2015高考三角函数与解三角形解答题及答案

合集下载

三角函数及解三角形测试题(含答案)

三角函数及解三角形测试题(含答案)

三角函数及解三角形测试题(含答案)三角函数及解三角形1.在锐角三角形ABC中,角A的对边为a,角B的对边为b,角C的对边为c。

根据正弦定理,$\frac{a}{\sinA}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R$,其中R为三角形外接圆的半径。

根据余弦定理,$c^2=a^2+b^2-2ab\cos C$。

根据正切的定义,$\tan A=\frac{a}{b}$。

根据余切的定义,$\cotA=\frac{b}{a}$。

根据正割的定义,$\sec A=\frac{c}{a}$。

根据余割的定义,$\csc A=\frac{c}{b}$。

2.选择题:1.设$\alpha$是锐角,$\tan(\frac{\pi}{4}+\alpha)=3+\sqrt{22}$,则$\cos\alpha=\frac{2\sqrt{22}}{36}$。

2.一艘船向XXX,看见正西方向有相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°,另一灯塔在船的南偏西75°,则这艘船的速度是每小时5海里。

4.已知函数$f(x)=3\sin\omega x+\cos\omega x$,$y=f(x)$的图象与直线$y=2$的两个相邻交点的距离等于$\pi$,则$f(x)$的单调递增区间是$(\frac{k\pi}{2}-\frac{\pi}{12},\frac{k\pi}{2}+\frac{5\pi}{12})$,其中$k\in Z$。

5.圆的半径为4,$a,b,c$为该圆的内接三角形的三边,若$abc=162$,则三角形的面积为$22$。

6.已知$\cos\alpha=-\frac{4}{\pi}$,且$\alpha\in(\frac{\pi}{4},\frac{\pi}{2})$,则$\tan(\alpha+\frac{\pi}{4})=-\frac{7}{7}$。

三角函数与解三角形测试题(含答案解析)

三角函数与解三角形测试题(含答案解析)

三角函数与解三角形本试卷分第一卷(选择题)和第二卷(非选择题)两局部。

总分值150分。

考试时间120分钟。

第一卷(选择题 共50分)一、选择题(本大题共10个小题,每题5分,共50分,在每题给出的四个选项中,只有一项为哪一项符号题目要求的。

)1.角α终边上一点P ,则2sin 23tan αα-=〔 〕A .1--B .1-C .-D .0[答案] D 2.y=(sin x+cos x )2-1是( )A .最小正周期为2π的偶函数B .最小正周期为2π的奇函数C .最小正周期为π的偶函数D .最小正周期为π的奇函数[答案] D[解析] y =(sin x +cos x )2-1=2sin x cos x =sin2x ,所以函数y =(sin x +cos x )2-1是最小正周期为π的奇函数.3.把函数y =sin(ωx +φ)(ω>0,|φ|<π)的图象向左平移π6个单位,再将图像上全部点的横坐标伸长到原来的2倍(纵坐标不变)所得的图象解析式为y =sin x ,则 ( )A .ω=2,φ=π6B .ω=2,φ=-π3C .ω=12,φ=π6D .ω=12,φ=π12[答案] B[分析] 函数y =sin(ωx +φ)经过上述变换得到函数y =sin x ,把函数y =sin x 的图象经过上述变换的逆变换即可得到函数y =sin(ωx +φ)的图象.[解析] 把y =sin x 图象上全部点的横坐标缩小到原来的12倍得到的函数解析式是y =sin2x ,再把这个函数图象向右平移π6个单位,得到的函数图象的解析式是y =sin2⎝⎛⎭⎫x -π6=sin ⎝⎛⎭⎫2x -π3,与函数比拟得ω=2,φ=-π3. [点评] 此题考查三角函数图象的变换,试题设计成逆向考查的方法更能考查出考生的分析解决问题的灵敏性,此题也可以根据比拟系数的方法求解,根据的变换方法,经过两次变换后函数y =sin(ωx +φ)被变换成y =sin ⎝⎛⎭⎫ωx 2+ωπ6+φ比拟系数也可以得到问题的答案. 4.tan α=2,则2sin 2α+1sin2α= ( )A.53 B .-134C.135D.134[答案] D[解析] ∵tan α=2,∴2sin 2α+1sin2α=3sin 2α+cos 2α2sin αcos α=3tan 2α+12tan α=134.5.函数f (x )=2sin ωx (ω>0)在区间[-π3,π4]上的最大值是2,则ω的最小值等于( )A.23B.32 C .2 D .3[答案] C[解析] 由条件知f ⎝⎛⎭⎫π4=2sin π4ω=2,∴ω=8k +2,∵ω>0,∴ω最小值为2. 6.假设函数f (x )=sin ωx +cos ωx (ω>0)的最小正周期为1,则它的图像的一个对称中心为( )A.⎝⎛⎭⎫-π8,0 B.⎝⎛⎭⎫π8,0 C .(0,0) D.⎝⎛⎭⎫-π4,0 [答案] A[分析] 把函数化为一个角的一种三角函数,根据函数的最小正周期求出ω的值,根据对称中心是函数图象与x 轴的交点进行检验或直接令f (x )=0求解.[解析] f (x )=sin ωx +cos ωx =2sin ⎝⎛⎭⎫ωx +π4,这个函数的最小正周期是2πω,令2πω=1,解得ω=2,故函数f (x )=sin ωx +cos ωx =2sin ⎝⎛⎭⎫2x +π4,把选项代入检验知点⎝⎛⎭⎫-π8,0为其一个对称中心.[点评] 函数y =A sin(ωx +φ)的图象的对称中心,就是函数图象与x 轴的交点. 7.函数y =A sin(ωx +φ)+m (A >0,ω>0)的最大值为4,最小值为0,最小正周期为π2,直线x=π3是其图象的一条对称轴,则符合条件的函数解析式是 ( ) A .y =4sin ⎝⎛⎭⎫4x +π6 B .y =2sin ⎝⎛⎭⎫2x +π3+2 C .y =2sin ⎝⎛⎭⎫4x +π3+2 D .y =2sin ⎝⎛⎭⎫4x +π6+2[答案] D[解析] 由最大值为4,最小值为0得⎩⎪⎨⎪⎧ A +m =4-A +m =0,∴⎩⎪⎨⎪⎧A =2m =2, 又因为正周期为π2,∴2πω=π2,∴ω=4,∴函数为y =2sin(4x +φ)+2,∵直线x =π3为其对称轴,∴4×π3+φ=π2+k π,k ∈Z ,∴φ=k π-5π6,取k =1知φ=π6,应选D.8.cos(x ―π6)=― 3 3 ,则cosx+cos(x ―π3)的值是 ( )A 、― 2 3 3B 、± 2 33C 、―1D 、±19.△ABC 中,a =1,b =2,B =45°,则角A 等于 ( )A .150°B .90°C .60°D .30°[答案] D[解析] 根据正弦定理得1sin A =2sin45°,∴sin A =12,∵a <b ,∴A 为锐角,∴A =30°,应选D.10.函数y =A sin(ωx +φ)+b 的一局部图象如下图,如图A >0,ω>0,|φ|<π2,则( )A .φ=-π6B .φ=-π3C .φ=π3D .φ=π6[答案] D[解析] 由图可知⎩⎪⎨⎪⎧ A +b =4-A +b =0,∴⎩⎪⎨⎪⎧A =2b =2, 又T 4=5π12-π6=π4,∴T =π,∴ω=2, ∴y =2sin(2x +φ)+2,将⎝⎛⎭⎫5π12,2代入得sin ⎝⎛⎭⎫5π6+φ=0,结合选项知选D. 第二卷(非选择题 共90分)二、填空题(本大题共5个小题,每题5分,共25分,把正确答案填在题中横线上) 11.计算:cos10°+3sin10°1-cos80°=________.解析:cos10°+3sin10°1-cos80°=2cos(10°-60°)2sin 240°=2cos50°2sin40°= 2.12.在△ABC 中,假设a =b =1,c =3,则∠C =________.[解析] cos C =a 2+b 2-c 22ab =1+1-32=-12,∴C =2π3.13.假设tan α=2,tan(β-α)=3,则tan(β-2α)的值为________.[答案] 17[解析] tan(β-2α)=tan[(β-α)-α] =tan (β-α)-tan α1+tan (β-α)·tan α=3-21+3×2=17.14.f (x )=2sin ⎝⎛⎭⎫2x -π6-m 在x ∈[0,π2]上有两个不同的零点,则m 的取值范围是________. [答案] [-1,2][解析] f (x )在[0,π2]上有两个不同零点,即方程f (x )=0在[0,π2]上有两个不同实数解,∴y =2sin ⎝⎛⎭⎫2x -π6,x ∈[0,π2]与y =m 有两个不同交点, ∵0≤x ≤π2,∴-π6≤2x -π6≤5π6,∴-12≤sin(2x -π6)≤1,∴-1≤y ≤2,∴-1≤m ≤2.15.对于函数f (x )=2cos 2x +2sin x cos x -1(x ∈R )给出以下命题: ①f (x )的最小正周期为2π; ②f (x )在区间[π2,5π8]上是减函数;③直线x =π8是f (x )的图像的一条对称轴;④f (x )的图像可以由函数y =2sin2x 的图像向左平移π4而得到.其中正确命题的序号是________(把你认为正确的都填上).[答案] ②③[解析] f (x )=cos2x +sin2x =2sin ⎝⎛⎭⎫2x +π4,最小正周期T =π;由2k π+π2≤2x +π4≤2k π+3π2(k ∈Z )得k π+π8≤x ≤k π+5π8,故f (x )在区间[π2,5π8]上是减函数;当x =π8时,2x +π4=π2,∴x =π8是f (x )的图象的一条对轴称;y =2sin2x 的图象向左平移π4个单位得到的图象对应函数为y =2sin2⎝⎛⎭⎫x +π4,即y =2sin ⎝⎛⎭⎫2x +π2,因此只有②③正确. 三、解答题(本大题共6个小题,共75分,解容许写出文字说明,证明过程或演算步骤) 16.(本小题总分值12分)函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的局部图象如下图.(1)求函数f (x )的解析式;(2)假设f ⎝⎛⎭⎫α2=45,0<α<π3,求cos α的值. [解析] (1)由图象知A =1f (x )的最小正周期T =4×⎝⎛⎭⎫5π12-π6=π,故ω=2πT =2 将点⎝⎛⎭⎫π6,1代入f (x )的解析式得sin ⎝⎛⎭⎫π3+φ=1, 又|φ|<π2,∴φ=π6故函数f (x )的解析式为f (x )=sin ⎝⎛⎭⎫2x +π6 (2)f ⎝⎛⎭⎫α2=45,即sin ⎝⎛⎭⎫α+π6=45,又0<α<π3, ∴π6<α+π6<π2,∴cos ⎝⎛⎭⎫α+π6=35. 又cos α=[(α+π6)-π6]=cos ⎝⎛⎭⎫α+π6cos π6+sin ⎝⎛⎭⎫α+π6sin π6=33+410. 17.(本小题总分值12分) )cos 2,sin (cos ),sin ,sin (cos x x x b x x x a -=+=,设b a x f ⋅=)(.(1)求函数)(x f 的单调增区间;〔2〕三角形ABC 的三个角,,A B C 所对边分别是,,a b c ,且满足(),103A fB π==+=,求边c .[解析](1) b a x f ⋅=)( =x x x x x x cos 2sin )sin (cos )sin (cos ⋅+-⋅+ =x x x x cos sin 2sin cos 22+- =x x 2sin 2cos +=)2sin 222cos 22(2x x +=cos2cossin 2)44x x ππ+=)42sin(2π+x ………………………………3分由()f x 递增得:222242k x k πππππ-+≤+≤+即3,88k x k k Z ππππ-+≤≤+∈ ∴)(x f 的递增区间是3[,],88k k k Z ππππ-++∈ 。

三角函数与解三角形高考试题精选

三角函数与解三角形高考试题精选

三角函数与解三角形高考试题精选一.解答题(共31小题)1.在△ABC中,角A,B,C的对边分别为a,b,c,已知2(tanA+tanB)=+.(Ⅰ)证明:a+b=2c;(Ⅱ)求cosC的最小值.2.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知asinA=4bsinB,ac=(a2﹣b2﹣c2).(Ⅰ)求cosA的值;(Ⅱ)求sin(2B﹣A)的值.3.△ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.(Ⅰ)求C;(Ⅱ)若c=,△ABC的面积为,求△ABC的周长.4.在△ABC中,内角A,B,C的对边分别为a,b,c.已知cosA=,sinB=C.5.在△ABC中,角A,B,C所对的边分别是a,b,c,且+=.(Ⅰ)证明:sinAsinB=sinC;(Ⅱ)若b2+c2﹣a2=bc,求tanB.6.在△ABC中,已知AB=2,AC=3,A=60°.(1)求BC的长;(2)求sin2C的值.7.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知△ABC的面积为3,b﹣c=2,cosA=﹣.(Ⅰ)求a和sinC的值;(Ⅱ)求cos(2A+)的值.8.△ABC的内角A,B,C所对的边分别为a,b,c.向量=(a,b)与=(cosA,sinB)平行.(Ⅰ)求A;(Ⅱ)若a=,b=2,求△ABC的面积.9.设△ABC的内角A,B,C所对边的长分别为a,b,c,且b=3,c=1,△ABC的面积为,求cosA 与a的值.10.如图,在平面四边形ABCD中,DA⊥AB,DE=1,EC=,EA=2,∠ADC=,∠BEC=.(Ⅰ)求sin∠CED的值;(Ⅱ)求BE的长.11.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2acosB.(Ⅰ)证明:A=2B;(Ⅱ)若△ABC的面积S=,求角A的大小.12.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知A=,b2﹣a2=c2.(1)求tanC的值;(2)若△ABC的面积为3,求b的值.13.在△ABC中,内角A、B、C所对的边分别是a、b、c,且a+b+c=8.(Ⅰ)若a=2,b=,求cosC的值;(Ⅱ)若sinAcos2+sinBcos2=2sinC,且△ABC的面积S=sinC,求a和b的值.14.△ABC的内角A,B,C所对应的边分别为a,b,c.(Ⅰ)若a,b,c成等差数列,证明:sinA+sinC=2sin(A+C);(Ⅱ)若a,b,c成等比数列,求cosB的最小值.15.△ABC的内角A、B、C所对的边分别为a,b,c.(Ⅰ)若a,b,c成等差数列,证明:sinA+sinC=2sin(A+C);(Ⅱ)若a,b,c成等比数列,且c=2a,求cosB的值.16.四边形ABCD的内角A与C互补,AB=1,BC=3,CD=DA=2.(1)求C和BD;(2)求四边形ABCD的面积.(1)求cosB;(2)若a+c=6,△ABC的面积为2,求b.18.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2acosB.(1)证明:A=2B;(2)若cosB=,求cosC的值.19.设△ABC的内角A、B、C的对边分别为a、b、c,a=btanA,且B为钝角.(Ⅰ)证明:B﹣A=;(Ⅱ)求sinA+sinC的取值范围.20.△ABC中,角A,B,C所对的边分别为a,b,c,已知cosB=,sin(A+B)=,ac=2,求sinA和c的值.21.设△ABC的内角A,B,C的对边分别为a,b,c,a=btanA.(Ⅰ)证明:sinB=cosA;(Ⅱ)若sinC﹣sinAcosB=,且B为钝角,求A,B,C.22.△ABC中,D是BC上的点,AD平分∠BAC,△ABD面积是△ADC面积的2倍.(1)求;(2)若AD=1,DC=,求BD和AC的长.23.已知a,b,c分别是△ABC内角A,B,C的对边,sin2B=2sinAsinC.(Ⅰ)若a=b,求cosB;(Ⅱ)设B=90°,且a=,求△ABC的面积.24.△ABC中,D是BC上的点,AD平分∠BAC,BD=2DC(Ⅰ)求.(Ⅱ)若∠BAC=60°,求∠B.25.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知a﹣c=b,sinB=sinC,(Ⅰ)求cosA的值;(Ⅱ)求cos(2A﹣)的值.(Ⅰ)求b的值;(Ⅱ)求△ABC的面积.27.在△ABC中,角A,B,C的对边分别是a,b,c.(1)若sin(A+)=2cosA,求A的值.(2)若cosA=,b=3c,求sinC的值.28.在△ABC中,角A,B,C的对边是a,b,c,已知3acosA=ccosB+bcosC(1)求cosA的值(2)若a=1,cosB+cosC=,求边c的值.29.在△ABC中,内角A,B,C的对边分别为a,b,c,且bsinA=a•cosB.(1)求角B的大小;(2)若b=3,sinC=2sinA,分别求a和c的值.30.在△ABC中,a=3,b=2,∠B=2∠A.(Ⅰ)求cosA的值;(Ⅱ)求c的值.三角函数与解三角形高考试题精选参考答案与试题解析一.解答题(共31小题)1.在△ABC中,角A,B,C的对边分别为a,b,c,已知2(tanA+tanB)=+.(Ⅰ)证明:a+b=2c;(Ⅱ)求cosC的最小值.【解答】解:(Ⅰ)证明:由得:;∴两边同乘以cosAcosB得,2(sinAcosB+cosAsinB)=sinA+sinB;∴2sin(A+B)=sinA+sinB;即sinA+sinB=2sinC(1);根据正弦定理,;∴,带入(1)得:;∴a+b=2c;(Ⅱ)a+b=2c;∴(a+b)2=a2+b2+2ab=4c2;∴a2+b2=4c2﹣2ab,且4c2≥4ab,当且仅当a=b时取等号;又a,b>0;∴;∴由余弦定理,=;∴cosC的最小值为.2.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知asinA=4bsinB,ac=(a2﹣b2﹣c2).(Ⅰ)求cosA的值;(Ⅱ)求sin(2B﹣A)的值.【解答】(Ⅰ)解:由,得asinB=bsinA,两式作比得:,∴a=2b.由,得,由余弦定理,得;(Ⅱ)解:由(Ⅰ),可得,代入asinA=4bsinB,得.由(Ⅰ)知,A为钝角,则B为锐角,∴.于是,,故.3.△ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.(Ⅰ)求C;(Ⅱ)若c=,△ABC的面积为,求△ABC的周长.【解答】解:(Ⅰ)∵在△ABC中,0<C<π,∴sinC≠0已知等式利用正弦定理化简得:2cosC(sinAcosB+sinBcosA)=sinC,整理得:2cosCsin(A+B)=sinC,即2cosCsin(π﹣(A+B))=sinC2cosCsinC=sinC∴cosC=,∴C=;(Ⅱ)由余弦定理得7=a2+b2﹣2ab•,∴(a+b)2﹣3ab=7,∵S=absinC=ab=,∴ab=6,∴(a+b)2﹣18=7,∴a+b=5,∴△ABC的周长为5+.(1)求tanC的值;(2)若a=,求△ABC的面积.【解答】解:(1)∵A为三角形的内角,cosA=,∴sinA==,又cosC=sinB=sin(A+C)=sinAcosC+cosAsinC=cosC+sinC,整理得:cosC=sinC,则tanC=;(2)由tanC=得:cosC====,∴sinC==,∴sinB=cosC=,∵a=,∴由正弦定理=得:c===,=acsinB=×××=.则S△ABC5.在△ABC中,角A,B,C所对的边分别是a,b,c,且+=.(Ⅰ)证明:sinAsinB=sinC;(Ⅱ)若b2+c2﹣a2=bc,求tanB.【解答】(Ⅰ)证明:在△ABC中,∵+=,∴由正弦定理得:,∴=,∵sin(A+B)=sinC.∴整理可得:sinAsinB=sinC,(Ⅱ)解:b2+c2﹣a2=bc,由余弦定理可得cosA=.sinA=,=+==1,=,6.在△ABC中,已知AB=2,AC=3,A=60°.(1)求BC的长;(2)求sin2C的值.【解答】解:(1)由余弦定理可得:BC2=AB2+AC2﹣2AB•ACcosA=4+9﹣2×2×3×=7,所以BC=.(2)由正弦定理可得:,则sinC===,∵AB<BC,BC=,AB=2,角A=60°,在三角形ABC中,大角对大边,大边对大角,>2,∴角C<角A,角C为锐角.sinC>0,cosC>0则cosC===.因此sin2C=2sinCcosC=2×=.7.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知△ABC的面积为3,b﹣c=2,cosA=﹣.(Ⅰ)求a和sinC的值;(Ⅱ)求cos(2A+)的值.【解答】解:(Ⅰ)在三角形ABC中,由cosA=﹣,可得sinA=,△ABC的面积为3,可得:,可得bc=24,又b﹣c=2,解得b=6,c=4,由a2=b2+c2﹣2bccosA,可得a=8,,解得sinC=;(Ⅱ)cos(2A+)=cos2Acos﹣sin2Asin==.8.△ABC的内角A,B,C所对的边分别为a,b,c.向量=(a,b)与=(cosA,sinB)平行.(Ⅰ)求A;(Ⅱ)若a=,b=2,求△ABC的面积.【解答】解:(Ⅰ)因为向量=(a,b)与=(cosA,sinB)平行,所以asinB﹣=0,由正弦定理可知:sinAsinB﹣sinBcosA=0,因为sinB≠0,所以tanA=,可得A=;(Ⅱ)a=,b=2,由余弦定理可得:a2=b2+c2﹣2bccosA,可得7=4+c2﹣2c,解得c=3,△ABC的面积为:=.9.设△ABC的内角A,B,C所对边的长分别为a,b,c,且b=3,c=1,△ABC的面积为,求cosA 与a的值.【解答】解:∵b=3,c=1,△ABC的面积为,∴=,∴sinA=,又∵sin2A+cos2A=1∴cosA=±,由余弦定理可得a==2或2.10.如图,在平面四边形ABCD中,DA⊥AB,DE=1,EC=,EA=2,∠ADC=,∠BEC=.(Ⅰ)求sin∠CED的值;(Ⅱ)求BE的长.【解答】解:(Ⅰ)设α=∠CED,在△CDE中,由余弦定理得EC2=CD2+ED2﹣2CD•DEcos∠CDE,即7=CD2+1+CD,则CD2+CD﹣6=0,解得CD=2或CD=﹣3,(舍去),在△CDE中,由正弦定理得,则sinα=,即sin∠CED=.(Ⅱ)由题设知0<α<,由(Ⅰ)知cosα=,而∠AEB=,∴cos∠AEB=cos()=cos cosα+sin sinα=,在Rt△EAB中,cos∠AEB=,故BE=.11.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2acosB.(Ⅰ)证明:A=2B;(Ⅱ)若△ABC的面积S=,求角A的大小.【解答】(Ⅰ)证明:∵b+c=2acosB,∴sinB+sinC=2sinAcosB,∴sinB+sin(A+B)=2sinAcosB∴sinB+sinAcosB+cosAsinB=2sinAcosB∴sinB=sinAcosB﹣cosAsinB=sin(A﹣B)∵A,B是三角形中的角,∴B=A﹣B,∴A=2B;(Ⅱ)解:∵△ABC的面积S=,∴bcsinA=,∴2bcsinA=a2,∴2sinBsinC=sinA=sin2B,∴sinC=cosB,∴B+C=90°,或C=B+90°,∴A=90°或A=45°.12.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知A=,b2﹣a2=c2.(1)求tanC的值;(2)若△ABC的面积为3,求b的值.【解答】解:(1)∵A=,∴由余弦定理可得:,∴b2﹣a2=bc﹣c2,又b2﹣a2=c2.∴bc﹣c2=c2.∴b=c.可得,∴a2=b2﹣=,即a=.∴cosC===.∵C∈(0,π),∴sinC==.∴tanC==2.或由A=,b2﹣a2=c2.可得:sin2B﹣sin2A=sin2C,∴sin2B﹣=sin2C,∴﹣cos2B=sin2C,∴﹣sin=sin2C,∴﹣sin=sin2C,∴sin2C=sin2C,∴tanC=2.(2)∵=×=3,解得c=2.∴=3.13.在△ABC中,内角A、B、C所对的边分别是a、b、c,且a+b+c=8.(Ⅰ)若a=2,b=,求cosC的值;(Ⅱ)若sinAcos2+sinBcos2=2sinC,且△ABC的面积S=sinC,求a和b的值.【解答】解:(Ⅰ)∵a=2,b=,且a+b+c=8,∴c=8﹣(a+b)=,∴由余弦定理得:cosC===﹣;(Ⅱ)由sinAcos2+sinBcos2=2sinC可得:sinA•+sinB•=2sinC,整理得:sinA+sinAcosB+sinB+sinBcosA=4sinC,∵sinAcosB+cosAsinB=sin(A+B)=sinC,∴sinA+sinB=3sinC,利用正弦定理化简得:a+b=3c,∵a+b+c=8,∴a+b=6①,∵S=absinC=sinC,∴ab=9②,联立①②解得:a=b=3.14.△ABC的内角A,B,C所对应的边分别为a,b,c.(Ⅰ)若a,b,c成等差数列,证明:sinA+sinC=2sin(A+C);(Ⅱ)若a,b,c成等比数列,求cosB的最小值.【解答】解:(Ⅰ)∵a,b,c成等差数列,∴2b=a+c,利用正弦定理化简得:2sinB=sinA+sinC,∵sinB=sin[π﹣(A+C)]=sin(A+C),∴sinA+sinC=2sinB=2sin(A+C);(Ⅱ)∵a,b,c成等比数列,∴b2=ac,∴cosB==≥=,当且仅当a=c时等号成立,∴cosB的最小值为.15.△ABC的内角A、B、C所对的边分别为a,b,c.(Ⅰ)若a,b,c成等差数列,证明:sinA+sinC=2sin(A+C);(Ⅱ)若a,b,c成等比数列,且c=2a,求cosB的值.【解答】解:(Ⅰ)∵a,b,c成等差数列,∴a+c=2b,由正弦定理得:sinA+sinC=2sinB,∵sinB=sin[π﹣(A+C)]=sin(A+C),则sinA+sinC=2sin(A+C);(Ⅱ)∵a,b,c成等比数列,∴b2=ac,将c=2a代入得:b2=2a2,即b=a,∴由余弦定理得:cosB===.16.四边形ABCD的内角A与C互补,AB=1,BC=3,CD=DA=2.(1)求C和BD;(2)求四边形ABCD的面积.【解答】解:(1)在△BCD中,BC=3,CD=2,由余弦定理得:BD2=BC2+CD2﹣2BC•CDcosC=13﹣12cosC①,在△ABD中,AB=1,DA=2,A+C=π,由余弦定理得:BD2=AB2+AD2﹣2AB•ADcosA=5﹣4cosA=5+4cosC②,由①②得:cosC=,则C=60°,BD=;(2)∵cosC=,cosA=﹣,∴sinC=sinA=,则S=AB•DAsinA+BC•CDsinC=×1×2×+×3×2×=2.17.△ABC的内角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2.(1)求cosB;(2)若a+c=6,△ABC的面积为2,求b.【解答】解:(1)sin(A+C)=8sin2,∴sinB=4(1﹣cosB),∵sin2B+cos2B=1,∴16(1﹣cosB)2+cos2B=1,∴16(1﹣cosB)2+cos2B﹣1=0,∴16(cosB﹣1)2+(cosB﹣1)(cosB+1)=0,∴(17cosB﹣15)(cosB﹣1)=0,∴cosB=;(2)由(1)可知sinB=,=ac•sinB=2,∵S△ABC∴ac=,∴b2=a2+c2﹣2accosB=a2+c2﹣2××=a2+c2﹣15=(a+c)2﹣2ac﹣15=36﹣17﹣15=4,∴b=2.18.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2acosB.(1)证明:A=2B;(2)若cosB=,求cosC的值.【解答】(1)证明:∵b+c=2acosB,∴sinB+sinC=2sinAcosB,∵sinC=sin(A+B)=sinAcosB+cosAsinB,∴sinB=sinAcosB﹣cosAsinB=sin(A﹣B),由A,B∈(0,π),∴0<A﹣B<π,∴B=A﹣B,或B=π﹣(A﹣B),化为A=2B,或A=π(舍去).∴A=2B.(II)解:cosB=,∴sinB==.cosA=cos2B=2cos2B﹣1=,sinA==.∴cosC=﹣cos(A+B)=﹣cosAcosB+sinAsinB=+×=.19.设△ABC的内角A、B、C的对边分别为a、b、c,a=btanA,且B为钝角.(Ⅰ)证明:B﹣A=;(Ⅱ)求sinA+sinC的取值范围.【解答】解:(Ⅰ)由a=btanA和正弦定理可得==,∴sinB=cosA,即sinB=sin(+A)又B为钝角,∴+A∈(,π),∴B=+A,∴B﹣A=;(Ⅱ)由(Ⅰ)知C=π﹣(A+B)=π﹣(A++A)=﹣2A>0,∴A∈(0,),∴sinA+sinC=sinA+sin(﹣2A)=sinA+cos2A=sinA+1﹣2sin2A=﹣2(sinA﹣)2+,∵A∈(0,),∴0<sinA<,∴由二次函数可知<﹣2(sinA﹣)2+≤∴sinA+sinC的取值范围为(,]20.△ABC中,角A,B,C所对的边分别为a,b,c,已知cosB=,sin(A+B)=,ac=2,求sinA和c的值.【解答】解:①因为△ABC中,角A,B,C所对的边分别为a,b,c已知cosB=,sin(A+B)=,ac=2,所以sinB=,sinAcosB+cosAsinB=,所以sinA+cosA=①,结合平方关系sin2A+cos2A=1②,由①②解得27sin2A﹣6sinA﹣16=0,解得sinA=或者sinA=﹣(舍去);②由正弦定理,由①可知sin(A+B)=sinC=,sinA=,所以a=2c,又ac=2,所以c=1.21.设△ABC的内角A,B,C的对边分别为a,b,c,a=btanA.(Ⅰ)证明:sinB=cosA;(Ⅱ)若sinC﹣sinAcosB=,且B为钝角,求A,B,C.【解答】解:(Ⅰ)证明:∵a=btanA.∴=tanA,∵由正弦定理:,又tanA=,∴=,∵sinA≠0,∴sinB=cosA.得证.(Ⅱ)∵sinC=sin[π﹣(A+B)]=sin(A+B)=sinAcosB+cosAsinB,∴sinC﹣sinAcosB=cosAsinB=,由(1)sinB=cosA,∴sin2B=,∵0<B<π,∴sinB=,∵B为钝角,∴B=,又∵cosA=sinB=,∴A=,∴C=π﹣A﹣B=,综上,A=C=,B=.22.△ABC中,D是BC上的点,AD平分∠BAC,△ABD面积是△ADC面积的2倍.(1)求;(2)若AD=1,DC=,求BD和AC的长.【解答】解:(1)如图,过A作AE⊥BC于E,∵==2∴BD=2DC,∵AD平分∠BAC∴∠BAD=∠DAC在△ABD中,=,∴sin∠B=在△ADC中,=,∴sin∠C=;∴==.…6分(2)由(1)知,BD=2DC=2×=.过D作DM⊥AB于M,作DN⊥AC于N,∵AD平分∠BAC,∴DM=DN,∴==2,∴AB=2AC,令AC=x,则AB=2x,∵∠BAD=∠DAC,∴cos∠BAD=cos∠DAC,∴由余弦定理可得:=,∴x=1,∴AC=1,∴BD的长为,AC的长为1.23.已知a,b,c分别是△ABC内角A,B,C的对边,sin2B=2sinAsinC.(Ⅰ)若a=b,求cosB;(Ⅱ)设B=90°,且a=,求△ABC的面积.【解答】解:(I)∵sin2B=2sinAsinC,由正弦定理可得:>0,代入可得(bk)2=2ak•ck,∴b2=2ac,∵a=b,∴a=2c,由余弦定理可得:cosB===.(II)由(I)可得:b2=2ac,∵B=90°,且a=,∴a2+c2=b2=2ac,解得a=c=.∴S==1.△ABC24.△ABC中,D是BC上的点,AD平分∠BAC,BD=2DC(Ⅰ)求.(Ⅱ)若∠BAC=60°,求∠B.【解答】解:(Ⅰ)如图,由正弦定理得:,∵AD平分∠BAC,BD=2DC,∴;(Ⅱ)∵∠C=180°﹣(∠BAC+∠B),∠BAC=60°,∴,由(Ⅰ)知2sin∠B=sin∠C,∴tan∠B=,即∠B=30°.25.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知a﹣c=b,sinB=sinC,(Ⅰ)求cosA的值;(Ⅱ)求cos(2A﹣)的值.【解答】解:(Ⅰ)将sinB=sinC,利用正弦定理化简得:b=c,代入a﹣c=b,得:a﹣c=c,即a=2c,∴cosA===;(Ⅱ)∵cosA=,A为三角形内角,∴sinA==,∴cos2A=2cos2A﹣1=﹣,sin2A=2sinAcosA=,则cos(2A﹣)=cos2Acos+sin2Asin=﹣×+×=.26.△ABC中,角A,B,C所对的边分别为a,b,c.已知a=3,cosA=,B=A+.(Ⅰ)求b的值;(Ⅱ)求△ABC的面积.【解答】解:(Ⅰ)∵cosA=,∴sinA==,∵B=A+.∴sinB=sin(A+)=cosA=,由正弦定理知=,∴b=•sinB=×=3.(Ⅱ)∵sinB=,B=A+>∴cosB=﹣=﹣,sinC=sin(π﹣A﹣B)=sin(A+B)=sinAcosB+cosAsinB=×(﹣)+×=,∴S=a•b•sinC=×3×3×=.27.在△ABC中,角A,B,C的对边分别是a,b,c.(1)若sin(A+)=2cosA,求A的值.(2)若cosA=,b=3c,求sinC的值.【解答】解:(1)因为,所以sinA=,所以tanA=,所以A=60°(2)由及a2=b2+c2﹣2bccosA得a2=b2﹣c2故△ABC是直角三角形且B=所以sinC=cosA=28.在△ABC中,角A,B,C的对边是a,b,c,已知3acosA=ccosB+bcosC (1)求cosA的值(2)若a=1,cosB+cosC=,求边c的值.【解答】解:(1)由余弦定理可知2accosB=a2+c2﹣b2;2abcosc=a2+b2﹣c2;代入3acosA=ccosB+bcosC;得cosA=;(2)∵cosA=∴sinA=cosB=﹣cos(A+C)=﹣cosAcosC+sinAsinC=﹣cosC+sinC ③又已知cosB+cosC=代入③cosC+sinC=,与cos2C+sin2C=1联立解得sinC=已知a=1正弦定理:c===29.在△ABC中,内角A,B,C的对边分别为a,b,c,且bsinA=a•cosB.(1)求角B的大小;(2)若b=3,sinC=2sinA,分别求a和c的值.【解答】解:(1)∵bsinA=a•cosB,由正弦定理可得:sinBsinA=sinAcosB,∵sinA≠0,∴sinB=cosB,B∈(0,π),可知:cosB≠0,否则矛盾.∴tanB=,∴B=.(2)∵sinC=2sinA,∴c=2a,由余弦定理可得:b2=a2+c2﹣2accosB,∴9=a2+c2﹣ac,把c=2a代入上式化为:a2=3,解得a=,∴.30.在△ABC中,a=3,b=2,∠B=2∠A.(Ⅰ)求cosA的值;(Ⅱ)求c的值.【解答】解:(Ⅰ)由条件在△ABC中,a=3,,∠B=2∠A,利用正弦定理可得,即=.解得cosA=.(Ⅱ)由余弦定理可得a2=b2+c2﹣2bc•cosA,即9=+c2﹣2×2×c×,即c2﹣8c+15=0.解方程求得c=5,或c=3.当c=3时,此时a=c=3,根据∠B=2∠A,可得B=90°,A=C=45°,△ABC是等腰直角三角形,但此时不满足a2+c2=b2,故舍去.当c=5时,求得cosB==,cosA==,∴cos2A=2cos2A﹣1==cosB,∴B=2A,满足条件.综上,c=5.。

