数据结构二叉树的创建及遍历

合集下载

二叉树的基本操作课件浙教版(2019)高中信息技术选修1(24张PPT)

二叉树的基本操作课件浙教版(2019)高中信息技术选修1(24张PPT)
如下图所示的是二叉树及其对应的二叉链表实现示意图。
A
B
D
C
E
F
G
头指针
二叉树的list实现
二叉树节点可以看成是一个三元组,元素是左、右子树和本节点数据。
Python的list可以用于组合这样的三个元素。
下面介绍用list构造二叉树的方法。
(1)空树用None表示。
(2)非空二叉树用包含三个元素的列表[d,l,r]表示,其中:d表示根节点的元素,l和r是两棵子树,采用与整个二叉树同样结构的list表示。
二叉树的遍历
在完成二叉树的建立操作后,就可以对二叉树的各个节点进行访问,即遍历操作。二叉树的遍历,是指按照一定的规则和次序访问二叉树中的所有节点,使得每个节点都被访问一次且仅被访问一次。按照不同的遍历方式对节点进行访问,其处理效率不完全相同。二叉树的遍历方式有很多,主要有前序遍历、中序遍历和后序遍历等。
1.数组实现
用数组来表示二叉树时,分为以下两种情况。
(1)完全二叉树从二叉树的根节点开始,按从上而下、自左向右的顺序对n个节点进行编号,根节点的编号为0,最后一个节点的编号为n-1。然后依次将二叉树的节点用一组连续的数组元素来表示,节点编号与数组的下标一一对应。如下图中图甲所示的完全二叉树所对应的一维数组表示如图乙所示。
A
B
C
A
B
C
甲 原二叉树
乙 补全后的二叉树
0
1
2
3
4
5
6
7
丙 数组实现示意图
A
B
C
对于完全二叉树而言,一维数组的表示方式既简单又节省存储空间。但对于一般的二叉树来说,采用一维数组表示时,结构虽然简单,却容易造成存储空间的浪费。

二叉树的建立与基本操作

二叉树的建立与基本操作

二叉树的建立与基本操作二叉树是一种特殊的树形结构,它由节点(node)组成,每个节点最多有两个子节点。

二叉树的基本操作包括建立二叉树、遍历二叉树、查找二叉树节点、插入和删除节点等。

本文将详细介绍二叉树的建立和基本操作,并给出相应的代码示例。

一、建立二叉树建立二叉树有多种方法,包括使用数组、链表和前序、中序、后序遍历等。

下面以使用链表的方式来建立二叉树为例。

1.定义二叉树节点类首先,定义一个二叉树节点的类,包含节点值、左子节点和右子节点三个属性。

```pythonclass Node:def __init__(self, value):self.value = valueself.left = Noneself.right = None```2.建立二叉树使用递归的方法来建立二叉树,先构造根节点,然后递归地构造左子树和右子树。

```pythondef build_binary_tree(lst):if not lst: # 如果 lst 为空,则返回 Nonereturn Nonemid = len(lst) // 2 # 取 lst 的中间元素作为根节点的值root = Node(lst[mid])root.left = build_binary_tree(lst[:mid]) # 递归构造左子树root.right = build_binary_tree(lst[mid+1:]) # 递归构造右子树return root```下面是建立二叉树的示例代码:```pythonlst = [1, 2, 3, 4, 5, 6, 7]root = build_binary_tree(lst)```二、遍历二叉树遍历二叉树是指按照其中一规则访问二叉树的所有节点,常见的遍历方式有前序遍历、中序遍历和后序遍历。

1.前序遍历前序遍历是指先访问根节点,然后访问左子节点,最后访问右子节点。

```pythondef pre_order_traversal(root):if root:print(root.value) # 先访问根节点pre_order_traversal(root.left) # 递归访问左子树pre_order_traversal(root.right) # 递归访问右子树```2.中序遍历中序遍历是指先访问左子节点,然后访问根节点,最后访问右子节点。

数据结构实验五(二叉树的建立及遍历)题目和源程序

数据结构实验五(二叉树的建立及遍历)题目和源程序

实验5:二叉树的建立及遍历(第十三周星期三7、8节)一、实验目的1.学会实现二叉树结点结构和对二叉树的基本操作。

2.掌握对二叉树每种操作的具体实现,学会利用递归方法编写对二叉树这种递归数据结构进行处理的算法。

二、实验要求1.认真阅读和掌握和本实验相关的教材内容。

2.编写完整程序完成下面的实验内容并上机运行。

3.整理并上交实验报告。

三、实验内容1.编写程序任意输入二叉树的结点个数和结点值,构造一棵二叉树,采用三种递归遍历算法(前序、中序、后序)对这棵二叉树进行遍历并计算出二叉树的高度。

2 .编写程序生成下面所示的二叉树,并采用中序遍历的非递归算法对此二叉树进行遍历。

四、思考与提高1.如何计算二叉链表存储的二叉树中度数为1的结点数?2.已知有—棵以二叉链表存储的二叉树,root指向根结点,p指向二叉树中任一结点,如何求从根结点到p所指结点之间的路径?/*----------------------------------------* 05-1_递归遍历二叉树.cpp -- 递归遍历二叉树的相关操作* 对递归遍历二叉树的每个基本操作都用单独的函数来实现* 水上飘2009年写----------------------------------------*/// ds05.cpp : Defines the entry point for the console application.//#include "stdafx.h"#include <iostream>typedef char ElemType;using namespace std;typedef struct BiTNode {ElemType data;//左右孩子指针BiTNode *lchild, *rchild;}BiTNode, *BiTree;//动态输入字符按先序创建二叉树void CreateBiTree(BiTree &T) {char ch;ch = cin.get();if(ch == ' ') {T = NULL;}else {if(ch == '\n') {cout << "输入未结束前不要输入回车,""要结束分支请输入空格!" << endl;}else {//生成根结点T = (BiTNode * )malloc(sizeof(BiTNode));if(!T)cout << "内存分配失败!" << endl;T->data = ch;//构造左子树CreateBiTree(T->lchild);//构造右子树CreateBiTree(T->rchild);}}}//输出e的值ElemType PrintElement(ElemType e) { cout << e << " ";return e;}//先序遍历void PreOrderTraverse(BiTree T) { if (T != NULL) {//打印结点的值PrintElement(T->data);//遍历左孩子PreOrderTraverse(T->lchild);//遍历右孩子PreOrderTraverse(T->rchild);}}//中序遍历void InOrderTraverse(BiTree T) {if (T != NULL) {//遍历左孩子InOrderTraverse(T->lchild);//打印结点的值PrintElement(T->data);//遍历右孩子InOrderTraverse(T->rchild);}}//后序遍历void PostOrderTraverse(BiTree T) { if (T != NULL) {//遍历左孩子PostOrderTraverse(T->lchild);//遍历右孩子PostOrderTraverse(T->rchild);//打印结点的值PrintElement(T->data);}}//按任一种遍历次序输出二叉树中的所有结点void TraverseBiTree(BiTree T, int mark) {if(mark == 1) {//先序遍历PreOrderTraverse(T);cout << endl;}else if(mark == 2) {//中序遍历InOrderTraverse(T);cout << endl;}else if(mark == 3) {//后序遍历PostOrderTraverse(T);cout << endl;}else cout << "选择遍历结束!" << endl;}//输入值并执行选择遍历函数void ChoiceMark(BiTree T) {int mark = 1;cout << "请输入,先序遍历为1,中序为2,后序为3,跳过此操作为0:";cin >> mark;if(mark > 0 && mark < 4) {TraverseBiTree(T, mark);ChoiceMark(T);}else cout << "此操作已跳过!" << endl;}//求二叉树的深度int BiTreeDepth(BiTNode *T) {if (T == NULL) {//对于空树,返回0并结束递归return 0;}else {//计算左子树的深度int dep1 = BiTreeDepth(T->lchild);//计算右子树的深度int dep2 = BiTreeDepth(T->rchild);//返回树的深度if(dep1 > dep2)return dep1 + 1;elsereturn dep2 + 1;}}int _tmain(int argc, _TCHAR* argv[]){BiTNode *bt;bt = NULL; //将树根指针置空cout << "输入规则:" << endl<< "要生成新结点,输入一个字符,""不要生成新结点的左孩子,输入一个空格,""左右孩子都不要,输入两个空格,""要结束,输入多个空格(越多越好),再回车!"<< endl << "按先序输入:";CreateBiTree(bt);cout << "树的深度为:" << BiTreeDepth(bt) << endl;ChoiceMark(bt);return 0;}/*----------------------------------------* 05-2_构造二叉树.cpp -- 构造二叉树的相关操作* 对构造二叉树的每个基本操作都用单独的函数来实现* 水上飘2009年写----------------------------------------*/// ds05-2.cpp : Defines the entry point for the console application.//#include "stdafx.h"#include <iostream>#define STACK_INIT_SIZE 100 //栈的存储空间初始分配量#define STACKINCREMENT 10 //存储空间分配增量typedef char ElemType; //元素类型using namespace std;typedef struct BiTNode {ElemType data; //结点值BiTNode *lchild, *rchild; //左右孩子指针}BiTNode, *BiTree;typedef struct {BiTree *base; //在栈构造之前和销毁之后,base的值为空BiTree *top; //栈顶指针int stacksize; //当前已分配的存储空间,以元素为单位}SqStack;//构造一个空栈void InitStack(SqStack &s) {s.base = (BiTree *)malloc(STACK_INIT_SIZE * sizeof(BiTree));if(!s.base)cout << "存储分配失败!" << endl;s.top = s.base;s.stacksize = STACK_INIT_SIZE;}//插入元素e为新的栈顶元素void Push(SqStack &s, BiTree e) {//栈满,追加存储空间if ((s.top - s.base) >= s.stacksize) {s.base = (BiTree *)malloc((STACK_INIT_SIZE+STACKINCREMENT) * sizeof(BiTree));if(!s.base)cout << "存储分配失败!" << endl;s.top = s.base + s.stacksize;s.stacksize += STACK_INIT_SIZE;}*s.top++ = e;}//若栈不空,则删除s的栈顶元素,并返回其值BiTree Pop(SqStack &s) {if(s.top == s.base)cout << "栈为空,无法删除栈顶元素!" << endl;s.top--;return *s.top;}//按先序输入字符创建二叉树void CreateBiTree(BiTree &T) {char ch;//接受输入的字符ch = cin.get();if(ch == ' ') {//分支结束T = NULL;} //if' 'endelse if(ch == '\n') {cout << "输入未结束前不要输入回车,""要结束分支请输入空格!(接着输入)" << endl;} //if'\n'endelse {//生成根结点T = (BiTNode * )malloc(sizeof(BiTree));if(!T)cout << "内存分配失败!" << endl;T->data = ch;//构造左子树CreateBiTree(T->lchild);//构造右子树CreateBiTree(T->rchild);} //Create end}//输出e的值,并返回ElemType PrintElement(ElemType e) {cout << e << " ";return e;}//中序遍历二叉树的非递归函数void InOrderTraverse(BiTree p, SqStack &S) {cout << "中序遍历结果:";while(S.top != S.base || p != NULL) {if(p != NULL) {Push(S,p);p = p->lchild;} //if NULL endelse {BiTree bi = Pop(S);if(!PrintElement(bi->data))cout << "输出其值未成功!" << endl;p = bi->rchild;} //else end} //while endcout << endl;}int _tmain(int argc, _TCHAR* argv[]){BiTNode *bt;SqStack S;InitStack(S);bt = NULL; //将树根指针置空cout << "老师要求的二叉树序列(‘空’表示空格):""12空空346空空空5空空,再回车!"<< endl << "请按先序输入一个二叉树序列(可另输入,但要为先序),""无左右孩子则分别输入空格。

数据结构二叉树的实验报告

数据结构二叉树的实验报告

数据结构二叉树的实验报告数据结构二叉树的实验报告一、引言数据结构是计算机科学中非常重要的一个领域,它研究如何组织和存储数据以便高效地访问和操作。

二叉树是数据结构中常见且重要的一种,它具有良好的灵活性和高效性,被广泛应用于各种领域。

本实验旨在通过实际操作和观察,深入了解二叉树的特性和应用。

