一次函数题目精选与解析3

合集下载

一次函数基本题型讲解( 附答案版)

一次函数基本题型讲解( 附答案版)

一次函数基本题型过关卷题型一、点的坐标方法: x 轴上的点纵坐标为0,y 轴上的点横坐标为0;若两个点关于x 轴对称,则他们的横坐标相同,纵坐标互为相反数; 若两个点关于y 轴对称,则它们的纵坐标相同,横坐标互为相反数;若两个点关于原点对称,则它们的横坐标互为相反数,纵坐标也互为相反数; 1、 已知A (4,b ),B (a,-2),若A ,B 关于x 轴对称,则a=_______,b=_________;若A,B关于y 轴对称,则a=_______,b=__________;若若A ,B 关于原点对称,则a=_______,b=_________;2、 若点M (1-x,1-y )在第二象限,那么点N (1-x,y-1)关于原点的对称点在第______象限。

题型二、关于点的距离的问题方法:点到x 轴的距离用纵坐标的绝对值表示,点到y 轴的距离用横坐标的绝对值表示;任意两点(,),(,)A A B B A x y B x y ; 若AB ∥x 轴,则(,0),(,0)A B A x B x 的距离为A B x x -; 若AB ∥y 轴,则(0,),(0,)A B A y B y 的距离为A B y y -;点(,)A A A x y1、 点D (a,b )到x 轴的距离是_________;到y 轴的距离是____________;到原点的距离是____________; 2、 已知点P (3,0),Q(-2,0),则PQ=__________,两点(3,-4)、(5,a )间的距离是2,则a的值为__________; 3、 已知点A (0,2)、B (-3,-2)、C (a,b ),若C 点在x 轴上,且∠ACB=90°,则C 点坐标为___________.题型三、一次函数与正比例函数的识别方法:若y=kx+b(k,b 是常数,k ≠0),那么y 叫做x 的一次函数,特别的,当b=0时,一次函数就成为y=kx(k 是常数,k ≠0),这时,y 叫做x 的正比例函数,当k=0时,一次函数就成为若y=b ,这时,y 叫做常函数。

一次函数难题汇编及答案解析

一次函数难题汇编及答案解析

一次函数难题汇编及答案解析一、选择题1.一次函数y mx n =-+结果是( )A .mB .m -C .2m n -D .2m n -【答案】D【解析】【分析】根据题意可得﹣m <0,n <0,再进行化简即可.【详解】∵一次函数y =﹣mx +n 的图象经过第二、三、四象限,∴﹣m <0,n <0,即m >0,n <0,=|m ﹣n |+|n |=m ﹣n ﹣n=m ﹣2n ,故选D .【点睛】本题考查了二次根式的性质与化简以及一次函数的图象与系数的关系,熟练掌握一次函数的图象与性质是解题的关键.2.给出下列函数:①y =﹣3x +2:②y =3x ;③y =﹣5x:④y =3x ,上述函数中符合条件“当x >1时,函数值y 随自变量x 增大而增大”的是( ) A .①③B .③④C .②④D .②③ 【答案】B【解析】【分析】分别利用一次函数、正比例函数、反比例函数的增减性分析得出答案.【详解】解:①y =﹣3x +2,当x >1时,函数值y 随自变量x 增大而减小,故此选项不符合题意; ②y =3x,当x >1时,函数值y 随自变量x 增大而减小,故此选项不符合题意; ③y =﹣5x,当x >1时,函数值y 随自变量x 增大而增大,故此选项符合题意; ④y =3x ,当x >1时,函数值y 随自变量x 增大而增大,故此选项符合题意; 故选:B .【点睛】此题考查一次函数、正比例函数、反比例函数,正确把握相关性质是解题关键.3.一次函数y=ax+b与反比例函数a byx-=,其中ab<0,a、b为常数,它们在同一坐标系中的图象可以是()A.B.C.D.【答案】C【解析】【分析】根据一次函数的位置确定a、b的大小,看是否符合ab<0,计算a-b确定符号,确定双曲线的位置.【详解】A. 由一次函数图象过一、三象限,得a>0,交y轴负半轴,则b<0,满足ab<0,∴a−b>0,∴反比例函数y=a bx-的图象过一、三象限,所以此选项不正确;B. 由一次函数图象过二、四象限,得a<0,交y轴正半轴,则b>0,满足ab<0,∴a−b<0,∴反比例函数y=a bx-的图象过二、四象限,所以此选项不正确;C. 由一次函数图象过一、三象限,得a>0,交y 轴负半轴,则b<0,满足ab<0,∴a −b>0,∴反比例函数y=a b x-的图象过一、三象限, 所以此选项正确; D. 由一次函数图象过二、四象限,得a<0,交y 轴负半轴,则b<0,满足ab>0,与已知相矛盾所以此选项不正确;故选C.【点睛】 此题考查反比例函数的图象,一次函数的图象,解题关键在于确定a 、b 的大小4.如图,已知一次函数22y x =-+的图象与坐标轴分别交于A 、B 两点,⊙O 的半径为1,P 是线段AB 上的一个点,过点P 作⊙O 的切线PM ,切点为M ,则PM 的最小值为( )A .2B 2C 5D 3【答案】D【解析】【分析】【详解】 解:连结OM 、OP ,作OH ⊥AB 于H ,如图,先利用坐标轴上点的坐标特征:当x=0时,y=﹣22,则A (0,2),当y=0时,﹣2=0,解得2,则B (2,0),所以△OAB 为等腰直角三角形,则2OA=4,OH=12AB=2, 根据切线的性质由PM 为切线,得到OM ⊥PM ,利用勾股定理得到22OP OM -21OP -当OP 的长最小时,PM 的长最小,而OP=OH=2时,OP 的长最小,所以PM 的最小值为2213-=【点睛】本题考查切线的性质;一次函数图象上点的坐标特征.5.在平面直角坐标系中,一次函数y=kx+b的图象如图所示,则k和b的取值范围是()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0【答案】C【解析】【分析】根据一次函数的图象与系数的关系进行解答即可.【详解】∵一次函数y=kx+b的图象经过一、二、四象限,∴k<0,b>0,故选C.【点睛】本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k <0,b>0时图象在一、二、四象限.6.一次函数y=kx+b(k<0,b>0)的图象可能是()A. B. C.D.【解析】【分析】根据k 、b 的符号来求确定一次函数y=kx+b 的图象所经过的象限.【详解】∵k<0,∴一次函数y=kx+b 的图象经过第二、四象限.又∵b >0时,∴一次函数y=kx+b 的图象与y 轴交与正半轴.综上所述,该一次函数图象经过第一象限.故答案为:C.【点睛】考查一次函数图象在坐标平面内的位置与k 、b 的关系.解答本题注意理解:直线y=kx+b 所在的位置与k 、b 的符号有直接的关系.k >0时,直线必经过一、三象限.k <0时,直线必经过二、四象限.b >0时,直线与y 轴正半轴相交.b=0时,直线过原点;b <0时,直线与y 轴负半轴相交.7.若点()11,x y ,()22,x y ,()33,x y 都是一次函数1y x =--图象上的点,并且123y y y <<,则下列各式中正确的是( )A .123x x x <<B .132x x x <<C .213x x x <<D .321x x x <<【答案】D【解析】【分析】根据一次函数的性质即可得答案.【详解】∵一次函数1y x =--中10k =-<,∴y 随x 的增大而减小,∵123y y y <<,∴123x x x >>.故选:D .【点睛】本题考查一次函数的性质,对于一次函数y=kx+b(k≠0),当k >0时,图象经过一、三、象限,y 随x 的增大而增大;当k <0时,图象经过二、四、象限,y 随x 的增大而减小;熟练掌握一次函数的性质是解题关键.8.某一次函数的图象经过点()1,2,且y 随x 的增大而减小,则这个函数的表达式可能是( )A .24y x =+B .24y x =-+C .31y xD .31y x -=-【答案】B【解析】【分析】 设一次函数关系式为y kx b =+,把(1,2)代入可得k+b=2,根据y 随x 的增大而减小可得k <0,对各选项逐一判断即可得答案.【详解】设一次函数关系式为y kx b =+,∵图象经过点()1,2,2k b ∴+=;∵y 随x 增大而减小,∴k 0<,A.2>0,故该选项不符合题意,B.-2<0,-2+4=2,故该选项符合题意,C.3>0,故该选项不符合题意,D.∵31y x -=-,∴y=-3x+1,-3+1=-2,故该选项不符合题意,故选:B .【点睛】本题考查一次函数的性质及一次函数图象上的点的坐标特征,对于一次函数y=kx+b(k≠0),当k >0时,图象经过一、三、象限,y 随x 的增大而增大;当k <0时,图象经过二、四、象限,y 随x 的增大而减小;熟练掌握一次函数的性质是解题关键.9.如图,在矩形AOBC 中,A (–2,0),B (0,1).若正比例函数y=kx 的图象经过点C ,则k 的值为( )A .–12B .12C .–2D .2【答案】A【解析】【分析】根据已知可得点C 的坐标为(-2,1),把点C 坐标代入正比例函数解析式即可求得k.【详解】∵A(-2,0),B(0,1),∴OA=2,OB=1,∵四边形OACB 是矩形,∴BC=OA=2,AC=OB=1,∵点C 在第二象限,∴C 点坐标为(-2,1),∵正比例函数y =kx 的图像经过点C ,∴-2k=1,∴k=-12, 故选A. 【点睛】本题考查了矩形的性质,待定系数法求正比例函数解析式,根据已知求得点C 的坐标是解题的关键.10.如图,在平面直角坐标系中,OABC 的顶点A 在x 轴上,定点B 的坐标为(6,4),若直线经过定点(1,0),且将平行四边形OABC 分割成面积相等的两部分,则直线的表达式( )A .+1y x =B .4455y x =-C .1y x =-D .33y x =-【答案】C【解析】【分析】 根据过平行四边形的中心的直线把平行四边形分成面积相等的两部分,先求出平行四边形中心的坐标,再利用待定系数法求一次函数解析式解答即可.【详解】∵点B 的坐标为(6,4),∴平行四边形的中心坐标为(3,2),设直线l 的函数解析式为y kx b =+,则320k b k b +=⎧⎨+=⎩,解得11k b =⎧⎨=-⎩,所以直线l 的解析式为1y x =-. 故选:C .【点睛】本题考查了待定系数法求一次函数解析式,平行四边形的性质,熟练掌握过平行四边形的中心的直线把平行四边形分成面积相等的两部分是解题的关键.11.若一次函数y=kx+b 的图象经过一、二、四象限,则一次函数y=-bx+k 的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】A【解析】【分析】根据一次函数y=kx+b 图象在坐标平面内的位置关系先确定k ,b 的取值范围,再根据k ,b 的取值范围确定一次函数y=-bx+k 图象在坐标平面内的位置关系,从而求解.【详解】解:一次函数y=kx+b 过一、二、四象限,则函数值y 随x 的增大而减小,因而k <0;图象与y 轴的正半轴相交则b >0,因而一次函数y=-bx+k 的一次项系数-b <0,y 随x 的增大而减小,经过二四象限,常数项k <0,则函数与y 轴负半轴相交,因而一定经过二三四象限,因而函数不经过第一象限.故选:A .【点睛】本题考查了一次函数的图象与系数的关系.函数值y 随x 的增大而减小⇔k <0;函数值y 随x 的增大而增大⇔k >0;一次函数y=kx+b 图象与y 轴的正半轴相交⇔b >0,一次函数y=kx+b 图象与y 轴的负半轴相交⇔b <0,一次函数y=kx+b 图象过原点⇔b=0.12.若一次函数(2)1y k x =-+的函数值y 随x 的增大而增大,则( )A .2k <B .2k >C .0k >D .k 0<【答案】B【解析】【分析】根据一次函数图象的增减性来确定(k-2)的符号,从而求得k 的取值范围.【详解】∵在一次函数y=(k-2)x+1中,y 随x 的增大而增大,∴k-2>0,∴k >2,故选B.【点睛】本题考查了一次函数图象与系数的关系.在直线y=kx+b (k≠0)中,当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小.13.一次函数 y = mx +1m -的图像过点(0,2),且 y 随 x 的增大而增大,则 m 的值为( )A .-1B .3C .1D .- 1 或 3【答案】B【解析】【分析】 先根据函数的增减性判断出m 的符号,再把点(0,2)代入求出m 的值即可.【详解】∵一次函数y=mx+|m-1|中y 随x 的增大而增大,∴m >0.∵一次函数y=mx+|m-1|的图象过点(0,2),∴当x=0时,|m-1|=2,解得m 1=3,m 2=-1<0(舍去).故选B .【点睛】本题考查的是一次函数图象上点的坐标特点及一次函数的性质,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.14.如图,过点1(1,0)A 作x 轴的垂线,交直线2y x =于点1B ;点2A 与点O 关于直线11A B 对称;过点2(2,0)A 作x 轴的垂线,交直线2y x =于点2B ;点3A 与点O 关于直线22A B 对称;过点3A 作x 轴的垂线,交直线2y x =于点3B ;按3B 此规律作下去,则点n B 的坐标为( )A .(2n ,2n-1)B .(12n -,2n )C .(2n+1,2n )D .(2n ,12n +)【答案】B【解析】【分析】 先根据题意求出点A 2的坐标,再根据点A 2的坐标求出B 2的坐标,以此类推总结规律便可求出点n B 的坐标.【详解】∵1(1,0)A∴11OA =∵过点1(1,0)A 作x 轴的垂线,交直线2y x =于点1B∴()11,2B∵2(2,0)A∴22OA =∵过点2(2,0)A 作x 轴的垂线,交直线2y x =于点2B∴()12,4B∵点3A 与点O 关于直线22A B 对称∴()()334,0,4,8A B以此类推便可求得点A n 的坐标为()12,0n -,点B n 的坐标为()12,2n n - 故答案为:B .【点睛】本题考查了坐标点的规律题,掌握坐标点的规律、轴对称的性质是解题的关键.15.生物活动小组的同学们观察某植物生长,得到该植物高度y (单位:cm )与观察时间x (单位:天)的关系,并画出如图所示的图象(//CD x 轴),该植物最高的高度是( )A .50cmB .20cmC .16cmD .12cm【答案】C【解析】【分析】 设直线AC 的解析式为()0y kx b k =+≠,然后利用待定系数法求出直线AC 的解析式,再把50x =代入进行计算即可得解.【详解】解:设直线AC 的解析式为()0y kx b k =+≠∵()0,6A ,()30,12B∴61230b k b =⎧⎨=+⎩∴156k b ⎧=⎪⎨⎪=⎩ ∴165y x =+ ∴当50x =时,16y =∴该植物最高的高度是16cm .故选:C 【点睛】本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,已知自变量求函数值,仔细观察图象,准确获取信息是解题的关键.16.如图1,在Rt △ABC 中,∠ACB=90°,点P 以每秒1cm 的速度从点A 出发,沿折线AC -CB 运动,到点B 停止.过点P 作PD ⊥AB ,垂足为D ,PD 的长y (cm )与点P 的运动时间x (秒)的函数图象如图2所示.当点P 运动5秒时,PD 的长是( )A .1.5cmB .1.2cmC .1.8cmD .2cm【答案】B【解析】【分析】【详解】 由图2知,点P 在AC 、CB 上的运动时间时间分别是3秒和4秒,∵点P 的运动速度是每秒1cm ,∴AC=3,BC=4.∵在Rt △ABC 中,∠ACB=90°,∴根据勾股定理得:AB=5.如图,过点C 作CH ⊥AB 于点H ,则易得△ABC ∽△ACH .∴CH AC BC AB =,即AC BC 3412CH CH AB 55⋅⨯=⇒==. ∴如图,点E (3,125),F (7,0). 设直线EF 的解析式为y kx b =+,则 123k b {507k b=+=+, 解得:3k 5{21b 5=-=. ∴直线EF 的解析式为321y x 55=-+. ∴当x 5=时,()3216PD y 5 1.2cm 555==-⨯+==. 故选B .17.函数()312y m x =+-中,y 随x 的增大而增大,则直线()12y m x =---经过( ) A .第一、三、四象限B .第二、三、四象限C .第一、二、四象限D .第一、二、三象限 【答案】B【解析】【分析】根据一次函数的增减性,可得310m +>;从而可得10m --<,据此判断直线()12y m x =---经过的象限.【详解】 解:函数()312y m x =+-中,y 随x 的增大而增大,310m ∴+>,则13m >- 10m ∴--<,∴直线()12y m x =---经过第二、三、四象限.故选:B .【点睛】本题考查了一次函数的性质,正确掌握一次函数图象与系数的关系是解题的关键.即一次函数y=kx+b (k≠0)中,当k >0时,y 随x 的增大而增大,图象经过一、三象限;当k <0时,y 随x 的增大而减小,图象经过二、四象限;当b >0时,此函数图象交y 轴于正半轴;当b <0时,此函数图象交y 轴于负半轴.18.函数12y x =-与23y ax =+的图像相交于点(),2A m ,则( )A .1a =B .2a =C .1a =-D .2a =-【答案】A【解析】【分析】将点(),2A m 代入12y x =-,求出m ,得到A 点坐标,再把A 点坐标代入23y ax =+,即可求出a 的值.【详解】 解:函数12y x =-过点(),2A m , 22m ∴-=,解得:1m =-,()1,2A ∴-,函数23y ax =+的图象过点A ,32a ∴-+=,解得:1a =.故选:A .【点睛】本题考查了两条直线的交点问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.也考查了一次函数图象上点的坐标特征.19.已知一次函数21,y x =-+当0x ≤时, y 的取值范围为( )A .1y ≤B .0y ≥C .0y ≤D .1y ≥【答案】D【解析】【分析】根据不等式的性质进行计算可以求得y 的取值范围.【详解】解:∵0x ≤∴2x -0≥ 21x -+1≥故选:D.【点睛】此题主要考查一次函数的图象与性质,既可以根据函数的图象与性质,也可以根据不等式的性质求解,灵活选择简便方法是解题关键.20.在同一平面直角坐标系中的图像如图所示,则关于21k x k x b <+的不等式的解为( ).A .1x >-B .2x <-C .1x <-D .无法确定【答案】C【解析】【分析】 求关于x 的不等式12k x b k x +>的解集就是求:能使函数1y k x b =+的图象在函数2y k x =的上边的自变量的取值范围.【详解】解:能使函数1y k x b =+的图象在函数2y k x =的上边时的自变量的取值范围是1x <-. 故关于x 的不等式12k x b k x +>的解集为:1x <-.故选:C .【点睛】本题考查了一次函数与一元一次不等式的关系,从函数的角度看,就是寻求使一次函数y ax b =+的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y kx b =+在x 轴上(或下)方部分所有的点的横坐标所构成的集合.利用数形结合是解题的关键.。

