2018年中考二模数学试卷

合集下载

2018届中考数学二模试卷(带答案) (22)

2018届中考数学二模试卷(带答案)  (22)

2018中考数学二模试卷一、选择题:1.下列运算正确的是()A.x3•x5=x15 B.(2x2)3=8x6C.x9÷x3=x3D.(x﹣1)2=x2﹣122.﹣|﹣3|的倒数是()A.﹣3 B.﹣C.D.33.下列事件中,必然事件是()A.抛掷1个均匀的骰子,出现6点向上B.两直线被第三条直线所截,同位角相等C.366人中至少有2人的生日相同D.实数的绝对值是非负数4.已知关于x的不等式组有且只有三个整数解,则a的取值范围是()A.﹣2≤a≤﹣1 B.﹣2≤a<﹣1 C.﹣2<a≤﹣1 D.﹣2<a<﹣15.下列图形既是轴对称图形又是中心对称图形的有()①平行四边形;②正方形;③等腰梯形;④菱形;⑤正六边形.A.1个B.2个C.3个D.4个6.如图,等边△ABC的周长为6π,半径是1的⊙O从与AB相切于点D的位置出发,在△ABC外部按顺时针方向沿三角形滚动,又回到与AB相切于点D的位置,则⊙O自转了()A.2周B.3周C.4周D.5周7.使代数式有意义的x的取值范围是()A.x≥0 B.C.x≥0且D.一切实数8.依次连接任意四边形各边的中点,得到一个特殊图形(可认为是一般四边形的性质),则这个图形一定是()A.平行四边形B.矩形 C.菱形 D.梯形9.将沿弦BC折叠,交直径AB于点D,若AD=4,DB=5,则BC的长是()A.3B.8 C. D.210.已知函数y=的图象在第一象限的一支曲线上有一点A(a,c),点B(b,c+1)在该函数图象的另外一支上,则关于一元二次方程ax2+bx+c=0的两根x1,x2判断正确的是()A.x1+x2>1,x1•x2>0B.x1+x2<0,x1•x2>0C.0<x1+x2<1,x1•x2>0D.x1+x2与x1•x2的符号都不确定二、填空题:11.已知y=x﹣1,则(x﹣y)2+(y﹣x)+1的值为.12.某班七个合作学习人数如下:4、5、5、x、6、7、8,已知这组数据的平均数是6,则这组数据的中位数是.13.某服装加工厂计划加工400套运动服,在加工完160套后,采用了新技术,工作效率比原计划提高了20%,结果共有了18天完成全部任务.设原计划每天加工x套运动服,根据题意可列方程为.14.如图,边长分别为4和8的两个正方形ABCD和CEFG并排放在一起,连结BD并延长交EG于点T,交FG于点P,则GT的长为.15.把一副三角板如图甲放置,其中AB=6,DC=7,∠ACB=∠DEC=90°,∠A=45°,∠D=30°,把三角板DCE 绕着点C顺时针旋转15°得到△D1CE1(如图乙),此时AB与CD1交于点O,则线段AD1的长度为.16.如图,给正五边形的顶点依次编号为1,2,3,4,5.若从某一顶点开始,沿正五边形的边顺时针方向行走,顶点编号的数字是几,就走几个边长,则称这种走法为一次“移位”.如:小宇在编号为3的顶点上时,那么他应走3个边长,即从3→4→5→1为第一次“移位”,这时他到达编号为1的顶点;然后从1→2为第二次“移位”.若小宇从编号为2的顶点开始,第10次“移位”后,则他所处顶点的编号是.三、解答题:17.先化简,再求值:(+)÷,其中x=•cot60°.18.如图,在平面直角坐标系xOy中,矩形OEFG的顶点E的坐标为(4,0),顶点G的坐标为(0,2),将矩形OEFG绕点O逆时针旋转,使点F落在y轴的点N处,得到矩形OMNP,OM与GF交于点A.(1)求图象经过点A的反比例函数的解析式;(2)设(2)中的反比例函数图象交EF于点B,直接写出直线AB的解析式.19.某校八年级为了解学生课堂发言情况,随机抽取该年级部分学生,对他们某天在课堂上发言的次数进行了统计,其结果如下表,并绘制了如图所示的两幅不完整的统计图,已知B、E两组发言人数的比为5:2,请结合图中相关数据回答下列问题:(1)求出样本容量,并补全直方图;(2)该年级共有学生500人,请估计全年级在这天里发言次数不少于12次的人数;(3)已知A组发言的学生中恰有1位女生,E组发言的学生中有2位男生.现从A组与E组中分别抽一位学生写报告,请用列表法或画树状图的方法,求所抽的两位学生恰好是一男一女的概率.20.红星公司生产的某种时令商品每件成本为20元,经过市场调研发现,这种商品在未来40天内的日销售量m(件)与时间t(天)的关系如下表:未来40天内,前20天每天的价格y1(元/件)与时间t(天)的函数关系式为y1=t+25(1≤t≤20且t为整数),后20天每天的价格y2(元/件)与时间t(天)的函数关系式为y2=﹣t+40(21≤t≤40且t为整数).下面我们就来研究销售这种商品的有关问题:(1)认真分析上表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定一个满足这些数据的m(件)与t(天)之间的关系式;(2)请预测未来40天中哪一天的日销售利润最大,最大日销售利润是多少?(3)在实际销售的前20天中,该公司决定每销售一件商品就捐赠a元利润(a<4)给希望工程.公司通过销售记录发现,前20天中,每天扣除捐赠后的日销售利润随时间t(天)的增大而增大,求a的取值范围.21.某旅游区有一个景观奇异的望天洞,D点是洞的入口,游人从入口进洞游览后,可经山洞到达山顶的出口凉亭A处观看旅游区风景,最后坐缆车沿索道AB返回山脚下的B处.在同一平面内,若测得斜坡BD的长为100米,坡角∠DBC=10°,在B处测得A的仰角∠ABC=40°,在D处测得A的仰角∠ADF=85°,过D 点作地面BE的垂线,垂足为C.(1)求∠ADB的度数;(2)求索道AB的长.(结果保留根号)22.如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠CBF=∠CAB.(1)求证:直线BF是⊙O的切线;(2)若AB=5,sin∠CBF=,求BC和BF的长.23.已知:在正方形ABCD中,AC、BD相交于点O,点E是射线AB上一点,点F是直线AD上一点,BE=DF,连结EF交线段BD于点G,交AO于点H.AB=3,AG=.(1)如图①点E在线段AB上,点F在线段AD延长线上.①求证:GE=GF;②求BE、EH的长;(2)如图②,点E在线段AB的延长线上,点F在线段AD上,请直接写出EH的长.24.如图,已知二次函数的图象过点O(0,0),A(4,0),B(2,﹣),M是OA的中点.(1)求此二次函数的解析式;(2)设P是抛物线上的一点,过P作x轴的平行线与抛物线交于另一点Q,要使四边形PQAM是菱形,求P点的坐标;(3)将抛物线在x轴下方的部分沿x轴向上翻折,得曲线OB′A(B′为B关于x轴的对称点),在原抛物线x轴的上方部分取一点C,连接CM,CM与翻折后的曲线OB′A交于点D.若△CDA的面积是△MDA面积的2倍,这样的点C是否存在?若存在求出C点的坐标,若不存在,请说明理由.参考答案与试题解析一、选择题:1.﹣|﹣3|的倒数是()A.﹣3 B.﹣C.D.3【考点】倒数;绝对值.【分析】根据负数的绝对值是它的相反数,可得绝对值表示的数,根据乘积为1的两个数互为倒数,可得一个数的倒数.【解答】解:﹣|﹣3|=﹣3,﹣|﹣3|的倒数是﹣,故选:B.【点评】本题考查了倒数,先求出绝对值,再求出倒数.2.下列运算正确的是()A.x3•x5=x15 B.(2x2)3=8x6C.x9÷x3=x3D.(x﹣1)2=x2﹣12【考点】完全平方公式;同底数幂的乘法;幂的乘方与积的乘方;同底数幂的除法.【分析】根据同底数幂相乘,底数不变指数相加;积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;同底数幂相除,底数不变指数相减;完全平方公式对各选项分析判断后利用排除法求解.【解答】解:A、x3•x5=x3+5=x8,故本选项错误;B、(2x2)3=23•x2×3=8x6,故本选项正确;C、x9÷x3=x9﹣3=x6,故本选项错误;D、(x﹣1)2=x2﹣2x+1,故本选项错误.故选B.【点评】本题考查了同底数幂的乘法,积的乘方,同底数幂的除法,以及完全平方公式,熟记性质与公式,理清指数的变化是解题的关键.3.下列事件中,必然事件是()A.抛掷1个均匀的骰子,出现6点向上B.两直线被第三条直线所截,同位角相等C.366人中至少有2人的生日相同D.实数的绝对值是非负数【考点】随机事件.【分析】根据概率、平行线的性质、负数的性质进行填空即可.【解答】解:A、抛掷1个均匀的骰子,出现6点向上的概率为,故A错误;B、两条平行线被第三条直线所截,同位角相等,故B错误;C、367人中至少有2人的生日相同,故C错误;D、实数的绝对值是非负数,故D正确;故选D.【点评】本题考查了必然事件、不可能事件、随机事件的概念.理解概念是解决这类基础题的主要方法.4.已知关于x的不等式组有且只有三个整数解,则a的取值范围是()A.﹣2≤a≤﹣1 B.﹣2≤a<﹣1 C.﹣2<a≤﹣1 D.﹣2<a<﹣1【考点】一元一次不等式组的整数解.【分析】首先解两个不等式,根据方程组只有三个整数解,即可得到一个关于a的不等式组,从而求得a的范围.【解答】解:,解①得:x>2,解②得:x<a+7,方程组只有三个整数解,则整数解一定是3,4,5.根据题意得:5<a+7≤6,解得:﹣2<a≤﹣1.故选C.【点评】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.5.下列图形既是轴对称图形又是中心对称图形的有()①平行四边形;②正方形;③等腰梯形;④菱形;⑤正六边形.A.1个B.2个C.3个D.4个【考点】中心对称图形;轴对称图形.【分析】根据正多边形的性质和轴对称图形与中心对称图形的定义解答.【解答】解:①平行四边形,不是轴对称图形,是中心对称图形,故本小题错误;②正方形,既是轴对称图形又是中心对称图形,故本小题正确;③等腰梯形,是轴对称图形,不是中心对称图形,故本小题错误;④菱形,既是轴对称图形又是中心对称图形,故本小题正确;⑤正六边形,既是轴对称图形又是中心对称图形,故本小题正确.综上所述,既是轴对称图形又是中心对称图形的有②④⑤共3个.故选C.【点评】此题考查正多边形对称性.关键要记住偶数边的正多边形既是轴对称图形,又是中心对称图形,奇数边的正多边形只是轴对称图形.6.如图,等边△ABC的周长为6π,半径是1的⊙O从与AB相切于点D的位置出发,在△ABC外部按顺时针方向沿三角形滚动,又回到与AB相切于点D的位置,则⊙O自转了()A.2周B.3周C.4周D.5周【考点】直线与圆的位置关系;等边三角形的性质.【专题】压轴题.【分析】该圆运动可分为两部分:在三角形的三边运动以及绕过三角形的三个角,分别计算即可得到圆的自传周数.【解答】解:圆在三边运动自转周数:=3,圆绕过三角形外角时,共自转了三角形外角和的度数:360°,即一周;可见,⊙O自转了3+1=4周.故选:C.【点评】本题考查了圆的旋转与三角形的关系,要充分利用等边三角形的性质及圆的周长公式解答.7.使代数式有意义的x的取值范围是()A.x≥0 B.C.x≥0且D.一切实数【考点】二次根式有意义的条件;分式有意义的条件.【分析】根据分式有意义的条件可得2x﹣1≠0,根据二次根式有意义的条件可得x≥0,解出结果即可.【解答】解:由题意得:2x﹣1≠0,x≥0,解得:x≥0,且x≠,故选:C.【点评】此题主要考查了分式有意义的条件,二次根式有意义的条件,二次根式中的被开方数是非负数;分式有意义的条件是分母不等于零.8.依次连接任意四边形各边的中点,得到一个特殊图形(可认为是一般四边形的性质),则这个图形一定是()A.平行四边形B.矩形 C.菱形 D.梯形【考点】三角形中位线定理;平行四边形的判定.【分析】首先根据题意画出图形,再连接AC,根据三角形的中位线得到HG∥AC,HG=AC,EF∥AC,EF= AC,可以推出EF=GH,EF∥GH,根据平行四边形的判定:一组对边平行且相等的四边形是平行四边形求出即可.【解答】解:这个图形一定是平行四边形,理由是:根据题意画出图形,如右图所示:连接AC,∵四边形ABCD各边中点是E、F、G、H,∴HG∥AC,HG=AC,EF∥AC,EF=AC,∴EF=GH,EF∥GH,∴四边形EFGH是平行四边形.故选:A.【点评】本题主要考查了平行四边形的判定,三角形的中位线,解决问题的关键是正确画出图形,证明EF=GH 和EF∥GH.9.将沿弦BC折叠,交直径AB于点D,若AD=4,DB=5,则BC的长是()A.3B.8 C. D.2【考点】圆周角定理;翻折变换(折叠问题);射影定理.【专题】计算题.【分析】若连接CD、AC,则根据同圆或等圆中,相等的圆周角所对的弦相等,求得AC=CD;过C作AB 的垂线,设垂足为E,则DE=AD,由此可求出BE的长,进而可在Rt△ABC中,根据射影定理求出BC的长.【解答】解:连接CA、CD;根据折叠的性质,知所对的圆周角等于∠CBD,又∵所对的圆周角是∠CBA,∵∠CBD=∠CBA,∴AC=CD(相等的圆周角所对的弦相等);∴△CAD是等腰三角形;过C作CE⊥AB于E.∵AD=4,则AE=DE=2;∴BE=BD+DE=7;在Rt△ACB中,CE⊥AB,根据射影定理,得:BC2=BE•AB=7×9=63;故BC=3.故选A.【点评】此题考查的是折叠的性质、圆周角定理、以及射影定理;能够根据圆周角定理来判断出△ACD是等腰三角形,是解答此题的关键.10.已知函数y=的图象在第一象限的一支曲线上有一点A(a,c),点B(b,c+1)在该函数图象的另外一支上,则关于一元二次方程ax2+bx+c=0的两根x1,x2判断正确的是()A.x1+x2>1,x1•x2>0B.x1+x2<0,x1•x2>0C.0<x1+x2<1,x1•x2>0D.x1+x2与x1•x2的符号都不确定【考点】根与系数的关系;反比例函数图象上点的坐标特征.【专题】计算题.【分析】根据点A(a,c)在第一象限的一支曲线上,得出a>0,c>0,再点B(b,c+1)在该函数图象的另外一支上,得出b<0,c+1>0,再根据x1•x2=,x1+x2=﹣,即可得出答案.【解答】解:∵点A(a,c)在第一象限的一支曲线上,∴a>0,c>0,ac=1,即a=,∵点B(b,c+1)在该函数图象的另外一支上,即第二象限上,∴b<0,c+1>0,b(c+1)=﹣1,即b=﹣,∴x1•x2=>0,x1+x2=﹣=,∴0<x1+x2<1,故选:C.【点评】本题考查了根与系数的关系,掌握根与系数的关系和各个象限点的特点是本题的关键;若x1,x2是关于x的一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的两个实数根,则x1+x2=﹣,x1x2=.二、填空题:11.已知y=x﹣1,则(x﹣y)2+(y﹣x)+1的值为1.【考点】代数式求值.【专题】整体思想.【分析】根据已知条件整理得到x﹣y=1,然后整体代入计算即可得解.【解答】解:∵y=x﹣1,∴x﹣y=1,∴(x﹣y)2+(y﹣x)+1=12+(﹣1)+1=1.故答案为:1.【点评】本题考查了代数式求值,注意整体思想的利用使运算更加简便.12.某班七个合作学习人数如下:4、5、5、x、6、7、8,已知这组数据的平均数是6,则这组数据的中位数是6.【考点】中位数;算术平均数.【分析】根据平均数的定义先求出这组数据的x,再将这组数据从小到大排列,然后找出最中间的数即可.【解答】解:∵4、5、5、x、6、7、8的平均数是6,∴(4+5+5+x+6+7+8)÷7=6,解得:x=7,将这组数据从小到大排列为4、5、5、6、7、7、8,最中间的数是6;则这组数据的中位数是6.故答案为:6.【点评】此题考查了中位数,掌握中位数的概念是解题的关键,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).13.某服装加工厂计划加工400套运动服,在加工完160套后,采用了新技术,工作效率比原计划提高了20%,结果共有了18天完成全部任务.设原计划每天加工x套运动服,根据题意可列方程为+=18.【考点】由实际问题抽象出分式方程.【分析】设原计划每天加工x套运动服,则采用了新技术每天加工(1+20%)x套运动服,根据共用了18天完成全部任务,列方程即可.【解答】解:设原计划每天加工x套运动服,则采用了新技术每天加工(1+20%)x套运动服,由题意得,+=18.故答案为:+=18.【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.14.如图,边长分别为4和8的两个正方形ABCD和CEFG并排放在一起,连结BD并延长交EG于点T,交FG于点P,则GT的长为2.【考点】相似三角形的判定与性质;全等三角形的判定与性质;勾股定理;正方形的性质.【分析】根据正方形的对角线平分一组对角可得∠ADB=∠CGE=45°,再求出∠GDT=45°,从而得到△DGT是等腰直角三角形,根据正方形的边长求出DG,再根据等腰直角三角形的直角边等于斜边的倍求解即可.【解答】解:∵BD、GE分别是正方形ABCD,正方形CEFG的对角线,∴∠ADB=∠CGE=45°,∴∠GDT=180°﹣90°﹣45°=45°,∴∠DTG=180°﹣∠GDT﹣∠CGE=180°﹣45°﹣45°=90°,∴△DGT是等腰直角三角形,∵两正方形的边长分别为4,8,∴DG=8﹣4=4,∴GT=×4=2.故答案为:2.【点评】本题考查了正方形的性质,等腰直角三角形的判定与性质.关键是掌握正方形的对角线平分一组对角.15.把一副三角板如图甲放置,其中AB=6,DC=7,∠ACB=∠DEC=90°,∠A=45°,∠D=30°,把三角板DCE 绕着点C顺时针旋转15°得到△D1CE1(如图乙),此时AB与CD1交于点O,则线段AD1的长度为5.【考点】旋转的性质.【专题】计算题.【分析】由∠ACB=∠DEC=90°,∠A=45°,∠D=30°得到∠DCE=60°,△ABC为等腰直角三角形,再根据旋转的性质得∠D1CE1=∠DCE=60°∠BCE1=15°,所以•∠D1CB=45°,于是可判断OC为等腰直角三角形ABC 斜边上的中线,则OC⊥AB,OC=OA=AB=3,则OD=CD﹣OC=4,然后在Rt△AOD1中根据勾股定理计算AD1.【解答】解:∵∠ACB=∠DEC=90°,∠A=45°,∠D=30°∴∠DCE=60°,△ABC为等腰直角三角形,∵三角板DCE绕着点C顺时针旋转15°得到△D1CE1,∴∠D1CE1=∠DCE=60°∠BCE1=15°,∴∠D1CB=45°,∴OC平分∠ACB,∴CO⊥AB,OA=OB,∴OC=OA=AB=×6=3,∴OD=CD﹣OC=7﹣3=4,在Rt△AOD1中,AD1===5.故答案为:5.【点评】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了等腰直角三角形的性质和勾股定理.16.如图,给正五边形的顶点依次编号为1,2,3,4,5.若从某一顶点开始,沿正五边形的边顺时针方向行走,顶点编号的数字是几,就走几个边长,则称这种走法为一次“移位”.如:小宇在编号为3的顶点上时,那么他应走3个边长,即从3→4→5→1为第一次“移位”,这时他到达编号为1的顶点;然后从1→2为第二次“移位”.若小宇从编号为2的顶点开始,第10次“移位”后,则他所处顶点的编号是3.【考点】规律型:图形的变化类.【专题】应用题;压轴题.【分析】根据“移位”的特点,然后根据例子寻找规律,从而得出结论.【解答】解:∵小宇在编号为3的顶点上时,那么他应走3个边长,即从3→4→5→1为第一次“移位”,这时他到达编号为1的顶点;然后从1→2为第二次“移位”,∴3→4→5→1→2五个顶点五次移位为一个循环返回顶点3,同理可得:小宇从编号为2的顶点开始,四次移位一个循环,第10次“移位”,即连续循环两次,再移位两次,即第十次移位所处的顶点和第二次移位所处的顶点相同,故回到顶点3.故答案为:3.【点评】本题主要考查了通过特例分析从而归纳总结出一般结论的能力,难度适中.三、解答题:17.先化简,再求值:(+)÷,其中x=•cot60°.【考点】分式的化简求值;特殊角的三角函数值.【专题】计算题.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,利用特殊角的三角函数值求出x的值,代入计算即可求出值.【解答】解:原式=•==,当x=•=时,则原式=.【点评】此题考查了分式的化简求值,以及特殊角的三角函数值,熟练掌握运算法则是解本题的关键.18.如图,在平面直角坐标系xOy中,矩形OEFG的顶点E的坐标为(4,0),顶点G的坐标为(0,2),将矩形OEFG绕点O逆时针旋转,使点F落在y轴的点N处,得到矩形OMNP,OM与GF交于点A.(1)求图象经过点A的反比例函数的解析式;(2)设(2)中的反比例函数图象交EF于点B,直接写出直线AB的解析式.【考点】反比例函数综合题.【分析】(1)先根据两个角对应相等,即可证明△OGA和△OMN相似,要求反比例函数的解析式,则需求得点A的坐标,即要求得AG的长,根据旋转的两个图形全等的性质以及相似三角形的对应边的比相等可以求解;(2)要求直线AB的解析式,主要应求得点B的坐标.根据点B的横坐标是4和(1)中求得的反比例函数的解析式即可求得.再根据待定系数法进行求解.【解答】解:(1)∵∠OGA=∠M=90°∠GOA=∠MON∴△OGA∽△OMN,∴∴,解得AG=1.设反比例函数y=,把A(1,2)代入得k=2,∴过点A的反比例函数的解析式为:y=.(2)∵点B的横坐标为4,x=4代y=中y=,故(4,)设直线AB的解析式y=mx+n,把A(1,2)、B(4,)代入,得,解得.∴直线AB的解析式y=﹣x+.【点评】本题主要考查相似三角形的判定与性质,能够运用待定系数法求得函数的解析式,根据函数的解析式确定点的坐标.19.某校八年级为了解学生课堂发言情况,随机抽取该年级部分学生,对他们某天在课堂上发言的次数进行了统计,其结果如下表,并绘制了如图所示的两幅不完整的统计图,已知B、E两组发言人数的比为5:2,请结合图中相关数据回答下列问题:(1)求出样本容量,并补全直方图;(2)该年级共有学生500人,请估计全年级在这天里发言次数不少于12次的人数;(3)已知A组发言的学生中恰有1位女生,E组发言的学生中有2位男生.现从A组与E组中分别抽一位学生写报告,请用列表法或画树状图的方法,求所抽的两位学生恰好是一男一女的概率.【考点】频数(率)分布直方图;用样本估计总体;频数(率)分布表;扇形统计图;列表法与树状图法.【专题】图表型.【分析】(1)根据B、E两组的发言人数的比求出B组发言人数所占的百分比,再根据条形统计图中B组的人数为10,列式计算即可求出被抽取的学生人数,然后求出C组、F组的人数,补全直方图即可;(2)根据扇形统计图求出F组人数所占的百分比,再用总人数乘以E、F两组人数所占的百分比,计算即可得解;(3)分别求出A、E两组的人数,确定出各组的男女生人数,然后列表或画树状图,再根据概率公式计算即可得解.【解答】解:(1)∵B、E两组发言人数的比为5:2,E组发言人数占8%,∴B组发言的人数占20%,由直方图可知B组人数为10人,所以,被抽查的学生人数为:10÷20%=50人,C组人数为:50×30%=15人,B组人数所占的百分比为:×100%=20%,F组的人数为:50×(1﹣6%﹣20%﹣30%﹣26%﹣8%),=50×(1﹣90%),=50×10%,=5,∴样本容量为50人.补全直方图如图;(2)F组发言的人数所占的百分比为:10%,所以,估计全年级在这天里发言次数不少于12次的人数为:500×(8%+10%)=90人;(3)A组发言的学生:50×6%=3人,所以有1位女生,2位男生,E组发言的学生:50×8%=4人,所以有2位女生,2位男生,列表如下:画树状图如下:共12种情况,其中一男一女的情况有6种,所以P(一男一女)==.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题,本题根据B组的人数与所占的百分比求解是解题的关键,也是本题的突破口.20.红星公司生产的某种时令商品每件成本为20元,经过市场调研发现,这种商品在未来40天内的日销售量m(件)与时间t(天)的关系如下表:未来40天内,前20天每天的价格y1(元/件)与时间t(天)的函数关系式为y1=t+25(1≤t≤20且t为整数),后20天每天的价格y2(元/件)与时间t(天)的函数关系式为y2=﹣t+40(21≤t≤40且t为整数).下面我们就来研究销售这种商品的有关问题:(1)认真分析上表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定一个满足这些数据的m(件)与t(天)之间的关系式;(2)请预测未来40天中哪一天的日销售利润最大,最大日销售利润是多少?(3)在实际销售的前20天中,该公司决定每销售一件商品就捐赠a元利润(a<4)给希望工程.公司通过销售记录发现,前20天中,每天扣除捐赠后的日销售利润随时间t(天)的增大而增大,求a的取值范围.【考点】二次函数的应用.【专题】压轴题;阅读型;图表型.【分析】(1)从表格可看出每天比前一天少销售2件,所以判断为一次函数关系式;(2)日利润=日销售量×每件利润,据此分别表示前20天和后20天的日利润,根据函数性质求最大值后比较得结论;(3)列式表示前20天中每天扣除捐赠后的日销售利润,根据函数性质求a的取值范围.【解答】解:(1)设一次函数为m=kt+b,将和代入一次函数m=kt+b中,有,∴.∴m=﹣2t+96.经检验,其它点的坐标均适合以上解析式,故所求函数解析式为m=﹣2t+96;(2)设前20天日销售利润为p1元,后20天日销售利润为p2元.由p1=(﹣2t+96)(t+25﹣20)=(﹣2t+96)(t+5)=﹣t2+14t+480=﹣(t﹣14)2+578,∵1≤t≤20,∴当t=14时,p1有最大值578(元).由p2=(﹣2t+96)(﹣t+40﹣20)=(﹣2t+96)(﹣t+20)=t2﹣88t+1920=(t﹣44)2﹣16.∵21≤t≤40,此函数对称轴是t=44,∴函数p2在21≤t≤40上,在对称轴左侧,随t的增大而减小.∴当t=21时,p2有最大值为(21﹣44)2﹣16=529﹣16=513(元).∵578>513,故第14天时,销售利润最大,为578元;(3)p1=(﹣2t+96)(t+25﹣20﹣a)=﹣t2+(14+2a)t+480﹣96a 对称轴为t=14+2a.∵1≤t≤20,∴当t≤2a+14时,P随t的增大而增大,又∵每天扣除捐赠后的日利润随时间t的增大而增大,∴20≤2a+14,又∵a<4,∴3≤a<4.【点评】(1)熟练掌握各函数的性质和图象特征,针对所给条件作出初步判断后需验证其正确性;(2)最值问题需由函数的性质求解时,正确表达关系式是关键.同时注意自变量的取值范围.21.某旅游区有一个景观奇异的望天洞,D点是洞的入口,游人从入口进洞游览后,可经山洞到达山顶的出口凉亭A处观看旅游区风景,最后坐缆车沿索道AB返回山脚下的B处.在同一平面内,若测得斜坡BD的长为100米,坡角∠DBC=10°,在B处测得A的仰角∠ABC=40°,在D处测得A的仰角∠ADF=85°,过D 点作地面BE的垂线,垂足为C.(1)求∠ADB的度数;(2)求索道AB的长.(结果保留根号)【考点】解直角三角形的应用-仰角俯角问题.【专题】转化思想.【分析】(1)利用点D处的周角即可求得∠ADB的度数;(2)首先分析图形,根据题意构造直角三角形.本题涉及到两个直角三角形,应利用其公共边构造三角关系,进而可求出答案.【解答】解:(1)∵DC⊥CE,∴∠BCD=90°.又∵∠DBC=10°,∴∠BDC=80°.∵∠ADF=85°,∴∠ADB=360°﹣80°﹣90°﹣85°=105°.(2)过点D作DG⊥AB于点G.。