二、实验目的1. 理解二叉树的基本概念和特性;2. 掌握二叉树的创建、遍历和查找等基本操作;3. 通过实验验证二叉树的性能和效果。

三、实验过程1. 二叉树的创建在实验中,我们首先需要创建一个二叉树。

通过输入一系列数据,我们可以按照特定的规则构建一棵二叉树。

例如,可以按照从小到大或从大到小的顺序将数据插入到二叉树中,以保证树的有序性。

2. 二叉树的遍历二叉树的遍历是指按照一定的次序访问二叉树中的所有节点。

常见的遍历方式有前序遍历、中序遍历和后序遍历。

前序遍历是先访问根节点,然后再依次遍历左子树和右子树;中序遍历是先遍历左子树,然后访问根节点,最后再遍历右子树;后序遍历是先遍历左子树,然后遍历右子树,最后访问根节点。

3. 二叉树的查找二叉树的查找是指在二叉树中寻找指定的节点。

常见的查找方式有深度优先搜索和广度优先搜索。

深度优先搜索是从根节点开始,沿着左子树一直向下搜索,直到找到目标节点或者到达叶子节点;广度优先搜索是从根节点开始,逐层遍历二叉树,直到找到目标节点或者遍历完所有节点。

四、实验结果通过实验,我们可以观察到二叉树的特性和性能。

在创建二叉树时,如果按照有序的方式插入数据,可以得到一棵平衡二叉树,其查找效率较高。

而如果按照无序的方式插入数据,可能得到一棵不平衡的二叉树,其查找效率较低。

在遍历二叉树时,不同的遍历方式会得到不同的结果。

前序遍历可以用于复制一棵二叉树,中序遍历可以用于对二叉树进行排序,后序遍历可以用于释放二叉树的内存。

在查找二叉树时,深度优先搜索和广度优先搜索各有优劣。

深度优先搜索在空间复杂度上较低,但可能会陷入死循环;广度优先搜索在时间复杂度上较低,但需要较大的空间开销。

二叉树遍历(前中后序遍历,三种方式)

二叉树遍历(前中后序遍历,三种方式)

⼆叉树遍历(前中后序遍历,三种⽅式)⽬录刷题中碰到⼆叉树的遍历,就查找了⼆叉树遍历的⼏种思路,在此做个总结。

对应的LeetCode题⽬如下:,,,接下来以前序遍历来说明三种解法的思想,后⾯中序和后续直接给出代码。

⾸先定义⼆叉树的数据结构如下://Definition for a binary tree node.struct TreeNode {int val;TreeNode *left;TreeNode *right;TreeNode(int x) : val(x), left(NULL), right(NULL) {}};前序遍历,顺序是“根-左-右”。

使⽤递归实现:递归的思想很简单就是我们每次访问根节点后就递归访问其左节点,左节点访问结束后再递归的访问右节点。

代码如下:class Solution {public:vector<int> preorderTraversal(TreeNode* root) {if(root == NULL) return {};vector<int> res;helper(root,res);return res;}void helper(TreeNode *root, vector<int> &res){res.push_back(root->val);if(root->left) helper(root->left, res);if(root->right) helper(root->right, res);}};使⽤辅助栈迭代实现:算法为:先把根节点push到辅助栈中,然后循环检测栈是否为空,若不空,则取出栈顶元素,保存值到vector中,之后由于需要想访问左⼦节点,所以我们在将根节点的⼦节点⼊栈时要先经右节点⼊栈,再将左节点⼊栈,这样出栈时就会先判断左⼦节点。

代码如下:class Solution {public:vector<int> preorderTraversal(TreeNode* root) {if(root == NULL) return {};vector<int> res;stack<TreeNode*> st;st.push(root);while(!st.empty()){//将根节点出栈放⼊结果集中TreeNode *t = st.top();st.pop();res.push_back(t->val);//先⼊栈右节点,后左节点if(t->right) st.push(t->right);if(t->left) st.push(t->left);}return res;}};Morris Traversal⽅法具体的详细解释可以参考如下链接:这种解法可以实现O(N)的时间复杂度和O(1)的空间复杂度。

数据结构入门-树的遍历以及二叉树的创建

数据结构入门-树的遍历以及二叉树的创建

数据结构⼊门-树的遍历以及⼆叉树的创建树定义:1. 有且只有⼀个称为根的节点2. 有若⼲个互不相交的⼦树,这些⼦树本⾝也是⼀个树通俗的讲:1. 树是有结点和边组成,2. 每个结点只有⼀个⽗结点,但可以有多个⼦节点3. 但有⼀个节点例外,该节点没有⽗结点,称为根节点⼀、专业术语结点、⽗结点、⼦结点、根结点深度:从根节点到最底层结点的层数称为深度,根节点第⼀层叶⼦结点:没有⼦结点的结点⾮终端节点:实际上是⾮叶⼦结点度:⼦结点的个数成为度⼆、树的分类⼀般树:任意⼀个结点的⼦结点的个数都不受限制⼆叉树:任意⼀个结点的⼦结点个数最多是两个,且⼦结点的位置不可更改⼆叉数分类:1. ⼀般⼆叉数2. 满⼆叉树:在不增加树层数的前提下,⽆法再多添加⼀个结点的⼆叉树3. 完全⼆叉树:如果只是删除了满⼆叉树最底层最右边的连续若⼲个结点,这样形成的⼆叉树就是完全⼆叉树森林:n个互不相交的树的集合三、树的存储⼆叉树存储连续存储(完全⼆叉树)优点:查找某个结点的⽗结点和⼦结点(也包括判断有没有⼦结点)速度很快缺点:耗⽤内存空间过⼤链式存储⼀般树存储1. 双亲表⽰法:求⽗结点⽅便2. 孩⼦表⽰法:求⼦结点⽅便3. 双亲孩⼦表⽰法:求⽗结点和⼦结点都很⽅便4. ⼆叉树表⽰法:把⼀个⼀般树转化成⼀个⼆叉树来存储,具体转换⽅法:设法保证任意⼀个结点的左指针域指向它的第⼀个孩⼦,右指针域指向它的兄弟,只要能满⾜此条件,就可以把⼀个⼀般树转化为⼆叉树⼀个普通树转换成的⼆叉树⼀定没有右⼦树森林的存储先把森林转化为⼆叉树,再存储⼆叉树四、树的遍历先序遍历:根左右先访问根结点,再先序访问左⼦树,再先序访问右⼦树中序遍历:左根右中序遍历左⼦树,再访问根结点,再中序遍历右⼦树后续遍历:左右根后续遍历左⼦树,后续遍历右⼦树,再访问根节点五、已知两种遍历求原始⼆叉树给定了⼆叉树的任何⼀种遍历序列,都⽆法唯⼀确定相应的⼆叉树,但是如果知道了⼆叉树的中序遍历序列和任意的另⼀种遍历序列,就可以唯⼀地确定⼆叉树已知先序和中序求后序先序:ABCDEFGH中序:BDCEAFHG求后序:这个⾃⼰画个图体会⼀下就可以了,⾮常简单,这⾥简单记录⼀下1. ⾸先根据先序确定根,上⾯的A就是根2. 中序确定左右,A左边就是左树(BDCE),A右边就是右树(FHG)3. 再根据先序,A左下⾯就是B,然后根据中序,B左边没有,右边是DCE4. 再根据先序,B右下是C,根据中序,c左下边是D,右下边是E,所以整个左树就确定了5. 右树,根据先序,A右下是F,然后根据中序,F的左下没有,右下是HG,6. 