟福最终提出了原子的核式模型。
在该模型中,原子核的半径近似为10-13 cm ,约为原子半径的1/105。
卢瑟福散射实验给了我们正确的有关原子结构的图像,开创了人类认识物质世界的新起点。
而卢瑟福本人因对物理学的重大贡献获得诺贝尔物理学奖。
一 实验目的测量241Am (或239Pu )放射源的α粒子在金箔上不同角度散射的分布,并与理论结果比较,从而验证卢瑟福散射的理论。
二 实验原理卢瑟福散射的基本思想:α粒子被看作一带电质点,在核库仑场中的运动遵从经典运动方程;原子核的大小和原子相比是很小的,且原子核具有正电荷Ze 和原子的大部分质量;电子的质量很小,对α粒子运动的影响可忽略不计。
3.2卢瑟福的α粒子散射实验
分相互抵消,α粒子偏转的力就不会很大。然而事实却出
现了极少数α粒子大角度偏转的现象。卢瑟福后来回忆说:
“这是我一生中从未有的最难以置信的事,它好比你对一
张纸瑟福对实验的结果进行了分析,认为只有原子
的几乎全部质量和正电荷都集中在原子中心的一个很小的
区域,才有可能出现α粒子的大角度散射。由此,卢瑟福
发生极少数α粒子的大角度偏转现象是出乎意料的。
根据汤姆孙模型的计算,α粒子穿过金箔后偏离原来方向
的角度是很小的,因为电子的质量不到α粒子的1/7400,
α粒子碰到它,就像飞行着的子弹碰到一粒尘埃一样,运
动方向不会发生明显的改变。正电荷又是均匀分布的,α
粒子穿过原子时,它受到原子内部两侧正电荷的斥力大部
卢瑟福是二十世纪最伟大的 实验物理学家之一,在放射性 和原子结构等方面,都做出了 重大的贡献。
卢瑟福被称为近代原子核物理 学之父。
卢瑟福提出的原子结构的行星模型
在1911年提出了原子的核式结构模型,认为在原子的中
心有一个很小的核,叫做原子核(nucleus),原子的全部
正电荷和几乎全部质量都集中在原子核里,带负电的电子
在核外空间里绕着核旋转。
欧内斯特·卢瑟福(Ernest
Rutherford, 1871—1937) 英国物理学家,1908年度诺 贝尔化学奖的获得者。
卢瑟福的α粒子散射实验
α粒子散射实验,又称金箔实验或卢瑟福α粒子散射实
验[1]。是1909年汉斯·盖革和恩斯特·马斯登在欧内斯
特·卢瑟福指导下于英国曼彻斯特大学做的一个著名物理
实验。 试验过程: 在一个铅盒里放有少量的放射性
元素钋(Po),它发出的α射线从铅盒的小孔射出,形成一
卢瑟福的α粒子散射实验观察和结论
卢瑟福的α粒子散射实验观察和结论卢瑟福的α粒子散射实验观察和结论导言卢瑟福的α粒子散射实验是物理学史上具有里程碑意义的实验之一。
通过此实验,卢瑟福成功地证实了原子结构的基本概念,并揭示了原子核的存在。
本文将探讨卢瑟福的α粒子散射实验的观察结果和结论,并分享我对此实验的观点和理解。
1. 实验背景卢瑟福的α粒子散射实验于1911年进行,当时科学界对原子结构的理解还较为模糊。
卢瑟福希望通过实验来验证当时流行的“杜尔文模型”,即认为原子是由带正电的球体(原子核)和带负电的电子云组成的。
他选择使用α粒子(带有两个负电荷的氦离子)作为入射粒子,通过散射角度的观察来揭示原子的内部结构。
2. 实验过程卢瑟福将一束经过加速的α粒子照射到薄金属箔上,并在周围布置了一个荧光屏。
通过观察荧光屏上出现的散射点和角度,卢瑟福记录下了大量实验数据。
3. 实验观察结果卢瑟福的实验观察结果出人意料,与当时的预期相去甚远:(1) 大多数α粒子出射角度很小,接近与入射方向一致;(2) 一小部分α粒子发生明显的偏转,出射角度远离入射方向;(3) 极少数α粒子甚至发生180度的反向散射,返回入射方向。
4. 实验结论基于上述观察结果,卢瑟福得出了以下结论:(1) 原子具有较大的空隙,大部分α粒子可以直接穿过原子而不发生散射;(2) 原子中存在带正电的原子核,同时带负电的电子云位于其周围;(3) 发生明显偏转的α粒子与正电荷较大的原子核发生了相互作用;(4) 散射角度与入射粒子的能量和散射物质的原子核正电荷有关。
5. 对实验的观点和理解卢瑟福的α粒子散射实验提供了直接证据,证明了历史上首次提出的原子核模型。
此模型认为原子核位于原子的中心,其中带有正电荷,并且占据了大部分原子的质量。
这个实验打破了当时流行的汤姆孙模型,即认为原子是由均匀分布的正负电荷所组成。
对于实验的观察结果,我认为其中最令人震惊的是极少数α粒子的180度反向散射。
这意味着原子核的大小远远小于原子的整体大小,同时具有较大的正电荷。
卢瑟福背散
卢瑟福背散【摘要】卢瑟福背散射分析(RBS )是一种对离子束进行分析的方法,其主要优点是能对材料表层的成分作纵向分析,并且无需材料的标准样品就能作定量分析。
本报告主要介绍了RBS 的分析原理、实验装置,并且对实验谱图和数据作了简单分析,重点是对实验谱图进行了能量刻度的标定以及计算薄膜的厚度。
【关键词】RBS 分析原理【引言】背散射分析就是在一束单能的质子、粒子或其他重离子束轰击固体表面时,通过探测卢瑟福背散射(库伦弹性散射、散射角大于90度)离子产额随能量的分布(能谱)确定样品中元素的种类(质量数)、含量及深度分布。