一次函数经典题及答案

一次函数经典题及答案

一次函数经典题一.定义型例1. 已知函数是一次函数,求其解析式。

解:由一次函数定义知,,故一次函数的解析式为y=-6x+3。

注意:利用定义求一次函数y=kx+b解析式时,要保证k≠0。

如本例中应保证m-3≠0。

二. 点斜型例2. 已知一次函数y=kx-3的图像过点(2, -1),求这个函数的解析式。

解:一次函数的图像过点(2, -1),,即k=1。

故这个一次函数的解析式为y=x-3。

变式问法:已知一次函数y=kx-3 ,当x=2时,y=-1,求这个函数的解析式。

三. 两点型例3.已知某个一次函数的图像与x轴、y轴的交点坐标分别是(-2, 0)、(0, 4),则这个函数的解析式为_____。

解:设一次函数解析式为y=kx+b,由题意得,故这个一次函数的解析式为y=2x+4四. 图像型例4. 已知某个一次函数的图像如图所示,则该函数的解析式为__________。

解:设一次函数解析式为y=kx+b由图可知一次函数的图像过点(1, 0)、(0, 2)有故这个一次函数的解析式为y=-2x+2五. 斜截型例5. 已知直线y=kx+b与直线y=-2x平行,且在y轴上的截距为2,则直线的解析式为___________。

解析:两条直线;。

当k1=k2,b1≠b2时,直线y=kx+b与直线y=-2x平行,。

又直线y=kx+b在y轴上的截距为2,故直线的解析式为y=-2x+2六. 平移型例6. 把直线y=2x+1向下平移2个单位得到的图像解析式为___________。

解析:设函数解析式为y=kx+b,直线y=2x+1向下平移2个单位得到的直线y=kx+b与直线y=2x+1平行直线y=kx+b在y轴上的截距为b=1-2=-1,故图像解析式为七. 实际应用型例7. 某油箱中存油20升,油从管道中匀速流出,流速为0.2升/分钟,则油箱中剩油量Q(升)与流出时间t(分钟)的函数关系式为___________。

解:由题意得Q=20-0.2t ,即Q=-0.2t+20故所求函数的解析式为Q=-0.2t+20()注意:求实际应用型问题的函数关系式要写出自变量的取值范围。

江苏省中考真题精选《3.3一次函数的应用》练习含解析

江苏省中考真题精选《3.3一次函数的应用》练习含解析

第一部分考点研究第三章函数第12课时一次函数的应用江苏近4年中考真题精选(~)命题点1 一次函数图象性质的综合应用(2次,2次,2次,2次)1. (盐城25题10分)如果两个一次函数y=k1x+b1和y=k2x+b2满足k1=k2、b1≠b2,那么称这两个一次函数为“平行一次函数”.如图,已知函数y=-2x+4的图象与x轴、y轴分别交于A、B两点,一次函数y=kx+b 与y=-2x+4是“平行一次函数”.(1)若函数y=kx+b的图象过点(3,1),求b的值;(2)若函数y=kx+b的图象与两坐标轴围成的三角形和△AOB构成位似图形,位似中心为原点,位似比为1∶2,求函数y=kx+b的表达式.第1题图2. (泰州26题14分)已知一次函数y=2x-4的图象与x轴、y轴分别相交于点A、B,点P 在该函数的图象上,P到x轴、y轴的距离分别为d1、d2.(1)当P为线段AB的中点时,求d1+d2的值;(2)直接写出d1+d2的范围,并求当d1+d2=3时点P的坐标;(3)若在线段AB上存在无数个P点,使d1+ad2=4(a为常数),求a的值.3. (无锡27题10分)如图①,菱形ABCD中,∠A=60°.点P从A出发,以2 cm/s的速度沿边AB、BC、CD匀速运动到D终止;点Q 从 A 与 P 同时出发,沿边 AD 匀速运动到 D 终止,设点 P 运动的时间为t(s).△APQ的面积S(cm2)与t(s)之间函数关系的图象由图②中的曲线段OE与线段EF、FG给出.第3题图(1)求点Q运动的速度;(2)求图②中线段FG的函数关系式;(3)问:是否存在这样的t,使 PQ将菱形ABCD的面积恰好分成1∶5的两部分?若存在,求出这样的t的值;若不存在,请说明理由.命题点2 一次函数的实际应用(8次,8次,8次,7次)第4题图4. (镇江11题2分)一辆货车从甲地匀速驶往乙地,到达乙地后用了半小时卸货,随即匀速返回,已知货车返回时的速度是它从甲地驶往乙地的速度的1.5倍,货车离甲地的距离y(千米)关于时间x(小时)的函数图象如图所示,则a=________(小时).5. (无锡25题8分)某工厂以80元/箱的价格购进60箱原材料,准备由甲、乙两车间全部用于生产A产品.甲车间用每箱原材料可生产出A产品12千克,需耗水4吨;乙车间通过节能改造,用每箱原材料可生产出的A产品比甲车间少2千克,但耗水量是甲车间的一半.已知A产品售价为30元/千克,水价为5元/吨.如果要求这两车间生产这批产品的总耗水量不得超过200吨,那么该厂如何分配两车间的生产任务,才能使这次生产所能获取的利润w 最大?最大利润是多少?(注:利润=产品总售价-购买原材料成本-水费)6. (南通25题9分)如图①,底面积为30 cm2的空圆柱形容器内水平放置着由两个实心圆柱组成的“几何体”.现向容器内匀速注水,注满为止.在注水过程中,水面高度h(cm)与注水时间t(s)之间的关系如图②所示.请根据图中提供的信息,解答下列问题:第6题图(1)圆柱形容器的高为________cm,匀速注水的水流速度为________cm3/s;(2)若“几何体”的下方圆柱的底面积为15 cm2,求“几何体”上方圆柱的高和底面积.7. (南京23题8分)如图中的折线ABC表示某汽车的耗油量y(单位:L/km)与速度x(单位:km/h)之间的函数关系(30≤x≤120).已知线段BC表示的函数关系中,该汽车的速度每增加1 km/h,耗油量增加0.002 L/km.(1)当速度为50 km/h、100 km/h时,该汽车的耗油量分别为________L/km、________L/km;(2)求线段AB所表示的y与x之间的函数表达式;(3)速度是多少时,该汽车的耗油量最低?最低是多少?第7题图8. (淮安26题10分)甲、乙两家草莓采摘园的草莓品质相同,销售价格也相同.“五一”假期,两家均推出了优惠方案,甲采摘园的优惠方案是:游客进园需购买60元的门票,采摘的草莓六折优惠;乙采摘园的优惠方案是:游客进园不需购买门票,采摘的草莓超过一定数量后,超过部分打折优惠.优惠期间,设某游客的草莓采摘量为x(千克),在甲采摘园所需总费用为y1(元),在乙采摘园所需总费用为y2(元).图中折线OAB表示y2与x之间的函数关系.(1)甲、乙两采摘园优惠前的草莓销售价格是每千克________元;(2)求y1、y2与x的函数表达式;(3)在图中画出y1与x的函数图象,并写出选择甲采摘园所需总费用较少时,草莓采摘量x 的范围.第8题图9. (徐州27题10分)为增强公民的节约意识,合理利用天然气资源,某市自1月1日起对市区民用管道天然气价格调整,实行阶梯式气价,调整后的收费价格如下表所示:每月用气量单价(元/m3)不超出75 m3的部分 2.5超出75 m3不超出125 m3的部分 a超出125 m3的部分a+0.25(1)若甲用户3月份的用气量为60 m3,则应缴费______元;(2)若调价后每月支出的燃气费为y(元),每月的用气量为x(m3),y与x之间的关系如图所示,求a的值及y与x之间的函数关系式;(3)在(2)的条件下,若乙用户2、3月份共用气175 m3(3月份用气量低于..2月份用气量),共缴费455元,乙用户2、3月份的用气量各是多少?第9题图10. (淮安27题12分)甲、乙两地之间有一条笔直的公路l,小明从甲地出发沿公路l步行前往乙地,同时小亮从乙地出发沿公路l骑自行车前往甲地,小亮到达甲地停留一段时间,原路原速返回,追上小明后两人一起步行到乙地,设小明与甲地的距离为y1米,小亮与甲地的距离为y2米,小明与小亮之间的距离为s米,小明行走的时间为x分钟.y1、y2与x之间的函数图象如图①所示,s与x之间的函数图象(部分)如图②所示.第10题图(1)求小亮从乙地到甲地过程中y2(米)与x(分钟)之间的函数关系式;(2)求小亮从甲地返回到与小明相遇的过程中s(米)与x(分钟)之间的函数关系式;(3)在图②中,补全整个过程中s(米)与x(分钟)之间的函数图象,并确定a的值.答案(精讲版)1. 解:(1)由于函数y=kx+b平行于一次函数y=-2x+4,∴k=-2,∴函数的解析式为:y=-2x+b,将点(3,1)代入,第1题解图得1=-2×3+b,解得b=7,∴b的值为7. (4分)(2)对于直线y=-2x+4,令x=0,则y=4,令y=0,则x=2,∴A(2,0),B(0,4),(6分)如解图,设直线y=kx+b与y轴的交点为C(0,b),与x轴的交点为D,由题意可知:△OCD与△OBA是以原点为位似中心的位似图形,且位似比为1∶2,∴CD∥AB,OC∶OB=1∶2,∴y=kx+b的解析式为y=-2x+b,而|b|∶4=1∶2,解得b=±2.(8分)∴函数y=kx+b的解析式为:y=-2x+2或y=-2x-2.(10分)2. (1)【思维教练】对于一次函数解析式,求出A与B的坐标,即可求出P为线段AB 的中点时d1+d2的值.解:由y =2x -4易得A (2,0),B (0,-4), 因为P 是线段AB 的中点, 则P (1,-2), 所以d 1=2,d 2=1, 则d 1+d 2=3.(3分)(2)【思维教练】根据题意确定出d 1+d 2的范围,设P(m ,2m -4),表示出d 1+d 2,分类讨论m 的范围,根据d 1+d 2=3求出m 的值,即可确定出P 的坐标.解:d 1+d 2≥2.(4分)设P (m ,2m -4),则d 1=|2m -4|,d 2=|m |, ∴|2m -4|+|m |=3,当m <0时,4-2m -m =3,解得m =13(舍);(5分)当0≤m <2时,4-2m +m =3,解得m =1,则2m -4=-2;(6分) 当m ≥2时,2m -4+m =3,解得m =73,则2m -4=23.(7分)∴点P 的坐标为(1,-2)或(73,23).(8分)(3)【思维教练】设P(m ,2m -4),表示出d 1与d 2,由P 在线段上求出m 的范围,利用绝对值的代数意义表示出d 1与d 2,代入d 1+ad 2=4,根据存在无数个点P 求出a 的值即可.解:设P (m ,2m -4),则d 1=|2m -4|,d 2=|m |, ∵点P 在线段AB 上,∴0≤m ≤2,则d 1=4-2m ,d 2=m ,(10分) ∴4-2m +am =4,即m (a -2)=0,(12分) ∵在线段AB 上存在无数个P 点, ∴关于m 的方程m (a -2)=0有无数个解, 则a -2=0, ∴a =2.(14分)3. (1)【思维教练】根据函数图象中E 点所代表的实际意义求解.E 点表示点P 运动到与点B 重合时的情形,运动时间为3s ,可得AB =6 cm ;再由S △APQ =932 cm 2,可求得AQ 的长度,进而得到点Q 的运动速度.第3题解图①解:由题意,可知题图②中点E 表示点P 运动至点B 时的情形,所用时间为3 s ,则菱形的边长AB =2×3=6 cm.此时如解图①所示:AQ 边上的高h =AB·sin 60°=6×32=3 3 cm , S △APQ =12AQ ·h =12AQ ×33=932 cm 2,解得AQ =3 cm ,∴点Q 的运动速度为:3÷3=1 cm/s ;(3分)(2)【思维教练】函数图象中线段FG ,表示点Q 运动至终点D 之后停止运动,而点P 在线段CD 上继续运动的情形.如解图②所示,求出S 的表达式,并确定t 的取值范围.解:由题意,可知题图②中FG 段表示点P 在线段CD 上运动时的情形,如解图②所示: 点Q 运动至点D 所需时间为:6÷1=6 s ,点P 运动至点C 所需时间为12÷2=6 s ,至终点D 所需时间为18÷2=9 s.因此在FG 段内,点Q 运动至点D 停止运动,点P 在线段CD 上继续运动,且时间t 的取值范围为:6≤t ≤9.第3题解图②过点P 作PE⊥AD 交AD 的延长线于点E ,则PE =PD·sin60°=(18-2t)×32=-3t +9 3.S △APQ =12AD ·PE =12×6×(-3t +93)=-33t +273,∴FG 段的函数表达式为:S =-33t +273(6≤t≤9).(6分)(3)【思维教练】当点P 在AB 上运动时,PQ 将菱形ABCD 分成△APQ 和五边形PBCDQ 两部分,如解图③所示,求出t 的值;当点P 在BC 上运动时,PQ 将菱形分为四边形ABPQ 和四边形PCDQ 两部分,如解图④所示,求出t 的值.解:存在.菱形ABCD 的面积为:6×6×sin60°=18 3.当点P 在AB 上运动时0<t ≤3,PQ 将菱形ABCD 分成△APQ 和五边形PBCDQ 两部分,如解图③所示.此时S △APQ =12AQ ·AP ·sin60°=12t ·2t ×32=32t 2,根据题意,得32t 2=16×183, 解得t = 6 s(舍去负值);第3题解图当点P 在BC 上运动时3<t ≤6,PQ 将菱形分成四边形ABPQ 和四边形PCDQ 两部分,如解图④所示.此时,当S 四边形ABPQ =56S 菱形ABCD ,即12(2t -6+t )×6×32=56×183, 解得t =163s.当S 四边形ABPQ =16S 菱形ABCD 时,即12(2t -6+t)×6×32=16×183, 解得t =83(舍去).综上所述,存在t = 6 s 或t =163 s 时,使PQ 将菱形ABCD 的面积恰好分成1∶5的两部分.(10分)4. 5 【解析】由题意可知,货车从甲地匀速驶往乙地所用时间为 3.2-0.5=2.7(小时),因为货车返回的速度是它从甲地驶往乙地的速度的 1.5倍,则返回时所用时间为2.7÷1.5=1.8(小时),所以a =3.2+1.8=5(小时).5. 【思维教练】由条件很容易得出乙车间用每箱原材料生产出的A 产品数及耗水量.然后根据条件“这两车间生产这批产品的总耗水量不得超过200吨”可列出不等式.由利润=产品总售价-购买原材料成本-水费,可得到w 关于x 的一次函数,根据一次函数的增减性,结合x 的取值范围,即可求出答案.解:设甲车间用x箱原材料生产A产品,则乙车间用(60-x)箱原材料生产A产品,由题意得4x+2(60-x)≤200, 解得x≤40,(3分)w=30[12x+10(60-x)]-80×60-5[4x+2(60-x)]=50x+12600,(5分)∵50>0,∴w随x的增大而增大.∴当x=40时,w取得最大值,为14600元,(7分)答:甲车间用40箱原材料生产A产品,乙车间用20箱原材料生产A产品,可使工厂所获利润最大,最大利润为14600元.(8分)6. (1)【思维教练】根据图象,分三个部分:漫过“几何体”下方圆柱需18 s,漫过“几何体”上方圆柱需24 s-18 s=6 s,注满“几何体”上面的空圆柱形容器需42 s-24 s=18 s,再设匀速注水的水流速度为x cm3/s,根据圆柱的体积公式列方程,解方程.解:14,5.(4分)【解法提示】根据函数图象得到圆柱形容器的高为14 cm,两个实心圆柱组成的“几何体”的高度为11 cm,水从刚漫过由两个实心圆柱组成的“几何体”到注满用了42-24=18 s,这段高度为14-11=3 cm,设匀速注水的水流速度为x cm3/s,则18·x=30·3,解得x=5,即匀速注水的水流速度为5 cm3/s,故答案为14,5.(2)【思维教练】根据圆柱的体积公式得a×(30-15)=18×5,解得a=6,于是得到“几何体”上方圆柱的高为5 cm,设“几何体”上方圆柱的底面积为S cm2,根据圆柱的体积公式得5×(30-S)=5×(24-18),再解方程即可.解:由题图知“几何体”下方圆柱的高为a,则a×(30-15)=18×5,解得a=6,∴“几何体”上方圆柱的高为11-6=5 cm,设“几何体”上方圆柱的底面积为S cm2,根据题意,得5×(30-S)=5×(24-18),解得S=24,即“几何体”上方圆柱的底面积为24 cm2,高为5 cm.(9分)7. (1)0.13,0.14;(2分)【解法提示】x轴表示速度,从30到60之间为40,50,对应的y轴汽车耗油量由0.15到0.12,列表如下:速度30 40 50 60 耗油量 0.15 0.14 0.13 0.12∴当速度为50 km/h 时,该汽车耗油量为0.13 L/km ,当速度为100 km/h 时,该汽车耗油量为0.12+0.002×(100-90)=0.14 L/km.(2)设线段AB 所表示的y 与x 之间的函数表达式为y =kx +b ,∵y =kx +b 的图象过点(30,0.15)与(60,0.12),∴⎩⎪⎨⎪⎧30k +b =0.1560k +b =0.12, 解方程组,得⎩⎪⎨⎪⎧k =-0.001b =0.18, ∴线段AB 所表示的y 与x 之间的函数表达式为y =-0.001x +0.18;(5分)(3)根据题意,得线段BC 所表示的y 与x 之间的函数表达式为y =0.12+0.002(x -90)=0.002x -0.06,由图象可知,B 是折线ABC 的最低点,解方程组⎩⎪⎨⎪⎧y =-0.001x +0.18y =0.002x -0.06,得⎩⎪⎨⎪⎧x =80y =0.1, 因此,速度是80 km/h 时,该汽车的耗油量最低,最低是0.1 L/km.(8分)8. 解:(1)30;(2分)【解法提示】由图象可知,乙在0≤x ≤10时,未优惠.当x =10时,y =300.∴采摘园优惠之前的单价为300÷10=30(元).(2)因为甲需要购买60元的门票,采摘的草莓六折优惠,∴y 1=0.6×30×x +60(3分)=18x +60,直线OA 段:y 2=30x ,直线AB 段:设直线AB 段的解析式为y 2=kx +b ,∴⎩⎪⎨⎪⎧10k +b =30020k +b =450,∴⎩⎪⎨⎪⎧k =15b =150, ∴AB 段的解析式为y 2=15x +150,∴y 1与x 的函数关系式为y 1=18x +60,y 2与x 的函数关系式为y 2=⎩⎪⎨⎪⎧30x (0≤x≤10)15x +150 (x >10);(5分)第8题解图(3)y 1与x 的函数图象,如解图所示.当直线y 1与y 2交于OA 段时,18x +60=30x ,解得x =5,(7分)当直线y 1与y 2交于AB 段时,18x +60=15x +150,解得x =30,(9分)所以当5<x <30时,选择甲采摘园的总费用最少.(10分)9. (1)【思维教练】根据单价×数量=总价,就可以求出3月份应该缴纳的费用. 解:由题意,得60×2.5=150(元).(2分)(2)【思维教练】结合统计表的数据,根据单价×数量=总价的关系建立方程就可以求出a 值,再从0≤x ≤75,75<x ≤125和x >125运用待定系数法分别表示出y 与x 的函数关系式即可.解:由题意,得:a =(325-75×2.5)÷(125-75),a =2.75,∴a +0.25=3,设线段OA 的解析式为y 1=k 1x ,则有2.5×75=75k 1,∴k 1=2.5,∴线段OA 的解析式为y 1=2.5x (0≤x≤75);(4分)当x =75时,y 1=187.5,设线段AB 的解析式为y 2=k 2x +b ,由图象,得⎩⎪⎨⎪⎧187.5=75k 2+b 325=125k 2+b . 解得⎩⎪⎨⎪⎧k 2=2.75b =-18.75,∴线段AB 的解析式为:y 2=2.75x -18.75(75<x ≤125).∵(385-325)÷3=20,故C(145,385),设射线BC 的解析式为y 3=k 3x +b 1,由图象,得⎩⎪⎨⎪⎧325=125k 3+b 1385=145k 3+b 1, 解得:⎩⎪⎨⎪⎧k 3=3b 1=-50, ∴射线BC 的解析式为y 3=3x -50(x >125);综上所述,y 与x 之间的函数关系式为:y =⎩⎪⎨⎪⎧2.5x (0≤x≤75)2.75x -18.75(75<x≤125)3x -50(x >125),(6分) (3)【思维教练】设乙用户2月份用气x m 3,则3月份用气(175-x )m 3,分3种情况:x >125,175-x ≤75时,75<x ≤125,175-x ≤75时,当75<x ≤125,75<175-x ≤125时分别建立方程求出其解就可以.解:设乙用户2月份用气x m 3,则3月份用气(175-x)m 3,当x >125,175-x ≤75时,3x -50+2.5(175-x )=455,解得:x =135,175-135=40,符合题意;(8分)当75<x ≤125,175-x ≤75时,2.75x -18.75+2.5(175-x )=455,解得:x =145,不符合题意,舍去;当75<x ≤125,75<175-x ≤125时,2.75x -18.75+2.75(175-x)-18.75=455,此方程无解.∴乙用户2、3月份的用气量各是135 m 3,40 m 3.(10分)10. (1)【思维教练】设小亮从乙地到甲地过程中y 2(米)与x(分钟)之间的函数关系式为y 2=k 2x +b ,由待定系数法根据图象就可以求出解析式.解:设小亮从乙地到甲地过程中y 2(米)与x (分钟)之间的函数关系式为y 2=k 2x +b ,由图象,得:⎩⎪⎨⎪⎧b =200010k 2+b =0, 解得:⎩⎪⎨⎪⎧k 2=-200b =2000, ∴y 2=-200x +2000.(4分)(2)【思维教练】先根据函数图象求出两人的速度,然后由追击问题就可以求出小亮追上小明的时间,还可以求出小亮从甲地返回到与小明相遇的过程中s (米)与x (分钟)之间的函数关系式.解:由题意,得小明步行的速度为:2000÷40=50(米/分钟),小亮骑自行车的速度为:2000÷10=200(米/分钟),∴小亮从甲地追上小明的时间为24×50÷(200-50)=8(分钟),∴24分钟时两人的距离为:s =24×50=1200(米),32分钟时s =0,设s 与x 之间的函数关系式为:s =kx +b 1,由题意,得⎩⎪⎨⎪⎧24k +b 1=120032k +b 1=0,解得:⎩⎪⎨⎪⎧k =-150b 1=4800, ∴s =-150x +4800(24≤x ≤32). (8分)(3)【思维教练】先根据相遇问题建立方程求出a 值,再根据10分钟时小亮到达甲地,小明走的路程就是相距的距离,24分钟小明走的路程和小亮追到小明时的时间就可以补充完图象.解:由题意,得小明小亮第一次相遇的时间:a =2000÷(200+50)=8分钟, (9分) 小亮到达甲地是在第10分钟,此时小明距甲地50×10=500米,∴小明与小亮之间的距离s =500米.当x=24时,s=24×50=1200,由(2)知小亮追上小明是在第32分钟时,故描出相应的点就可以补全图象,如解图所示.第10题解图(12分)。