根据先序,F右下为G,然后根据中序,H在G的左边,所以G的左下边是H再来⼀个例⼦,和上⾯的思路是⼀样的,这⾥就不详细的写了先序:ABDGHCEFI中序:GDHBAECIF已知中序和后序求先序中序:BDCEAFHG后序:DECBHGFA这个和上⾯的思路是⼀样的,只不过是反过来找,后序找根,中序找左右树简单应⽤树是数据库中数据组织⼀种重要形式操作系统⼦⽗进程的关系本⾝就是⼀棵树⾯向对象语⾔中类的继承关系哈夫曼树六、⼆叉树的创建#include <stdio.h>#include <stdlib.h>typedef struct Node{char data;struct Node * lchild;struct Node * rchild;}BTNode;/*⼆叉树建⽴*/void BuildBT(BTNode ** tree){char ch;scanf("%c" , &ch); // 输⼊数据if(ch == '#') // 如果这个节点的数据是#说明这个结点为空*tree = NULL;else{*tree = (BTNode*)malloc(sizeof(BTNode));//申请⼀个结点的内存 (*tree)->data = ch; // 将数据写⼊到结点⾥⾯BuildBT(&(*tree)->lchild); // 递归建⽴左⼦树BuildBT(&(*tree)->rchild); // 递归建⽴右⼦树}}/*⼆叉树销毁*/void DestroyBT(BTNode *tree) // 传⼊根结点{if(tree != NULL){DestroyBT(tree->lchild);DestroyBT(tree->rchild);free(tree); // 释放内存空间}}/*⼆叉树的先序遍历*/void Preorder(BTNode * node){if(node == NULL)return;else{printf("%c ",node->data );Preorder(node->lchild);Preorder(node->rchild);}}/*⼆叉树的中序遍历*/void Inorder(BTNode * node){if(node == NULL)return;else{Inorder(node->lchild);printf("%c ",node->data );Inorder(node->rchild);}}/*⼆叉树的后序遍历*/void Postorder(BTNode * node){if(node == NULL)return;else{Postorder(node->lchild);Postorder(node->rchild);printf("%c ",node->data );}}/*⼆叉树的⾼度树的⾼度 = max(左⼦树⾼度,右⼦树⾼度) +1*/int getHeight(BTNode *node){int Height = 0;if (node == NULL)return 0;else{int L_height = getHeight(node->lchild);int R_height = getHeight(node->rchild);Height = L_height >= R_height ? L_height +1 : R_height +1; }return Height;}int main(int argc, char const *argv[]){BTNode * BTree; // 定义⼀个⼆叉树printf("请输⼊⼀颗⼆叉树先序序列以#表⽰空结点:");BuildBT(&BTree);printf("先序序列:");Preorder(BTree);printf("\n中序序列:");Inorder(BTree);printf("\n后序序列:");Postorder(BTree);printf("\n树的⾼度为:%d" , getHeight(BTree));return 0;}// ABC##DE##F##G##。

二叉树常用的三种遍历方法

二叉树常用的三种遍历方法

二叉树常用的三种遍历方法二叉树是一种常用的数据结构,它由一个根节点和两个子节点组成,其中左子节点小于根节点,右子节点大于根节点。

遍历二叉树是对所有节点进行访问的过程,常用的三种遍历方法是前序遍历、中序遍历和后序遍历。

下面将详细介绍这三种方法的实现步骤。

一、前序遍历前序遍历是指先访问根节点,然后按照左子树、右子树的顺序依次访问每个节点。

具体实现步骤如下:1. 如果当前节点为空,则返回。

2. 访问当前节点。

3. 递归进入左子树。

4. 递归进入右子树。

代码实现:void preorderTraversal(TreeNode* root) {if (root == NULL) return;cout << root->val << " ";preorderTraversal(root->left);preorderTraversal(root->right);}二、中序遍历中序遍历是指先访问左子树,然后访问根节点,最后访问右子树。

具体实现步骤如下:1. 如果当前节点为空,则返回。

2. 递归进入左子树。

3. 访问当前节点。

4. 递归进入右子树。

代码实现:void inorderTraversal(TreeNode* root) {if (root == NULL) return;inorderTraversal(root->left);cout << root->val << " ";inorderTraversal(root->right);}三、后序遍历后序遍历是指先访问左子树,然后访问右子树,最后访问根节点。

具体实现步骤如下:1. 如果当前节点为空,则返回。

2. 递归进入左子树。

3. 递归进入右子树。

4. 访问当前节点。

代码实现:void postorderTraversal(TreeNode* root) {if (root == NULL) return;postorderTraversal(root->left);postorderTraversal(root->right);cout << root->val << " ";}总结:以上就是二叉树常用的三种遍历方法的详细介绍和实现步骤。

数据结构实验三——二叉树基本操作及运算实验报告

数据结构实验三——二叉树基本操作及运算实验报告

《数据结构与数据库》实验报告实验题目二叉树的基本操作及运算一、需要分析问题描述:实现二叉树(包括二叉排序树)的建立,并实现先序、中序、后序和按层次遍历,计算叶子结点数、树的深度、树的宽度,求树的非空子孙结点个数、度为2的结点数目、度为2的结点数目,以及二叉树常用运算。

问题分析:二叉树树型结构是一类重要的非线性数据结构,对它的熟练掌握是学习数据结构的基本要求。

由于二叉树的定义本身就是一种递归定义,所以二叉树的一些基本操作也可采用递归调用的方法。

处理本问题,我觉得应该:1、建立二叉树;2、通过递归方法来遍历(先序、中序和后序)二叉树;3、通过队列应用来实现对二叉树的层次遍历;4、借用递归方法对二叉树进行一些基本操作,如:求叶子数、树的深度宽度等;5、运用广义表对二叉树进行广义表形式的打印。

算法规定:输入形式:为了方便操作,规定二叉树的元素类型都为字符型,允许各种字符类型的输入,没有元素的结点以空格输入表示,并且本实验是以先序顺序输入的。

输出形式:通过先序、中序和后序遍历的方法对树的各字符型元素进行遍历打印,再以广义表形式进行打印。

对二叉树的一些运算结果以整型输出。

程序功能:实现对二叉树的先序、中序和后序遍历,层次遍历。

计算叶子结点数、树的深度、树的宽度,求树的非空子孙结点个数、度为2的结点数目、度为2的结点数目。

对二叉树的某个元素进行查找,对二叉树的某个结点进行删除。

测试数据:输入一:ABC□□DE□G□□F□□□(以□表示空格),查找5,删除E预测结果:先序遍历ABCDEGF中序遍历CBEGDFA后序遍历CGEFDBA层次遍历ABCDEFG广义表打印A(B(C,D(E(,G),F)))叶子数3 深度5 宽度2 非空子孙数6 度为2的数目2 度为1的数目2查找5,成功,查找的元素为E删除E后,以广义表形式打印A(B(C,D(,F)))输入二:ABD□□EH□□□CF□G□□□(以□表示空格),查找10,删除B预测结果:先序遍历ABDEHCFG中序遍历DBHEAGFC后序遍历DHEBGFCA层次遍历ABCDEFHG广义表打印A(B(D,E(H)),C(F(,G)))叶子数3 深度4 宽度3 非空子孙数7 度为2的数目2 度为1的数目3查找10,失败。

