基于PLC机械手控制系统设计简介-精品

合集下载

基于PLC机械手控制系统设计

基于PLC机械手控制系统设计

基于PLC机械手控制系统设计工业机械手是一种高科技自动化生产设备,也是工业机器人的一个重要分支。

它通过编程来完成各种预期的作业任务,在构造和性能上兼有人和机器各自的优点,尤其体现了人的智能和适应性。

机械手作业的准确性和在各种环境中完成作业的能力,在国民经济各领域有着广阔的发展前景。

机械手技术涉及到力学、机械学、电气液压技术、自动控制技术、传感器技术和计算机技术等科学领域,是一门跨学科综合技术。

通用机械手是一种能够独立按程序控制实现重复操作的机械手,适用范围比较广。

由于通用机械手能够很快地改变工作程序,适应性较强,因此在不断变换生产品种的中小批量生产中得到了广泛的应用。

机械手的发展得益于其积极作用:一方面,它能够部分代替人工操作;另一方面,它能够按照生产工艺的要求,遵循一定的程序、时间和位置来完成工件的传送和装卸;还能够操作必要的机具进行焊接和装配,从而改善了工人的劳动条件,显著提高了劳动生产率,加快了实现工业生产机械化和自动化的步伐。

因此,机械手受到了很多国家的重视,投入了大量的人力物力来研究和应用。

尤其是在高温、高压、粉尘、噪音以及带有放射性和污染的场合,机械手的应用更为广泛。

近年来,在我国也有较快的发展,并取得了一定的效果,受到了机械工业的关注。

机械手是一种能够自动控制并可重新编程以变动的多功能机器,具有多个自由度,可以搬运物体以完成在不同环境中的工作。

随着工业技术的发展,机械手的结构形式开始比较简单,专用性较强。

但现在,制成了能够独立按程序控制实现重复操作,适用范围比较广的通用机械手。

本文介绍了机械手的分类和应用,其中第一类是通用机械手,可以根据任务需要编制程序完成各项规定工作。

本项目要求设计的机械手模型也属于这一类,通过设计可以增强对工业机械手的认识,并熟悉掌握PLC技术、位置控制技术、气动技术等工业控制常用的技术。

机械手控制系统的设计步骤包括确定被控系统必须完成的动作和它们之间的关系、分配输入输出设备、设计PLC用户程序、对程序进行调试和修改,最后保存已完成的程序。

基于PLC机械手控制系统设计

基于PLC机械手控制系统设计
基于PLC的机械 手控制系统设计
2024-04-29
• 项目背景与意义 • 整体方案设计 • 硬件选型 • 程序设计 • PLC仿真 • 项目总结与展望
目录
Part
01
项目背景与意义
机械手控制系统优势
效率高、准确高
高生产自动化程度,有利于 提高材料的传送、工件的装 卸、刀具的更换以及机器的 装配等的自动化程度,提高 生产效率,降低生产成本
改善劳动条件
避免人身事故,代替人安全 地在高温、高压、低温、低 压、有灰尘、噪声、臭味、 有放射性或有其它毒性污染 以及工作空间狭窄等场合中 完成工作。
自动化程度高,成本低
采用PLC控制系统,实现远 程监控和自动调节,提高运 维效率,降低了人工成本。
Part
02
整体方案设计
系统硬件设计
plc选型 机械手的位置反馈是开关量控制,所需的I/0点数量并不多,所以使用一般 的小型plc的选择就可以了。由于所需要的 I/0 点数分别为 20 点和12 点, 因此本设计选用西门子S7-226来实现控制
2)通过下面一排拉杆模拟PLC输入信号,通过观察Q点输出亮灯情况检查程序。
组态制作
新建一个工程,触摸屏的类型选择TPC7062TD
2)制作主页面。
组态制作
在设备窗口中添加-通用串口父设备和西门子_S7200PPI
2)双击西门子_S7200PPI,增加设备通道,并且连接对应的数据库,是PLC与触摸屏互相通信。
Part
03
硬件选型
plc硬件接线图简图
选型与配置方案
PLC控制器
使用一般的小型plc的选择就可以 了。由于所需要的 I/0 点数分别 为 20 点和12 点,因此本设计选 用西门子S7-226来实现控制。

《2024年基于PLC的工业机械手运动控制系统设计》范文

《2024年基于PLC的工业机械手运动控制系统设计》范文

《基于PLC的工业机械手运动控制系统设计》篇一一、引言随着工业自动化技术的不断发展,机械手运动控制系统在工业生产中扮演着越来越重要的角色。

传统的机械手控制系统通常采用单片机或嵌入式系统进行控制,但由于其处理能力和稳定性的限制,已经无法满足现代工业生产的高效、精确和可靠的要求。

因此,本文提出了一种基于PLC(可编程逻辑控制器)的工业机械手运动控制系统设计。

该系统采用先进的PLC技术,能够有效地提高机械手的控制精度、稳定性和可靠性,满足现代工业生产的需求。

二、系统设计1. 硬件设计本系统硬件部分主要包括PLC控制器、机械手本体、传感器、执行器等部分。

其中,PLC控制器是整个系统的核心,采用高性能的PLC模块,能够实现对机械手的精确控制。

机械手本体包括手臂、手腕、抓手等部分,通过执行器进行驱动和控制。

传感器则用于检测机械手的运动状态和位置信息,为控制系统的精确控制提供支持。

2. 软件设计软件部分是整个系统的关键,它决定了机械手的运动方式和控制精度。

本系统采用PLC编程软件进行程序设计,通过编写梯形图或指令代码来实现对机械手的控制。

程序包括主程序和控制程序两部分。

主程序负责控制整个系统的运行流程,而控制程序则负责实现对机械手的精确控制。

3. 控制策略本系统采用基于位置的控制策略,通过传感器实时检测机械手的位置信息,将位置信息与目标位置进行比较,计算出位置偏差,并通过执行器对机械手进行精确的控制。

同时,系统还具有速度控制和力控制等功能,能够根据实际需求进行灵活的调整和控制。

三、系统实现1. 硬件连接硬件连接是整个系统实现的基础。

首先需要将PLC控制器与机械手本体、传感器、执行器等部分进行连接,确保各部分之间的通信和信号传输畅通。

同时,还需要对硬件设备进行调试和测试,确保其正常工作。

2. 程序设计程序设计是整个系统的核心部分。

根据实际需求和机械手的运动特性,编写相应的梯形图或指令代码,实现对机械手的精确控制。

(精品)基于PLC的机械手控制系统的设计【范文仅供参考】

(精品)基于PLC的机械手控制系统的设计【范文仅供参考】

(精品)基于PLC的机械手控制系统的设计【范文仅供参考】【摘要】机械手是自动控制领域中一项重要而且较新的技术,引入PLC控制技术,是现代控制理论与工业生产自动化实践结合的精华。