因此背散射分析通常被称为卢瑟福背散射谱学RBS (Rutherford Backscattering Spectrometry).【实验原理】当比靶核轻的入射离子能量amu MeV E amu keV /1/100≤≤范围,靶原子核外电子对入射离子的屏蔽作用不大,且离子和靶原子核的短程相互作用(核力)影响也可以忽略时,离子在固体中沿直线运动,离子主要通过与电子相互作用而损失能量,直到与原子核发生库仑碰撞被散射后又沿直线回到表面。
这个过程就称为离子的背散射过程。
描述离子背散射过程的三个基本物理概念主要有两体弹性碰撞的运动学因子、微分散射截面、固体的阻止截面。
一. 运动学因子和质量分辨率:运动学因子的定义:01E E K =其中0E 是入射粒子能量(动能),1E 是散射粒子能量(动能)。
根据动量与能量守恒定律,可以推导得到:212111⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡++⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-==M mM m cos θM m sin θE E K (1-1)由运动学因子公式可以看出:当入射离子种类(m ),能量(0E )和探测角度(θ)一定时,1E 与M 成单值函数关系。
所以,通过测量一定角度散射离子的能量就可以确定靶原子的质量数M 。
这就是背散射定性分析靶元素种类的基本原理。
卢瑟福散射公式的实验验证
卢瑟福散射公式的实验验证
一、实验简介
卢瑟福散射公式(Rutherford scattering formula)是1911年英国
科学家阿尔弗雷德·卢瑟福提出的,它是用来解释热核反应的微观动力学
模型,根据该公式,当重粒子(如α粒子)抵达质量集中的区域(原子核)时,其有几率发生Scattering过程,进而使得粒子的方向改变。
为
了验证卢瑟福散射公式,本实验采用重粒子(铯粒子),在特定的重粒子
浓度下,观察重粒子运动的方向,检测是否与卢瑟福散射公式所预期相同。
二、实验环境及设备
本实验使用半导体α质量分析仪设备,它是一种能够通过测定散射
冲击中核的质量来测量粒子能量的装备。
本实验使用的核物质是6种称为“原子核供体”的晶体,用化学方法制备成椭圆形状的晶体,晶体表面由
一层石英薄膜覆盖,用作放射性核反应探测器。
晶体板两端设有灯,用来
提供实验散射图形的阴影效果。
三、实验实施
1.首先在实验室中放入所需的晶体和灯,将晶体板放在室内的两端,
并在晶体板的表面上以固定间距制作放射线路径,以便观察粒子在穿过该
晶体板的过程中的变化情况。
2.然后向晶体板注入适量的铯粒子,将晶体板放置在射线源(用于发
射α粒子的装置)上方,调节粒子浓度。
卢瑟福α粒子散射实验说明
卢瑟福α粒子散射实验说明卢瑟福α粒子散射实验是一项重要的实验,它为我们揭示了原子的结构和核心的组成。
在这篇文章中,我将详细介绍卢瑟福α粒子散射实验的原理和重要意义。
卢瑟福α粒子散射实验是由英国物理学家欧内斯特·卢瑟福于1911年提出并进行的。
这个实验是通过将高能的α粒子轰击金属箔来研究原子结构的。
实验装置包括一个放射性源,用于产生α粒子,以及一个金属箔片,用于散射α粒子。
通过观察散射α粒子的轨迹和偏转角度,可以推断出金属箔内部的原子结构。
卢瑟福α粒子散射实验的原理是基于电荷之间的相互作用。
在实验中,α粒子带有正电荷,而金属箔中的原子核也带有正电荷。
当α粒子与原子核相互作用时,它们之间会发生散射。
根据库仑定律,散射角度与电荷之间的相互作用力成正比。
因此,通过测量散射角度,我们可以推断出原子核的位置和电荷分布。
在卢瑟福实验中,观察到了两种不同的散射模式:散射角度较小的散射事件和散射角度较大的散射事件。
卢瑟福发现,大部分α粒子穿过金属箔而没有发生散射,只有极少部分α粒子发生大角度的散射。
这一现象无法用经典物理学解释,而需要引入新的理论。
卢瑟福根据实验结果提出了著名的卢瑟福模型,也称为太阳系模型。
根据这个模型,原子核位于原子的中心,而电子则围绕核心运动,类似于行星绕太阳运动。
这个模型解释了为什么大部分α粒子穿过金属箔而没有发生散射,因为原子核的体积非常小,而α粒子的运动轨迹离开原子核足够远。
卢瑟福α粒子散射实验对于我们理解原子结构和核物理有着重要的意义。
首先,它揭示了原子中存在着一个非常小而致密的原子核,以及围绕核心运动的电子。
其次,实验结果验证了电荷之间的库仑相互作用定律,并为后来的量子力学提供了重要的实验依据。
最后,这个实验也为核物理的发展奠定了基础,为后续的核反应和核能利用提供了重要的参考。
总结一下,卢瑟福α粒子散射实验是一项重要的实验,通过观察散射α粒子的轨迹和偏转角度,揭示了原子的结构和核心的组成。
卢瑟福的a粒子散射实验结论原理计算
卢瑟福的a粒子散射实验结论原理计算卢瑟福的α粒子散射实验是一个具有重要意义的物理实验。
该实验是由新西兰物理学家欧内斯特·卢瑟福于20世纪初进行的,实验中使用了α粒子(即氦离子或称α粒子)射向一个金属薄膜,并对散射角度和散射强度进行了观察和测量。
根据经典的电磁理论,当一个α粒子入射到坚硬物体上时,它会受到库仑力的相互作用。
根据库仑定律,这个作用力具有反比于距离的平方的关系,因此入射到金属薄膜的α粒子将会受到金属原子核的库仑力作用,与之发生散射。