新课标人教版2018年初三中考数学二模试卷

新课标人教版2018年初三中考数学二模试卷

2018年初三中考数学二模试卷一、选择题(本大题共14小题,每小题3分,共42分)1.(3分)的倒数是()A.﹣2 B.2 C.D.2.(3分)如图,已知a∥b,小华把三角板的直角顶点放在直线a上.若∠1=40°,则∠2的度数为()A.100°B.110°C.120°D.130°3.(3分)下列运算正确的是()A.3m﹣2m=1 B.(m3)2=m6C.(﹣2m)3=﹣2m3D.m2+m2=m44.(3分)由五个相同的立方体搭成的几何体如图所示,则它的左视图是()A.B.C.D.5.(3分)从数字2,3,4中任选两个数组成一个两位数,组成的数是偶数的概率是()A.B.C.D.6.(3分)一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.60°B.72°C.90°D.108°7.(3分)为了践行“绿色生活”的理念,甲、乙两人每天骑自行车出行,甲匀速骑行30公里的时间与乙匀速骑行25公里的时间相同,已知甲每小时比乙多骑行2公里,设甲每小时骑行x公里,根据题意列出的方程正确的是()A.=B.=C.=D.=8.(3分)一元一次不等式组的解集在数轴上表示出来,正确的是()A. B. C. D.9.(3分)李老师为了了解学生暑期在家的阅读情况,随机调查了20名学生某一天的阅读小时数,具体情况统计如下:则关于这20名学生阅读小时数的说法正确的是()A.众数是8 B.中位数是3 C.平均数是3 D.方差是0.3410.(3分)如图,矩形ABCD的边AB=1,BE平分∠ABC,交AD于点E,若点E是AD 的中点,以点B为圆心,BE长为半径画弧,交BC 于点F ,则图中阴影部分的面积是()A .B.C.D.11.(3分)如图,是一组按照某种规律摆放成的图案,则图20中三角形的个数是()A.100 B.76 C.66 D.3612.(3分)如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB延长线上,连接AD.下列结论一定正确的是()A.∠ABD=∠E B.∠CBE=∠C C.AD∥BC D.AD=BC13.(3分)抛物线y=﹣x2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表所示:从上表可知,下列说法中,错误的是()A.抛物线于x轴的一个交点坐标为(﹣2,0)B.抛物线与y轴的交点坐标为(0,6)C.抛物线的对称轴是直线x=0D.抛物线在对称轴左侧部分是上升的14.(3分)在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标为(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C 的对应点C′的坐标为()A.(,0) B.(2,0)C.(,0) D.(3,0)二、填空题(本题共5小题,每小题3分,共15分)15.(3分)因式分解:3a3﹣3a=.16.(3分)化简:﹣=.17.(3分)如图,在△ABC中,BE平分∠ABC,DE∥BC,如果DE=2AD,AE=3,那么EC=.18.(3分)如图,在Rt△ABC中,∠ACB=90°,CD是边AB的中线,若CD=6.5,BC=12.sinB 的值是19.(3分)定义:给定关于x的函数y,对于该函数图象上任意两点(x1,y1),(x2,y2),当x1<x2时,y1>y2,则称该函数为减函数.根据以上定义,可以判断下面所给的函数中,是减函数的有(填上所有正确答案的序号)①y=2x;②y=﹣x+1 ③y=x2(x>0)④y=﹣三、解答题(本大题共7小题,共63分)20.(7分)计算:|﹣2|+2sin60°+()﹣121.(7分)某校九年级开展征文活动,征文主题只能从“爱国”“敬业”“诚信”“友善”四个主题选择一个,九年级每名学生按要求都上交了一份征文,学校为了解选择各种征文主题的学生人数,随机抽取了部分征文进行了调查,根据调查结果绘制成如下两幅不完整的统计图.(1)求共抽取了多少名学生的征文;(2)将上面的条形统计图补充完整;(3)在扇形统计图中,选择“爱国”主题所对应的圆心角是多少;(4)如果该校九年级共有1200名学生,请估计选择以“友善”为主题的九年级学生有多少名.22.(7分)小明在热气球A上看到横跨河流两岸的大桥BC,并测得B,C两点的俯角分别为45°,36°.已知大桥BC与地面在同一水平面上,其长度为100m.请求出热气球离地面的高度(结果保留小数点后一位).参考数据:tan36°≈0.73.23.(9分)如图,已知三角形ABC的边AB是⊙O的切线,切点为B.AC经过圆心O并与圆相交于点D、C,过C作直线CE丄AB,交AB的延长线于点E.(1)求证:CB平分∠ACE;(2)若BE=3,CE=4,求⊙O的半径.24.(9分)赛龙舟是端午节的主要习俗,某市甲、乙两支龙舟队在端午节期间进行划龙舟比赛,从起点A驶向终点B,在整个行程中,龙舟离开起点的距离y(米)与时间x(分钟)的对应关系如图所示,请结合图象解答下列问题(1)起点A与终点B之间相距米.(2)哪支龙舟队先到达终点?(填“甲”或“乙”)(3)分别求甲、乙两支龙舟队离开起点的距离y关于x的函数关系式;(4)甲龙舟队出发多长时间时,两支龙舟队相距200米?25.(11分)已知△ABC与△DEC是两个大小不同的等腰直角三角形.(1)如图①所示,连接AE,DB,试判断线段AE和DB的数量和位置关系,并说明理由;(2)如图②所示,连接DB,将线段DB绕D点顺时针旋转90°到DF,连接AF,试判断线段DE和AF的数量和位置关系,并说明理由.26.(13分)如图,直线y=﹣x+4与x轴交于点C,与y轴交于点B,抛物线y=ax2+x+c 经过B、C两点.(1)求抛物线的解析式;(2)如图,点E是直线BC上方抛物线上的一动点,当△BEC面积最大时,请求出点E的坐标;(3)在(2)的结论下,过点E作y轴的平行线交直线BC于点M,连接AM,点Q是抛物线对称轴上的动点,在抛物线上是否存在点P,使得以P、Q、A、M为顶点的四边形是平行四边形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.参考答案一、选择题1.A.2.D.3.B.4.D.5.A.6.B.7.C.8.B9.B.10.B.11.B.12.C.13.C.14.C.二、填空题15.3a(a+1)(a﹣1).16.0.17.6.18.19.②.三、解答题20.解:原式=2﹣+2×+3=2﹣++3=5.21.解:(1)本次调查共抽取的学生有3÷6%=50(名).(2)选择“友善”的人数有50﹣20﹣12﹣3=15(名),条形统计图如图所示:(3)∵选择“爱国”主题所对应的百分比为20÷50=40%,∴选择“爱国”主题所对应的圆心角是40%×360°=144°;(4)该校九年级共有1200名学生,估计选择以“友善”为主题的九年级学生有1200×30%=360名.22.解:作AD⊥BC交CB的延长线于D,设AD为xm,由题意得,∠ABD=45°,∠ACD=36°,在Rt△ADB中,∠ABD=45°,∴DB=xm,在Rt△ADC中,∠ACD=36°,∴tan∠ACD=,∴=0.73,解得x≈270.4.答:热气球离地面的高度约为270.4m.23.(1)证明:如图1,连接OB,∵AB是⊙0的切线,∴OB⊥AB,∵CE丄AB,∴OB∥CE,∴∠1=∠3,∵OB=OC,∴∠1=∠2∴∠2=∠3,∴CB平分∠ACE;(2)如图2,连接BD,∵CE丄AB,∴∠E=90°,∴BC===5,∵CD是⊙O的直径,∴∠DBC=90°,∴∠E=∠DBC,∴△DBC∽△CBE,∴,∴BC2=CD•CE,∴CD==,∴OC==,∴⊙O的半径=.24.解:(1)由图可得,起点A与终点B之间相距3000米;(2)由图可得,甲龙舟队先出发,乙龙舟队先到达终点;(3)设甲龙舟队的y与x函数关系式为y=kx,把(25,3000)代入,可得3000=25k,解得k=120,∴甲龙舟队的y与x函数关系式为y=120x(0≤x≤25),设乙龙舟队的y与x函数关系式为y=ax+b,把(5,0),(20,3000)代入,可得,解得,∴乙龙舟队的y与x函数关系式为y=200x﹣1000(5≤x≤20);(4)令120x=200x﹣1000,可得x=12.5,即当x=12.5时,两龙舟队相遇,当x<5时,令120x=200,则x=(符合题意);当5≤x<12.5时,令120x﹣(200x﹣1000)=200,则x=10(符合题意);当12.5<x≤20时,令200x﹣1000﹣120x=200,则x=15(符合题意);当20<x≤25时,令3000﹣120x=200,则x=(符合题意);综上所述,甲龙舟队出发或10或15或分钟时,两支龙舟队相距200米.故答案为:3000;乙.25.解:(1)AE=DB,AE⊥DB,证明:∵△ABC与△DEC是等腰直角三角形,∴AC=BC,EC=DC,在Rt△BCD和Rt△ACE中,,∴Rt△BCD≌Rt△ACE,∴AE=BD,∠AEC=∠BDC,∵∠BCD=90°,∴∠DHE=90°,∴AE⊥DB;(2)DE=AF,DE⊥AF,证明:设DE与AF交于N,由题意得,BE=AD,∵∠EBD=∠C+∠BDC=90°+∠BDC,∠ADF=∠BDF+∠BDC=90°+∠BDC,∴∠EBD=∠ADF,在△EBD和△ADF中,,∴△EBD≌△ADF,∴DE=AF,∠E=∠FAD,∵∠E=45°,∠EDC=45°,∴∠FAD=45°,∴∠AND=90°,即DE⊥AF.26.解:(1)当x=0时,y=4,∴B(0,4),当y=0时,﹣x+4=0,x=6,∴C(6,0),把B(0,4)和C(6,0)代入抛物线y=ax2+x+c中得:,解得:,∴抛物线的解析式为:y=﹣x2+x+4;(2)如图1,过E作EG∥y轴,交直线BC于G,设E(m,﹣m2+m+4),则G(m,﹣m+4),∴EG=(﹣m2+m+4)﹣(﹣m+4)=﹣+4m,∴S△BEC=EG•OC=×6(﹣+4m)=﹣2(m﹣3)2+18,∵﹣2<0,∴S有最大值,此时E(3,8);(3)y=﹣x2+x+4=﹣(x2﹣5x+﹣)+4=﹣(x﹣)2+;对称轴是:x=,∴A(﹣1,0)∵点Q是抛物线对称轴上的动点,∴Q的横坐标为,在抛物线上存在点P,使得以P、Q、A、M为顶点的四边形是平行四边形;①如图2,以AM为边时,由(2),可得点M的横坐标是3,∵点M在直线y=﹣x+4上,∴点M的坐标是(3,2),又∵点A的坐标是(﹣1,0),点Q的横坐标为,根据M到Q的平移规律:可知:P的横坐标为﹣,∴P(﹣,﹣);②如图3,以AM为边时,四边形AMPQ是平行四边形,由(2),可得点M的横坐标是3,∵A(﹣1,0),且Q的横坐标为,∴P的横坐标为,∴P(,﹣);③以AM为对角线时,如图4,∵M到Q的平移规律可得P到A的平移规律,∴点P的坐标是(﹣,),综上所述,在抛物线上存在点P,使得以P、Q、A、M为顶点的四边形是平行四边形,点P的坐标是(﹣,﹣)或(,﹣)或(﹣,).。

