人教初中数学八上《三角形的边》教案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11.1.1三角形的边
[教学目标]1、了解三角形的意义,认识三角形的边、内角、顶点,能用符号语言表示三角形 ;2、理解三角形三边不等的关系,会判断三条线段能否构成一个三角形,并能运用它解决有关的问题.
[重点难点] 三角形的有关概念和符号表示,三角形三边间的不等关系是重点;用三角形三边不等关系判定三条线段可否组成三角形是难点。
[教学过程]
一、情景导入
三角形是一种最常见的几何图形, [投影1-6]如古埃及金字塔,香港中银大厦,交通标志,等等,处处都有三角形的形象。
那么什么叫做三角形呢?
二、三角形及有关概念 不在一条直线上的三条线段首尾顺次相接组成的图形叫做三角形。
注意:三条线段必须①不在一条直线上,②首尾顺次相接。
组成三角形的线段叫做三角形的边,相邻两边所组成的角叫做三角形的内角,简称角,相邻两边的公共端点是三角形的顶点。
三角形ABC 用符号表示为△ABC 。
三角形ABC 的顶点C 所对的边AB 可用c 表示,顶点B 所对的边AC 可用b 表示,顶点A 所对的边BC 可用a 表示.
三、三角形三边的不等关系
探究:[投影7]任意画一个△ABC,假设有一只小虫要从B 点出发,沿三角形的边爬到C,它有几种路线可以选择?各条路线的长一样吗?为什么?
有两条路线:(1)从B→C,(2)从B→A→C;不一样, AB+AC >BC ①;因为两点之间线段最短。
同样地有 AC+BC >AB ② AB+BC >AC ③
由式子①②③我们可以知道什么?
三角形的任意两边之和大于第三边.
四、三角形的分类
我们知道,三角形按角可分为锐角三角形、钝角三角形、直角三角形,我们把锐角三角形、钝角三角形统称为斜三角形。
按角分类:
三角形 直角三角形 斜三角形 锐角三角形
钝角三角形 那么三角形按边如何进行分类呢?请你按“有几条边相等”将三角形分类。
三边都相等的三角形叫做等边三角形; ⎧⎨⎩⎧⎨⎩ a b c (1)C
B
A
有两条边相等的三角形叫做等腰三角形;
三边都不相等的三角形叫做不等边三角形。
显然,等边三角形是特殊的等腰三角形。
按边分类: 三角形 不等边三角形 等腰三角形 底和腰不等的等腰三角形 等边三角形
五、例题
例 用一条长为18㎝的细绳围成一个等腰三角形。
(1)如果腰长是底边的2倍,那么各边的长是多少?(2)能围成有一边长为4㎝的等腰三角形吗?为什么?
分析:(1)等腰三角形三边的长是多少?若设底边长为x ㎝,则腰长是多少?(2)“边长为4㎝”是什么意思?
解:(1)设底边长为x ㎝,则腰长2 x ㎝。
x+2x+2x=18
解得x=3.6
所以,三边长分别为3.6㎝,7.2㎝,7.2㎝.
(2)如果长为4㎝的边为底边,设腰长为x ㎝,则
4+2x=18
解得x=7
如果长为4㎝的边为腰,设底边长为x ㎝,则
2×4+x=18
解得x=10
因为4+4<10,出现两边的和小于第三边的情况,所以不能围成腰长是4㎝的等腰三角形。
由以上讨论可知,可以围成底边长是4㎝的等腰三角形。
五、课堂练习
课本第4页练习1、2题。
课本第8页1、2、6题
六、课堂小结
1、三角形及有关概念;
2、三角形的分类;
3、三角形三边的不等关系及应用。
作业:
课本第8页习题11.1第7题。
⎧⎨⎩⎧⎨⎩腰 腰 底边 底角 底角。