卢瑟福实验的重要结论如下:1.大部分的α粒子直线穿过金属薄膜,只发生微小的散射。
这表明原子的大部分空间是由空隙构成的,因为α粒子直径比原子小得多。
2.少数的α粒子经过散射后,发现其散射角度很大。
这暗示了原子具有一个高度集中的、具有正电荷的中心区域,即原子核。
3.α粒子散射的散射角度与入射粒子的能量有关。
这表明散射的短距离库仑相互作用,与α粒子的能量相关。
根据以上结论,卢瑟福提出了最早的原子核模型,即卢瑟福散射模型。
根据该模型,原子由一个带正电荷的原子核和围绕核的负电荷电子云组成。
原子的大部分体积为空隙,几乎所有的质量都集中在原子核中。
卢瑟福散射实验结论的原理可以通过经典的库仑力和动量守恒定律来解释。
在实验中,当α粒子与金属原子核发生相互作用时,它们之间的库仑力导致了散射。
根据电磁力的方向,α粒子将会受到一个向外的力,从而发生向后的散射。
根据动量守恒定律,散射后的α粒子的动量也会改变,从而使其散射角度发生偏转。
根据电磁力的定性描述和动量守恒定律可以计算散射角度和散射强度。
实际上,卢瑟福通过对散射后α粒子的观察和测量,得出了散射角度与入射粒子能量之间的关系,并从而确定了原子核的存在。
总结起来,卢瑟福的α粒子散射实验结论揭示了原子内部结构的重要特征,尤其是原子核的存在。
这项实验在现代原子物理学的发展中具有深远意义,为原子核物理学的诞生奠定了基础,也为后来的量子力学的发展提供了重要线索。
卢瑟福散射实验2012
实验3.3 卢瑟福散射实验修改日期:2012-1-12 by Zhangxf卢瑟福散射实验是近代物理科学发展史中最重要的实验之一。
在1897年汤姆逊(J.J.Thomson)测定电子的荷质比,提出了原子模型,他认为原子中的正电荷分布在整个原子空间,即在一个半径R≈10-10m区间,电子则嵌在布满正电荷的球内。
电子处在平衡位置上作简谐振动,从而发出特定频率的电磁波。
简单的估算可以给出辐射频率约在紫外和可见光区,因此能定性地解释原子的辐射特性。
但是很快卢瑟福(E.Rutherford)等人的实验否定这一模型。
1909年卢瑟福和他的助手盖革(H.Geiger)及学生马斯登(E.Marsden)在做α粒子和薄箔散射实验时观察到绝大部分α粒子几乎是直接穿过铂箔,但有大约1/8000的α粒子的散射角大于900,这一实验结果根本无法用公认的汤姆逊原子模型解释。
在汤姆逊模型中正电荷分布于整个原子,根据对库仑力的分析,α粒子离球心越近,所受库仑力越小,而在原子外,原子是中性的,α粒子和原子间几乎没有相互作用力。
在球面上库仑力最大,也不可能发生大角度散射。
卢瑟福等人经过两年的分析,于1911年提出原子的核式模型:原子中的正电荷集中在原子中心很小的区域内,而且原子的全部质量也集中在这个区域内。
原子核的半径近似为10-15m,约为原子半径的千万分之一。
卢瑟福散射实验确立了原子的核式结构,为现代物理的发展奠定了基石。
本实验通过卢瑟福核式模型,推导α粒子散射实验,验证卢瑟福散射理论,并学习应用散射实验研究物质结构的方法。
实验原理现从卢瑟福核式模型出发,先求α粒子散射中的偏转角公式,再求α粒子散射公式。
1.α粒子散射理论(1)库仑散射偏转角公式设原子核的质量为M,具有正电荷+Ze,并处于点O,而质量为m,能量为E,电荷为ze的α粒子以速度υ入射,在原子核(靶核)的质量比α粒子的质量大得多的情况下,可以认为前者不会被推动,α粒子则受库仑力的作用而改变了运动的方向,偏转θ角,如图3.3-1所示。
卢瑟福的α粒子散射实验结论
卢瑟福的α粒子散射实验结论1. 实验背景说起卢瑟福,那可真是个了不起的科学家,咱们今天要聊的就是他那经典的α粒子散射实验。
大约在1911年,这位大名鼎鼎的物理学家在研究原子结构时,做了个大胆的实验。
想象一下,那个时候,科学界对原子内部的构造可谓是一头雾水,搞得像是在摸黑走路。
卢瑟福和他的团队决定用α粒子,也就是一种带正电的粒子,来探探原子里到底藏了些什么东西。
真是敢为人先啊!实验的过程其实挺简单的。
他们把α粒子从放射性元素发射出来,然后让这些粒子撞击一层极薄的金箔。
金箔薄得就像是纸一样,几乎可以用手指捅破。
接着,卢瑟福用荧光屏观察这些α粒子是怎么散射的。
这里面可有不少戏剧性的时刻,就像一场精彩的表演。
2. 实验结果2.1 意外的发现好吧,结果真是让人瞠目结舌!大部分的α粒子都是笔直穿过金箔的,仿佛金箔根本就不存在。
但有一小部分的粒子却偏偏改变了方向,有的甚至反弹回来,简直像是看见了鬼。
卢瑟福当时一定觉得,哎呀,怎么回事呢?难道原子内部隐藏着什么秘密?这可真是让人百思不得其解。
2.2 原子模型的重构经过一番深入思考,卢瑟福得出一个惊人的结论:原子并不是一团糟的“梅花”,而是有着明确结构的。
他提出,原子里有一个非常小且密集的“原子核”,而α粒子反弹就是因为碰到了这个“核”。
这个核是正电的,周围则是负电的电子在转啊转,真是一个小宇宙!这不禁让人想起一句话:外表光鲜,内里却是别有洞天。
3. 实验的意义3.1 对科学界的影响卢瑟福的发现简直就是科学界的一场地震,彻底颠覆了之前的“汤姆逊的葡萄干布丁模型”。