2018届中考数学二模试卷(带答案) (26)

2018届中考数学二模试卷(带答案)  (26)

2018中考数学二模试卷一、选择题(本大题共10小题,每小题4分,共40分.每小题给出的四个选项中,只有一项是正确的,请把正确选项选出来.)1.如图,∠1=40°,如果CD ∥BE ,那么∠B 的度数为( )A .160°B .140°C .60°D .50°2.4的算术平方根是( )A .﹣2B .2C .﹣D .3.在Rt △ABC 中,∠C=90°,AB=13,AC=12,则cosA=( )A .B .C .D .4.如图,已知AB 是△ABC 外接圆的直径,∠A=35°,则∠B 的度数是( )A .35°B .45°C .55°D .65°5.函数y=的图象与直线y=x 没有交点,那么k 的取值范围是( )A .k >1B .k <1C .k >﹣1D .k <﹣16.某个公司有15名工作人员,他们的月工资情况如下表,则该公司所有工作人员的月工资的中位数和众数分别是( )A.2000,2000 B.800,2000 C.2000,800 D.800,8007.一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是()A.B.C.D.8.若方程组的解满足x+y=0,则a的取值是()A.a=﹣1 B.a=1 C.a=0 D.a不能确定9.已知a,b,c为非零实数,且满足= = =k,则一次函数y=kx+(1+k)的图象一定经过()A.第一、二、三象限 B.第二、四象限C.第一象限 D.第二象限10.已知函数y=﹣(x﹣m)(x﹣n)(其中m<n)的图象如图所示,则一次函数y=mx+n与反比例函数y=的图象可能是()A.B.C. D.二、填空题(本大题共8小题,每小题4分,共32分.只要求填写最后结果)11.分解因式:x2y﹣y=.12.计算﹣×=.13.若(x2+y2)2﹣3(x2+y2)﹣10=0,则x2+y2=.14.为了测量校园水平地面上一棵不可攀的树的高度,学校数学兴趣小组做了如下的探索:根据光的反射定律,利用一面镜子和一根皮尺,设计如图所示的测量方案:把一面很小的镜子放在离树底(B)8.4米的点E处,然后沿着直线BE后退到点D,这时恰好在镜子里看到树梢顶点A,再用皮尺量得DE=2.4米,观察者目高CD=1.6米,则树(AB)的高度为米.15.方程=0的解是.16.已知圆锥的高是3cm,母线长5cm,则圆锥的侧面积是cm2.(结果保留π).17.如图,四边形ABCD是菱形,O是两条对角线的交点,过O点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为.18.如图,平行于x轴的直线AC分别交抛物线y1=x2(x≥0)与y2=(x≥0)于B、C两点,过点C作y轴的平行线交y1于点D,直线DE∥AC,交y2于点E,则=.三、解答题(本大题共8小题,共28分,解答应写出必要的文字说明及演算步骤)19.(1)计算:﹣24﹣+|1﹣4sin60°|+(π﹣)0;(2)解方程:2x2﹣4x﹣1=0.20.如图,在▱ABCD中,E是AD边上的中点,连接BE,并延长BE交CD的延长线于点F.(1)证明:FD=AB;(2)当▱ABCD的面积为8时,求△FED的面积.21.为了迎接天水市中考体育测试,某校根据实际情况,决定主要开设A:足球;B:跑步;C:引体向上;D:跳神这四种运动项目.为了解学生喜欢哪一种项目,随机抽取了部分学生进行调查,并将调查结果绘制成如下的条形统计图和扇形统计图,请你结合图中解答下列问题:(1)样本中喜欢B项目的人数百分比是,其所在扇形统计图中的圆心角的度数是;(2)把条形统计图补充完整;(3)已知该校有1000人,根据样本估计全校喜欢跳绳的人数是多少?22.如图,在同一平面内,两条平行高速公路l1和l2间有一条“Z”型道路连通,其中AB段与高速公路l1成30°角,长为20km;BC段与AB、CD段都垂直,长为10km,CD段长为30km,求两高速公路间的距离(结果保留根号).23.如图,在平面直角坐标系中,边长为2的正方形ABCD关于y轴对称,边AD在x轴上,点B在第四象限,直线BD与反比例函数y=的图象交于点B、E.(1)求反比例函数及直线BD的解析式;(2)求点E的坐标.24.如图,AB是⊙O的直径,点F,C是⊙O上两点,且==,连接AC,AF,过点C作CD⊥AF交AF延长线于点D,垂足为D.(1)求证:CD是⊙O的切线;(2)若CD=2,求⊙O的半径.25.已知关于x的一元二次方程x2+(2k﹣1)x+k2=0(1)若原方程有两个不相等的实数根,求k的取值范围;(2)设x1,x2是原方程的两个实数根,且,求k的值.26.如图,已知抛物线y=ax2+bx+c与x轴的一个交点为A(3,0),与y轴的交点为B(0,3),其顶点为C,对称轴为x=1.(1)求抛物线的解析式;(2)已知点M为y轴上的一个动点,当△ABM为等腰三角形时,求点M的坐标;(3)将△AOB沿x轴向右平移m个单位长度(0<m<3)得到另一个三角形,将所得的三角形与△ABC重叠部分的面积记为S,用m的代数式表示S.参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分.每小题给出的四个选项中,只有一项是正确的,请把正确选项选出来.)1.如图,∠1=40°,如果CD∥BE,那么∠B的度数为()A.160°B.140°C.60°D.50°【考点】平行线的性质.【专题】计算题.【分析】先根据邻补角的定义计算出∠2=180°﹣∠1=140°,然后根据平行线的性质得∠B=∠2=140°.【解答】解:如图,∵∠1=40°,∴∠2=180°﹣40°=140°,∵CD∥BE,∴∠B=∠2=140°.故选:B.【点评】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.2.4的算术平方根是()A.﹣2 B.2 C.﹣D.【考点】算术平方根.【专题】计算题.【分析】根据算术平方根的定义进行解答即可.【解答】解:∵22=4,∴4的算术平方根是2.故选:B.【点评】本题考查了算术平方根的定义,熟记定义是解题的关键.3.在Rt△ABC中,∠C=90°,AB=13,AC=12,则cosA=()A.B.C.D.【考点】锐角三角函数的定义;勾股定理.【专题】计算题.【分析】直接根据余弦的定义即可得到答案.【解答】解:∵Rt△ABC中,∠C=90°,AB=13,AC=12,∴cosA==.故选C.【点评】本题考查了余弦的定义:在直角三角形中,一个锐角的余弦等于这个角的邻边与斜边的比值.4.如图,已知AB是△ABC外接圆的直径,∠A=35°,则∠B的度数是()A.35°B.45°C.55°D.65°【考点】圆周角定理.【专题】几何图形问题.【分析】由AB是△ABC外接圆的直径,根据直径所对的圆周角是直角,可求得∠ACB=90°,又由∠A=35°,即可求得∠B的度数.【解答】解:∵AB是△ABC外接圆的直径,∴∠C=90°,∵∠A=35°,∴∠B=90°﹣∠A=55°.故选:C.【点评】此题考查了圆周角定理.此题比较简单,注意掌握数形结合思想的应用.5.函数y=的图象与直线y=x没有交点,那么k的取值范围是()A.k>1 B.k<1 C.k>﹣1 D.k<﹣1【考点】反比例函数与一次函数的交点问题.【专题】计算题;压轴题.【分析】根据正比例函数及反比例函数的性质作答.【解答】解:直线y=x过一、三象限,要使两个函数没交点,那么函数y=的图象必须位于二、四象限,那么1﹣k<0,则k>1.故选A.【点评】本题考查了反比例函数与一次函数的交点问题,结合函数图象解答较为简单.6.某个公司有15名工作人员,他们的月工资情况如下表,则该公司所有工作人员的月工资的中位数和众数分别是()A.2000,2000 B.800,2000 C.2000,800 D.800,800【考点】众数;中位数.【分析】根据中位数和众数的定义分别进行解答即可.【解答】解:把这组数据从小到达排列,最中间的数是800,则中位数是800;800出现的次数最多,则众数是800;故选D.【点评】此题考查了众数和中位数,众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.7.一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是()A.B.C.D.【考点】概率公式.【分析】直接根据概率公式求解即可.【解答】解:∵装有7个只有颜色不同的球,其中3个红球,∴从布袋中随机摸出一个球,摸出的球是红球的概率=.故选:B.【点评】本题考查的是概率公式,熟知随机事件A的概率P(A)=事件A可能出现的结果数与所有可能出现的结果数的商是解答此题的关键.8.若方程组的解满足x+y=0,则a的取值是()A.a=﹣1 B.a=1 C.a=0 D.a不能确定【考点】二元一次方程组的解;二元一次方程的解.【专题】计算题.【分析】方程组中两方程相加表示出x+y,根据x+y=0求出a的值即可.【解答】解:方程组两方程相加得:4(x+y)=2+2a,将x+y=0代入得:2+2a=0,解得:a=﹣1.故选:A.【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.9.已知a,b,c为非零实数,且满足===k,则一次函数y=kx+(1+k)的图象一定经过()A.第一、二、三象限 B.第二、四象限C.第一象限 D.第二象限【考点】一次函数的性质;比例的性质.【专题】分类讨论.【分析】此题要分a+b+c≠0和a+b+c=0两种情况讨论,然后求出k,就知道函数图象经过的象限.【解答】解:分两种情况讨论:当a+b+c≠0时,根据比例的等比性质,得:k==2,此时直线是y=2x+3,过第一、二、三象限;当a+b+c=0时,即a+b=﹣c,则k=﹣1,此时直线是y=﹣x,直线过第二、四象限.综上所述,该直线必经过第二象限.故选D.【点评】注意此类题要分情况求k的值.能够根据k,b的符号正确判断直线所经过的象限.10.已知函数y=﹣(x﹣m)(x﹣n)(其中m<n)的图象如图所示,则一次函数y=mx+n与反比例函数y=的图象可能是()A.B.C. D.【考点】二次函数的图象;一次函数的图象;反比例函数的图象.【分析】根据二次函数图象判断出m<﹣1,n=1,然后求出m+n<0,再根据一次函数与反比例函数图象的性质判断即可.【解答】解:由图可知,m<﹣1,n=1,所以,m+n<0,所以,一次函数y=mx+n经过第二四象限,且与y轴相交于点(0,1),反比例函数y=的图象位于第二四象限,纵观各选项,只有C选项图形符合.故选C.【点评】本题考查了二次函数图象,一次函数图象,反比例函数图象,观察二次函数图象判断出m、n的取值是解题的关键.二、填空题(本大题共8小题,每小题4分,共32分.只要求填写最后结果)11.分解因式:x2y﹣y=y(x+1)(x﹣1).【考点】提公因式法与公式法的综合运用.【专题】因式分解.【分析】观察原式x2y﹣y,找到公因式y后,提出公因式后发现x2﹣1符合平方差公式,利用平方差公式继续分解可得.【解答】解:x2y﹣y,=y(x2﹣1),=y(x+1)(x﹣1),故答案为:y(x+1)(x﹣1).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12.计算﹣×=.【考点】二次根式的混合运算.【专题】计算题.【分析】首先化简第一个二次根式,计算后边的两个二次根式的积,然后合并同类二次根式即可求解.【解答】解:原式=2﹣=,故答案是:【点评】本题考查了二次根式的混合运算,正确运用二次根式的乘法简化了运算,正确观察式子的特点是关键.13.若(x2+y2)2﹣3(x2+y2)﹣10=0,则x2+y2=5.【考点】换元法解一元二次方程.【分析】设x2+y2=m,根据(x2+y2)2﹣3(x2+y2)﹣10=0,得出m2﹣3m﹣10=0,再求出m的值,最后根据x2+y2≥0,即可得出答案.【解答】解:设x2+y2=m,∵(x2+y2)2﹣3(x2+y2)﹣10=0,∴m2﹣3m﹣10=0,解得:m1=﹣2,m2=5,∵x2+y2≥0,∴x2+y2=5;故答案为:5.【点评】此题考查了换元法解一元二次方程,用到的知识点是换元法、因式分解法解一元二次方程,注意把不合题意的解舍去.14.为了测量校园水平地面上一棵不可攀的树的高度,学校数学兴趣小组做了如下的探索:根据光的反射定律,利用一面镜子和一根皮尺,设计如图所示的测量方案:把一面很小的镜子放在离树底(B)8.4米的点E处,然后沿着直线BE后退到点D,这时恰好在镜子里看到树梢顶点A,再用皮尺量得DE=2.4米,观察者目高CD=1.6米,则树(AB)的高度为 5.6米.【考点】相似三角形的应用.【专题】应用题;压轴题.【分析】根据镜面反射的性质求出△ABE∽△CDE,再根据其相似比解答.【解答】解:根据题意,易得∠CDE=∠ABE=90°,∠CED=∠AEB,则△ABE∽△CDE,则,即,解得:AB=5.6米.故答案为:5.6.【点评】应用反射的基本性质,得出三角形相似,运用相似比即可解答.15.方程=0的解是1.【考点】解分式方程.【分析】首先方程两边同乘以公分母x+1,然后解整式方程即可,最后要把x的值代入原方程进行检验.【解答】解:∵=0,两边同乘以x+1得:x2﹣1=0,解得:x1=1,x2=﹣1,检验:当x1=1时,x+1=2≠0,所以x1=1为原方程得解.当x2=﹣1时,x+1=0,所以x2=﹣1(舍去),故答案为1.【点评】本题主要考查解分式方程,关键在于首先去分母,然后解整式方程即可,注意最后要进行检验.16.已知圆锥的高是3cm,母线长5cm,则圆锥的侧面积是20πcm2.(结果保留π).【考点】圆锥的计算.【分析】首先利用勾股定理求得圆锥的底面半径,然后利用圆锥的侧面积=π×底面半径×母线长,把相应数值代入即可求解.【解答】解:∵圆锥的高是3cm,母线长5cm,∴勾股定理得圆锥的底面半径为4cm,∴圆锥的侧面积=π×4×5=20πcm2.故答案为:20π.【点评】本题考查圆锥侧面积公式的运用,掌握公式是关键.17.如图,四边形ABCD是菱形,O是两条对角线的交点,过O点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为12.【考点】中心对称;菱形的性质.【专题】几何图形问题.【分析】根据菱形的面积等于对角线乘积的一半求出面积,再根据中心对称的性质判断出阴影部分的面积等于菱形的面积的一半解答.【解答】解:∵菱形的两条对角线的长分别为6和8,∴菱形的面积=×6×8=24,∵O是菱形两条对角线的交点,∴阴影部分的面积=×24=12.故答案为:12.【点评】本题考查了中心对称,菱形的性质,熟记性质并判断出阴影部分的面积等于菱形的面积的一半是解题的关键.18.如图,平行于x轴的直线AC分别交抛物线y1=x2(x≥0)与y2=(x≥0)于B、C两点,过点C作y轴的平行线交y1于点D,直线DE∥AC,交y2于点E,则=.【考点】二次函数综合题.【分析】设A点坐标为(0,a),利用两个函数解析式求出点B、C的坐标,然后求出BC的长度,再根据CD∥y轴,利用y1的解析式求出D点的坐标,然后利用y2求出点E的坐标,从而得到DE 的长度,然后求出比值即可得解.【解答】解:设A点坐标为(0,a),(a>0),则x2=a,解得x=,∴点B(,a),=a,则x=,∴点C(,a),∴BC=﹣.∵CD∥y轴,∴点D的横坐标与点C的横坐标相同,为,∴y1=()2=3a,∴点D的坐标为(,3a).∵DE∥AC,∴点E的纵坐标为3a,∴=3a,∴x=3,∴点E的坐标为(3,3a),∴DE=3﹣,∴==.故答案是:.【点评】本题是二次函数综合题型,主要利用了二次函数图象上点的坐标特征,根据平行与x轴的点的纵坐标相同,平行于y轴的点的横坐标相同,求出用点A的纵坐标表示出各点的坐标是解题的关键.三、解答题(本大题共8小题,共28分,解答应写出必要的文字说明及演算步骤)19.(1)计算:﹣24﹣+|1﹣4sin60°|+(π﹣)0;(2)解方程:2x2﹣4x﹣1=0.【考点】实数的运算;零指数幂;解一元二次方程-公式法;特殊角的三角函数值.【专题】计算题.【分析】(1)原式第一项利用乘方的意义化简,第二项化为最简二次根式,第三项利用特殊角的三角函数值及绝对值的代数意义化简,最后一项利用零指数幂法则计算即可得到结果;(2)找出a,b,c的值,计算出根的判别式的值大于0,代入求根公式即可求出解.【解答】解:(1)原式=﹣16﹣2+2﹣1+1=﹣16;(2)这里a=2,b=﹣4,c=﹣1,∵△=16+8=24,∴x==.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.如图,在▱ABCD中,E是AD边上的中点,连接BE,并延长BE交CD的延长线于点F.(1)证明:FD=AB;(2)当▱ABCD的面积为8时,求△FED的面积.【考点】平行四边形的性质;全等三角形的判定与性质.【分析】(1)利用已知得出△ABE≌△DFE(AAS),进而求出即可;(2)首先得出△FED∽△FBC,进而得出=,进而求出即可.【解答】(1)证明:∵在平行四边形ABCD中,E是AD边上的中点,∴AE=ED,∠ABE=∠F,在△ABE和△DFE中,∴△ABE≌△DFE(AAS),∴FD=AB;(2)解:∵DE∥BC,∴△FED∽△FBC,∵△ABE≌△DFE,∴BE=EF,S△FBC=S▱ABCD,∴=,∴=,∴=,∴△FED的面积为:2.【点评】此题主要考查了全等三角形的判定与性质以及平行四边形的性质以及相似三角形的判定与是解题关键.性质等知识,得出S△FBC=S平行四边形ABCD21.为了迎接天水市中考体育测试,某校根据实际情况,决定主要开设A:足球;B:跑步;C:引体向上;D:跳神这四种运动项目.为了解学生喜欢哪一种项目,随机抽取了部分学生进行调查,并将调查结果绘制成如下的条形统计图和扇形统计图,请你结合图中解答下列问题:(1)样本中喜欢B项目的人数百分比是20%,其所在扇形统计图中的圆心角的度数是72°;(2)把条形统计图补充完整;(3)已知该校有1000人,根据样本估计全校喜欢跳绳的人数是多少?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)用整体1减去A、C、D所占的百分比求出B所占的百分比,再乘以360°即可求出圆心角的度数;(2)根据A的人数和所占的百分比求出总人数数,再乘以B所占的百分比,即可求出喜欢跑步的人数,从而补全统计图;(3)用该校的人数乘以喜欢跳绳的人数所占的百分比即可得出答案.【解答】解:(1)样本中喜欢B项目的人数百分比是:1﹣44%﹣28%﹣8%=20%,其所在扇形统计图中的圆心角的度数是360×20%=72°;故答案为:20%,72°;(2)喜欢跑步的人数是:×20%=20(人),补图如下:(3)根据题意得:1000×28%=280(人).答:全校喜欢跳绳的人数是280人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.如图,在同一平面内,两条平行高速公路l1和l2间有一条“Z”型道路连通,其中AB段与高速公路l1成30°角,长为20km;BC段与AB、CD段都垂直,长为10km,CD段长为30km,求两高速公路间的距离(结果保留根号).【考点】解直角三角形的应用.【专题】几何图形问题.【分析】过B点作BE⊥l1,交l1于E,CD于F,l2于G.在Rt△ABE中,根据三角函数求得BE,在Rt△BCF中,根据三角函数求得BF,在Rt△DFG中,根据三角函数求得FG,再根据EG=BE+BF+FG 即可求解.【解答】解:过B点作BE⊥l1,交l1于E,CD于F,l2于G.在Rt△ABE中,BE=AB•sin30°=20×=10km,在Rt△BCF中,BF=BC÷cos30°=10÷=km,CF=BF•sin30°=×=km,DF=CD﹣CF=(30﹣)km,在Rt△DFG中,FG=DF•sin30°=(30﹣)×=(15﹣)km,∴EG=BE+BF+FG=(25+5)km.故两高速公路间的距离为(25+5)km.【点评】此题考查了解直角三角形的应用,主要是三角函数的基本概念及运算,关键把实际问题转化为数学问题加以计算.23.如图,在平面直角坐标系中,边长为2的正方形ABCD关于y轴对称,边AD在x轴上,点B在第四象限,直线BD与反比例函数y=的图象交于点B、E.(1)求反比例函数及直线BD的解析式;(2)求点E的坐标.【考点】反比例函数与一次函数的交点问题.【分析】(1)根据正方形的边长,正方形关于y轴对称,可得点A、B、D的坐标,根据待定系数法,可得函数解析式;(2)根据两个函数解析式,可的方程组,根据解方程组,可得答案.【解答】解:(1)边长为2的正方形ABCD关于y轴对称,边在AD在x轴上,点B在第四象限,∴A(1,0),D(﹣1,0),B(1,﹣2).∵反比例函数y=的图象过点B,∴,m=﹣2,∴反比例函数解析式为y=﹣,设一次函数解析式为y=kx+b,∵y=kx+b的图象过B、D点,∴,解得.直线BD的解析式y=﹣x﹣1;(2)∵直线BD与反比例函数y=的图象交于点E,∴,解得∵B(1,﹣2),∴E(﹣2,1).【点评】本题考查了反比例函数与一次函数的交点问题,利用待定系数法求解析式,利用方程组求交点坐标.24.如图,AB是⊙O的直径,点F,C是⊙O上两点,且==,连接AC,AF,过点C作CD⊥AF交AF延长线于点D,垂足为D.(1)求证:CD是⊙O的切线;(2)若CD=2,求⊙O的半径.【考点】切线的判定;三角形三边关系;圆周角定理.【专题】几何图形问题.【分析】(1)连结OC,由=,根据圆周角定理得∠FAC=∠BAC,而∠OAC=∠OCA,则∠FAC=∠OCA,可判断OC∥AF,由于CD⊥AF,所以OC⊥CD,然后根据切线的判定定理得到CD是⊙O的切线;(2)连结BC,由AB为直径得∠ACB=90°,由==得∠BOC=60°,则∠BAC=30°,所以∠DAC=30°,在Rt△ADC中,利用含30度的直角三角形三边的关系得AC=2CD=4,在Rt△ACB中,利用含30度的直角三角形三边的关系得BC=AC=4,AB=2BC=8,所以⊙O的半径为4.【解答】(1)证明:连结OC,如图,∵=,∴∠FAC=∠BAC,∵OA=OC,∴∠OAC=∠OCA,∴∠FAC=∠OCA,∴OC∥AF,∵CD⊥AF,∴OC⊥CD,∴CD是⊙O的切线;(2)解:连结BC,如图,∵AB为直径,∴∠ACB=90°,∵==,∴∠BOC=×180°=60°,∴∠BAC=30°,∴∠DAC=30°,在Rt△ADC中,CD=2,∴AC=2CD=4,在Rt△ACB中,BC=AC=×4=4,∴AB=2BC=8,∴⊙O的半径为4.【点评】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了圆周角定理和含30度的直角三角形三边的关系.25.已知关于x的一元二次方程x2+(2k﹣1)x+k2=0(1)若原方程有两个不相等的实数根,求k的取值范围;(2)设x1,x2是原方程的两个实数根,且,求k的值.【考点】根与系数的关系;根的判别式.【专题】计算题.【分析】(1)根据一元二次方程根的判别式的意义得到△=(2k﹣1)2﹣4k2≥0,然后解不等式即可;(2)根据根与系数的关系得到x1+x2=﹣(2k﹣1),x1•x2=k2,再变形x12+x22=(x1+x2)2﹣2x1•x2,则(2k﹣1)2﹣2k2=17,然后解方程得到满足条件的k的值.【解答】解:(1)根据题意得△=(2k﹣1)2﹣4k2≥0,解得k≤;(2)根据题意得x1+x2=﹣(2k﹣1),x1•x2=k2,∵x12+x22=(x1+x2)2﹣2x1•x2,∴(2k﹣1)2﹣2k2=17,解得k1=﹣2,k2=4,∵k≤,∴k=﹣2.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=﹣,x1•x2=.也考查了一元二次方程根的判别式.26.如图,已知抛物线y=ax2+bx+c与x轴的一个交点为A(3,0),与y轴的交点为B(0,3),其顶点为C,对称轴为x=1.(1)求抛物线的解析式;(2)已知点M为y轴上的一个动点,当△ABM为等腰三角形时,求点M的坐标;(3)将△AOB沿x轴向右平移m个单位长度(0<m<3)得到另一个三角形,将所得的三角形与△ABC重叠部分的面积记为S,用m的代数式表示S.【考点】二次函数综合题.【专题】代数几何综合题;压轴题.【分析】(1)根据对称轴可知,抛物线y=ax2+bx+c与x轴的另一个交点为(﹣1,0),根据待定系数法可得抛物线的解析式为y=﹣x2+2x+3.(2)分三种情况:①当MA=MB时;②当AB=AM时;③当AB=BM时;三种情况讨论可得点M的坐标.(3)平移后的三角形记为△PEF.根据待定系数法可得直线AB的解析式为y=﹣x+3.易得AB平移m个单位所得直线EF的解析式为y=﹣x+3+m.根据待定系数法可得直线AC的解析式.连结BE,直线BE交AC于G,则G(,3).在△AOB沿x轴向右平移的过程中.根据图象,易知重叠部分面积有两种情况:①当0<m≤时;②当<m<3时;讨论可得用m的代数式表示S.【解答】解:(1)由题意可知,抛物线y=ax2+bx+c与x轴的另一个交点为(﹣1,0),则,解得.故抛物线的解析式为y=﹣x2+2x+3.(2)依题意:设M点坐标为(0,t),①当MA=MB时:解得t=0,故M(0,0);②当AB=AM时:解得t=3(舍去)或t=﹣3,故M(0,﹣3);③当AB=BM时,解得t=3±3,故M(0,3+3)或M(0,3﹣3).所以点M的坐标为:(0,0)、(0,﹣3)、(0,3+3)、(0,3﹣3).(3)平移后的三角形记为△PEF.设直线AB的解析式为y=kx+b,则,解得.则直线AB的解析式为y=﹣x+3.△AOB沿x轴向右平移m个单位长度(0<m<3)得到△PEF,易得直线EF的解析式为y=﹣x+3+m.设直线AC的解析式为y=k′x+b′,则,解得.则直线AC的解析式为y=﹣2x+6.连结BE,直线BE交AC于G,则G(,3).在△AOB沿x轴向右平移的过程中.①当0<m≤时,如图1所示.设PE交AB于K,EF交AC于M.则BE=EK=m,PK=PA=3﹣m,联立,解得,即点M(3﹣m,2m).故S=S△PEF﹣S△PAK﹣S△AFM=PE2﹣PK2﹣AF•h=﹣(3﹣m)2﹣m•2m=﹣m2+3m.②当<m<3时,如图2所示.设PE交AB于K,交AC于H.因为BE=m,所以PK=PA=3﹣m,又因为直线AC 的解析式为y=﹣2x+6,所以当x=m 时,得y=6﹣2m ,所以点H (m ,6﹣2m ).故S=S △PAH ﹣S △PAK=PA •PH ﹣PA 2=﹣(3﹣m )•(6﹣2m )﹣(3﹣m )2=m 2﹣3m+.综上所述,当0<m ≤时,S=﹣m 2+3m ;当<m <3时,S=m 2﹣3m+.【点评】考查了二次函数综合题,涉及的知识点有:抛物线的对称轴,待定系数法求抛物线的解析式,待定系数法求直线的解析式,分类思想的应用,方程思想的应用,综合性较强,有一定的难度.。