吉林省专升本数据结构习题——二叉树的遍历和构造

吉林省专升本数据结构习题——二叉树的遍历和构造

吉林省专升本数据结构习题、参考答案及解析——二叉树的遍历和构造1、已知一棵二叉树如下图所示,请写出该二叉树的前序、中序、后序、层序遍历序列。

参考答案前序遍历:ABDCEFGH中序遍历:BDACGFHE后序遍历:DBGHFECA层序遍历:ABCDEFGH解析:前序遍历是D(根)L(左子树)R(右子树)的顺序,左右子树也需要进行前序遍历。

中序遍历是LDR顺序,后序遍历是LRD顺序。

层序遍历是从上层到下层同层之间从左到右的顺序进行遍历。

2、已知一棵二叉树的前序和中序遍历序列分别是ABCDEFH和BCAEDFH,构造该二叉树,并写出后序遍历序列。

参考答案后序遍历序列:CBEHFDA解析: 1)、前序遍历的顺序是DLR,所以序列的第一个结点是根结点。

2)、中序遍历的顺序是LDR,在前序确定了根结点的情况下,中序序列能区分左右子树。

3)、左右子树的构造方法重复1、2即可。

3、已知一棵二叉树的中序和后序遍历序列分别是ACBEFDG和CFEGDBA,构造该二叉树,并写出前序遍历序列。

参考答案前序遍历:ABCDEFG解析:后序和中序构造二叉树的方法参考前序和中序构造二叉树的方法。

后序遍历LRD顺序,确定序列的最后一个元素是根结点,再用中序分左右子树。

4、已知一棵表达式树的前序遍历序列和中序遍历序列分别是-*+abcd和a+b*c-d。

构造该表达式树,并写出后序遍历序列。

参考答案后序遍历:ab+c*d-解析:表达式树的分支结点应该是+-*/这类运算符,而叶子结点放abcd这些操作数。

在一些题目中会出现重复使用的运算符,通过这个性质就能区分出正确的表达式树。

5、已知一棵表达式树的中序遍历序列和后序遍历序列分别是a+b*c-d+e/f和ab+c*de+f/-。

构造该表达式树,并写出前序遍历序列。

前序遍历:-*+abc/+def。

数据结构实验报告-树(二叉树)

数据结构实验报告-树(二叉树)

实验5:树(二叉树)(采用二叉链表存储)一、实验项目名称二叉树及其应用二、实验目的熟悉二叉树的存储结构的特性以及二叉树的基本操作。

三、实验基本原理之前我们都是学习的线性结构,这次我们就开始学习非线性结构——树。

线性结构中结点间具有唯一前驱、唯一后继关系,而非线性结构中结点的前驱、后继的关系并不具有唯一性。

在树结构中,节点间关系是前驱唯一而后继不唯一,即结点之间是一对多的关系。

直观地看,树结构是具有分支关系的结构(其分叉、分层的特征类似于自然界中的树)。

四、主要仪器设备及耗材Window 11、Dev-C++5.11五、实验步骤1.导入库和预定义2.创建二叉树3.前序遍历4.中序遍历5.后序遍历6.总结点数7.叶子节点数8.树的深度9.树根到叶子的最长路径10.交换所有节点的左右子女11.顺序存储12.显示顺序存储13.测试函数和主函数对二叉树的每一个操作写测试函数,然后在主函数用while+switch-case的方式实现一个带菜单的简易测试程序,代码见“实验完整代码”。

实验完整代码:#include <bits/stdc++.h>using namespace std;#define MAX_TREE_SIZE 100typedef char ElemType;ElemType SqBiTree[MAX_TREE_SIZE];struct BiTNode{ElemType data;BiTNode *l,*r;}*T;void createBiTree(BiTNode *&T){ElemType e;e = getchar();if(e == '\n')return;else if(e == ' ')T = NULL;else{if(!(T = (BiTNode *)malloc(sizeof (BiTNode)))){cout << "内存分配错误!" << endl;exit(0);}T->data = e;createBiTree(T->l);createBiTree(T->r);}}void createBiTree2(BiTNode *T,int u) {if(T){SqBiTree[u] = T->data;createBiTree2(T->l,2 * u + 1);createBiTree2(T->r,2 * u + 2); }}void outputBiTree2(int n){int cnt = 0;for(int i = 0;cnt <= n;i++){cout << SqBiTree[i];if(SqBiTree[i] != ' ')cnt ++;}cout << endl;}void preOrderTraverse(BiTNode *T) {if(T){cout << T->data;preOrderTraverse(T->l);preOrderTraverse(T->r);}}void inOrderTraverse(BiTNode *T) {if(T){inOrderTraverse(T->l);cout << T->data;inOrderTraverse(T->r);}}void beOrderTraverse(BiTNode *T){if(T){beOrderTraverse(T->l);beOrderTraverse(T->r);cout << T->data;}}int sumOfVer(BiTNode *T){if(!T)return 0;return sumOfVer(T->l) + sumOfVer(T->r) + 1;}int sumOfLeaf(BiTNode *T){if(!T)return 0;if(T->l == NULL && T->r == NULL)return 1;return sumOfLeaf(T->l) + sumOfLeaf(T->r);}int depth(BiTNode *T){if(!T)return 0;return max(depth(T->l),depth(T->r)) + 1;}bool LongestPath(int dist,int dist2,vector<ElemType> &ne,BiTNode *T) {if(!T)return false;if(dist2 == dist)return true;if(LongestPath(dist,dist2 + 1,ne,T->l)){ne.push_back(T->l->data);return true;}else if(LongestPath(dist,dist2 + 1,ne,T->r)){ne.push_back(T->r->data);return true;}return false;}void swapVer(BiTNode *&T){if(T){swapVer(T->l);swapVer(T->r);BiTNode *tmp = T->l;T->l = T->r;T->r = tmp;}}//以下是测试程序void test1(){getchar();cout << "请以先序次序输入二叉树结点的值,空结点用空格表示:" << endl; createBiTree(T);cout << "二叉树创建成功!" << endl;}void test2(){cout << "二叉树的前序遍历为:" << endl;preOrderTraverse(T);cout << endl;}void test3(){cout << "二叉树的中序遍历为:" << endl;inOrderTraverse(T);cout << endl;}void test4(){cout << "二叉树的后序遍历为:" << endl;beOrderTraverse(T);cout << endl;}void test5(){cout << "二叉树的总结点数为:" << sumOfVer(T) << endl;}void