一次函数经典测试题及答案解析

一次函数经典测试题及答案解析

一次函数经典测试题及答案解析一、选择题1.如图1所示,A ,B 两地相距60km ,甲、乙分别从A ,B 两地出发,相向而行,图2中的1l ,2l 分别表示甲、乙离B 地的距离y (km )与甲出发后所用的时间x (h )的函数关系.以下结论正确的是( )A .甲的速度为20km/hB .甲和乙同时出发C .甲出发1.4h 时与乙相遇D .乙出发3.5h 时到达A 地 【答案】C 【解析】 【分析】根据题意结合图象即可得出甲的速度;根据图象即可得出甲比乙早出发0.5小时;根据两条线段的交点即可得出相遇的时间;根据图形即可得出乙出发3h 时到达A 地. 【详解】解:A .甲的速度为:60÷2=30,故A 错误;B .根据图象即可得出甲比乙早出发0.5小时,故B 错误;C .设1l 对应的函数解析式为111y k x b =+,所以:1116020b k b =⎧⎨+=⎩, 解得113060k b =-⎧⎨=⎩即1l 对应的函数解析式为13060y x =-+; 设2l 对应的函数解析式为222y k x b =+,所以:22220.503.560k b k b +=⎧⎨+=⎩, 解得 222010k b =⎧⎨=-⎩即2l 对应的函数解析式为22010y x =-, 所以:30602010y x y x =-+⎧⎨=-⎩, 解得 1.418x y =⎧⎨=⎩ ∴点A 的实际意义是在甲出发1.4小时时,甲乙两车相遇, 故本选项符合题意;D .根据图形即可得出乙出发3h 时到达A 地,故D 错误. 故选:C . 【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质和数形结合的思想解答.2.一次函数y kx b =+是(,k b 是常数,0k ≠)的图像如图所示,则不等式0kx b +<的解集是( )A .0x >B .0x <C .2x >D .2x <【答案】C 【解析】 【分析】根据一次函数的图象看出:一次函数y=kx+b (k ,b 是常数,k≠0)的图象与x 轴的交点是(2,0),得到当x >2时,y<0,即可得到答案. 【详解】解:一次函数y=kx+b (k ,b 是常数,k≠0)的图象与x 轴的交点是(2,0), 当x >2时,y<0. 故答案为:x >2. 故选:C. 【点睛】本题主要考查对一次函数的图象,一次函数与一元一次不等式等知识点的理解和掌握,能观察图象得到正确结论是解此题的关键.3.平面直角坐标系中,点(0,0)O 、(2,0)A 、(,2)B b b -+,当45ABO ∠<︒时,b 的取值范围为( ) A .0b < B .2b <C .02b <<D .0b <或2b >【答案】D 【解析】 【分析】根据点B 的坐标特征得到点B 在直线y=-x+2上,由于直线y=-x+2与y 轴的交点Q 的坐标为(0,2),连结AQ ,以AQ 为直径作⊙P ,如图,易得∠AQO=45°,⊙P 与直线y=-x+2只有一个交点,根据圆外角的性质得到点B 在直线y=-x+2上(除Q 点外),有∠ABO 小于45°,所以b <0或b >2. 【详解】解∵B点坐标为(b,-b+2),∴点B在直线y=-x+2上,直线y=-x+2与y轴的交点Q的坐标为(0,2),连结AQ,以AQ为直径作⊙P,如图,∵A(2,0),∴∠AQO=45°,∴点B在直线y=-x+2上(除Q点外),有∠ABO小于45°,∴b的取值范围为b<0或b>2.故选D.【点睛】本题考查了一函数图象上点的坐标特征:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是(bk,0);与y轴的交点坐标是(0,b).直线上任意一点的坐标都满足函数关系式y=kx+b.4.已知点M(1,a)和点N(3,b)是一次函数y=﹣2x+1图象上的两点,则a与b的大小关系是()A.a>b B.a=b C.a<b D.无法确定【答案】A【解析】【分析】根据一次函数的图像和性质,k<0,y随x的增大而减小解答.【详解】解:∵k=﹣2<0,∴y随x的增大而减小,∵1<3,∴a>b.故选A.【点睛】考查了一次函数图象上点的坐标特征,利用一次函数的增减性求解更简便.5.下列关于一次函数()0,0y kx b k b =+<>的说法,错误的是( ) A .图象经过第一、二、四象限 B .y 随x 的增大而减小 C .图象与y 轴交于点()0,b D .当bx k>-时,0y > 【答案】D 【解析】 【分析】由k 0<,0b >可知图象经过第一、二、四象限;由k 0<,可得y 随x 的增大而减小;图象与y 轴的交点为()0,b ;当bx k>-时,0y <; 【详解】∵()0,0y kx b k b =+<>, ∴图象经过第一、二、四象限, A 正确; ∵k 0<,∴y 随x 的增大而减小, B 正确;令0x =时,y b =, ∴图象与y 轴的交点为()0,b , ∴C 正确; 令0y =时,b x k=-, 当bx k>-时,0y <; D 不正确; 故选:D . 【点睛】本题考查一次函数的图象及性质;熟练掌握一次函数解析式y kx b =+中,k 与b 对函数图象的影响是解题的关键.6.一列动车从甲地开往乙地, 一列普通列车从乙地开往甲地,两车均匀速行驶并同时出发,设普通列车行驶的时间为x (小时),两车之间的距离为y (千米),如图中的折线表示y 与x 之间的函数关系,下列说法:①动车的速度是270千米/小时;②点B 的实际意义是两车出发后3小时相遇;③甲、乙两地相距1000千米;④普通列车从乙地到达甲地时间是9小时,其中不正确的有( )A .1个B .2个C .3个D .4个【答案】B 【解析】 【分析】由x=0时y=1000可判断③;由运动过程和函数图像关系可判断②;求出普通列车速度,设动车的速度为x 千米/小时,根据“动车3小时行驶的路程+普通列车3小时行驶的路程=1000”列方程求解可判断①;根据x=12时的实际意义可判断④. 【详解】解:③由x=0时,y=1000知,甲地和乙地相距1000千米,正确;②如图,出发后3小时,两车之间的距离为0,可知点B 的实际意义是两车出发后3小时相遇,正确;①普通列车的速度是100012=2503千米/小时, 设动车的速度为x 千米/小时,根据题意,得:3x+3×2503=1000, 解得:x=250,动车的速度为250千米/小时,错误; ④由图象知x=t 时,动车到达乙地, ∴x=12时,普通列车到达甲地,即普通列车到达终点共需12小时,错误; 故选B. 【点睛】本题主要考查一次函数的应用,根据题意弄懂函数图象中各拐点坐标的实际意义及行程问题中蕴含的相等关系是解题的关键.7.已知直线3y mx =+经过点(2,0),则关于x 的不等式 30mx +>的解集是( ) A .2x > B .2x <C .2x ≥D .2x ≤【答案】B 【解析】【分析】求出m 的值,可得该一次函数y 随x 增大而减小,再根据与x 轴的交点坐标可得不等式解集. 【详解】解:把(2,0)代入3y mx =+得:023m =+,解得:32m =-, ∴一次函数3y mx =+中y 随x 增大而减小,∵一次函数3y mx =+与x 轴的交点为(2,0), ∴不等式 30mx +>的解集是:2x <, 故选:B . 【点睛】本题考查了待定系数法的应用,一次函数与不等式的关系,判断出函数的增减性是解题的关键.8.一次函数y kx b +=的图象与正比例函数6y x =﹣的图象平行且经过点A (1,-3),则这个一次函数的图象一定经过( ) A .第一、二、三象限 B .第一、三、四象限 C .第一、二、四象限 D .第二、三、四象限【答案】C 【解析】 【分析】由一次函数y kx b +=的图象与正比例函数6y x =﹣的图象平行可得k=-6,把点A 坐标代入y=-6x+b 可求出b 值,即可得出一次函数解析式,根据一次函数的性质即可得答案. 【详解】∵一次函数y kx b +=的图象与正比例函数6y x =﹣的图象平行, ∴k=-6,∵一次函数6y x b =-+经过点A (1,-3), ∴-3=-6+b , 解得:b=3,∴一次函数的解析式为y=-6x+3, ∵-6<0,3>0,∴一次函数图象经过二、四象限,与y 轴交于正半轴, ∴这个一次函数的图象一定经过一、二、四象限, 故选:C . 【点睛】本题考查了两条直线平行问题及一次函数的性质:若直线y=k 1x+b 1与直线y=k 2x+b 2平行,则k 1=k 2;当k >0时,图象经过一、三象限,y 随x 的增大而增大;当k <0时,图象经过二、四象限,y 随x 的增大而减小;当b >0时,图象与y 轴交于正半轴;当b <0时,图象与y 轴交于负半轴.9.随着“互联网+”时代的到来,一种新型的打车方式受到大众欢迎.打车总费用y(单位:元)与行驶里程x(单位:千米)的函数关系如图所示.如果小明某次打车行驶里程为22千米,则他的打车费用为( )A .33元B .36元C .40元D .42元【答案】C 【解析】分析:待定系数法求出当x≥12时y 关于x 的函数解析式,再求出x=22时y 的值即可. 详解:当行驶里程x ⩾12时,设y=kx+b , 将(8,12)、(11,18)代入,得:8121118k b k b +=⎧⎨+=⎩ , 解得:24k b =⎧⎨=-⎩, ∴y=2x −4,当x=22时,y=2×22−4=40,∴当小明某次打车行驶里程为22千米,则他的打车费用为40元. 故选C.点睛:本题考查一次函数图象和实际应用. 认真分析图象,并利用待定系数法求一次函数的解析式是解题的关键.10.如图,矩形ABOC 的顶点坐标为()4,5-,D 是OB 的中点,E 为OC 上的一点,当ADE ∆的周长最小时,点E 的坐标是( )A .40,3⎛⎫ ⎪⎝⎭B .50,3⎛⎫ ⎪⎝⎭C .()0,2D .100,3⎛⎫ ⎪⎝⎭【答案】B 【解析】 【分析】作点A 关于y 轴的对称点A',连接A'D ,此时△ADE 的周长最小值为AD+DA'的长;E 点坐标即为直线A'D 与y 轴的交点. 【详解】解:作点A 关于y 轴的对称点A',连接A'D ,此时△ADE 的周长最小值为AD+DA'的长; ∵A 的坐标为(-4,5),D 是OB 的中点, ∴D (-2,0),由对称可知A'(4,5), 设A'D 的直线解析式为y=kx+b ,5402k b k b =+⎧∴⎨=-+⎩5653k b ⎧=⎪⎪∴⎨⎪=⎪⎩5563y x ∴=+ 当x=0时,y=5350,3E ⎛⎫∴ ⎪⎝⎭故选:B 【点睛】本题考查矩形的性质,线段的最短距离;能够利用轴对称求线段的最短距离,将AE+DE 的最短距离转化为线段A'D 的长是解题的关键.11.若一次函数y=kx+b 的图象经过一、二、四象限,则一次函数y=-bx+k 的图象不经过( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】A 【解析】 【分析】根据一次函数y=kx+b 图象在坐标平面内的位置关系先确定k ,b 的取值范围,再根据k ,b 的取值范围确定一次函数y=-bx+k 图象在坐标平面内的位置关系,从而求解. 【详解】解:一次函数y=kx+b 过一、二、四象限, 则函数值y 随x 的增大而减小,因而k <0; 图象与y 轴的正半轴相交则b >0, 因而一次函数y=-bx+k 的一次项系数-b <0, y 随x 的增大而减小,经过二四象限, 常数项k <0,则函数与y 轴负半轴相交, 因而一定经过二三四象限, 因而函数不经过第一象限. 故选:A . 【点睛】本题考查了一次函数的图象与系数的关系.函数值y 随x 的增大而减小⇔k <0;函数值y 随x 的增大而增大⇔k >0;一次函数y=kx+b 图象与y 轴的正半轴相交⇔b >0,一次函数y=kx+b 图象与y 轴的负半轴相交⇔b <0,一次函数y=kx+b 图象过原点⇔b=0.12.一次函数y=(m ﹣2)x n ﹣1+3是关于x 的一次函数,则m ,n 的值为( ) A .m≠2,n=2 B .m=2,n=2C .m≠2,n=1D .m=2,n=1【答案】A 【解析】 【分析】直接利用一次函数的定义分析得出答案. 【详解】解:∵一次函数y=(m-2)x n-1+3是关于x 的一次函数,∴n-1=1,m-2≠0, 解得:n=2,m≠2. 故选A . 【点睛】此题主要考查了一次函数的定义,正确把握系数和次数是解题关键.13.