2018届中考数学二模试卷(带答案) (18)

2018届中考数学二模试卷(带答案)  (18)

2018年中考数学二模试卷一、.选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分1.计算(ab2)3的结果是()A.ab5B.ab6C.a3b5D.a3b62.下列各式中,不成立的是()A.|﹣3|=3 B.﹣|3|=﹣3 C.|﹣3|=|3| D.﹣|﹣3|=33.在实数﹣,0,,,,中,无理数有()A.1个B.2个C.3个D.4个4.如图,AB是⊙O直径,∠AOC=130°,则∠D=()A.65°B.25°C.15°D.35°5.如图是由四个小正方体叠成的一个立体图形,那么它的主视图是()A.B.C.D.6.已知抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),则代数式m2﹣m+2014的值为()A.2012 B.2013 C.2014 D.20157.如图,在△ABC中,已知∠C=90°,BC=3,AC=4,⊙O是内切圆,E,F,D分别为切点,则tan∠OBD=()A.B.C.D.8.如图,在▱ABCD中,AC与BD交于点O,点E是BC边的中点,OE=1,则AB的长是()A.1 B.2 C.D.49.某快餐店用米饭加不同炒菜配制了一批盒饭,配土豆丝炒肉的有25盒,配芹菜炒肉丝的有30盒,配辣椒炒鸡蛋的有10盒,配芸豆炒肉片的有15盒.每盒盒饭的大小、外形都相同,从中任选一盒,不含辣椒的概率是()A.B.C.D.10.定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“凤凰”方程.已知ax2+bx+c=0(a≠0)是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是()A.a=c B.a=b C.b=c D.a=b=c11.如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1,l2之间的距离为2,l2,l3之间的距离为3,则AC的长是()A.B. C. D.712.如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y轴的交点在(0,2)、(0,3)之间(包含端点),则下列结论:①当x>3时,y<0;②3a+b>0;③﹣1≤a≤﹣;④3≤n≤4中,正确的是()A.①②B.③④C.①④D.①③二、填空题:本大题共6小题,共24分,只要求填写最后结果,每小题填对得4分.13.因式分解:x2﹣2xy+y2=.14.将三角板(不是等腰的)顶点放置在直线AB上的O点处,使AB∥CD,则∠2的余弦值是.15.如图,△ABC中,AB=AC,∠A=30°,DE垂直平分AC,则∠BCD的度数为.16.方程x2﹣2x﹣1=0的解是.17.如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是.18.猜数字游戏中,小明写出如下一组数:,,,,…,小亮猜想出第六个数字是,根据此规律,第n个数是.三、选修题、本小题满分6分,请在下列两个小题中,任选其一完成即可19.(1)解方程组:(2)解不等式组:.四、解答题:本大题共7个小题,满分54分.解答时请写出必要的演推过程.20.计算﹣2sin45°+(﹣2)﹣3+()0.21.为了解学生的课余生活情况,某中学在全校范围内随机抽取部分学生进行问卷调查.问卷中请学生选择最喜欢的课余生活种类(2007•台州)如图,△ABC内接于⊙O,点D在半径OB的延长线上,∠BCD=∠A=30°.(1)试判断直线CD与⊙O的位置关系,并说明理由;(2)若⊙O的半径长为1,求由弧BC、线段CD和BD所围成的阴影部分面积.(结果保留π和根号)23.海丰塔是无棣灿烂文化的象征(如图①),喜爱数学实践活动的小伟查资料得知:海丰塔,史称唐塔,原名大觉寺塔,始建于唐贞观十三年(公元639年),碑记为“尉迟敬德监建”,距今已1300多年,被誉为冀鲁三胜之一.小伟决定用自己所学习的知识测量海丰塔的高度.如图②,他利用测角仪站在B处测得海丰塔最高点P的仰角为45°,又前进了18米到达A处,在A处测得P的仰角为60°.请你帮助小伟算算海丰塔的高度.(测角仪高度忽略不计,≈1.7,结果保留整数).24.如图,在平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F,BD与AE、AF分别相交于G、H.(1)求证:△ABE∽△ADF;(2)若AG=AH,求证:四边形ABCD是菱形.25.我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图,点A、B、C、D分别是“蛋圆”与坐标轴的交点,AB为半圆的直径,点M为圆心,A点坐标为(﹣2,0),B点坐标为(4,0),D点的坐标为(0,﹣4).(1)你能求出经过点C的“蛋圆”切线的解析式吗?试试看;(2)请你求出“蛋圆”抛物线部分的解析式,并写出自变量x的取值范围.(3)你能求出经过点D的“蛋圆”切线的解析式吗?能,请写出过程,不能,请说明理由.参考答案与试题解析一、.选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分1.计算(ab2)3的结果是()A.ab5B.ab6C.a3b5D.a3b6【考点】幂的乘方与积的乘方.【分析】根据积的乘方的性质进行计算,然后直接选取答案即可.【解答】解:(ab2)3=a3•(b2)3=a3b6.故选D.【点评】本题考查积的乘方,把积中的每一个因式分别乘方,再把所得的幂相乘.2.下列各式中,不成立的是()A.|﹣3|=3 B.﹣|3|=﹣3 C.|﹣3|=|3| D.﹣|﹣3|=3【考点】绝对值.【分析】根据绝对值的意义选择.【解答】解:A中|﹣3|=3,正确;B中﹣|3|=﹣3,正确;C中|﹣3|=|3|=3,正确;D中﹣|﹣3|=﹣3,不成立.故选D.【点评】本题考查绝对值的化简:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.3.在实数﹣,0,,,,中,无理数有()A.1个B.2个C.3个D.4个【考点】无理数.【分析】根据无理数的三种形式求解.【解答】解:=3,=﹣2,无理数有:,,共2个.故选B.【点评】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.4.如图,AB是⊙O直径,∠AOC=130°,则∠D=()A.65°B.25°C.15°D.35°【考点】圆周角定理.【专题】压轴题.【分析】先根据邻补角的定义求出∠BOC,再利用圆周角定理求解.【解答】解:∵∠AOC=130°,∴∠BOC=180°﹣∠AOC=180°﹣130°=50°,∴∠D=×50°=25°.故选B.【点评】本题利用了圆周角定理和邻补角的概念求解.5.如图是由四个小正方体叠成的一个立体图形,那么它的主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得第一层有3个正方形,第二层中间有1个正方形.故选C.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.6.已知抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),则代数式m2﹣m+2014的值为()A.2012 B.2013 C.2014 D.2015【考点】抛物线与x轴的交点.【分析】把x=m代入方程x2﹣x﹣1=0求得m2﹣m=1,然后将其整体代入代数式m2﹣m+2014,并求值.【解答】解:∵抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),∴m2﹣m﹣1=0,解得m2﹣m=1.∴m2﹣m+2014=1+2014=2015.故选:D.【点评】本题考查了抛物线与x轴的交点.解题时,注意“整体代入”数学思想的应用,减少了计算量.7.如图,在△ABC中,已知∠C=90°,BC=3,AC=4,⊙O是内切圆,E,F,D分别为切点,则tan∠OBD=()A.B.C.D.【考点】三角形的内切圆与内心;切线长定理.【专题】压轴题.【分析】首先根据切线的性质和切线长定理证得四边形OECD是正方形,那么AC+BC﹣AB即为2R(⊙O的半径R)的值,由此可得到OD、CD的值,进而可在Rt△OBD中求出∠OBD的正切值.【解答】解:∵BC、AC、AB都是⊙O的切线,∴CD=CE、AE=AF、BF=BD,且OD⊥BC、OE⊥AC;易证得四边形OECD是矩形,由OE=OD可证得四边形OECD是正方形;设OD=OE=CD=R,则:AC+BC﹣AB=AE+R+BD+R﹣AF﹣BF=2R,即R=(AC+BC﹣AB)=1,∴BD=BC﹣CD=3﹣1=2;在Rt△OBD中,tan∠OBD==.故选C.【点评】此题考查的是三角形的外切圆,切线长定理以及锐角三角形函数的定义,难度适中.8.如图,在▱ABCD中,AC与BD交于点O,点E是BC边的中点,OE=1,则AB的长是()A.1 B.2 C.D.4【考点】平行四边形的性质;三角形中位线定理.【分析】由四边形ABCD是平行四边形,根据平行四边形的对角线互相平分,即可求得OC=OA,又由点E 是BC边的中点,根据三角形中位线的性质,即可求得AB的长.【解答】解:∵四边形ABCD是平行四边形,∴OC=OA,∵点E是BC边的中点,即BE=CE,∴OE=AB,∵OE=1,∴AB=2.故选B.【点评】此题考查了平行四边形的性质与三角形中位线的性质.注意平行四边形的对角线互相平分,三角形的中位线平行于三角形的第三边且等于第三边的一半.9.某快餐店用米饭加不同炒菜配制了一批盒饭,配土豆丝炒肉的有25盒,配芹菜炒肉丝的有30盒,配辣椒炒鸡蛋的有10盒,配芸豆炒肉片的有15盒.每盒盒饭的大小、外形都相同,从中任选一盒,不含辣椒的概率是()A.B.C.D.【考点】概率公式.【分析】让不含辣椒的盒饭数除以总盒饭数即为从中任选一盒,不含辣椒的概率.【解答】解:配土豆丝炒肉的有25盒,配芹菜炒肉丝的有30盒,配辣椒炒鸡蛋的有10盒,配芸豆炒肉片的有15盒,全部是80盒,不含辣椒的有70盒,所以从中任选一盒,不含辣椒的概率是=.故选A.【点评】本题比较容易,考查等可能条件下的概率.用到的知识点为:概率=所求情况数与总情况数之比.10.定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“凤凰”方程.已知ax2+bx+c=0(a≠0)是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是()A.a=c B.a=b C.b=c D.a=b=c【考点】根的判别式.【专题】压轴题;新定义.【分析】因为方程有两个相等的实数根,所以根的判别式△=b2﹣4ac=0,又a+b+c=0,即b=﹣a﹣c,代入b2﹣4ac=0得(﹣a﹣c)2﹣4ac=0,化简即可得到a与c的关系.【解答】解:∵一元二次方程ax2+bx+c=0(a≠0)有两个相等的实数根,∴△=b2﹣4ac=0,又a+b+c=0,即b=﹣a﹣c,代入b2﹣4ac=0得(﹣a﹣c)2﹣4ac=0,即(a+c)2﹣4ac=a2+2ac+c2﹣4ac=a2﹣2ac+c2=(a﹣c)2=0,∴a=c.故选A【点评】一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.11.如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1,l2之间的距离为2,l2,l3之间的距离为3,则AC的长是()A.B. C. D.7【考点】勾股定理;全等三角形的性质;全等三角形的判定.【专题】计算题;压轴题.【分析】过A、C点作l 3的垂线构造出直角三角形,根据三角形全等和勾股定理求出BC的长,再利用勾股定理即可求出.【解答】解:作AD⊥l3于D,作CE⊥l3于E,∵∠ABC=90°,∴∠ABD+∠CBE=90°又∠DAB+∠ABD=90°∴∠BAD=∠CBE,,∴△ABD≌△BCE∴BE=AD=3在Rt△BCE中,根据勾股定理,得BC==,在Rt△ABC中,根据勾股定理,得AC=×=2;故选A.【点评】此题要作出平行线间的距离,构造直角三角形.运用全等三角形的判定和性质以及勾股定理进行计算.12.如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y轴的交点在(0,2)、(0,3)之间(包含端点),则下列结论:①当x>3时,y<0;②3a+b>0;③﹣1≤a≤﹣;④3≤n≤4中,正确的是()A.①②B.③④C.①④D.①③【考点】二次函数图象与系数的关系.【专题】计算题;压轴题.【分析】①由抛物线的对称轴为直线x=1,一个交点A(﹣1,0),得到另一个交点坐标,利用图象即可对于选项①作出判断;②根据抛物线开口方向判定a的符号,由对称轴方程求得b与a的关系是b=﹣2a,将其代入(3a+b),并判定其符号;③根据两根之积=﹣3,得到a=﹣,然后根据c的取值范围利用不等式的性质来求a的取值范围;④把顶点坐标代入函数解析式得到n=a+b+c=c,利用c的取值范围可以求得n的取值范围.【解答】解:①∵抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),对称轴直线是x=1,∴该抛物线与x轴的另一个交点的坐标是(3,0),∴根据图示知,当x>3时,y<0.故①正确;②根据图示知,抛物线开口方向向下,则a<0.∵对称轴x=﹣=1,∴b=﹣2a,∴3a+b=3a﹣2a=a<0,即3a+b<0.故②错误;③∵抛物线与x轴的两个交点坐标分别是(﹣1,0),(3,0),∴﹣1×3=﹣3,∴=﹣3,则a=﹣.∵抛物线与y轴的交点在(0,2)、(0,3)之间(包含端点),∴2≤c≤3,∴﹣1≤﹣≤﹣,即﹣1≤a≤﹣.故③正确;④根据题意知,a=﹣,﹣=1,∴b=﹣2a=,∴n=a+b+c=c.∵2≤c≤3,∴≤c≤4,即≤n≤4.故④错误.综上所述,正确的说法有①③.故选D.【点评】本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.二、填空题:本大题共6小题,共24分,只要求填写最后结果,每小题填对得4分.13.因式分解:x2﹣2xy+y2=(x﹣y)2.【考点】因式分解-运用公式法.【专题】计算题.【分析】根据完全平方公式直接解答即可.【解答】解:原式=(x﹣y)2.故答案为(x﹣y)2.【点评】本题考查了因式分解﹣﹣运用公式法,熟悉因式分解是解题的关键.14.将三角板(不是等腰的)顶点放置在直线AB上的O点处,使AB∥CD,则∠2的余弦值是.【考点】特殊角的三角函数值;平行线的性质.【专题】探究型.【分析】先根据平行线的性质及直角三角板的特点求出∠2的度数,再根据特殊角的三角函数值进行解答即可.【解答】解:由三角板的特点可知,∠D=60°,∵AB∥CD,∴∠D=∠2=60°,∴cos∠2=cos60°=.故答案为:.【点评】本题考查的是直角三角板的特点及平行线的性质、特殊角的三角函数值,熟记特殊角的三角函数值是解答此题的关键.15.如图,△ABC中,AB=AC,∠A=30°,DE垂直平分AC,则∠BCD的度数为45°.【考点】线段垂直平分线的性质.【专题】计算题.【分析】首先利用线段垂直平分线的性质推出∠DAC=∠DCA,根据等腰三角形的性质可求出∠ABC=∠ACB,易求∠BCD的度数.【解答】解:∵AB=AC,∠A=30°(已知)∴∠ABC=∠ACB==75°∵DE垂直平分AC,∴AD=CD;∴∠A=∠ACD=30°,∴∠BCD=∠ACB﹣∠ACD,∴∠BCD=45°;故答案为:45°.【点评】本题主要考查了线段垂直平分线的性质以及等腰三角形的性质,难度一般.16.方程x2﹣2x﹣1=0的解是x1=1+,x2=1﹣.【考点】解一元二次方程-配方法.【分析】首先把常数项2移项后,然后在左右两边同时加上一次项系数﹣2的一半的平方,然后开方即可求得答案.【解答】解:∵x2﹣2x﹣1=0,∴x2﹣2x=1,∴x2﹣2x+1=2,∴(x﹣1)2=2,∴x=1±,∴原方程的解为:x1=1+,x2=1﹣.故答案为:x1=1+,x2=1﹣.【点评】此题考查了配方法解一元二次方程.解题时注意配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.17.如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是76.【考点】勾股定理;正方形的性质.【分析】根据勾股定理求出AB,分别求出△AEB和正方形ABCD的面积,即可求出答案.【解答】解:∵在Rt△AEB中,∠AEB=90°,AE=6,BE=8,∴由勾股定理得:AB==10,∴正方形的面积是10×10=100,∵△AEB的面积是AE×BE=×6×8=24,∴阴影部分的面积是100﹣24=76,故答案是:76.【点评】本题考查了正方形的性质,三角形的面积,勾股定理的应用,主要考查学生的计算能力和推理能力.18.猜数字游戏中,小明写出如下一组数:,,,,…,小亮猜想出第六个数字是,根据此规律,第n个数是.【考点】规律型:数字的变化类.【分析】根据分数的分子是2n,分母是2n+3,进而得出答案即可.【解答】解:∵分数的分子分别是:2 2=4,23=8,24=16,…分数的分母分别是:2 2+3=7,23+3=11,24+3=19,…∴第n个数是.故答案为:.【点评】此题主要考查了数字变化规律,根据已知得出分子与分母的变化规律是解题关键.三、选修题、本小题满分6分,请在下列两个小题中,任选其一完成即可19.(1)解方程组:(2)解不等式组:.【考点】解二元一次方程组;解一元一次不等式组.【专题】计算题.【分析】(1)方程组利用加减消元法求出解即可;(2)求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:(1)①+②得:4x=20,即x=5,把x=5代入①得:y=1,则方程组的解为;(2),由①得:x<﹣1,由②得:x≤2,则不等式组的解集为x<﹣1.【点评】此题考查了解二元一次方程组,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.四、解答题:本大题共7个小题,满分54分.解答时请写出必要的演推过程.20.计算﹣2sin45°+(﹣2)﹣3+()0.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】原式第一项利用二次根式性质化简,第二项利用特殊角的三角函数值计算,第三项利用负整数指数幂法则计算,最后一项利用零指数幂法则计算即可得到结果.【解答】解:原式=﹣1﹣2×﹣+1=﹣.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.21.为了解学生的课余生活情况,某中学在全校范围内随机抽取部分学生进行问卷调查.问卷中请学生选择最喜欢的课余生活种类(2)易知选择音乐类的有4人,选择美术类的有3人.记选择音乐类的4人分别是A1,A2,A,小丁;选择美术类的3人分别是B1,B2,小李.可画出树状图如下:由树状图可知共有12种选取方法,小丁和小李都被选中的情况仅有1种,所以小丁和小李恰好都被选中的概率是或列表:由表可知共有12中选取方法,小丁和小李都被选中的情况仅有1种,所以小丁和小李恰好都被选中的概率是;(3)由(1)可知问卷中最喜欢体育运动的学生占40%,由样本估计总体得得500×40%=200名.所以该年级中最喜欢体育运动的学生约有200名.【点评】本题考查的是条形统计图和扇形统计图及用样本估计总体等知识的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.如图,△ABC内接于⊙O,点D在半径OB的延长线上,∠BCD=∠A=30°.(1)试判断直线CD与⊙O的位置关系,并说明理由;(2)若⊙O的半径长为1,求由弧BC、线段CD和BD所围成的阴影部分面积.(结果保留π和根号)【考点】切线的判定;扇形面积的计算.【专题】几何综合题.【分析】(1)由已知可证得OC⊥CD,OC为圆的半径所以直线CD与⊙O相切;(2)根据已知可求得OC,CD的长,则利用S阴影=S△COD﹣S扇形OCB求得阴影部分的面积.【解答】解:(1)直线CD 与⊙O 相切, ∵在⊙O 中,∠COB=2∠CAB=2×30°=60°, 又∵OB=OC , ∴△OBC 是正三角形, ∴∠OCB=60°, 又∵∠BCD=30°, ∴∠OCD=60°+30°=90°, ∴OC ⊥CD , 又∵OC 是半径, ∴直线CD 与⊙O 相切.(2)由(1)得△OCD 是Rt △,∠COB=60°, ∵OC=1,∴CD=,∴S △COD =OC •CD=,又∵S 扇形OCB =,∴S 阴影=S △COD ﹣S 扇形OCB =.【点评】此题主要考查学生对切线的性质及扇形的面积公式的理解及运用.23.海丰塔是无棣灿烂文化的象征(如图①),喜爱数学实践活动的小伟查资料得知:海丰塔,史称唐塔,原名大觉寺塔,始建于唐贞观十三年(公元639年),碑记为“尉迟敬德监建”,距今已1300多年,被誉为冀鲁三胜之一.小伟决定用自己所学习的知识测量海丰塔的高度.如图②,他利用测角仪站在B 处测得海丰塔最高点P 的仰角为45°,又前进了18米到达A 处,在A 处测得P 的仰角为60°.请你帮助小伟算算海丰塔的高度.(测角仪高度忽略不计,≈1.7,结果保留整数).【考点】解直角三角形的应用-仰角俯角问题.【分析】设海丰塔的高OP=x,在Rt△POB中表示出OB,在Rt△POA中表示出OA,再由AB=18米,可得出方程,解出即可得出答案.【解答】解:设海丰塔的高OP=x,在Rt△POB中,∠OBP=45°,则OB=OP=x,在Rt△POA中,∠OAP=60°,则OA==x,由题意得,AB=OB﹣OA=18m,即x﹣x=18,解得:x=27+9,故海丰塔的高度OP=27+9≈42米.答:海丰塔的高度约为42米.【点评】本题考查了解直角三角形的应用,要求学生能借助仰角构造直角三角形并解直角三角形,注意方程思想的运用.24.如图,在平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F,BD与AE、AF分别相交于G、H.(1)求证:△ABE∽△ADF;(2)若AG=AH,求证:四边形ABCD是菱形.【考点】菱形的判定;全等三角形的判定与性质;平行四边形的性质;相似三角形的判定与性质.【专题】证明题.【分析】(1)利用两角对应相等可证出△ABE∽△ADF;(2)利用(1)的结论,先证出△ABG≌△ADH,得到AB=AD,那么平行四边形ABCD是菱形.【解答】证明:(1)∵AE⊥BC,AF⊥CD,∴∠AEB=∠AFD=90度.∵四边形ABCD是平行四边形,∴∠ABE=∠ADF.∴△ABE∽△ADF.(2)∵△ABE∽△ADF,∴∠BAG=∠DAH.∵AG=AH,∴∠AGH=∠AHG,从而∠AGB=∠AHD,∴△ABG≌△ADH,∴AB=AD.∵四边形ABCD是平行四边形,∴四边形ABCD是菱形.【点评】本题利用了相似三角形的判定和性质,全等三角形的判定和性质以及菱形的判定.25.我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图,点A、B、C、D分别是“蛋圆”与坐标轴的交点,AB为半圆的直径,点M为圆心,A点坐标为(﹣2,0),B点坐标为(4,0),D点的坐标为(0,﹣4).(1)你能求出经过点C的“蛋圆”切线的解析式吗?试试看;(2)请你求出“蛋圆”抛物线部分的解析式,并写出自变量x的取值范围.(3)你能求出经过点D的“蛋圆”切线的解析式吗?能,请写出过程,不能,请说明理由.【考点】二次函数综合题.【分析】(1)易得点A、B的坐标,用交点式设出二次函数解析式,把D坐标代入即可.自变量的取值范围是点A、B之间的数.(2)先设出切线与x轴交于点E.利用直角三角形相应的三角函数求得EM的长,进而求得点E坐标,把C、E坐标代入一次函数解析式即可求得所求的解析式.(3)设出所求函数解析式,让它与二次函数组成方程组,消除y,让跟的判别式为0,即可求得一次函数的比例系数k.【解答】解:(1)如图,设经过点C“蛋圆”的切线CE交x轴于点E,连结CM,∴CM⊥CE,又∵A点坐标为(﹣2,0),B点坐标为(4,0),AB为半圆的直径,点M为圆心,∴M点的坐标为(1,0),∴AO=2,BO=4,OM=1.又因为CO⊥x轴,所以CO2=AO•OB,解得:CO=2,又∵CM⊥CE,CO⊥x轴,∴CO2=EO•OM,解之得:EO=8,∴E点的坐标是(﹣8,0),∴切线CE的解析式为:y=x+2;(2)根据题意可得:A(﹣2,0),B(4,0);则设抛物线的解析式为y=a(x+2)(x﹣4)(a≠0),又∵点D(0,﹣4)在抛物线上,∴a=;∴y=x2﹣x﹣4自变量取值范围:﹣2≤x≤4;(3)设过点D(0,﹣4),“蛋圆”切线的解析式为:y=kx﹣4(k≠0),由题意可知方程组只有一组解.即kx﹣4=x2﹣x﹣4有两个相等实根,∴k=﹣1,∴过点D“蛋圆”切线的解析式y=﹣x﹣4;【点评】本题以半圆与抛物线合成的封闭图形“蛋圆”为背景,考查一次函数、二次函数有关性质,解题过程中涉及解一元一次方程、一元二次方程、方程组相关知识与技能,是一道综合性很强的试题.。