它可以代替人类在各种恶劣的条件下工作,而且它能提高生产过程的自动化程度,提高产品质量和生产效率,因此得到广泛的应用。

本文主要研究在PLC控制下机械手完成上下左右以及抓取等活动。

【关键词】PLC;机械手;步进电机1.引言机械手按用途可分为通用机械手和专用机械手两种,本文研究的PLC机械手属于通用机械手,它的控制系统独立,可改变程序、动作灵活多样。

通过PLC控制的机械手具有较大的工作范围、较高的定位精度和很强的通用性,可在多种严酷条件下工作。

2.PLC机械手控制系统设计方案对PLC机械手的要求是能准确、快速地搬运和拾放物件,这就要求它们具有精度高、反应快、承载能力强、工作空间充足和灵活的自由度以及在任意位置都能自动定位等特性。

首先,PLC是可编辑控制器的简称,它是一种以微机处理器为核心的工业通用自动控制装置。

它的主要功能有:多种控制功能;数据采集、存储与处理功能;通信联网功能;输入输出接口调理功能;人机界面功能;编程、调试功能。

本文选用PLC作为机械手的控制系统,是因为PLC体积小、重量轻、控制方式灵活、可靠性高、操作简单、维修容易、易于扩展等特点,可以根据现场要求实现机械手的不同工作要求。

机械手采用PLC控制技术,可以大大提高该系统的自动化程序,减少了大量的中间继电器、时间继电器和硬件连线,提高了控制系统的可靠性。

同时,PLC控制系统可方便地更改生产流程,增强控制功能。

其次,选择步进电机和传感器。

控制机械手纵轴和横轴的步进电机选用的是42BYG250C型两相混合式步进电机,参数为步距角0.9o~1.8o,电流为1.5A。

选用SH-20403型步进电机驱动器,它采用10~40V直流供电,H桥双极恒相电流驱动,8种输出电流可选,最大为3A。

基于PLC的机械手控制设计

基于PLC的机械手控制设计

基于PLC的机械手控制设计一、绪论机械手是一种可以模仿人手操作的自动化机器。

它可以完成不同的工作任务,提高生产效率,减少劳动力成本。

在许多工业领域,机械手已经成为不可或缺的设备。

PLC(可编程逻辑控制器)是一种常用的自动化控制设备,它具有强大的逻辑计算和控制能力。

将机械手与PLC结合起来,可以实现对机械手的精确控制,提高其工作效率及安全性。

本文将讨论基于PLC的机械手控制设计,包括硬件设计、软件设计和控制实现。

二、硬件设计1. 机械手结构设计机械手的结构设计是机械手控制系统的基础。

一般来说,机械手的结构包括电机、传动装置、执行器、传感器等部件。

在进行硬件设计时,需要根据具体的工作任务和要求选择合适的机械手结构。

为了能够更好地与PLC进行配合,需要考虑机械手各部件的接口和通信方式。

2. PLC选择及接口设计PLC的选择直接影响到机械手控制系统的性能和稳定性。

在选择PLC时,需要考虑其输入/输出接口数量、通信接口标准、逻辑控制能力等方面的性能指标。

还需要根据机械手的具体结构和控制要求设计合适的PLC接口,以便实现PLC与机械手的连接和控制。

3. 传感器设计传感器在机械手控制系统中起着至关重要的作用。

传感器可以用来检测机械手的位置、姿态、力度等信息,并将这些信息传输给PLC,从而实现对机械手的实时监控和控制。

在硬件设计中,需要选择合适的传感器类型和布置位置,并设计相应的传感器接口电路,以确保传感器能够准确地获取所需的信息并与PLC进行通信。

三、软件设计1. PLC编程PLC的编程是机械手控制系统中的核心环节。

在进行PLC编程时,需要根据机械手的控制逻辑和工作流程,设计相应的控制程序。

控制程序包括逻辑控制部分、任务调度部分、通信控制部分等。

在设计控制程序时,需要考虑机械手的运动规划、安全控制、故障处理等方面的要求,以确保机械手能够安全、快速、准确地完成工作任务。

2. HMI设计HMI(人机界面)是机械手控制系统的另一个重要组成部分。

基于PLC的工业机械手控制系统设计【毕业论文设计】 精品

基于PLC的工业机械手控制系统设计【毕业论文设计】  精品

JIU JIANG UNIVERSITY毕业论文题目基于PLC的工业机械手控制系统设计英文题目Based on plc industrial manipulatorcontrol system design院系专业姓名年级指导教师二零一三年五月九江学院学士学位论文摘要机械手是工业自动化领域中经常遇到的一种控制对象。