如图所示,已知()121,,2,2A y B y ⎛⎫ ⎪⎝⎭为反比例函数1y x=图象上的两点,动点(),0P x 在x 轴正半轴上运动,当AP BP -的值最大时,连结OA ,AOP ∆的面积是 ( )A .12B .1C .32D .52【答案】D 【解析】 【分析】先根据反比例函数解析式求出A ,B 的坐标,然后连接AB 并延长AB 交x 轴于点P ',当P 在P '位置时,PA PB AB -=,即此时AP BP -的值最大,利用待定系数法求出直线AB 的解析式,从而求出P '的坐标,进而利用面积公式求面积即可. 【详解】 当12x =时,2y = ,当2x =时,12y = ,∴11(,2),(2,)22A B .连接AB 并延长AB 交x 轴于点P ',当P 在P '位置时,PA PB AB -=,即此时AP BP -的值最大.设直线AB 的解析式为y kx b =+ , 将11(,2),(2,)22A B 代入解析式中得 122122k b k b ⎧+=⎪⎪⎨⎪+=⎪⎩解得152k b =-⎧⎪⎨=⎪⎩ , ∴直线AB 解析式为52y x =-+. 当0y =时,52x =,即5(,0)2P ', 115522222AOP A S OP y '∴=⋅=⨯⨯=. 故选:D .【点睛】 本题主要考查一次函数与几何综合,掌握待定系数法以及找到AP BP -何时取最大值是解题的关键.14.函数()312y m x =+-中,y 随x 的增大而增大,则直线()12y m x =---经过( ) A .第一、三、四象限B .第二、三、四象限C .第一、二、四象限D .第一、二、三象限 【答案】B【解析】【分析】根据一次函数的增减性,可得310m +>;从而可得10m --<,据此判断直线()12y m x =---经过的象限.【详解】 解:函数()312y m x =+-中,y 随x 的增大而增大,310m ∴+>,则13m >- 10m ∴--<,∴直线()12y m x =---经过第二、三、四象限.故选:B .【点睛】本题考查了一次函数的性质,正确掌握一次函数图象与系数的关系是解题的关键.即一次函数y=kx+b (k≠0)中,当k >0时,y 随x 的增大而增大,图象经过一、三象限;当k <0时,y 随x 的增大而减小,图象经过二、四象限;当b >0时,此函数图象交y 轴于正半轴;当b <0时,此函数图象交y 轴于负半轴.15.函数12y x =-与23y ax =+的图像相交于点(),2A m ,则( )A .1a =B .2a =C .1a =-D .2a =-【答案】A【解析】【分析】将点(),2A m 代入12y x =-,求出m ,得到A 点坐标,再把A 点坐标代入23y ax =+,即可求出a 的值.【详解】 解:函数12y x =-过点(),2A m , 22m ∴-=,解得:1m =-,()1,2A ∴-,函数23y ax =+的图象过点A ,32a ∴-+=,解得:1a =.故选:A .【点睛】本题考查了两条直线的交点问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.也考查了一次函数图象上点的坐标特征.16.已知一次函数y =kx+k ,其在直角坐标系中的图象大体是( )A .B .C .D .【答案】A【解析】【分析】函数的解析式可化为y =k (x +1),易得其图象与x 轴的交点为(﹣1,0),观察图形即可得出答案.【详解】函数的解析式可化为y =k (x +1),即函数图象与x 轴的交点为(﹣1,0),观察四个选项可得:A 符合.故选A .【点睛】本题考查了一次函数的图象,要求学生掌握通过解析判断其图象与坐标轴的交点位置、坐标.17.如图,平面直角坐标系中,ABC ∆的顶点坐标分别是A(1,1),B(3,1),C(2,2),当直线12y x b =+与ABC ∆有交点时,b 的取值范围是( )A .11b -≤≤B .112b -≤≤ C .1122b -≤≤ D .112b -≤≤【答案】B【解析】【分析】 将A (1,1),B (3,1),C (2,2)的坐标分别代入直线y =12x+b 中求得b 的值,再根据一次函数的增减性即可得到b 的取值范围.【详解】解:直线y=12x+b 经过点B 时,将B (3,1)代入直线y =12x+b 中,可得32+b=1,解得b=-12; 直线y=12x+b 经过点A 时:将A (1,1)代入直线y =12x+b 中,可得12+b=1,解得b=12; 直线y=12x+b 经过点C 时:将C (2,2)代入直线y =12x+b 中,可得1+b=2,解得b=1. 故b 的取值范围是-12≤b≤1. 故选B .【点睛】考查了一次函数的性质:k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.18.若实数a、b、c满足a+b+c=0,且a<b<c,则函数y=ax+c的图象可能是()A.B.C.D.【答案】A【解析】【分析】∵a+b+c=0,且a<b<c,∴a<0,c>0,(b的正负情况不能确定也无需确定).a<0,则函数y=ax+c图象经过第二四象限,c>0,则函数y=ax+c的图象与y轴正半轴相交,观察各选项,只有A选项符合.故选A.【详解】请在此输入详解!19.一次函数y1=kx+1﹣2k(k≠0)的图象记作G1,一次函数y2=2x+3(﹣1<x<2)的图象记作G2,对于这两个图象,有以下几种说法:①当G1与G2有公共点时,y1随x增大而减小;②当G1与G2没有公共点时,y1随x增大而增大;③当k=2时,G1与G2平行,且平行线之间的距离为.下列选项中,描述准确的是()A.①②正确,③错误B.①③正确,②错误C.②③正确,①错误D.①②③都正确【答案】D【解析】【分析】画图,找出G2的临界点,以及G1的临界直线,分析出G1过定点,根据k的正负与函数增减变化的关系,结合函数图象逐个选项分析即可解答.【详解】解:一次函数y2=2x+3(﹣1<x<2)的函数值随x的增大而增大,如图所示,N (﹣1,2),Q (2,7)为G 2的两个临界点,易知一次函数y 1=kx+1﹣2k (k≠0)的图象过定点M (2,1),直线MN 与直线MQ 为G 1与G 2有公共点的两条临界直线,从而当G 1与G 2有公共点时,y 1随x 增大而减小;故①正确;当G 1与G 2没有公共点时,分三种情况:一是直线MN ,但此时k =0,不符合要求;二是直线MQ ,但此时k 不存在,与一次函数定义不符,故MQ 不符合题意; 三是当k >0时,此时y 1随x 增大而增大,符合题意,故②正确;当k =2时,G 1与G 2平行正确,过点M 作MP ⊥NQ ,则MN =3,由y 2=2x+3,且MN ∥x 轴,可知,tan ∠PNM =2,∴PM =2PN ,由勾股定理得:PN 2+PM 2=MN 2∴(2PN )2+(PN )2=9,∴PN =, ∴PM =.故③正确.综上,故选:D .【点睛】本题是一次函数中两条直线相交或平行的综合问题,需要数形结合,结合一次函数的性质逐条分析解答,难度较大.20.已知直线4y x =-+与2y x =+的图象如图,则方程组y x 4y x 2=-+⎧⎨=+⎩的解为( )A .31x y ==,B .13x y ==,C .04x y ==,D .40x y ==,【答案】B【解析】【分析】 二元一次方程组的解就是组成二元一次方程组的两个方程的公共解,即两条直线的交点坐标.【详解】解:根据题意知,二元一次方程组y x 4y x 2=-+⎧⎨=+⎩的解就是直线y =−x +4与y =x +2的交点坐标,又∵交点坐标为(1,3),∴原方程组的解是:13x y ==,. 故选:B .【点睛】本题考查了一次函数与二元一次方程组.二元一次方程组的解就是组成该方程组的两条直线的图象的交点.。

一次函数典型例题及习题解析

一次函数典型例题及习题解析

一次函数的图像及应用典型例题及习题一次函数 经典题型题型考点一: 理解一次函数和正比例函数的概念与定义例1 已知函数y=(2-m)x+2m-3.求当m 为何值时, (1)此函数为正比例函数(2)此函数为一次函数学生自测1。

下列函数关系式中,哪些是一次函数,哪些是正比例函数? ( 1)y=-x-4 (2)y=5x2+6 (3)y=2πx (4)y=-8x 2.若是正比例函数,则b 的值是 ( )A.0B.C.D.3.若y =(m -1)x是正比例函数,则m 的值为( ) A.1B.-1C.1或-1D.或-4.若函数y =(3m -2)x 2+(1-2m )x (m 为常数)是正比例函数,则m 的值为( )A.m >B.m <C.m =D.m =5.若5y +2与x -3成正比例,则y 是x 的( )A.正比例函数B.一次函数C.没有函数关系D.以上答案均不正确 6.要使y=(m-2)x n-1+n 是关于x 的一次函数,n,m 应满足 , .7、已知函数y =(m 2-4)x 4+n +(m -2),当m 且 时,它是一次函数;当m 且n 时它是正比例函数. 8.若关于x 的函数是一次函数,则m = ,n .设函数y =(m -3)x 3-︳m ︳+m +2(1) 当m 为何值时,它是一次函数?(2)当m 为何值时,它是正比例函数?题型考点二:根据实际情况,确定一次函数解析式,求出相应的值例1 气温随着高度的增加而下降,下降的一般规律是从地面到高空11km 处,每升高1 km,气温下降6℃.高于11km 时,气温几乎不再变化,设地面的气温为38℃,高空中xkm 的气温为y ℃. (1)当0≤x ≤11时,求y 与x 之间的关系式? (2)求当x=2、5、8、11时,y 的值。

(3)求在离地面13 km的高空处、气温是多少度?(4)当气温是一16℃时,问在离地面多高的地方?学生自测1.某城市的市内电话的月收费额y(元)包括:月租费22元,拨打电话x分的计时费(按0.01元/分收取).求出y与x的函数关系式2.13.某市出租车起步价是7元(路程小于或等于2千米),超过2千米每增加1千米加收1.6元,请写出出租车费y(元)与行程x(千米)之间的函数关系式.一次函数图像二经典题型题型考点一:函数图象的概念例 1.列表:2.3.连线:把这些点依次连接起来,得到y=-2x+5的图象,它是一条直线.图象:学生自测:1、(10分)爱动脑筋的小明同学在买一双新的运动鞋时,发现了一些有趣现象,即鞋子的号码与鞋子的长(cm)之间存在着某种联系,经过收集数据,得到下表:请你代替小明解决下列问题:(1)根据表中数据,在同一直角坐标系中描出相应的点,你发现这些点在哪一种图形上?(2)猜想y与x之间满足怎样的函数关系式,并求出y与x之间的函数关系式,验证这些点的坐标是否满足函数关系式.(3)当鞋码是40码时,鞋长是多长?题型考点二:通过图像确定函数的解析式例1.(2010山东聊城)如图,过点Q(0,3.5)的一次函数与正比例函数y=2x的图象相交于点P,能表示这个一次函数图象的方程是()A.3x-2y+3.5=0B.3x-2y-3.5=0C.3x-2y+7=0 D.3x+2y-7=0学生自测1、函数y=kx-5,k取不同的值,它的图象是()A、一条经过点(0,-5)的直线B、一组互相平行的直线C、一组相交于点(0,-5)的直线D、一条与y轴的交点在x轴上方的直线2、一次函数y=ax+b,ab<0,则其大致图象正确的是()3.(2009年安徽)8.已知函数的图象如图,则的图象可能是【】4.(2009年重庆市江津区)已知一次函数的大致图像为()5.(2010陕西西安)一个正比例函数的图象经过点(2,-3),它的表达式为A.B.C. D.6、直线y=kx经过点(3,-2),那么这条直线还通过点()A、(-2,3)B、(-3,2)C、(2,3)D、(3,2)7、如果正比例函数y=kx(k≠0)的自变量取值增加1,函数y的值相应减少4,则k的值为()A、4B、-4C、D、8、一次函数y=kx+b(k≠0)图象与x轴交点坐标是,与y轴交点坐标是(4)如图,直线L是一次函数y=kx+b的图象,则k= ,b= .9. 如图,把直线向上平移后得到直线AB,直线AB经过点,且,则直线AB的解析式是( )A.B.C.D.9.(2009年桂林市、百色市)如图,是一个正比例函数的图像,把该图像向左平移一个单位长度,得到的函数图像的解析式为.10把直线向下平移2个单位得到的图像解析式为___________。

《一次函数》专项练习和中考真题(含答案解析及点睛)

《一次函数》专项练习和中考真题(含答案解析及点睛)