2018年河南省郑州市中考数学二模试卷

2018年河南省郑州市中考数学二模试卷

第1页(共19页)2018年河南省郑州市中考数学二模试卷一、选择题(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填在题后括号内。

)1、下列各数中最小的数是……………………()A .2p- B B..2- C C..0 D 0 D..12、2015年河南省参加高考的考生数量为772325人,比2014年增加了4.8万人。

将数据772325精确到千位用科学记数法表示为……………()A .41023.77´B B..51072.7´C C..5107.7´D D..4102.77´3、将一个螺栓按如右下图放置,则螺栓的左视图可能是………………()4、某小组5名同学一周内参加家务劳动的时间如下表所示,关于劳动时间这组数据,下列说法正确的是……………………………………()劳动时间(小时) 1 2 3 4人数 1 1 2 1 A .众数是2,平均数是,平均数是 2.6 2.6 2.6;;B .中位数是3,平均数是2;C .众数和中位数都是3; D D.众数是.众数是2,中位数是3.5、不等式组的解集在数轴上表示正确的是……()6、如图,已知0361=Ð,0362=Ð,01403=Ð,则4Ð的度数等于……()A.040. B.036. C . C..044. D.0100.7、已知关于x 的一元二次方程0142=+-x ax 有两个不相等的实数根,则a 的非负整数值的个数是……………………………………()(A )5;(B )4;(C )3; (D) 2 (D) 2..8、如图,四边形ABCD 是⊙是⊙O O 的内接四边形,AC 是⊙O 直径直径,,点P 在AC 的延长线上,延长线上,PD PD 是⊙是⊙O O 的切线,延长BC 交PD 于点E .则下列说法不正确的是……………………………………………………()A .PDO ADC Ð=Ð;B B..DAB DCE Ð=Ð;2-2x ≥6,2x -1≤5DCB A NMPQ43211EO PDCBAC .B Ð=Ð1;D D.. PDA PCD Ð=Ð.二、填空题(每小题3分,共21分)9. =______.10.如图,已知直线AB ∥CD ,直线EG 垂直于AB ,垂足为G ,直线EF 交CD 于点F ,∠1=50°,则∠2=______.11.微信根据移动ID 所带来的数据,发布了“微信用户春节迁徙数据报告”.该报告显示,2016年1月24日春运首日至2月4日期间,人口流入最多的省份是河南,作为劳务输出大省,河南约有313万微信用户在春节期间返乡,313万用科学记数法可表示为______. 12.一个不透明的盒子里有4个除颜色外其他完全相同的小球,其中每个小球上分别标有1,﹣1,﹣2,﹣3四个不同的数字,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下数字后再放回盒子,那么两次摸出的小球上两个数字乘积是负数的概率为______.13.反比例函数y=经过点A (﹣3,1),设B (x 1,y 1),C (x 2,y 2)是该函数图象上的两点,且x 1<x 2<0,那么y 1与y 2的大小关系是______(填“y 1>y 2”,“y 1=y 2”或“y 1<y 2”). 14.如图,在△ABC 中,∠C=90°,AC=BC ,斜边AB=4,O 是AB 的中点,以O 为圆心,线段OC 的长为半径画圆心角为90°的扇形OEF ,弧EF 经过点C ,则图中阴影部分的面积为______平方单位.15.已知一个矩形纸片OACB ,OB=6,OA=11,点P 为BC 边上的动点(点P 不与点B ,C 重合),经过点O 折叠该纸片,得折痕OP 和点B ʹ,经过点P 再次折叠纸片,使点C 落在直线PB ʹ上,得折痕PQ 和点C ʹ,当点C ʹ恰好落在边OA 上时BP 的长为 ______.三、解答题(共75分)16.先化简(+),再求值.a为整数且﹣2≤a≤2,请你从中选取一个合适的数代入求值.17.今年3月12日,某校九年级部分学生参加植树节活动,以下是根据本次植树活动的有关数据制作的统计图的一部分.请根据统计图所提供的有关信息,完成下列问题:关数据制作的统计图的一部分.请根据统计图所提供的有关信息,完成下列问题:(1)参加植树的学生共有______ 人;)请将该条形统计图补充完整;(2)请将该条形统计图补充完整;(3)参加植树的学生平均每人植树______棵.(保留整数)18.如图,已知⊙A的半径为4,EC是圆的直径,点B是⊙A的切线CB上的一个动点,连接AB交⊙A于点D,弦EF平行于AB,连接DF,AF.(1)求证:△ABC≌△ABF;(2)当∠CAB=______时,四边形ADFE为菱形;为正方形.(3)当AB=______时,四边形ACBF为正方形.19.已知:关于x的一元二次方程x2+2x+k=0有两个不相等的实数根.有两个不相等的实数根.(1)求k的取值范围;取最大整数值时,用合适的方法求该方程的解.(2)当k取最大整数值时,用合适的方法求该方程的解.20.图1是小明在健身器材上进行仰卧起坐锻炼时情景.图2是小明锻炼时上半身由EM位置运动到与地面垂直的EN位置时的示意图.已知BC=0.64米,AD=0.24米,α=18°.(sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)(1)求AB的长(精确到0.01米);(2)若测得EN=0.8米,试计算小明头顶由M点运动到N点的路径弧MN的长度(结果保留π)21.某公司推销一种产品,公司付给推销员的月报酬有两种方案如图所示:其中方案一所示图形是顶点在原点的抛物线的一部分,方案二所示的图形是射线.设推销员销售产品的数量为x(件),付给推销员的月报酬为y(元).的函数关系式;(1)分别求两种方案中y关于x的函数关系式;(2)当销售量达到多少件时,两种方案的月报酬差额将达到3 800元?(3)若公司决定改进“方案二”:基本工资1 200元,每销售一件产品再增加报酬m元,当推销员销售量达到40件时,方案二的月报酬不低于方案一的月报酬.求m至少增加多少元?22.如图1,在Rt△ABC中,∠ACB=90°,∠B=60°,D为AB的中点,∠EDF=90°,DE 交AC于点G,DF经过点C.(1)求∠ADE的度数;(2)如图2,将图1中的∠EDF绕点D顺时针方向旋转角α(0°<α<60°),旋转过程中的任意两个位置分别记为∠E1DF1,∠E2DF2,DE1交直线AC于点P,DF1交直线BC于点Q,DE2交直线AC于点M,DF2交直线BC于点N,求的值;(3)若图1中∠B=β(60°<β<90°),(2)中的其余条件不变,判断的值是否为定值?;如果不是,请说明理由.如果是,请直接写出这个值(用含β的式子表示);如果不是,请说明理由.23.如图1,抛物线y=ax2+bx+3(a≠0)与x轴、y轴分别交于点A(﹣1,0)、B(3,0)、三点.点C三点.(1)试求抛物线的解析式;)试求抛物线的解析式;(2)点D(2,m)在第一象限的抛物线上,连接BC、BD.试问,在对称轴左侧的抛物线上是否存在一点P,满足∠PBC=∠DBC?如果存在,请求出点P点的坐标;如果不存在,请说明理由;请说明理由;(3)如图2,在(2)的条件下,将△BOC沿x轴正方向以每秒1个单位长度的速度向右平移,记平移后的三角形为△BʹOʹCʹ.在平移过程中,△BʹOʹCʹ与△BCD重叠的面积记为S,设平移的时间为t秒,试求S与t之间的函数关系式?之间的函数关系式?2018年河南省郑州市中考数学二模试卷参考答案与试题解析一、选择题 (每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填在题后括号内。

2018届中考数学二模试卷(带答案) (4)

2018届中考数学二模试卷(带答案)  (4)