高考三角函数经典解答题及答案

高考三角函数经典解答题及答案

1在△ABC 中,角A 、B 、C 所对的边分别是a ,b ,c ,且.21222ac b c a =-+ (1)求B CA 2cos 2sin 2++的值; (2)若b=2,求△ABC 面积的最大值.解:(1) 由余弦定理:conB=14sin 22A B++cos2B= -14(2)由.415sin ,41cos ==B B 得 ∵b=2, a 2+c 2=12ac+4≥2ac,得ac ≤38,S △ABC =12acsinB ≤315(a=c 时取等号) 故S △ABC 的最大值为3152在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且.cos cos 3cos B c B a C b -= (I )求cosB 的值;(II )若2=⋅,且22=b ,求c a 和b 的值.解:(I )由正弦定理得C R c B R b A R a sin 2,sin 2,sin 2===,因此.31cos =B(II )解:由2cos ,2==⋅B a BC BA 可得,所以a =c = 63已知向量m =()B B cos 1,sin -, 向量n = (2,0),且m 与n 所成角为π3, 其中A 、B 、C 是ABC ∆的内角。

(1)求角B 的大小;(2)求 C A sin sin +的取值范围。

解:(1) m =()B B cos 1,sin -,且与向量n = (2,0)所成角为3π, 又 π<<B 0(2)由(1)知,32π=B ,∴A+C= 3π ∴C A sin sin +=)3sin(sin A A -+π=A A cos 23sin 21+=)3sin(A +π30π<<A ,∴)3sin(A +π⎥⎦⎤ ⎝⎛∈1,23,∴ C A sin sin +⎥⎦⎤⎝⎛∈1,23 4已知向量(1,2sin )m A =,(sin ,1cos ),//,3.n A A m n b c a =++=满足 (I )求A 的大小;(II )求)sin(6π+B 的值.解:(1)由m//n 得0cos 1sin 22=--A A ……2分 即01cos cos 22=-+A A 1cos 21cos -==∴A A 或1cos ,-=∆A ABC A 的内角是 舍去 3π=∴A(2)a c b 3=+由正弦定理,23sin 3sin sin ==+A C Bπ32=+C B23)32sin(sin =-+∴B B π5在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,C =2A ,43cos =A , (1)求BC cos ,cos 的值;(2)若227=⋅,求边AC 的长。

三角函数与解三角形_测试题(有解析、答案)

三角函数与解三角形_测试题(有解析、答案)

三角函数与解三角形 测试题(有解析、答案)(时间120分钟,满分150分) 第Ⅰ卷(选择题,共50分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一 项是符合题目要求的)1.已知α∈(π2,π),sin α=35,则tan(α+π4)等于 ( )A.17 B .7 C .-17 D .-7 解析:由α∈(π2,π),sin α=35,得tan α=-34,tan(α+π4)=1+tan α1-tan α=17.答案:A2.sin45°·cos15°+cos225°·sin15°的值为 ( )A .-32 B .-12 C.12 D.32解析:sin45°cos15°+cos225°sin15°=sin45°cos15°-cos45°sin15°=sin(45°-15°)=sin30° =12. 答案:C3.要得到y =sin(2x -π3)的图像,只要将y =sin2x 的图像 ( )A .向左平移π3个单位B .向右平移π3个单位C .向左平移π6个单位D .向右平移π6个单位解析:∵y =sin(2x -π3)=sin2(x -π6),∴只要将y =sin2x 的图像向右平移π6个单位便得到y =sin(2x -π3)的图像.答案:D4.在△ABC 中,若sin 2A +sin 2B -sin A sin B =sin 2C ,且满足ab =4,则该三角形的面积为( )A .1B .2 C. 2 D. 3 解析:∵sin 2A +sin 2B -sin A sin B =sin 2C , ∴a 2+b 2-ab =c 2,∴cos C =a 2+b 2-c 22ab =12,∴C =60°,∴S △ABC =12ab sin C =12×4×32= 3.答案:D5.有一种波,其波形为函数y =sin(π2x )的图像,若在区间[0,t ]上至少有2个波峰(图像的最高点),则正整数t 的最小值是 ( ) A .3 B .4 C .5 D .6 解析:由T =2πω=2ππ2=4,可知此波形的函数周期为4,显然当0≤x ≤1时函数单调递增, x =0时y =0,x =1时y =1,因此自0开始向右的第一个波峰所对的x 值为1,第二个 波峰对应的x 值为5,所以要区间[0,t ]上至少两个波峰,则t 至少为5. 答案:C6.若函数f (x )=(1+3tan x )cos x,0≤x <π2,则f (x )的最大值为 ( )A .1B .2 C.3+1 D.3+2 解析:f (x )=(1+3tan x )cos x =cos x +3sin x =2sin(x +π6),∵0≤x <π2,∴f (x )max =2.答案:B7.使奇函数f (x )=sin(2x +θ)+3cos(2x +θ)在[-π4,0]上为减函数的θ 值为 ( )A .-π3B .-π6 C.5π6 D.2π3解析:由已知得:f (x )=2sin(2x +θ+π3),由于函数为奇函数,故有θ+π3=kπ⇒θ=kπ-π3(k ∈Z),可淘汰BC 选项,然后分别将A和D 选项代入检验,易知当θ=2π3时,f (x )=-2sin2x 其在区间[-π4,0]上递减. 答案:D8.若向量a =(sin(α+π6),1),b =(4,4cos α-3),若a ⊥b ,则sin(α+4π3)等于 ( )A .-34 B.34 C .-14 D.14解析:∵a ⊥b ,∴a ·b =0, ∴4sin(α+π6)+4cos α-3=0,∴sin αcos π6+cos αsin π6+cos α=34,∴12sin α+32cos α=14,∴sin(α+π3)=14,∴sin(α+4π3)=-sin(α+π3)=-14.答案:C9.函数y =sin(ωx +φ)(x ∈R ,ω>0,0≤φ<2π)的部分图像如图,则 ( )A .ω=π2,φ=π4B .ω=π3,φ=π6C .ω=π4,φ=π4D .ω=π2,φ=5π4解析:T 4=3-1=2,∴T =8,ω=2πT =π4令π4×1+φ=π2,得φ=π4. 答案:C10.设函数f (x )=A sin(ωx +φ),(A ≠0,ω>0,-π2<φ<π2)的图像关于直线x =2π3对称,它的周期是π,则 ( ) A .f (x )的图像过点(0,12)B .f (x )的图像在[5π12,2π3]上递减C .f (x )的最大值为AD .f (x )的一个对称中心是点(5π12,0)解析:T =π,∴ω=2.∵图像关于直线x =2π3对称,∴sin(2π3ω+φ)=±1即2π3×2+φ=π2+kπ,k ∈Z 又∵-π2<φ<π2∴φ=π6∴f (x )=A sin(2x +π6).再用检验法.答案:D第Ⅱ卷(非选择题,共100分)二、填空题(本大题共5小题,每小题5分,共25分.请把正确答案填在题中横线上)11.已知α是第二象限角,sin α=12,则sin2a 等于________解析:由已知得cos α=-32,则sin2α=2sin αcos α=2×12×(-32)=-32.答案:-3212.已知函数f (x )=2sin(ωx +φ)的图像如下图所示,则f (7π12)=________.解析:由图像知,函数的周期为32×T =π,∴T =2π3.∵f (π4)=0,∴f (7π12)=f (π4+π3)=f (π4+T 2)=-f (π4)=0.答案:013.计算:cos10°+3sin10°1-cos80°=________.解析:cos10°+3sin10°1-cos80°=2cos(10°-60°)2sin 240°=2cos50°2sin40°= 2. 答案: 214.设函数y =2sin(2x +π3)的图像关于点P (x 0,0)成中心对称,若x 0∈[-π2,0],则x 0=________.解析:因为图像的对称中心是与x 轴的交点,所以由y =2sin(2x +π3)=0,x 0∈[-π2,0]得x 0=-π6.答案:-π615.设△ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c 且a cos B -b cos A =35c .则tan A tan B的值为________.解析:由a cos B -b cos A =35c 及正弦定理可得sin A cos B -sin B cos A =35sin C ,即sin A cos B-sin B cos A =35sin(A +B ),即5(sin A cos B -sin B cos A )=3(sin A cos B +sin B cos A ),即sin A cos B =4sin B cos A ,因此tan A =4tan B ,所以tan Atan B=4. 答案:4三、解答题(本大题共6小题,共75分.解答时应写出必要的文字说明、证明过程或演算步骤)16.(本小题满分12分)已知:0<α<π2<β<π,cos(β-π4)=13,sin(α+β)=45.(1)求sin2β的值;(2)设函数f (x )=cos x -sin x ,试求f (α)的值.解:(1)∵cos(β-π4)=13,∴cos(2β-π2)=2cos 2(β-π4)-1=2×19-1=-79,即sin2β=-79.(2)∵0<α<π2<β<π,∴π4<β-π4<3π4,π2<α+β<3π2,∴sin(β-π4)>0,cos(α+β)<0,∴sin(β-π4)=223,cos(α+β)=-35.∴f (α)=cos α-sin α=2cos(α+π4) =2cos[(α+β)-(β-π4)]=2[cos(α+β)cos(β-π4)+sin(α+β)sin(β-π4)]=2(-35×13+45×223)=16-3215.17.(本小题满分12分)如图,点A ,B 是单位圆上的两点,A ,B点分别在第一、二象限,点C 是圆与x 轴正半轴的交点,△AOB 是正三角形,若点A 的坐标为(35,45),记∠COA =α.(1)求1+sin2α1+cos2α的值;(2)求|BC |2的值.解:(1)∵A 的坐标为(35,45),根据三角函数的定义可知,sin α=45,cos α=35,∴1+sin2α1+cos2α=1+2sin αcos α2cos 2α=4918.(2)∵△AOB 为正三角形,∴∠AOB =60°.∴cos ∠COB =cos(α+60°)=cos αcos60°-sin αsin60°=35×12-45×32=3-4310, ∴|BC |2=|OC |2+|OB |2-2|OC |·|OB |cos ∠COB =1+1-2×3-4310=7+435. 18.(本题满分13分)(2010·黄冈模拟)△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且lg a-lg b =lgcos B -lgcos A ≠0. (1)判断△ABC 的形状;(2)设向量m =(2a ,b ),n =(a ,-3b ),且m ⊥n ,(m +n )·(-m +n )=14,求a ,b ,c . 解:由题lg a +lgcos A =lg b +lgcos B ,故a cos A =b cos B . 由正弦定理sin A cos A =sin B cos B ,即sin2A =sin2B . 又cos A >0,cos B >0,故A ,B ∈(0,π2),2A,2B ∈(0,π)因a ≠b ⇒A ≠B ,故2A =π-2B . 即A +B =π2,故△ABC 为直角三角形.(2)由于m ⊥n ,所以2a 2-3b 2=0 ① 且(m +n )·(-m +n )=n 2-m 2=14,即8b 2-3a 2=14 ② 联立①②解得a 2=6,b 2=4,故在直角△ABC 中,a =6,b =2,c =10.19.(本小题满分12分)已知a =(sin x ,32),b =(cos x ,-1).(1)当a 与b 共线时,求2cos 2x -sin2x 的值; (2)求f (x )=(a +b )·b 在[-π2,0]上的值域.解:(1)∵a 与b 共线, ∴32cos x +sin x =0.∴tan x =-32. 故2cos 2x -sin2x =2cos 2x -2sin x cos x sin 2x +cos 2x=2-2tan x 1+tan 2x =2013. (2)∵a +b =(sin x +cos x ,12),∴f (x )=(a +b )·b =(sin x +cos x ,12)·(cos x ,-1).∴sin x cos x +cos 2x -12=12(sin2x +cos2x )=22sin(2x +π4). ∵-π2≤x ≤0,∴-3π4≤2x +π4≤π4, ∴-1≤sin(2x +π4)≤22,∴f (x )的值域为[-22,12]. 20.(本小题满分13分)已知函数f (x )=A sin(ωx +φ)+B (A >0,ω>0)的一系列对应值如下表:(1)根据表格提供的数据求函数f (x )的一个解析式; (2)根据(1)的结果,若函数y =f (kx )(k >0)周期为2π3,当x ∈[0,π3]时,方程f (kx )=m 恰 有两个不同的解,求实数m 的取值范围. 解:(1)设f (x )的最小正周期为T ,得 T =11π6 -(-π6)=2π, 由T =2πω,得ω=1.又⎩⎪⎨⎪⎧ B +A =3B -A =-1,解得⎩⎪⎨⎪⎧A =2B =1. 令ω·5π6+φ=π2,即5π6+φ=π2,解得φ=-π3,∴f (x )=2sin(x -π3)+1.(2)∵函数y =f (kx )=2sin(kx -π3)+1的周期为2π3,又k >0,∴k =3. 令t =3x -π3,∵x ∈[0,π3],∴t ∈[-π3,2π3]如图sin t =s 在[-π3,2π3]上有两个不同的解的充要条件是s ∈[32,1),∴方程f (kx )=m 在x ∈[0,π3]时恰好有两个不同的解的充要条件是m ∈[3+1,3),即实数m 的取值范围是[3+1,3). 21.(本小题满分13分)已知函数y =|cos x +sin x |.(1)画出函数在x ∈[-π4,7π4]上的简图;(2)写出函数的最小正周期和在[-π4,3π4]上的单调递增区间;试问:当x 在R 上取何值时,函数有最大值?最大值是多少?(3)若x 是△ABC 的一个内角,且y 2=1,试判断△ABC 的形状. 解:(1)∵y =|cos x +sin x |=2|sin(x +π4)|,∴当x ∈[-π4,7π4]时,其图像如图所示.(2)函数的最小正周期是π,在[-π4,3π4]上的单调递增区间是[-π4,π4];由图像可以看出,当x =kπ+π4(k ∈Z)时,该函数有最大值,最大值是 2.(3)若x 是△ABC 的一个内角,则有0<x <π, ∴0<2x <2π.由y 2=1,得|cos x +sin x |2=1⇒1+sin2x =1. ∴sin2x =0,∴2x =π,x =π2,故△ABC 为直角三角形.。

专题05 三角函数与解三角形-高考数学(理)十年真题(2010-2019)分类汇编(解析版)

专题05 三角函数与解三角形-高考数学(理)十年真题(2010-2019)分类汇编(解析版)

专题05三角函数与解三角形历年考题细目表题型年份考点试题位置单选题2019 三角函数2019年新课标1理科11 单选题2017 三角函数2017年新课标1理科09 单选题2016 三角函数2016年新课标1理科12 单选题2015 三角函数2015年新课标1理科02 单选题2015 三角函数2015年新课标1理科08 单选题2014 三角函数2014年新课标1理科08 单选题2012 三角函数2012年新课标1理科09 单选题2011 三角函数2011年新课标1理科05 单选题2011 三角函数2011年新课标1理科11 单选题2010 三角函数2010年新课标1理科09 填空题2018 三角函数2018年新课标1理科16 填空题2015 解三角形2015年新课标1理科16 填空题2014 解三角形2014年新课标1理科16 填空题2013 三角函数2013年新课标1理科15 填空题2011 解三角形2011年新课标1理科16 填空题2010 解三角形2010年新课标1理科16 解答题2019 解三角形2019年新课标1理科17 解答题2018 解三角形2018年新课标1理科17 解答题2017 解三角形2017年新课标1理科17 解答题2016 解三角形2016年新课标1理科17 解答题2013 解三角形2013年新课标1理科17 解答题2012 解三角形2012年新课标1理科17历年高考真题汇编1.【2019年新课标1理科11】关于函数f(x)=sin|x|+|sin x|有下述四个结论:①f(x)是偶函数②f(x)在区间(,π)单调递增③f(x)在[﹣π,π]有4个零点④f(x)的最大值为2其中所有正确结论的编号是()A.①②④B.②④C.①④D.①③【解答】解:f(﹣x)=sin|﹣x|+|sin(﹣x)|=sin|x|+|sin x|=f(x)则函数f(x)是偶函数,故①正确,当x∈(,π)时,sin|x|=sin x,|sin x|=sin x,则f(x)=sin x+sin x=2sin x为减函数,故②错误,当0≤x≤π时,f(x)=sin|x|+|sin x|=sin x+sin x=2sin x,由f(x)=0得2sin x=0得x=0或x=π,由f(x)是偶函数,得在[﹣π,)上还有一个零点x=﹣π,即函数f(x)在[﹣π,π]有3个零点,故③错误,当sin|x|=1,|sin x|=1时,f(x)取得最大值2,故④正确,故正确是①④,故选:C.2.【2017年新课标1理科09】已知曲线C1:y=cos x,C2:y=sin(2x),则下面结论正确的是()A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2【解答】解:把C1上各点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=cos2x图象,再把得到的曲线向左平移个单位长度,得到函数y=cos2(x)=cos(2x)=sin(2x)的图象,即曲线C2,故选:D.3.【2016年新课标1理科12】已知函数f(x)=sin(ωx+φ)(ω>0,|φ|),x为f(x)的零点,x为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω的最大值为()A.11 B.9 C.7 D.5【解答】解:∵x为f(x)的零点,x为y=f(x)图象的对称轴,∴,即,(n∈N)即ω=2n+1,(n∈N)即ω为正奇数,∵f(x)在(,)上单调,则,即T,解得:ω≤12,当ω=11时,φ=kπ,k∈Z,∵|φ|,∴φ,此时f(x)在(,)不单调,不满足题意;当ω=9时,φ=kπ,k∈Z,∵|φ|,∴φ,此时f(x)在(,)单调,满足题意;故ω的最大值为9,故选:B.4.【2015年新课标1理科02】sin20°cos10°﹣cos160°sin10°=()A.B.C.D.【解答】解:sin20°cos10°﹣cos160°sin10°=sin20°cos10°+cos20°sin10°=sin30°.故选:D.5.【2015年新课标1理科08】函数f(x)=cos(ωx+φ)的部分图象如图所示,则f(x)的单调递减区间为()A.(kπ,kπ),k∈z B.(2kπ,2kπ),k∈zC.(k,k),k∈z D.(,2k),k∈z【解答】解:由函数f(x)=cos(ωx+ϕ)的部分图象,可得函数的周期为2()=2,∴ω=π,f(x)=cos(πx+ϕ).再根据函数的图象以及五点法作图,可得ϕ,k∈z,即ϕ,f(x)=cos(πx).由2kπ≤πx2kπ+π,求得2k x≤2k,故f(x)的单调递减区间为(,2k),k∈z,故选:D.6.【2014年新课标1理科08】设α∈(0,),β∈(0,),且tanα,则()A.3α﹣βB.3α+βC.2α﹣βD.2α+β【解答】解:由tanα,得:,即sinαcosβ=cosαsinβ+cosα,sin(α﹣β)=cosα=sin(),∵α∈(0,),β∈(0,),∴当时,sin(α﹣β)=sin()=cosα成立.故选:C.7.【2012年新课标1理科09】已知ω>0,函数f(x)=sin(ωx)在区间[,π]上单调递减,则实数ω的取值范围是()A.B.C.D.(0,2]【解答】解:法一:令:不合题意排除(D)合题意排除(B)(C)法二:,得:.故选:A.8.【2011年新课标1理科05】已知角θ的顶点与原点重合,始边与x轴的正半轴重合,终边在直线y=2x 上,则cos2θ=()A.B.C.D.【解答】解:根据题意可知:tanθ=2,所以cos2θ,则cos2θ=2cos2θ﹣1=21.故选:B.9.【2011年新课标1理科11】设函数f(x)=sin(ωx+φ)+cos(ωx+φ)的最小正周期为π,且f(﹣x)=f(x),则()A.f(x)在单调递减B.f(x)在(,)单调递减C.f(x)在(0,)单调递增D.f(x)在(,)单调递增【解答】解:由于f(x)=sin(ωx+ϕ)+cos(ωx+ϕ),由于该函数的最小正周期为T,得出ω=2,又根据f(﹣x)=f(x),得φkπ(k∈Z),以及|φ|,得出φ.因此,f(x)cos2x,若x∈,则2x∈(0,π),从而f(x)在单调递减,若x∈(,),则2x∈(,),该区间不为余弦函数的单调区间,故B,C,D都错,A正确.故选:A.10.【2010年新课标1理科09】若,α是第三象限的角,则()A.B.C.2 D.﹣2【解答】解:由,α是第三象限的角,∴可得,则,应选A.11.【2018年新课标1理科16】已知函数f(x)=2sin x+sin2x,则f(x)的最小值是.【解答】解:由题意可得T=2π是f(x)=2sin x+sin2x的一个周期,故只需考虑f(x)=2sin x+sin2x在[0,2π)上的值域,先来求该函数在[0,2π)上的极值点,求导数可得f′(x)=2cos x+2cos2x=2cos x+2(2cos2x﹣1)=2(2cos x﹣1)(cos x+1),令f′(x)=0可解得cos x或cos x=﹣1,可得此时x,π或;∴y=2sin x+sin2x的最小值只能在点x,π或和边界点x=0中取到,计算可得f(),f(π)=0,f(),f(0)=0,∴函数的最小值为,故答案为:.12.【2015年新课标1理科16】在平面四边形ABCD中,∠A=∠B=∠C=75°.BC=2,则AB的取值范围是.【解答】解:方法一:如图所示,延长BA,CD交于点E,则在△ADE中,∠DAE=105°,∠ADE=45°,∠E=30°,∴设AD x,AE x,DE x,CD=m,∵BC=2,∴(x+m)sin15°=1,∴x+m,∴0<x<4,而AB x+m x x,∴AB的取值范围是(,).故答案为:(,).方法二:如下图,作出底边BC=2的等腰三角形EBC,B=C=75°,倾斜角为150°的直线在平面内移动,分别交EB、EC于A、D,则四边形ABCD即为满足题意的四边形;当直线移动时,运用极限思想,①直线接近点C时,AB趋近最小,为;②直线接近点E时,AB趋近最大值,为;故答案为:(,).13.【2014年新课标1理科16】已知a,b,c分别为△ABC的三个内角A,B,C的对边,a=2且(2+b)(sin A﹣sin B)=(c﹣b)sin C,则△ABC面积的最大值为.【解答】解:因为:(2+b)(sin A﹣sin B)=(c﹣b)sin C⇒(2+b)(a﹣b)=(c﹣b)c⇒2a﹣2b+ab﹣b2=c2﹣bc,又因为:a=2,所以:,△ABC面积,而b2+c2﹣a2=bc⇒b2+c2﹣bc=a2⇒b2+c2﹣bc=4⇒bc≤4所以:,即△ABC面积的最大值为.故答案为:.14.【2013年新课标1理科15】设当x=θ时,函数f(x)=sin x﹣2cos x取得最大值,则cosθ=.【解答】解:f(x)=sin x﹣2cos x(sin x cos x)sin(x﹣α)(其中cosα,sinα),∵x=θ时,函数f(x)取得最大值,∴sin(θ﹣α)=1,即sinθ﹣2cosθ,又sin2θ+cos2θ=1,联立得(2cosθ)2+cos2θ=1,解得cosθ.故答案为:15.【2011年新课标1理科16】在△ABC中,B=60°,AC,则AB+2BC的最大值为.【解答】解:设AB=cAC=bBC=a由余弦定理cos B所以a2+c2﹣ac=b2=3设c+2a=m代入上式得7a2﹣5am+m2﹣3=0△=84﹣3m2≥0 故m≤2当m=2时,此时a,c符合题意因此最大值为2另解:因为B=60°,A+B+C=180°,所以A+C=120°,由正弦定理,有2,所以AB=2sin C,BC=2sin A.所以AB+2BC=2sin C+4sin A=2sin(120°﹣A)+4sin A=2(sin120°cos A﹣cos120°sin A)+4sin Acos A+5sin A=2sin(A+φ),(其中sinφ,cosφ)所以AB+2BC的最大值为2.故答案为:216.【2010年新课标1理科16】在△ABC中,D为边BC上一点,BD DC,∠ADB=120°,AD=2,若△ADC的面积为,则∠BAC=.【解答】解:由△ADC的面积为可得解得,则.AB2=AD2+BD2﹣2AD•BD•cos120°,,则.故∠BAC=60°.17.【2019年新课标1理科17】△ABC的内角A,B,C的对边分别为a,b,c.设(sin B﹣sin C)2=sin2A ﹣sin B sin C.(1)求A;(2)若a+b=2c,求sin C.【解答】解:(1)∵△ABC的内角A,B,C的对边分别为a,b,c.设(sin B﹣sin C)2=sin2A﹣sin B sin C.则sin2B+sin2C﹣2sin B sin C=sin2A﹣sin B sin C,∴由正弦定理得:b2+c2﹣a2=bc,∴cos A,∵0<A<π,∴A.(2)∵a+b=2c,A,∴由正弦定理得,∴解得sin(C),∴C,C,∴sin C=sin()=sin cos cos sin.18.【2018年新课标1理科17】在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.【解答】解:(1)∵∠ADC=90°,∠A=45°,AB=2,BD=5.∴由正弦定理得:,即,∴sin∠ADB,∵AB<BD,∴∠ADB<∠A,∴cos∠ADB.(2)∵∠ADC=90°,∴cos∠BDC=sin∠ADB,∵DC=2,∴BC5.19.【2017年新课标1理科17】△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sin B sin C;(2)若6cos B cos C=1,a=3,求△ABC的周长.【解答】解:(1)由三角形的面积公式可得S△ABC ac sin B,∴3c sin B sin A=2a,由正弦定理可得3sin C sin B sin A=2sin A,∵sin A≠0,∴sin B sin C;(2)∵6cos B cos C=1,∴cos B cos C,∴cos B cos C﹣sin B sin C,∴cos(B+C),∴cos A,∵0<A<π,∴A,∵2R2,∴sin B sin C•,∴bc=8,∵a2=b2+c2﹣2bc cos A,∴b2+c2﹣bc=9,∴(b+c)2=9+3cb=9+24=33,∴b+c∴周长a+b+c=3.20.【2016年新课标1理科17】△ABC的内角A,B,C的对边分别为a,b,c,已知2cos C(a cos B+b cos A)=c.(Ⅰ)求C;(Ⅱ)若c,△ABC的面积为,求△ABC的周长.【解答】解:(Ⅰ)∵在△ABC中,0<C<π,∴sin C≠0已知等式利用正弦定理化简得:2cos C(sin A cos B+sin B cos A)=sin C,整理得:2cos C sin(A+B)=sin C,即2cos C sin(π﹣(A+B))=sin C2cos C sin C=sin C∴cos C,∴C;(Ⅱ)由余弦定理得7=a2+b2﹣2ab•,∴(a+b)2﹣3ab=7,∵S ab sin C ab,∴ab=6,∴(a+b)2﹣18=7,∴a+b=5,∴△ABC的周长为5.21.【2013年新课标1理科17】如图,在△ABC中,∠ABC=90°,AB,BC=1,P为△ABC内一点,∠BPC=90°.(1)若PB,求P A;(2)若∠APB=150°,求tan∠PBA.【解答】解:(I)在Rt△PBC中,,∴∠PBC=60°,∴∠PBA=30°.在△PBA中,由余弦定理得P A2=PB2+AB2﹣2PB•AB cos30°.∴P A.(II)设∠PBA=α,在Rt△PBC中,PB=BC cos(90°﹣α)=sinα.在△PBA中,由正弦定理得,即,化为.∴.22.【2012年新课标1理科17】已知a,b,c分别为△ABC三个内角A,B,C的对边,a cos C a sin C﹣b﹣c=0(1)求A;(2)若a=2,△ABC的面积为,求b,c.【解答】解:(1)由正弦定理得:a cos C a sin C﹣b﹣c=0,即sin A cos C sin A sin C=sin B+sin C∴sin A cos C sin A sin C=sin(A+C)+sin C,即sin A﹣cos A=1∴sin(A﹣30°).∴A﹣30°=30°∴A=60°;(2)若a=2,△ABC的面积,∴bc=4.①再利用余弦定理可得:a2=b2+c2﹣2bc•cos A=(b+c)2﹣2bc﹣bc=(b+c)2﹣3×4=4,∴b+c=4.②结合①②求得b=c=2.考题分析与复习建议本专题考查的知识点为:同角三角函数基本关系、诱导公式,三角函数的图象与性质,三角恒等变换,正余弦定理,解三角形的综合应用等.历年考题主要以选择填空或解答题题型出现,重点考查的知识点为:诱导公式,三角函数的图象与性质,三角恒等变换,正余弦定理,解三角形等.预测明年本考点题目会比较稳定,备考方向以同角三角函数基本关系、诱导公式,三角函数的图象与性质,三角恒等变换,正余弦定理,解三角形的综合应用等为重点较佳.最新高考模拟试题1.函数2sin()(0,0)y x ωϕωϕπ=+><<的部分图象如图所示.则函数()f x 的单调递增区间为( )A .,63k k ππππ轾犏-+犏臌,k z ∈B .,33k k ππππ⎡⎤-+⎢⎥⎣⎦,k z ∈C .,36k k ππππ⎡⎤-+⎢⎥⎣⎦,k z ∈D .,66k k ππππ⎡⎤-+⎢⎥⎣⎦,k z ∈【答案】C 【解析】根据函数2sin()(0,0)y x ωϕωϕπ=+><<的部分图象, 可得:332113441264T ππππω=⋅=-=, 解得:2ω=, 由于点,26π⎛⎫⎪⎝⎭在函数图象上,可得:2sin 226πϕ⎛⎫⨯+= ⎪⎝⎭,可得:2262k ππϕπ⨯+=+,k ∈Z ,解得:26k πϕπ=+,k ∈Z ,由于:0ϕπ<<, 可得:6π=ϕ,即2sin 26y x π⎛⎫=+ ⎪⎝⎭,令222262k x k πππππ-≤+≤+,k ∈Z 解得:36k x k ππππ-≤≤+,k ∈Z ,可得:则函数()f x 的单调递增区间为:,36k k ππππ⎡⎤-+⎢⎥⎣⎦,k ∈Z .故选C .2.将函数()2sin(2)3f x x π=+的图像先向右平移12π个单位长度,再向上平移1个单位长度,得到()g x 的图像,若()()129g x g x =且12,[2,2]x x ππ∈-,则122x x -的最大值为( ) A .4912π B .356π C .256π D .174π 【答案】C 【解析】由题意,函数()2sin(2)3f x x π=+的图象向右平移12π个单位长度,再向上平移1个单位长度,得到()2sin[2()]12sin(2)11236g x x x πππ=-++=++的图象, 若()()129g x g x =且12,[2,2]x x ππ∈-, 则()()123g x g x ==,则22,62x k k Z πππ+=+∈,解得,6x k k Z ππ=+∈,因为12,[2,2]x x ππ∈-,所以121157,{,,,}6666x x ππππ∈--, 当12711,66x x ππ==-时,122x x -取得最大值,最大值为711252()666πππ⨯--=, 故选C.3.将函数222()2cos4x f x ϕ+=(0πϕ-<<)的图像向右平移3π个单位长度,得到函数()g x 的图像,若()(4)g x g x π=-则ϕ的值为( )A .23-π B .3π-C .6π-D .2π-【答案】A 【解析】 因为222()2coscos()14x f x x ϕϕ+==++, 将其图像向右平移3π个单位长度,得到函数()g x 的图像, 所以()cos()13g x x πϕ=-++,又()(4)g x g x π=-,所以()g x 关于2x π=对称, 所以2()3k k Z ππϕπ-+=∈,即(2)()3k k Z πϕπ=+-∈,因为0πϕ-<<,所以易得23πϕ=-.故选A4.已知函数()sin()(0,0)f x x ωϕωϕπ=+><<的图象经过两点2(0,),(,0)24A B π, ()f x 在(0,)4π内有且只有两个最值点,且最大值点大于最小值点,则()f x =( ) A .sin 34x π⎛⎫+ ⎪⎝⎭B .3sin 54x π⎛⎫+⎪⎝⎭C .sin 74x π⎛⎫+⎪⎝⎭D .3sin 94x π⎛⎫+⎪⎝⎭【答案】D 【解析】根据题意可以画出函数()f x 的图像大致如下因为2(0)sin 2f ϕ==32,()4k k Z πϕπ=+∈ 又因为0ϕπ<<,所以34πϕ=,所以3()sin()4f x x πω=+, 因为3()sin()0444f πππω=+=,由图可知,3244k ππωππ+=+,解得18,k k Z ω=+∈, 又因为24T ππω=<,可得8ω>,所以当1k =时,9ω=, 所以3()sin(9)4f x x π=+, 故答案选D.5.已知函数()cos 3f x x x =-,则下列结论中正确的个数是( ). ①()f x 的图象关于直线3x π=对称;②将()f x 的图象向右平移3π个单位,得到函数()2cos g x x =的图象;③,03π⎛⎫- ⎪⎝⎭是()f x 图象的对称中心;④()f x 在,63ππ⎡⎤⎢⎥⎣⎦上单调递增. A .1 B .2C .3D .4【答案】A由题意,函数1()cos 2cos 2cos 23f x x x x x x π⎛⎫⎛⎫=-=-=+ ⎪ ⎪⎪⎝⎭⎝⎭, ①中,由22cos 133f ππ⎛⎫==-⎪⎝⎭不为最值,则()f x 的图象不关于直线3x π=对称,故①错; ②中,将()f x 的图象向右平移3π个单位,得到函数()2cos g x x =的图象,故②对; ③中,由2cos 023f π⎛⎫-== ⎪⎝⎭,可得,03π⎛⎫- ⎪⎝⎭不是()f x 图象的对称中心,故③错; ④中,由22,3k Z x k k ππππ-+≤∈≤,解得422,33k x k k Z ππππ-≤-∈≤,即增区间为42k ,2k ,33k Z ππππ⎡⎤--⎢⎥⎣⎦∈, 由22,3k x k k Z ππππ≤+≤+∈,解得22,233k x k k Z ππππ-≤≤+∈,即减区间为22,2,33k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦,可得()f x 在,63ππ⎡⎤⎢⎥⎣⎦上单调递减,故④错. 故选:A .6.在ABC ∆中,角A 、B 、C 的对边长分别a 、b 、c ,满足()22sin 40a a B B -++=,b =则ABC △的面积为A .BC .D 【答案】C 【解析】把22(sin )40a a B B -++=看成关于a 的二次方程,则2224(sin )164(3cos 4)B B sin B cos B B B =-=++-V24(2cos 3)4(cos 222)cos B B B B B =+-=+- 4[2sin(2)2]06B π=+-…,故若使得方程有解,则只有△0=,此时6B π=,b =代入方程可得,2440a a -+=,由余弦定理可得,2428cos3022c c+-︒=⨯,解可得,c =∴111sin 2222ABC s ac B ∆==⨯⨯=故选:C .7.设锐角三角形ABC 的内角,,A B C 所对的边分别为,,a b c ,若2,2a B A ==,则b 的取值范围为( )A .(0,4)B .(2,C .D .4)【答案】C 【解析】由锐角三角形ABC 的内角,,A B C 所对的边分别为,,a b c ,若2,2a B A ==,∴ 022A π<<,3A B A +=,32A ππ∴<< 63A ππ∴<<,04A π<<cos 22A <<2,2a B A ==Q ,由正弦定理得12cos 2b b A a ==,即4cos b A =4cos A ∴<<则b 的取值范围为,故选C.8.已知V ABC 的内角,,A B C 所对的边分别为,,a b c ,若6sin cos 7sin2C A A =,53a b =,则C =( ). A .3πB .23π C .34π D .56π 【答案】B 【解析】由题意,因为672sinCcosA sin A =,可得:614sinCcosA sinAcosA =, 即(614)0sinC sinA cosA -⋅=,可得∴614sinC sinA =或0cosA =, 又由a b <,则A 为锐角,所以0cosA =不符合舍去, 又由正弦定理可得:37c a =,即:73a c =, 由余弦定理可得22222257133cos 52223a a a a b c C a ab a ⎛⎫⎛⎫+- ⎪ ⎪+-⎝⎭⎝⎭===-⎛⎫⋅ ⎪⎝⎭, ∵(0,)C π∈,∴23C π=. 故选:B .9.若函数()2sin()f x x ωϕ=+ (01ω<<,02πϕ<<)的图像过点,且关于点(2,0)-对称,则(1)f -=_______. 【答案】1 【解析】函数()()2sin f x x ωϕ=+的图像过点(2sin ϕ∴=sin ϕ=02πϕ<<Q 3πϕ∴=又函数图象关于点()2,0-对称 2sin 203πω⎛⎫∴-+= ⎪⎝⎭,即:23k πωπ-+=,k Z ∈126k πωπ∴=-+,k Z ∈01ω<<Q 6πω∴=()2sin 63f x x ππ⎛⎫∴=+⎪⎝⎭,()12sin 2sin 1636f πππ⎛⎫∴-=-+== ⎪⎝⎭本题正确结果:110.若实数,x y 满足()()()2221122cos 11x y xyx y x y ++--+-=-+.则xy 的最小值为____________【答案】1.4【解析】∵()()()2221122cos 11x y xyx y x y ++--+-=-+,∴10x y -+>, ()()()()2221121111111x y xyx y x y x y x y x y ++---++==-++-+-+-+Q()()11121211x y x y x y x y ∴-++≥-+⋅=-+-+,当且仅当11x y -+=时即=x y 时取等号()22cos 12x y +-≥Q ,当且仅当()1x y k k Z π+-=∈时取等号∴()()()2221122cos 12111x y xyx y x y x y ,即++--=+-=-+=-+且()1x y k k Z π+-=∈,即()12k x y k Z π+==∈, 因此21124k xy π+⎛⎫=≥⎪⎝⎭(当且仅当0k =时取等号), 从而xy 的最小值为1.411.设函数()sin(2)3f x x π=+,若120x x <,且12()()0f x f x +=,则21x x -的取值范围是_______.【答案】(3π,+∞) 【解析】不妨设120x x <<,则2121x x x x -=-,由图可知210()33x x ππ->--=.故答案为:(3π,+∞) 12.已知角α为第一象限角,sin cos a αα-=,则实数a 的取值范围为__________.【答案】(1,2] 【解析】由题得sin 2sin()3a πααα==+,因为22,,2k k k Z ππαπ<<+∈所以52++2,,336k k k Z ππππαπ<<+∈ 所以1sin()1,12sin()2233ππαα<+≤∴<+≤. 故实数a 的取值范围为(1,2]. 故答案为:(1,2]13.已知函数sin 2cos ()()(()0)f x x x ϕϕϕ+=+<<π-的图象关于直线x π=对称,则cos 2ϕ=___. 【答案】35【解析】因为函数sin 2cos ()()(()0)f x x x ϕϕϕ+=+<<π-的图象关于直线x π=对称,322f f ππ⎛⎫⎛⎫∴= ⎪⎪⎝⎭⎝⎭, 即cos 2sin cos 2sin ϕϕϕϕ+=--,即cos 2sin ϕϕ=-, 即1tan 2ϕ=-, 则22222211cos sin 1tan 34cos 21cos sin 1tan 514ϕϕϕϕϕϕϕ---====+++, 故答案为35.14.如图,四边形ABCD 中,4AB =,5BC =,3CD =,90ABC ∠=︒,120BCD ∠=°,则AD 的长为______【答案】65123-【解析】连接AC,设ACBθ∠=,则120ACDθ∠=-o,如图:故在Rt ABC∆中,sin4141θθ==,()131343cos120cos22224141241θθθ-=-+=-=oQ,又Q在ACD∆中由余弦定理有()(222413435cos1202341241ADθ+---==⨯⨯o,解得265123AD=-即65123AD=-65123-15.在锐角ABC∆中,角A B C,,的对边分别为a b c,,.且cos cosA Ba b+=23sin C23b=.则a c+的取值范围为_____.【答案】(6,3]【解析】cos cos233A B Ca b a+=Q23cos cos sin3b A a B C∴+=∴由正弦定理可得:23sin cos sin cos sinB A A B B C+=,可得:sin()sin sin A B C B C +==,sin B ∴=, 又ABC ∆为锐角三角形,3B π∴=,∴可得:sin sin 24(sin sin )4sin 4sin sin sin 3b A b C a c A C A A B B π⎛⎫+=+=+=+- ⎪⎝⎭3A π⎛⎫=- ⎪⎝⎭ 2,3A A π-Q 均为锐角,可得:,62636A A πππππ<<-<-<,(6,a c ∴+∈.故答案为: (6,.16.在ABC ∆中,已知AB 边上的中线1CM =,且1tan A ,1tan C ,1tan B成等差数列,则AB 的长为________.【解析】因为1tan A ,1tan C ,1tan B 成等差数列, 所以211tan tan tan C A B =+,即2cos cos cos sin()sin sin sin sin sin sin sin sin C A B A B CC A B A B A B+=+==, 所以2sin 2cos sin sin C C A B =,由正弦定理可得2cos 2c C ab=,又由余弦定理可得222cos 2a b c C ab +-=,所以222222a b c c ab ab+-=,故2222a b c +=, 又因为AB 边上的中线1CM =,所以1CM =u u u u v ,因为()12CM CA CB u u u u v u u u v u u u v=+, 所以22222422cos CM CA CB CA CB CA CB CA CB C =++⋅=++u u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r,即22224232c b a ab c ab=++⋅=,解c =即AB 的长为3.17.在ABC ∆中,A B C ,,的对边分别a b c ,,,60,cos A B ︒==(Ⅰ)若D 是BC 上的点,AD 平分BAC ∠,求DCBD的值; (Ⅱ)若 ccos cos 2B b C +=,求ABC ∆的面积. 【答案】(Ⅰ)4;【解析】(Ⅰ)因为cos 3B =,∴sin 3B =, ()1sin sin sin cos cos sin 2C A B A B A B =+=+==, 由正弦定理得sin sin sin AD BD AD B BAD C ==∠,sin DCCAD∠, 因为AD 平分BAC ∠,所以sin 4sin DC BBD C ===.(Ⅱ)由cos cos 2c B b C +=,即222222cos cos 222a c b a b c c B b C c b a ac ab+-+-+=⋅+⋅==,所以sin sin a b A B =,∴sin sin 3a Bb A ==,故11sin 222ABC S ab C ==⨯=V 18.在ABC ∆中,角,,A B C 所对的边分别,,a b c ,()()()()2sin cos sin f x x A x B C x R =-++∈,函数()f x 的图象关于点,06π⎛⎫⎪⎝⎭对称.(1)当0,2x π⎛⎫∈ ⎪⎝⎭时,求()f x 的值域;(2)若7a =且sin sin B C +=ABC ∆的面积.【答案】(1)⎛⎤⎥ ⎝⎦(2)【解析】(1)()()()2sin cos sin f x x A x B C =-++ ()2sin cos sin x A x A =-+=2sin()cos sin(())x A x x x A -+--=2sin()cos sin cos()sin()cos x A x x x A x A x -+--- =sin()cos sin cos()x A x x x A -+-()sin 2x A =-∵函数()f x 的图像关于点π,06⎛⎫⎪⎝⎭对称, ∴π06f ⎛⎫=⎪⎝⎭∴π3A =∴()πsin 23f x x ⎛⎫=-⎪⎝⎭∵()f x 在区间5π0,12⎛⎤ ⎥⎝⎦上是增函数,5ππ,122⎛⎫⎪⎝⎭上是减函数,且()0f =,5π112f ⎛⎫= ⎪⎝⎭,π2f ⎛⎫=⎪⎝⎭∴()f x 的值域为⎛⎤⎥ ⎝⎦(2)∵sin sin B C +=1313sin sin sin 1377B C A b c a ∴+=∴+=⨯= ∴13b c +=由余弦定理,2222cos a b c bc A =+- ∴40bc =∴1sinA 2ABC S bc ==V 19.在ABC ∆中,已知2AB =,cos 10B =,4C π=.(1)求BC 的长; (2)求sin(2)3A π+的值.【答案】(1)5BC =(2【解析】解:(1)因为cos B =,0B π<<,所以sin B ===在ABC ∆中,A B C π++=,所以()A B C π=-+, 于是sin sin(())sin()A B C B C π=-+=+4sin cos cos sin 1021025B C B C =+=⨯+⨯=. 在ABC ∆中,由正弦定理知sin sin BC AB A C=,所以4sin sin 552AB BC A C =⨯==. (2)在ABC ∆中,A B C π++=,所以()A B C π=-+, 于是cos cos(())cos()A B C B C π=-+=-+3(cos cos sin sin )5B C B C =--=-=⎝⎭,于是4324sin 22sin cos 25525A A A ==⨯⨯=, 2222347cos 2cos sin 5525A A A ⎛⎫⎛⎫=-=-=- ⎪ ⎪⎝⎭⎝⎭.因此,sin 2sin 2cos cos 2sin 333A A A πππ⎛⎫+=+ ⎪⎝⎭ 24173247325225250-⎛⎫=⨯+-⨯= ⎪⎝⎭. 20.如图,在四边形ABCD 中,60A ∠=︒,90ABC ∠=︒.已知3AD =,6BD =.(Ⅰ)求sin ABD ∠的值;(Ⅱ)若2CD =,且CD BC >,求BC 的长.【答案】(Ⅰ)64(Ⅱ)1BC = 【解析】(Ⅰ)在ABD V 中,由正弦定理,得sin sin AD BD ABD A =∠∠. 因为60,3,6A AD BD ︒∠=== 所以36sin sin sin 6046AD ABD A BD ︒∠=⨯∠== (Ⅱ)由(Ⅰ)可知,6sin ABD ∠=, 因为90ABC ︒∠=,所以()6cos cos 90sin CBD ABD ABD ︒∠=-∠=∠=. 在BCD ∆中,由余弦定理,得2222cos CD BC BD BC BD CBD =+-⋅∠. 因为2,6CD BD ==所以264626BC BC =+-,即2320BC BC -+=,解得1BC =或2BC =.又CD BC >,则1BC =.21.在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,且234cos2sin 22A b b a B =+. (1)求cos A ;(2)若a =5c =,求b .【答案】(1) 3cos 5A =(2) 1b =或5. 【解析】解:(1)由题意知234cos 2sin 22A b b aB =+, 化简得4cos 3sin b A a B =,由正弦定理得4sin cos 3sin sin B A A B =, 因为sin 0B ≠, 所以4tan 3A =,且A 为ABC ∆的内角, 即3cos 5A =. (2)由余弦定理得2222cos a b c bc A =+-, 所以220256b b =+-,所以2650b b -+=,所以1b =或5.22.已知在△ABC 中,222a c ac b +-=. (Ⅰ)求角B 的大小;(Ⅱ)求cos cos A C +的最大值.【答案】(Ⅰ)3π;(Ⅱ)1. 【解析】 (Ⅰ)由余弦定理得2221cos ==222a cb ac B a c a c +-⋅=⋅⋅ 因为角B 为三角形内角3B π∴∠=(Ⅱ)由(Ⅰ)可得23A C B ππ∠+∠=-∠= 23A C π∴∠=-∠ cos cos A C ∴+=2cos cos 3C C π⎛⎫-+⎪⎝⎭ =22cos cos sin sin cos 33C C C ππ⋅+⋅+=1cos sin cos 2C C C -⋅++1sin cos 2C C +⋅ =cos sin sin cos 66C C ππ⋅+⋅ =sin 6C π⎛⎫+ ⎪⎝⎭ 203C π<<Q 5666C πππ∴<+< 1sin 126C π⎛⎫∴<+≤ ⎪⎝⎭ cos cos A C ∴+的最大值是1。