他这一理论,不但让大家看到了原子的真实结构,还为后来的科学研究铺平了道路。
原子核的概念后来成了核物理学的基石,简直是功德无量。
3.2 对日常生活的启示你可能会问,这跟我们日常生活有什么关系呢?其实,卢瑟福的实验提醒我们,很多时候,表象并不代表真相。
就像我们看到的一个人,可能外表光鲜亮丽,内心却藏着故事。
所以,别轻易下结论,要多观察,多思考!另外,卢瑟福的好奇心也是我们每个人都应该学习的。
卢瑟福散射实验报告
卢瑟福散射实验报告卢瑟福散射实验报告引言:卢瑟福散射实验是物理学史上的一次重要实验,由英国物理学家欧内斯特·卢瑟福于1911年进行。
该实验通过研究金属箔对α粒子的散射现象,揭示了原子的结构和核心的存在,为后来的量子力学的发展奠定了基础。
本文将对卢瑟福散射实验进行详细的描述和分析。
实验过程:卢瑟福散射实验的装置主要由一个铅箱和一个放射性源组成。
在铅箱内部,放射性源会产生α粒子,这些粒子会被射向一个金属箔。
实验者通过观察散射后的α粒子的轨迹,来研究原子的结构。
实验结果:卢瑟福观察到,大部分的α粒子直线穿过金属箔而不发生散射,但也有一小部分α粒子发生了明显的偏转。
根据实验数据,卢瑟福提出了一个新的原子模型,即卢瑟福模型,也被称为行星模型。
根据这个模型,原子的质量主要集中在一个非常小的核心中,而电子则围绕核心运动。
实验解释:为了解释实验结果,卢瑟福提出了一个假设,即α粒子与原子核之间存在着一个非常强大的库仑力。
这个库仑力会导致α粒子受到偏转或散射。
根据库仑力的作用规律,散射角度与散射粒子的质量和速度有关。
根据实验数据的分析,卢瑟福得出了一个重要的结论:原子的核心是非常小而密集的,而电子则围绕核心运动。
卢瑟福模型的意义:卢瑟福模型的提出对于原子结构的理解起到了重要的推动作用。
它揭示了原子的核心结构,以及核心与电子之间的相互作用。
这一模型为后来量子力学的发展奠定了基础,并且对于科学家们研究原子和分子的行为和性质提供了重要的线索。
卢瑟福模型的局限性:尽管卢瑟福模型为原子结构的理解做出了重要贡献,但它也存在一些局限性。
首先,该模型没有考虑到量子力学的效应,无法解释一些微观现象。
其次,模型中的电子轨道是固定的,无法解释电子在不同能级之间跃迁的现象。
因此,后来的科学家们进一步发展了量子力学理论,提出了更为精确的原子模型。
结论:卢瑟福散射实验是物理学史上的里程碑之一,它揭示了原子的核心结构和电子的运动方式。
卢瑟福散射实验报告
一、实验目的1. 了解卢瑟福散射实验的基本原理和实验方法;2. 掌握实验仪器和实验步骤;3. 通过实验观察和分析,验证卢瑟福散射实验的结论,即原子具有核式结构。
二、实验原理卢瑟福散射实验是英国物理学家卢瑟福在1909年设计的一种实验,旨在验证原子结构的模型。
实验中,卢瑟福使用了一束α粒子轰击薄金属箔,通过观察α粒子的散射情况,推断出原子具有核式结构。
根据经典电磁理论,当α粒子与原子核发生碰撞时,会发生库仑散射。
根据库仑定律,散射角θ与入射角φ、α粒子的能量E和原子核的电荷量q有关。
实验中,通过改变入射角和α粒子的能量,可以观察不同角度下的散射情况,从而验证原子核的存在。
三、实验仪器与材料1. 实验仪器:α粒子源、金箔、显微镜、计数器、实验装置等;2. 实验材料:α粒子源、金箔、实验装置等。
四、实验步骤1. 将α粒子源与金箔固定在实验装置上;2. 将实验装置放入真空容器中,确保容器内无空气;3. 打开α粒子源,调整入射角φ,观察散射情况;4. 记录不同入射角下的散射数据,包括散射角度、散射强度等;5. 改变α粒子的能量E,重复步骤3和4;6. 对实验数据进行处理和分析,验证卢瑟福散射实验的结论。
五、实验结果与分析1. 实验结果显示,大部分α粒子穿过金箔,未发生偏转,表明原子内部存在较大的空间;2. 部分α粒子发生散射,且散射角度较小,表明原子内部存在微粒;3. 极少数α粒子发生大角度散射,甚至反弹回来,表明原子内部存在质量较大、带正电的微粒,即原子核。
根据实验结果,可以得出以下结论:1. 原子具有核式结构,即原子由一个重而带正电的核心和围绕其周围的带负电子的电子云组成;2. 原子核的存在是导致α粒子散射的主要原因;3. 原子核的质量和电荷量远大于电子,因此α粒子在碰撞过程中主要受到原子核的影响。
六、实验讨论1. 实验过程中,α粒子的能量和入射角对散射结果有较大影响。
能量越高、入射角越小,散射角度越小;2. 实验过程中,实验装置的真空度对实验结果有一定影响。
卢瑟福阿尔法粒子散射实验说明
卢瑟福阿尔法粒子散射实验说明第一部分:引言1.1 卢瑟福阿尔法粒子散射实验的重要性卢瑟福阿尔法粒子散射实验是物理学领域中具有里程碑意义的实验之一,通过这个实验,人们首次认识到了原子的内部结构和核的存在。
本文将深入探讨卢瑟福阿尔法粒子散射实验的实验过程、结果和意义,希望能够帮助读者更深入地理解这一重要的实验。
1.2 卢瑟福阿尔法粒子散射实验的背景在开始详细解释实验过程之前,我们首先需要了解卢瑟福阿尔法粒子散射实验的背景。
在20世纪初,科学家们普遍认为原子是不可分割的基本粒子,然而,这一观念在进行卢瑟福散射实验之后发生了改变。