2018中考数学二模试卷一、选择题1.下列计算正确的是()A.a+2a=3a2B.(a2b)3=a6b3 C.(a m)2=a m+2D.a3•a2=a62.比较﹣3,1,﹣2的大小,下列判断正确的是()A.﹣3<﹣2<1 B.﹣2<﹣3<1 C.1<﹣2<﹣3 D.1<﹣3<﹣23.根据世界贸易组织(WTO)秘书处初步统计数据,2013年中国货物进出口总额为4160000000000美元,超过美国成为世界第一货物贸易大国.将这个数据用科学记数法可以记为()A.4.16×1012美元B.4.16×1013美元C.0.416×1012美元D.416×1010美元4.下列图形中,既是轴对称图形又是中心对称图形的是()A.B. C. D.5.如图,几何体是由一些正方体组合而成的立体图形,则这个几何体的左视图是()A. B.C.D.6.如图,△ABC中,D,E分别是边AB,AC的中点.若DE=2,则BC=()A.2 B.3 C.4 D.57.将一个n边形变成n+1边形,内角和将()A.减少180° B.增加90°C.增加180° D.增加360°8.一元二次方程x2﹣2x+m=0总有实数根,则m应满足的条件是()A.m>1 B.m=1 C.m<1 D.m≤19.如图,反比例函数y=﹣在第二象限的图象上有两点A、B,它们的横坐标分别为﹣1,﹣3,直线AB与x轴交于点C,则△AOC的面积为()A.8 B.10 C.12 D.2410.甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲途中休息了0.5h,如图是甲乙两车行驶的距离y(km)与时间x(h)的函数图象,则下列叙述正确的个数为()(1)乙车的速度为80km/h(千米/小时);(2)a=40,m=1;(3)甲车共行驶了7h;(4)乙车一定行驶了h或h,两车恰好距离50km.A.1个B.2个C.3个D.4个二、填空题11.计算|﹣|+的值是.12.在函数y=中,自变量x的取值范围是.13.因式分解:a3﹣4a=.14.不等式组﹣2≤x+1<1的解集是.15.方程=的根x=.16.在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中白球1个,黄球1个,红球2个,摸出一个球不放回,再摸出一个球,两次都摸到红球的概率是.17.如图,以AB为直径的⊙O与弦CD相交于点E,且AC=2,AE=,CE=1.则弧BD的长是.18.在△ABC中,AB=AC,AB的中垂线于AC所在的直线相交所得的锐角为40°,则底角∠B的大小为.19.如图,已知△ABC是等边三角形,AB=4+2,点D在AB上,点E在AC上,△ADE沿DE折叠后点A恰好落在BC上的A′点,且DA′⊥BC.则A′B的长是.20.如图,四边形ABCD中,AC、BD是对角线,△ABC是等边三角形,∠ADC=30°,AD=3,BD=5,则△ACD的面积为.三、解答题21.先化简,再求值:,其中x=cos30°+tan45°.22.如图所示,正方形网格中,△ABC为格点三角形(即三角形的顶点都在格点上).(1)把△ABC沿BA方向平移后,点A移到点A1,在网格中画出平移后得到的△A1B1C1;(2)把△A1B1C1绕点A1按逆时针方向旋转90°,在网格中画出旋转后的△A1B2C2;(3)如果网格中小正方形的边长为1,求点B经过(1)、(2)变换的路径总长.23.近年来,各地“广场舞”噪音干扰的问题倍受关注,相关人员对本地区15﹣65岁年龄段的市民进行了随机调查,并制作了如图相应的统计图.市民对“广场舞”噪音干扰的态度有以下五种:A.没影响B.影响不大C.有影响,建议做无声运动D.影响很大,建议取缔E.不关心这个问题根据以上信息解答下列问题:(1)根据统计图填空求m的值为多少,A区域所对应的扇形圆心角为多少度;(2)在此次调查中,“不关心这个问题”的有25人,请问一共调查了多少人?(3)将条形统计图补充完整.24.已知,在△ABC中,E,M,N分别是AB,AC,BC的中点,CF∥AB,连接MN,连接并延长EM,与直线CF交于F,连接FN交直线AB于点D,交AC于O点.(1)如图(1),BA=BC,求证:四边形FMNC为菱形;(2)如图(2),连接MB,NE,在不添加任何辅助线的情况下,请直接写出图(2)中的所有平行四边形(BE为边的除外).25.郑州市花卉种植专业户王有才承包了30亩花圃,分别种植康乃馨和玫瑰花,有关成本、销售额见下表:(1)2012年,王有才种植康乃馨20亩、玫瑰花10亩,求王有才这一年共收益多少万元?(收益=销售额﹣成本)(2)2013年,王有才继续用这30亩花圃全部种植康乃馨和玫瑰花,计划投入成本不超过70万元.若每亩种植的成本、销售额与2012年相同,要获得最大收益,他应种植康乃馨和玫瑰花各多少亩?(3)已知康乃馨每亩需要化肥500kg,玫瑰花每亩需要化肥700kg,根据(2)中的种植亩数,为了节约运输成本,实际使用的运输车辆每次装载化肥的总量是原计划每次装载总量的2倍,结果运输全部化肥比原计划减少2次.求王有才原定的运输车辆每次可装载化肥多少千克?26.如图,已知:PA切⊙O于A,割线PBC交⊙O于B,C,PD⊥AB于D,延长PD交AO的延长线于E,连接CE并延长,交⊙O于F,连接AF.(1)求证:PD•PE=PB•PC;(2)求证:PE∥AF;(3)连接AC,若AE:AC=1:,AB=2,求EF的长.27.如图,直线y=﹣x+3交y轴于点A,交x轴与点B,抛物线y=﹣x2+bx+c经过点A和点B,点P为抛物线上直线AB上方部分上的一点,且点P的横坐标为t,过P作PE∥x轴交直线AB于,作PH⊥x轴于H,PH交直线AB于点F.(1)求抛物线解析式;(2)若PE的长为m,求m关于t的函数关系式;(3)是否存在这样的t值,使得∠FOH﹣∠BEH=45°?若存在,求出t值,并求tan∠BEH的值,若不存在,请说明理由.参考答案与试题解析一、选择题1.下列计算正确的是()A.a+2a=3a2B.(a2b)3=a6b3 C.(a m)2=a m+2D.a3•a2=a6【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【专题】计算题.【分析】分别进行合并同类项、积的乘方和幂的乘方、同底数幂的乘法运算,然后选择正确答案.【解答】解:A、a+2a=3a,故A选项错误;B、(a2b)3=a6b3,故B选项正确;C、(a m)2=a2m,故C选项错误;D、a3•a2=a5,故D选项错误.故选:B.【点评】本题考查了积的乘方和幂的乘方、同底数幂的乘法、合并同类项等知识,掌握运算法则是解答本题的关键.2.比较﹣3,1,﹣2的大小,下列判断正确的是()A.﹣3<﹣2<1 B.﹣2<﹣3<1 C.1<﹣2<﹣3 D.1<﹣3<﹣2【考点】有理数大小比较.【分析】本题是对有理数的大小比较,根据有理数性质即可得出答案.【解答】解:有理数﹣3,1,﹣2的中,根据有理数的性质,∴﹣3<﹣2<0<1.故选:A.【点评】本题主要考查了有理数大小的判定,难度较小.3.根据世界贸易组织(WTO)秘书处初步统计数据,2013年中国货物进出口总额为4160000000000美元,超过美国成为世界第一货物贸易大国.将这个数据用科学记数法可以记为()A.4.16×1012美元B.4.16×1013美元C.0.416×1012美元D.416×1010美元【考点】科学记数法—表示较大的数.【专题】常规题型.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于4160000000000有13位,所以可以确定n=13﹣1=12.【解答】解:4 160 000 000 000=4.16×1012.故选:A.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.4.下列图形中,既是轴对称图形又是中心对称图形的是()A.B. C. D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、既是轴对称图形,也是中心对称图形,符合题意;B、是轴对称图形,不是中心对称图形,不符合题意;C、不是轴对称图形,是中心对称图形,不符合题意;D、是轴对称图形,不是中心对称图形,不符合题意.故选:A.【点评】本题考查了中心对称及轴对称的知识,解题时掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.如图,几何体是由一些正方体组合而成的立体图形,则这个几何体的左视图是()A. B.C.D.【考点】简单组合体的三视图.【专题】常规题型.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看第一层是两个正方形,第二层是左边一个正方形,故选:D.【点评】本题考查简单组合体的三视图,从左边看得到的图形是左视图.6.如图,△ABC中,D,E分别是边AB,AC的中点.若DE=2,则BC=()A.2 B.3 C.4 D.5【考点】三角形中位线定理.【分析】根据三角形的中位线平行于第三边并且等于第三边的一半可得BC=2DE.【解答】解:∵D,E分别是边AB,AC的中点,∴DE是△ABC的中位线,∴BC=2DE=2×2=4.故选:C.【点评】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,熟记定理是解题的关键.7.将一个n边形变成n+1边形,内角和将()A.减少180° B.增加90°C.增加180° D.增加360°【考点】多边形内角与外角.【专题】计算题.【分析】利用多边形的内角和公式即可求出答案.【解答】解:n边形的内角和是(n﹣2)•180°,n+1边形的内角和是(n﹣1)•180°,因而(n+1)边形的内角和比n边形的内角和大(n﹣1)•180°﹣(n﹣2)•180=180°.故选:C.【点评】本题主要考查了多边形的内角和公式,是需要识记的内容.8.一元二次方程x2﹣2x+m=0总有实数根,则m应满足的条件是()A.m>1 B.m=1 C.m<1 D.m≤1【考点】根的判别式.【分析】根据根的判别式,令△≥0,建立关于m的不等式,解答即可.【解答】解:∵方程x2﹣2x+m=0总有实数根,∴△≥0,即4﹣4m≥0,∴﹣4m≥﹣4,∴m≤1.故选:D.【点评】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.9.如图,反比例函数y=﹣在第二象限的图象上有两点A、B,它们的横坐标分别为﹣1,﹣3,直线AB与x轴交于点C,则△AOC的面积为()A.8 B.10 C.12 D.24【考点】反比例函数图象上点的坐标特征;坐标与图形性质;待定系数法求一次函数解析式.【专题】代数几何综合题;待定系数法.【分析】根据已知点横坐标得出其纵坐标,进而求出直线AB的解析式,求出直线AB与x轴横坐标交点,即可得出△AOC的面积.【解答】解:∵反比例函数y=﹣在第二象限的图象上有两点A、B,它们的横坐标分别为﹣1,﹣3,∴x=﹣1,y=6;x=﹣3,y=2,∴A(﹣1,6),B(﹣3,2),设直线AB的解析式为:y=kx+b,则,解得:,则直线AB的解析式是:y=2x+8,∴y=0时,x=﹣4,∴CO=4,∴△AOC的面积为:×6×4=12.故选:C.【点评】此题主要考查了反比例函数图象上点的坐标特征以及待定系数法求一次函数解析式,得出直线AB 的解析式是解题关键.10.甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲途中休息了0.5h,如图是甲乙两车行驶的距离y(km)与时间x(h)的函数图象,则下列叙述正确的个数为()(1)乙车的速度为80km/h(千米/小时);(2)a=40,m=1;(3)甲车共行驶了7h;(4)乙车一定行驶了h或h,两车恰好距离50km.A.1个B.2个C.3个D.4个【考点】一次函数的应用.【分析】(1)根据函数图象可得乙车行驶3.5﹣2=1小时与甲车相遇解答;(2)根据乙的速度,求出a的值和m的值解答;(3)再求出甲车行驶的路程y与时间x之间的解析式解答;(4)由解析式之间的关系建立方程解答.【解答】解:(1)120÷(3.5﹣2)=80km/h(千米/小时),故正确;(2)由题意,得m=1.5﹣0.5=1.120÷(3.5﹣0.5)=40(km/h),则a=40.故正确(3)当1.5<x≤7时,甲车y与x之间的函数关系式为y=40x﹣20,当y=260时,260=40x﹣20,解得:x=7,故正确(4)当0≤x≤1时,设甲车y与x之间的函数关系式为y=k1x,由题意,得:40=k1,则y=40x当1<x≤1.5时,y=40;当1.5<x≤7时,设甲车y与x之间的函数关系式为y=k2x+b,由题意,得:,解得:k2=40,b=﹣20,则y=40x﹣20.设乙车行驶的路程y与时间x之间的解析式为y=k3x+b3,由题意得:,解得:k3=80,b=﹣160,则y=80x﹣160.当40x﹣20﹣50=80x﹣160时,解得:x=.当40x﹣20+50=80x﹣160时,解得:x=.﹣2=,﹣2=.所以乙车行驶小时或小时,两车恰好相距50km,故正确.故选:D.【点评】本题考查了行程问题的数量关系的运用,待定系数法求一次函数的解析式的运用,一次函数与一元一次方程的运用,解答时求出一次函数的解析式是关键.二、填空题11.计算|﹣|+的值是.【考点】实数的运算.【专题】计算题.【分析】原式利用绝对值的代数意义化简,合并即可得到结果.【解答】解:原式=﹣+=,故答案为:【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.12.在函数y=中,自变量x的取值范围是x≠3.【考点】函数自变量的取值范围.【分析】根据分母不等于0列式计算即可得解.【解答】解:由题意得,3﹣x≠0,解得x≠3.故答案为:x≠3.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.13.因式分解:a3﹣4a=a(a+2)(a﹣2).【考点】提公因式法与公式法的综合运用.【专题】因式分解.【分析】首先提取公因式a,进而利用平方差公式分解因式得出即可.【解答】解:a3﹣4a=a(a2﹣4)=a(a+2)(a﹣2).故答案为:a(a+2)(a﹣2).【点评】此题主要考查了提取公因式法和公式法分解因式,熟练掌握平方差公式是解题关键.14.不等式组﹣2≤x+1<1的解集是﹣3≤x<0.【考点】解一元一次不等式组.【分析】分别解每一个不等式,再求解集的公共部分即可.【解答】解:解不等式﹣2≤x+1得x≥﹣3,解不等式x+1<1得x<0,故不等式组的解集为﹣3<x<0.故答案为:﹣3<x<0.【点评】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.15.方程=的根x=﹣1.【考点】解分式方程.【专题】计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x=﹣1,经检验x=﹣1是分式方程的解.