(完整版)高考三角函数经典解答题及答案

(完整版)高考三角函数经典解答题及答案

(完整版)高考三角函数经典解答题及答案1. 在△ABC 中,角 A、B、C 所对的边分别是 a、b、c,且 a²+c²-b²=(1) 求 sin²(2A+C)+cos²B 的值;(2) 若 b=2,求△ABC 面积的最大值。

解:(1) 由余弦定理:cosB=(a²+ c²- b²)/(2ac)=4/√115,得sinB=√(1-cos²B)=3√(23)/23。

由正弦定理sin²(2A+C)+cos²B=4sin²B+cos²B=13/23。

2. 在△ABC 中,角 A、B、C 的对边分别为 a、b、c,且bcosC=3acosB-ccosB。

(I) 求 cosB 的值;(II) 若 BA·BC=2,且b=√2,求 a 和 c·b 的值。

解:(I) 由正弦定理得 a=2RsinA,b=2RsinB,c=2RsinC,则 2RsinBcosC=6RsinAcosB-2RsinCcosB,故sinBcosC=3sinAcosB-sinCcosB,可得sinBcosC+sinCcosB=3sinAcosB,即 sin(B+C)=3sinAcosB,可得 sinA=3sinAcosB/sinB。

又sinA≠0,因此 cosB=1/3。

3. 已知向量 m=(sinB,1-cosB),向量 n=(2,k),且 m 与 n 所成角为π/3,其中 A、B、C 是△ABC 的内角。

(1) 求角 B 的大小;(2) 求 sinA+sinC 的取值范围。

解:(1) ∠m与∠n所成角为π/3,且 m·n=2sinB+ k(1-cosB)=2√3/2cosB+k√(1-cos²B),又 m·n=2cosB+k(1-cosB),解得 k=4/3。

三角函数高考题及练习题含答案

三角函数高考题及练习题含答案

三角函数高考题及练习题(含答案)1. 掌握正弦函数、余弦函数、正切函数的图象与性质;会用“五点法”作出正弦函数及余弦函数的图象;掌握函数y =Asin (ωx +φ)的图象及性质.2. 高考试题中,三角函数题相对比较传统,位置靠前,通常是以简单题形式出现,因此在本讲复习中要注重三角知识的基础性,特别是要熟练掌握三角函数的定义、三角函数图象的识别及其简单的性质(周期、单调性、奇偶、最值、对称、图象平移及变换等).3. 三角函数是每年高考的必考内容,多数为基础题,难度属中档偏易.这几年的高考加强了对三角函数定义、图象和性质的考查.在这一讲复习中要重视解三角函数题的一些特殊方法,如函数法、待定系数法、数形结合法等.1. 函数y =2sin 2⎝⎛⎭⎫x -π4-1是最小正周期为________的________(填“奇”或“偶”)函数.答案:π 奇解析:y =-cos ⎝⎛⎭⎫2x -π2=-sin2x.2. 函数f(x)=lgx -sinx 的零点个数为________. 答案:3解析:在(0,+∞)内作出函数y =lgx 、y =sinx 的图象,即可得到答案.3. 函数y =2sin(3x +φ),⎝⎛⎭⎫|φ|<π2的一条对称轴为x =π12,则φ=________.答案:π4解析:由已知可得3×π12+φ=k π+π2,k ∈Z ,即φ=k π+π4,k ∈Z .因为|φ|<π2,所以φ=π4.4. 若f(x)=2sin ωx (0<ω<1)在区间⎣⎡⎦⎤0,π3上的最大值是2,则ω=________.答案:34解析:由0≤x ≤π3,得0≤ωx ≤ωπ3<π3,则f(x)在⎣⎡⎦⎤0,π3上单调递增,且在这个区间上的最大值是2,所以2sin ωπ3=2,且0<ωπ3<π3,所以ωπ3=π4,解得ω=34.题型二 三角函数定义及应用问题例1 设函数f(θ)=3sin θ+cos θ,其中角θ的顶点与坐标原点重合,始边与x 轴非负半轴重合,终边经过点P(x ,y),且0≤θ≤π.(1) 若点P 的坐标是⎝⎛⎭⎫12,32,求f(θ)的值;(2) 若点P(x ,y)为平面区域⎩⎪⎨⎪⎧x +y ≥1,x ≤1,y ≤1上的一个动点,试确定角θ的取值范围,并求函数f(θ)的最小值和最大值.解:(1) 根据三角函数定义得sin θ=32,cos θ=12,∴ f (θ)=2.(本题也可以根据定义及角的范围得角θ=π3,从而求出 f(θ)=2).(2) 在直角坐标系中画出可行域知0≤θ≤π2,又f(θ)=3sin θ+cos θ=2sin ⎝⎛⎭⎫θ+π6,∴ 当θ=0,f (θ)min =1;当θ=π3,f (θ)max =2.(注: 注意条件,使用三角函数的定义, 一般情况下,研究三角函数的周期、最值、单调性及有关计算等问题时,常可以先将函数化简变形为y =Asin (ωx +φ)的形式)如图,在平面直角坐标系xOy 中,以Ox 轴为始边作两个锐角α、β,它们的终边分别与单位圆相交于A 、B 两点,已知A 、B 的横坐标分别为210、255.求:(1) tan (α+β)的值; (2) α+2β的值.解:由题意得cos α=210,cos β=255,α、β∈⎝⎛⎭⎫0,π2,所以sin α=1-cos 2α=7210,sin β=1-cos 2β=55, 因此tan α=7,tan β=12.(1) tan (α+β)=tan α+tan β1-tan αtan β=7+121-7×12=-3.(2) tan (α+2β)=tan [(α+β)+β]=-3+121-(-3)×12=-1.又α+2β∈⎝⎛⎭⎫0,3π2,所以α+2β=3π4.题型二 三角函数的图象与解析式问题例2 函数f(x)=Asin (ωx +φ)(A 、ω、φ是常数,A>0,ω>0)的部分图象如图所示. (1) 求f(0)的值;(2) 若0<φ<π,求函数f(x)在区间⎣⎡⎦⎤0,π3上的取值范围.解:(1)由题图可知A =2,∵ T 4=7π12-π3=π4,∴ ω=2.又2×7π12+φ=2k π+3π2,∴ φ=2k π+π3(k ∈Z ),∴ f(0)=2sin ⎝⎛⎭⎫2k π+π3=62.(2) φ=π3,f(x)=2sin ⎝⎛⎭⎫2x +π3.因为0≤x ≤π3,所以π3≤2x +π3≤π,所以0≤sin ⎝⎛⎭⎫2x +π3≤1,即f(x)的取值范围为[0,2].(注:本题主要考查正弦、余弦、正切函数及y =Asin (ωx +φ)的图象与性质以及诱导公式,运用数形结合思想,属于中档题)已知函数f(x)=Asin ωx +Bcos ωx(A 、B 、ω是常数,ω>0)的最小正周期为2,并且当x =13时,f(x)max =2.(1) 求f(x)的解析式;(2) 在闭区间⎣⎡⎦⎤214,234上是否存在f(x)的对称轴?如果存在,求出其对称轴方程;如果不存在,请说明理由.解:(1) 因为f(x)=A 2+B 2sin (ωx +φ),由它的最小正周期为2,知2πω=2,ω=π.又当x =13时,f(x)max =2,知13π+φ=2k π+π2(k ∈Z ),即φ=2k π+π6(k ∈Z ),所以f(x)=2sin ⎝⎛⎭⎫πx +2k π+π6=2sin ⎝⎛⎭⎫πx +π6(k ∈Z ).故f(x)的解析式为f(x)=2sin ⎝⎛⎭⎫πx +π6.(2) 当垂直于x 轴的直线过正弦曲线的最高点或最低点时,该直线就是正弦曲线的对称轴,令πx +π6=k π+π2(k ∈Z ),解得x =k +13(k ∈Z ),由214≤k +13≤234,解得5912≤k ≤6512.又k ∈Z ,知k =5,由此可知在闭区间⎣⎡⎦⎤214,234上存在f(x)的对称轴,其方程为x =163. 题型三 三角函数的性质与图象的移动问题例3 把函数f(x)=sin 2x -2sinxcosx +3cos 2x 的图象沿x 轴向左平移m 个单位(m>0),所得函数的图象关于直线x =17π8对称.(1) 求m 的最小值;(2) 证明:当x ∈⎝⎛⎭⎫-17π8,-15π8时,经过函数f(x)图象上任意两点的直线的斜率恒为负数;(3) 设x 1,x 2∈(0,π),x 1≠x 2,且f(x 1)=f(x 2)=1,求x 1+x 2的值.(1) 解:f(x)=sin 2x -2sinxcosx +3cos 2x =1-cos2x 2-sin2x +3·1+cos2x2=cos2x -sin2x+2=2cos ⎝⎛⎭⎫2x +π4+2.因为将f(x)的图象沿x 轴向左平移m 个单位(m>0),得到g(x)=2⎣⎡⎦⎤2(x +m )+π4+2的图象,又g(x)的图象关于直线x =17π8对称,所以2⎝⎛⎭⎫17π8+m +π4=k π,即m =(2k -9)4π(k ∈Z ). 因为m>0,所以m 的最小值为π4.(2) 证明:因为x ∈⎝⎛⎭⎫-17π8,-15π8,所以-4π<2x +π4<-7π2,所以f(x)在⎝⎛⎭⎫-17π8,-15π8上是减函数.所以当x 1、x 2∈⎝⎛⎭⎫-17π8,-15π8,且x 1<x 2时,都有f(x 1)>f(x 2),从而经过任意两点(x 1,f(x 1))和(x 2,f(x 2))的直线的斜率k =f (x 1)-f (x 2)x 1-x 2<0.(3) 解:令f(x)=1,所以cos ⎝⎛⎭⎫2x +π4=-22.因为x ∈(0,π),所以2x +π4∈⎝⎛⎭⎫π4,9π4.所以2x +π4=3π4或2x +π4=5π4,即x =π4或x =π2.因为x 1、x 2∈(0,π),x 1≠x 2,且f(x 1)=f(x 2)=1,所以x 1+x 2=π4+π2=3π4已知函数f(x)=2sin ωx ,其中常数ω>0.(1) 若y =f(x)在⎣⎡⎦⎤-π4,2π3上单调递增,求ω的取值范围;(2) 令ω=2,将函数y =f(x)的图象向左平移π6个单位,再向上平移1个单位,得到函数y =g(x)的图象,区间[a ,b](a ,b ∈R 且a<b)满足:y =g(x)在[a ,b]上至少含有30个零点,在所有满足上述条件的[a ,b]中,求b -a 的最小值.解:(1) 因为ω>0,根据题意有 ⎩⎨⎧-π4ω≥-π22π3ω≤π20<ω≤34.(2) f(x)=2sin2x ,g(x)=2sin2⎝⎛⎭⎫x +π6+1=2sin ⎝⎛⎭⎫2x +π3+1,g(x)=0sin ⎝⎛⎭⎫2x +π3=-12x =k π-π3或x =k π-712π,k ∈Z, 即g(x)的零点相邻间隔依次为π3和2π3,故若y =g(x)在[a ,b]上至少含有30个零点,则b -a 的最小值为14×2π3+15×π3=43π3.已知函数f(x)=3sin (ωx +φ)-cos (ωx +φ)(0<φ<π,ω>0)为偶函数,且函数y =f(x)图象的两相邻对称轴间的距离为π2.(1) 求f ⎝⎛⎭⎫π8的值;(2) 将函数y =f(x)的图象向右平移π6个单位后,得到函数y =g(x)的图象,求函数g(x)的单调递减区间.解:(1) f(x)=3sin (ωx +φ)-cos (ωx +φ)=2⎣⎡⎦⎤32sin (ωx +φ)-12cos (ωx +φ)=2sin ⎝⎛⎭⎫ωx +φ-π6.因为f(x)为偶函数,所以对x ∈R ,f(-x)=f(x)恒成立,因此sin ⎝⎛⎭⎫-ωx +φ-π6=sin ⎝⎛⎭⎫ωx +φ-π6,即-sin ωxcos ⎝⎛⎭⎫φ-π6+cos ωxsin ⎝⎛⎭⎫φ-π6=sin ωxcos (φ-π6)+cos ωx sin ⎝⎛⎭⎫φ-π6,整理得sin ωxcos ⎝⎛⎭⎫φ-π6=0.因为ω>0,且x ∈R ,所以cos ⎝⎛⎭⎫φ-π6=0.又0<φ<π,故φ-π6=π2.所以f(x)=2sin ⎝⎛⎭⎫ωx +π2=2cos ωx.由题意得2πω=2×π2,所以ω=2,故f(x)=2cos2x ,因此f ⎝⎛⎭⎫π8=2cos π4= 2.(2) 将f(x)的图象向右平移π6个单位后,得到f ⎝⎛⎭⎫x -π6的图象,所以g(x)=f ⎝⎛⎭⎫x -π6=2cos ⎣⎡⎦⎤2⎝⎛⎭⎫x -π6=2cos ⎝⎛⎭⎫2x -π3.当2k π≤2x -π3≤2k π+π(k ∈Z ),即k π+π6≤x ≤k π+2π3(k ∈Z )时,g(x)单调递减,因此g(x)的单调递减区间为⎣⎡⎦⎤k π+π6,k π+2π3(k ∈Z ). 题型四 三角函数图象及性质、三角公式综合运用例4 已知函数f(x)=2sin 2⎝⎛⎭⎫π4+x -3cos2x -1,x ∈R .(1) 求f(x)的最小正周期;(2) 若h(x)=f(x +t)的图象关于点⎝⎛⎭⎫-π6,0对称,且t ∈(0,π),求t 的值;(3) 当x ∈⎣⎡⎦⎤π4,π2时,不等式|f(x)-m|<3恒成立,求实数m 的取值范围.解:(1)因为f(x)=-cos ⎝⎛⎭⎫π2+2x -3cos2x =2sin ⎝⎛⎭⎫2x -π3,故f(x)的最小正周期为π.(2) h(x)=2sin ⎝⎛⎭⎫2x +2t -π3.令2×⎝⎛⎭⎫-π6+2t -π3=k π(k ∈Z ),又t ∈(0,π),故t =π3或5π6. (3) 当x ∈⎣⎡⎦⎤π4,π2时,2x -π3∈⎣⎡⎦⎤π6,2π3,∴ f(x)∈[1,2].又|f(x)-m|<3,即f(x)-3<m <f(x)+3, ∴ 2-3<m <1+3,即-1<m <4.已知函数f(x)=Asin (ωx +φ)(A>0,ω>0,|φ|<π),在同一周期内,当x =π12时,f(x)取得最大值3;当x =712π时,f(x)取得最小值-3.(1) 求函数f(x)的解析式;(2) 求函数f(x)的单调递减区间;(3) 若x ∈⎣⎡⎦⎤-π3,π6时,函数h(x)=2f(x)+1-m 有两个零点,求实数m 的取值范围.解:(1) 由题意,A =3,T =2⎝⎛⎭⎫712π-π12=π,ω=2πT =2.由2×π12+φ=π2+2k π得φ=π3+2k π,k ∈Z .又 -π<φ<π,∴ φ=π3,∴ f(x)=3sin ⎝⎛⎭⎫2x +π3.(2) 由π2+2k π≤2x +π3≤3π2+2k π,得π6+2k π≤2x ≤7π6+2k π,即π12+k π≤x ≤7π12+k π,k ∈Z . ∴ 函数f(x)的单调递减区间为⎣⎡⎦⎤π12+k π,7π12+k π,k ∈Z.(3) 由题意知,方程sin ⎝⎛⎭⎫2x +π3=m -16在⎣⎡⎦⎤-π3,π6上有两个根.∵ x ∈⎣⎡⎦⎤-π3,π6,∴ 2x +π3∈⎣⎡⎦⎤-π3,2π3.∴ m -16∈⎣⎡⎦⎤-32,1,∴ m ∈[1-33,7).1. (2013·江西卷)设f(x)=3sin3x +cos3x ,若对任意实数x 都有|f(x)|≤a ,则实数a 的取值范围是________.答案:a ≥2解析:f(x)=3sin3x +cos3x =2sin ⎝⎛⎭⎫3x +π6,|f(x)|≤2,所以a ≥2.2. (2013·天津卷)函数f(x)=sin ⎝⎛⎭⎫2x -π4在区间⎣⎡⎦⎤0,π2上的最小值是________.答案:-223. (2013·全国卷)函数y =cos(2x +φ)(-π≤φ<π)的图象向右平移π2个单位后,与函数y =sin ⎝⎛⎭⎫2x +π3的图象重合,则|φ|=________.答案:5π64. (2014·北京卷)设函数f(x)=Asin (ωx +φ)(A 、ω、φ是常数,A>0,ω>0).若f(x)在区间⎣⎡⎦⎤π6,π2上具有单调性,且f ⎝⎛⎭⎫π2=f ⎝⎛⎭⎫2π3=-f ⎝⎛⎭⎫π6,则f(x)的最小正周期为________. 答案:π解析:由f(x)在区间⎣⎡⎦⎤π6,π2上具有单调性,f ⎝⎛⎭⎫π2=-f ⎝⎛⎭⎫π6知,函数f(x)的对称中心为⎝⎛⎭⎫π3,0,函数f(x)的对称轴为直线x =12⎝⎛⎭⎫π2+2π3=7π12,设函数f(x)的最小正周期为T ,所以12T ≥π2-π6,即T ≥2π3,所以7π12-π3=T 4,解得T =π. 5. (2014·福建卷)已知函数f(x)=cosx(sinx +cosx)-12.(1) 若0<α<π2,且sin α=22,求f(α)的值;(2) 求函数f(x)的最小正周期及单调递增区间.解:(解法1)(1) 因为0<α<π2,sin α=22,所以cos α=22.所以f(α)=22⎝⎛⎭⎫22+22-12=12.(2) 因为f(x)=sinxcosx +cos 2x -12=12sin2x +1+cos2x 2-12=12sin2x +12cos2x =22sin ⎝⎛⎭⎫2x +π4,所以T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x≤k π+π8,k ∈Z .所以f(x)的单调递增区间为⎣⎡⎦⎤k π-3π8,k π+π8,k ∈Z .(解法2)f(x)=sinxcosx +cos 2x -12=12sin2x +1+cos2x 2-12=12sin2x +12cos2x =22sin ⎝⎛⎭⎫2x +π4.(1) 因为0<α<π2,sin α=22,所以α=π4.从而f(α)=22sin ⎝⎛⎭⎫2α+π4=22sin 3π4=12.(2) T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z .所以f(x)的单调递增区间为⎣⎡⎦⎤k π-3π8,k π+π8,k ∈Z .6. (2013·北京卷)已知函数f(x)=(2cos 2x -1)sin2x +12cos4x.(1) 求f(x)的最小正周期及最大值;(2) 若α∈⎝⎛⎭⎫π2,π,且f(α)=22,求α的值.解:(1) 因为f(x)=(2cos 2x -1)sin2x +12cos4x =cos2xsin2x +12cos4x =12(sin4x +cos4x)=22sin ⎝⎛⎭⎫4x +π4,所以f(x)的最小正周期为π2,最大值为22. (2) 因为f(α)=22,所以sin ⎝⎛⎭⎫4α+π4=1.因为α∈⎝⎛⎭⎫π2,π,所以4α+π4∈⎝⎛⎭⎫9π4,17π4,所以4α+π4=5π2,故α=9π16.(本题模拟高考评分标准,满分14分)设a>0,函数f(x)=asinxcosx -sinx -cosx ,x ∈⎣⎡⎦⎤0,π2的最大值为G(A).(1) 设t =sinx +cosx ,x ∈⎣⎡⎦⎤0,π2,求t 的取值范围,并把f(x)表示为t 的函数m(t);(2) 求G(A).解:(1) t =sinx +cosx =2sin ⎝⎛⎭⎫x +π4.∵ x ∈⎣⎡⎦⎤0,π2,∴ x +π4∈⎣⎡⎦⎤π4,3π4,∴ 22≤sin ⎝⎛⎭⎫x +π4≤1,∴ 1≤t ≤2,即t 的取值范围为[1,2].(3分)(另解:∵ x ∈⎣⎡⎦⎤0,π2,∴ t =sinx +cosx =1+sin2x.由2x ∈[0,π]得0≤sin2x ≤1,∴ 1≤t ≤2)∵ t =sinx +cosx ,∴ sinxcosx =t 2-12,(5分)∴ m(t)=a·t 2-12-t =12at 2-t -12a ,t ∈[1,2],a>0.(7分)(2) 由二次函数的图象与性质得:① 当1a <1+22,即a>2(2-1)时,G(A)=m(2)=12a -2; (10分)② 当1a ≥1+22,即0<a ≤2(2-1)时,G(A)=m(1)=- 2.(13分)∴ G(A)=⎩⎪⎨⎪⎧12a -2,a>2(2-1),-2,0<a ≤2(2-1).(14分)1. 若π4<x <π2,则函数y =tan2xtan 3x 的最大值为________.答案:-8解析:令tanx =t ∈(1,+∞),y =2t 41-t 2,y ′(t)=-4t 3(t +2)(t -2)(1-t 2)2,得t =2时y 取最大值-8.2. 已知函数f(x)=2cos2x +sin 2x ,求:(1) f ⎝⎛⎭⎫π3的值;(2) f(x)的最大值和最小值.解:(1) f ⎝⎛⎭⎫π3=2cos 2π3+sin 2π3=-1+34=-14.(2) f(x)=2(2cos 2x -1)+(1-cos 2x)=3cos 2x -1,x ∈R .因为cosx ∈[-1,1],所以当cosx =±1时,f(x)取最大值2;当cosx =0时,f(x)取最小值-1.3. 已知A 为△ABC 的内角,求y =cos 2A +cos 2⎝⎛⎭⎫2π3+A 的取值范围.解: y =cos 2A +cos 2⎝⎛⎭⎫2π3+A =1+cos2A 2+1+cos2⎝⎛⎭⎫2π3+A 2=1+cos2A 2+12⎝⎛⎭⎫cos 4π3cos2A -sin 4π3sin2A=1+12⎝⎛⎭⎫12cos2A +32sin2A =1+12cos ⎝⎛⎭⎫2A -π3.∵ A 为三角形内角,∴ 0<A <π,∴ -1≤cos ⎝⎛⎭⎫2A -π3≤1,∴ y =cos 2A +cos 2⎝⎛⎭⎫2π3+A 的取值范围是[12,32].4. 设函数f(x)=-cos 2x -4tsin x 2cos x2+4t 3+t 2-3t +4,x ∈R ,其中|t|≤1,将f(x)的最小值记为g(t).(1) 求g(t)的表达式;(2) 讨论g(t)在区间(-1,1)内的单调性并求极值.解:(1) f(x)=-cos 2x -4tsin x 2cos x2+4t 3+t 2-3t +4=sin 2x -2tsinx +4t 3+t 2-3t +3 =(sinx -t)2+4t 3-3t +3.由于(sinx -t)2≥0,|t|≤1,故当sinx =t 时,f(x)达到其最小值g(t),即g(t)=4t 3-3t +3. (2) g′(t)=12t 2-3=3(2t +1)(2t -1),-1<t <1. 由此可见,g(t)在区间⎝⎛⎭⎫-1,-12和⎝⎛⎭⎫12,1上单调增,在区间⎝⎛⎭⎫-12,12上单调减,极小值为g ⎝⎛⎭⎫12=2,极大值为g ⎝⎛⎭⎫-12=4.。