...第六部分:个人观点和理解在本文中,我们详细讨论了卢瑟福阿尔法粒子散射实验的实验过程、结果和意义,并探讨了实验对现代物理学的影响。
通过深入的研究,我对这一实验有了更清晰的认识,也对原子结构的探索历程有了更深刻的理解。
我认为,卢瑟福阿尔法粒子散射实验是现代物理学发展历程中的关键一步,它为我们揭开了原子结构的神秘面纱,也为后来的科学研究奠定了坚实的基础。
总结:通过本文的阐述,我们了解了卢瑟福阿尔法粒子散射实验的实验背景、过程、结果和意义,深刻认识到了这一实验对原子结构研究和现代物理学发展的重要性。
希望本文能够帮助读者更深入地理解这一重要的实验,并对原子结构的探索历程有一定的了解。
我也希望本文能够激发读者对科学研究的兴趣,鼓励大家进一步了解和探索这一令人着迷的领域。
作者急切地期盼着读者们能够对卢瑟福阿尔法粒子散射实验产生兴趣,并对这一重要实验进行更深入的了解和探索。
接下来,我们将进一步扩展和深化关于实验过程、结果和意义的讨论,同时也会涉及到一些相关实验和理论的发展,以便更全面地了解这一实验对现代物理学的重要性。
2.1 实验过程的详细讨论在卢瑟福阿尔法粒子散射实验中,实验装置包括一个具有一定厚度和一定粒度的金属箔,以及一台阿尔法粒子发射装置和一个探测屏。
当阿尔法粒子通过金属箔时,它们会与金属原子核发生散射,然后经过一定角度后,散射的阿尔法粒子会被探测屏捕捉到。
卢瑟福的a粒子散射实验现象及结论
卢瑟福的a粒子散射实验现象及结论一、实验介绍二、实验现象1. α粒子的发射与散射2. α粒子的反跳现象三、实验结论1. 原子具有空心结构2. 原子核具有正电荷3. 原子核与电子的比例关系四、实验意义及影响一、实验介绍卢瑟福的a粒子散射实验是物理学中非常重要的一个经典实验,它是对原子结构和性质进行研究的基础。
该实验于1910年由英国物理学家欧内斯特·卢瑟福(Ernest Rutherford)领导完成,是一项利用α粒子对原子核进行探测的实验。
二、实验现象1. α粒子的发射与散射在卢瑟福的a粒子散射实验中,首先将α放射源放置在一个铅盒中,使其向外发出α粒子。
然后将α粒子引入真空玻璃管中,通过调节电压和电流来使α粒子加速,并通过一个小孔射向金箔靶。
在金箔靶后面设立一个荧光屏,用来观察α粒子的散射情况。
实验结果表明,大多数α粒子直线穿过金箔靶,只有极少数α粒子被散射。
这说明原子具有空心结构,其中正电荷集中在原子核内。
2. α粒子的反跳现象在实验中,还观察到了α粒子的反跳现象。
即有些α粒子经过金箔靶后会发生反弹,回到射线源处。
这说明原子核具有正电荷,并且与电子相比非常小。
三、实验结论1. 原子具有空心结构卢瑟福的a粒子散射实验表明,大多数α粒子直线穿过金箔靶,只有极少数α粒子被散射。
这说明原子具有空心结构,其中正电荷集中在原子核内。
2. 原子核具有正电荷实验还观察到了α粒子的反跳现象。
即有些α粒子经过金箔靶后会发生反弹,回到射线源处。
这说明原子核具有正电荷,并且与电子相比非常小。
3. 原子核与电子的比例关系通过对实验数据的分析,卢瑟福得出了一个重要的结论:原子核的质量与电子的质量相比非常大,而原子核的直径只有原子直径的万分之一。
这说明原子核与电子的比例关系是非常不同的。
四、实验意义及影响卢瑟福的a粒子散射实验是对原子结构和性质进行研究的基础。
它揭示了原子具有空心结构,其中正电荷集中在原子核内;同时也证明了原子核具有正电荷,并且与电子相比非常小。
卢瑟福散射实验
卢瑟福散射实验实验目的通过卢瑟福核式模型,说明α粒子散射实验,验证卢瑟福散射理论;并学习应用散射实验研究物质结构的方法。
实验原理α粒子散射理论(1)库仑散射偏转角公式设原子核的质量为M ,具有正电荷+Ze ,并处于点O ,而质量为m ,能量为E ,电荷为2e 的α粒子以速度ν入射,当α粒子进入原子核库仑场时,一部分动能将改变为库仑势能。
设α粒子最初的的动能和角动量分别为E 和L ,由能量和动量守恒定律可知:⎪⎪⎭⎫ ⎝⎛++⋅=∙∙222202241ϕπεr r m r Ze E (1) L b m mr ==∙∙νϕ2 (2) 由(1)式和(2)式可以证明α粒子的路线是双曲线,偏转角θ与瞄准距离b 有如下关系:202242Ze Eb ctg πεθ= (3) 设EZe a 0242πε=,则a b c t g 22=θ (4) 为求得实际的散射的α粒子数,以便与实验进行比较,还必须考虑靶上的原子数和入射的α粒子数。
由于薄箔有许多原子核,每一个原子核对应一个这样的环,若各个原子核互不遮挡,设单位体积内原子数为0N ,则体积st 内原子数为st N 0,α粒子打在这些环上的散射角均为θ,因此一个α粒子打在薄箔上,散射到θ方向且在Ωd 内的概率为s t N sds ⋅0。
若单位时间有n 个α粒子垂直入射到薄箔上,则单位时间内θ方向且在Ωd 立体角内测得的α粒子为:2sin 42414220200θπεΩ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⋅=d E Ze t nN s t N s ds n dn (5) 经常使用的是微分散射截面公式,微分散射截面Ω⋅=Ωtd N n dn d d 01)(θσ 其物理意义为,单位面积内垂直入射一个粒子(n=1)时,被这个面积内一个靶原子(10=t N )散射到θ角附近单位立体角内的概率。