test6(){cout << "二叉树的叶子结点数为:" << sumOfLeaf(T) << endl; }void test7(){cout << "二叉树的深度为:" << depth(T) << endl;}void test8(){int dist = depth(T);vector<ElemType> ne;cout << "树根到叶子的最长路径:" << endl;LongestPath(dist,1,ne,T);ne.push_back(T->data);reverse(ne.begin(),ne.end());cout << ne[0];for(int i = 1;i < ne.size();i++)cout << "->" << ne[i];cout << endl;}void test9(){swapVer(T);cout << "操作成功!" << endl;}void test10(){memset(SqBiTree,' ',sizeof SqBiTree);createBiTree2(T,0);cout << "操作成功!" << endl;}void test11(){int n = sumOfVer(T);outputBiTree2(n);}int main(){int op = 0;while(op != 12){cout << "-----------------menu--------------------" << endl;cout << "--------------1:创建二叉树--------------" << endl;cout << "--------------2:前序遍历----------------" << endl;cout << "--------------3:中序遍历----------------" << endl;cout << "--------------4:后序遍历----------------" << endl;cout << "--------------5:总结点数----------------" << endl;cout << "--------------6:叶子节点数--------------" << endl;cout << "--------------7:树的深度----------------" << endl;cout << "--------------8:树根到叶子的最长路径----" << endl;cout << "--------------9:交换所有节点左右子女----" << endl;cout << "--------------10:顺序存储---------------" << endl;cout << "--------------11:显示顺序存储-----------" << endl;cout << "--------------12:退出测试程序-----------" << endl;cout << "请输入指令编号:" << endl;if(!(cin >> op)){cin.clear();cin.ignore(INT_MAX,'\n');cout << "请输入整数!" << endl;continue;}switch(op){case 1:test1();break;case 2:test2();break;case 3:test3();break;case 4:test4();break;case 5:test5();break;case 6:test6();break;case 7:test7();break;case 8:test8();break;case 9:test9();break;case 10:test10();break;case 11:test11();break;case 12:cout << "测试结束!" << endl;break;default:cout << "请输入正确的指令编号!" << endl;}}return 0;}六、实验数据及处理结果测试用例:1.创建二叉树(二叉链表形式)2.前序遍历3.中序遍历4.后序遍历5.总结点数6.叶子结点数7.树的深度8.树根到叶子的最长路径9.交换所有左右子女10.顺序存储七、思考讨论题或体会或对改进实验的建议通过这次实验,我掌握了二叉树的顺序存储和链式存储,体会了二叉树的存储结构的特性,掌握了二叉树的树上相关操作。

二叉树的基本操作实验报告

二叉树的基本操作实验报告

二叉树的基本操作实验报告二叉树的基本操作实验报告引言:二叉树是一种常见的数据结构,它由节点组成,每个节点最多有两个子节点。

二叉树的基本操作包括创建、遍历、插入和删除等。

本实验旨在通过实践来深入了解二叉树的基本操作,并通过实验结果验证其正确性和有效性。

一、创建二叉树创建二叉树是二叉树操作中的第一步。

在本实验中,我们使用了递归算法来创建二叉树。

递归算法是一种重要的算法思想,通过将问题划分为更小的子问题来解决复杂的问题。

在创建二叉树时,我们首先创建根节点,然后递归地创建左子树和右子树。

二、遍历二叉树遍历二叉树是对二叉树中的每个节点进行访问的过程。

常见的遍历方式有前序遍历、中序遍历和后序遍历。

前序遍历先访问根节点,然后递归遍历左子树和右子树;中序遍历先递归遍历左子树,然后访问根节点,最后递归遍历右子树;后序遍历先递归遍历左子树和右子树,最后访问根节点。

三、插入节点插入节点是向二叉树中添加新节点的操作。

插入节点的过程需要遵循二叉树的特性,即左子节点的值小于父节点的值,右子节点的值大于父节点的值。

在插入节点时,我们需要找到合适的位置,将新节点插入到正确的位置上。

四、删除节点删除节点是从二叉树中移除节点的操作。

删除节点的过程相对复杂,需要考虑多种情况。

如果要删除的节点是叶子节点,直接删除即可。

如果要删除的节点只有一个子节点,将其子节点连接到父节点上。

如果要删除的节点有两个子节点,我们需要找到其后继节点或前驱节点来替代被删除的节点。

实验结果:通过实验,我们成功地实现了二叉树的基本操作。

创建二叉树的递归算法能够正确地创建出符合要求的二叉树。

遍历二叉树的算法能够按照指定的顺序遍历每个节点。

插入节点和删除节点的操作也能够正确地修改二叉树的结构。

讨论与总结:二叉树的基本操作是数据结构中的重要内容,对于理解和应用其他数据结构具有重要意义。

通过本次实验,我们深入了解了二叉树的创建、遍历、插入和删除等操作,并通过实验验证了其正确性和有效性。

二叉树的建立和遍历的实验报告

二叉树的建立和遍历的实验报告

竭诚为您提供优质文档/双击可除二叉树的建立和遍历的实验报告篇一:二叉树遍历实验报告数据结构实验报告报告题目:二叉树的基本操作学生班级:学生姓名:学号:一.实验目的1、基本要求:深刻理解二叉树性质和各种存储结构的特点及适用范围;掌握用指针类型描述、访问和处理二叉树的运算;熟练掌握二叉树的遍历算法;。

2、较高要求:在遍历算法的基础上设计二叉树更复杂操作算法;认识哈夫曼树、哈夫曼编码的作用和意义;掌握树与森林的存储与便利。

二.实验学时:课内实验学时:3学时课外实验学时:6学时三.实验题目1.以二叉链表为存储结构,实现二叉树的创建、遍历(实验类型:验证型)1)问题描述:在主程序中设计一个简单的菜单,分别调用相应的函数功能:1…建立树2…前序遍历树3…中序遍历树4…后序遍历树5…求二叉树的高度6…求二叉树的叶子节点7…非递归中序遍历树0…结束2)实验要求:在程序中定义下述函数,并实现要求的函数功能:createbinTree(binTreestructnode*lchild,*rchild;}binTnode;元素类型:intcreatebinTree(binTreevoidpreorder(binTreevoidInorder(binTreevoidpostorder(binTreevoidInordern(binTreeintleaf(bi nTreeintpostTreeDepth(binTree2、编写算法实现二叉树的非递归中序遍历和求二叉树高度。