高考数学 解三角形应用举例

高考数学 解三角形应用举例

第23讲 解三角形应用举例1.仰角和俯角在视线和水平线所成的角中,视线在水平线!!! 上方 ###的角叫仰角,在水平线!!! 下方 ###的角叫俯角(如图①).2.方位角从指北方向!!!顺时针 ###转到目标方向线的水平角叫方位角,如B 点的方位角为α(如图②).3.方向角相对于某一正方向的水平角(如图③)(1)北偏东α,即由指北方向!!! 顺时针 ###旋转α到达目标方向. (2)北偏西α,即由指北方向!!! 逆时针 ###旋转α到达目标方向. (3)南偏西等其他方向角类似.4.坡度(比)坡角:坡面与水平面所成的!!! 二面角 ###的度数(如图④,角θ为坡角).坡比:坡面的铅直高度与水平长度之比(如图④,i 为坡度(比)). 5.解三角形应用题的一般步骤(1)阅读理解题意,弄清问题的实际背景,明确已知与未知,理清量与量之间的关系. (2)根据题意画出示意图,将实际问题抽象成解三角形问题的模型. (3)根据题意选择正弦定理或余弦定理求解.(4)将三角形问题还原为实际问题,注意实际问题中的有关单位、近似计算的要求等.1.思维辨析(在括号内打“√”或“×”).(1)公式S =12bc sin A =12ac sin B =12ab sin C 适用于任意三角形.( √ )(2)东北方向就是北偏东45°的方向.( √ ) (3)俯角是铅垂线与视线所成的角.( × )(4)方位角大小的范围是[0,2π),方向角大小的范围一般是⎣⎡⎭⎫0,π2.( √ ) 解析 (1)正确.三角形的面积公式对任意三角形都成立. (2)正确.数学中的东北方向就是北偏东45°或东偏北45°的方向. (3)错误.俯角是视线与水平线所构成的角.(4)正确.方位角是由正北方向顺时针转到目标方向线的水平角,故大小的范围为[0,2π),而方向角大小的范围由定义可知为⎣⎡⎭⎫0,π2. 2.若点A 在点C 的北偏东30°,点B 在点C 的南偏东60°,且AC =BC ,则点A 在点B 的( B )A .北偏东15°B .北偏西15°C .北偏东10°D .北偏西10°解析 如图所示,∠ACB =90°.又AC =BC ,∴∠CBA =45°,而β=30°, ∴α=90°-45°-30°=15°. ∴点A 在点B 的北偏西15°.3.如图,设A ,B 两点在河的两岸,一测量者在A 的同侧,选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°,则A ,B 两点的距离为( A ) A .50 2 m B .50 3 m C .25 2 m D .2522m解析 由正弦定理得 AB =AC ·sin ∠ACB sin B=50×2212=502(m).4.在相距2千米的A ,B 两点处测量目标点C ,若∠CAB =75°,∠CBA =60°,则A ,C .解析 如图所示,由题意知∠C =45°, 由正弦定理得AC sin 60°=2sin 45°,∴AC =222×32= 6. 5.一船向正北航行,看见正东方向有相距8海里的两个灯塔恰好在一条直线上.继续航行半小时后,看见一灯塔在船的南偏东60°,另一灯塔在船的南偏东75°,则这艘船每小时航行!!! 8 ###海里.解析 如图,由题意知在△ABC 中, ∠ACB =75°-60°=15°,∠B =15°,∴AC =AB =8.在Rt △AOC 中,OC =AC ·sin 30°=4. ∴这艘船每小时航行412=8(海里).一 距离问题求解距离问题的一般步骤(1)选取适当基线,画出示意图,将实际问题转化为三角形问题. (2)明确要求的距离所在的三角形有哪几个已知元素. (3)确定使用正弦定理或余弦定理解三角形.【例1】 要测量对岸A ,B 两点之间的距离,选取相距 3 km 的点C ,点D ,并测得∠ACB =75°,∠BCD =45°,∠ADC =30°,∠ADB =45°,则点A ,B ###km.解析 如图,在△ACD 中,∠ACD =120°,∠CAD =∠ADC =30°,∴AC =CD =3(km). 在△BCD 中,∠BCD =45°, ∠BDC =75°,∠CBD =60°. ∴BC =3sin 75°sin 60°=6+22.在△ABC 中,由余弦定理,得 AB 2=(3)2+⎝⎛⎭⎪⎫6+222-2×3×6+22×cos 75°=3+2+3-3=5,∴AB =5(km),即A ,B 之间的距离为 5 km.二 高度问题高度问题一般是把它转化成三角形的问题,要注意三角形中的边角关系的应用,若是空间的问题要注意空间图形和平面图形的结合.【例2】 要测量电视塔AB 的高度,在点C 测得塔顶A 的仰角是45°,在点D 测得塔顶A 的仰角是30°,并测得水平面上的∠BCD =120°,CD =40 m ,则电视塔的高度为!!! 40 ###m.解析 设电视塔AB 高为x m ,则在Rt △ABC 中,由∠ACB =45°,得BC =x .在Rt △ADB 中,由∠ADB =30°,得BD =3x .在△BDC 中,由余弦定理,得BD 2=BC 2+CD 2-2BC ·CD ·cos 120°,即(3x )2=x 2+402-2·x ·40·cos 120°,解得x =40,所以电视塔高为40 m.三 角度问题解决角度问题的注意点(1)首先应明确方位角或方向角的含义.(2)分析题意,分清已知与所求,再根据题意画出正确的示意图,这是最关键、最重要的一步.(3)将实际问题转化为可用数学方法解决的问题后,注意正、余弦定理的“联袂”使用. 【例3】 在一次海上联合作战演习中,红方一艘侦察艇发现在北偏东45°方向,相距12 n mile 的水面上,有蓝方一艘小艇正以每小时10 n mile 的速度沿南偏东75°方向前进,红方侦察艇以每小时14 n mile 的速度沿北偏东45°+α方向拦截蓝方的小艇.若要在最短的时间内拦截住,求红方侦察艇所需的时间和角α的正弦值.解析 如图,设红方侦察艇经过x 小时后在C 处追上蓝方的小艇,则AC =14x ,BC =10x ,∠ABC =120°. 根据余弦定理得(14x )2=122+(10x )2-240x cos 120°, 解得x =2.故AC =28,BC =20. 根据正弦定理得BC sin α=AC sin 120°,解得sin α=20sin 120°28=5314.所以红方侦察艇所需要的时间为2小时,角α的正弦值为5314.1.如图所示,位于A 处的信息中心获悉:在其正东方向相距40海里的B 处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°,相距20海里的C 处的乙船,现乙船朝北偏东θ的方向即沿直线CB 前往B 处救援,则cos θ=( B )A .217B .2114 C .32114D .2128解析 如题图所示,在△ABC 中,AB =40海里,AC =20海里,∠BAC =120°,由余弦定理,得BC 2=AB 2+AC 2-2AB ·AC ·cos 120°=2 800,故BC =207(海里).由正弦定理,得sin ∠ACB =AB BC ·sin ∠BAC =217,由∠BAC =120°,知∠ACB 为锐角,故cos ∠ACB =277.故cos θ=cos (∠ACB +30°)=cos ∠ACB cos 30°-sin ∠ACB sin 30°=2114. 第1题图第2题图2.如图,两座相距60 m 的建筑物AB ,CD 的高度分别为20 m ,50 m ,BD 为水平面,则从建筑物AB 的顶端A 看建筑物CD 的张角∠CAD =( B )A .30°B .45°C .60°D .75°解析 依题意可得AD =2010 m ,AC =30 5 m ,又CD =50 m ,所以在△ACD 中, 由余弦定理得cos ∠CAD =AC 2+AD 2-CD 22AC ·AD=(305)2+(2010)2-5022×305×2010= 6 0006 0002=22,又0°<∠CAD <180°,所以∠CAD =45°,所以从顶端A 看建筑物CD 的张角为45°.3.如图所示,在一个坡度一定的山坡AC 的顶上有一高度为25 m 的建筑物CD ,为了测量该山坡相对于水平地面的坡角θ,在山坡A 处测得∠DAC =15°,沿山坡前进50 m 到达B 处,又测得∠DBC =45°,根据以上数据可得cos θ解析 由∠DAC =15°,∠DBC =45°,可得∠BDA =30°,∠DBA =135°,∠BDC =90°-(15°+θ)-30°=45°-θ,由内角和定理可得∠DCB =180°-(45°-θ)-45°=90°+θ,根据正弦定理可得50sin 30°=DB sin 15°,即DB =100sin 15°=100×sin (45°-30°)=252(3-1),又25sin 45°=252(3-1)sin (90°+θ), 即25sin 45°=252(3-1)cos θ,得到cos θ=3-1. 4.如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30°的方向上,行驶600 m 后到达B 处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD解析 依题意有AB =600,∠CAB =30°,∠CBA =180°-75°=105°,∠DBC =30°,DC ⊥CB .∴∠ACB =45°,在△ABC 中,由AB sin ∠ACB =CB sin ∠CAB,得600sin 45°=CB sin 30°,有CB =3002,在Rt △BCD 中,CD =CB ·tan 30°=1006,则此山的高度CD =100 6 m.易错点 不注意实际问题中变量的取值范围错因分析:三角形中的最值问题,可利用正弦、余弦定理建立函数模型(或三角函数模型),转化为函数最值问题.求最值时要注意自变量的范围,要考虑问题的实际意义.【例1】 某港口O 要将一件重要物品用小艇送到一艘正在航行的轮船上.在小艇出发时,轮船位于港口O 北偏西30°且与该港口相距20海里的A 处,并正以30海里/小时的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v 海里/小时的航行速度匀速行驶,经过t 小时与轮船相遇.(1)若希望相遇时小艇的航行距离最小,则小艇航行速度 的大小应为多少?(2)假设小艇的最高航行速度只能达到30海里/小时,试设计航行方案(即确定航行方向和航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由.解析 (1)设相遇时小艇航行的距离为S 海里,则 S =900t 2+400-2·30t ·20·cos (90°-30°) =900t 2-600t +400 =900⎝⎛⎭⎫t -132+300. 故当t =13时,S min =103,v =10313=30 3.即小艇以303海里/小时的速度航行,相遇时小艇的航行距离最小.(2)设小艇与轮船在B 处相遇.则v 2t 2=400+900t 2-2·20·30t ·cos(90°-30°), 故v 2=900-600t +400t2.∵0<v ≤30,∴900-600t +400t 2≤900,即2t 2-3t ≤0,解得t ≥23.又t =23时,v =30, 故v =30时,t 取得最小值,且最小值等于23.此时,在△OAB 中,有OA =OB =AB =20. 故可设计航行方案如下:航行方向为北偏东30°,航行速度为30海里/小时.【跟踪训练1】 如图,游客从某旅游景区的景点A 处下山至C 处有两种路径.一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C .现有甲、乙两位游客从A 处下山,甲沿AC 匀速步行,速度为50 m/min.在甲出发2 min 后,乙从A 乘缆车到B ,在B 处停留1 min 后,再从B 匀速步行到C .假设缆车匀速直线运行的速度为130 m/min ,山路AC 长为1 260 m ,经测量,cos A =1213,cos C =35.(1)求索道AB 的长;(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在C 处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?解析 (1)在△ABC 中,因为cos A =1213,cos C =35,所以sin A =513,sin C =45.从而sin B =sin [π-(A +C )]=sin (A +C )=sin A cos C +cos A sin C =513×35+1213×45=6365.由AB sin C =AC sin B ,得AB =AC sin B ×sin C =1 2606365×45=1 040(m). 所以索道AB 的长为1 040 m.(2)设乙出发t 分钟后,甲、乙两游客距离为d m ,此时,甲行走了(100+50t )m ,乙距离A 处130t m ,所以由余弦定理得d 2=(100+50t )2+(130t )2-2×130t ×(100+50t )×1213=200(37t 2-70t +50),因0≤t ≤1 040130,即0≤t ≤8,故当t =3537(min)时,甲、乙距离最短.(3)由BC sin A =AC sin B ,得BC =AC sin B ×sin A =1 2606365×513=500(m). 乙从B 出发时,甲已走了50×(2+8+1)=550(m),还需走710 m 才能到达C . 设步行的速度为v m/min ,由题意得-3≤500v -71050≤3,解得1 25043≤v ≤62514,所以为使两位游客在C 处互相等待的时间不超过3分钟,乙步行的速度应控制在⎣⎡⎦⎤1 25043,62514(单位:m/min)范围内.课时达标 第23讲[解密考纲]本考点考查利用正弦定理、余弦定理求解三角形,解决实际应用问题.题型一般为填空题或解答题,题目难度中等偏难.一、选择题1.两座灯塔A 和B 与海岸观察站C 的距离相等,灯塔A 在观察站北偏东40°,灯塔B 在观察站南偏东60°,则灯塔A 在灯塔B 的( B )A .北偏东10°B .北偏西10°C .南偏东10°D .南偏西10°解析依题意作出图形可知,A在B北偏西10°的地方.2.有一长为1千米的斜坡,它的倾斜角为20°,现要将倾斜角改为10°,则斜坡长为(C)A.1千米B.2sin 10°千米C.2cos 10°千米D.cos 20°千米解析由题意知DC=BC=1,∠BCD=160°,∴BD2=DC2+CB2-2DC·CB·cos 160°=1+1-2×1×1×cos(180°-20°)=2+2cos 20°=4cos210°,∴BD=2cos 10°.3.一艘海轮从A处出发,以每小时40海里的速度沿南偏东40°方向直线航行,30分钟后到达B处.在C处有一座灯塔,海轮在A处观察灯塔,其方向是南偏东70°,在B处观察灯塔,其方向是北偏东65°,那么B,C两点间的距离是(A)A.10 2 海里B.10 3 海里C.20 3 海里D.20 2 海里解析如图所示,易知,在△ABC中,AB=20海里,∠CAB=30°,∠ACB=45°,根据正弦定理得BCsin 30°=ABsin 45°,解得BC=102(海里),故选A.4.要测量底部不能到达的东方明珠电视塔的高度,在黄浦江西岸选择甲、乙两观测点,在甲、乙两点分别测得塔顶的仰角分别为45°,30°,在水平面上测得电视塔与甲地连线及甲、乙两地连线所成的角为120°,甲、乙两地相距500米,则电视塔的高度是(D)A.100 2 m B.400 mC.200 3 m D.500 m解析由题意画出示意图,设塔高AB=h m,在Rt△ABC中,由已知得BC=h m,在Rt△ABD中,由已知得BD=3h m,在△BCD中,由余弦定理BD2=BC2+CD2-2BC·CD cos ∠BCD,得3h2=h2+5002+h·500,解得h=500(m).5.长为3.5 m的木棒AB斜靠在石堤旁,木棒的一端A在离堤足C1.4 m的地面上,另一端B在离堤足C处的2.8 m的石堤上,石堤的倾斜角为α,则坡度值tan α=(A)A.2315B.516C.23116D.115解析由题意,可得在△ABC中,AB=3.5 m,AC=1.4 m,BC=2.8 m,且∠α+∠ACB=π.由余弦定理,可得AB2=AC2+BC2-2×AC×BC×cos∠ACB,即 3.52=1.42+2.82-2×1.4×2.8×cos(π-α),解得cos α=516,所以sin α=23116,所以tan α=sin αcos α=2315.6.(2018·四川成都模拟)如图所示,为测一建筑物的高度,在地面上选取A,B两点,从A,B两点分别测得建筑物顶端的仰角为30°,45°,且A,B两点间的距离为60 m,则该建筑物的高度为(A)A.(30+303) m B.(30+153) mC.(15+303) m D.(15+153) m解析设建筑物高度为h,则htan 30°-htan 45°=60,即(3-1)h=60,所以建筑物的高度为h=(30+303)m.二、填空题7.一艘船上午9:30在A处测得灯塔S在它的北偏东30°处,之后它继续沿正北方向匀速航行,上午10:00到达B处,此时又测得灯塔S在它的北偏东75°处,且与它相距8 2 n mile,此船的航速是!!!32###n mile/h.解析 设航速为v n mile/h ,在△ABS 中,AB =12v ,BS =8 2 n mile ,∠BSA =45°,由正弦定理,得82sin 30°=12v sin 45°,∴v =32 n mile/h.8.某人在地上画了一个角∠BDA =60°,他从角的顶点D 出发,沿角的一边DA 行走10米后,拐弯往另一边的方向行走14米正好到达∠BDA 的另一边BD 上的一点,我们将该点记为点N ,则N 与D 之间的距离为!!! 16米 ###.解析 如图,设DN =x 米,则142=102+x 2-2×10×x cos 60°,∴x 2-10x -96=0. ∴(x -16)(x +6)=0.∴x =16. ∴N 与D 之间的距离为16米.9.如图所示,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得M 点的仰角∠MAN =60°,C 点的仰角∠CAB =45°以及∠MAC =75°.从C 点测得∠MCA =60°,已知山高BC =100 m ,则山高MN =!!! 150 ###m.解析 在△ABC 中,AC =1002,在△MAC 中,MA sin 60°=ACsin 45°,解得MA =1003,在△MNA 中,MN 1003=sin 60°=32,故MN =150,即山高MN 为150 m.三、解答题10.已知岛A 南偏西38°方向,距岛A 3海里的B 处有一艘缉私艇,岛A 处的一艘走私船正以10海里/小时的速度向岛北偏西22°方向行驶,问缉私艇朝何方向以多大速度行驶,恰好用0.5小时能截住该走私船?⎝⎛⎭⎫参考数据:sin 38°=5314,sin 22°=3314解析 如图,设缉私艇在C 处截住走私船,D 为岛A 正南方向上一点,缉私艇的速度为每小时x 海里,则BC =0.5x ,AC =5海里,依题意,∠BAC =180°-38°-22°=120°,由余弦定理可得BC 2=AB 2+AC 2-2AB ·AC cos 120°,所以BC 2=49,BC =0.5x =7,解得x =14.又由正弦定理得 sin ∠ABC =AC ·sin ∠BACBC =5×327=5314,所以∠ABC =38°,又∠BAD =38°,所以BC ∥AD ,故缉私艇以每小时14海里的速度向正北方向行驶,恰好用0.5小时截住该走私船.11.(2018·广东广州模拟)如图,某测量人员为了测量西江北岸不能到达的两点A ,B 之间的距离,她在西江南岸找到一个点C ,从C 点可以观察到点A ,B ;找到一个点D ,从D 点可以观察到点A ,C ;找到一个点E ,从E 点可以观察到点B ,C ;并测量得到数据:∠ACD =90°,∠ADC =60°,∠ACB =15°,∠BCE =105°,∠CEB =45°,DC =CE =1(百米).(1)求△CDE 的面积; (2)求A ,B 之间的距离.解析 (1)连接DE ,在△CDE 中,∠DCE =360°-90°-15°-105°=150°,S △ECD =12DC ·CE ·sin 150°=12×sin 30°=12×12=14(平方百米).(2)依题意知,在Rt △ACD 中,AC =DC ·tan ∠ADC =1×tan 60°= 3. 在△BCE 中,∠CBE =180°-∠BCE -∠CEB =180°-105°-45°=30°. 由正弦定理,得BC =CE sin ∠CBE·sin ∠CEB =1sin 30°×sin 45°= 2.因为cos 15°=cos(60°-45°)=cos 60°cos 45°+sin 60°sin 45° =12×22+32×22=6+24. 连接AB ,在△ABC 中,由余弦定理得, AB 2=AC 2+BC 2-2AC ·BC cos ∠ACB = (3)2+(2)2-23×2×6+24=2-3, 所以AB =2-3=6-22(百米). 12.(2018·河北石家庄重点高中摸底)某学校的平面示意图如图中的五边形区域ABCDE ,其中三角形区域ABE 为生活区,四边形区域BCDE 为教学区,AB ,BC ,CD ,DE ,EA ,BE为学校的主要道路(不考虑宽度).∠BCD =∠CDE =2π3,∠BAE =π3,DE =3BC =3CD =910km.(1)求道路BE 的长度;(2)求生活区△ABE 面积的最大值. 解析(1)如图,连接BD ,在△BCD 中,BD 2=BC 2+CD 2-2BC ·CD cos ∠BCD =27100,∴BD =3310 km.∵BC =CD ,∴∠CDB =∠CBD =π-2π32=π6,又∠CDE =2π3,∴∠BDE =π2.∴在Rt △BDE 中,BE =BD 2+DE 2=⎝⎛⎭⎫33102+⎝⎛⎭⎫9102=335(km).故道路BE 的长度为335km.(2)设∠ABE =α,∴∠BAE =π3,∴∠AEB =2π3-α.在△ABE 中,易得AB sin ∠AEB =BE sin ∠BAE=335sinπ3=65,∴AB =65sin ⎝⎛⎭⎫2π3-α,AE =65sin α. ∴S △ABE =12AB ·AE sin π3=9325sin ⎝⎛⎭⎫2π3-α·sin α= 9325⎣⎡⎦⎤12sin ⎝⎛⎭⎫2α-π6+14≤9325⎝⎛⎭⎫12+14=273100(km 2). ∵0<α<2π3,∴-π6<2α-π6<7π6.∴当2α-π6=π2,即α=π3时,S △ABE 取得最大值,最大值为273100km 2,故生活区△ABE 面积的最大值为273100km 2.。

高考三角函数经典解答题及答案

高考三角函数经典解答题及答案

31在△ ABC 中,角A 、B C 所对的边分别是 a, b, c,且a 2 + c 2 — b 2 =1ac. 2(1)求 sin 2——— + cos2 B 的值; 2 (2)若b=2,求△ ABC 面积的最大值.1解:(1)由余弦TE 理:conB=-41 +cos2B=- -4一, 1 1 (2)由 cosB = —,得 sin B48 ,S △AB =:acsinB & "15 (a=c 时取等号) 3 23故S AABC 的最大值为 ------32在^ABC 中,角 A, B, C 的对边分别为 a, b, c,且 bcosC = 3acosB -ccosB.(I)求cosB 的值;(II )若BA BC = 2 ,且b = 2/2 ,求a 和c b 的值.解:(I)由正弦定理得 a =2Rsin A,b =2Rsin B,c = 2RsinC , 贝U2Rsin BcosC = 6Rsin AcosB 一 2Rsin C cosB, 故sin B cosC = 3sin AcosB - sinC cosB, 可得 sin BcosC sinCcosB =3sin AcosB, 即sin(B C) =3sin AcosB,可得 sin A = 3sin AcosB.又 sin A = 0,…1因止匕cos B = —. 3(II )解:由 BA BC =2,可得acosB = 2,1 M 一又 cosB = 一,故 ac = 6,3由b 2=a 2c 2-2accosB, 可得 a 2c 2=12, 所以(a -c)2=0,即a =c,所以a= c= . 63已知向重m = (sin B, 1 - cosB ),向重n = ( 2, 0),且m 与n 所成角为—,sin2AB 21/口a 2 + c 2 =2ac+4 > 2ac,得4 已知向量 m=(1,2sinA), n =(sin A,1+cosA),满足 m//n,b+c = V3a. (I小;(II )求 sin( B +f)的值.解:(1)由 m//n 得 2 sin 2A -1 一 cos A = 0 ……2 分 即 2c os2A+8SA —1 =0, cos A 或 cos A = —12: A 是AABC 的内角,cosA=—1舍去. A 「3(2) : b +c =M 3a由正弦定理,sin B - sin C = 3sin A =32其中A 日C 是AABC 的内角。