因此,2sin 14241)(422200θπεθσ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=Ω=ΩE Ze td nN dn d d (6) 这就是著名的卢瑟福散射公式。
卢瑟福散射实验
简介
卢瑟福散射实验是近代物理科学发展中最具影响力的重要实验之一。
1909年,卢瑟福(Lord Emest Rutherford)和其合作者盖革(H.Geiger)与马斯顿(E.Marsden)所进行的α粒子散射实验,最终提出了原子的核式模型。
在该模型中,原子核的半径近似为10-13cm,约为原子半径的1/105。
卢瑟福散射实验是现代核物理学的基石。
图1:散射角与瞄准距离的关系
由牛顿第二定律:
其中
图2:入射α粒子散射到dθ角度范围内的几率
实验中,无法测量瞄准距离b,但可求出α粒子按瞄准距离b的散射计数率
本实验通过改变散射角度,验证散射计数率与散射角的关系,这是卢瑟福散射公式中最突出和最重要的特征。
实验内容与注意事项
1.打开真空室上盖,观察样品台随步进电机控制键改变而旋转的情况,注
意观察α放射源、金靶、半导体探测器的相对位置。
2.了解电子学系统工作情况,调节放大倍数,用示波器观察放大器输出是
否正常。
3.确定散射角的物理位置:从-10°——+10°,每10测一次α粒子计数,找
出物理0°。
4.测量有样品时的散射α粒子计数,并将测量值按同一时间归一化处理。
5.实验结束,通过放气口对真空室缓慢放气。
6.以散射角为横坐标,P值为纵坐标作图,并在同一坐标上画出拟合曲线
如下。
RBS卢瑟福背散射-实验报告
实验报告卢瑟福背散射分析(RBS)实验姓名:学号:院系:物理学系实验报告一、实验名称卢瑟福背散射分析(RBS)实验二、实验目的1、了解RBS实验原理、仪器工作结构及应用;2、通过对选定的样品的实验,初步掌握RBS实验方法及谱图分析;3、学习背散射实验的操作方法。
三、RBS实验装置主要包括四个部分:1、一定能量离子束的的产生装置----加速器2、离子散射和探测的地方----靶室3、背散射离子的探测和能量分析装置4、放射源RBS图1 背散射分析设备示意图1.离子源2.加速器主体3.聚焦系统4. 磁分析器5.光栅6. 靶室7.样品8.真空泵9.探测器10.前置放大器11.主放大器12. 多道分析器13. 输出四、实验原理当一束具有一定能量的离子入射到靶物质时,大部分离子沿入射方向穿透进去,并与靶原子电子碰撞逐渐损失其能量,只有离子束中极小部分离子与靶原子核发生大角度库仑散射而离开原来的入射方向。
入射离子与靶原子核之间的大角度库仑散射称为卢瑟福背散射(记为RBS)。
用探测器对这些背散射粒子进行侧量,能获得有关靶原子的质量、含量和深度分布等信息。
入射离子与靶原子碰撞的运动学因子、散射截面和能量损失因子是背散射分析中的三个主要参数。
图 3 大角度散射示意图(实验室坐标系)图2 弹性散射(质心坐标系)1、 运动因子K 和质量分辨率 1)运动学因子K当一定能量(对应于一定速度)的离子射到靶上时,入射离子和靶原子发生弹性碰撞,人射离子的部分能量传给了被撞的靶原子,它本身则被散射,散射的方向随一些参量而变化,如图2(质心坐标系)所示.设Z 1, Z 2分别为入射离子及靶原子的原子序数,m 、 M 分别为它们的原子质量,e 为单位电子电荷量,v 0为入射离子的速度,b 为碰撞参量或瞄准距离(即入射轨迹延伸线与靶原子核的距离),x 为散射角.由分析力学可以推导出。
此式实际上不是一个入射离子而是一束禽子,且b 值有大有小。
卢瑟福散射实验 (1)
卢瑟福散射实验实验目的:本实验通过卢瑟福核式模型,说明α粒子散射实验,验证卢瑟福散射理论;并学习应用散射实验研究物质结构的方法。
实验原理:1库伦偏转角:当α粒子进入原子核库仑场时,一部分动能将改变为库仑势能。
设α粒子最初的的动能和角动量分别为E 和L ,由能量和动量守恒定律可知:⎪⎪⎭⎫⎝⎛++⋅=••222202241ϕπεr r m r Ze E (1) L b m mr ==••νϕ2 (2)由(1)式和(2)式可以证明α粒子的路线是双曲线,偏转角θ与瞄准距离b 有如下关系:22242ZeEbctgπεθ= (3) 设EZe a 0242πε=,则a b ctg 22=θ2.卢瑟福散射公式:2sin 14241)(422200θπεθσ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=Ω=ΩE Ze td nN dnd d角度(θ) 30 35 40 45 50 时间(t)200400 600 1000 2000 计数值(N ) 150 156 111 111 149 2sin 4θ0.0045 0.0082 0.0137 0.0214 0.0319 N150 78 37 22.2 14.9 P0.67310.63960.50690.47510.4753所以角度与P 的关系:Y A x i s T i t l eX Axis Title(2)角度和N 的关系图:Y A x i s T i t l eX Axis Title(3)研究性内容应用多道分析器可将输入的脉冲按其不同幅度送入相对应的道址中,而在实验中,是将一定脉冲幅度范围内的脉冲当成同幅度的脉冲进行计数的,因而可以保证在脉冲数较少的情况下的计数,而多道分析器由于将脉冲幅度分的较细,因此在脉冲数较少的情况下,测出的能谱图并不能有较明显的峰,因此应用多道分析器时,应使计数的时间长一些。