1)问题描述:实现二叉树的非递归中序遍历和求二叉树高度2)实验要求:以二叉链表作为存储结构3)实现过程:1、实现非递归中序遍历代码:voidcbiTree::Inordern(binTreeinttop=0;p=T;do{while(p!=nuLL){stack[top]=p;;top=top+1;p=p->lchild;};if(top>0){top=top-1;p=stack[top];printf("%3c",p->data);p=p->rchild;}}while(p!=nuLL||top!=0);}2、求二叉树高度:intcbiTree::postTreeDepth(binTreeif(T!=nuLL){l=postTreeDepth(T->lchild);r=postTreeDepth(T->rchil d);max=l>r?l:r;return(max+1);}elsereturn(0);}实验步骤:1)新建一个基于consoleApplication的工程,工程名称biTreeTest;2)新建一个类cbiTree二叉树类。

c++实现树(二叉树)的建立和遍历算法(一)(前序,中序,后序)

c++实现树(二叉树)的建立和遍历算法(一)(前序,中序,后序)

c++实现树(⼆叉树)的建⽴和遍历算法(⼀)(前序,中序,后序)最近学习树的概念,有关⼆叉树的实现算法记录下来。

不过学习之前要了解的预备知识:树的概念;⼆叉树的存储结构;⼆叉树的遍历⽅法。

⼆叉树的存储结构主要了解⼆叉链表结构,也就是⼀个数据域,两个指针域,(分别为指向左右孩⼦的指针),从下⾯程序1,⼆叉树的存储结构可以看出。

⼆叉树的遍历⽅法:主要有前序遍历,中序遍历,后序遍历,层序遍历。

(层序遍历下⼀篇再讲,本篇主要讲的递归法)下篇主要是,之后会有c++模板实现和。

如这样⼀个⼆叉树:它的前序遍历顺序为:ABDGHCEIF(规则是先是根结点,再前序遍历左⼦树,再前序遍历右⼦树)它的中序遍历顺序为:GDHBAEICF(规则是先中序遍历左⼦树,再是根结点,再是中序遍历右⼦树)它的后序遍历顺序为:GHDBIEFCA(规则是先后序遍历左⼦树,再是后序遍历右⼦树,再是根结点)如果不懂的话,可以参看有关数据结构的书籍。

1,⼆叉树的存储结构(⼆叉链表)//⼆叉树的⼆叉链表结构,也就是⼆叉树的存储结构,1个数据域,2个指针域(分别指向左右孩⼦)typedef struct BiTNode{ElemType data;struct BiTNode *lchild, *rchild;}BiTNode, *BiTree;2,⾸先要建⽴⼀个⼆叉树,建⽴⼆叉树必须要了解⼆叉树的遍历⽅法。

//⼆叉树的建⽴,按前序遍历的⽅式建⽴⼆叉树,当然也可以以中序或后序的⽅式建⽴⼆叉树void CreateBiTree(BiTree *T){ElemType ch;cin >> ch;if (ch == '#')*T = NULL; //保证是叶结点else{*T = (BiTree)malloc(sizeof(BiTNode));//if (!*T)//exit(OVERFLOW); //内存分配失败则退出。

二叉树的建立和遍历实验报告

二叉树的建立和遍历实验报告

二叉树的建立和遍历实验报告一、引言(100字)二叉树是一种常见的数据结构,它由根节点、左子树和右子树组成,具有递归性质。

本次实验的目的是了解二叉树的建立过程和遍历算法,以及熟悉二叉树的相关操作。

本实验采用C语言进行编写。

二、实验内容(200字)1.二叉树的建立:通过输入节点的值,逐个建立二叉树的节点,并通过指针连接起来。

2.二叉树的遍历:实现二叉树的三种常用遍历算法,即前序遍历、中序遍历和后序遍历。

三、实验过程(400字)1.二叉树的建立:首先,定义二叉树的节点结构,包含节点值和指向左右子树的指针;然后,通过递归的方式,依次输入节点的值,创建二叉树节点,建立好节点之间的连接。

2.二叉树的前序遍历:定义一个函数,实现前序遍历的递归算法,先输出当前节点的值,再递归遍历左子树和右子树。

3.二叉树的中序遍历:同样,定义一个函数,实现中序遍历的递归算法,先递归遍历左子树,再输出当前节点的值,最后递归遍历右子树。

4.二叉树的后序遍历:同样,定义一个函数,实现后序遍历的递归算法,先递归遍历左子树和右子树,再输出当前节点的值。

四、实验结果(300字)通过实验,我成功建立了一个二叉树,并实现了三种遍历算法。

对于建立二叉树来说,只要按照递归的思路,先输入根节点的值,再分别输入左子树和右子树的值,即可依次建立好节点之间的连接。

建立好二叉树后,即可进行遍历操作。

在进行遍历算法的实现时,我首先定义了一个函数来进行递归遍历操作。

在每一次递归调用中,我首先判断当前节点是否为空,若为空则直接返回;若不为空,则按照特定的顺序进行遍历操作。

在前序遍历中,我先输出当前节点的值,再递归遍历左子树和右子树;在中序遍历中,我先递归遍历左子树,再输出当前节点的值,最后递归遍历右子树;在后序遍历中,我先递归遍历左子树和右子树,再输出当前节点的值。

通过运行程序,我成功进行了二叉树的建立和遍历,并得到了正确的结果。

可以看到,通过不同的遍历顺序,可以获得不同的遍历结果,这也是二叉树遍历算法的特性所在。

创建二叉树的三种算法

创建二叉树的三种算法

创建二叉树的三种算法1.递归算法递归算法是最直观也是最常用的创建二叉树的方法之一、递归算法通过递归地创建左子树和右子树来构建完整的二叉树。

具体步骤如下:-创建一个二叉树结构的定义,包含一个存储数据的变量和左右子节点。

-如果当前节点为空,直接将新节点插入当前位置。

-如果新节点的值小于当前节点的值,递归地将新节点插入当前节点的左子树。

-如果新节点的值大于等于当前节点的值,递归地将新节点插入当前节点的右子树。

递归算法的示例代码如下所示:```pythonclass TreeNode:def __init__(self, val):self.val = valself.left = Noneself.right = Nonedef insert(root, val):if root is None:return TreeNode(val)if val < root.val:root.left = insert(root.left, val)elif val >= root.val:root.right = insert(root.right, val)return root```2.先序遍历算法先序遍历算法通过遍历给定的节点集合,按照先序的顺序将节点逐个插入到二叉树中。

这种算法可以使用栈来实现。

具体步骤如下:-创建一个空栈,同时创建一个新节点的拷贝作为当前节点。

-依次遍历给定的节点集合,如果新节点的值小于当前节点的值,将当前节点的左子节点指向新节点,并将新节点入栈,并将新节点移动到当前节点的左子节点。

-如果新节点的值大于等于当前节点的值,重复上述过程,直到找到一个合适的位置并插入新节点。

-当遍历完所有节点后,返回二叉树的根节点。

先序遍历算法的示例代码如下所示:```pythonclass TreeNode:def __init__(self, val): self.val = valself.left = Noneself.right = Nonedef insert(root, val): if root is None:return TreeNode(val) stack = []cur = rootwhile True:if val < cur.val:if not cur.left:cur.left = TreeNode(val) breakelse:cur = cur.leftelse:if not cur.right:cur.right = TreeNode(val)breakelse:cur = cur.rightreturn root```3.层次遍历算法层次遍历算法通过逐层遍历给定的节点集合,按照从上到下、从左到右的顺序将节点逐个插入到二叉树中。