三角函数与解三角形专题测试及解答

三角函数与解三角形专题测试及解答

三角函数、解三角形专题测试(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.cos(-17π4)-sin(-17π4)的值是 ( ) A.2 B .- 2 C .0 D.22解析:原式=cos(-4π-π4)-sin(-4π-π4)=cos(-π4)-sin(-π4)=cos π4+sin π4= 2.答案:A 2.已知sin α=2m -5m +1,cos α=-mm +1,且α为第二象限角,则m 的允许值为( ) A.52<m <6 B .-6<m <52 C .m =4 D .m =4或m =32 解析:由sin 2α+cos 2α=1得,(2m -5m +1)2+(-m m +1)2=1,∴m =4或32,又sin α>0,cos α<0,把m 的值代入检验得,m =4. 答案:C3.已知sin(x +π4)=-35,则sin2x 的值等于 ( )A .-725 B.725 C .-1825 D.1825解析:sin(x +π4)=22(sin x +cos x )=-35,所以sin x +cos x =-325,所以(sin x +cos x )2=1+sin2x =1825,故sin2x =-725.答案:A4.设a =sin15°+cos15°,b =sin17°+cos17°,则下列各式中正确的是 ( ) A .a <a 2+b 22<b B .a <b <a 2+b 22C .b <a 2+b 22<aD .b <a <a 2+b 22解析:a =2sin(15°+45°)=2sin60°, b =2sin(17°+45°)=2sin62°,b >a .a 2+b 22=sin 260°+sin 262°>2sin60°sin62°=3sin62°, ∴a 2+b 22>b >a .答案:B5.(2010·惠州模拟)将函数y =sin x 的图象向左平移φ(0≤φ<2π)个单位后,得到函数y =sin(x -π6)的图象,则φ等于 ( )A.π6B.11π6C.7π6D.5π6解析:依题意得y =sin(x -π6)=sin(x -π6+2π)=sin(x +11π6),将y =sin x 的图象向左平移11π6个单位后得到y =sin(x +11π6)的图象,即y =sin(x -π6)的图象. 答案:B6.在△ABC 中,角A ,B 均为锐角,且cos A >sin B ,则△ABC 的形状是 ( ) A .直角三角形 B .锐角三角形 C .钝角三角形 D .等腰三角形 解析:cos A =sin(π2-A )>sin B ,π2-A ,B 都是锐角,则π2-A >B ,A +B <π2,C >π2.答案:C7.给定性质:①最小正周期为π;②图象关于直线x =π3对称.则下列四个函数中,同时具有性质①②的是 ( ) A .y =sin(x 2+π6) B .y =sin(2x +π6)C .y =sin|x |D .y =sin(2x -π6)解析:∵T =2πω=π,∴ω=2.对于选项D ,又2×π3-π6=π2,所以x =π3为对称轴.答案:D8.△ABC 的两边长分别为2,3,其夹角的余弦值为13,则其外接圆的半径为( )A.922B.924C.928 D .9 2解析:由余弦定理得:三角形第三边长为22+32-2×2×3×13=3,且第三边所对角的正弦值为 211()3=223,所以2R =3223⇒R =928.答案:C9.在△ABC 中,角A ,B 所对的边长为a ,b ,则“a =b ”是“a cos A =b cos B ”的 ( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分又不必要条件解析:a =b ⇒A =B ⇒a cos A =b cos B ,条件是充分的;a cos A =b cos B ⇒sin A cos A =sin B cos B ⇒sin2A =sin2B ⇒2A =2B 或2A +2B =π,即A =B 或A +B =π2,故条件是不必要的. 答案:A10.已知函数f (x )=a sin2x +cos2x (a ∈R)图象的一条对称轴方程为x =π12,则a 的值为( )A.12B. 3C.33 D .2 解析:函数y =sin x 的对称轴方程为x =kπ+π2,k ∈Z ,f (x )=a 2+1sin(2x +φ),其中tan φ=1a ,故函数f (x ) 的对称轴方程为2x +φ=kπ+π2,k ∈Z ,而x =π12是其一条对称轴方程,所以2×π12+φ=kπ+π2,k ∈Z ,解得φ=kπ+π3,k ∈Z ,故tan φ=1a =tan(kπ+π3)=3,所以a =33. 答案:C11.已知函数f (x )的部分图象如图所示,则f (x )的解析式可能为 ( )A .f (x )=2cos(x 2-π3)B .f (x )=2cos(4x +π4)C .f (x )=2sin(x 2-π6)D .f (x )=2sin(4x +π4)解析:设函数f (x )=A sin(ωx +φ),由函数的最大值为2知A =2,又由函数图象知该函数的周期T =4×(5π3-2π3)=4π,所以ω=12,将点(0,1)代入得φ=π6,所以f (x )=2sin(12x +π6)=2cos(12x -π3).答案:A12.(2010·抚顺模拟)当0<x <π2时,函数f (x )=1+cos2x +8sin 2x sin2x的最小值为 ( )A .2B .2 3C .4D .4 3解析:f (x )=1+cos2x +8sin 2x sin2x =2cos 2x +8sin 2x 2sin x cos x =cos x sin x +4sin xcos x ≥2cos x sin x ·4sin xcos x=4,当且仅当cos x sin x =4sin x cos x ,即tan x =12时,取“=”,∵0<x <π2,∴存在x 使tan x =12,这时f (x )min =4.答案:C二、填空题(本大题共4小题,每小题4分,共16分,将答案填写在题中的横线上) 13.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知B =60°,C =75°,a =4,则b =________.解析:易知A =45°,由正弦定理a sin A =b sin B 得4sin45°=b sin60°,解得b =2 6.答案:2 6 14.计算:cos10°+3sin10°1-cos80°=________.解析:cos10°+3sin10°1-cos80°=2cos(10°-60°)2sin 240°=2cos50°2sin40°= 2. 答案:215.在△ABC 中,已知tan A =3tan B ,则tan(A -B )的最大值为________,此时角A 的大小为________.解析:由于tan(A -B )=tan A -tan B 1+tan A tan B =3tan B -tan B1+3tan B ·tan B =2tan B 1+3tan 2B ≤33.当且仅当1=3tan B 时取“=”号,则tan B =33⇒tan A =3⇒A =60°. 答案:3360°16.如图是函数f (x )=A sin(ωx +φ)(A >0,ω>0,-π<φ<π),x ∈R 的部分图象,则下列命题中,正确命题的序号为________. ①函数f (x )的最小正周期为π2;②函数f (x )的振幅为23;③函数f (x )的一条对称轴方程为x =7π12;④函数f (x )的单调递增区间为[π12,7π12];⑤函数的解析式为f (x )=3sin(2x -2π3). 解析:由图象可知,函数f (x )的最小正周期为(5π6-π3)×2=π,故①不正确;函数f (x )的振幅为3,故②不正确;函数f (x )的一条对称轴方程为x =5π6+π32=7π12,故③正确;④不全面,函数f (x )的单调递增区间应为[π12+2kπ,7π12+2kπ],k ∈Z ;由3sin(2×7π12+φ)=3得2×7π12+φ=π2+2kπ,k ∈Z ,即φ=2kπ-2π3,k ∈Z ,∵-π<φ<π,故k 取0,从而φ=-2π3,故f (x )=3sin(2x -2π3).答案:③⑤三、解答题(本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分)已知tan(α+π4)=-3,α∈(0,π2).(1)求tan α的值; (2)求sin(2α-π3)的值.解:(1)由tan(α+π4)=-3可得tan α+11-tan α=-3.解得tan α=2.(2)由tan α=2,α∈(0,π2),可得sin α=255,cos α=55.因此sin2α=2sin αcos α=45,cos2α=1-2sin 2α=-35,sin(2α-π3)=sin2αcos π3-cos2αsin π3=45×12+35×32=4+3310.18.(本小题满分12分)已知函数f (x )=2sin x cos x +3(2cos 2x -1).(1)将函数f (x )化为A sin(ωx +φ)(ω>0,|φ|<π2)的形式,填写下表,并画出函数f (x )在区间[-16π,56π]上的图象;x ωx +φ 0 π2 π 32π 2π f (x )(2)求函数f (x )的单调减区间. 解:(1)f (x )=2sin x cos x +3(2cos 2x -1) =sin2x +3cos2x =2sin(2x +π3).x -π6 π12 π3 7π12 5π6 ωx +φ 0 π2 π 32π 2π f (x )2-2图.(2)由2kπ+π2≤2x +π3≤2kπ+3π2(k ∈Z)得kπ+π12≤x ≤kπ+7π12(k ∈Z),故函数f (x )的单调减区间为[kπ+π12,kπ+7π12](k ∈Z).19.(本小题满分12分)已知函数f (x )=2sin x cos(π2-x )-3sin(π+x )cos x +sin(π2+x )cos x .(1)求函数y =f (x )的最小正周期和最值;(2)指出y =f (x )图象经过怎样的平移变换后得到的图象关于原点对称. 解:(1)f (x )=2sin 2x +3sin x cos x +cos 2x =1+sin 2x +3sin x cos x =1+1-cos2x 2+32sin2x=sin(2x -π6)+32,y =f (x )最小正周期T =π.y =f (x )的最大值为32+1=52,最小值为32-1=12.(2)∵y =32+sin(2x -π6)的图象1232π−−−−−→左移个单位下移个单位y =sin2x 的图象.20.(本小题满分12分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,cos A +C 2=33.(1)求cos B 的值;(2)若BC BA ·BC =2,b =22,求a 和c 的值. 解:(1)∵cos A +C 2=33,∴sin B 2=sin(π2-A +C 2)=33,∴cos B =1-2sin 2B 2=13.(2)由BA ·BC =2可得a ·c ·cos B =2,又cos B =13,故ac =6,由b 2=a 2+c 2-2ac cos B 可得a 2+c 2=12, ∴(a -c )2=0,故a =c ,∴a =c = 6.21.(本小题满分12分)如图所示,甲船由A 岛出发向北偏东45°的方向做匀速直线航行,速度为152海里/小时,在甲 船从A 岛出发的同时,乙船从A 岛正南40海里处的B 岛 出发,朝北偏东θ(tan θ=12)的方向作匀速直线航行,速度为105海里/小时.(1)求出发后3小时两船相距多少海里?(2)求两船出发后多长时间距离最近?最近距离为多少海里? 解:以A 为原点,BA 所在直线为y 轴建立如图所示 的平面直角坐标系.设在t 时刻甲、乙两船分别在P (x 1,y 1),Q (x 2,y 2).则⎩⎪⎨⎪⎧x 1=152t cos45°=15t y 1=x 1=15t , 由tan θ=12可得,cos θ=255,sin θ=55, 故⎩⎪⎨⎪⎧x 2=105t sin θ=10t ,y 2=105t cos θ-40=20t -40. (1)令t =3,P 、Q 两点的坐标分别为(45,45),(30,20), |PQ |=(45-30)2+(45-20)2=850=534.即出发后3小时两船相距534海里. (2)由(1)的解法过程易知:|PQ |=(x 2-x 1)2+(y 2-y 1)2=(10t -15t )2+(20t -40-15t )2 =50t 2-400t +1 600 =50(t -4)2+800≥202,∴当且仅当t =4时,|PQ |取得最小值20 2.即两船出发后4小时时,相距202海里为两船的最近距离. 22.(本小题满分14分)已知函数f (x )=2cos x sin(x +π3)-32.(1)求函数f (x )的最小正周期T ;(2)若△ABC 的三边a ,b ,c 满足b 2=ac ,且边b 所对角为B ,试求cos B 的取值范围,并确定此时f (B )的最大值. 解:(1)f (x )=2cos x ·sin(x +π3)-32=2cos x (sin x cos π3+cos x sin π3)-32=2cos x (12sin x +32cos x )-32=sin x cos x +3·cos 2x -32=12sin2x +3· 1+cos2x 2-32 =12sin2x +32cos2x =sin(2x +π3).∴T =2π|ω|=2π2=π. (2)由余弦定理cos B =a 2+c 2-b 22ac 得,cos B =a 2+c 2-ac2ac=a 2+c 22ac -12≥2ac 2ac -12=12,∴12≤cos B <1,而0<B <π,∴0<B ≤π3.函数f (B )=sin(2B +π3),∵π3<2B +π3≤π,当2B +π3=π2,即B=π时,f(B)max=1.12。

三角函数与解三角形高考专题大题练习(含答案)

三角函数与解三角形高考专题大题练习(含答案)
(2)根据(1)中的结论,根据三角形面积之间的和关系,结合角平分线的性质、三角形面积公式进行求解即可.
【详解】
解法一:(1)因为 且 ,
所以 ,
根据正弦定理,得 ,
因为 ,所以 ,所以 ,
因为 ,所以 ;
(2)由(1)知, ,
因为 , ,
所以 的面积 ,
因为 是 上的点, 平分 ,
所以 ,
因为 ,
所以 .
【详解】
(Ⅰ)由正弦定理得 ,
所以 ,因 ,故 .
,故 .
(Ⅱ) ,由正弦定理 ,及 得 ,∴ ,
∴ 周长
∵ ∴当 即 时
所以 周长 的最大值为6.
【点睛】
在解三角形中,如果题设条件是边角的混合关系,那么我们可以利用正弦定理或余弦定理把这种混合关系式转化为边的关系式或角的关系式.三角形中的关于边的最值问题,可以利用正弦定理化为关于某角的三角函数式的最值问题(多元问题转化为一元函数问题).
三角函数与解三角形专题练习
1. 的内角 的对边分别为 ,且
(Ⅰ)求 ;
(Ⅱ)若 ,设 , 的周长为 ,求 的解析式并求 的最大值.
2. 的内角 的对边分别为 , 且 .
(1)求 ;
(2)若 , 是 上的点, 平分 ,求 的面积.
3.已知 的内角A,B,C的对边分别为a,b,c,若
(1)证明: 是直角三角形:
若①③成立,则 ;若②③成立,则 ,不成立,所以①②成立.
(2) , ,故 ,
所以在 中,由余弦定理

故 ,当且仅当 时取等.
.
【点睛】
本题考查了三角恒等变换,正余弦定理,向量平行求参数,面积公式,意在考查学生的计算能力和综合应用能力.

三角函数与解三角形多选题(讲义及答案)含答案

三角函数与解三角形多选题(讲义及答案)含答案

三角函数与解三角形多选题(讲义及答案)含答案一、三角函数与解三角形多选题1.已知函数()sin()(0)f x x ωϕω=+>满足()()00112f x f x =+=-,且()f x 在()00,1x x +上有最小值,无最大值.则( )A .0112f x ⎛⎫+=- ⎪⎝⎭B .若00x =,则()sin 26f x x ππ⎛⎫=-⎪⎝⎭C .()f x 的最小正周期为3D .()f x 在(0,2019)上的零点个数最少为1346个 【答案】AC 【分析】根据正弦函数图象的对称性可判断A ;根据已知三角函数值求角的方法,可得052,6x k k Z ωϕππ+=-∈,0(1)2,6x k k Z πωϕπ++=-∈,两式相减可求出ω,进而求得周期,从而可判断B 和C 选项;因为3T =,所以函数()f x 在区间(0,2019)上的长度恰好为673个周期,为了算出零点“至少”有多少个,可取(0)0f =,进而可判断D . 【详解】解:由题意得,()f x 在()00,1x x +的区间中点处取得最小值, 即0112f x ⎛⎫+=- ⎪⎝⎭,所以A 正确; 因为()()00112f x f x =+=-, 且()f x 在()00,1x x +上有最小值,无最大值, 所以不妨令052,6k k Z ωϕππ+=-∈, ()012,6x k k Z πωϕπ++=-∈,两式相减得,23πω=, 所以23T πω==,即B 错误,C 正确;因为3T =,所以函数()f x 在区间(0,2019)上的长度恰好为673个周期, 当(0)0f =,即k ϕπ=时,()f x 在区间(0,2019)上的零点个数至少为673211345⨯-=个,即D 错误.故选:AC . 【点睛】本题考查与三角函数有关的命题的真假关系,结合三角函数的图象与性质,利用特殊值法以及三角函数的性质是解题的关键,综合性较强.2.在ABC 中,角,,A B C 所对的边分别为,,a b c ,下列命题正确的是( ) A .若::4:5:6a b c =,ABC 的最大内角是最小内角的2倍 B .若cos cos a B b A c -=,则ABC 一定为直角三角形 C .若4,5,6a b c ===,则ABC外接圆半径为7D .若()()()cos cos cos 1A B B C C A ---=,则ABC 一定是等边三角形 【答案】ABD 【分析】对于A 选项,求得2A C =,由此确定选项正确.对于B 选项,求得2A π=,由此确定选项正确.对于C 选项,利用正弦定理求得ABC 外接圆半径,由此确定选项错误.对于D 选项,证得()()()cos cos cos 1A B B C C A -=-=-=,得到A B C ==,确定选项正确. 【详解】对于A 选项,A 角最小,C 角最大.由余弦定理得253616453cos 0256604A +-===>⨯⨯,16253651cos 0245408C +-===>⨯⨯,2231cos 22cos 12148A A ⎛⎫=-=⨯-= ⎪⎝⎭,cos2cos A C =.0,022A C ππ<<<<,则02A π<<,所以2A C =,所以A 选项正确.对于B 选项,cos cos a B b A c -=,由正弦定理得sin cos sin cos sin A B B A C -=,()sin cos cos sin sin sin cos cos sin A B A B A B A B A B -=+=+,cos sin 0=A B ,由于0,0A B ππ<<<<,所以2A π=,故B 选项正确.对于C 选项,16253651cos 245408C +-===⨯⨯,0C π<<,sin 8C ==, 设三角形ABC 外接圆半径为R,则2sin 2sin 7c cR R C C=⇒===,故C 选项错误.对于D 选项,0,0,A B A B ππππ<<-<-<-<-<,故()1cos 1A B -<-≤,同理可得()()1cos 1,1cos 1B C C A -<-≤-<-≤, 要使()()()cos cos cos 1A B B C C A ---=,则需()()()cos cos cos 1A B B C C A -=-=-=,所以0,0,0A B B C C A -=-=-=,所以A B C ==,所以D 选项正确. 故选:ABD 【点睛】利用正弦定理可求得三角形外接圆的半径R ,要注意公式是2sin aR A=,而不是sin aR A =.3.已知函数()2sin (0)6f x x πωω⎛⎫=+> ⎪⎝⎭且对于R x ∀∈都有144f x f x ππ⎛⎫-=- ⎪⎛⎫⎝⎭+ ⎪⎝⎭成立.现将函数()2sin 6f x x πω⎛⎫=+ ⎪⎝⎭的图象向右平移6π个单位长度,再把所有点的横坐标伸长到原来的2倍(纵坐标不变)得到函数()g x 的图象,则下列说法正确的是( ) A .函数066g x g x ππ⎛⎫⎛⎫-++=⎪ ⎪⎝⎭⎝⎭B .函数()g x 相邻的对称轴距离为πC .函数23g x π⎛⎫+ ⎪⎝⎭是偶函数 D .函数()g x 在区间,63ππ⎡⎤⎢⎥⎣⎦上单调递增 【答案】ABCD 【分析】先利用已知条件求出()f x 的周期T π=,即可得2ω=,再利三角函数图象的平移伸缩变换得()g x 的解析式,在逐一判断四个选项的正误即可得正确选项. 【详解】因为对于R x ∀∈都有144f x f x ππ⎛⎫-=-⎪⎛⎫⎝⎭+ ⎪⎝⎭成立 所以()12f x f x π=-⎛⎫+ ⎪⎝⎭,()12f x f x ππ⎛⎫+=- ⎪+⎝⎭, 所以()()()11f x f x f x ππ=-=+-+对于R x ∀∈都成立, 可得()f x 的周期T π=,所以22Tπω==,所以()2sin 26f x x π⎛⎫=+⎪⎝⎭, 将函数()2sin 26f x x π⎛⎫=+ ⎪⎝⎭的图象向右平移6π个单位长度,可得 2sin 22sin 2666y x x πππ⎡⎤⎛⎫⎛⎫=-+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦再把所有点的横坐标伸长到原来的2倍可得()2sin 6g x x π⎛⎫=- ⎪⎝⎭,对于选项A:()2sin 2sin 2sin 2sin 0666666g x g x x x x x ππππππ⎛⎫⎛⎫⎛⎫⎛⎫-++=--++-=-+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,故选项A 正确;对于选项B :函数()g x 周期为221T ππ==,所以相邻的对称轴距离为2T π=,故选项B正确;对于选项C :222sin 2sin 2cos 3362g x x x x ππππ⎛⎫⎛⎫⎛⎫+=+-=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭是偶函数,故选项C 正确; 对于选项D :当63x ππ≤≤,066x ππ≤-≤,所以函数()g x 在区间,63ππ⎡⎤⎢⎥⎣⎦上单调递增,故选项D 正确, 故选:ABCD 【点睛】关键点点睛:本题解题的关键点是由144f x f x ππ⎛⎫-=-⎪⎛⎫⎝⎭+ ⎪⎝⎭恒成立得出 ()()f x f x π=+可得ω的值,求出()f x 的解析式.4.函数()sin 24f x x π⎛⎫=+⎪⎝⎭,则( ) A .函数()y f x =的图象可由函数sin 2y x =的图象向右平移4π个单位得到 B .函数()y f x =的图象关于直线8x π=轴对称C .函数()y f x =的图象关于点,08π⎛⎫- ⎪⎝⎭中心对称D .函数2()y x f x =+在08π⎛⎫ ⎪⎝⎭,上为增函数 【答案】BCD 【分析】对四个选项,一一验证:对于选项A ,利用三角函数相位变化即可;对于选项B ,利用正弦函数的对称轴经过最高(低)点判断; 对于选项C ,利用正弦函数的对称中心直接判断; 对于选项D ,利用复合函数的单调性“同增异减”判断; 【详解】由题意,对于选项A ,函数sin 2y x =的图象向右平移4π个单位可得到()sin 2sin 2cos 242f x x x x ππ⎛⎫⎛⎫=-=-=- ⎪ ⎪⎝⎭⎝⎭,所以选项A 错误;对于选项B ,sin 21884f πππ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭,取到了最大值,所以函数()y f x =的图象关于直线8x π=轴对称,所以选项B 正确;对于选项C ,08f π⎛⎫-= ⎪⎝⎭,所以函数()y f x =的图象关于点,08π⎛⎫- ⎪⎝⎭中心对称,所以选项C 正确;对于选项D ,函数2yx 在08π⎛⎫ ⎪⎝⎭,上为增函数,08x π⎛⎫∈ ⎪⎝⎭,时,2442x πππ⎛⎫+∈ ⎪⎝⎭,,单调递增,所以函数2()y x f x =+在08π⎛⎫⎪⎝⎭,上为增函数,所以选项D 正确. 故选:BCD. 【点睛】(1)三角函数问题通常需要把它化为“一角一名一次”的结构,借助于sin y x =或cos y x =的性质解题;(2)求单调区间,最后的结论务必写成区间形式,不能写成集合或不等式.5.已知函数()()()sin 0,0,0πf x A x B A ωϕωϕ=++>><<的部分自变量、函数值如下表所示,下列结论正确的是( ).A .函数解析式为()5π3sin 226f x x ⎛⎫ ⎝=⎪⎭++ B .函数()f x 图象的一条对称轴为2π3x =- C .5π,012⎛⎫-⎪⎝⎭是函数()f x 图象的一个对称中心 D .函数()f x 的图象左平移π12个单位,再向下移2个单位所得的函数为奇函数 【答案】ABD 【分析】首先根据表格,利用最值求A 和B ,再根据周期求ω,以及根据最小值点求ϕ,求得函数的解析式,再分别代入23x π=-和512x π=-,判断BC 选项,最后根据平移规律求平移后的解析式. 【详解】由表格可知,2B =, 函数的最大值是5,所以25A B A +=+=,即3A =, 当3x π=时,函数取得最小值,最小值点和相邻的零点间的距离是71234πππ-=,所以12244ππωω⨯=⇒=, 当3x π=时,322,32k k Z ππϕπ⨯+=+∈,解得:526k πϕπ=+,0ϕπ<<, 56πϕ∴=,所以函数()53sin 226f x x π⎛⎫=++ ⎪⎝⎭,故A 正确; B.当23x π=-时,252362πππ⎛⎫⨯-+=- ⎪⎝⎭,能使函数取得最小值,所以23x π=-是函数的一条对称轴,故B 正确; C.当512x π=-时,5520126ππ⎛⎫⨯-+= ⎪⎝⎭,此时2y =,所以5,212π⎛⎫- ⎪⎝⎭是函数的一个对称中心,故C 不正确; D.函数向左平移12π个单位后,再向下平移2个单位后,得()53sin 2223sin 23sin 2126y x x x πππ⎡⎤⎛⎫=+++-=+=- ⎪⎢⎥⎝⎭⎣⎦,函数是奇函数,故D 正确.故选:ABD【点睛】思路点睛:本题考查()sin y A ωx φ=+的解析式和性质的判断,可以整体代入验证的方法判断函数性质:(1)对于函数()sin y A ωx φ=+,其对称轴一定经过图象的最高点或最低点,对称中心的横坐标一定是函数的零点,因此判断直线0x x =或点()0,0x 是否是函数的对称轴和对称中心时,可通过验证()0f x 的值进行判断;(2)判断某区间是否是函数的单调区间时,也可以求x ωϕ+的范围,验证次区间是否是函数sin y x =的增或减区间.6.下列结论正确的是( )A .在三角形ABC 中,若AB >,则sin sin A B > B .在锐角三角形ABC 中,不等式2220b c a +->恒成立 C .若sin 2sin 2A B =,则三角形ABC 为等腰三角形D .在锐角三角形ABC 中,sin sin cos cos A B A B +>+ 【答案】ABD 【分析】由正弦定理及三角形性质判断A ,由余弦定理判断B ,由正弦函数性质判断C ,利用锐角△ABC 这个条件,可得2A B π+>,结合三角函数的单调性比较sin A 与cos B 大小即可判断D . 【详解】ABC 中,A B a b >⇔>,由sin sin a bA B=,得sin sin A B >,A 正确; 在锐角三角形ABC 中,222222cos 0,02b c a A b c a bc+-=>∴+->,B 正确;ABC 中,若sin 2sin 2A B =,则22A B =或22180A B ︒+=,即A B =或90A B ︒+=,ABC 为等腰三角形或直角三角形,C 错误;在锐角三角形ABC 中,2A B π+>,022A B ππ∴>>->,sin sin 2A B π⎛⎫∴>- ⎪⎝⎭,即sin cos A B >,同理:sin cos B A >sin sin cos cos A B A B ∴+>+,D 正确.故选:ABD. 【点睛】关键点睛:本题考查正弦定理,余弦定理,正弦函数的性质,诱导公式等,学会公式的灵活应用是解答本题的关键.7.在ABC 中,下列说法正确的是( ) A .若A B >,则sin sin A B > B .存在ABC 满足cos cos 0A B +≤ C .若sin cos A B <,则ABC 为钝角三角形 D .若2C π>,则22sin sin sin C A B >+【答案】ACD 【分析】A 项,根据大角对大边定理和正弦定理可判断;B 项,由A B π+<和余弦函数在()0,π递减可判断;C 项,显然2A π≠,分02A π<<和2A π>两种情况讨论,结合余弦函数的单调性可判断;D 项,根据2A B π+<和正弦函数的单调性得出0sin cos A B <<和0sin cos B A <<,再由放缩法可判断. 【详解】解:对于A 选项,若A B >,则a b >,则2sin 2sin R A R B >,即sin sin A B >,故A 选项正确;对于B 选项,由A B π+<,则A B π<-,且(),0,A B ππ-∈,cos y x =在()0,π上递减,于是cos cos A B >-,即cos cos 0A B +>,故B 选项错误﹔ 对于C 选项,由sin cos A B <,得cos cos 2A B π⎛⎫-< ⎪⎝⎭,cos y x =在()0,π上递减, 此时:若02A π<<,则2A B π->,则2A B π+<,于是2C π>; 若2A π>,则cos cos 2A B π⎛⎫-< ⎪⎝⎭,则2A B π->, 于是2A B π>+,故C 选项正确;对于D 选项,由2C π>,则2A B π+<,则022A B ππ<<-<,sin y x =在0,2π⎛⎫⎪⎝⎭递增,于是sin sin 2A B π⎛⎫<- ⎪⎝⎭, 即0sin cos A B <<,同理0sin cos B A <<, 此时,22sin sin()sin cos cos sin sin sin sin sin sin sin C A B A B A B A A B B A B=+=+>⋅+⋅=+所以D 选项正确.故选:ACD 【点睛】关键点点睛:正余弦函数的单调性,正弦定理的边角互化,大边对大角定理以及大角对大边定理,不等式的放缩等等,综合使用以上知识点是解决此类题的关键.8.在ABC 中,角,,A B C 所对的边分别为,,a b c ,已知()()(::5:)4:6b c c a a b +++=,下列结论正确的是( )A .::7:5:3sinA sinB sinC = B .0AB AC ⋅>C .若6c =,则ABC 的面积是D .若8+=b c ,则ABC 【答案】ACD 【分析】先利用已知条件设4,5,6b c k c a k a b k +=+=+=,进而得到3.5, 2.5, 1.5a k b c k ===,利用正弦定理可判定选项A ;利用向量的数量积公式可判断选项B ;利用余弦定理和三角形的面积公式可判定选项C ;利用余弦定理和正弦定理可判断选项D. 【详解】依题意,设4,5,6b c k c a k a b k +=+=+=, 所以 3.5, 2.5, 1.5a k b c k ===,由正弦定理得:::::7:5:3sinA sinB sinC a b c ==, 故选项A 正确;222222cos 22b c a b c a AB AC bc A bc bc +-+-⋅==⨯=222222.5 1.5 3.515028k k +-==-<,故选项B 不正确;若6c =,则4k =, 所以14,10a b ==,所以222106141cos 21062A +-==-⨯⨯,所以sin A =,故ABC 的面积是:11sin 610222bc A =⨯⨯⨯= 故选项C 正确;若8+=b c ,则2k =, 所以7,5,3a b c ===,所以2225371cos 2532A +-==-⨯⨯,所以sin 2A =, 则利用正弦定理得:ABC的外接圆半径是:12sin a A ⨯=, 故选项D 正确; 故选:ACD. 【点睛】关键点睛:本题主要考查正余弦定理以及三角形面积公式. 利用已知条件设4,5,6b c k c a k a b k +=+=+=,再利用正余弦定理以及三角形面积公式求解是解决本题的关键.二、数列多选题9.已知n S 是等差数列{}n a 的前n 项和,201920212020S S S <<,设12n n n n b a a a ++=,则数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,则下列结论中正确的是( ) A .20200a >B .20210a <C .2019202020212022a a a a ⋅>⋅D .2019n =时,n T 取得最大值【答案】ABC 【分析】根据题设条件,得到2021202020212020201920200,0S S a S S a -=<-=>,进而求得201920220a a >->,20192020a a >20212022a a ,再结合“裂项法”求得12121112n n n T d a a a a ++⎫⎛=-⎪⎝⎭,结合0d <,即可求解. 【详解】设等差数列{}n a 的公差为d ,因为201920212020S S S <<,可得2021202020210S S a -=<,2020201920200S S a -=>,20212019S S -=202120200a a +>,即202020210a a >->,202020210a d a d ->-->,即201920220a a >->, 所以20192020a a >20212022a a ,0d <,即数列{}n a 递减,且10a >,20a >,…,20200a >,20210a <,又由12n n n n b a a a ++=,可得1211n n n n b a a a ++==1121112n n n n d a a a a +++⎛⎫- ⎪⎝⎭, 则122323341121211111111122n n n n n T d a a a a a a a a a a a a d a a +++⎛⎫⎛=-+-+⋅⋅⋅+-=- ⎪ ⎝⎝⎭121n n a a ++⎫⎪⎭,由0d <,要使n T 取最大值,则121211n n a a a a ++⎛⎫-⎪⎝⎭取得最小值, 显然1210n n a a ++>,而23a a >34201920202021202220222023a a a a a a a a >⋅⋅⋅>><<⋅⋅⋅, 所以当2020n =时,121211n n a a a a ++⎛⎫- ⎪⎝⎭取得最小值. 综上可得,正确的选项为ABC.故选:ABC.【点睛】本题主要考查了数列的综合应用,其中解答中熟练应用通项n a 和n S 的关系式,数列的“裂项法”求和,以及数列的单调性进行求解是解答的关键,着重考查推理与运算能力.10.将()23n n ≥个数排成n 行n 列的一个数阵,如图:11a 12a 13a ……1n a21a 22a 23a ……2n a31a 32a 33a ……3n a……1n a 2n a 3n a ……nn a该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列(其中0m >).已知113a =,61131a a =+,记这2n 个数的和为S .下列结论正确的有( )A .2m =B .767132a =⨯C .()1212j ij a i -=+⨯D .()()221n S n n =+- 【答案】ACD【分析】由题中条件113a =,61131a a =+,得23531m m +=+解得m 的值可判断A ;根据第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列可判断BC ;由等差数列、等比数列的前n 项和公式可判断D.【详解】由113a =,61131a a =+,得23531m m +=+,所以2m =或13m =-(舍去),A 正确; ()666735132a m m =+=⨯,B 错误;()()112132212j j ij a i i --=-+⨯=+⨯⎡⎤⎣⎦,C 正确; ()()()111212122212n n n n nn S a a a a a a a a a =++++++++++++1121(12)(12)(12)121212n n n nn a a a ---=+++--- ()()()11211332(1)21212n n n n a a a n ++-⎛⎫=+++-=⨯- ⎪⎝⎭()()221n n n =+-,D 正确.故选:ACD.【点睛】方法点睛:本题考查了分析问题、解决问题的能力,解答的关键是利用等比数列、等差数列的通项公式、求和公式求解,考查了学生的推理能力、计算能力.。

高考真题——三角函数及解三角形真题(加答案)

高考真题——三角函数及解三角形真题(加答案)

全国卷历年高考三角函数及解三角形真题归类分析三角函数一、三角恒等变换(3题)1.(2015年1卷2)o o o o sin 20cos10cos160sin10- =( ) (A) (B(C )12- (D )12【解析】原式=o o o o sin 20cos10cos 20sin10+ =o sin30=12,故选D. 考点:本题主要考查诱导公式与两角和与差的正余弦公式.2.(2016年3卷)(5)若3tan 4α=,则2cos 2sin 2αα+=( ) (A)6425 (B) 4825 (C) 1 (D)1625【解析】由3tan 4α=,得34sin ,cos 55αα==或34sin ,cos 55αα=-=-,所以2161264cos 2sin 24252525αα+=+⨯=,故选A .考点:1、同角三角函数间的基本关系;2、倍角公式.3.(2016年2卷9)若π3cos 45α⎛⎫-= ⎪⎝⎭,则sin 2α=(A )725(B )15(C )15-(D )725-【解析】∵3cos 45πα⎛⎫-= ⎪⎝⎭,2ππ7sin 2cos 22cos 12425ααα⎛⎫⎛⎫=-=--= ⎪ ⎪⎝⎭⎝⎭,故选D .二、三角函数性质(5题)4.(2017年3卷6)设函数π()cos()3f x x =+,则下列结论错误的是()A .()f x 的一个周期为2π-B .()y f x =的图像关于直线8π3x =对称C .()f x π+的一个零点为π6x =D .()f x 在π(,π)2单调递减【解析】函数()πcos 3f x x ⎛⎫=+ ⎪⎝⎭的图象可由cos y x =向左平移π3个单位得到,如图可知,()f x 在π,π2⎛⎫⎪⎝⎭上先递减后递增,D 选项错误,故选D.π5.(2017年2卷14)函数()23sin 3cos 4f x x x =+-(0,2x π⎡⎤∈⎢⎥⎣⎦)的最大值是 .【解析】()22311cos 3cos cos 3cos 44f x x x x x =-+-=-++ 23cos 12x ⎛⎫=--+ ⎪ ⎪⎝⎭,0,2x π⎡⎤∈⎢⎥⎣⎦,则[]cos 0,1x ∈,当3cos 2x =时,取得最大值1. 6.(2015年1卷8)函数()f x =cos()x ωϕ+的部分图像如图所示,则()f x 的单调递减区间为( )(A )13(,),44k k k Z ππ-+∈ (B )13(2,2),44k k k Z ππ-+∈(C )13(,),44k k k Z -+∈(D )13(2,2),44k k k Z -+∈【解析】由五点作图知,1+4253+42πωϕπωϕ⎧=⎪⎪⎨⎪=⎪⎩,解得=ωπ,=4πϕ,所以()cos()4f x x ππ=+,令22,4k x k k Z πππππ<+<+∈,解得124k -<x <324k +,k Z ∈,故单调减区间为(124k -,324k +),k Z ∈,故选D. 考点:三角函数图像与性质7. (2015年2卷10)如图,长方形ABCD 的边AB=2,BC=1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记∠BOP=x .将动点P 到A 、B 两点距离之和表示为x 的函数f (x ),则f (x )的图像大致为的运动过程可以看出,轨迹关于直线2x π=对称,且()()42f f ππ>,且轨迹非线型,故选B .8.(2016年1卷12)已知函数()sin()(0),24f x x+x ππωϕωϕ=>≤=-, 为()f x 的零点,4x π=为()y f x =图像的对称轴,且()f x 在51836ππ⎛⎫⎪⎝⎭,单调,则ω的最大值为 (A )11 (B )9 (C )7 (D )5考点:三角函数的性质 三、三角函数图像变换(3题)9.(2016年2卷7)若将函数y =2sin 2x 的图像向左平移π12个单位长度,则平移后图象的对称轴为 (A )()ππ26k x k =-∈Z (B )()ππ26k x k =+∈Z (C )()ππ212Z k x k =-∈ (D )()ππ212Z k x k =+∈【解析】平移后图像表达式为π2sin 212y x ⎛⎫=+ ⎪⎝⎭,令ππ2π+122x k ⎛⎫+= ⎪⎝⎭,得对称轴方程:()ππ26Z k x k =+∈,故选B . 10.(2016年3卷14)函数sin 3cos y x x =-的图像可由函数sin 3cos y x x =+的图像至少向右平移_____________个单位长度得到.考点:1、三角函数图象的平移变换;2、两角和与差的正弦函数.11.(2017年1卷9)已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是 A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2【解析】:熟识两种常见的三角函数变换,先变周期和先变相位不一样。