《1.等腰三角形底角与顶角之间的函数关系A .正比例函数 B .一次函数【答案】B【分析】根据一次函数的定义,可得答案【解析】设等腰三角形的底角为y ,顶角为所以,y=﹣12x+90°,即等腰三角形底角与【点睛】本题考查了实际问题与一次函数2.已知y 关于x 成正比例,且当x 时A .3 B .3-【答案】B【分析】先利用待定系数法求出y =【详解】设y kx =,Q 当2x =时,3y x ∴=-,∴当1x =时,3y =-【点睛】本题考查了待定系数法求正比例函点的坐标代入求出k 即可.3. 已知函数y =kx +b 的部分函数值如表所示A .x =2 B .x =3 C 【答案】A【解析】∵当x =0时,y =1,当x =1,y 当y =–3时,–2x +1=–3,解得:x =2,4.如图,直线y=kx+3经过点(2,0,A .x >2B .x <2 《一次函数》专项练习数关系是( ) C .反比例函数D .二次函数答案.顶角为x ,由题意,得x+2y=180, 底角与顶角之间的函数关系是一次函数关系,故选函数,根据题意正确列出函数关系式是解题的关键2=时,6y =-,则当1x =时,y 的值为 C .12D .12-3x -,然后计算1x =对应的函数值. 6y =-,26k ∴=-,解得3k =-,13⨯=-.故选B .比例函数的解析式:设正比例函数解析式为y kx k =表所示,则关于x 的方程kx +b +3=0的解是x … –2 –1 01… y…531 –1….x =–2 D .x =–3 =–1,∴,解得:,∴y =–,故关于x 的方程kx +b +3=0的解是x =2,故选A ),则关于x 的不等式kx+3>0的解集是( )C .x≥2 D .x≤211b k b =+=-⎧⎨⎩21k b =-=⎧⎨⎩故选B . 关键. ()0≠,然后把一个已知2x +1,.【答案】B【分析】直接利用函数图象判断不等式【解析】由一次函数图象可知:关于x的不【点睛】本题考查了一次函数的图象与性质等式之间的内在联系.5.如图,在平面直角坐标系中,直线l与直线l1在第一象限交于点C.若∠BOCAB【答案】B【分析】过C作CD⊥OA于D,利用直线3.依据CD∥BO,可得OD13=AOk的值.【解析】如图,过C作CD⊥OA于D.即A(,0),B(0,1),∴Rt△∵∠BOC=∠BCO,∴CB=BO=1,∵CD∥BO,∴OD13=AO=,得:23=,即k =B式kx+3>0的解集在x轴上方,进而得出结果.的不等式kx+3>0的解集是x<2;故选B.与性质和一元一次不等式及其解法,解题的关键是掌1:y=x+1与x轴,y轴分别交于点A和点BOC=∠BCO,则k的值为( )C D.直线l1:y=+1,即可得到A(,0),B(0=CD23=BO23=,进而得到C23,),.直线l1:y=+1中,令x=0,则y=1,令AOB中,AB==3.AC=2.CD23=BO23=,即C23,),把C23,.键是掌握一次函数与一元一次不B,直线l2:y=kx(k≠0),1),AB==,代入直线l2:y=kx,可得令y=0,则x=,)代入直线l2:y=kx,可【点睛】本题考查了两直线相交或平行问题组成的二元一次方程组的解.6.已知点A (-5,a ),B (4,b )在直线y =-3x 【答案】>【分析】先根据一次函数的解析式判断出函【解析】∵直线y=-3x+2中,k=-3<0,∵-5<4,∴a >b ,故答案为>.【点睛】本题考查了一次函数的性质,根据如果k>0,直线就从左往右上升,y 随7.如图,四边形ABCD 的顶点坐标分别ABCD 分成面积相等的两部分时,直线A .116105y x =+ B .23y =【答案】D【分析】由已知点可求四边形ABCD 分成y=-x+3,设过B 的直线l 为y=kx+b ,并求1125173121k k k k --⎛⎫⎛⎫=⨯-⨯+ ⎪⎪+⎝⎭⎝⎭,即可【解析】解:由()()4,0,2,1,A B ---∴四边形ABCD 分成面积(12AC =⨯设过B 的直线l 为y kx b =+,将点B 代入∴直线CD 与该直线的交点为45,k k -⎛+⎝∴1125173121k k k k --⎛⎫⎛=⨯-⨯+ ⎪ +⎝⎭⎝,∴直线解析式为5342y x =+;故选:【点睛】本题考查一次函数的解析式求法式的方法是解题的关键.行问题,两条直线的交点坐标,就是由这两条直线相+2上,则a ________b .(填“>”“<”或“=”号 断出函数的增减性,再比较出-5与4的大小即可解答,∴此函数是减函数, 根据题意判断出一次函数的增减性是解答此题的关x 的增大而增大,如果k<0,直线就从左往右下降分别()()()()4,0,2,1,3,0,0,3A B C D ---,当过点直线l 所表示的函数表达式为( ) 13x + C .1y x =+ D .54y x =+分成面积()113741422B AC y =⨯⨯+=⨯⨯=;并求出两条直线的交点,直线l 与x 轴的交点坐标即可求k 。

一次函数难题汇编附答案解析

一次函数难题汇编附答案解析
【详解】∵A(-2,0),B(0,1),
∴OA=2,OB=1,
∵四边形OACB是矩形,
∴BC=OA=2,AC=OB=1,
∵点C在第二象限,∴C点坐标为(-2,1),
∵正比例函数y=kx的图像经过点C,
∴-2k=1,
∴k=- ,
故选A.
【点睛】本题考查了矩形的性质,待定系数法求正比例函数解析式,根据已知求得点C的坐标是解题的关键.
【详解】
解∵B点坐标为(b,-b+2),
∴点B在直线y=-x+2上,
直线y=-x+2与y轴的交点Q的坐标为(0,2),连结AQ,以AQ为直径作⊙P,如图,
∵A(2,0),
∴∠AQO=45°,
∴点B在直线y=-x+2上(除Q点外),有∠ABO小于45°,
∴b的取值范围为b<0或b>2.
故选D.
【点睛】
11.如图在平面直角坐标系中,等边三角形 的边长为4,点 在第二象限内,将 沿射线 平移,平移后点 的横坐标为 ,则点 的坐标为()
A. B. C. D.
【答案】D
【解析】
【分析】
先根据已知条件求出点A、B的坐标,再求出直线OA的解析式,继而得出点 的纵坐标,找出点A平移至点 的规律,即可求出点 的坐标.
【详解】
解:根据题意,由图可知,甲走了480米后才发现了没带票,返回公司用时12分钟,行进过程中速度不变,
即:甲步行的速度为每分钟 米,乙步行的速度也为每分钟80米,
故A正确;
又∵甲乙再次相遇时是16分钟,
∴16分乙共走了 米,
由图可知,出租车的用时为16-12=4分钟,
∴出租车的速度为每分 米,
故B正确;
由此发现规律:

一次函数练习题及答案及解析

一次函数练习题及答案及解析

一次函数练习题及答案及解析下面是为大家的一次函数练习题及答案及解析,欢迎阅读!希望对大家有所帮助!一次函数练习题及答案及解析◆基础训练1.若y=5x+m-3是y关于x的正比例函数,则m=______.2.一台拖拉机开始工作时,油箱中有40升油,如果每小时耗油6升,则油箱中的余油量Q(升)与工作时间t(时)之间的函数关系式为________.3.已知y=(k-2)x|k|-1+2k-3是关于x的一次函数,则这个函数的表达式为_______.4.设地面气温是25℃,如果每升高1千米,气温下降6℃,则气温t(℃)与高度h(千米)的函数关系是()A.t=25-6tB.t=25+6hC.t=6h-25D.t=t5.水箱内原有水200升,7:30打开水龙头,以2升/分的速度放水,设经t分时,水箱内存水y升.(1)求y关于x的函数关系式和自变量的取值范围.(2)7:55时,水箱内还有多少水?(3)几点几分,水箱内的水恰好放完?6.已知s是t的一次函数,并且当t=1时,s=2;当t=-2时,s=23,•试求这个一次函数的关系式.7.周日上午,小俊从外地乘车回嘉兴.一路上,小俊记下了如下数据:观察时间9:00(t=0)9:06(t=6)9:18(t=18)路牌内容嘉兴90km嘉兴80km嘉兴60km(注:“嘉兴90km”表示离嘉兴的距离为90千米) 假设汽车离嘉兴的距离s(千米)是行驶时间t(分钟)的一次函数,求s关于t•的函数关系式.8.某饮料厂生产一种饮料,经测算,用1吨水生产的饮料所获利润y(元)是1•吨水买入价x(元)的一次函数.根据下表提供的数据,求y关于x的函数解析式.当水价每吨为10元时,1吨水生产的饮料所获的利润是多少?1吨水的买入价(元)46利润y(元)200198◆提高训练9.测得某一弹簧的长度y(cm)与悬挂物体的重力x(N)有下面的对应值:x(N)012345y(cm)1212.51313.51414.5如果y是x的一次函数,利用表中任意两对对应值求此函数解析式,并用其他数据检验.10.若y1=-x+3,y2=3x-4,试确定当x取何值时:(1)y1y2.11.某校八年级学生小丽,小强和小红到某超市参加了社会实践活动,•在活动中他们参加了某种水果的销售工作,已知该水果的进价为8元/千克,下面是他们在活动结束后的对话.小丽:如果以10元/千克的价格销售,那么每天可售出300千克.小强:如果以13元/千克的价格销售,那么每天要获取利润750元.小红:通过调查验证,我发现每天的销售量y(千克)与销售单价x(元)之间存在一次函数关系.求y(千克)关于x(元)(x>0)的函数关系式.12.铜导钱的电阻R(欧)与温度t(℃)成一次函数关系.当t=20℃,R=42欧;当t=•40℃时,R=45.36欧.(1)求R关于t的函数关系式;(2)当温度为30℃时,加在铜导线两端的电压为12伏,•则通过铜导线的电流为多少安(精确到0.01安)?13.如图,两摞相同规格的饭碗整齐地叠放在桌面上,请根据图给的数据信息,解答下列问题:(1)求整齐摆放在桌面上饭碗的高度y(cm)与饭碗数x(个)•之间的一次函数解析式;(2)把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是多少?◆拓展训练14.甲、乙两个旅行社组织去某地旅行,每个人的收费均为100元,除优惠政策外其他服务均相同,甲旅行社的收费标准是每个人均可打7折,•乙旅行社可免去一位带队教师的费用,其他人均可打8折.(1)请用函数关系式分别表示甲、乙旅行社所需的总费用y和y 与旅行人数x的函数关系式;(2)当人数为5人时,甲,乙两个旅行社的总收费各是多少?此时,你会选择哪个旅行社?(3)当人数为10人,你会选择哪个旅行社?为什么?答案:1.32.Q=40-6t3.y=-4x-74.A5.(1)y=200-2t,0≤t≤100(2)150升(3)9点10分6.s=-7t+97.s=-t+908.y=-x+204,194元9.y=0.5x+1210.(1)x>(2)x=(3)x<11.y=-50x+800(x>0)12.(1)R=0.168t+38.64(2)0.27安13.(1)y=1.5x+4.5(2)21cm14.(1)y=70x,y=80x-80(2)y甲=350元,y乙=320元,选择乙旅行社(3)y甲=700元,y乙=720元,选择甲旅行社。