故答案为:﹣1.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.16.在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中白球1个,黄球1个,红球2个,摸出一个球不放回,再摸出一个球,两次都摸到红球的概率是.【考点】列表法与树状图法.【专题】图表型.【分析】列举出所有情况,看两次都摸到红球的情况占总情况的多少即可.【解答】解:∴一共有12种情况,有2种情况两次都摸到红球,∴两次都摸到红球的概率是=.故答案为.【点评】本题考查了列表法与树状图法,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.17.如图,以AB为直径的⊙O与弦CD相交于点E,且AC=2,AE=,CE=1.则弧BD的长是.【考点】弧长的计算;垂径定理;解直角三角形.【分析】连接OC,先根据勾股定理判断出△ACE的形状,再由垂径定理得出CE=DE,故=,由锐角三角函数的定义求出∠A的度数,故可得出∠BOC的度数,求出OC的长,再根据弧长公式即可得出结论.【解答】解:连接OC,∵△ACE中,AC=2,AE=,CE=1,∴AE2+CE2=AC2,∴△ACE是直角三角形,即AE⊥CD,∵sinA==,∴∠A=30°,∴∠COE=60°,∴=sin∠COE,即=,解得OC=,∵AE⊥CD,∴=,∴===.故答案是:.【点评】本题考查的是垂径定理,涉及到直角三角形的性质、弧长公式等知识,难度适中.18.在△ABC中,AB=AC,AB的中垂线于AC所在的直线相交所得的锐角为40°,则底角∠B的大小为65°或25°.【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】作出图形,分①DE与线段AC相交时,根据直角三角形两锐角互余求出∠A,再根据等腰三角形两底角相等列式计算即可得解;②DE与CA的延长线相交时,根据直角三角形两锐角互余求出∠EAD,再求出∠BAC,然后根据等腰三角形两底角相等列式计算即可得解.【解答】解:①DE与线段AC相交时,如图1,∵DE是AB的垂直平分线,∠AED=40°,∴∠A=90°﹣∠AED=90°﹣40°=50°,∵AB=AC,∴∠ABC=(180°﹣∠A)=(180°﹣50°)=65°;②DE与CA的延长线相交时,如图2,∵DE是AB的垂直平分线,∠AED=40°,∴∠EAD=90°﹣∠AED=90°﹣40°=50°,∴∠BAC=180°﹣∠EAD=180°﹣50°=130°,∵AB=AC,∴∠ABC=(180°﹣∠BAC)=(180°﹣130°)=25°,综上所述,等腰△ABC的底角∠B的大小为65°或25°.故答案为:65°或25°.【点评】本题考查了线段垂直平分线上的性质,等腰三角形两底角相等的性质,直角三角形两锐角互余的性质,难点在于要分情况讨论,作出图形更形象直观.19.如图,已知△ABC是等边三角形,AB=4+2,点D在AB上,点E在AC上,△ADE沿DE折叠后点A恰好落在BC上的A′点,且DA′⊥BC.则A′B的长是2.【考点】翻折变换(折叠问题).【专题】几何综合题.【分析】设A′B=x,根据等边三角形的性质可得∠B=60°,根据直角三角形两锐角互余求出∠BDA′=30°,再根据直角三角形30°角所对的直角边等于斜边的一半可得BD=2A′B,然后利用勾股定理列式表示出A′D,再根据翻折的性质可得AD=A′D,最后根据AB=BD+AD列出方程求解即可.【解答】解:设A′B=x,∵△ABC是等边三角形,∴∠B=60°,∵DA′⊥BC,∴∠BDA′=90°﹣60°=30°,∴BD=2A′B=2x,由勾股定理得,A′D===x,由翻折的性质得,AD=A′D=x,所以,AB=BD+AD=2x+x=4+2,解得x=2,即A′B=2.故答案为:2.【点评】本题考查了翻折变换的性质,等边三角形的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,勾股定理,熟记各性质并用A′B表示出相关的线段是解题的关键.20.如图,四边形ABCD中,AC、BD是对角线,△ABC是等边三角形,∠ADC=30°,AD=3,BD=5,则△ACD的面积为3.【考点】全等三角形的判定与性质;勾股定理.【专题】计算题.【分析】如图,以CD为边作等边△CDE,连接AE,根据三角形ABC与三角形CDE为等边三角形,利用等边三角形的性质得到两对边相等,利用等式的性质得到夹角相等,利用SAS得到三角形BCD与三角形ACE 全等,利用全等三角形对应边相等得到BD=AE,求出AE的长,由∠ADC+∠CDE=∠ADE=90°,得到三角形ADE为直角三角形,利用勾股定理求出DE的长,即为DC的长,在三角形ADC中,利用三角形的面积公式即可求出三角形ADC面积.【解答】解:如图,以CD为边作等边△CDE,连接AE,∵△ABC与△CDE为等边三角形,∴∠BCD=∠BCA+∠ACD=∠DCE+∠ACD=∠ACE,在△BCD和△ACE中,,∴△BCD≌△ACE(SAS),∴BD=AE,∵∠ADC=30°,∴∠ADE=90°,在Rt△ADE中,AE=5,AD=3,根据勾股定理得:DE==4,∴CD=DE=4,则S=AD•DC•sin30°=×3×4×=3.故答案为:3.【点评】此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.三、解答题21.先化简,再求值:,其中x=cos30°+tan45°.【考点】分式的化简求值;特殊角的三角函数值.【分析】先根据分式混合运算的法则把原式进行化简,再求出x的值代入进行计算即可.【解答】解:原式=÷=÷=•=,∵x=cos30°+tan45°=+1,∴原式==+.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.22.如图所示,正方形网格中,△ABC为格点三角形(即三角形的顶点都在格点上).(1)把△ABC沿BA方向平移后,点A移到点A1,在网格中画出平移后得到的△A1B1C1;(2)把△A1B1C1绕点A1按逆时针方向旋转90°,在网格中画出旋转后的△A1B2C2;(3)如果网格中小正方形的边长为1,求点B经过(1)、(2)变换的路径总长.【考点】作图-旋转变换;作图-平移变换.【分析】(1)按A到A1的平移方向和平移距离,即可得到B和C对应点,从而得到平移后的图形;(2)把B1和C1绕点A1旋转90°,得到对应点即可得到对应图形;(3)利用勾股定理和弧长公式即可求解.【解答】解:(1)△A1B1C1就是所求的图形;(2)△A1B2C2就是所求的图形;(3)B到B1的路径长是:=2,B1到B2的路径长是:=π.则路径总长是:2+π.【点评】本题考查了图形的平移和旋转,以及弧长公式,理解图象的旋转过程中每个点经过的路径是弧是关键.23.近年来,各地“广场舞”噪音干扰的问题倍受关注,相关人员对本地区15﹣65岁年龄段的市民进行了随机调查,并制作了如图相应的统计图.市民对“广场舞”噪音干扰的态度有以下五种:A.没影响B.影响不大C.有影响,建议做无声运动D.影响很大,建议取缔E.不关心这个问题根据以上信息解答下列问题:(1)根据统计图填空求m的值为多少,A区域所对应的扇形圆心角为多少度;(2)在此次调查中,“不关心这个问题”的有25人,请问一共调查了多少人?(3)将条形统计图补充完整.【考点】条形统计图;扇形统计图.【分析】(1)根据有理数的减法,可得m的值;根据A类所占的百分比乘以360°,可得答案;(2)根据E类的人数除以E类所占的百分比,可得答案;(3)根据调查的人数乘以给出建议的人数所占的百分比,可得给出建议的人数,再根据有理数的减法,可得25﹣35的人数,根据25﹣35的人数,可得答案.【解答】解:(1)m%=1﹣33%﹣20%﹣5%﹣10%=32%,m=32,A区域所对应的圆心角,20%×360°=72°;(2)一共调查的人数为25÷5%=500人,(3)500×(32%+10%)=210(人),25﹣35岁的人数为210﹣30﹣70﹣40﹣10=60(人),将条形统计图补充完整如图所示.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.已知,在△ABC中,E,M,N分别是AB,AC,BC的中点,CF∥AB,连接MN,连接并延长EM,与直线CF交于F,连接FN交直线AB于点D,交AC于O点.(1)如图(1),BA=BC,求证:四边形FMNC为菱形;(2)如图(2),连接MB,NE,在不添加任何辅助线的情况下,请直接写出图(2)中的所有平行四边形(BE为边的除外).【考点】菱形的判定;平行四边形的判定.【分析】(1)首先利用三角形中位线的性质得出ME BC,MN AB,进而利用平行四边形的判定和菱形的判定方法得出即可;(2)利用三角形中位线的性质结合平行四边形的判定得出即可.【解答】(1)证明:∵E,M,N分别是AB,AC,BC的中点,BA=BC,∴ME BC,MN AB,∴四边形MEBN是平行四边形,又∵ME=MN,∴四边形FMNC为菱形;(2)解:所有平行四边形(BE为边的除外)有:▱FMNC,▱MAEN,▱MBDN,▱FMBN,▱MENC.【点评】此题主要考查了菱形的判定和平行四边形的判定等知识,熟练应用三角形中位线定理是解题关键.25.郑州市花卉种植专业户王有才承包了30亩花圃,分别种植康乃馨和玫瑰花,有关成本、销售额见下表:(1)2012年,王有才种植康乃馨20亩、玫瑰花10亩,求王有才这一年共收益多少万元?(收益=销售额﹣成本)(2)2013年,王有才继续用这30亩花圃全部种植康乃馨和玫瑰花,计划投入成本不超过70万元.若每亩种植的成本、销售额与2012年相同,要获得最大收益,他应种植康乃馨和玫瑰花各多少亩?(3)已知康乃馨每亩需要化肥500kg,玫瑰花每亩需要化肥700kg,根据(2)中的种植亩数,为了节约运输成本,实际使用的运输车辆每次装载化肥的总量是原计划每次装载总量的2倍,结果运输全部化肥比原计划减少2次.求王有才原定的运输车辆每次可装载化肥多少千克?【考点】一次函数的应用;分式方程的应用;一元一次不等式的应用.【专题】应用题.【分析】(1)根据一年的收益等于两种花的收益之和列式计算即可得解;(2)设种康乃馨x亩,则种玫瑰花(30﹣x)亩,根据总成本列出不等式求出x的取值范围,然后设总收益为W,表示出收益的函数关系式,再根据一次函数的增减性解答;(3)设原定运输车辆每次可装载话费mkg,根据实际运输的饲料比原计划运输的饲料减少了2次列出方程,求解即可.【解答】解:(1)由题意得,20×(3﹣2.4)+10×(2.5﹣2)=20×0.6+10×0.5=17(万元),答:王有才这一年共收益17万元;(2)设种康乃馨x亩,则种玫瑰花(30﹣x)亩,根据题意得,2.4x+2(30﹣x)≤70,解得:x≤25,设总收益为W,则W=(3﹣2.4)x+(2.5﹣2)×(30﹣x),=0.1x+15,∵k=0.1>0,∴W随x的增大而增大,∴当x=25时,获得最大收益,答:要获得最大收益,应种植康乃馨25亩,种植玫瑰花5亩;(3)设原定运输车辆每次可装载饲料mkg,则实际每次装载2mkg,需要运输的饲料吨数为:500×25+700×5=16000kg,根据题意得,﹣=2,解得:m=4000,经检验,m=4000是原方程的解.答:王有才原定的运输车辆每次可装载花肥4 000 kg.【点评】本题考查了一次函数的应用以及分式方程的应用,表示出与总收益的函数关系式,找出题中等量关系并列出方程是解题的关键.26.如图,已知:PA切⊙O于A,割线PBC交⊙O于B,C,PD⊥AB于D,延长PD交AO的延长线于E,连接CE并延长,交⊙O于F,连接AF.(1)求证:PD•PE=PB•PC;(2)求证:PE∥AF;(3)连接AC,若AE:AC=1:,AB=2,求EF的长.【考点】切线的性质;切割线定理;相似三角形的判定与性质.【专题】证明题;综合题.【分析】(1)欲证PD•PE=PB•PC,在此题所给的已知条件中,∠APE的余弦值在△APD和△APE中,有两种表示方法,从而得出一个等积式,根据切割线定理,再得到一个等积式,从而借助于PA2得到PD•PE=PB•PC;(2)可证△PBD∽△PEC,再根据相似三角形的性质和圆内接四边形的性质得到∠PEC=∠AFC,根据平行线的判定即可得出结论;(3)分别证明△PAB∽△PCA,△AEF∽△APB,得出两个比例式,联立有=,再代值即可求出EF的长.【解答】(1)证明:∵PA切⊙O于点A,∴AO⊥PA.∵PD⊥AB,∴=cos∠APE=.∴PA2=PD×PE…①∵PBC是⊙O的割线,PA为⊙O切线,∴PA2=PB×PC…②联立①②,得PD•PE=PB•PC;(2)证明:∵PD•PE=PB•PC(已证),∴,∵∠BPD为公共角,∴△BDP∽△EPC,∴∠PBD=∠PEC,∵四边形ABCF内接圆,∴∠ABP=∠AFC,∴∠AFC=∠PEC,∴PE∥AP;(3)解:∵AP是⊙O的切线,∴∠PAB=∠PCA,∵∠APB=∠CPA,∴△PAB∽△PCA,∴=…①,∵∠PAE=∠ADP=90°,∴∠APD+∠PAD=90°,∠APD+∠AEP=90°,∴∠PAB=∠AEP=∠FAE,∵∠ABP=∠F,∴△AEF∽△APB,∴=,即=…②联立①②,有=,∴EF=AE×=×2=.【点评】此题考查了三角函数、切割线定理,以及相似的判定和性质,比较全面,有一定的难度.27.如图,直线y=﹣x+3交y轴于点A,交x轴与点B,抛物线y=﹣x2+bx+c经过点A和点B,点P为抛物线上直线AB上方部分上的一点,且点P的横坐标为t,过P作PE∥x轴交直线AB于,作PH⊥x轴于H,PH交直线AB于点F.(1)求抛物线解析式;(2)若PE的长为m,求m关于t的函数关系式;(3)是否存在这样的t值,使得∠FOH﹣∠BEH=45°?若存在,求出t值,并求tan∠BEH的值,若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)由直线AB的解析式可求得A、B两点的坐标,代入抛物线解析式可求得b、c,可求得抛物线解析式;(2)由P点坐标表示出E点的纵坐标,代入直线AB解析式,可求得E点横坐标,则可用t表示出PE的长,可得到m关于t的函数关系式;(3)过E作EG⊥x轴于点G,则可用t表示出GH和EG,由三角形外角的性质和已知条件可证得∠EHG=∠FOH,可证明△FOH∽△EHG,根据相似三角形的性质可求得t的值,则可求得tan∠EHG,结合∠BEH=∠FOH﹣45°,则可求得tan∠BEH的值.【解答】解:(1)在直线y=﹣x+3中,令x=0可得y=3,令y=0可得x=3,∴A(0,3),B(3,0),∵抛物线y=﹣x2+bx+c过A、B两点,∴把A、B两点的坐标代入可得,解得,∴抛物线解析式为y=﹣x2+2x+3;(2)∵P点在抛物线上,∴P点坐标为(t,﹣t2+2t+3),∵PE∥x轴,∴E点纵坐标为﹣t2+2t+3,。