近年来随着工业自动化的发展机械手逐渐成为一门新兴学科,并得到了较快的发展。

机械手广泛地应用与锻压、冲压、锻造、焊接、装配、搬运、喷漆、热处理等各个行业。

特别是在笨重、高温、有毒、危险、放射性、多粉尘等恶劣的劳动环境中,机械手由于其显著的优点而受到特别重视。

总之,机械手是提高劳动生产率,改善劳动条件,减轻工人劳动强度和实现工业生产自动化的一个重要手段。

本设计描述了基于PLC的机械手控制系统设计,重点介绍了机械手控制系统中的硬件选择方法,软件的设计过程,以及PLC控制装置的工作过程。

本设计实现了机械手在搬运装配线上,通过S7-200PLC控制机械手完成从A传送带搬运物件至B传送带中,然后进入下一个工作流程。

机械手的上升/下降和左转/右转的执行,分别由双线圈二位电磁阀控制气缸的运动实现;夹紧/放松则是由单线圈的二位电磁阀控制气缸的运动来实现。

【关键词】机械手;PLC;电磁阀工业机械手的PLC控制系统设计Based on plc industrial manipulator control system designAbstractIn the field of industrial automation manipulator is often met in a control object. In recent years, with the development of industrialautomation manipulator gradually become a new subject, and with the rapid development. Manipulator widely application and forging, stamping,forging, welding, assembling, handling, spray paint, heat treatment, etc.Especially in heavy, high temperature, toxic and dangerous, radioactive,dust and so on bad work environment, manipulator because of its significant advantages by pay special attention to. In a word, the manipulator is toimprove the labor productivity, improve working conditions, reduce labor intensity and realize industrial production automation is an importantmeans.This design based on PLC describes the manipulator control system design, introduced the manipulator control system, the hardware selection method, the software design process, and the working process of the PLC control device.The design and implementation of the manipulator in the handling assembly line, manipulator controlled by the S7-200PLC completeconveyor belt carrying objects from A to B conveyor, and then go to thenext workflow. The implementation of the up / down and left / right of the manipulator, respectively, to achieve control movement of the cylinder by a double coil solenoid valve; clamp / unclamp cylinder is controlled by asingle coil solenoid valve movement.【Key Words】Manipulator;PLC;solenoid valve九江学院学士学位论文目录摘要 (1)目录 (4)第1章绪论 (1)1.1 课题的目的和意义 (1)1.2 课题研究的内容 (1)第2章机械手和PLC (2)2.1 机械手 (2)2.1.1 机械手的概述 (2)2.1.2 机械手的应用 (2)2.1.3 机械手的应用意义 (3)2.1.4 机械手的发展概况 (4)2.1.5 机械手的发展趋势 (4)2.2 PLC (5)2.2.1 PLC的基本概念 (5)2.2.2 PLC的组成 (6)2.2.3 PLC的主要特点 (7)2.2.4 PLC的工作原理 (8)2.2.5 PLC的应用领域 (10)第3章机械手控制系统的设计 (12)3.1 机械手控制系统构件概述 (12)3.2 系统控制对象及工艺过程 (14)3.3 控制要求 (16)3.4 方案选择及系统配置 (16)3.5 PLC的硬件设计 (17)3.5.1 PLC的选型 (17)3.5.2 I/O的资源配置 (18)3.5.3 PLC的接线图 (20)3.5.4 操作面板 (21)3.6 系统软件设计 (21)3.6.1 顺序功能图 (22)工业机械手的PLC控制系统设计3.6.2 全程序OB1 (23)3.6.3 公用程序 (25)3.6.4 手动程序 (26)3.6.5 自动程序 (26)3.6.6 回原点程序 (32)第4章系统程序调试 (35)4.1 控制系统的程序调试步骤 (35)4-2 调试过程中注意的事项 (35)4-3 系统中调试结果 (36)第五章结束语 (40)参考文献 (41)致谢 (412)九江学院学士学位论文第1章绪论1.1 课题的目的和意义机械手是工业自动化领域中经常遇到的一种控制对象。

基于PLC的机械手控制设计

基于PLC的机械手控制设计

基于PLC的机械手控制设计PLC,即可编程逻辑控制器(Programmable Logic Controller),是一种专门用于工业自动化控制的电子设备。

它通过对输入信号进行处理,根据预定的程序逻辑进行运算,并输出控制信号,从而实现对机械手的精确控制。

机械手是一种能够模拟人手动作并完成相应任务的自动化设备。

它由多个关节构成,能够完成物体抓取、搬运、放置等动作。

为了保证机械手的运动精度和稳定性,需要通过PLC进行控制。

机械手的控制系统由传感器、执行器、PLC以及人机界面组成。

传感器用于采集机械手当前的位置、速度、力矩等信息,并将其转化为模拟信号输入到PLC中。

PLC根据预设的程序逻辑进行计算,并输出相应的控制信号。

执行器接收控制信号,并进行相应的动作。

人机界面用于人们与机械手进行交互,如设置任务、监测运行状态等。

机械手的控制程序需要在PLC中进行编写。

编写程序时,需要根据机械手的动作需求和运动学原理进行设计。

如果机械手需要进行物体抓取,就需要编写抓取动作的程序,包括控制机械手关节的运动、控制机械手末端执行器的开合等。

编写程序时,还需要考虑机械手的安全性,如设置限位开关、碰撞检测等功能,以避免意外事故的发生。

在实际控制中,还需要考虑机械手的坐标系与PLC的坐标系之间的转换关系。

通常情况下,机械手的坐标系是基于机械手末端执行器的坐标系进行定义的,而PLC的坐标系是基于机械手本体的坐标系进行定义的。

需要进行坐标系的转换,以保证机械手的控制精度。

机械手的控制程序还需要考虑故障检测和报警功能。

当机械手发生故障时,PLC能够通过接收传感器的信号进行故障检测,并输出相应的报警信息。

这样可以及时发现故障,并采取相应的措施进行修复,以确保机械手的正常运行。

基于PLC的机械手控制设计需要考虑传感器、执行器、PLC以及人机界面的选择和设计,编写相应的控制程序,进行坐标系的转换,以及故障检测和报警功能的实现。

这样可以实现对机械手的精确控制,提高生产效率和安全性。

《2024年基于PLC的工业机械手运动控制系统设计》范文

《2024年基于PLC的工业机械手运动控制系统设计》范文

《基于PLC的工业机械手运动控制系统设计》篇一一、引言随着工业自动化技术的不断发展,PLC(可编程逻辑控制器)已成为工业控制领域中最重要的技术之一。

工业机械手作为自动化生产线上重要的执行机构,其运动控制系统的设计直接关系到生产效率和产品质量。

本文将详细介绍基于PLC的工业机械手运动控制系统设计,包括系统架构、硬件配置、软件设计以及实际应用等方面。

二、系统架构设计基于PLC的工业机械手运动控制系统采用分层式结构设计,主要包括上位机监控系统、PLC控制器和机械手执行机构三个部分。

其中,上位机监控系统负责人机交互、数据监控和系统管理等功能;PLC控制器负责接收上位机指令,控制机械手的运动;机械手执行机构包括电机、传感器、气动元件等,负责完成具体的动作。