一次函数真题汇编附解析

一次函数真题汇编附解析

一次函数真题汇编附解析一、选择题1.关于一次函数y=3x+m ﹣2的图象与性质,下列说法中不正确的是( ) A .y 随x 的增大而增大B .当m≠2时,该图象与函数y=3x 的图象是两条平行线C .若图象不经过第四象限,则m >2D .不论m 取何值,图象都经过第一、三象限 【答案】C 【解析】 【分析】根据一次函数的增减性判断A ;根据两条直线平行时,k 值相同而b 值不相同判断B ;根据一次函数图象与系数的关系判断C 、D . 【详解】A 、一次函数y=3x+m ﹣2中,∵k=3>0,∴y 随x 的增大而增大,故本选项正确;B 、当m≠2时,m ﹣2≠0,一次函数y=3x+m ﹣2与y=3x 的图象是两条平行线,故本选项正确;C 、若图象不经过第四象限,则经过第一、三象限或第一、二、三象限,所以m ﹣2≥0,即m≥2,故本选项错误;D 、一次函数y=3x+m ﹣2中,∵k=3>0,∴不论m 取何值,图象都经过第一、三象限,故本选项正确. 故选:C . 【点睛】本题考查了两条直线的平行问题:若直线y 1=k 1x+b 1与直线y 2=k 2x+b 2平行,那么k 1=k 2,b 1≠b 2.也考查了一次函数的增减性以及一次函数图象与系数的关系.2.平面直角坐标系中,点(0,0)O 、(2,0)A 、(,2)B b b -+,当45ABO ∠<︒时,b 的取值范围为( ) A .0b < B .2b <C .02b <<D .0b <或2b >【答案】D 【解析】 【分析】根据点B 的坐标特征得到点B 在直线y=-x+2上,由于直线y=-x+2与y 轴的交点Q 的坐标为(0,2),连结AQ ,以AQ 为直径作⊙P ,如图,易得∠AQO=45°,⊙P 与直线y=-x+2只有一个交点,根据圆外角的性质得到点B 在直线y=-x+2上(除Q 点外),有∠ABO 小于45°,所以b <0或b >2. 【详解】解∵B 点坐标为(b ,-b+2), ∴点B 在直线y=-x+2上,直线y=-x+2与y 轴的交点Q 的坐标为(0,2),连结AQ ,以AQ 为直径作⊙P ,如图, ∵A (2,0), ∴∠AQO=45°,∴点B 在直线y=-x+2上(除Q 点外),有∠ABO 小于45°, ∴b 的取值范围为b <0或b >2. 故选D .【点睛】本题考查了一函数图象上点的坐标特征:一次函数y=kx+b ,(k≠0,且k ,b 为常数)的图象是一条直线.它与x 轴的交点坐标是(bk-,0);与y 轴的交点坐标是(0,b ).直线上任意一点的坐标都满足函数关系式y=kx+b .3.若点()11,x y ,()22,x y ,()33,x y 都是一次函数1y x =--图象上的点,并且123y y y <<,则下列各式中正确的是( )A .123x x x <<B .132x x x <<C .213x x x <<D .321x x x <<【答案】D 【解析】 【分析】根据一次函数的性质即可得答案. 【详解】∵一次函数1y x =--中10k =-<, ∴y 随x 的增大而减小, ∵123y y y <<, ∴123x x x >>. 故选:D . 【点睛】本题考查一次函数的性质,对于一次函数y=kx+b(k≠0),当k >0时,图象经过一、三、象限,y 随x 的增大而增大;当k <0时,图象经过二、四、象限,y 随x 的增大而减小;熟练掌握一次函数的性质是解题关键.4.某一次函数的图象经过点()1,2,且y 随x 的增大而减小,则这个函数的表达式可能是( ) A .24y x =+ B .24y x =-+C .31y x =+D .31y x -=-【答案】B 【解析】 【分析】设一次函数关系式为y kx b =+,把(1,2)代入可得k+b=2,根据y 随x 的增大而减小可得k <0,对各选项逐一判断即可得答案. 【详解】设一次函数关系式为y kx b =+, ∵图象经过点()1,2,2k b ∴+=;∵y 随x 增大而减小, ∴k 0<,A.2>0,故该选项不符合题意,B.-2<0,-2+4=2,故该选项符合题意,C.3>0,故该选项不符合题意,D.∵31y x -=-, ∴y=-3x+1,-3+1=-2,故该选项不符合题意, 故选:B . 【点睛】本题考查一次函数的性质及一次函数图象上的点的坐标特征,对于一次函数y=kx+b(k≠0),当k >0时,图象经过一、三、象限,y 随x 的增大而增大;当k <0时,图象经过二、四、象限,y 随x 的增大而减小;熟练掌握一次函数的性质是解题关键.5.若一个正比例函数的图象经过A (3,﹣6),B (m ,﹣4)两点,则m 的值为( ) A .2 B .8C .﹣2D .﹣8【答案】A 【解析】试题分析:设正比例函数解析式为:y=kx ,将点A (3,﹣6)代入可得:3k=﹣6,解得:k=﹣2,∴函数解析式为:y=﹣2x ,将B (m ,﹣4)代入可得:﹣2m=﹣4,解得m=2,故选A .考点:一次函数图象上点的坐标特征.6.已知直线4y x =-+与2y x =+的图象如图,则方程组y x 4y x 2=-+⎧⎨=+⎩的解为( )A .31x y ==,B .13x y ==,C .04x y ==,D .40x y ==,【答案】B 【解析】 【分析】二元一次方程组的解就是组成二元一次方程组的两个方程的公共解,即两条直线的交点坐标. 【详解】解:根据题意知,二元一次方程组y x 4y x 2=-+⎧⎨=+⎩的解就是直线y =−x +4与y =x +2的交点坐标,又∵交点坐标为(1,3),∴原方程组的解是:13x y ==,. 故选:B . 【点睛】本题考查了一次函数与二元一次方程组.二元一次方程组的解就是组成该方程组的两条直线的图象的交点.7.如图,矩形ABOC 的顶点坐标为()4,5-,D 是OB 的中点,E 为OC 上的一点,当ADE ∆的周长最小时,点E 的坐标是( )A .40,3⎛⎫ ⎪⎝⎭B .50,3⎛⎫ ⎪⎝⎭C .()0,2D .100,3⎛⎫ ⎪⎝⎭【答案】B 【解析】 【分析】作点A 关于y 轴的对称点A',连接A'D ,此时△ADE 的周长最小值为AD+DA'的长;E 点坐标即为直线A'D 与y 轴的交点. 【详解】解:作点A 关于y 轴的对称点A',连接A'D ,此时△ADE 的周长最小值为AD+DA'的长; ∵A 的坐标为(-4,5),D 是OB 的中点, ∴D (-2,0),由对称可知A'(4,5), 设A'D 的直线解析式为y=kx+b ,5402k b k b =+⎧∴⎨=-+⎩5653k b ⎧=⎪⎪∴⎨⎪=⎪⎩5563y x ∴=+ 当x=0时,y=5350,3E ⎛⎫∴ ⎪⎝⎭故选:B 【点睛】本题考查矩形的性质,线段的最短距离;能够利用轴对称求线段的最短距离,将AE+DE 的最短距离转化为线段A'D 的长是解题的关键.8.已知直线y=2x-1与y=x-k 的交点在第四象限,则k 的取值范围是( )A.12<k<1 B.13<k<1 C.k>12D.k>13【答案】A【解析】【分析】由直线y=2x-1与y=x-k可列方程组求交点坐标,再通过交点在第四象限可求k的取值范围.【详解】解:设交点坐标为(x,y)根据题意可得21y xy x k=-⎧⎨=-⎩解得112x ky k=-⎧⎨=-⎩∴交点坐标()112k,k--∵交点在第四象限,∴10120kk-⎧⎨-⎩><∴112k<<故选:D.【点睛】本题考查了两条直线相交坐标问题,掌握平面直角坐标系内点的坐标特点是解题的关键.9.如图,在矩形AOBC中,A(–2,0),B(0,1).若正比例函数y=kx的图象经过点C,则k的值为()A.–12B.12C.–2 D.2【答案】A【解析】【分析】根据已知可得点C的坐标为(-2,1),把点C坐标代入正比例函数解析式即可求得k.【详解】∵A(-2,0),B(0,1),∴OA=2,OB=1, ∵四边形OACB 是矩形, ∴BC=OA=2,AC=OB=1,∵点C 在第二象限,∴C 点坐标为(-2,1), ∵正比例函数y =kx 的图像经过点C , ∴-2k=1,∴k=-12, 故选A.【点睛】本题考查了矩形的性质,待定系数法求正比例函数解析式,根据已知求得点C 的坐标是解题的关键.10.如图,过点1(1,0)A 作x 轴的垂线,交直线2y x =于点1B ;点2A 与点O 关于直线11A B 对称;过点2(2,0)A 作x 轴的垂线,交直线2y x =于点2B ;点3A 与点O 关于直线22A B 对称;过点3A 作x 轴的垂线,交直线2y x =于点3B ;按3B 此规律作下去,则点nB 的坐标为( )A .(2n ,2n-1)B .(12n -,2n )C .(2n+1,2n )D .(2n ,12n +)【答案】B 【解析】 【分析】先根据题意求出点A 2的坐标,再根据点A 2的坐标求出B 2的坐标,以此类推总结规律便可求出点n B 的坐标. 【详解】 ∵1(1,0)A ∴11OA =∵过点1(1,0)A 作x 轴的垂线,交直线2y x =于点1B ∴()11,2B ∵2(2,0)A∴22OA =∵过点2(2,0)A 作x 轴的垂线,交直线2y x =于点2B ∴()12,4B∵点3A 与点O 关于直线22A B 对称 ∴()()334,0,4,8A B以此类推便可求得点A n 的坐标为()12,0n -,点B n 的坐标为()12,2n n - 故答案为:B . 【点睛】本题考查了坐标点的规律题,掌握坐标点的规律、轴对称的性质是解题的关键.11.下列命题是假命题的是( )A .三角形的外心到三角形的三个顶点的距离相等B .如果等腰三角形的两边长分别是5和6,那么这个等腰三角形的周长为16C .将一次函数y =3x -1的图象向上平移3个单位,所得直线不经过第四象限D .若关于x 的一元一次不等式组0213x m x -≤⎧⎨+>⎩无解,则m 的取值范围是1m £【答案】B 【解析】 【分析】利用三角形外心的性质、等腰三角形的性质和三角形三边关系定理、一次函数图象的平移规律、解一元一次不等式组分别判断后即可确定正确的选项. 【详解】A. 三角形的外心到三角形的三个顶点的距离相等,正确,是真命题;B. 如果等腰三角形的两边长分别是5和6,那么这个等腰三角形的周长为16或17,错误,是假命题;C. 将一次函数y =3x -1的图象向上平移3个单位,所得直线不经过第四象限,正确,是真命题;D. 若关于x 的一元一次不等式组0213x m x -≤⎧⎨+>⎩无解,则m 的取值范围是1m £,正确,是真命题;故答案为:B 【点睛】本题考查了命题与定理的知识,解题的关键是了解三角形外心的性质、等腰三角形的性质和三角形三边关系定理、一次函数图象的平移规律、解一元一次不等式组.12.某班同学在研究弹簧的长度跟外力的变化关系时,实验记录得到相应的数据如下表:砝码的质量x/g050100150200250300400500指针位置y/cm2345677.57.57.5则下列图象中,能表示y与x的函数关系的图象大致是( )A.B.C.D.【答案】B【解析】【分析】通过(0,2)和(100,4)利用待定系数法求出一次函数的解析式,再对比图象中的折点即可选出答案.【详解】解:由题干内容可得,一次函数过点(0,2)和(100,4).设一次函数解析式为y=k x+b,代入点(0,2)和点(100,4)可解得,k=0.02,b=2.则一次函数解析式为y=0.02x+2.显然当y=7.5时,x=275,故选B.【点睛】此题主要考查函数的图象和性质,利用待定系数法求一次函数解析式.13.若一次函数y=(k-3)x-1的图像不经过第一象限,则A.k<3 B.k>3 C.k>0 D.k<0【答案】A【解析】【分析】根据图象在坐标平面内的位置关系确定k,b的取值范围,从而求解.【详解】解:∵一次函数y=(k-3)x-1的图象不经过第一象限,且b=-1,∴一次函数y=(k-3)x-1的图象经过第二、三、四象限,∴k-3<0,解得k<3.故选A.【点睛】本题主要考查一次函数图象在坐标平面内的位置与k 、b 的关系.解答本题注意理解:直线y=kx+b 所在的位置与k 、b 的符号有直接的关系.k >0时,直线必经过一、三象限.k <0时,直线必经过二、四象限.b >0时,直线与y 轴正半轴相交.b=0时,直线过原点;b <0时,直线与y 轴负半轴相交.14.如图,已知直线1y x b =+与21y kx =-相交于点P ,点P 的横坐标为1-,则关于x 的不等式1x b kx +≤-的解集在数轴上表示正确的是( ).A .B .C .D .【答案】D 【解析】试题解析:当x >-1时,x+b >kx-1, 即不等式x+b >kx-1的解集为x >-1. 故选A .考点:一次函数与一元一次不等式.15.如图,已知一次函数3y x b =+与3y ax =-交于点P (-2,-5),则关于x 的不等式33x b ax +>-的解集在数轴上表示正确的是( )A .B .C .D .【答案】C【解析】【分析】 直接根据两函数图象的交点求出不等式的解集,再在数轴上表示出来即可.【详解】解:∵由函数图象可知,当x >−2时,一次函数y =3x +b 的图象在函数y =ax−3的图象的上方,∴不等式3x +b >ax−3的解集为x >−2, 在数轴上表示为:.故选:C .【点睛】本题考查的是一次函数与一元一次不等式,能利用函数图象求出不等式的解集是解答此题的关键.16.如图,一次函数y kx b =+的图象经过点03()4)3(A B -,,,,则关于x 的不等式3 0kx b ++<的解集为( )A .4x >B .4x <C .3x >D .3x <【答案】A【解析】【分析】 由30kx b ++<即y<-3,根据图象即可得到答案.【详解】∵y kx b =+,30kx b ++<,∴kx+b<-3即y<-3,∵一次函数y kx b =+的图象经过点B(4,-3),∴当x=4时y=-3,由图象得y 随x 的增大而减小,当4x >时,y<-3,故选:A.【点睛】此题考查一次函数的性质,一次函数与不等式,正确理解函数的性质、会观察图象是解题的关键.17.已知一次函数y=kx+k,其在直角坐标系中的图象大体是()A.B.C.D.【答案】A【解析】【分析】函数的解析式可化为y=k(x+1),易得其图象与x轴的交点为(﹣1,0),观察图形即可得出答案.【详解】函数的解析式可化为y=k(x+1),即函数图象与x轴的交点为(﹣1,0),观察四个选项可得:A符合.故选A.【点睛】本题考查了一次函数的图象,要求学生掌握通过解析判断其图象与坐标轴的交点位置、坐标.18.下列命题中哪一个是假命题()A.8的立方根是2B.在函数y=3x的图象中,y随x增大而增大C.菱形的对角线相等且平分D.在同圆中,相等的圆心角所对的弧相等【答案】C【解析】【分析】利用立方根的定义、一次函数的性质、菱形的性质及圆周角定理分别判断后即可确定正确的选项.【详解】A、8的立方根是2,正确,是真命题;B 、在函数3y x 的图象中,y 随x 增大而增大,正确,是真命题;C 、菱形的对角线垂直且平分,故错误,是假命题;D 、在同圆中,相等的圆心角所对的弧相等,正确,是真命题,故选C .【点睛】考查了命题与定理的知识,能够了解立方根的定义、一次函数的性质、菱形的性质及圆周角定理等知识是解题关键.19.下列各点在一次函数y=2x ﹣3的图象上的是( )A .( 2,3)B .(2,1)C .(0,3)D .(3,0【答案】B【解析】【分析】把各点分别代入一次函数y=2x ﹣3进行检验即可.【详解】A 、2×2﹣3=1≠3,原式不成立,故本选项错误;B 、2×2﹣3=1,原式成立,故本选项正确;C 、2×0﹣3=﹣3≠3,原式不成立,故本选项错误;D 、2×3﹣3=3≠0,原式不成立,故本选项错误,故选B .【点睛】本题考查了一次函数图象上点的坐标特征,熟知一次函数图象上的点的坐标满足一次函数的解析式是解题的关键.解答时只要把四个选项一一代入进行检验即可.20.一次函数y=(m ﹣2)x n ﹣1+3是关于x 的一次函数,则m ,n 的值为( ) A .m≠2,n=2B .m=2,n=2C .m≠2,n=1D .m=2,n=1【答案】A【解析】【分析】直接利用一次函数的定义分析得出答案.【详解】解:∵一次函数y=(m-2)x n-1+3是关于x 的一次函数,∴n-1=1,m-2≠0,解得:n=2,m≠2.故选A .【点睛】此题主要考查了一次函数的定义,正确把握系数和次数是解题关键.。

中考数学精选例题解析:一次函数(3)

中考数学精选例题解析:一次函数(3)

中考数学精选例题解析:一次函数知识考点:1、掌握一次函数的概念及图像;2、掌握一次函数的性质,并能求解有关实际问题;3、会用待定系数法求一次函数的解析式。

精典例题:【例1】已知直线b kx y +=(k ≠0)与x 轴的交点在x 轴的正半轴上,下列结论:①k >0,b >0;②k >0,b <0;③k <0,b >0;④k <0,b <0,其中正确结论的个数为( )A 、1B 、2C 、3D 、4解:根据题意知,直线b kx y +=(k ≠0)的图像可以如图1,这时k >0,b <0;也可以如图2,这时k <0,b >0。

故选B 。

例1图1xy O例1图 2xyOB '例2图xyB AO评注:本题关键是掌握一次函数b kx y +=中的系数k 、b 与图像性质之间的关系。

【例2】一直线与y 轴相交于点A (0,-2),与x 轴相交于点B ,且tan ∠OAB =31,求这条直线的解析式。

分析:欲求直线的解析式,需要两个独立的条件建立关于k 、b 的方程组,结合题目条件,本题要分两种情况讨论,如上图所示。

答案:23-=x y 或23--=x y【例3】如下图,已知直线b kx y +=与n mx y +=交于点P (1,4),它们分别与x 轴交于A 、B ,PA =PB ,PB =52。

(1)求两个函数的解析式;(2)若BP 交y 轴于点C ,求四边形PCOA 的面积。

解析:(1)作PH ⊥AO ,则PH =4,OH =1,BH =24)52(22=-∴B (-1,0)。

设A (a ,0),则AH =1-a ,AP =AB =1+a ,2224)1()1(+-=+a a ,解得4=a 。

∴A (4,0),故直线PB :22+=x y ;直线AP :31634+-=x y 。

(2)9=-=∆∆OBC ABP PCOA S S S 四边形评注:灵活运用勾股定理等几何知识求线段长,进而求点的坐标,是解函数题的常用方法。

一次函数精选20题(附问题详解)

一次函数精选20题(附问题详解)

分邮递员小王从县城出发,骑自行车到A 村投递,途中遇到县城中学的学生李明从A 村步行返校.小王在A 村完成投递工作后,返回县城途中又遇到李明,便用自行车载上李明,一起到达县城,结果小王比预计时间晚到1分钟.二人与县城间的距离s (千米)和小王从县城出发后所用的时间t (分)之间的函数关系如图,假设二人之间交流的时间忽略不计,求:(1)小王和李明第一次相遇时,距县城多少千米?请直接写出答案.(2)小王从县城出发到返回县城所用的时间.(3)李明从A 村到县城共用多长时间?26.(本小题满分8分)甲、乙两辆汽车沿同一路线赶赴距出发地480千米的目的地,乙车比甲车晚出发2小时(从甲车出发时开始计时).图中折线OABC 、线段DE 分别表示甲、乙两车所行路程y (千米)与时间x (小时)之间的函数关系对应的图象(线段AB 表示甲出发不足2小时因故停车检修).请根据图象所提供的信息,解决如下问题:(1)求乙车所行路程y 与时间x 的函数关系式;(2)求两车在途中第二次相遇时,它们距出发地的路程;(3)乙车出发多长时间,两车在途中第一次相遇?(写出解题过程)小24.(本题满分10分)工业园区某消毒液工厂,今年四月份以前,每天的产量与销售量均为500箱.进入四月份后,每天的产量保持不变,市场需求量不断增加.如图是四月前后一段时期库存量y(箱)与生产时间t(月份)之间的函数图象.(1)四月份的平均日销售量为多少箱?(2)该厂什么时候开始出现供不应求的现象,此时日销售量为多少箱?(3)为满足市场需求,该厂打算在投资不超过135万元的情况下,购买5台新设备,使扩大生产规模后的日产量不低于四月份的平均日销售量.现有A、B两种型号的设备可供选择,其价格与两种设备的日产量如下表:哪几种购买设备的方案?若为了使日产量最大,应选择哪种方案?24.小张骑自行车匀速从甲地到乙地,在途中休息了一段时间后,仍按原速行驶.他距乙地的距离与时间的关系如图中折线所示,小李骑摩托车匀速从乙地到甲地,比小张晚出发一段时间,他距乙地的距离与时间的关系如图中线段AB所示.(1)小李到达甲地后,再经过___小时小张到达乙地;小张骑自行车的速度是___千米/小时.(2)小张出发几小时与小李相距15千米?(3)若小李想在小张休息期间与他相遇,则他出发的时间x应在什么范围?(直接写出答案)25.(本小题满分8分)因南方旱情严重,乙水库的蓄水量以每天相同的速度持续减少.为缓解旱情,北方甲水库立即以管道运输的方式给予以支援下图是两水库的蓄水量y (万米3)与时间x (天)之间的函数图象.在单位时间内,甲水库的放水量与乙水库的进水量相同(水在排放、接收以及输送过程中的损耗不计).通过分析图象回答下列问题:(1)甲水库每天的放水量是多少万立方米?(2)在第几天时甲水库输出的水开始注入乙水库?此时乙水库的蓄水量为多少万立方米?(3)求直线AD 的解析式.23.(10分)国家推行“节能减排,低碳经济”政策后,某环保节能设备生产企业的产品供不应求.若该企业的某种环保设备每月的产量保持在一定的范围,每套产品的生产成本不高于50万元,每套产品的售价不低于90万元.已知这种设备的月产量x (套)与每套的售价1y (万元)之间满足关系式x y 21701-=,月产量x (套)与生产总成本2y (万元)存在如图所示的函数关系.(1)直接写出....2y 与x 之间的函数关系式;(2)求月产量x 的范围;(3)当月产量x (套)为多少时,这种设备的利润W (万元)最大?最大利润是多少?20.(本题满分9分)某公司专销产品A ,第一批产品A 上市40天内全部售完.该公司对第一批产品A 上市后的市场销售情况进行了跟踪调查,调查结果如图所示,其中图10中的折线表示的是市场日销售量与上市时间的关系;图11中的折线表示的是每件产品A 的销售利润与上市时间的关系.(1)试写出第一批产品A 的市场日销售量y 与上市时间t 的关系式;(2)第一批产品A 上市后,哪一天这家公司市场日销售利润最大?最大利润是多少万元?(说明理由)22.(本题满分10分)甲、乙两人骑自行车前往A 地,他们距A 地的路程(km)s 与行驶时间(h)t 之间的关系如图13所示,请根据图象所提供的信息解答下列问题:(1)甲、乙两人的速度各是多少?(4分)(2)写出甲、乙两人距A 地的路程s 与行驶时间t 之间的函数关系式(任写一个).(3分)(3)在什么时间段内乙比甲离A 地更近?(3分)图1325、(2011•黑河)某单位准备印制一批证书,现有两个印刷厂可供选择,甲厂费用分为制版费和印刷费两部分,乙厂直接按印刷数量收取印刷费.甲、乙两厂的印刷费用y (千元)与证书数量x (千个)的函数关系图象分别如图中甲、乙所示.(1)请你直接写出甲厂的制版费及y 甲与x 的函数解析式,并求出其证书印刷单价.(2)当印制证书8千个时,应选择哪个印刷厂节省费用,节省费用多少元?(3)如果甲厂想把8千个证书的印制工作承揽下来,在不降低制版费的前提下,每个证书最少降低多少元?23.(2011福建龙岩,23, 12分) 周六上午8:00小明从家出发,乘车1小时到郊外某基地参加社会实践活动,在基地活动2.2小时后,因家里有急事,他立即按原路以4千米/时的平均速度步行返回.同时爸爸开车从家出发沿同一路线接他,在离家28千米处与小明相遇。

一次函数 精选36道题 带答案!