实验误差分析:实验数据与理论值存在较大误差。
理论上在真空条件下测量不同角度P =)2(sin 4θN 应该是一个常数,但图中显然不是。
卢瑟福散射 实验报告
卢瑟福散射实验报告卢瑟福散射实验报告引言:卢瑟福散射实验是20世纪初物理学家欧内斯特·卢瑟福进行的一项重要实验,通过观察α粒子在金属箔上的散射现象,揭示了原子结构中的核心概念。
本文将对卢瑟福散射实验进行详细介绍,并探讨其对原子理论的贡献。
实验装置与方法:卢瑟福散射实验主要使用了阻挡放射性α粒子的金属箔和荧光屏。
实验时,α粒子从放射源发射出来,经过一系列的准直装置后,射到金属箔上。
箔片上的α粒子会发生散射,一部分散射到荧光屏上,形成亮点。
通过观察亮点的分布情况,可以推断出α粒子在金属箔中的散射规律。
实验结果与讨论:卢瑟福实验的最重要结果之一是发现了一个非常小而密集的正电荷核心,即原子核。
通过对散射角度的测量和分析,卢瑟福得出结论:α粒子在经过金属箔时,与核心发生散射的概率与散射角度的平方成反比。
这一结论被称为卢瑟福散射公式。
卢瑟福散射公式的推导与解释:卢瑟福散射公式的推导基于库仑力的作用。
当α粒子靠近原子核时,它受到核心的正电荷吸引,同时也受到库仑斥力的作用。
根据库仑定律,这两个力与距离的平方成反比。
因此,当α粒子靠近核心时,它的散射角度会增大。
卢瑟福散射公式的解释也揭示了原子的空间结构。
根据公式,α粒子在经过金属箔时,只有极小的一部分发生散射,而大部分直线通过。
这表明原子内部存在着大量的空隙,α粒子可以穿过这些空隙而不与核心发生碰撞。
而当α粒子与核心发生碰撞时,它们的散射角度较大,说明核心的大小相对较小。
卢瑟福散射实验对原子理论的贡献:卢瑟福散射实验的结果对于原子理论的发展产生了深远的影响。
首先,实验结果证实了汤姆逊提出的“杏仁布丁模型”是错误的。
根据杏仁布丁模型,原子是由均匀分布的正电荷和电子组成的,而卢瑟福实验的结果表明,原子核的正电荷集中在一个非常小的区域内,而电子则分布在核外的轨道上。
其次,卢瑟福散射实验为后来的量子力学理论奠定了基础。
实验结果揭示了原子内部的空隙结构,这启发了后来量子力学理论中的波粒二象性概念。
卢瑟福散射_实验报告
一、实验目的1. 验证卢瑟福散射理论,理解原子核式结构模型;2. 掌握实验装置的使用方法,学会数据处理和误差分析;3. 培养科学实验技能和团队协作能力。
二、实验原理卢瑟福散射实验是通过α粒子轰击金箔,观察α粒子在金箔后的散射情况,从而验证原子核式结构模型。
根据卢瑟福散射理论,当α粒子穿过原子时,只有当α粒子与原子核的距离小于某一特定值时,α粒子才会发生散射。
该特定值与原子核的半径有关,即r = (ke^2)/(p^2),其中k为库仑常数,e为电子电荷,p为α粒子的动量。
三、实验仪器与材料1. 实验仪器:卢瑟福散射实验装置、α粒子源、金箔、计数器、显微镜、计算机等;2. 实验材料:金箔、α粒子源、电源、真空泵等。
四、实验步骤1. 安装实验装置,确保所有仪器连接正确;2. 将金箔固定在实验装置上,调整显微镜位置,使其与金箔垂直;3. 打开α粒子源,调整电流,使α粒子流稳定;4. 打开计数器,记录α粒子在金箔后的散射情况;5. 调整显微镜位置,观察不同角度的散射情况,记录散射角度及计数;6. 重复步骤4和5,记录多组数据;7. 关闭α粒子源,关闭电源,整理实验器材。
五、实验数据与处理1. 记录实验数据,包括散射角度、计数等;2. 利用计算机软件处理数据,计算散射角度与计数的关系;3. 对比实验数据与理论计算值,分析误差来源。
六、实验结果与分析1. 实验结果显示,绝大多数α粒子穿过金箔后仍沿原来的方向前进,偏转角度很小;2. 少数α粒子发生了较大的偏转,偏转角度超过90度;3. 极少数α粒子的偏转角度超过180度,甚至被反弹回来。
根据实验结果,可以得出以下结论:1. 原子内部存在一个带正电的核,核的半径远小于原子半径;2. 原子核的质量远大于电子的质量;3. 原子核的正电荷集中在原子内部,电子围绕原子核运动。
七、误差分析1. α粒子源电流不稳定,导致α粒子流不稳定;2. 金箔厚度不均匀,导致α粒子散射角度不准确;3. 实验装置存在一定误差,如显微镜的读数误差等;4. 数据处理过程中存在舍入误差。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
卢瑟福散射实验
骆培杰 PB05210313
实验目的: 通过卢瑟福核式模型,说明α粒子散射实验,验证卢瑟福散射理论;
并学习应用散射实验研究物质结构的方法。
实验原理:1.α粒子散射理论: (1)库仑散射偏转角公式