三、硬件配置1. PLC控制器:选用高性能、高可靠性的PLC控制器,具备强大的运算能力和丰富的I/O接口,以满足机械手运动控制的需求。

2. 电机:根据机械手的具体需求,选用合适的电机类型和规格,如伺服电机、步进电机等。

3. 传感器:包括位置传感器、速度传感器、力传感器等,用于检测机械手的运动状态和外部环境信息。

4. 气动元件:包括气缸、电磁阀等,用于实现机械手的抓取和释放等功能。

四、软件设计1. 编程语言:采用PLC的编程语言,如梯形图、指令表等,进行程序编写和调试。

2. 控制算法:根据机械手的运动需求,设计合适的控制算法,如PID控制、轨迹规划等,以实现精确的运动控制。

3. 上位机监控系统:开发上位机监控软件,实现人机交互、数据监控和系统管理等功能。

监控软件应具备友好的界面、实时的数据显示和报警功能。

4. 通信协议:建立PLC控制器与上位机监控系统之间的通信协议,实现数据的实时传输和交互。

五、实际应用基于PLC的工业机械手运动控制系统在实际应用中表现出良好的性能和稳定性。

通过上位机监控系统,操作人员可以方便地监控机械手的运动状态和生产数据。

PLC控制器根据上位机的指令,精确地控制机械手的运动,实现高精度的抓取、搬运、装配等任务。

基于PLC的机械手控制系统设计

基于PLC的机械手控制系统设计

基于PLC的机械手控制系统设计摘要近年来,机械手在工业自动化领域的应用越来越广泛,为了提高机械手的控制精度和稳定性,基于PLC的机械手控制系统设计成为研究热点。

本文通过对PLC技术和机械手控制系统的分析,提出了一种基于PLC的机械手控制系统设计方案,并在实际应用中进行了验证。

实验结果表明,该方案能够有效地提高机械手的运动精度和稳定性,并且具有较高的可靠性和可扩展性。

1. 引言随着工业自动化技术的不断发展,机械手作为一种重要的自动化设备,在工业生产中扮演着重要角色。

传统上,通过编程方式实现对机械手运动轨迹和速度等参数进行控制。

然而,在复杂环境下对机械手进行精确控制是一项具有挑战性的任务。

因此,研究人员开始采用基于PLC(可编程逻辑控制器)技术来设计和实现更加稳定、精确、可靠的机械手控制系统。

2. PLC技术介绍PLC是一种专门用于工业自动化控制的计算机控制系统。

它具有高可靠性、高稳定性、可编程性强等特点,广泛应用于工业自动化领域。

PLC系统由输入模块、输出模块、处理器和程序存储器等组成。

输入模块用于接收外部信号,输出模块用于控制外部设备,处理器负责执行用户编写的程序。

3. 机械手控制系统设计基于PLC的机械手控制系统设计是一种将PLC技术应用到机械手控制中的方法。

该方法通过编写PLC程序来实现对机械手运动轨迹和速度等参数的精确控制。

具体而言,该设计方案包括以下几个方面:3.1 传感器选择传感器是实现对机械手运动参数进行监测和反馈的关键设备。

在选择传感器时,需要考虑到传感器的测量精度、响应速度和稳定性等因素。

3.2 运动轨迹规划在基于PLC的机械手控制系统中,需要通过编写程序来规划机械手的运动轨迹。

运动轨迹规划的目标是使机械手能够按照预定的路径进行移动,并且能够实现高精度的定位。

3.3 运动控制算法为了实现对机械手运动参数的精确控制,需要设计合适的运动控制算法。

常用的运动控制算法包括PID控制算法、模糊控制算法和遗传算法等。

基于PLC的机械手控制设计

基于PLC的机械手控制设计

基于PLC的机械手控制设计一、引言机械手是一种在工业生产中广泛应用的自动化设备,它能够替代人工完成一系列反复繁琐的作业,提高生产效率和产品质量。

在机械手的控制方式中,PLC(可编程逻辑控制器)技术得到了广泛的应用。

PLC具有稳定可靠、易于编程和操作、适应性强等优势,使得它成为机械手控制领域的首选之一。

本文将以基于PLC的机械手控制设计为主题,介绍机械手控制系统的组成、PLC控制原理和方法、控制程序设计等内容,旨在为相关领域的工程师和研究人员提供一些技术参考和指导。

二、机械手控制系统的组成1.机械手机械手是机器人的一种,它通常由伺服电机、控制器、传感器、执行器等组成,用于完成各种工业生产线的装配和搬运任务。

2.PLC控制器PLC是一种专门用于工业控制领域的可编程控制器,它能够实现对各种工业设备和机械手的精确控制。

3.传感器传感器是机械手控制系统中的重要组成部分,它能够实时感知物体位置、姿态等信息,并将这些信息传输给PLC控制器。

4.执行器以上组成部分共同构成了一个完整的机械手控制系统,它能够实现对物体的精确操控,并在工业自动化生产线中发挥重要作用。

三、PLC控制原理和方法PLC控制系统的工作原理是根据预先设定的控制程序,对输入输出设备进行逻辑运算和控制指令的转换,从而实现对工业设备和机械手的精确控制。

PLC控制方法主要包括控制程序设计、硬件接线、参数设置和调试等环节。

控制程序设计是PLC控制系统的核心,它需要根据机械手的具体任务和工作流程,编写相应的逻辑控制程序来实现对机械手的精确控制。

四、控制程序设计1.功能模块划分在进行控制程序设计之前,首先需要对机械手的功能模块进行划分,例如抓取、放置、旋转等功能。

然后,针对每个功能模块,设计相应的逻辑控制程序。

在进行逻辑控制程序设计时,需要根据实际控制要求,采用Ladder图或者其他编程语言,将机械手的控制过程进行精确描述,并将其转化为PLC可读取的指令。

基于PLC的机械手控制设计

基于PLC的机械手控制设计

基于PLC的机械手控制设计1. 引言1.1 背景介绍随着工业自动化的不断发展和机械手在生产中的广泛应用,基于PLC的机械手控制系统已经成为一个研究热点。

传统的机械手控制系统通常使用传统的控制方法,如PID控制等,但这些方法在复杂的生产环境下往往难以满足需求。

引入PLC作为控制核心,可以提高机械手控制系统的精度、灵活性和可靠性。

本研究将探讨基于PLC的机械手控制设计,通过对PLC在机械手控制中的应用进行深入分析,设计并实现一个高性能的机械手控制系统。

通过PLC编程实现各个关节的控制和协调动作,实现对机械手的精准控制。

将进行系统性能测试和优化改进措施,以验证系统的稳定性和可靠性。

本文旨在研究基于PLC的机械手控制系统,在实际生产中的应用具有重要的意义。

通过本研究,可以为提高机械手控制系统的性能、提升生产效率和质量提供技术支持和借鉴。

【此处省略...】1.2 研究目的研究目的是为了探讨基于PLC的机械手控制设计在工业生产中的实际应用情况,分析其在自动化生产中的优势和不足之处,并提出相应的改进措施。

通过研究机械手控制系统在PLC控制下的工作原理和设计方法,进一步提高机械手的操作效率和精度,实现更加精准和高效的生产。

本研究旨在为工业生产领域提供一种可靠的控制系统设计方案,为企业实现智能化生产提供技术支持。

通过本文的研究,希望能够为相关领域的研究者和工程师提供有益的参考和借鉴,促进PLC 技术在机械手控制领域的应用和推广,推动工业生产的自动化发展,从而提高生产效率和产品质量。

1.3 研究意义机械手在工业生产中扮演着重要的角色,可以进行自动化操作,提高生产效率和质量。

基于PLC的机械手控制设计是实现机械手自动化控制的重要途径。

研究意义有以下几点:1. 提高生产效率:利用PLC控制机械手可以实现高速、精准的操作,提高生产效率,降低生产成本。

2. 提高产品质量:PLC控制可以使机械手动作稳定、精准,避免人为因素对产品质量的影响,提高产品质量和一致性。

基于PLC的机械手控制系统设计

基于PLC的机械手控制系统设计

WORD文档下载可编辑目录摘要 (Ⅰ)ABSTRACT (Ⅱ)第1章绪论 (1)1.1课题背景 (1)1.2研究目的及意义 (2)1.3国内外研究现状 (2)第2章方案设计 (4)2.1 PLC的分类 (4)2.2 PLC的结构及基本配置 (7)2.3 PLC的选择 (8)2.4 机械手的分类和选择 (9)第3章硬件设计 (10)3.1 PLC控制机械手设计步骤 (10)3.2 系统控制示意图 (10)3.3 确定输入输出 (11)3.4 输入和输出点分配表 (11)3.5 PLC控制机械手接线图 (12)第4章软件设计 (13)4.1 PLC概述 (13)4.2 软件系统 (13)4.3 PLC的编程语言的基本指令系统和编程方法 (14)4.4 欧姆龙CX-Programmer编程软件 (14)4.5 PLC控制机械手的流程图 (15)结论 (16)致谢 (17)参考文献 (18)附录第1章绪论随着社会生产不断进步和人们生活节奏不断加快,人们对生产效率也不断提出新要求。