一次函数 精选36道题 带答案!

一次函数实际应用1、一次时装表演会预算中票价定位每张100元,容纳观众人数不超过2000人,毛利润y (百元)关于观众人数x (百人)之间的函数图象如图所示,当观众人数超过1000人时,表演会组织者需向保险公司交纳定额平安保险费5000元(不列入成本费用)请解答下列问题:⑴求当观众人数不超过1000人时,毛利润y (百元)关于观众人数x (百人)的函数解析式和成本费用s (百元)关于观众人数x (百人)的函数解析式;⑵若要使这次表演会获得36000元的毛利润,那么要售出多少张门票?需支付成本费用多少元?(注:当观众人数不超过1000人时,表演会的毛利润=门票收入—成本费用;当观众人数超过1000人时,表演会的毛利润=门票收入—成本费用—平安保险费)2、甲乙两名同学进行登山比赛,图中表示甲乙沿相同的路线同时从山脚出发到达山顶过程中,个自行进的路程随时间变化的图象,根据图象中的有关数据回答下列问题:⑴分别求出表示甲、乙两同学登山过程中路程s (千米)与时间t (时)的函数解析式;(不要求写出自变量的取值范围)⑵当甲到达山顶时,乙行进到山路上的某点A 处,求A 点距山顶的距离;⑶在⑵的条件下,设乙同学从A 点继续登山,甲同学到达山顶后休息1小时,沿原路下山,在点B 处与乙同学相遇,此时点B 与山顶距离为1.5千米,相遇后甲、乙各自沿原路下山和上山,求乙到大山顶时,甲离山脚的距离是多少千米?12623S(千米)t(小时)CD EF B甲乙3、教室里放有一台饮水机,饮水机上有两个放水管。

课间同学们到饮水机前用茶杯接水。

假设接水过程中水不发生泼洒,每个学声所接的水量是相等的。

两个放水管同时打开时,它们的流量相同。

放水时先打开一个水管,过一会再打开第二个水管,放水过程中阀门一直开着。

饮水机的存水量y (升)与放水时间x(分钟)的函数关系如下图所示:O 21281718y(升)x(分钟)⑴求出饮水机的存水量y (升)与放水时间x(分钟)(x ≥2)的函数关系式;⑵如果打开第一个水管后,2分钟时恰好有4个同学接水接束,则前22个同学接水结束共需要几分钟? ⑶按⑵的放法,求出在课间10分钟内最多有多少个同学能及时接完水?4、 甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度()m y 与挖掘时间()h x 之间的关系如图1所示,请根据图象所提供的信息解答下列问题: ⑴乙队开挖到30m 时,用了 h . 开挖6h 时甲队比乙队多挖了 m ;⑵请你求出:①甲队在06x ≤≤的时段内,y 与x 之间的函数关系式;②乙队在26x ≤≤的时段内,y 与x 之间的函数关系式;⑶当x 为何值时,甲、乙两队在施工过程中所挖河渠的长度相等?5、小明受《乌鸦喝水》故事的启发,利用量桶和体积相同的小球进行了如下操作:请根据图2中给出的信息,解答下列问题:(1)放入一个小球量桶中水面升高___________cm ;(2)求放入小球后量桶中水面的高度y (cm )与小球个数x(个)之间的一次函数关系式(不要求写出自变量的取值范围);(3)量桶中至少放入几个小球时有水溢出?6、日照市是中国北方最大的对虾养殖产区,被国家农业部列为对虾养殖重点区域;贝类产品西施舌是日照特产.沿海某养殖场计划今年养殖无公害标准化对虾和西施舌,由于受养殖水面的制约,这两个品种的苗种的总投放量只有50吨.根据经验测算,这两个品种的种苗每投放一吨的先期投资、养殖期间的投资养殖场受经济条件的影响,先期投资不超过360千元,养殖期间的投资不超过290千元.设西施舌种苗的投放量为x 吨(1)求x 的取值范围;(2)设这两个品种产出后的总产值为y (千元),试写出y 与x 之间的函数关系式,并求出当x 等于多少时,y 有最大值?最大值是多少?49cm 30cm36cm 3个球有水溢出(第23题) 图2 图27、元旦联欢会前某班布置教室,同学们利用彩纸条粘成一环套一环的彩纸链,小颖测量了部分彩纸链的长度,她得到的数据如下表:y与x的函数关系,并求出函数关系式;根彩纸链,则每根彩纸链至少要用多少个纸环?图38、某软件公司开发出一种图书管理软件,前期投入的开发广告宣传费用共50000元,且每售出一套软件,软件公司还需支付安装调试费用200元。

一次函数题30道计算题

一次函数题30道计算题

一次函数题30道计算题一次函数是数学中非常基础的一个概念,也是初中数学中重点学习的内容之一。

一次函数也被称为一元一次方程,它的一般形式为y=ax+b,其中a和b是已知的常数。

下面将给出30道与一次函数相关的计算题,并附上解答。

1. 计算函数y=3x+2中当x取1、2、3时的y值。

解答:当x=1时,y=3*1+2=5;当x=2时,y=3*2+2=8;当x=3时,y=3*3+2=11。

2. 求一条经过点(2,5)且与直线y=3x+1平行的直线的方程。

解答:平行于y=3x+1的直线的斜率与y=3x+1的斜率相等,所以该直线的斜率也为3。

由已知点(2,5)和斜率3,可以得到方程为y=3x-1。

3. 若函数y=kx-3与直线y=2x+4平行,求直线y=kx-3的斜率k。

解答:平行于y=2x+4的直线的斜率与y=2x+4的斜率相等,所以k=2。

4. 若函数y=3x-2与直线y=4x-5垂直,求直线y=3x-2的斜率。

解答:两条直线垂直时,它们的斜率积为-1,所以3*(4)=-1,解得斜率为-1/3。

5. 已知一次函数y=-2x+1,求函数与x轴的交点。

解答:函数与x轴的交点,即y=0,代入函数方程得-2x+1=0,解得x=1/2。

因此,函数与x轴的交点是(1/2, 0)。

6. 若函数y=2x+3与x轴相交于点(2,0),求函数的截距。

解答:函数与x轴相交时,y=0,代入函数方程得2x+3=0,解得x=-3/2。

因此,函数的截距为-3/2。

7. 已知一次函数y=4x-6与y轴相交于点(0,-6),求函数的截距。

解答:函数与y轴相交时,x=0,代入函数方程得y=-6。

因此,函数的截距为-6。

8. 已知一次函数y=3x-2,求函数与y轴的交点。

解答:函数与y轴相交时,x=0,代入函数方程得y=-2。

因此,函数与y轴的交点是(0, -2)。

9. 求过点(1,3)且平行于x轴的直线的方程。

解答:平行于x轴的直线与x轴的斜率为0,所以方程为y=3。

《一次函数》经典例题剖析(附练习及答案)

《一次函数》经典例题剖析(附练习及答案)

《一次函数》复习课知识点1 一次函数和正比例函数的概念若两个变量x ,y 间的关系式可以表示成y=kx+b (k ,b 为常数,k ≠0)的形式,则称y 是x 的一次函数(x 为自变量),特别地,当b=0时,称y 是x 的正比例函数.例如:y=2x+3,y=-x+2,y=21x 等都是一次函数,y=21x ,y=-x 都是正比例函数.【说明】 (1)一次函数的自变量的取值范围是一切实数,但在实际问题中要根据函数的实际意义来确定.(2)一次函数y=kx+b (k ,b 为常数,b ≠0)中的“一次”和一元一次方程、一元一次不等式中的“一次”意义相同,即自变量x 的次数为1,一次项系数k 必须是不为零的常数,b 可为任意常数.(3)当b=0,k ≠0时,y= kx 仍是一次函数. (4)当b=0,k=0时,它不是一次函数. 知识点2 函数的图象把一个函数的自变量x 与所对应的y 的值分别作为点的横坐标和纵坐标在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象.画函数图象一般分为三步:列表、描点、连线.知识点 3一次函数的图象由于一次函数y=kx+b (k ,b 为常数,k ≠0)的图象是一条直线,所以一次函数y=kx+b 的图象也称为直线y=kx+b .由于两点确定一条直线,因此在今后作一次函数图象时,只要描出适合关系式的两点,再连成直线即可,一般选取两个特殊点:直线与y 轴的交点(0,b ),直线与x 轴的交点(-kb,0).但也不必一定选取这两个特殊点.画正比例函数y=kx 的图象时,只要描出点(0,0),(1,k )即可.知识点4 一次函数y=kx+b (k ,b 为常数,k ≠0)的性质 (1)k 的正负决定直线的倾斜方向; ①k >0时,y 的值随x 值的增大而增大; ②k ﹤O 时,y 的值随x 值的增大而减小.(2)|k|大小决定直线的倾斜程度,即|k|越大,直线与x 轴相交的锐角度数越大(直线陡),|k|越小,直线与x 轴相交的锐角度数越小(直线缓);(3)b 的正、负决定直线与y 轴交点的位置; ①当b >0时,直线与y 轴交于正半轴上; ②当b <0时,直线与y 轴交于负半轴上; ③当b=0时,直线经过原点,是正比例函数.(4)由于k ,b 的符号不同,直线所经过的象限也不同;①如图11-18(l )所示,当k >0,b >0时,直线经过第一、二、三象限(直线不经过第四象限); ②如图11-18(2)所示,当k >0,b ﹥O 时,直线经过第一、三、四象限(直线不经过第二象限); ③如图11-18(3)所示,当k ﹤O ,b >0时,直线经过第一、二、四象限(直线不经过第三象限); ④如图11-18(4)所示,当k ﹤O ,b ﹤O 时,直线经过第二、三、四象限(直线不经过第一象限). (5)由于|k|决定直线与x 轴相交的锐角的大小,k 相同,说明这两个锐角的大小相等,且它们是同位角,因此,它们是平行的.另外,从平移的角度也可以分析,例如:直线y=x +1可以看作是正比例函数y=x 向上平移一个单位得到的.知识点3 正比例函数y=kx (k ≠0)的性质 (1)正比例函数y=kx 的图象必经过原点;(2)当k >0时,图象经过第一、三象限,y 随x 的增大而增大; (3)当k <0时,图象经过第二、四象限,y 随x 的增大而减小. 知识点4 点P (x 0,y 0)与直线y=kx+b 的图象的关系(1)如果点P (x 0,y 0)在直线y=kx+b 的图象上,那么x 0,y 0的值必满足解析式y=kx+b ; (2)如果x 0,y 0是满足函数解析式的一对对应值,那么以x 0,y 0为坐标的点P (1,2)必在函数的图象上.例如:点P (1,2)满足直线y=x+1,即x=1时,y=2,则点P (1,2)在直线y=x+l 的图象上;点P ′(2,1)不满足解析式y=x+1,因为当x=2时,y=3,所以点P ′(2,1)不在直线y=x+l 的图象上.知识点5 确定正比例函数及一次函数表达式的条件(1)由于正比例函数y=kx (k ≠0)中只有一个待定系数k ,故只需一个条件(如一对x ,y 的值或一个点)就可求得k 的值.(2)由于一次函数y=kx+b (k ≠0)中有两个待定系数k ,b ,需要两个独立的条件确定两个关于k ,b 的方程,求得k ,b 的值,这两个条件通常是两个点或两对x ,y 的值.知识点6 待定系数法先设待求函数关系式(其中含有未知常数系数),再根据条件列出方程(或方程组),求出未知系数,从而得到所求结果的方法,叫做待定系数法.其中未知系数也叫待定系数.例如:函数y=kx+b 中,k ,b 就是待定系数.知识点7 用待定系数法确定一次函数表达式的一般步骤 (1)设函数表达式为y=kx+b ; (2)将已知点的坐标代入函数表达式,解方程(组);(3)求出k 与b 的值,得到函数表达式.例如:已知一次函数的图象经过点(2,1)和(-1,-3)求此一次函数的关系式. 解:设一次函数的关系式为y =kx+b (k ≠0), 由题意可知,⎩⎨⎧+-=-+=,3,21b k b k 解⎪⎪⎩⎪⎪⎨⎧-==.35,34b k ∴此函数的关系式为y=3534-x . 【说明】 本题是用待定系数法求一次函数的关系式,具体步骤如下:第一步,设(根据题中要求的函数“设”关系式y=kx+b ,其中k ,b 是未知的常量,且k ≠0);第二步,代(根据题目中的已知条件,列出方程(或方程组),解这个方程(或方程组),求出待定系数k ,b );第三步,求(把求得的k ,b 的值代回到“设”的关系式y=kx+b 中);第四步,写(写出函数关系式).思想方法小结 (1)函数方法.函数方法就是用运动、变化的观点来分析题中的数量关系,抽象、升华为函数的模型,进而解决有关问题的方法.函数的实质是研究两个变量之间的对应关系,灵活运用函数方法可以解决许多数学问题.(2)数形结合法.数形结合法是指将数与形结合,分析、研究、解决问题的一种思想方法,数形结合法在解决与函数有关的问题时,能起到事半功倍的作用.知识规律小结 (1)常数k ,b 对直线y=kx+b(k ≠0)位置的影响. ①当b >0时,直线与y 轴的正半轴相交; 当b=0时,直线经过原点;当b ﹤0时,直线与y 轴的负半轴相交.②当k ,b 异号时,即-kb>0时,直线与x 轴正半轴相交;当b=0时,即-kb=0时,直线经过原点;当k ,b 同号时,即-kb﹤0时,直线与x 轴负半轴相交.③当k >O ,b >O 时,图象经过第一、二、三象限; 当k >0,b=0时,图象经过第一、三象限; 当b >O ,b <O 时,图象经过第一、三、四象限; 当k ﹤O ,b >0时,图象经过第一、二、四象限; 当k ﹤O ,b=0时,图象经过第二、四象限; 当b <O ,b <O 时,图象经过第二、三、四象限.(2)直线y=kx+b (k ≠0)与直线y=kx(k ≠0)的位置关系. 直线y=kx+b(k ≠0)平行于直线y=kx(k ≠0)当b >0时,把直线y=kx 向上平移b 个单位,可得直线y=kx+b ; 当b ﹤O 时,把直线y=kx 向下平移|b|个单位,可得直线y=kx+b . (3)直线b 1=k 1x+b 1与直线y 2=k 2x+b 2(k 1≠0 ,k 2≠0)的位置关系. ①k 1≠k 2⇔y 1与y 2相交;②⎩⎨⎧=≠2121b b k k ⇔y 1与y 2相交于y 轴上同一点(0,b 1)或(0,b 2); ③⎩⎨⎧≠=2121,b b k k ⇔y 1与y 2平行; ④⎩⎨⎧==2121,b b k k ⇔y 1与y 2重合.典例剖析基本概念题本节有关基本概念的题目主要是一次函数、正比例函数的概念及它们之间的关系,以及构成一次函数及正比例函数的条件.例1 下列函数中,哪些是一次函数?哪些是正比例函数?(1)y=-21x ; (2)y=-x2; (3)y=-3-5x ;(4)y=-5x 2; (5)y=6x-21(6)y=x(x-4)-x 2.例2 当m 为何值时,函数y=-(m-2)x 32m+(m-4)是一次函数?基础知识应用题本节基础知识的应用主要包括:(1)会确定函数关系式及求函数值;(2)会画一次函数(正比例函数)图象及根据图象收集相关的信息;(3)利用一次函数的图象和性质解决实际问题;(4)利用待定系数法求函数的表达式.例3 一根弹簧长15cm ,它所挂物体的质量不能超过18kg ,并且每挂1kg 的物体,弹簧就伸长0.5cm ,写出挂上物体后,弹簧的长度y (cm )与所挂物体的质量x(kg )之间的函数关系式,写出自变量x 的取值范围,并判断y 是否是x 的一次函数.例4 某物体从上午7时至下午4时的温度M (℃)是时间t (时)的函数:M=t 2-5t+100(其中t=0表示中午12时,t=1表示下午1时),则上午10时此物体的温度为 ℃.例5 已知y-3与x 成正比例,且x=2时,y=7. (1)写出y 与x 之间的函数关系式; (2)当x=4时,求y 的值; (3)当y=4时,求x 的值.例6 若正比例函数y=(1-2m )x 的图象经过点A (x 1,y 1)和点B (x 2,y 2),当x 1﹤x 2时,y 1>y 2,则m 的取值范围是( )A .m ﹤OB .m >0C .m ﹤21D .m >M例7 已知一次函数y=kx+b 的图象如图11-22所示,求函数表达式.例8 求图象经过点(2,-1),且与直线y=2x+1平行的一次函数的表达式.综合应用题本节知识的综合应用包括:(1)与方程知识的综合应用;(2)与不等式知识的综合应用;(3)与实际生活相联系,通过函数解决生活中的实际问题.例9 已知y+a与x+b(a,b为是常数)成正比例.(1)y是x的一次函数吗?请说明理由;(2)在什么条件下,y是x的正比例函数?例10 某移动通讯公司开设了两种通讯业务:“全球通”使用者先交50元月租费,然后每通话1分,再付电话费0.4元;“神州行”使用者不交月租费,每通话1分,付话费0.6元(均指市内通话)若1个月内通话x分,两种通讯方式的费用分别为y1元和y2元.(1)写出y1,y2与x之间的关系;(2)一个月内通话多少分时,两种通讯方式的费用相同?(3)某人预计一个月内使用话费200元,则选择哪种通讯方式较合算?例11 已知y+2与x成正比例,且x=-2时,y=0.(1)求y与x之间的函数关系式;(2)画出函数的图象;(3)观察图象,当x取何值时,y≥0?(4)若点(m,6)在该函数的图象上,求m的值;(5)设点P在y轴负半轴上,(2)中的图象与x轴、y轴分别交于A,B两点,且S△ABP=4,求P点的坐标.例12 已知一次函数y=(3-k)x-2k2+18.(1)k为何值时,它的图象经过原点?(2)k为何值时,它的图象经过点(0,-2)?(3)k为何值时,它的图象平行于直线y=-x?(4)k为何值时,y随x的增大而减小?例13 判断三点A(3,1),B(0,-2),C(4,2)是否在同一条直线上.学生做一做判断三点A(3,5),B(0,-1),C(1,3)是否在同一条直线上.探索与创新题主要考查学生运用知识的灵活性和创新性,体现分类讨论思想、数形结合思想在数学问题中的广泛应用.例14 老师讲完“一次函数”这节课后,让同学们讨论下列问题:(1)x从0开始逐渐增大时,y=2x+8和y=6x哪一个的函数值先达到30?这说明了什么?(2)直线y=-x与y=-x+6的位置关系如何?甲生说:“y=6x的函数值先达到30,说明y=6x比y=2x+8的值增长得快.”乙生说:“直线y=-x与y=-x+6是互相平行的.”你认为这两个同学的说法正确吗?例15 某校一名老师将在假期带领学生去北京旅游,用旅行社说:“如果老师买全票,其他人全部半价优惠.”乙旅行社说:“所有人按全票价的6折优惠.”已知全票价为240元.(1)设学生人数为x,甲旅行社的收费为y甲元,乙旅行社的收费为y乙元,分别表示两家旅行社的收费;(2)就学生人数讨论哪家旅行社更优惠.学生做一做某公司到果园基地购买某种优质水果,慰问医务工作者.果园基地对购买量在3000千克以上(含3000千克)的有两种销售方案.甲方案:每千克9元,由基地送货上门;乙方案:每千克8元,由顾客自己租车运回,已知该公司租车从基地到公司的运输费为5000元.(1)分别写出该公司两种购买方案的付款y(元)与所购买的水果量x(千克)之间的函数关系式,并写出自变量X的取值范围;(2)当购买量在什么范围时,选择哪种购买方案付款少?并说明理由.例16 一次函数y=kx+b的自变量x的取值范围是-3≤x≤6,相应函数值的取值范围是-5≤y≤-2,则这个函数的解析式为 .基础训练习题:1.某地举办乒乓球比赛的费用y(元)包括两部分:一部分是租用比赛场地等固定不变的费用b(元),另一部分与参加比赛的人数x(人)成正比例,当x=20时y=160O;当x=3O时,y=200O.(1)求y与x之间的函数关系式;(2)动果有50名运动员参加比赛,且全部费用由运动员分摊,那么每名运动员需要支付多少元?2.已知一次函数y=kx+b,当x=-4时,y的值为9;当x=2时,y的值为-3.(1)求这个函数的解析式。