设原子核的质量为M ,具有正电荷+Ze ,并处于点O ,而质量为m ,能量为E ,电荷为2e 的α粒子以速度ν入射,在原子核的质量比α粒子的质量大得多的情况下,可以认为前者不会被推动,α粒子则受库仑力的作用而改变了运动的方向,偏转θ角.若α粒子原来的速度为ν,b 是原子核离α粒子原运动径的延长线的垂直距离,即入射粒子与原子核无作用时的最小直线距离,称为瞄准距离。
当α粒子进入原子核库仑场时,一部分动能将改变为库仑势能。
设α粒子最初的的动能和角动量分别为E 和L ,由能量和动量守恒定律可知:
⎪⎪⎭
⎫
⎝⎛++⋅=••222202241
ϕπεr r m r Ze E L b m mr ==•
•
νϕ2
由以上两式可以证明α粒子的路线是双曲线,偏转角θ与瞄准距离b 关系为:
a
b
ctg 22=
θ, 其中
E
Ze a 02
42πε=
这就是库仑散射偏转角公式。
(2)卢瑟福散射公式
设靶是一个很薄的箔,厚度为t ,面积为s ,则图 3.3-1中的
db
ds π2=,一个α粒子被一个靶原子散射到θ方向、θθd -范围内的几
率,也就是α粒子打在环ds 上的概率,即
232cos
228sin 2
a b db ds d s s s θ
ππθθ==
若用立体角Ωd 表示, 2sin 4sin cos 222
d d d θθθ
πθπθΩ==
则有:
θ
θ
d s d a s
ds 2
sin
1642Ω=
若单位时间有n 个α粒子垂直入射到薄箔上,则单位时间内θ方向且在d Ω立体角内测得的α粒子为:
2sin 424142
20200θπεΩ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭
⎫ ⎝⎛=⋅=d E Ze t nN s t N s ds
n dn
因此,
2
sin 14241)(4
2
22
00θπεθσ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝
⎛=Ω=ΩE Ze td nN dn
d d 这就是著名的卢瑟福散射公式。
代入各常数值,以E 代表入射α粒子的能量,得到公式:
()2sin 12296.142
θ
σ⎪⎭⎫
⎝⎛=ΩE Z d d
其中,
Ωd d σ
的单位为sr mb /,E 的单位为Mev 。
2. 卢瑟福理论的实验验证方法
对卢瑟福散射公式,可以从以下几个方面加以验证。
(1) 固定散射角,改变金靶的厚度,验证散射计数率与靶厚度的
线性关系t N ∝。
(2) 更换α粒子源以改变α粒子能量,验证散射计数率与α粒子
能量的平方反比关系2
1
N E ∝。
(3) 改变散射角,验证散射计数率与散射角的关系。
这是卢瑟福
散射击中最突出和最重要的特征。
实验步骤:1.熟悉各装置的作用和使用方法
2.调节样品台,使放射源对准探测器.盖上真空室盖,抽出真空室中的空气.
3.调节示波器,观察输出波形,调节线性放大器的放大倍数,使输出波形最大不失真.
4.调节步进机,在-5°到+5°范围内每隔1°记下2秒内α粒子的计数,找到其中最大的计数,将该角度设置为0°.
5.在30°到50°区间内每隔5°分别对α粒子计数,计数时间分别为200秒,400秒,600秒,1000秒,2000秒.
6.作)
2(sin 1
4
θ=N 的拟和曲线.
)
2(sin 1
4
θ=
N 拟和直线如下图 0
20
40
60
80
100
120
140
N
由图可以看出实验测得的5个点的线性度较高,基本在一条直线上.由各点算出
的P 基本保持稳定,可以认是一个常数. 在误差允许的范围内,)2
(sin N 4θ
=近似
为一常数,进而验证了卢瑟福散射公式。
误差分析:本实验中有以下几点可能产生误差:
(1)选取初始位置时,很难做到取到严格的0度位置,这是因为在找初始
位置时是每隔1度取一个点,找N 值最大点,1度对于精确的理论实验来说,仍无法保证找到的就是严格意义上的0度点。
(2)本实验采取的是统计规律的方法,而统计规律的基本要求就是大量重
复试验,本实验中记录的5组数据偏少,并且在实验中测量的时间偏短(测量的最短时间为200秒,最长的时间只是2000秒),在这样一段时间内测量到的数据,不一定是辐射源在这个角度上单位时间内辐射出的粒子数,会与实际辐射数有一定的区别,这会使实验数据不准确。
(3)放射性物质本身的不稳定性,使其在相同时间内辐射出的粒子数不都
相同,这就使原本测量时间就不很足够的实验变得更加不准确。
(4)实验仪器的精度以及实验者的经验、实验中的操作都可能带来实验误
差。
思考题: 根据卢瑟福公式)
2(sin 1
4
θ=
N 应为常数,本实验的结果有偏差吗?试分析原因。
答:实验结果有一定的偏差.有多方面的因素会使实验结果产生偏差:
1. 真空室并不是真正的真空,而是还残存少量的空气分子,这些空气
分子有一定的概率与α粒子碰撞使α粒子发生偏转.
2. 卢瑟福公式是在金箔靶足够薄,仅有一层靶原子的理想实验条件下
的理论公式.而实际上金箔靶有一定的厚度, 少量α粒子可能发生多次散射.
3. 实验结果的好坏还与探测器的性能有关.
4. α粒子的计数服从统计规律,在有限次实验的情况下偶然误差无法
消除.。