由于微电子技术和计算软、硬件技术的迅猛发展和现代控制理论的不断完善,更加促进了机械手的发展,使得机械手能更好地实现与机械化和自动化地结合。

机械手一般由耐高温,抗腐蚀的材料制成,以适应现场恶劣的环境,大大降低了工人的劳动强度,提高了工作效率。

机械手的广泛使用,不仅可以提高产品的质量与产量,而且对保障人身安全,改善劳动环境,减轻劳动强度,提高劳动生产率,节约原材料消耗以及降低生产成本,有着十分重要的意义。

1.1课题背景可编程控制器(简称PLC)是一种数字运算操作的电子系统,专为在工业环境应用而设计的。

它采用一类可编程的存储器,用于其内部存储程序,执行逻辑运算,顺序控制,定时,计数与算术操作等面向用户的指令,并通过数字或模拟式输入/输出控制各种类型的机械或生产过程。

自二十世纪六十年代美国推出可编程逻辑控制器(Programmable Logic Controller,PLC)取代传统继电器控制装置以来,PLC得到了快速发展,在世界各地得到了广泛应用。

完整版)基于plc的机械手控制系统设计

完整版)基于plc的机械手控制系统设计

完整版)基于plc的机械手控制系统设计机械手由机械结构、控制系统和执行器三部分组成。

机械结构是机械手的基本骨架,包括机械手臂、手爪等组成部分。

控制系统是机械手的大脑,负责控制机械手的运动和操作。

执行器是控制系统的输出部分,负责执行控制系统的指令,驱动机械手完成各种动作。

机械手的组成部分相互协调,共同完成机械手的工作任务。

2 PLC控制系统简介2.1 PLC概述PLC是可编程控制器的简称,是一种专门用于工业自动化控制的通用控制器。

它以微处理器为核心,具有高可靠性、强抗干扰能力、良好的扩展性和灵活性等特点。

PLC广泛应用于工业生产中的自动化控制领域,如机械制造、化工、电力、交通、冶金等行业。

2.2 PLC控制系统组成PLC控制系统主要由PLC主机、输入输出模块、编程软件和人机界面组成。

PLC主机是PLC控制系统的核心,负责控制整个系统的运行和实现各种控制功能。

输入输出模块负责将外部信号转换为PLC可以处理的数字信号,并将PLC输出信号转换为外部可控制的信号。

编程软件用于编写PLC程序,实现控制系统的各种功能。

人机界面是PLC控制系统与用户之间的接口,用于实现人机交互,方便用户对控制系统进行操作和监控。

3 基于PLC的机械手控制系统设计3.1系统设计思路本文设计的基于PLC的机械手控制系统主要由PLC控制系统、步进电机驱动系统和机械手组成。

PLC控制系统负责控制机械手的运动和操作,步进电机驱动系统负责驱动机械手的运动,机械手负责完成各种动作任务。

系统设计采用模块化设计思路,将系统分为PLC控制模块、步进电机驱动模块和机械手运动模块,分别进行设计和实现,最后进行整合测试。

3.2系统设计方案PLC控制模块采用西门子PLC作为控制核心,通过编写PLC程序实现机械手的控制和操作。

步进电机驱动模块采用步进电机驱动器和步进电机组成,通过PLC控制信号驱动步进电机实现机械手的运动。

机械手运动模块由机械结构、执行器和传感器组成,通过步进电机驱动器驱动执行器完成机械手的各种动作,通过传感器检测机械手的运动状态并反馈给PLC控制系统。

基于PLC的机械手控制设计

基于PLC的机械手控制设计

基于PLC的机械手控制设计1. 引言1.1 背景介绍背景介绍:机械手是一种能够模仿人手动作完成各种工作任务的机械装置,具有高效、精准、稳定的特点,被广泛应用于工业生产线、仓储物流等领域。