2015年北京市高考数学试题及答案(理科)【解析版】

2015年北京市高考数学试题及答案(理科)【解析版】

2015年北京市高考数学试卷(理科)一、选择题(每小题5分,共40分)1.(5分)(2015•北京)复数i(2﹣i)=()A.1+2i B.1﹣2i C.﹣1+2i D.﹣1﹣2i考点:复数代数形式得乘除运算.专题:数系得扩充与复数.分析:利用复数得运算法则解答.解答:解:原式=2i﹣i2=2i﹣(﹣1)=1+2i;故选:A.点评:本题考查了复数得运算;关键就是熟记运算法则.注意i2=﹣1.2.(5分)(2015•北京)若x,y满足,则z=x+2y得最大值为()A.0B.1C.D.2考点:简单线性规划.专题:不等式得解法及应用.分析:作出题中不等式组表示得平面区域,再将目标函数z=x+2y对应得直线进行平移,即可求出z取得最大值.解答:解:作出不等式组表示得平面区域,得到如图得三角形及其内部阴影部分,由解得A(,),目标函数z=x+2y,将直线z=x+2y进行平移,当l经过点A时,目标函数z达到最大值∴z最大值==故选:C.点评:本题给出二元一次不等式组,求目标函数z=x+2y得最大值,着重考查了二元一次不等式组表示得平面区域与简单得线性规划等知识,属于基础题.3.(5分)(2015•北京)执行如图所示得程序框图,输出得结果为()A.(﹣2,2)B.(﹣4,0)C.(﹣4,﹣4)D.(0,﹣8)考点:程序框图.专题:图表型;算法与程序框图.分析:模拟执行程序框图,依次写出每次循环得到得x,y,k得值,当k=3时满足条件k≥3,退出循环,输出(﹣4,0).解答:解:模拟执行程序框图,可得x=1,y=1,k=0s=0,i=2x=0,y=2,k=1不满足条件k≥3,s=﹣2,i=2,x=﹣2,y=2,k=2不满足条件k≥3,s=﹣4,i=0,x=﹣4,y=0,k=3满足条件k≥3,退出循环,输出(﹣4,0),故选:B.点评:本题主要考查了循环结构得程序框图,正确写出每次循环得到得x,y,k得值就是解题得关键,属于基础题.4.(5分)(2015•北京)设α,β就是两个不同得平面,m就是直线且m⊂α,“m∥β“就是“α∥β”得()A.充分而不必要条件B.必要而不充分条件C.充分不要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件得判断.专题:简易逻辑.分析:m∥β并得不到α∥β,根据面面平行得判定定理,只有α内得两相交直线都平行于β,而α∥β,并且m⊂α,显然能得到m∥β,这样即可找出正确选项.解答:解:m⊂α,m∥β得不到α∥β,因为α,β可能相交,只要m与α,β得交线平行即可得到m∥β;α∥β,m⊂α,∴m与β没有公共点,∴m∥β,即α∥β能得到m∥β;∴“m∥β”就是“α∥β”得必要不充分条件.故选B.点评:考查线面平行得定义,线面平行得判定定理,面面平行得定义,面面平行得判定定理,以及充分条件、必要条件,及必要不充分条件得概念.5.(5分)(2015•北京)某三棱锥得三视图如图所示,则该三棱锥得表面积就是()A.2+B.4+C.2+2D.5考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:根据三视图可判断直观图为:A⊥面ABC,AC=AB,E为BC中点,EA=2,EA=EB=1,OA=1,:BC⊥面AEO,AC=,OE=判断几何体得各个面得特点,计算边长,求解面积.解答:解:根据三视图可判断直观图为:OA⊥面ABC,AC=AB,E为BC中点,EA=2,EC=EB=1,OA=1,∴可得AE⊥BC,BC⊥OA,运用直线平面得垂直得出:BC⊥面AEO,AC=,OE=∴S△ABC=2×2=2,S△OAC=S△OAB=×1=.S △BCO =2×=.故该三棱锥得表面积就是2,故选:C .点评: 本题考查了空间几何体得三视图得运用,空间想象能力,计算能力,关键就是恢复直观图,得出几何体得性质.6.(5分)(2015•北京)设{a n }就是等差数列,下列结论中正确得就是( ) A . 若a 1+a 2>0,则a 2+a 3>0 B . 若a 1+a 3<0,则若a 1+a 2<0, C . 若若0<a 1<a 2,则a 2 D . 若a 1<0,则(a 2﹣a 1)(a 2﹣a 3)>0考点: 等差数列得性质.专题: 计算题;等差数列与等比数列.分析: 对选项分别进行判断,即可得出结论.解答: 解:若a 1+a 2>0,则2a 1+d >0,a 2+a 3=2a 1+3d >2d ,d >0时,结论成立,即A 不正确;若a 1+a 2<0,则2a 1+d <0,a 2+a 3=2a 1+3d <2d ,d <0时,结论成立,即B 不正确;{a n }就是等差数列,0<a 1<a 2,2a 2=a 1+a 3>2,∴a 2>,即C 正确;若a 1<0,则(a 2﹣a 1)(a 2﹣a 3)=﹣d 2<0,即D 不正确. 故选:C .点评: 本题考查等差数列得通项,考查学生得计算能力,比较基础. 7.(5分)(2015•北京)如图,函数f (x )得图象为折线ACB ,则不等式f (x )≥log 2(x+1)得解集就是( )A . {x|﹣1<x ≤0}B . {x|﹣1≤x ≤1}C . {x|﹣1<x ≤1}D . {x|﹣1<x ≤2}考点: 指、对数不等式得解法. 专题: 不等式得解法及应用.分析:在已知坐标系内作出y=log2(x+1)得图象,利用数形结合得到不等式得解集.解答:解:由已知f(x)得图象,在此坐标系内作出y=log2(x+1)得图象,如图满足不等式f(x)≥log2(x+1)得x范围就是﹣1<x≤1;所以不等式f(x)≥log2(x+1)得解集就是{x|﹣1<x≤1};故选C.点评:本题考查了数形结合求不等式得解集;用到了图象得平移.8.(5分)(2015•北京)汽车得“燃油效率”就是指汽车每消耗1升汽油行驶得里程,如图描述了甲、乙、丙三辆汽车在不同速度下燃油效率情况,下列叙述中正确得就是()A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80千米/小时得速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/小时,相同条件下,在该市用丙车比用乙车更省油考点:函数得图象与图象变化.专题:创新题型;函数得性质及应用.分析:根据汽车得“燃油效率”就是指汽车每消耗1升汽油行驶得里程,以及图象,分别判断各个选项即可.解答:解:对于选项A,消耗1升汽油,乙车行驶得距离比5小得很多,故A错误;对于选项B,以相同速度行驶相同路程,三辆车中,甲车消耗汽油最小,故B错误,对于选项C,甲车以80千米/小时得速度行驶1小时,里程为80千米,燃油效率为10,故消耗8升汽油,故C错误,对于选项D,因为在速度低于80千米/小时,丙得燃油效率高于乙得燃油效率,故D正确.点评:本题考查了函数图象得识别,关键掌握题意,属于基础题.二、填空题(每小题5分,共30分)9.(5分)(2015•北京)在(2+x)5得展开式中,x3得系数为40(用数字作答)考点:二项式定理得应用.专题:二项式定理.分析:写出二项式定理展开式得通项公式,利用x得指数为3,求出r,然后求解所求数值.解答:解:(2+x)5得展开式得通项公式为:T r+1=25﹣r x r,所求x3得系数为:=40.故答案为:40.点评:本题考查二项式定理得应用,二项式系数得求法,考查计算能力.10.(5分)(2015•北京)已知双曲线﹣y2=1(a>0)得一条渐近线为x+y=0,则a=.考点:双曲线得简单性质.专题:圆锥曲线得定义、性质与方程.分析:运用双曲线得渐近线方程为y=±,结合条件可得=,即可得到a得值.解答:解:双曲线﹣y2=1得渐近线方程为y=±,由题意可得=,解得a=.故答案为:.点评:本题考查双曲线得方程与性质,主要考查双曲线得渐近线方程得求法,属于基础题.11.(5分)(2015•北京)在极坐标系中,点(2,)到直线ρ(cosθ+sinθ)=6得距离为1.考点:简单曲线得极坐标方程.专题:坐标系与参数方程.分析:化为直角坐标,再利用点到直线得距离公式距离公式即可得出.解答:解:点P(2,)化为P.直线ρ(cosθ+sinθ)=6化为.∴点P到直线得距离d==1.故答案为:1.点评:本题考查了极坐标化为直角坐标方程、点到直线得距离公式,考查了推理能力与计算能力,属于中档题.12.(5分)(2015•北京)在△ABC中,a=4,b=5,c=6,则=1.考点:余弦定理;二倍角得正弦;正弦定理.专题:计算题;解三角形.分析:利用余弦定理求出cosC,cosA,即可得出结论.解答:解:∵△ABC中,a=4,b=5,c=6,∴cosC==,cosA==∴sinC=,sinA=,∴==1.故答案为:1.点评:本题考查余弦定理,考查学生得计算能力,比较基础.13.(5分)(2015•北京)在△ABC中,点M,N满足=2,=,若=x+y,则x=,y=﹣.考点:平面向量得基本定理及其意义.专题:平面向量及应用.分析:首先利用向量得三角形法则,将所求用向量表示,然后利用平面向量基本定理得到x,y值.解答:解:由已知得到===;由平面向量基本定理,得到x=,y=;故答案为:.点评:本题考查了平面向量基本定理得运用,一个向量用一组基底表示,存在唯一得实数对(x,y)使,向量等式成立.14.(5分)(2015•北京)设函数f(x)=,①若a=1,则f(x)得最小值为﹣1;②若f(x)恰有2个零点,则实数a得取值范围就是≤a<1或a≥2.考点:函数得零点;分段函数得应用.专题:创新题型;函数得性质及应用.分析:①分别求出分段得函数得最小值,即可得到函数得最小值;②分别设h(x)=2x﹣a,g(x)=4(x﹣a)(x﹣2a),分两种情况讨论,即可求出a得范围.解答:解:①当a=1时,f(x)=,当x<1时,f(x)=2x﹣1为增函数,f(x)>﹣1,当x>1时,f(x)=4(x﹣1)(x﹣2)=4(x2﹣3x+2)=4(x﹣)2﹣1,当1<x<时,函数单调递减,当x>时,函数单调递增,故当x=时,f(x)min=f()=﹣1,②设h(x)=2x﹣a,g(x)=4(x﹣a)(x﹣2a)若在x<1时,h(x)=与x轴有一个交点,所以a>0,并且当x=1时,h(1)=2﹣a>0,所以0<a<2,而函数g(x)=4(x﹣a)(x﹣2a)有一个交点,所以2a≥1,且a<1,所以≤a<1,若函数h(x)=2x﹣a在x<1时,与x轴没有交点,则函数g(x)=4(x﹣a)(x﹣2a)有两个交点,当a≤0时,h(x)与x轴无交点,g(x)无交点,所以不满足题意(舍去),当h(1)=2﹣a≤时,即a≥2时,g(x)得两个交点为x1=a,x2=2a,都就是满足题意得,综上所述a得取值范围就是≤a<1,或a≥2.点评:本题考查了分段函数得问题,以及函数得零点问题,培养了学生得转化能力与运算能力以及分类能力,属于中档题.三、解答题(共6小题,共80分)15.(13分)(2015•北京)已知函数f(x)=sin cos﹣sin.(Ⅰ)求f(x)得最小正周期;(Ⅱ)求f(x)在区间[﹣π,0]上得最小值.考点:两角与与差得正弦函数;三角函数得周期性及其求法;三角函数得最值.专题:计算题;三角函数得求值;三角函数得图像与性质.分析:(Ⅰ)运用二倍角公式与两角与得正弦公式,化简f(x),再由正弦喊话说得周期,即可得到所求;(Ⅱ)由x得范围,可得x+得范围,再由正弦函数得图象与性质,即可求得最小值.解答:解:(Ⅰ)f(x)=sin cos﹣sin=sinx﹣(1﹣cosx)=sinxcos+cosxsin﹣=sin(x+)﹣,则f(x)得最小正周期为2π;(Ⅱ)由﹣π≤x≤0,可得﹣≤x+≤,即有﹣1,则当x=﹣时,sin(x+)取得最小值﹣1,则有f(x)在区间[﹣π,0]上得最小值为﹣1﹣.点评:本题考查二倍角公式与两角与得正弦公式,同时考查正弦函数得周期与值域,考查运算能力,属于中档题.16.(13分)(2015•北京)A,B两组各有7位病人,她们服用某种药物后得康复时间(单位:天)记录如下:A组:10,11,12,13,14,15,16B组;12,13,15,16,17,14,a假设所有病人得康复时间相互独立,从A,B两组随机各选1人,A组选出得人记为甲,B 组选出得人记为乙.(Ⅰ)求甲得康复时间不少于14天得概率;(Ⅱ)如果a=25,求甲得康复时间比乙得康复时间长得概率;(Ⅲ)当a为何值时,A,B两组病人康复时间得方差相等?(结论不要求证明)考点:极差、方差与标准差;古典概型及其概率计算公式.专题:概率与统计.分析:设事件A i为“甲就是A组得第i个人”,事件B i为“乙就是B组得第i个人”,由题意可知P(A i)=P(B i)=,i=1,2,••,7(Ⅰ)事件等价于“甲就是A组得第5或第6或第7个人”,由概率公式可得;(Ⅱ)设事件“甲得康复时间比乙得康复时间长”C=A4B1∪A5B1∪A6B1∪A7B1∪A5B2∪A6B2∪A7B2∪A7B3∪A6B6∪A7B6,易得P (C)=10P(A4B1),易得答案;(Ⅲ)由方差得公式可得.解答:解:设事件A i为“甲就是A组得第i个人”,事件B i为“乙就是B组得第i个人”,由题意可知P(A i)=P(B i)=,i=1,2,••,7(Ⅰ)事件“甲得康复时间不少于14天”等价于“甲就是A组得第5或第6或第7个人”∴甲得康复时间不少于14天得概率P(A5∪A6∪A7)=P(A5)+P(A6)+P(A7)=;(Ⅱ)设事件C为“甲得康复时间比乙得康复时间长”,则C=A4B1∪A5B1∪A6B1∪A7B1∪A5B2∪A6B2∪A7B2∪A7B3∪A6B6∪A7B6,∴P(C)=P(A4B1)+P(A5B1)+P(A6B1)P+(A7B1)+P(A5B2)+P(A6B2)+P (A7B2)+P(A7B3)+P(A6B6)+P(A7B6)=10P(A4B1)=10P(A4)P(B1)=(Ⅲ)当a为11或18时,A,B两组病人康复时间得方差相等.点评:本题考查古典概型及其概率公式,涉及概率得加法公式与方差,属基础题.17.(14分)(2015•北京)如图,在四棱锥A﹣EFCB中,△AEF为等边三角形,平面AEF⊥平面EFCB,EF∥BC,BC=4,EF=2a,∠EBC=∠FCB=60°,O为EF得中点.(Ⅰ)求证:AO⊥BE.(Ⅱ)求二面角F﹣AE﹣B得余弦值;(Ⅲ)若BE⊥平面AOC,求a得值.考点:二面角得平面角及求法;直线与平面垂直得判定;直线与平面垂直得性质.专题:空间位置关系与距离;空间角.分析:(Ⅰ)根据线面垂直得性质定理即可证明AO⊥BE.(Ⅱ)建立空间坐标系,利用向量法即可求二面角F﹣AE﹣B得余弦值;(Ⅲ)利用线面垂直得性质,结合向量法即可求a得值解答:证明:(Ⅰ)∵△AEF为等边三角形,O为EF得中点,∴AO⊥EF,∵平面AEF⊥平面EFCB,AO⊂平面AEF,∴AO⊥平面EFCB∴AO⊥BE.(Ⅱ)取BC得中点G,连接OG,∵EFCB就是等腰梯形,∴OG⊥EF,由(Ⅰ)知AO⊥平面EFCB,∵OG⊂平面EFCB,∴OA⊥OG,建立如图得空间坐标系,则OE=a,BG=2,GH=a,BH=2﹣a,EH=BHtan60°=,则E(a,0,0),A(0,0,a),B(2,,0),=(﹣a,0,a),=(a﹣2,﹣,0),设平面AEB得法向量为=(x,y,z),则,即,令z=1,则x=,y=﹣1,即=(,﹣1,1),平面AEF得法向量为,则cos<>==即二面角F﹣AE﹣B得余弦值为;(Ⅲ)若BE⊥平面AOC,则BE⊥OC,即=0,∵=(a﹣2,﹣,0),=(﹣2,,0),∴=﹣2(a﹣2)﹣3(a﹣2)2=0,解得a=.点评:本题主要考查空间直线与平面垂直得判定以及二面角得求解,建立坐标系利用向量法就是解决空间角得常用方法.18.(13分)(2015•北京)已知函数f(x)=ln,(Ⅰ)求曲线y=f(x)在点(0,f(0))处得切线方程;(Ⅱ)求证,当x∈(0,1)时,f(x);(Ⅲ)设实数k使得f(x)对x∈(0,1)恒成立,求k得最大值.考点:利用导数研究曲线上某点切线方程;导数在最大值、最小值问题中得应用.专题:导数得综合应用.分析:(1)利用函数得导数求在曲线上某点处得切线方程.(2)构造新函数利用函数得单调性证明命题成立.(3)对k进行讨论,利用新函数得单调性求参数k得取值范围.解答:解答:(1)因为f(x)=ln(1+x)﹣ln(1﹣x)所以又因为f(0)=0,所以曲线y=f(x)在点(0,f(0))处得切线方程为y=2x.(2)证明:令g(x)=f(x)﹣2(x+),则g'(x)=f'(x)﹣2(1+x2)=,因为g'(x)>0(0<x<1),所以g(x)在区间(0,1)上单调递增.所以g(x)>g(0)=0,x∈(0,1),即当x∈(0,1)时,f(x)>2(x+).(3)由(2)知,当k≤2时,f(x)>对x∈(0,1)恒成立.当k>2时,令h(x)=f(x)﹣,则h'(x)=f'(x)﹣k(1+x2)=,所以当时,h'(x)<0,因此h(x)在区间(0,)上单调递减.当时,h(x)<h(0)=0,即f(x)<.所以当k>2时,f(x)>并非对x∈(0,1)恒成立.综上所知,k得最大值为2.点评:本题主要考查切线方程得求法及新函数得单调性得求解证明.在高考中属常考题型,难度适中.19.(14分)(2015•北京)已知椭圆C:+=1(a>b>0)得离心率为,点P(0,1)与点A(m,n)(m≠0)都在椭圆C上,直线PA交x轴于点M.(Ⅰ)求椭圆C得方程,并求点M得坐标(用m,n表示);(Ⅱ)设O为原点,点B与点A关于x轴对称,直线PB交x轴于点N,问:y轴上就是否存在点Q,使得∠OQM=∠ONQ?若存在,求点Q得坐标,若不存在,说明理由.考点:直线与圆锥曲线得综合问题;椭圆得标准方程.专题:创新题型;圆锥曲线得定义、性质与方程;圆锥曲线中得最值与范围问题.分析:(I)根据椭圆得几何性质得出求解即可.(II)求解得出M(,0),N(,0),运用图形得出tan∠OQM=tan∠ONQ,=,求解即可得出即y Q2=x M•x N,+n2,根据m,m得关系整体求解.解答:解:(Ⅰ)由题意得出解得:a=,b=1,c=1∴+y2=1,∵P(0,1)与点A(m,n),﹣1<n<1∴PA得方程为:y﹣1=x,y=0时,x M=∴M(,0)(II)∵点B与点A关于x轴对称,点A(m,n)(m≠0)∴点B(m,﹣n)(m≠0)∵直线PB交x轴于点N,∴N(,0),∵存在点Q,使得∠OQM=∠ONQ,Q(0,y Q),∴tan∠OQM=tan∠ONQ,∴=,即y Q2=x M•x N,+n2=1y Q2==2,∴y Q=,故y轴上存在点Q,使得∠OQM=∠ONQ,Q(0,)或Q(0,﹣)点评:本题考查了直线圆锥曲线得方程,位置关系,数形结合得思想得运用,运用代数得方法求解几何问题,难度较大,属于难题.20.(13分)(2015•北京)已知数列{a n}满足:a1∈N*,a1≤36,且a n+1=(n=1,2,…),记集合M={a n|n∈N*}.(Ⅰ)若a1=6,写出集合M得所有元素;(Ⅱ)如集合M存在一个元素就是3得倍数,证明:M得所有元素都就是3得倍数;(Ⅲ)求集合M得元素个数得最大值.考点:数列递推式.专题:创新题型;点列、递归数列与数学归纳法.分析:(Ⅰ)a1=6,利用a n+1=可求得集合M得所有元素为6,12,24;(Ⅱ)因为集合M存在一个元素就是3得倍数,所以不妨设a k就是3得倍数,由a n+1=(n=1,2,…),可归纳证明对任意n≥k,a n就是3得倍数;(Ⅲ)分a1就是3得倍数与a1不就是3得倍数讨论,即可求得集合M得元素个数得最大值.解答:解:(Ⅰ)若a1=6,由于a n+1=(n=1,2,…),M={a n|n∈N*}.故集合M得所有元素为6,12,24;(Ⅱ)因为集合M存在一个元素就是3得倍数,所以不妨设a k就是3得倍数,由a n+1=(n=1,2,…),可归纳证明对任意n≥k,a n就是3得倍数.如果k=1,M得所有元素都就是3得倍数;如果k>1,因为a k=2a k﹣1,或a k=2a k﹣1﹣36,所以2a k﹣1就是3得倍数;于就是a k 就是3得倍数;﹣1类似可得,a k﹣2,…,a1都就是3得倍数;从而对任意n≥1,a n就是3得倍数;综上,若集合M存在一个元素就是3得倍数,则集合M得所有元素都就是3得倍数(Ⅲ)对a1≤36,a n=(n=1,2,…),可归纳证明对任意n≥k,a n<36(n=2,3,…)因为a1就是正整数,a2=,所以a2就是2得倍数.从而当n≥3时,a n就是2得倍数.如果a1就是3得倍数,由(Ⅱ)知,对所有正整数n,a n就是3得倍数.因此当n≥3时,a n∈{12,24,36},这时M得元素个数不超过5.如果a1不就是3得倍数,由(Ⅱ)知,对所有正整数n,a n不就是3得倍数.因此当n≥3时,a n∈{4,8,16,20,28,32},这时M得元素个数不超过8.当a1=1时,M={1,2,4,8,16,20,28,32},有8个元素.综上可知,集合M得元素个数得最大值为8.点评:本题考查数列递推关系得应用,突出考查分类讨论思想与等价转化思想及推理、运算能力,属于难题.2015年北京市高考数学试卷(理科)一、选择题(每小题5分,共40分)1.(5分)(2015•北京)复数i(2﹣i)=()A.1+2i B.1﹣2i C.﹣1+2i D.﹣1﹣2i2.(5分)(2015•北京)若x,y满足,则z=x+2y得最大值为()A.0B.1C.D.23.(5分)(2015•北京)执行如图所示得程序框图,输出得结果为()A.(﹣2,2)B.(﹣4,0)C.(﹣4,﹣4)D.(0,﹣8)4.(5分)(2015•北京)设α,β就是两个不同得平面,m就是直线且m⊂α,“m∥β“就是“α∥β”得()A.充分而不必要条件B.必要而不充分条件C.充分不要条件D.既不充分也不必要条件5.(5分)(2015•北京)某三棱锥得三视图如图所示,则该三棱锥得表面积就是()A.2+B.4+C.2+2D.56.(5分)(2015•北京)设{a n}就是等差数列,下列结论中正确得就是()A.若a1+a2>0,则a2+a3>0 B.若a1+a3<0,则若a1+a2<0,C.若若0<aD.若a1<0,则(a2﹣a1)(a2﹣a3)>0 1<a2,则a27.(5分)(2015•北京)如图,函数f(x)得图象为折线ACB,则不等式f(x)≥log2(x+1)得解集就是()A.{x|﹣1<x≤0} B.{x|﹣1≤x≤1} C.{x|﹣1<x≤1} D.{x|﹣1<x≤2}8.(5分)(2015•北京)汽车得“燃油效率”就是指汽车每消耗1升汽油行驶得里程,如图描述了甲、乙、丙三辆汽车在不同速度下燃油效率情况,下列叙述中正确得就是()A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80千米/小时得速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/小时,相同条件下,在该市用丙车比用乙车更省油二、填空题(每小题5分,共30分)9.(5分)(2015•北京)在(2+x)5得展开式中,x3得系数为(用数字作答)10.(5分)(2015•北京)已知双曲线﹣y2=1(a>0)得一条渐近线为x+y=0,则a=.11.(5分)(2015•北京)在极坐标系中,点(2,)到直线ρ(cosθ+sinθ)=6得距离为.12.(5分)(2015•北京)在△ABC中,a=4,b=5,c=6,则=.13.(5分)(2015•北京)在△ABC中,点M,N满足=2,=,若=x+y,则x=,y=.14.(5分)(2015•北京)设函数f(x)=,①若a=1,则f(x)得最小值为;②若f(x)恰有2个零点,则实数a得取值范围就是.三、解答题(共6小题,共80分)15.(13分)(2015•北京)已知函数f(x)=sin cos﹣sin.(Ⅰ)求f(x)得最小正周期;(Ⅱ)求f(x)在区间[﹣π,0]上得最小值.16.(13分)(2015•北京)A,B两组各有7位病人,她们服用某种药物后得康复时间(单位:天)记录如下:A组:10,11,12,13,14,15,16B组;12,13,15,16,17,14,a假设所有病人得康复时间相互独立,从A,B两组随机各选1人,A组选出得人记为甲,B 组选出得人记为乙.(Ⅰ)求甲得康复时间不少于14天得概率;(Ⅱ)如果a=25,求甲得康复时间比乙得康复时间长得概率;(Ⅲ)当a为何值时,A,B两组病人康复时间得方差相等?(结论不要求证明)17.(14分)(2015•北京)如图,在四棱锥A﹣EFCB中,△AEF为等边三角形,平面AEF⊥平面EFCB,EF∥BC,BC=4,EF=2a,∠EBC=∠FCB=60°,O为EF得中点.(Ⅰ)求证:AO⊥BE.(Ⅱ)求二面角F﹣AE﹣B得余弦值;(Ⅲ)若BE⊥平面AOC,求a得值.18.(13分)(2015•北京)已知函数f(x)=ln,(Ⅰ)求曲线y=f(x)在点(0,f(0))处得切线方程;(Ⅱ)求证,当x∈(0,1)时,f(x);(Ⅲ)设实数k使得f(x)对x∈(0,1)恒成立,求k得最大值.19.(14分)(2015•北京)已知椭圆C:+=1(a>b>0)得离心率为,点P(0,1)与点A(m,n)(m≠0)都在椭圆C上,直线PA交x轴于点M.(Ⅰ)求椭圆C得方程,并求点M得坐标(用m,n表示);(Ⅱ)设O为原点,点B与点A关于x轴对称,直线PB交x轴于点N,问:y轴上就是否存在点Q,使得∠OQM=∠ONQ?若存在,求点Q得坐标,若不存在,说明理由.20.(13分)(2015•北京)已知数列{a n}满足:a1∈N*,a1≤36,且a n+1=(n=1,2,…),记集合M={a n|n∈N*}.(Ⅰ)若a1=6,写出集合M得所有元素;(Ⅱ)如集合M存在一个元素就是3得倍数,证明:M得所有元素都就是3得倍数;(Ⅲ)求集合M得元素个数得最大值.。

高考数学三角函数与解三角真题训练100题含参考答案

高考数学三角函数与解三角真题训练100题含参考答案
(1)求 的解析式;
(2)求 在 上的单调增区间.
89.已知函数f(x)=2sin ωx cos ωx+ cos 2ωx(ω>0)的最小正周期为π.
(Ⅰ)求ω的值;
(Ⅱ)求f(x)的单调递增区间.
90.已知向量 , , .
(1)求函数 的最小正周期及 取得最大值时对应的 的值;
(2)在锐角三角形 中,角 、 、 的对边为 、 、 ,若 , ,求三角形 面积的最大值并说明此时该三角形的形状.
A.90°B.60°C.45°D.30°
39.已知函数 的部分图像如图所示,将 图像上所有点的横坐标缩小到原来的 (纵坐标不变),所得图像对应的函数 解析式为()
A. B.
C. D.
40.函数 在 的图象大致为()
A. B.
C. D.
41.已知 , ,则 的值为
A. B. C. D.
42.已知 中,角 , , 所对的边分别为 , , .已知 , , 的面积 ,则 的外接圆的直径为()
19.如图,在扇形OAB中, ,半径OA=2,在 上取一点M,连接OM,过M点分别向线段OA,OB作垂线,垂足分别为E,F,得到一个四边形MEOF.设 ,则四边形MEOF的面积为()
A. B.
C. D.
20.设 , , 为同一平面内具有相同起点的任意三个非零向量,且满足 与 不共线,
, ,则 的值一定等于()
55.在 中, , , ,则 ________.
56.在锐角 中, , , 分别为角 , , 的对边,且 , ,则 面积的取值范围为______.
57.用列举法写出 __________.
58.在△ABC中,∠B=75°,∠C=60°,c=1,则最小边的边长为______________________ .