二叉树的遍历实验报告

二叉树的遍历实验报告

二叉树的遍历实验报告一、实验目的1.了解二叉树的基本概念和性质;2.理解二叉树的遍历方式以及它们的实现方法;3.学会通过递归和非递归算法实现二叉树的遍历。

二、实验内容1.二叉树的定义在计算机科学中,二叉树是一种重要的数据结构,由节点及它们的左右儿子组成。

没有任何子节点的节点称为叶子节点,有一个子节点的节点称为一度点,有两个子节点的节点称为二度点。

二叉树的性质:1.每个节点最多有两个子节点;2.左右子节点的顺序不能颠倒,左边是父节点的左子节点,右边是父节点的右子节点;3.二叉树可以为空,也可以只有一个根节点;4.二叉树的高度是从根节点到最深叶子节点的层数;5.二叉树的深度是从最深叶子节点到根节点的层数;6.一个深度为d的二叉树最多有2^(d+1) -1个节点,其中d>=1;7.在二叉树的第i层上最多有2^(i-1)个节点,其中i>=1。

2.二叉树的遍历方式二叉树的遍历是指从根节点出发,按照一定的顺序遍历二叉树中的每个节点。

常用的二叉树遍历方式有三种:前序遍历、中序遍历和后序遍历。

前序遍历:先遍历根节点,再遍历左子树,最后遍历右子树;中序遍历:先遍历左子树,再遍历根节点,最后遍历右子树;后序遍历:先遍历左子树,再遍历右子树,最后遍历根节点。

递归算法:利用函数调用,递归实现二叉树的遍历;非递归算法:利用栈或队列,对二叉树进行遍历。

三、实验步骤1.创建二叉树数据结构并插入节点;2.实现二叉树的前序遍历、中序遍历、后序遍历递归算法;3.实现二叉树的前序遍历、中序遍历、后序遍历非递归算法;4.测试算法功能。

四、实验结果1.创建二叉树数据结构并插入节点为了测试三种遍历方式的算法实现,我们需要创建一个二叉树并插入节点,代码如下:```c++//定义二叉树节点struct TreeNode {int val;TreeNode* left;TreeNode* right;TreeNode(int x) : val(x), left(NULL), right(NULL) {}};递归算法是实现二叉树遍历的最简单方法,代码如下:```c++//前序遍历非递归算法vector<int> preorderTraversal(TreeNode* root) {stack<TreeNode*> s;vector<int> res;if (!root) return res;s.push(root);while (!s.empty()) {TreeNode* tmp = s.top();s.pop();res.push_back(tmp->val);if (tmp->right) s.push(tmp->right);if (tmp->left) s.push(tmp->left);}return res;}4.测试算法功能return 0;}```测试结果如下:preorderTraversal: 4 2 1 3 6 5 7inorderTraversal: 1 2 3 4 5 6 7postorderTraversal: 1 3 2 5 7 6 4preorderTraversalNonRecursive: 4 2 1 3 6 5 7inorderTraversalNonRecursive: 1 2 3 4 5 6 7postorderTraversalNonRecursive: 1 3 2 5 7 6 4本次实验通过实现二叉树的递归和非递归遍历算法,加深了对二叉树的理解,并熟悉了遍历算法的实现方法。

二叉树的先序,中序,后序遍历代码

二叉树的先序,中序,后序遍历代码

二叉树的先序,中序,后序遍历代码一、二叉树的先序、中序和后序遍历1、先序遍历先序遍历是根节点、左子树、右子树的顺序访问二叉树的一种遍历方法。

在先序遍历中,先访问根节点,然后递归访问左子树,最后递归访问右子树。

具体的代码如下:(1)//先序遍历法PreOrder(Tree T){if(T!=NULL){Visit(T);//访问根节点PreOrder(T->Left);//遍历左子树PreOrder(T->Right);//遍历右子树}}2、中序遍历中序遍历是左子树、根节点、右子树的顺序访问二叉树的一种遍历方法。

在中序遍历中,先递归访问左子树,然后访问根节点,最后递归访问右子树。

具体的代码如下:(2)//中序遍历法InOrder(Tree T){if(T!=NULL){InOrder(T->Left);//遍历左子树Visit(T);//访问根节点InOrder(T->Right);//遍历右子树}}3、后序遍历后序遍历是左子树、右子树、根节点的顺序访问二叉树的一种遍历方法。

在后序遍历中,先递归访问左子树,然后递归访问右子树,最后访问根节点。

具体的代码如下:(3)//后序遍历法PostOrder(Tree T){if(T!=NULL){PostOrder(T->Left);//遍历左子树PostOrder(T->Right);//遍历右子树Visit(T);//访问根节点}}二、先序、中序和后序遍历的应用(1)构造二叉树先序序列和中序序列是完全可以解决构造出一颗二叉树的,必要的条件是中序和先序的元素的个数必须相同。

后序序列无法实现这一点,只能确定根节点的位置。

(2)深度优先搜索深度优先搜索是一种图遍历算法,它使用栈来帮助用户访问一棵树,也就是深度优先算法。

先序遍历是先从根节点访问,中序遍历是在访问左子树后再访问根节点,而后序遍历是在访问右子树后再访问根节点。

(3)计算二叉树深度根据先序遍历和后序遍历可以知道二叉树的深度。

数据结构中二叉树的生成及遍历非递归算法浅析

数据结构中二叉树的生成及遍历非递归算法浅析

及运算 都较为简练 , 因此 , 二叉树 在数据结构课 程 中显得 特别 c a dt; hr aa s ut to eci , hd t c bnd h dr i ; r l l cl 二叉树是 由结点的有 限集合构成 ,这个有限集合或者为空 }t e Br ; e 集 ,或者是 由一个根节点及两棵互不相交的分别称之为这个根 Bre [ as e t Q m xi ] e z;


引言
# c d “aoh il e m1 ・ nu ] ” c
t ee。 c b oe y d t t t d{ p n

二叉树是一种重要 的树形结构 , 其结构规整。许多实际问 # en U L0 df e L i N
题抽象 出来 的数据结构往往是二叉树 的形式 , 而且其存储结构 重要 , 这里 我们先 了解一下二叉树 。

立二 叉链表。 一般的二 对于 叉树, 必须添加一些 虚结点, 使其成 ‘ ~’ : 一 、
队列是一个指针类型 的数组 , 保存已输入 的结点 _… 、
… ~ … 一 ’

# e n x i 0 d f ema sz 1 0 i e 衔n l d sdoh” cu e“ t i.
s> 一
l= L ; d U L
r a+ ; e r +
Qra1s r ; e =

3 办公 自动化杂志 o。
i ra- 1T s f er= )= : ( =
es le
f=t kt ] T s c [p; a o
近 >i = p 卜 r =) 曲t
fr f“ " - dt ; pi (%c , > aa n T )
递归算法 , 故有关二叉树的试题通 常要求采用非递归算 法, 这就 Br , ; te e s 使得掌握二叉树的生成及遍历的非递归算法成为必要 。 tN I ; = uJ L
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档