随着工业自动化水平的不断提高,机械手在生产中的应用越来越广泛,对机械手控制技术的要求也越来越高。

本文旨在研究基于PLC的机械手控制设计,探讨PLC在机械手控制中的应用,设计机械手控制系统,并进行实验验证。

通过本研究,旨在提高机械手控制精度和稳定性,推动工业自动化技术的发展,为工业生产提供更多可能性。

1.2 研究意义机器人技术在现代工业生产中起着越来越重要的作用,而机械手作为机器人的重要组成部分,其控制技术的研究对于提高生产效率、降低成本具有重要意义。

研究如何利用PLC进行机械手控制设计,可以实现机械手的自动化控制,提高生产线的运行效率,减少人为操作的误差,提高产品的质量稳定性。

在工业生产中,机械手的广泛应用使得对其控制技术的研究变得至关重要。

通过PLC的应用,可以实现机械手的精准运动控制,灵活适应不同的工作环境和任务要求。

PLC具有高度稳定性和可靠性,能够保证机械手的稳定运行,提高生产效率。

通过本研究,可以深入了解PLC在机械手控制中的具体应用方法,为工程师和研究人员提供参考和借鉴。

本研究的结果也有助于推动机械手领域的发展,促进工业自动化水平的提升。

研究如何基于PLC进行机械手控制设计具有重要的理论和实践意义。

1.3 研究目的研究目的是为了探究基于PLC的机械手控制设计在工业自动化领域的应用效果,为工业生产提高效率、降低成本和减少人为操作风险提供技术支持。

通过本研究,可以深入了解PLC在机械手控制系统中的具体应用方式和优势,为工程技术人员提供可靠的控制方案。

通过对PLC程序设计和机械手运动控制的研究,可以为相关领域的技术人员提供实用的指导和参考。

本研究的目的还在于验证基于PLC的机械手控制系统的可行性和稳定性,为工业生产过程中的自动化控制提供科学依据。

基于PLC的机械手控制设计

基于PLC的机械手控制设计

基于PLC的机械手控制设计一、引言随着工业自动化的快速发展,机械手在生产线上的应用越来越广泛。

机械手可以替代人工完成重复性高、劳动强度大的工作,提高生产效率和产品质量。

而PLC作为工业控制领域的核心设备,被广泛应用于机械手的控制系统中。

本文将介绍基于PLC的机械手控制设计,包括PLC的选型、机械手的运动控制、安全控制等方面的内容。

二、PLC的选型在设计基于PLC的机械手控制系统时,首先要选择合适的PLC设备。

PLC (Programmable Logic Controller)可编程逻辑控制器,是一种用于工业控制系统的专用数字计算器。

选型时需要考虑以下几个方面:1.控制需求:根据机械手的控制需求,确定PLC的输入/输出点数、通讯接口、运算速度等参数。

通常机械手的控制需求较为复杂,需要较高的输入/输出点数和运算速度。

2.可靠性:PLC设备的可靠性是工业控制系统中非常重要的一个指标,需要选择具有良好稳定性和抗干扰能力的产品。

3.编程环境:PLC的编程环境对工程师的编程效率和控制系统的稳定性都有重要影响,需要选择具有友好的编程界面和强大的编程功能的产品。

在选择PLC设备时,可以参考市场上的各种产品资料,进行多方比较和实地试验,最终确定最适合自己应用的PLC设备。

三、机械手的运动控制机械手的运动控制是基于PLC的机械手控制系统的核心部分。

一般来说,机械手的运动控制可以分为几个方面:1.运动学控制:机械手在工作时需要完成多轴的运动控制,如平移、旋转、抓取等动作。

PLC可以通过对机械手的驱动器进行精确的控制,实现位置、速度、加速度等参数的精准控制。

2.运动规划:机械手在工作时需要按照一定的轨迹进行运动,PLC可以通过编程实现对机械手运动轨迹的规划,保证机械手的运动轨迹准确、稳定。

在进行机械手的运动控制设计时,需要结合机械手的具体工作要求,编写相应的控制程序,调试机械手的运动参数,保证机械手的运动控制准确、稳定。

基于PLC的工业机械手运动控制系统设计

基于PLC的工业机械手运动控制系统设计

基于PLC的工业机械手运动控制系统设计一、本文概述随着工业自动化的快速发展,工业机械手在生产线上的应用越来越广泛。

作为实现自动化生产的关键设备,工业机械手的运动控制系统设计至关重要。

本文旨在探讨基于可编程逻辑控制器(PLC)的工业机械手运动控制系统设计,通过对PLC技术原理及其在工业机械手控制中的应用进行深入分析,提出一种高效、稳定的运动控制方案。

本文首先介绍了工业机械手及PLC的基本概念,然后详细阐述了基于PLC的工业机械手运动控制系统的硬件组成和软件设计,包括PLC的选型、输入输出电路设计、运动控制程序设计等。

通过实际案例验证了本文所提设计方案的可行性和有效性。

本文旨在为工程师和技术人员提供一套完整的基于PLC的工业机械手运动控制系统设计方案,为工业自动化领域的发展做出贡献。

二、PLC基础知识PLC,即可编程逻辑控制器(Programmable Logic Controller),是一种专为工业环境设计的数字运算电子系统,用于控制各种类型的机械设备或生产过程。

PLC采用可编程的存储器,用于在其内部存储执行逻辑运算、顺序控制、定时、计数和算术运算等操作的指令,并通过数字式或模拟式的输入/输出控制各种类型的机械或生产过程。

通用性强:PLC产品已经标准化、系列化、模块化,配备有品种齐全的各种硬件装置供用户选用,用户能灵活方便地进行系统配置,组成不同功能、不同规模的系统。

可靠性高:PLC采用大规模集成电路技术,严格的生产工艺制造,内部电路采取了先进的抗干扰技术,具有很高的可靠性。

PLC带有硬件故障自我检测功能,出现故障时可及时发出警报信息。

编程简单:PLC的编程语言易于为工程技术人员所接受。

梯形图语言的图形符号与表达方式和继电器电路图相当接近,只用PLC的少量开关量逻辑控制指令就可以方便地实现继电器电路的功能。

维护方便:PLC的故障率很低,且有完善的自诊断和显示功能。

当系统发生故障时,能及时地查出故障的原因,给出提示,使维修人员能及时排除故障。

基于PLC的机械手控制设计(毕业设计)

基于PLC的机械手控制设计(毕业设计)

基于PLC的机械手控制设计(毕业设计)
毕业设计题目:基于PLC的机械手控制设计
设计目标:
设计一个基于PLC的机械手控制系统,能够实现机械手对物体的抓取和放置操作。

设计内容:
1. 硬件设计:选择合适的PLC控制器,根据机械手的结构和控制需求,设计电路和连接方式,包括传感器、执行器、驱动器等硬件组成部分。

2. 软件设计:编写PLC程序,实现机械手的控制逻辑。

包括对机械手运动轨迹的规划、抓取力度的控制、异常情况的处理等功能。

3. 通信设计:如果需要与其他设备或系统进行通信,设计与外部设备的接口和通信协议。

4. 安全设计:考虑机械手在工作过程中可能出现的危险情况,设计安全机制,如急停按钮、防碰撞装置等。

5. 用户界面设计:设计一个简明易懂的用户界面,方便用户对机械手进行操作和监控。

6. 系统测试和调试:对设计的控制系统进行测试和调试,保证系统的稳定性和可靠性。

7. 性能评估和改进:对设计的控制系统进行性能评估,分析系统的优点和不足,并提出改进方案。

8. 文档编写:编写毕业设计报告,包括设计方案、实施过程、测试结果和分析等内容。

预期成果:
1. 完整的机械手控制系统,能够准确抓取和放置物体。

2. 可靠的硬件设计和稳定的软件程序。

3. 安全可靠的系统设计,能够防止意外事故的发生。

4. 用户友好的界面设计,简化操作流程。

5. 毕业设计报告和相关文档。

基于PLC的机械手控制设计

基于PLC的机械手控制设计

基于PLC的机械手控制设计一、引言随着工业自动化技术的不断发展,机械手在生产中的应用越来越广泛。

机械手能够代替人工完成一些繁重、危险或者重复性工作,提高生产效率和产品质量。

而机械手的控制系统起着至关重要的作用,其中PLC(可编程逻辑控制器)的应用已经成为一种主流的控制手段。

本文将从基于PLC的机械手控制设计的角度出发,探讨机械手控制系统的组成、原理和设计方法。

二、机械手控制系统的组成机械手控制系统是一个涉及多个部件和元件的复杂系统,它主要由PLC、传感器、执行机构和人机界面组成。

1. PLCPLC是机械手控制系统的核心部件,它负责接收来自传感器的信号,经过逻辑运算后控制执行机构的动作。

PLC具有稳定性高、可靠性强、操作灵活等优点,因此被广泛应用于工业控制领域。

2. 传感器传感器是机械手控制系统中的重要组成部分,它能够对机械手所处的环境进行监测,获取相关的物理量信息,并将这些信息传输给PLC。

根据机械手的不同应用场景,传感器的种类也会有所不同,比如光电传感器、压力传感器、位移传感器等。

3. 执行机构执行机构是机械手控制系统中的另一个重要组成部分,它负责实现机械手的运动。

执行机构通常包括电机、液压缸、气动缸等不同的驱动器,其选择与机械手的结构和工作任务息息相关。

4. 人机界面人机界面是机械手控制系统中提供给操作人员的交互界面,它能够直观地显示机械手的状态信息,提供操作界面和设置参数的功能。

常见的人机界面有触摸屏、按钮开关、指示灯等设备。

三、机械手控制系统的工作原理机械手控制系统的工作原理主要包括信息采集、处理、执行和反馈四个环节。

1. 信息采集信息采集是机械手控制系统的第一步,传感器负责收集机械手所处环境的物理量信息,比如位置、速度、力度等,并将这些信息转换为电信号传输给PLC。

PLC通过接口模块对这些信号进行采集和处理,得到相应的控制信息。

2. 信息处理信息处理是机械手控制系统的核心环节,也是PLC的主要功能之一。

基于PLC控制机械手系统设计 精品

基于PLC控制机械手系统设计 精品

第1章基于PLC控制交机械手系统的设计原理1.1 基于PLC控制机械手设计分析在现今的生活上,科技日新月益的进展之下,机械人手臂与有人类的手臂最大区别就在于灵活度与耐力度。