2015年四川省高考数学试题及答案【解析版】

2015年四川省高考数学试题及答案【解析版】

2015年四川省高考数学试卷(文科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)(2015?四川)设集合A={x|﹣1<x<2},集合B={x|1<x<3},则A∪B=()|1.(5分)(2015?四川)设集合A={x|﹣1<x<2},集合B={x|1<x<3},则A∪B=()|1.(5分)(2015?四川)设集合A={x|﹣1<x<2},集合B={x|1<x<3},则A∪B=()A.{x|﹣1<x <3}B.{x|﹣1<x<1}C.{x|1<x<2}D.{x|2<x<3}考点:并集及其运算.专题:集合.分析:直接利用并集求解法则求解即可.解答:解:集合A={x|﹣1<x<2},集合B={x|1<x<3},则A∪B={x|﹣1<x<3}.故选:A.点评:本题考查并集的求法,基本知识的考查.2.(5分)(2015?四川)设向量=(2,4)与向量=(x,6)共线,则实数x=()A.2B.3C.4D.6考点:平面向量共线(平行)的坐标表示.专题:平面向量及应用.分析:利用向量共线的充要条件得到坐标的关系求出x.解答:解;因为向量=(2,4)与向量=(x,6)共线,所以4x=2×6,解得x=3;故选:B.点评:本题考查了向量共线的坐标关系;如果两个向量向量=(x,y)与向量=(m,n)共线,那么xn=yn.3.(5分)(2015?四川)某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显着差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是()A.抽签法B.系统抽样法C.分层抽样法D.随机数法考点:收集数据的方法.专题:应用题;概率与统计.分析:若总体由差异明显的几部分组成时,经常采用分层抽样的方法进行抽样.解答:解:我们常用的抽样方法有:简单随机抽样、分层抽样和系统抽样,而事先已经了解到三年级、六年级、九年级这三个年级之间的学生视力是否存在显着差异,这种方式具有代表性,比较合理.故选:C.点评:本小题考查抽样方法,主要考查抽样方法,属基本题.4.(5分)(2015?四川)设a,b为正实数,则“a>b>1”是“log2a>log2b>0”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件考点:充要条件.专题:简易逻辑.分析:先求出log2a>log2b>0的充要条件,再和a>b>1比较,从而求出答案.解答:解:若log2a>log2b>0,则a>b>1,故“a>b>1”是“log2a>log2b>0”的充要条件,故选:A.点评:本题考察了充分必要条件,考察对数函数的性质,是一道基础题.5.(5分)(2015?四川)下列函数中,最小正周期为π且图象关于原点对称的函数是()A.y=cos(2x+)B.y=sin(2x+)C.y=sin2x+co s2x D.y=sinx+cos x考点:两角和与差的正弦函数;三角函数的周期性及其求法.专题:三角函数的图像与性质.分析:求出函数的周期,函数的奇偶性,判断求解即可.解答:解:y=cos(2x+)=﹣sin2x,是奇函数,函数的周期为:π,满足题意,所以A正确y=sin(2x+)=cos2x,函数是偶函数,周期为:π,不满足题意,所以B不正确;y=sin2x+cos2x=sin(2x+),函数是非奇非偶函数,周期为π,所以C不正确;y=sinx+cosx=sin(x+),函数是非奇非偶函数,周期为2π,所以D不正确;故选:A.点评:本题考查两角和与差的三角函数,函数的奇偶性以及红丝带周期的求法,考查计算能力.6.(5分)(2015?四川)执行如图所示的程序框图,输出s的值为()A.﹣B.C.﹣D.考点:程序框图.专题:图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的k的值,当k=5时满足条件k>4,计算并输出S 的值为.解答:解:模拟执行程序框图,可得k=1k=2不满足条件k>4,k=3不满足条件k>4,k=4不满足条件k>4,k=5满足条件k>4,S=sin =,输出S 的值为.故选:D.点评:本题主要考查了循环结构的程序框图,属于基础题.7.(5分)(2015?四川)过双曲线x2﹣=1的右焦点且与x轴垂直的直线,交该双曲线的两条渐近线于A、B两点,则|AB|=()A.B.2C.6D.4考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:求出双曲线的渐近线方程,求出AB的方程,得到AB坐标,即可求解|AB|.解答:解:双曲线x2﹣=1的右焦点(2,0),渐近线方程为y=,过双曲线x2﹣=1的右焦点且与x轴垂直的直线,x=2,可得y A =2,y B=﹣2,∴|AB|=4.故选:D.点评:本题考查双曲线的简单性质的应用,考查基本知识的应用.8.(5分)(2015?四川)某食品保鲜时间y(单位:小时)与储藏温度x(单位:℃)满足函数关系y=e kx+b(e=2.718…为自然对数的底数,k,b为常数).若该食品在0℃的保鲜时间是192小时,在22℃的保鲜时间是48小时,则该食品在33℃的保鲜时间是()A.16小时B.20小时C.24小时D.28小时考点:指数函数的实际应用.专题:函数的性质及应用.分析:由已知中保鲜时间与储藏温度是一种指数型关系,由已知构造方程组求出e k,e b的值,运用指数幂的运算性质求解e33k+b即可.解答:解:y=e kx+b(e=2.718…为自然对数的底数,k,b为常数).当x=0时,e b=192,当x=22时e22k+b=48,∴e16k==e11k=e b=192当x=33时,e33k+b=(e k)33?(e b)=()3×192=24故选:C点评:本题考查的知识点是函数解析式的运用,列出方程求解即可,注意整体求解.9.(5分)(2015?四川)设实数x,y 满足,则xy的最大值为()A.B.C.12D.16考点:简单线性规划.专题:不等式的解法及应用.分析:作出不等式组对应的平面区域,利用基本不等式进行求解即可.解答:解:作出不等式组对应的平面区域如图;则动点P在BC上运动时,xy取得最大值,此时2x+y=10,则xy==,当且仅当2x=y=5,即x=,y=5时,取等号,故xy的最大值为,故选:A点评:本题主要考查线性规划以及基本不等式的应用,利用数形结合是解决本题的关键.10.(5分)(2015?四川)设直线l与抛物线y2=4x相交于A、B两点,与圆(x﹣5)2+y2=r2(r>0)相切于点M,且M为线段AB的中点,若这样的直线l恰有4条,则r 的取值范围是()A.(1,3)B.(1,4)C.(2,3)D.(2,4)考点:抛物线的简单性质;直线与圆的位置关系.专题:综合题;直线与圆;圆锥曲线的定义、性质与方程.分析:先确定M的轨迹是直线x=3,代入抛物线方程可得y=±2,所以交点与圆心(5,0)的距离为4,即可得出结论.解答:解:设A(x1,y1),B(x2,y2),M(x0,y0),则斜率存在时,设斜率为k,则y12=4x1,y22=4x2,利用点差法可得ky0=2,因为直线与圆相切,所以=﹣,所以x0=3,即M的轨迹是直线x=3,代入抛物线方程可得y=±2,所以交点与圆心(5,0)的距离为4,所以2<r<4时,直线l有2条;斜率不存在时,直线l有2条;所以直线l恰有4条,2<r<4,故选:D.点评:本题考查直线与抛物线、圆的位置关系,考查点差法,考查学生分析解决问题的能力,属于中档题.二、填空题:本大题共5小题,每小题5分,共25分.11.(5分)(2015?四川)设i是虚数单位,则复数i﹣= 2i .考点:复数代数形式的混合运算.专题:数系的扩充和复数.分析:直接利用复数的运算法则求解即可.解答:解:复数i ﹣=i ﹣=i+i=2i.故答案为:2i.点评:本题考查复数的基本运算,考查计算能力.12.(5分)(2015•四川)lg0.01+log216的值是 2 .考对数的运算性质.点:函数的性质及应用.专题:直接利用对数的运算法则化简求解即可.分析:解:lg0.01+log216=﹣2+4=2.解答:故答案为:2.本题考查对数的运算法则的应用,考查计算能力.点评:13.(5分)(2015•四川)已知sinα+2cosα=0,则2sinαcosα﹣cos2α的值是﹣1 .考点:同角三角函数基本关系的运用.专题:三角函数的求值.分析:已知等式移项变形求出tanα的值,原式利用同角三角函数间的基本关系化简,将tanα的值代入计算即可求出值.解答:解:∵sinα+2cosα=0,即sinα=﹣2c osα,∴tanα=﹣2,则原式=====﹣1,故答案为:﹣1点评:此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.14.(5分)(2015?四川)在三棱住ABC﹣A1B1C1中,∠BAC=90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边长为1的等腰直角三角形,设M,N,P分别是AB,BC,B1C1的中点,则三棱锥P﹣A1MN的体积是.考点:棱柱、棱锥、棱台的体积.专题:空间位置关系与距离.分析:判断三视图对应的几何体的形状,画出图形,利用三视图的数据,求解三棱锥P﹣A1MN的体积即可.解答:解:由三视图可知,可知几何体的图形如图:几何体是底面为等腰直角三角形直角边长为1,高为1的直三棱柱,所求三棱锥的高为NP=1,底面AMN的面积是底面三角形ABC的,所求三棱锥P﹣A1MN的体积是:=.故答案为:.点评:本题考查三视图与直观图的关系,组作出几何体的直观图是解题的关键之一,考查几何体的体积的求法,考查空间想象能力以及计算能力.15.(5分)(2015?四川)已知函数f(x)=2x,g(x)=x2+ax(其中a∈R).对于不相等的实数x1、x2,设m=,n=.现有如下命题:①对于任意不相等的实数x1、x2,都有m>0;②对于任意的a及任意不相等的实数x1、x2,都有n>0;③对于任意的a,存在不相等的实数x1、x2,使得m=n;④对于任意的a,存在不相等的实数x1、x2,使得m=﹣n.其中的真命题有①④(写出所有真命题的序号).考点:命题的真假判断与应用.专题:函数的性质及应用.分析:运用指数函数的单调性,即可判断①;由二次函数的单调性,即可判断②;通过函数h(x)=x2+ax﹣2x,求出导数判断单调性,即可判断③;通过函数h(x)=x2+ax+2x,求出导数判断单调性,即可判断④.解答:解:对于①,由于2>1,由指数函数的单调性可得f(x)在R 上递增,即有m>0,则①正确;对于②,由二次函数的单调性可得g(x)在(﹣∞,﹣)递减,在(,+∞)递减,则n>0不恒成立,则②错误;对于③,由m=n,可得f(x1)﹣f(x2)=g(x1)﹣g(x2),考查函数h(x)=x2+ax﹣2x,h′(x)=2x+a﹣2x ln2,当a→﹣∞,h′(x)小于0,h(x)单调递减,则③错误;对于④,由m=﹣n,可得f(x1)﹣f(x2)=﹣[g(x1)﹣g(x2)],考查函数h(x)=x2+ax+2x,h′(x)=2x+a+2x ln2,对于任意的a,h′(x)不恒大于0或小于0,则④正确.故答案为:①④.点评:本题考查函数的单调性及运用,注意运用指数函数和二次函数的单调性,以及导数判断单调性是解题的关键.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(12分)(2015?四川)设数列{a n}(n=1,2,3…)的前n项和S n,满足S n=2a n ﹣a1,且a1,a2+1,a3成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设数列的前n项和为T n,求T n.考点:等差数列的前n项和;等差数列的通项公式.专题:等差数列与等比数列.分析:(Ⅰ)由条件S n满足S n=2a n﹣a1,求得数列{a n}为等比数列,且公比q=2;再根据a1,a2+1,a3成等差数列,求得首项的值,可得数列{a n}的通项公式.(Ⅱ)由于=,利用等比数列的前n项和公式求得数列的前n项和T n.解答:解:(Ⅰ)由已知S n=2a n﹣a1,有a n=S n﹣S n﹣1=2a n﹣2a n﹣1(n≥2),即a n=2a n﹣1(n≥2),从而a2=2a1,a3=2a2=4a1.又因为a1,a2+1,a3成等差数列,即a1+a3=2(a2+1)所以a1+4a1=2(2a1+1),解得:a1=2.所以,数列{a n}是首项为2,公比为2的等比数列.故a n=2n.(Ⅱ)由(Ⅰ)得=,所以T n=+++…+==1﹣.点评:本题主要考查数列的前n项和与第n项的关系,等差、等比数列的定义和性质,等比数列的前n项和公式,属于中档题.17.(12分)(2015?四川)一辆小客车上有5名座位,其座号为1,2,3,4,5,乘客P1,P2,P3,P4,P5的座位号分别为1,2,3,4,5.他们按照座位号顺序先后上车,乘客P1因身体原因没有坐自己1号座位,这时司机要求余下的乘客按以下规则就坐:如果自己的座位空着,就只能坐自己的座位.如果自己的座位已有乘客就坐,就在这5个座位的剩余空位中选择座位.(Ⅰ)若乘客P1坐到了3号座位,其他乘客按规则就座,则此时共有4种坐法.下表给出其中两种坐法,请填入余下两种坐法(将乘客就坐的座位号填入表中空格处)乘客P1P2P3P4P5座位号32145324513 24 1 53 2 54 1(Ⅱ)若乘客P1坐到了2号座位,其他乘客按规则就坐,求乘客P1坐到5号座位的概率.考点:概率的应用.专题:应用题;概率与统计.分析:(Ⅰ)根据题意,可以完成表格;(Ⅱ)列表,确定所有可能的坐法,再求出乘客P1坐到5号座位的概率.解答:解:(Ⅰ)余下两种坐法:乘客P1P2P3P4P5座位号32145324513241532541(Ⅱ)若乘客P1坐到了2号座位,其他乘客按规则就坐,则所有可能的坐法可用下表表示为乘客 P1 P2 P3 P4 P5座位号 2 1 3 4 52 3 1 4 52 3 4 1 52 3 4 5 12 3 5 4 12 43 1 52 43 5 12 534 1于是,所有可能的坐法共8种,设“乘客P1坐到5号座位”为事件A,则事件A中的基本事件的个数为4,所以P(A)==.答:乘客P1坐到5号座位的概率是.点评:本题考查概率的运用,考查学生的计算能力,列表确定基本事件的个数是关键.18.(12分)(2015?四川)一个正方体的平面展开图及该正方体的直观图的示意图如图所示.(Ⅰ)请按字母F,G,H标记在正方体相应地顶点处(不需要说明理由)(Ⅱ)判断平面BEG与平面ACH的位置关系.并说明你的结论.(Ⅲ)证明:直线DF⊥平面BEG.考点:直线与平面垂直的判定;平面与平面之间的位置关系.专题:空间位置关系与距离.分析:(Ⅰ)直接标出点F,G,H的位置.(Ⅱ)先证BCHE为平行四边形,可知BE∥平面ACH,同理可证BG∥平面ACH,即可证明平面BEG∥平面ACH.(Ⅲ)连接FH,由DH⊥EG,又DH⊥EG,EG⊥FH,可证EG⊥平面BFHD,从而可证DF⊥EG,同理DF⊥BG,即可证明DF⊥平面BEG.解解:(Ⅰ)点F,G,H的位置如图所示.答:(Ⅱ)平面BEG∥平面ACH,证明如下:∵ABCD﹣EFGH为正方体,∴BC∥FG,BC=EH,又FG∥EH,FG=EH,∴BC∥EH,BC=EH,∴BCHE为平行四边形.∴BE∥CH,又CH?平面ACH,BE?平面ACH,∴BE∥平面ACH,同理BG∥平面ACH,又BE∩BG=B,∴平面BEG∥平面ACH.(Ⅲ)连接FH,∵ABCD﹣EFGH为正方体,∴DH⊥EG,又∵EG?平面EFGH,∴DH⊥EG,又EG⊥FH,EG∩FH=O,∴EG⊥平面BFHD,又DF?平面BFHD,∴DF⊥EG,同理DF⊥BG,又∵EG∩BG=G,∴DF⊥平面BEG.点评:本题主要考查了简单空间图形的直观图、空间线面平行与垂直的判定与性质等基础知识,考查了空间想象能力和推理论证能力,属于中档题.19.(12分)(2015?四川)已知A、B、C为△ABC的内角,tanA,tanB是关于方程x2+px﹣p+1=0(p∈R)两个实根.(Ⅰ)求C的大小(Ⅱ)若AB=3,AC=,求p的值.考点:正弦定理的应用;两角和与差的正切函数.专题:函数的性质及应用;解三角形.分析:(Ⅰ)由判别式△=3p2+4p﹣4≥0,可得p≤﹣2,或p≥,由韦达定理,有tanA+tanB=﹣p,tanAtanB=1﹣p,由两角和的正切函数公式可求tanC=﹣tan(A+B)=,结合C的范围即可求C的值.(Ⅱ)由正弦定理可求sinB==,解得B,A,由两角和的正切函数公式可求tanA=tan75°,从而可求p=﹣(tanA+tanB)的值.解答:解:(Ⅰ)由已知,方程x2+px﹣p+1=0的判别式:△=(p)2﹣4(﹣p+1)=3p2+4p﹣4≥0,所以p≤﹣2,或p≥.由韦达定理,有tanA+tanB=﹣p,tanAtanB=1﹣p.所以,1﹣tanAtanB=1﹣(1﹣p)=p≠0,从而tan(A+B)==﹣=﹣.所以tanC=﹣tan(A+B)=,所以C=60°.(Ⅱ)由正弦定理,可得sinB===,解得B=45°,或B=135°(舍去).于是,A=180°﹣B﹣C=75°.则tanA=tan75°=tan(45°+30°)===2+.所以p=﹣(tanA+tanB)=﹣(2+)=﹣1﹣.点评:本题主要考查了和角公式、诱导公式、正弦定理等基础知识,考查了运算求解能力,考查了函数与方程、化归与转化等数学思想的应用,属于中档题.20.(13分)(2015?四川)如图,椭圆E:=1(a>b>0)的离心率是,点P (0,1)在短轴CD上,且?=﹣1(Ⅰ)求椭圆E的方程;(Ⅱ)设O为坐标原点,过点P的动直线与椭圆交于A、B两点.是否存在常数λ,使得?+λ?为定值?若存在,求λ的值;若不存在,请说明理由.考点:直线与圆锥曲线的综合问题.专题:向量与圆锥曲线;圆锥曲线的定义、性质与方程.分析:(Ⅰ)通过e=、?=﹣1,计算即得a=2、b=,进而可得结论;(Ⅱ)分情况对直线AB斜率的存在性进行讨论:①当直线AB的斜率存在时,联立直线AB与椭圆方程,利用韦达定理计算可得当λ=1时?+λ?=﹣3;②当直线AB的斜率不存在时,+λ?=﹣3.解答:解:(Ⅰ)根据题意,可得C(0,﹣b),D(0,b),又∵P(0,1),且?=﹣1,∴,解得a=2,b=,∴椭圆E的方程为:+=1;(Ⅱ)结论:存在常数λ=1,使得?+λ?为定值﹣3.理由如下:对直线AB斜率的存在性进行讨论:①当直线AB的斜率存在时,设直线AB的方程为y=kx+1,A(x1,y1),B(x2,y2),联立,消去y并整理得:(1+2k2)x2+4kx﹣2=0,∵△=(4k)2+8(1+2k2)>0,∴x1+x2=﹣,x1x2=﹣,从而?+λ?=x1x2+y1y2+λ[x1x2+(y1﹣1)(y2﹣1)]=(1+λ)(1+k2)x1x2+k(x1+x2)+1==﹣﹣λ﹣2.∴当λ=1时,﹣﹣λ﹣2=﹣3,此时?+λ?=﹣3为定值;②当直线AB的斜率不存在时,直线AB即为直线CD,此时?+λ?=+=﹣2﹣1=﹣3;故存在常数λ=1,使得?+λ?为定值﹣3.点评:本题考查椭圆的标准方程、直线方程等基础知识,考查推理论证能力、运算求解能力,考查数形结合、化归与转化、特殊与一般、分类与整合等数学思想,注意解题方法的积累,属于难21.(14分)(2015•四川)已知函数f(x)=﹣2xlnx+x2﹣2ax+a2,其中a>0.(Ⅰ)设g(x)是f(x)的导函数,讨论g(x)的单调性;(Ⅱ)证明:存在a∈(0,1),使得f(x)≥0恒成立,且f(x)=0在区间(1,+∞)内有唯一解.考点:利用导数研究函数的极值;利用导数研究函数的单调性.专题:导数的综合应用.分析:(I)函数f(x)=﹣2xlnx+x2﹣2ax+a2,其中a>0.可得:x>0.g(x)=f′(x)=2(x﹣1﹣lnx﹣a),可得g′(x)==,分别解出g′(x)<0,g′(x)>0,即可得出单调性.(II)由f′(x)=2(x﹣1﹣lnx﹣a)=0,可得a=x﹣1﹣lnx,代入f(x)可得:u(x)=(1+lnx)2﹣2xlnx,利用函数零点存在定理可得:存在x0∈(1,e),使得u(x0)=0,令a0=x0﹣1﹣lnx0=v(x0),再利用导数研究其单调性即可得出.解答:(I)解:函数f(x)=﹣2xlnx+x2﹣2ax+a2,其中a>0.可得:g(x)=f′(x)=2(x﹣1﹣lnx﹣a),∴g′(x)==,当0<x<1时,g′(x)<0,函数g(x)单调递减;当1<x时,g′(x)>0,函数g(x)单调递增.(II)证明:由f′(x)=2(x﹣1﹣lnx﹣a)=0,解得a=x ﹣1﹣lnx,令u(x)=﹣2xlnx+x2﹣2(x﹣1﹣lnx)x+(x﹣1﹣lnx)2=(1+lnx)2﹣2xlnx,则u(1)=1>0,u(e)=2(2﹣e)<0,∴存在x0∈(1,e),使得u(x0)=0,令a0=x0﹣1﹣lnx0=v(x0),其中v(x)=x﹣1﹣lnx(x≥1),由v′(x)=1﹣≥0,可得:函数v(x)在区间(1,+∞)上单调递增.∴0=v(1)<a0=v(x0)<v(e)=e﹣2<1,即a0∈(0,1),当a=a0时,有f′(x0)=0,f(x0)=u(x0)=0.再由(I)可知:f′(x)在区间(1,+∞)上单调递增,当x∈(1,x0)时,f′(x)<0,∴f(x)>f(x0)=0;当x∈(x0,+∞)时,f′(x)>0,∴f(x)>f(x0)=0;又当x∈(0,1],f(x)=﹣2xlnx>0.故当x∈(0,+∞)时,f(x)≥0恒成立.综上所述:存在a∈(0,1),使得f(x)≥0恒成立,且f(x)=0在区间(1,+∞)内有唯一解.点评:本题考查了导数的运算法则、函数的零点、利用导数研究函数的单调性极值,考查了分类讨论思想方法、推理能力与计算能力,属于难题.2015年四川省高考数学试卷(文科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)(2015?四川)设集合A={x|﹣1<x<2},集合B={x|1<x<3},则A∪B=()|1.(5分)(2015?四川)设集合A={x|﹣1<x<2},集合B={x|1<x<3},则A∪B=()|1.(5分)(2015?四川)设集合A={x|﹣1<x<2},集合B={x|1<x<3},则A∪B=()A.{x|﹣1<x <3}B.{x|﹣1<x<1}C.{x|1<x<2}D.{x|2<x<3}2.(5分)(2015?四川)设向量=(2,4)与向量=(x,6)共线,则实数x=()A.2B.3C.4D.63.(5分)(2015?四川)某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显着差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是()A.抽签法B.系统抽样法C.分层抽样法D.随机数法4.(5分)(2015?四川)设a,b为正实数,则“a>b>1”是“log2a>log2b>0”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件5.(5分)(2015?四川)下列函数中,最小正周期为π且图象关于原点对称的函数是()A.y=cos(2x+)B.y=sin(2x+)C.y=sin2x+cos2x D.y=sinx+cosx6.(5分)(2015?四川)执行如图所示的程序框图,输出s的值为()A.﹣B.C.﹣D.7.(5分)(2015?四川)过双曲线x2﹣=1的右焦点且与x轴垂直的直线,交该双曲线的两条渐近线于A、B两点,则|AB|=()A.B.2C.6D.48.(5分)(2015?四川)某食品保鲜时间y(单位:小时)与储藏温度x(单位:℃)满足函数关系y=e kx+b(e=2.718…为自然对数的底数,k,b为常数).若该食品在0℃的保鲜时间是192小时,在22℃的保鲜时间是48小时,则该食品在33℃的保鲜时间是()A.16小时B.20小时C.24小时D.28小时9.(5分)(2015?四川)设实数x,y 满足,则xy的最大值为()A.B.C.12D.1610.(5分)(2015?四川)设直线l与抛物线y2=4x相交于A、B两点,与圆(x﹣5)2+y2=r2(r>0)相切于点M,且M为线段AB的中点,若这样的直线l恰有4条,则r 的取值范围是()A.(1,3)B.(1,4)C.(2,3)D.(2,4)二、填空题:本大题共5小题,每小题5分,共25分.11.(5分)(2015?四川)设i是虚数单位,则复数i﹣= .12.(5分)(2015•四川)lg0.01+log216的值是.13.(5分)(2015•四川)已知sinα+2cosα=0,则2sinαcosα﹣cos2α的值是.14.(5分)(2015?四川)在三棱住ABC﹣A1B1C1中,∠BAC=90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边长为1的等腰直角三角形,设M,N,P分别是AB,BC,B1C1的中点,则三棱锥P﹣A1MN的体积是.15.(5分)(2015?四川)已知函数f(x)=2x,g(x)=x2+ax(其中a∈R).对于不相等的实数x1、x2,设m=,n=.现有如下命题:①对于任意不相等的实数x1、x2,都有m>0;②对于任意的a及任意不相等的实数x1、x2,都有n>0;③对于任意的a,存在不相等的实数x1、x2,使得m=n;④对于任意的a,存在不相等的实数x1、x2,使得m=﹣n.其中的真命题有(写出所有真命题的序号).三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(12分)(2015?四川)设数列{a n}(n=1,2,3…)的前n项和S n,满足S n=2a n﹣a1,且a1,a2+1,a3成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设数列的前n项和为T n,求T n.17.(12分)(2015?四川)一辆小客车上有5名座位,其座号为1,2,3,4,5,乘客P1,P2,P3,P4,P5的座位号分别为1,2,3,4,5.他们按照座位号顺序先后上车,乘客P1因身体原因没有坐自己1号座位,这时司机要求余下的乘客按以下规则就坐:如果自己的座位空着,就只能坐自己的座位.如果自己的座位已有乘客就坐,就在这5个座位的剩余空位中选择座位.(Ⅰ)若乘客P1坐到了3号座位,其他乘客按规则就座,则此时共有4种坐法.下表给出其中两种坐法,请填入余下两种坐法(将乘客就坐的座位号填入表中空格处)乘客P1P2P3P4P5座位号3214532451(Ⅱ)若乘客P1坐到了2号座位,其他乘客按规则就坐,求乘客P1坐到5号座位的概率.18.(12分)(2015?四川)一个正方体的平面展开图及该正方体的直观图的示意图如图所示.(Ⅰ)请按字母F,G,H标记在正方体相应地顶点处(不需要说明理由)(Ⅱ)判断平面BEG与平面ACH的位置关系.并说明你的结论.(Ⅲ)证明:直线DF⊥平面BEG.19.(12分)(2015?四川)已知A、B、C为△ABC的内角,tanA,tanB是关于方程x2+px﹣p+1=0(p∈R)两个实根.(Ⅰ)求C的大小(Ⅱ)若AB=3,AC=,求p的值.20.(13分)(2015?四川)如图,椭圆E:=1(a>b>0)的离心率是,点P (0,1)在短轴CD上,且?=﹣1(Ⅰ)求椭圆E的方程;(Ⅱ)设O为坐标原点,过点P的动直线与椭圆交于A、B两点.是否存在常数λ,使得?+λ?为定值?若存在,求λ的值;若不存在,请说明理由.21.(14分)(2015•四川)已知函数f(x)=﹣2xlnx+x2﹣2ax+a2,其中a>0.(Ⅰ)设g(x)是f(x)的导函数,讨论g(x)的单调性;(Ⅱ)证明:存在a∈(0,1),使得f(x)≥0恒成立,且f(x)=0在区间(1,+∞)内有唯一解.2020-2-8。

高考数学之三角函数和解三角形

高考数学之三角函数和解三角形

高考数学之三角函数和解三角形【知识网络构建】【重点知识整合】一、三角恒等变换与三角函数1.三角函数中常用的转化思想及方法技巧:(1)方程思想:sin cos αα+, sin cos αα-,sin cos αα三者中,知一可求二; (2)“1”的替换: 22sincos 1αα+=;(3)切弦互化:弦的齐次式可化为切; (4)角的替换:2()()ααβαβ=++-, ()22αβαβααββ+-=+-=+;(5)公式变形:21cos 2cos 2αα+=21cos 2sin2αα-=tan tan tan()(1tan tan )αβαβαβ+=+-;(6)构造辅助角(以特殊角为主):22sin cos sin()(tan )ba b a b aαααϕϕ+=++=.二、解三角形1.正弦定理已知在△ABC 中,a ,b ,c 分别为内角A 、B 、C 的对边,则a sin A =b sin B =csin C =2R (R 为三角形外接圆的半径).2.余弦定理已知在△ABC 中,a ,b ,c 分别为内角A 、B 、C 的对边,则a 2=b 2+c 2-2bc cos A ,cos A =b 2+c 2-a 22bc,另外两个同样.3.面积公式已知在△ABC 中,a ,b ,c 分别为内角A 、B 、C 的对边,则 (1)三角形的面积等于底乘以高的12;(2)S =12ab sin C =12bc sin A =12ac sin B =abc 4R (其中R 为该三角形外接圆的半径);(3)若三角形内切圆的半径是r ,则三角形的面积S =12(a +b +c )r ;(4)若p =a +b +c2,则三角形的面积S =p p -a p -b p -c .【高频考点突破】【变式探究】已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos2θ=( )A .-45B .-35 C.35D.45【方法技巧】1.用三角函数定义求三角函数值有时反而更简单;2.同角三角函数间的关系、诱导公式在三角函数式的化简中起着举足轻重的作用,应注意正确选择公式、注意公式的应用条件. 考点二 三角函数的性质 三角函数的单调区间:y =sin x 的递增区间是[2k π-π2,2k π+π2](k ∈Z),递减区间是[2k π+π2,2k π+3π2](k ∈Z); y =cos x 的递增区间是[2k π-π,2k π](k ∈Z),递减区间是[2k π,2k π+π](k ∈Z);y =tan x 的递增区间是(k π-π2,k π+π2)(k ∈Z).例2、已知a =(sin x ,-cos x ),b =(cos x ,3cos x ),函数f (x )=a ·b +32. (1)求f (x )的最小正周期,并求其图像对称中心的坐标; (2)当0≤x ≤π2时,求函数f (x )的值域.【变式探究】已知函数f (x )=sin(2x +φ),其中φ为实数,若f (x )≤|f (π6)|对x ∈R 恒成立,且f (π2)>f (π),则f (x )的单调递增区间是( )A .[k π-π3,k π+π6](k ∈Z) B.[k π,k π+π2](k ∈Z)C .[k π+π6,k π+2π3](k ∈Z) D.[k π-π2,k π](k ∈Z)考点三 函数y =A sin(ωx +φ)的图像及变换 函数y =A sin(ωx +φ)的图像: (1)“五点法”作图:设z =ωx +φ,令z =0,π2,π,3π2,2π,求出x 的值与相应的y 的值,描点、连线可得.(2)图像变换:y =sin x ―――――――――→向左φ>0或向右φ<0平移|φ|个单位y =sin(x +φ)y =sin(ωx +φ)――――――――――→纵坐标变为原来的AA >0倍横坐标不变y =A sin(ωx +φ).例3、已知函数f 1(x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的一段图像经过点(0,1),如图所示.(1)求f 1(x )的表达式;(2)将函数f 1(x )的图像向右平移π4个单位长度得到函数f 2(x )的图像,求y =f 1(x )+f 2(x )的最大值,并求出此时自变量x 的集合.【变式探究】已知函数f (x )=A tan(ωx +φ)(ω>0,|φ|<π2),y =f (x )的部分图像如图,则f (π24)= ( )A .2+ 3 B. 3 C.33D .2- 3考点四 三角变换及求值 三角函数求值有以下类型:(1)“给角求值”,即在不查表的前提下,通过三角恒等变 换求三角函数式的值;(2)“给值求值”,即给出一些三角函数值,求与之有关的 其他三角函数式的值;(3)“给值求角”,即给出三角函数值,求符合条件的角. 例1、已知函数f (x )=2sin(13x -π6),x ∈R.(1)求f (0)的值;(2)设α,β∈[0,π2],f (3α+π2)=1013,f (3β+2π)=65.求sin(α+β)的值.【变式探究】已知:cos(2α-β)=-1114,sin(α-2β)=437,0<β<π4<α<π2,则α+β的值为________. 考点五 正、余弦定理的应用【变式探究】△ABC 中,B =120°,AC =7,AB =5, 则△ABC 的面积为________. 考点 六 解三角形与实际应用问题在实际生活中,测量底部不可到达的建筑物的高度、不可到达的两点的距离及航行中的方位角等问题,都可通过解三角形解决. 例6、如图,A ,B 是海面上位于东西方向相距5(3+3)海里的两个观测点.现位于A 点北偏东45°,B 点北偏西60°的D 点有一艘轮船发出求救信号,位于B 点南偏西60°且与B 点相距203海里的C 点的救援船立即前往营救,其航行速度为30海里/小时,该救援船到达D 点需要多长时间?【难点探究】难点一 简单的三角恒等变换例1 、(1)若0<α<π2,-π2<β<0,cos (π4+α)=13,cos (π4-β2)=33,则cos (α+β2)=( )A.33 B .-33 C.539 D .-69(2)已知sin α=12+cos α,且α∈⎝⎛⎭⎫0,π2,则cos2αsin ⎝⎛⎭⎫α-π4的值为________. 【点评】 在进行三角恒等变换时,一个重要的技巧是进行角的变换,把求解的角用已知角表示出来,把求解的角的三角函数使用已知的三角函数表示出来,常见的角的变换有,把π2+2α变换成2⎝⎛⎭⎫π4+α,α=(α+β)-β=(α-β)+β,2α=(α+β)+(α-β),2α=(β+α)-(β-α),α+β=2·α+β2,α+β2=⎝⎛⎭⎫α-β2-⎝⎛⎭⎫α2-β等;在进行三角函数化简或者求值时,如果求解目标较为复杂,则首先要变换这个求解目标,使之简化,以便看出如何使用已知条件.难点二 三角函数的图象例2 (1)已知函数f (x )=A tan(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2,y =f (x )的部分图象如图所示,则f ⎝⎛⎭⎫π24=________.(2)要得到函数y =cos (2x +π3)的图象,只需将函数y =12sin2x +32cos2x 的图象( )A .向左平移π8个单位 B .向右平移π2个单位 C .向右平移π3个单位 D .向左平移π4个单位难点三 三角函数的性质例3已知函数f (x )=sin(2x +φ),其中φ为实数,若f (x )≤⎪⎪⎪⎪f ⎝⎛⎭⎫π6对x ∈R 恒成立,且f ⎝⎛⎭⎫π2>f (π),则f (x )的单调递增区间是( )A.⎣⎡⎦⎤k π-π3,k π+π6(k ∈Z)B.⎣⎡⎦⎤k π,k π+π2(k ∈Z)C.⎣⎡⎦⎤k π+π6,k π+2π3(k ∈Z)D.⎣⎡⎦⎤k π-π2,k π(k ∈Z)【规律方法】1.根据三角函数的图象求解函数的解析式时,要注意从图象提供的信息确定三角函数的性质,如最小正周期、最值,首先确定函数解析式中的部分系数,再根据函数图象上的特殊点的坐标适合函数的解析式确定解析式中剩余的字母的值,同时要注意解析式中各个字母的范围.2.进行三角函数的图象变换时,要注意无论进行的什么样的变换都是变换的变量本身,特别在平移变换中,如果这个变量的系数不是1,在进行变换时变量的系数也参与其中,如把函数y =sin ⎝⎛⎭⎫2x +π4的图象向左平移π12个单位时,得到的是函数y =sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π12+π4=sin2x +5π12的图象. 3.解答三角函数的图象与性质类的试题,变换是其中的核心,把三角函数的解析式通过变换,化为正弦型、余弦型、正切型函数,然后再根据正弦函数、余弦函数和正切函数的性质进行研究.难点四 正余弦定理的应用例4 、(1)在△A BC 中,若b =5,∠B =π4,sin A =13,则a =________.(2)在△ABC 中,sin 2A ≤sin 2B +sin 2C -sin B sin C ,则A 的取值范围是( )A ⎝⎛⎦⎤0,π6 B.⎣⎡⎭⎫π6,π C.⎝⎛⎦⎤0,π3 D.⎣⎡⎭⎫π3,π 难点五 函数的图象的分析判断例5 、在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A -2cos C cos B =2c -ab.(1)求sin C sin A 的值;(2)若cos B =14,b =2,求△ABC 的面积S .【点评】 本题的难点是变换cos A -2cos C cos B =2c -a b 时,变换方向的选取,即是把角的函数转化为边的关系,还是把边转化为角的三角函数,从已知式的结构上看,把其中三个内角的余弦转化为边的关系是较为复杂的,而根据正弦定理把其中边的关系转化为角的正弦,则是较为简单的,在含有三角形内角的三角函数和边的混合关系式中要注意变换方向的选择.正弦定理、余弦定理、三角形面积公式本身就是一个方程,在解三角形的试题中方程思想是主要的数学思想方法,要注意从方程的角度出发分析问题.探究点六 解三角形的实际应用例6、如图6-1,渔政船甲、乙同时收到同一片海域上一艘渔船丙的求救信号,此时渔船丙在渔政船甲的南偏东40°方向距渔政船甲70 km 的C 处,渔政船乙在渔政船甲的南偏西20°方向的B 处,两艘渔政船协调后立即让渔政船甲向渔船丙所在的位置C 处沿直线AC 航行前去救援,渔政船乙仍留在B 处执行任务,渔政船甲航行30 km 到达D 处时,收到新的指令另有重要任务必须执行,于是立即通知在B 处执行任务的渔政船乙前去救援渔船丙(渔政船乙沿直线BC 航行前去救援渔船丙),此时B 、D 两处相距42 km ,问渔政船乙要航行多少千米才能到达渔船丙所在的位置C 处实施营救?45°距A 处8海里处有一走私船,正沿南偏东75°的方向以12海里/小时的速度向我岸行驶,巡逻艇立即以123海里/小时的速度沿直线追击,问巡逻艇最少需要多长时间才能追到走私船?并指出巡逻艇航行方向.图6-2【规律技巧】1.使用正弦定理能够解的三角形有两类,一类是已知两边及其中一边的对角,一类已知一边和两个内角(实际就是已知三个内角),其中第一个类型也可以根据余弦定理列出方程求出第三边,再求内角.在使用正弦定理求三角形内角时,要注意解的可能情况,判断解的情况的基本依据是三角形中大边对大角.2.当已知三角形的两边和其中一个边的对角求解第三边时,可以使用正弦定理、也可以使用余弦定理,使用余弦定理就是根据余弦定理本身是一个方程,这个方程联系着三角形的三个边和其中的一个内角.3.正弦定理揭示了三角形三边和其对角正弦的比例关系,余弦定理揭示了三角形的三边和其中一个内角的余弦之间的关系. 【历届高考真题】 【2012年高考试题】 一、选择题1.【2012高考真题重庆理5】设tan ,tan αβ是方程2320xx -+=的两个根,则tan()αβ+的值为(A )-3 (B )-1 (C )1 (D )33.【2012高考真题新课标理9】已知0ω>,函数()sin()4f x x πω=+在(,)2ππ上单调递减.则ω的取值范围是( )()A 15[,]24 ()B 13[,]24()C 1(0,]2 ()D (0,2]4.【2012高考真题四川理4】如图,正方形ABCD 的边长为1,延长BA 至E ,使1AE =,连接EC 、ED 则sin CED ∠=( )A 、31010B 、1010C 、510D 、5157.【2012高考真题辽宁理7】已知sin cos 2αα-=,α∈(0,π),则tan α=(A) -1 (B) 22-(C)22(D) 18.【2012高考真题江西理4】若tan θ+1tan θ=4,则sin2θ=A .15 B. 14 C. 13 D. 129.【2012高考真题湖南理6】函数f (x )=sinx-c os(x+6π)的值域为 A .3332,32]10.【2012高考真题上海理16】在ABC ∆中,若C B A 222sin sin sin<+,则ABC ∆的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .不能确定13.【2012高考真题全国卷理7】已知α为第二象限角,33cos sin =+αα,则cos2α=(A) 5-3 (B )5-9 (C)59(D)53二、填空题14.【2012高考真题湖南理15】函数f (x )=sin (x ωϕ+)的导函数()y f x '=的部分图像如图4所示,其中,P 为图像与y轴的交点,A,C 为图像与x 轴的两个交点,B 为图像的最低点.(1)若6πϕ=,点P 的坐标为(0,332),则ω= ; (2)若在曲线段¼ABC 与x 轴所围成的区域内随机取一点,则该点在△ABC 内的概率为 .17.【2012高考真题安徽理15】设ABC ∆的内角,,A B C 所对的边为,,a b c ;则下列命题正确的是_____①若2ab c >;则3C π<②若2a b c +>;则3C π<③若333ab c +=;则2C π<④若()2a b c ab +<;则2C π>⑤若22222()2ab c a b +<;则3C π>18.【2012高考真题福建理13】已知△ABC 得三边长成公比为2的等比数列,则其最大角的余弦值为_________.19.【2012高考真题重庆理13】设ABC ∆的内角,,A B C 的对边分别为,,a b c ,且53cos =A ,135cos =B ,3=b 则c = 20.【2012高考真题上海理4】若)1,2(-=n 是直线l 的一个法向量,则l 的倾斜角的大小为 (结果用反三角函数值表示)。