一次函数全集汇编及解析

一次函数全集汇编及解析
解得:n=2,m≠2.
故选A.
【点睛】
此题主要考查了一次函数的定义,正确把握系数和次数是解题关键.
15.已知正比例函数 , 随 的增大而减小,那么一次函数 的图象大致是如图中的()
A. B.
C. D.
【答案】D
【解析】
【分析】
由 随 的增大而减小即可得出m<0,再由m<0、−m>0即可得出一次函数 的图象经过第一、二、四象限,对照四个选项即可得出结论.
16.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂重物的质量x(kg)有下面的关系,那么弹簧总长y(cm)与所挂重物x(kg)之间的关系式为()
x(kg)
0
1
2
3
4
5
6
y(cm)
12
12.5
13
13.5
14
14.5
15
A.y=0.5x+12B.y=x+10.5C.y=0.5x+10D.y=x+12
故选:B.
【点睛】
本题考查了一次函数与二元一次方程组.二元一次方程组的解就是组成该方程组的两条直线的图象的交点.
13.如图,矩形 的顶点坐标为 , 是 的中点, 为 上的一点,当 的周长最小时,点 的坐标是()
A. B.
C. D.
【答案】B
【解析】
【分析】
作点A关于y轴的对称点A',连接A'D,此时△ADE的周长最小值为AD+DA'的长;E点坐标即为直线A'D与y轴的交点.
12.已知直线 与 的图象如图,则方程组 的解为()
A. B. C. D.
【答案】B
【解析】
【分析】
二元一次方程组的解就是组成二元一次方程组的两个方程的公共解,即两条直线的交点坐标.

一次函数题型(含解析)

一次函数题型(含解析)

一次函数典型例题精讲分析(解析归纳)类型一:正比例函数与一次函数定义1、当m为何值时,函数y=-(m-2)x+(m-4)是一次函数?思路点拨:某函数是一次函数,除应符合y=kx+b外,还要注意条件k≠0.解:∵函数y=-(m-2)x+(m-4)是一次函数,∴ ∴m=-2.∴当m=-2时,函数y=-(m-2)x+(m-4)是一次函数.举一反三:【变式1】如果函数是正比例函数,那么().A.m=2或m=0 B.m=2 C.m=0 D.m=1【答案】:考虑到x的指数为1,正比例系数k≠0,即|m-1|=1;m-2≠0,求得m=0,选C【变式2】已知y-3与x成正比例,且x=2时,y=7.(1)写出y与x之间的函数关系式;(2)当x=4时,求y的值;(3)当y=4时,求x的值.解析:(1)由于y-3与x成正比例,所以设y-3=kx.把 x=2,y=7代入y-3=kx中,得7-3=2k,∴ k=2.∴ y与x之间的函数关系式为y-3=2x,即y=2x+3.(2)当x=4时,y=2×4+3=11.(3)当y=4时,4=2x+3,∴x=.类型二:待定系数法求函数解析式2、求图象经过点(2,-1),且与直线y=2x+1平行的一次函数的表达式.思路点拨:图象与y=2x+1平行的函数的表达式的一次项系数为2,则可设此表达式为y=2x+b,再将点(2,-1)代入,求出b即可.解析:由题意可设所求函数表达式为y=2x+b,∵图象经过点( 2,-1),∴ -l=2×2+b.∴ b=-5,∴所求一次函数的表达式为 y=2x-5.总结升华:求函数的解析式常用的方法是待定系数法,具体怎样求出其中的待定系数的值,要根据具体的题设条件求出。

举一反三:【变式1】已知弹簧的长度y(cm)在一定的弹性限度内是所挂重物的质量x(kg)的一次函数,现已测得不挂重物时,弹簧的长度为6cm,挂4kg的重物时,弹簧的长度是7.2cm,求这个一次函数的表达式.分析:题中并没给出一次函数的表达式,因此应先设一次函数的表达式y=kx+b,再由已知条件可知,当x=0时,y=6;当x=4时,y=7.2.求出k,b即可.解:设这个一次函数的表达式为y=kx+b.由题意可知,当 x=0时,y=6;当x=4时,y=7.2.把它们代入y=kx+b中得∴∴这个一次函数的表达式为y=0.3x+6.【变式2】已知直线y=2x+1.(1)求已知直线与y轴交点M的坐标;(2)若直线y=kx+b与已知直线关于y轴对称,求k,b的值.解析:∵直线 y=kx+b与y=2x+l关于y轴对称,∴两直线上的点关于 y轴对称.又∵直线 y=2x+1与x轴、y轴的交点分别为A(-,0),B(0,1),∴A(-,0),B(0,1)关于y轴的对称点为A′(,0),B′(0,1).∴直线 y=kx+b必经过点A′(,0),B′(0,1).把A′(,0),B′(0,1)代入y=kx+b中得∴∴k=-2,b=1.所以(1)点M(0,1)(2)k=-2,b=1【变式3】判断三点A(3,1),B(0,-2),C(4,2)是否在同一条直线上.分析:由于两点确定一条直线,故选取其中两点,求经过这两点的函数表达式,再把第三个点的坐标代入表达式中,若成立,说明第三点在此直线上;若不成立,说明不在此直线上.解:设过A,B两点的直线的表达式为y=kx+b.由题意可知,∴∴过A,B两点的直线的表达式为y=x-2.∴当 x=4时,y=4-2=2.∴点 C(4,2)在直线y=x-2上.∴三点 A(3,1), B(0,-2),C(4,2)在同一条直线上.类型三:函数图象的应用3、图中的图象(折线ABCDE)描述了一汽车在某一直线上的行驶过程中,汽车离出发地的距离s(km)和行驶时间t(h)之间的函数关系,根据图中提供的信息,回答下列问题:(1)汽车共行驶了___________ km;(2)汽车在行驶途中停留了___________ h;(3)汽车在整个行驶过程中的平均速度为___________ km/h;(4)汽车自出发后3h至4.5h之间行驶的方向是___________.思路点拨:读懂图象所表达的信息,弄懂并熟悉图象语言.图中给出的信息反映了行驶过程中时间和汽车位置的变化过程,横轴代表行驶时间,纵轴代表汽车的位置.图象上的最高点就是汽车离出发点最远的距离. 汽车来回一次,共行驶了120×2=240(千米),整个过程用时4.5小时,平均速度为240÷4.5= (千米/时),行驶途中1.5时—2时之间汽车没有行驶.解析:(1)240; (2)0.5; (3) ; (4)从目的地返回出发点.总结升华:这类题是课本例题的变式,来源于生活,贴近实际,是中考中常见题型,应注意行驶路程与两地之间的距离之间的区别.本题图象上点的纵坐标表示的是汽车离出发地的距离,横坐标表示汽车的行驶时间.举一反三:【变式1】图中,射线l甲、l乙分别表示甲、乙两运动员在自行车比赛中所走的路程s 与时间t的函数关系,求它们行进的速度关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2012•长沙)如果一次函数y=mx+3的图象经过第一、二、四象限,则m 的取值范围是 分析:根据一次函数y=mx+3的图象经过第一、二、四象限判断出m 的取值范围即可. 解答:解:∵一次函数y=mx+3的图象经过第一、二、四象限,
∴m <0.
故答案为:m <0.
(2011•天津)已知一次函数的图象经过点(0,1),且满足y 随x 的增大而增大,则该一次函数的解析式可以为
分析:先设出一次函数的解析式,再根据一次函数的图象经过点(0,1)可确定出b 的值,再根据y 随x 的增大而增大确定出k 的符号即可.
解答:解:设一次函数的解析式为:y=kx+b (k ≠0),
∵一次函数的图象经过点(0,1),
∴b=1,
∵y 随x 的增大而增大,
∴k >0,
故答案为y=x+1(答案不唯一,可以是形如y=kx+1,k >0的一次函数).
(2012•恩施州)如图,直线y=kx+b 经过A (3,1)和B (6,0)两点,则不等式组0<kx+b <1/3 x 的解集为
分析:将A (3,1)和B (6,0)分别代入y=kx+b ,求出k 、b 的值,再解不等式组0<kx+b <1/3 x 的解集.
答案为3<x <6.
(2012•东营)在平面直角坐标系xOy 中,点A1,A2,A3,…和B1,B2,B3,…分别在直线y=kx+b 和x 轴上.△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形,如果A1(1,1),A2(27
,23
),那么点An 的纵坐标是
分析:利用待定系数法求一次函数解析式求出直线的解析式,再求出直线与x 轴、y 轴的交点坐标,求出直线与x 轴的夹角的正切值,分别过等腰直角三角形的直角顶点向x 轴作垂线,
然后根据等腰直角三角形斜边上的高线与中线重合并且等于斜边的一半,利用正切值列式依次求出三角形的斜边上的高线,即可得到各点的纵坐标的规律.
答案为:(
23)n-1.
(2012•北海)如图,点A 的坐标为(-1,0),点B 在直线y=2x-4上运动,当线段AB 最短时,点B 的坐标是
分析:作AB ′⊥BB ′,B ′即为当线段AB 最短时B 点坐标,求出AB ′的解析式,与BB ′组成方程组,求出其交点坐标即可.这里直线AB ′⊥BB ′,所以直线AB ′的斜率K= -1 答案为(57
,- 56 ).
(2011•厦门)如图,一系列“黑色梯形”是由x 轴、直线y=x 和过x 轴上的正奇数1、3、5、7、9、…所对应的点且与y 轴平行的直线围成的.从左到右,将其面积依次记为S1、S2、S3、…、Sn 、….则S1= ,Sn= .
分析,先利用梯形的面积公式求出前三个梯形的面积,再寻找规律。

答案为:4;4(2n-1).
(2011•攀枝花)如图,已知直线L1:y=32x+38与直线 L2:y=-2x+16相交于点C ,直线
L1、L2分别交x 轴于A 、B 两点,矩形DEFG 的顶点D 、E 分别在L1、L2上,顶点F 、G 都在x 轴上,且点G 与B 点重合,那么S 矩形DEFG :S △ABC=
分析:把y=0代入l1解析式求出x 的值便可求出点A 的坐标.令x=0代入l2的解析式求出点B 的坐标.然后可求出AB 的长.联立方程组可求出交点C 的坐标,继而求出三角形ABC 的面积,再利用xD=xB=8易求D 点坐标.又已知yE=yD=8可求出E 点坐标.故可求出DE ,EF 的长,即可得出矩形面积.
答案为:8:9.
(2011•内江)在直角坐标系中,正方形A1B1C1O1、A2B2C2C1、…、AnBnCnCn-1按如图所示的方式放置,其中点A1、A2、A3、…、An 均在一次函数y=kx+b 的图象上,点C1、C2、C3、…、Cn 均在x 轴上.若点B1的坐标为(1,1),点B2的坐标为(3,2),则点An 的坐标为
分析:首先求得直线的解析式,分别求得A1,A2,A3…的坐标,可以得到一定的规律,据此即可求解.
A1的坐标是(0,1),A2的坐标是:(1,2).
则直线的解析式是:y=x+1.
再逐一求出A3,A4的坐标,可以寻找规律
答案为,答案是:(2 n-1 -1,2 n-1).
(2011•广安)如图所示,直线OP 经过点P (4,4 3),过x 轴上的点1、3、5、7、9、11…分别作x 轴的垂线,与直线OP 相交得到一组梯形,其阴影部分梯形的面积从左至右依次记为S1、S2…Sn ,则Sn 关于n 的函数关系式是
分析:右图,首先由P点坐标可发现OE:PE=1:3,可得结论:OB:AB=OD:CD=OG:FG=OK:HK=ON:MN=OQ:QT=1:3,再计算出S1,S2,S3的面积,从中发现规律Sn=(8n-4)3,进而得到答案.
(2011•长春)如图,一次函数y=kx+b(k<0)的图象经过点A.当y<3时,x的取值范围是.
分析:y<3,则取直线处于坐标为3的以下部分,其对应的自变量取值范围为x>2。

相关文档
最新文档