也就是机械手的最大优势可以重复的做同一动作在机械正常情况下永远也不会觉得累!机械手臂的应用也将会越来越广泛,机械手是近几十年发展起来的一种高科技自动生产设备,作业的准确性和环境中完成作业的能力。

工业机械手机器人的一个重要分支。

对液压机械手的基本要求是能快速、准确地拾-放和搬运物件,这就要求它们具有高精度、快速反应、一定的承载能力、足够的工作空间和灵活的自由度及在任意位置都能自动定位等特性。

设计液压机械手的原则是:充分分析作业对象(工件)的作业技术要求,拟定最合理的作业工序和工艺,并满足系统功能要求和环境条件;明确工件的结构形状和材料特性,定位精度要求,抓取、搬运时的受力特性、尺寸和质量参数等,从而进一步确定对机械手结构及运行控制的要求;尽量选用定型的标准组件,简化设计制造过程,兼顾通用性和专用性,并能实现柔性转换和编程控制.本次设计的机械手是通用液压上下料机械手(如图2-1所示),是一种适合于成批或中、小批生产的、可以改变动作程序的自动搬运或操作设备,动作强度大和操作单调频繁的生产场合。

它可用于操作环境恶劣的场合。

系统上电,如不在原点则按下SB3,则机械手上升,左移,放松。

复位完成,按下启动按钮SB1,系统启动开始工作,机械手开始下降,下降碰到下降限位开关,停止下降。

开始夹紧,夹紧怕碰到夹紧限位开关,开始计时2秒,时间到则开始上升,上升碰到上升限位开关则停止上升,开始左移,左移碰到左移限位开关,则停止左移,开始下降,下降碰到下降限位开关,则停止下降,开始放松,放松碰到放松限位开关则开始计时,时间到则开始上升,碰到上升限位开关则停止上升开始右移。

这是自动工作。

手动工作则是由上升、下降、左移、右移、夹紧、放松6个按钮来完成工作,在手动工作中则可以随时回到自动工作状态,在自动工作状态中随时可以回到手动工作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于PLC简单机械手控制系统设计工业机械手是近几十年发展起来的一种高科技自动生产设备。

工业机械手也是工业机器人的一个重要分支。

他的特点是可以通过编程来完成各种预期的作业,在构造和性能上兼有人和机器各自的优点,尤其体现在人的智能和适应性。

机械手作业的准确性和环境中完成作业的能力,在国民经济领域有着广泛的发展空间。

机械手的发展是由于它的积极作用正日益为人们所认识:其一、它能部分的代替人工操作;其二、它能按照生产工艺的要求,遵循一定的程序、时间和位置来完成工件的传送和装卸;其三、它能操作必要的机具进行焊接和装配,从而大大的改善了工人的劳动条件,显著的提高了劳动生产率,加快实现工业生产机械化和自动化的步伐。

因而,受到很多国家的重视,投入大量的人力物力来研究和应用。

尤其是在高温、高压、粉尘、噪音以及带有放射性和污染的场合,应用的更为广泛。

在我国近几年也有较快的发展,并且取得一定的效果,受到机械工业的。

机械手是一种能自动控制并可从新编程以变动的多功能机器,他有多个自由度,可以搬运物体以完成在不同环境中的工作。

机械手的结构形式开始比较简单,专用性较强。

随着工业技术的发展,制成了能够独立的按程序控制实现重复操作,适用范围比较广的“程序控制通用机械手”,简称通用机械手。

由于通用机械手能很快的改变工作程序,适应性较强,所以它在不断变换生产品种的中小批量生产中获得广泛的引用。

一、机械手简介工业机械手是近几十年发展起来的一种高科技自动化生产设备。

工业机械手是工业机器人的一个重要分支。

它的特点是可通过编程来完成各种预期的作业任务,在构造和性能上兼有人和机器各自的优点,尤其体现了人的智能和适应性。

机械手作业的准确性和各种环境中完成作业的能力,在国民经济各领域有着广阔的发展前景。

机械手技术涉及到力学、机械学、电气液压技术、自动控制技术、传感器技术和计算机技术等科学领域,是一门跨学科综合技术。

1、机械手分类机械手一般分为三类。

第一类是不需要人工操作的通用机械手,它是一种独立的不附属于某一主机的装置。

它可以根据任务的需要编制程序,以完成各项规定工作。

它的特点是除具备普通机械的物理性能外,还具备通用机械、记忆智能的三元机械。

第二类是需要人工操作的,称为操作机。

它起源于原子、军事工业,先是通过操作机来完成特定的作业,后来发展到用无线电信号操作机械手来进行探测月球、火星等。

第三类是专用机械手,主要附属于自动机床或自动线上,用于解决机床上下料和工件传送。

这种机械手在国外称为“Mechanical Hand”,它是为主机服务的,由主机驱动,除少数外,工作程序一般是固定的,因此是专用的。

本项目要求设计的机械手模型可归为第一类,即通用机械手。

在现代生产企业中,自动化程度较高,大量应用机械手。

通过本次设计,可以增强对工业机械手的认识,同时并熟悉掌握PLC技术、位置控制技术、气动技术等工业控制常用的技术。

2、机械手控制系统设计步骤根据工艺要求确定被控系统必须完成的动作,确定这些动作之间的关系及完成这些动作的顺序。

(2)分配输入、输出设备,即确定哪些外围设备是送信号给PLC的,哪些外围设备是接收来自PLC的信号的,同时还要将PLC的输入、输出点与之一一对应,对I/O进行分配。

在此基础上确定PLC的选型。

(3)根据控制系统的控制要求和所选PLC的I/O点的情况及高功能模块的情况,设计PLC用户程序,此时可采用梯形田、助记符或流程图语言形式的用户程序。

PLC的用户程序体现了按照正确的顺序所要求的全部功能及其相互关系,编程时可用编程器或计算机直接编程、修改,同时也可对PLC的工作状态、特殊功能进行设定。

(4)对所设计的PLC程序进行调试和修改,直至PLC完全实现系统所要求的控制功能。

(5)保存已完成的程序。

3、机械手工作过程:机械手在生产线上的任务是将工件从A处传送到B处。

根据外界情况,机械手在空间上主要进行以下动作:机械手下降,机械手抓紧工件,机械手与工件上升,机械手与工件有右移,机械手与工件下降,机械手放松工件,机械手上升,机械手左移。