2015届高考数学总复习第三章三角函数、三角恒等变换及解三角形第4课时两角和与差的正弦、余弦和正切公式

2015届高考数学总复习第三章三角函数、三角恒等变换及解三角形第4课时两角和与差的正弦、余弦和正切公式

第三章 三角函数、三角恒等变换及解三角形第4课时 两角和与差的正弦、余弦 和正切公式(对应学生用书(文)、(理)47~48页)1. (必修4P 98第1题改编)sin75°cos30°-sin15°sin150°=__________. 答案:22解析:sin75°cos30°-sin15°sin150°=sin75°cos30°-cos75°·sin30°=sin(75°-30°)=sin45°=22. 2. (必修4P 104习题5改编)已知tan ⎝⎛⎭⎫α-π6=37,tan ⎝⎛⎭⎫π6+β=25,则tan (α+β)=________.答案:1解析:tan (α+β)=tan [(α-π6)+(π6+β)]=tan ⎝⎛⎭⎫α-π6+tan ⎝⎛⎭⎫π6+β1-tan ⎝⎛⎭⎫α-π6·tan ⎝⎛⎭⎫π6+β=37+251-37×25=1.3. (必修4P 94习题2(1)改编)若sin α=35,α∈⎝⎛⎭⎫-π2,π2,则cos ⎝⎛⎭⎫α+5π4=__________.答案:-210解析:由α∈⎝⎛⎭⎫-π2,π2,sin α=35,得cos α=45,由两角和与差的余弦公式得cos ⎝⎛⎭⎫α+5π4=cos αcos 5π4-sin αsin 5π4=-22(cos α-sin α)=-210.4. (必修4P 99第10题改编)计算: 2cos10°-sin20°cos20°=________.答案:3解析:原式=2cos (30°-20°)-sin20°cos20°=2(cos30°cos20°+sin30°sin20°)-sin20°cos20°=2⎝⎛⎭⎫32cos20°+12sin20°-sin20°cos20°= 3.5. (必修4P 115第6题改编)计算: sin7°+cos15°·sin8°cos7°-sin15°·sin8°=________.答案:2-3 解析:sin7°=sin(15°-8°)=sin15°cos8°-cos15°sin8°,cos7°=cos(15°-8°)=cos15°cos8°+sin15°sin8°,∴ 原式=tan15°=tan(45°-30°)=1-tan30°1+tan30°=2-3.1. 两角差的余弦公式推导过程2. 公式之间的关系及导出过程3. 公式cos (α-β)=cos(α-β)=cosαcosβ+sinαsinβ cos (α+β)=cos(α+β)=cosαcosβ-sinαsinβ sin (α-β)=sin(α-β)=sinαcosβ-cosαsinβ sin (α+β)=sin(α+β)=sinαcosβ+cosαsinβ tan (α-β)=tan(α-β)=tanα-tanβ1+tanαtanβtan (α+β)=tan(α+β)=tanα+tanβ1-tan αtanβ4. asin α+bcos α=a 2+b 2sin (α+φ),其中cos φ=a a 2+b 2,sin φ=ba 2+b 2,tan φ=ba.φ的终边所在象限由a 、b 的符号来确定.题型1 化简求值例1 化简:tan(18°-x)tan(12°+x)+3[tan(18°-x)+tan(12°+x)]=________. 答案:1解析:∵ tan[(18°-x)+(12°+x)]=tan (18°-x )+tan (12°+x )1-tan (18°-x )tan (12°+x )=tan30°=33, ∴ tan(18°-x)+tan(12°+x)=33[1-tan(18°-x)·tan(12°+x)],于是原式=tan(18°-x)tan(12°+x)+3×33[1-tan(18°-x)·tan(12°+x)]=1. 变式训练求值:tan20°+tan40°+3tan20°tan40°.解:∵ tan60°=tan(20°+40°)=tan20°+tan40°1-tan20°tan40°=3,∴ tan20°+tan40°=3-3tan20°tan40°, ∴ tan20°+tan40°+3tan20°tan40°= 3. 题型2 给值求角 例2 若sin α=55,sin β=1010,且α、β为锐角,则α+β的值为__________. 答案:π4解析:(解法1)依题意有cos α=1-⎝⎛⎭⎫552=255,cos β=1-⎝⎛⎭⎫10102=31010,∴ cos (α+β)=255×31010-55×1010=22>0.∵ α、β都是锐角,∴ 0<α+β<π,∴ α+β=π4. (解法2)∵ α、β都是锐角,且sin α=55<22,sin β=1010<22,∴ 0<α,β<π4,0<α+β<π2,∴ cos α=1-⎝⎛⎭⎫552=255,cos β=1-⎝⎛⎭⎫10102=31010,sin (α+β)=55×31010+1010×255=22.∴ α+β=π4. 备选变式(教师专享)已知cos α=17,cos(α-β)=1314,且0<β<α<π2,求β.解:∵ 0<β<α<π2,∴ 0<α-β<π2.又cos (α-β)=1314,∴ sin (α-β)=1-cos 2(α-β)=3314,∴ cos β=cos [α-(α-β)]=cos αcos (α-β)+sin αsin (α-β)=17×1314+437×3314=12.又0<β<π2,∴ β=π3.题型3 给值求值例3 已知0<β<π4<α<34π,cos ⎝⎛⎭⎫π4-α=35,sin(3π4+β)=513,求sin (α+β)的值.解:∵π4<α<3π4,∴ -3π4<-α<-π4, ∴ -π2<π4-α<0.又cos ⎝⎛⎭⎫π4-α=35,∴ sin ⎝⎛⎭⎫π4-α=-45.∵ 0<β<π4,∴ 3π4<3π4+β<π.又sin ⎝⎛⎭⎫3π4+β=513,∴ cos ⎝⎛⎭⎫3π4+β=-1213.∴ sin (α+β)=-cos ⎣⎡⎦⎤π2+(α+β)=-cos[(3π4+β)-(π4-α)]=-cos ⎝⎛⎭⎫3π4+βcos ⎝⎛⎭⎫π4-α-sin(3π4+β)·sin ⎝⎛⎭⎫π4-α=-⎝⎛⎭⎫-1213×35-513×⎝⎛⎭⎫-45=3665+2065=5665. 备选变式(教师专享)已知α、β∈⎝⎛⎭⎫0,π2,sin α=45,tan (α-β)=-13,求cos β的值.解:∵ α、β∈⎝⎛⎭⎫0,π2,∴ -π2<α-β<π2.又tan (α-β)=-13<0,∴ -π2<α-β<0.∴1cos 2(α-β)=1+tan 2(α-β)=109.∴ cos (α-β)=31010,sin (α-β)=-1010.又sin α=45,∴ cos α=35.∴ cos β=cos [α-(α-β)]=cos αcos (α-β)+sin αsin (α-β)=35×31010+45×⎝⎛⎭⎫-1010=1010. 例4 (2013·常州期末)已知α、β均为锐角,且sin α=35,tan (α-β)=-13.(1) 求sin (α-β)的值;(2) 求cos β的值.解:(1) ∵ α、β∈⎝⎛⎭⎫0,π2,∴ -π2<α-β<π2.又tan (α-β)=-13<0,∴ -π2<α-β<0.∴ sin (α-β)=-1010. (2) 由(1)可得,cos (α-β)=31010. ∵ α为锐角,sin α=35,∴ cos α=45.∴ cos β=cos [α-(α-β)]=cos αcos (α-β)+sin αsin (α-β) =45×31010+35×⎝⎛⎭⎫-1010=91050. 备选变式(教师专享)已知cos α=13,cos (α+β)=-13,且α、β∈⎝⎛⎭⎫0,π2,求cos (α-β)的值.解:∵α∈⎝⎛⎭⎫0,π2,∴ 2α∈(0,π).∵ cos α=13,∴ cos 2α=2cos 2α-1=-79,∴ sin 2α=1-cos 22α=429,而α、β∈⎝⎛⎭⎫0,π2,∴ α+β∈(0,π),∴ sin (α+β)=1-cos 2(α+β)=223,∴ cos (α-β)=cos [2α-(α+β)]=cos 2αcos (α+β)+sin 2αsin (α+β)=⎝⎛⎭⎫-79×⎝⎛⎭⎫-13+429×223=2327.1. 已知角φ的终边经过点P(1,-2),函数f(x)=sin (ωx +φ)(ω>0)图象的相邻两条对称轴之间的距离为π3,则f ⎝⎛⎭⎫π12=__________.答案:-1010解析:由题意知cos φ=55,sin φ=-255.由相邻两条对称轴间距离为π3,得T 2=π3,即T =2π3,∴ 2πω=2π3,ω=3.∴ f(x)=sin(3x +φ).f ⎝⎛⎭⎫π12=sin ⎝⎛⎭⎫π4+φ=sin π4cos φ+cos π4sin φ=22×55+22×⎝⎛⎭⎫-255=-1010.2. 函数f(x)=sin2x ·sin π6-cos2x ·cos 5π6在⎣⎡⎦⎤-π2,π2上的单调递增区间为_________.答案:⎣⎡⎦⎤-5π12,π12解析:f(x)=sin2xsin π6-cos2x ·cos 5π6=sin2xsin π6+cos2xcos π6=cos(2x -π6).当2kπ-π≤2x -π6≤2k π(k ∈Z ),即k π-5π12≤x ≤k π+π12(k ∈Z )时,函数f(x)单调递增.取k =0得-5π12≤x ≤π12,∴ 函数f(x)在⎣⎡⎦⎤-π2,π2上的单调增区间为⎣⎡⎦⎤-5π12,π12.3. 已知sin ⎝⎛⎭⎫α+π3+sin α=-435,-π2<α<0,则cos α=__________.答案:33-410解析:由sin ⎝⎛⎭⎫α+π3+sin α=-435,得sin α·cos π3+cos α·sin π3+sin α=-435,∴32sin α+12cos α=-45, ∴ sin ⎝⎛⎭⎫α+π6=-45.∵ -π2<α<0,∴ -π3<α+π6<π6,∴ cos ⎝⎛⎭⎫α+π6=35.∴ cos α=cos ⎣⎡⎦⎤⎝⎛⎭⎫α+π6-π6=cos ⎝⎛⎭⎫α+π6cos π6+sin ⎝⎛⎭⎫α+π6sin π6=35×32+⎝⎛⎭⎫-45×12=33-410.4. (2013·贵州)设θ为第二象限角,若tan ⎝⎛⎭⎫θ+π4=12,则sin θ+cos θ=________.答案:-105解析:由tan ⎝⎛⎫θ+π4=1+tan θ1-tan θ=12,得tan θ=-13.因为θ为第二象限角,利用tan θ=sin θcos θ,sin 2θ+cos 2θ=1可求得sin θ=1010,cos θ=-31010,所以sin θ+cos θ=-105.1. 已知α、β均为锐角,且tanβ=cosα-sinαcosα+sinα,则tan(α+β)=________.答案:1解析:∵tanβ=cosα-sinαcosα+sinα,∴tan β=1-tanα1+tanα=tan ⎝⎛⎭⎫π4-α.又∵α、β均为锐角,∴β=π4-α,即α+β=π4,∴tan(α+β)=tan π4=1.2. 已知cos ⎝⎛⎭⎫α-π6+sinα=453,则sin ⎝⎛⎭⎫α+7π6的值为________. 答案:-45解析:∵cos ⎝⎛⎭⎫α-π6+sinα=32cos α+32sin α=453, ∴12cos α+32sin α=45, ∴sin ⎝⎛⎭⎫α+7π6=-sin ⎝⎛⎭⎫α+π6 =-⎝⎛⎭⎫32sinα+12cosα=-45.3. 如图,在平面直角坐标系xOy 中,以Ox 轴为始边作两个锐角α、β,它们的终边分别与单位圆相交于A 、B 两点.已知A 、B 的横坐标分别为210、255.求: (1) tan(α+β)的值;(2) α+2β的值.解:(1) 由已知条件及三角函数的定义可知cosα=210,cos β=255.因α为锐角,故sinα>0,从而sinα=1-cos 2α=7210,同理可得sinβ=55.因此tanα=7,tan β=12. 所以tan(α+β)=tanα+tanβ1-tanαtanβ=7+121-7×12=-3. (2) tan(α+2β)=tan[(α+β)+β]=-3+121-(-3) ×12=-1.又0<α<π2,0<β<π2,故0<α+2β<3π2.从而由tan(α+2β)=-1,得α+2β=3π4.4. 已知函数f(x)=sin ⎝⎛⎭⎫x +74π+cos ⎝⎛⎭⎫x -34π,x ∈R .(1) 求f(x)的最小正周期和最小值;(2) 已知cos (β-α)=45,cos (β+α)=-45,0<α<β≤π2,求证:[f(β)]2-2=0.(1) 解:f(x)=sinxcos7π4+cosxsin 7π4+cosxcos 3π4 +sinxsin 3π4=2sinx -2cosx =2sin ⎝⎛⎭⎫x -π4,所以T =2π,f(x)min =-2.(2) 证明:cos (β-α)=cos αcos β+sin αsin β=45,①cos (β+α)=cos αcos β-sin αsin β=-45.②①+②,得cos αcos β=0, 于是由0<α<β≤π2cos β=0=π2. 故f(β)=2[f(β)]2-2=0.1. (1) 三角函数式的化简要遵循“三看”原则,一看角,二看名,三看式子结构与特征. (2) 对于给角求值问题,往往所给角都是非特殊角,解决这类问题的基本思路有: ① 化为特殊角的三角函数值;② 化为正、负相消的项,消去求值;③ 化分子、分母出现公约数进行约分求值.2. 三角函数的给值求值,关键是把待求角用已知角表示 (1) 已知角为两个时,待求角一般表示为已知角的和与差;(2) 已知角为一个时,待求角一般与已知角成“倍”的关系或“互余互补”关系. 3. 通过求角的某种三角函数值来求角,在选取函数时,遵照以下原则:① 已知正切函数值,选正切函数;② 已知正、余弦函数值,选正弦或余弦函数;若角的范围是⎝⎛⎭⎫0,π2,选正、余弦皆可;若角的范围是(0,π),选余弦较好;若角的范围为⎝⎛⎭⎫-π2,π2,选正弦较好.请使用课时训练(A )第4课时(见活页).[备课札记]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.【2015高考北京,文15】(本小题满分13分)已知函数()2sin 2xf x x =-. (I )求()f x 的最小正周期; (II )求()f x 在区间20,3π⎡⎤⎢⎥⎣⎦上的最小值.【答案】(I )2π;(II )2.【2015高考安徽,文16】已知函数2()(sin cos )cos 2f x x x x =++ (Ⅰ)求()f x 最小正周期; (Ⅱ)求()f x 在区间[0,]2π上的最大值和最小值.【答案】(Ⅰ)π ;(Ⅱ)最大值为1+03.【2015高考福建,文21】已知函数()2cos 10cos 222x x xf x =+. (Ⅰ)求函数()f x 的最小正周期; (Ⅱ)将函数()f x 的图象向右平移6π个单位长度,再向下平移a (0a >)个单位长度后得到函数()g x 的图象,且函数()g x 的最大值为2. (ⅰ)求函数()g x 的解析式;【答案】(Ⅰ)2π;(Ⅱ)(ⅰ)()10sin 8g x x =-;4.【2015高考广东,文16】(本小题满分12分)已知tan 2α=. (1)求tan 4πα⎛⎫+ ⎪⎝⎭的值; (2)求2sin 2sin sin cos cos 21ααααα+--的值. 【答案】(1)3-;(2)1.5.【2015高考湖南,文17】(本小题满分12分)设ABC ∆的内角,,A B C 的对边分别为,,,tan a b c a b A =.(I )证明:sin cos B A =; (II) 若3sin sin cos 4C A B -=,且B 为钝角,求,,A B C . 【答案】(I )略;(II) 30,120,30.A B C ===6.【2015高考山东,文17】 ABC ∆中,角A B C ,,所对的边分别为,,a b c .已知cos ()B A B ac =+==求sin A 和c 的值.7.【2015高考陕西,文17】ABC ∆的内角,,A B C 所对的边分别为,,a b c ,向量()m a =与(cos ,sin )n A B =平行.(I)求A ;(II)若2a b ==求ABC ∆的面积.【答案】(I) 3A π=;(II).8.【2015高考四川,文19】已知A 、B 、C 为△ABC 的内角,tanA 、tanB 是关于方程x 2px -p +1=0(p ∈R )两个实根. (Ⅰ)求C 的大小(Ⅱ)若AB =1,AC ,求p 的值9.【2015高考天津,文16】(本小题满分13分)△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知△ABC 的面积为,12,cos ,4b c A -==- (I )求a 和sin C 的值; (II )求πcos 26A ⎛⎫+ ⎪⎝⎭的值.【答案】(I )a =8,sin C =(II10.【2015高考新课标1,文17】(本小题满分12分)已知,,a b c 分别是ABC ∆内角,,A B C 的对边,2sin 2sin sin B A C =.(I )若a b =,求cos ;B(II )若90B = ,且a = 求ABC ∆的面积.【答案】(I )14(II )111.【2015高考浙江,文16】(本题满分14分)在ABC ∆中,内角A ,B ,C 所对的边分别为,,a b c .已知tan(A)24π+=.(1)求2sin 2sin 2cos AA A+的值; (2)若B ,34a π==,求ABC ∆的面积.【答案】(1)25;(2)912.【2015高考重庆,文18】已知函数f(x)=122cos x . (Ⅰ)求f (x )的最小周期和最小值,(Ⅱ)将函数f (x )的图像上每一点的横坐标伸长到原来的两倍,纵坐标不变,得到函数g (x )的图像.当x ∈,2ππ⎡⎤⎢⎥⎣⎦时,求g(x)的值域.【答案】(Ⅰ)()f x 的最小正周期为p ,最小值为-(Ⅱ).13【2015高考天津,文16】(本小题满分13分)△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知△ABC 的面积为,12,cos ,4b c A -==- (I )求a 和sin C 的值;(II )求πcos 26A ⎛⎫+⎪⎝⎭的值.【答案】(I )a =8,sin C =(II16.【2015高考北京,文15】(本小题满分13分)已知函数()2sin 2xf x x =-. (I )求()f x 的最小正周期; (II )求()f x 在区间20,3π⎡⎤⎢⎥⎣⎦上的最小值.【答案】(I )2π;(II )(Ⅱ)∵203x π≤≤,∴33x πππ≤+≤. 当3x ππ+=,即23x π=时,()f x 取得最小值.∴()f x 在区间2[0,]3π上的最小值为2()3f π=.17.【2015高考安徽,文16】已知函数2()(sin cos )cos 2f x x x x =++ (Ⅰ)求()f x 最小正周期; (Ⅱ)求()f x 在区间[0,]2π上的最大值和最小值.【答案】(Ⅰ)π ;(Ⅱ)最大值为1+0 【解析】(Ⅰ)因为x x x x x x x x f 2cos 2sin 12cos cos sin 2cos sin )(22++=+++=1)42sin(2++=πx所以函数)(x f 的最小正周期为ππ==22T . (Ⅱ)由(Ⅰ)得计算结果,1)42sin(2)(++=πx x f当]2,0[π∈x 时,]45,4[42πππ∈+x由正弦函数x y sin =在]45,4[ππ上的图象知,当242ππ=+x ,即8π=x 时,)(x f 取最大值12+;当4542ππ=+x ,即4π=x 时,)(x f 取最小值0.综上,)(x f 在[0,]2π上的最大值为12+,最小值为0.18.【2015高考福建,文21】已知函数()2cos 10cos 222x x xf x =+. (Ⅰ)求函数()f x 的最小正周期; (Ⅱ)将函数()f x 的图象向右平移6π个单位长度,再向下平移a (0a >)个单位长度后得到函数()g x 的图象,且函数()g x 的最大值为2. (ⅰ)求函数()g x 的解析式;【答案】(Ⅰ)2π;(Ⅱ)(ⅰ)()10sin 8g x x =-;(ⅱ)详见解析.【解析】(I )因为()2cos 10cos 222x x xf x =+5cos 5x x =++10sin 56x π⎛⎫=++ ⎪⎝⎭.所以函数()f x 的最小正周期2πT =. (II )(i )将()f x 的图象向右平移6π个单位长度后得到10sin 5y x =+的图象,再向下平移a (0a >)个单位长度后得到()10sin 5g x x a =+-的图象.又已知函数()g x 的最大值为2,所以1052a +-=,解得13a =. 所以()10sin 8g x x =-.19.【2015高考广东,文16】(本小题满分12分)已知tan 2α=. (1)求tan 4πα⎛⎫+ ⎪⎝⎭的值; (2)求2sin 2sin sin cos cos 21ααααα+--的值.【答案】(1)3-;(2)1. 【解析】试题分析:(1)由两角和的正切公式展开,代入数值,即可得tan 4πα⎛⎫+ ⎪⎝⎭的值;(2)先利用二倍角的正、余弦公式可得222sin 22sin cos sin sin cos cos 21sin sin cos 2cos ααααααααααα=+--+-,再分子、分母都除以2cos α可得22sin 22tan sin sin cos cos 21tan tan 2αααααααα=+--+-,代入数值,即可得2sin 2sin sin cos cos 21ααααα+--的值.试题解析:(1)tan tantan 1214tan 341tan 121tan tan 4παπααπαα+++⎛⎫+====- ⎪--⎝⎭- (2)2sin 2sin sin cos cos 21ααααα+--()222sin cos sin sin cos 2cos 11αααααα=+--- 222sin cos sin sin cos 2cos αααααα=+- 22tan tan tan 2ααα=+-222222⨯=+-1=21.【2015高考湖南,文17】(本小题满分12分)设ABC ∆的内角,,A B C 的对边分别为,,,tan a b c a b A =. (I )证明:sin cos B A =; (II) 若3sin sin cos 4C A B -=,且B 为钝角,求,,A B C . 【答案】(I )略;(II) 30,120,30.A B C ===【解析】试题分析:(I )由题根据正弦定理结合所给已知条件可得sin sin cos sin A AA B=,所以sin cos B A = ;(II)根据两角和公式化简所给条件可得3sin sin cos cos sin 4C A B A B -==,可得23sin 4B =,结合所给角B 的范围可得角B,进而可得角A,由三角形内角和可得角C.22.【2015高考山东,文17】 ABC ∆中,角A B C ,,所对的边分别为,,a b c .已知cos ()B A B ac =+==求sin A 和c 的值.【解析】在ABC ∆中,由cos B =sin B =因为A B C π++=,所以sin sin()C A B =+=, 因为sin sin C B <,所以C B <,C为锐角,cos C =因此sin sin()sin cos cos sin A B C B C B C =+=+==. 由,sin sin a c A C =可得sin sin c A a C ===,又ac =,所以1c =.23.【2015高考陕西,文17】ABC ∆的内角,,A B C 所对的边分别为,,a b c ,向量()m a =与(cos ,sin )n A B =平行.(I)求A ;(II)若2a b ==求ABC ∆的面积.【答案】(I) 3A π=;(II).试题解析:(I)因为//m n,所以sin cos 0a B A =由正弦定理,得sin sin cos 0A B B A =,又sin 0B ≠,从而tan A =,由于0A π<< 所以3A π=(II)解法一:由余弦定理,得2222cos a b c bc A =+-,而2a b ==,3A π=,得2742c c =+-,即2230c c --= 因为0c >,所以3c =,故ABC ∆面积为1sin 2bc A =.2sin B=从而sin B =又由a b >知A B >,所以cos B =故sin sin()sin()3C A B B π=+=+sin coscos sin33B B ππ=+=所以ABC ∆面积为1sin 2ab C =. 24.【2015高考四川,文19】已知A 、B 、C 为△ABC 的内角,tanA 、tanB 是关于方程x 2px -p +1=0(p ∈R )两个实根. (Ⅰ)求C 的大小(Ⅱ)若AB =1,AC,求p 的值【解析】(Ⅰ)由已知,方程x 2-p +1=0的判别式 △=p )2-4(-p +1)=3p 2+4p -4≥0所以p ≤-2或p ≥23由韦达定理,有tanA +tanB,tanAtanB =1-p 于是1-tanAtanB =1-(1-p )=p ≠0 从而tan (A +B )=tan tan 1tan tan A B A B +==-所以tanC =-tan (A +B )所以C =60° (Ⅱ)由正弦定理,得sinB=sin AC C AB ==解得B =45°或B =135°(舍去) 于是A =180°-B -C =75°则tanA =tan 75°=tan (45°+30°)=000tan 45tan 3021tan 45tan 30+==+- 所以p(tanA +tanB )+1)=-125.【2015高考天津,文16】(本小题满分13分)△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知△ABC 的面积为,12,cos ,4b c A -==-(I )求a 和sin C 的值; (II )求πcos 26A ⎛⎫+⎪⎝⎭的值.【答案】(I )a =8,sin C =(II 【解析】(I )由面积公式可得24,bc =结合2,b c -=可求得解得6, 4.b c ==再由余弦定理求得a =8.最后由正弦定理求sin C 的值;(II )直接展开求值.试题解析:(I )△ABC 中,由1cos ,4A =-得sin A = 由1sin 2bc A =,得24,bc = 又由2,b c -=解得6, 4.b c == 由2222cos a b c bc A =+- ,可得a =8.由sin sin a cA C=,得sin C =(II ))2πππcos 2cos 2cos sin 2sin 2cos 1sin cos 666A A A A A A ⎛⎫+=-=-- ⎪⎝⎭,=26.【2015高考新课标1,文17】(本小题满分12分)已知,,a b c 分别是ABC ∆内角,,A B C 的对边,2sin 2sin sin B A C =.(I )若a b =,求cos ;B(II )若90B = ,且a = 求ABC ∆的面积.【答案】(I )14(II )1 试题解析:(I )由题设及正弦定理可得22b ac =. 又a b =,可得2b c =,2a c =,由余弦定理可得2221cos 24a cb B ac +-==. (II )由(1)知22b ac =.因为B =90°,由勾股定理得222a c b +=.故222a c ac +=,得c a ==. 所以D ABC 的面积为1.27.【2015高考浙江,文16】(本题满分14分)在ABC ∆中,内角A ,B ,C 所对的边分别为,,a b c .已知tan(A)24π+=. (1)求2sin 2sin 2cos A A A+的值; (2)若B ,34a π==,求ABC ∆的面积. 【答案】(1)25;(2)9 【解析】(1)利用两角和与差的正切公式,得到1tan 3A =,利用同角三角函数基本函数关系式得到结论;(2)利用正弦定理得到边b 的值,根据三角形,两边一夹角的面积公式计算得到三角形的面积.试题解析:(1)由tan(A)24π+=,得1tan 3A =, 所以22sin 22sin cos 2tan 2sin 2cos 2sin cos cos 2tan 15A A A A A A A A A A ===+++.(2)由1tan 3A =可得,sin A A ==.3,4a B π==,由正弦定理知:b =又sin sin()sin cos cos sin C A B A B A B =+=+=,所以11sin 3922ABC S ab C ∆==⨯⨯=.28.【2015高考重庆,文18】已知函数f(x)=122cos x . (Ⅰ)求f (x )的最小周期和最小值,(Ⅱ)将函数f (x )的图像上每一点的横坐标伸长到原来的两倍,纵坐标不变,得到函数g (x )的图像.当x ∈,2ππ⎡⎤⎢⎥⎣⎦时,求g(x)的值域.【答案】(Ⅰ)()f x 的最小正周期为p ,最小值为-(Ⅱ). 【解析】试题分析:(Ⅰ)首先用降幂公式将函数21()sin 22f x x x =-的解析式化为()sin()f x A x B ωϕ=++的形式,从而就可求出()f x 的最小周期和最小值,(Ⅱ)由题目所给变换及(Ⅰ)的化简结果求出函数()g x 的表达式,再由,2x ππ⎡⎤∈⎢⎥⎣⎦并结合正弦函数的图象即可求出其值域.试题解析: (1) 211()sin 2sin 2cos 2)22f x x x x x =-=-+1sin 22sin(2)23x x x p =--=--,因此()f x 的最小正周期为p ,最小值为-.(2)由条件可知:g()sin()3x x p =--. 当[,]2x p p Î时,有2[,]363x p p p -?, 从而sin()3x p -的值域为1[,1]2,那么sin()3x p --的值域为.故g()x 在区间[,]2p p 上的值域是. 28.【2015高考天津,文16】(本小题满分13分)△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知△ABC 的面积为,12,cos ,4b c A -==-(I )求a 和sin C 的值;(II )求πcos 26A ⎛⎫+ ⎪⎝⎭的值.【答案】(I )a =8,sin C =(II 【解析】(I )由面积公式可得24,bc =结合2,b c -=可求得解得6, 4.b c ==再由余弦定理求得a =8.最后由正弦定理求sin C 的值;(II )直接展开求值.试题解析:(I )△ABC 中,由1cos ,4A =-得sin A = 由1sin 2bc A =,得24,bc = 又由2,b c -=解得6, 4.b c == 由2222cos a b c bc A =+- ,可得a =8.由sin sin a c A C= ,得sin C =(II ))2πππcos 2cos 2cos sin 2sin 2cos 1sin cos 666A A A A A A ⎛⎫+=-=-- ⎪⎝⎭,=。

相关文档
最新文档