控制器检测上,下,左,右限位开关的通断,决定当前的动作,通过驱动系统输出,控制机械手的动作。

同时,用两位数码管显示搬运工件的数量。

(1)启动控制有2种,1个由启动开关安装在现场,1个由通过组态王软件控制。

在控制面板上,安装一个档位开关,分手动和自动两大档位,手动挡包括调试和回原位两档,自动挡分单步、半自动和全自动三档,要求自动挡的操作必须在回原位的基础上才能进行。

原位下降夹紧上升右移左移上移放松下降二、 PLC简介可编程控制器(简称PLC):是一种数字运算操作的电子系统,专为在工业环境应用而设计的。

它采用一类可编程的存储器,用于其内部存储程序,执行逻辑运算,顺序控制,定时,计数与算术操作等面向用户的指令,并通过数字或模拟式输入/输出控制各种类型的机械或生产过程。

可编程序控制器实施控制,其实质就是按一定算法进行输入输出变换,并将这个变换与以物理实现。

输入输出变换、物理实现可以说是PLC实施控制的两个基本点,同时物理实现也是PLC与普通微机相区别之处,其需要考虑实际控制的需要,应能排除干扰信号适应于工业现场,输出应放大到工业控制的水平,能为实际控制系统方便使用,所以PLC采用了典型的计算机结构,主要是由微处理器(CPU)、存储器(RAM/ROM)、输入输出接口(I/O)电路、通信接口及电源组成。

PLC的基本结构如下图所示:三、1、I/O配置表共需十二个数字输入点,一个数字输出点,七个模拟量输出点。

主机模块1 模块2 模块3 模块4CPU226 2AQ 2AQ 2AQ 2AQI0.0 Q0.0 AQW0 AQW4 AQW8 AQW12I0.1 AQW2 AQW6 AQW10 AQW14I0.2I0.3I0.4I0.5I0.6I0.7I1.0I1.1I1.2I1.3S7-200中的CPU226的最大负载电流为1000mA,四个EM232模块的负载电流为80mA,符合要求。

机械手传送系统输入和输出点分配表名称代号输入名称代号输入名称代号输出启动SB1 X0.1 自动操作SB5 X1.0 电磁阀下降YV1 Y0 下限行程SQ1 X0.1 单步SB6 X1.1 电磁阀夹紧YV2 Y1 上限行程SQ2 X0.2 调试SB7 X1.2 电磁阀上升YV3 Y2 右限行程SQ3 X0.3 回复SB8 X1.3 电磁阀右行YV4 Y3 左限行程SQ4 X0.4 电磁阀左行YV5 Y4 停止SB2 X0.5 上行灯指示EL1 Y5 手动操作SB3 X0.6 下行灯指示EL2 Y6 半自动操作SB4 X0.7 数字指示EL3 Y7 2、选型S7-200丰富的种类:·CPU221:内置10个数字量I/O点,不可扩充;·CPU222:内置14个数字量I/O点,可扩充到78路数字量I/O或10路模拟量I/O;·CPU224:内置24个数字量I/O点,可扩充到168路数字量I/O或35路模拟量I/O;·CPU226:内置40个数字量I/O点,可扩充到248路数字量I/O或35路模拟量I/O;主机为S7-200中的CPU226,因为他能扩展七个模块。

模块1-模块4为EM232,它是模拟量输出模块,每个模块有两个输出通道。

电源为220V交流电。

主机为西门子S7-200中的CPU226,因为他能扩展七个模块。

模块1-模块4为EM232,它是模拟量输出模块,每个模块有两个输出通道,能够满足需要。

电源为220V交流电。

选择PLC时,应考虑性能价格比。

考虑经济性时,应同时考虑应用的可扩展性、可操作性、投入产出比等因素,进行比较和兼顾,最终选出较满意的产品。

输入输出点数对价格有直接影响。

每增加一块输入输出卡件就需增加一定的费用。

当点数增加到某一数值后,相应的存储器容量、机架、母板等也要相应增加,估因此,点数的增加对CPU选用、存储器容量、控制功能范围等选择都有影响,在算和选用时应充分考虑,使整个控制系统有较合理的性能价格比。

3、PLC的输入输出端子分配接线图四、机械手的PLC控制1、控制特点机械手电气控制系统,除了有多工步特点之外,还要求有连续控制和手动控制等操作方式。

工作方式的选择可以很方便地在操作面板上表示出来。

当旋钮打向回原点时,系统自动地回到左上角位置待命。

当旋钮打向自动时,系统自动完成各工步操作,且循环动作。

当旋钮打向手动时,每一工步都要按下该工步按钮才能实现。

以下是设计该机械手控制程序的步骤和方法。

2、系统控制示意图机械手传送工件系统示意图,如图1所示图1 机械手传送示意及操作面板3、原理接线图4、操作系统操作系统包括回原点程序,手动单步操作程序和自动连续操作程序,如图3所示。

其原理是:把旋钮置于回原点,X16接通,系统自动回原点,Y5驱动指示灯亮。

再把旋钮置于手动,则X6接通,其常闭触头打开,程序不跳转(CJ为一跳转指令,如果CJ驱动,则跳到指针P所指P0处),执行手动程序。

之后,由于X7常闭触点,当执行CJ指令时,跳转到P1所指的结束位置。

如果旋钮置于自动位置,(既X6常闭闭合、X7常闭打开)则程序执行时跳过手动程序,直接执行自动程序。

5、回原位程序回原位程序如图4所示。

用S10~S12作回零操作元件。

应注意,当用S10~S19作回零操作时,在最后状态中在自我复位前应使特殊继电器M8043置1。

6、手动单步操作程序如图5所示。

图中上升/下降,左移/右移都有联锁和限位保护。

7、自动操作程序自动操作状态转移见图6所示。

当机械手处于原位时,按启动X0接通,状态转移到S20,驱动下降Y0,当到达下限位使行程开关X1接通,状态转移到S21,而S20自动复位。

S21驱动Y1置位,延时1秒,以使电磁力达到最大夹紧力。

当T0接通,状态转移到S22,驱动Y2上升,当上升到达最高位,X2接通,状态转移到S23。

S23驱动Y3右移。

移到最右位,X3接通,状态转移到S24下降。

下降到最低位,X1接通,电磁铁放松。

为了使电磁力完全失掉,延时1秒。

延时时间到,T1接通,状态转移到S26上升。

上升到最高位,X2接通,状态转移到S27左移。

左移到最左位,使X4接通,返回初始状态,再开始第二次循环动作。

在编写状态转移图时注意各状态元件只能使用一次,但它驱动的线圈,却可以使用多次,但两者不能出现在连续位置上。

因此步进顺控的编程,比起用基本指令编程较为容易,可读性较强。

8、机械手传送系统梯形图如图7所示。

图中从第0行到第27行为回原位状态程序。

从第28行到第66行,为手动单步操作程序。

从第67行到第129行为自动操作程序。

这三部分程序(又称为模块)是图3的操作系统运行的。

回原位程序和自动操作程序。

相关文档
最新文档