2018届中考数学二模试卷(带答案) (2)

2018届中考数学二模试卷(带答案)  (2)

2018年中考数学二模试卷一、选择题(本大题共12小题,共36分.每小题只有一个选项符合题意.请考生用2B铅笔在答题卷上将选定的答案标号涂黑)1.在平面直角坐标系中,下面的点在第一象限的是()A.(1,2) B.(﹣2,3)C.(0,0) D.(﹣3,﹣2)2.计算:﹣1﹣2=()A.1 B.﹣1 C.﹣2 D.﹣33.下列长度的三条线段能组成三角形的是()A.1,2,3 B.3,4,5 C.3,1,1 D.3,4,74.在Rt△ABC中,∠C=90°,AB=5,BC=3,则∠A的余弦值为()A.B.C.D.5.一个几何体的三视图完全相同,该几何体可以是()A.圆锥 B.圆柱 C.长方体D.球6.下列计算正确的是()A.(a+b)2=a2+b2B.(﹣2a)3=﹣6a3C.(a2b)3=a5b2 D.(﹣a)6÷(﹣a)2=a47.下列事件中,属于确定事件的个数是()(1)打开电视,正在播广告;(2)投掷一枚普通的骰子,掷得的点数小于10;(3)射击运动员射击一次,命中10环;(4)在一个只装有红球的袋中摸出白球.A.0 B.1 C.2 D.38.不等式组的解集在数轴上可表示为()A.B.C.D.9.如果一个多边形的内角和是其外角和的一半,那么这个多边形是()A.六边形B.五边形C.四边形D.三角形10.计算﹣的结果是()A.﹣B.C.D.11.方程:+=1的解是()A.x=﹣1 B.x=3 C.x=﹣1或x=3 D.x=1或x=﹣31212.如图,在平面直角坐标系中有一正方形AOBC,反比例函数y=经过正方形AOBC对角线的交点,半径为(4﹣2)的圆内切于△ABC,则k的值为()A.4B.4 C.2D.2二、填空题(本大题共6小题,每小题3分,共18分,请把答案填写在答题卷指定的位置上)13.若二次根式有意义,则x的取值范围是.14.“神舟七号”舱门除了有气压外,还有光压,开门最省力也需要用大约568000斤的臂力.用科学记数法表示568000为.15.分解因式:1﹣x2=.16.甲、乙、丙、丁四位同学在本学期的四次数学测试中,他们成绩的平均数相同,方差分别为S甲2=5.5,S乙2=7.3,S丙2=8.6,S丁2=4.5,则成绩最稳定的是.17.如图,以O为位似中心,把五边形ABCDE的面积扩大为原来的4倍,得五边形A 1B1C1D1E1,则OD:OD1=.18.点E是平行四边形ABCD边BC的中点,平行四边形ABCD的面积是m,则四边形ABEF的面积是.三、解答题(本大题共8小题,共66分,解答应写出文字说明、证明过程或验算步骤)19.计算:4cos45°+(﹣1)2015﹣+()﹣2.20.如图,方格纸中的每个小正方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC 的顶点均在格点上,O、M都在格点上.(1)画出△ABC关于直线OM对称的△A1B1C1;(2)画出将△ABC绕点O按顺时针方向旋转90°后得到的△A2B2C2(3)△A1B1C1与△A2B2C2组成的图形是轴对称图形码?如果是轴对称图形,请画出对称轴.21.已知:如图,在△ABC中,∠A=30°,∠B=60°.(1)作∠B的平分线BD,交AC于点D;作AB的中点E(要求:尺规作图,保留作图痕迹,不必写作法和证明);(2)连接DE,求证:△ADE≌△BDE.22.小明对所在班级的“小书库”进行了分类统计,并制作了如下的统计图表:根据上述信息,完成下列问题:(1)图书总册数是册,a=册;(2)请将条形统计图补充完整;(3)数据22,20,18,a,12,14中的众数是,极差是;(4)小明从这些书中任意拿一册来阅读,求他恰好拿到数学或英语书的概率.23.某商店第一次用3000元购进某款书包,很快卖完,第二次又用2400元购进该款书包,但这次每个书包的进价是第一次进价的1.2倍,数量比第一次少了20个.(1)求第一次每个书包的进价是多少元?(2)若第二次进货后按80元/个的价格销售,恰好销售完一半时,根据市场情况,商店决定对剩余的书包全部按同一标准一次性打折销售,但要求这次的利润不少于480元,问最低可打几折?24.已知反比例函数y1=的图象与一次函数y2=ax+b的图象交于点A(1,4)和点B(m,﹣2),(1)求这两个函数的关系式;(2)观察图象,写出使得y1>y2成立的自变量x的取值范围;(3)如果点C与点A关于x轴对称,求△ABC的面积.25.如图,点P是菱形ABCD的对角线BD上一点,连接CP并延长,交AD于E,交BA的延长线于F.(1)求证:∠DCP=∠DAP;(2)若AB=2,DP:PB=1:2,且PA⊥BF,求对角线BD的长.26.如图,半径为1的⊙M经过直角坐标系的原点O,且分别与x轴正半轴、y轴正半轴交于点A、B,∠OMA=60°,过点B的切线交x轴负半轴于点C,抛物线过点A、B、C.(1)求点A、B的坐标;(2)求抛物线的函数关系式;(3)若点D为抛物线对称轴上的一个动点,问是否存在这样的点D,使得△BCD是等腰三角形?若存在,求出符合条件的点D的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(本大题共12小题,共36分.每小题只有一个选项符合题意.请考生用2B铅笔在答题卷上将选定的答案标号涂黑)2.在平面直角坐标系中,下面的点在第一象限的是()A.(1,2) B.(﹣2,3)C.(0,0) D.(﹣3,﹣2)【考点】点的坐标.【专题】计算题.【分析】满足点在第一象限的条件是:横坐标是正数,纵坐标也是正数,结合选项进行判断即可.【解答】解:因为第一象限的条件是:横坐标是正数,纵坐标也是正数,而各选项中符合纵坐标为正,横坐标也正的只有A(1,2).故选:A.【点评】本题主要考查了平面直角坐标系中第四象限的点的坐标的符号特点,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).1.计算:﹣1﹣2=()A.1 B.﹣1 C.﹣2 D.﹣3【考点】有理数的减法.【分析】根据有理数的减法运算进行计算即可得解.【解答】解:﹣1﹣2=﹣3,故选D.【点评】本题考查了有理数的减法,将有理数转化为加法时,要同时改变两个符号:一是运算符号(减号变加号);二是减数的性质符号(减数变相反数).3.下列长度的三条线段能组成三角形的是()A.1,2,3 B.3,4,5 C.3,1,1 D.3,4,7【考点】三角形三边关系.【专题】应用题.【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”进行分析.【解答】解:根据三角形的三边关系,知A、1+2=3,不能组成三角形,故A错误;B、3+4>5,能够组成三角形;故B正确;C、1+1<3,不能组成三角形;故C错误;D、3+4=7,不能组成三角形,故D错误.故选:B.【点评】本题考查了三角形的三边关系,判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数,难度适中.4.在Rt△ABC中,∠C=90°,AB=5,BC=3,则∠A的余弦值为()A.B.C.D.【考点】锐角三角函数的定义;勾股定理.【专题】计算题.【分析】先根据勾股定理,求出AC的值,然后再由余弦=邻边÷斜边计算即可.【解答】解:在Rt△ABC中,∵∠C=90°,AB=5,BC=3,∴AC=4,∴cosA==.故选C.【点评】本题考查了锐角三角函数的定义和勾股定理,牢记定义和定理是解题的关键.5.一个几何体的三视图完全相同,该几何体可以是()A.圆锥 B.圆柱 C.长方体D.球【考点】由三视图判断几何体.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:A、圆锥的主视图、左视图都是三角形,俯视图是圆形;故本选项错误;B、圆柱的主视图、左视图都是长方形,俯视图是圆形;故本选项错误;C、长方体的主视图为长方形、左视图为长方形或正方形、俯视图为长方形或正方形;故本选项错误;D、球体的主视图、左视图、俯视图都是圆形;故本选项正确.故选D.【点评】本题考查了简单几何体的三视图,锻炼了学生的空间想象能力.6.下列计算正确的是()A.(a+b)2=a2+b2B.(﹣2a)3=﹣6a3C.(a2b)3=a5b2 D.(﹣a)6÷(﹣a)2=a4【考点】同底数幂的除法;幂的乘方与积的乘方;完全平方公式.【分析】根据完全平方公式、幂的乘方和同底数幂的除法计算判断即可.【解答】解:A、(a+b)2=a2+2ab+b2,错误;B、(﹣2a)3=﹣8a3,错误;C、(a2b)3=a6b3,错误;D、(﹣a)6÷(﹣a)2=a4,正确;故选D.【点评】此题考查完全平方公式、幂的乘方和同底数幂的除法,关键是根据法则进行计算.7.下列事件中,属于确定事件的个数是()(1)打开电视,正在播广告;(2)投掷一枚普通的骰子,掷得的点数小于10;(3)射击运动员射击一次,命中10环;(4)在一个只装有红球的袋中摸出白球.A.0 B.1 C.2 D.3【考点】随机事件.【分析】确定事件就是一定发生的事件或一定不会发生的事件,根据定义即可确定.【解答】解:(1)(3)属于随机事件;(4)是不可能事件,属于确定事件;(2)是必然事件,属于确定事件;故属于确定事件的个数是2,故选:C.【点评】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.8.不等式组的解集在数轴上可表示为()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【专题】计算题.【分析】首先解出不等式组x的取值范围,然后根据x的取值范围,找出正确答案;【解答】解:不等式组,解①得:x≥﹣1,解②得:x<2,则不等式组的解集是:﹣1≤x<2.故选B.【点评】本题考查了不等式组的解法及在数轴上表示不等式的解集,把不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.9.如果一个多边形的内角和是其外角和的一半,那么这个多边形是()A.六边形B.五边形C.四边形D.三角形【考点】多边形内角与外角.【专题】应用题.【分析】任何多边形的外角和是360度,内角和等于外角和的一半则内角和是180度,可知此多边形为三角形.【解答】解:根据题意,得(n﹣2)•180°=180°,解得:n=3.故选D.【点评】本题主要考查了已知多边形的内角和求边数,可以转化为方程的问题来解决,难度适中.10.计算﹣的结果是()A.﹣B.C.D.【考点】分式的加减法.【分析】首先通分,然后根据同分母的分式加减运算法则求解即可求得答案.【解答】解:﹣===﹣.故选A.【点评】此题考查了分式的加减运算法则.题目比较简单,注意解题需细心.11.方程:+=1的解是()A.x=﹣1 B.x=3 C.x=﹣1或x=3 D.x=1或x=﹣312【考点】解分式方程.【专题】计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x+3=x2,即(x﹣3)(x+1)=0,解得:x=3或x=﹣1,经检验x=3与x=﹣1都为分式方程的解.故选C.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.12.如图,在平面直角坐标系中有一正方形AOBC,反比例函数y=经过正方形AOBC对角线的交点,半径为(4﹣2)的圆内切于△ABC,则k的值为()A.4B.4 C.2D.2【考点】反比例函数综合题.【分析】根据正方形的性质得出AD=BD=DO=CD,NO=DN,HQ=QE,HC=CE,进而根据半径为(4﹣2)的圆内切于△ABC,得出CD的长,从而得出DO的长,再利用勾股定理得出DN的长进而得出k的值.【解答】解:设正方形对角线交点为D,过点D作DM⊥AO于点M,DN⊥BO于点N;设圆心为Q,切点为H、E,连接QH、QE.∵在正方形AOBC中,反比例函数y=经过正方形AOBC对角线的交点,∴AD=BD=DO=CD,NO=DN,HQ=QE,HC=CE,QH⊥AC,QE⊥BC,∠ACB=90°,∴四边形HQEC是正方形,∵半径为(4﹣2)的圆内切于△ABC,∴DO=CD,∵HQ2+HC2=QC2,∴2HQ2=QC2=2×(4﹣2)2,∴QC2=48﹣32=(4﹣4)2,∴QC=4﹣4,∴CD=4﹣4+(4﹣2)=2,∴DO=2,∵NO2+DN2=DO2=(2)2=8,∴2NO2=8,∴NO2=4,∴DN×NO=4,即:xy=k=4.故选B.【点评】本题考查了反比例函数综合题,涉及正方形的性质以及三角形内切圆的性质以及待定系数法求反比例函数解析式,根据已知求出CD的长度,进而得出DN×NO=4是解决问题的关键.二、填空题(本大题共6小题,每小题3分,共18分,请把答案填写在答题卷指定的位置上)13.若二次根式有意义,则x的取值范围是x≥1.【考点】二次根式有意义的条件.【分析】根据二次根式的性质可知,被开方数大于等于0,列出不等式即可求出x的取值范围.【解答】解:根据二次根式有意义的条件,x﹣1≥0,∴x≥1.故答案为:x≥1.【点评】此题考查了二次根式有意义的条件,只要保证被开方数为非负数即可.14.“神舟七号”舱门除了有气压外,还有光压,开门最省力也需要用大约568000斤的臂力.用科学记数法表示568000为 5.68×105.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于568000有6位,所以可以确定n=6﹣1=5.【解答】解:568 000=5.68×105.故答案为:5.68×105.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.15.分解因式:1﹣x2=(1+x)(1﹣x).【考点】因式分解-运用公式法.【专题】因式分解.【分析】分解因式1﹣x2中,可知是2项式,没有公因式,用平方差公式分解即可.【解答】解:1﹣x2=(1+x)(1﹣x).故答案为:(1+x)(1﹣x).【点评】本题考查了因式分解﹣运用公式法,熟练掌握平方差公式的结构特点是解题的关键.16.甲、乙、丙、丁四位同学在本学期的四次数学测试中,他们成绩的平均数相同,方差分别为S甲2=5.5,S乙2=7.3,S丙2=8.6,S丁2=4.5,则成绩最稳定的是丁.【考点】方差.【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:∵S甲2=5.5,S乙2=7.3,S丙2=8.6,S丁2=4.5,丁的方差最小,∴成绩最稳定的是丁同学,故答案为:丁.【点评】此题主要考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.17.如图,以O为位似中心,把五边形ABCDE的面积扩大为原来的4倍,得五边形A1B1C1D1E1,则OD:OD1=1:2.【考点】位似变换.【分析】根据五边形ABCDE的面积扩大为原来的4倍,利用相似图形面积的比等于相似比的平方,即可得出答案.【解答】解:∵以O为位似中心,把五边形ABCDE的面积扩大为原来的4倍,得五边形A1B1C1D1E1,则OD:OD1=1:2,故答案为:1:2.【点评】此题主要考查位似图形的性质,根据面积的比等于相似比的平方是解决问题的关键.18.点E是平行四边形ABCD边BC的中点,平行四边形ABCD的面积是m,则四边形ABEF的面积是m.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】设出△EFC的面积为a,根据△AFD∽△CFE和AD=2EC,求出△AFD的面积,根据DF=2FE,求出△DFC的面积,计算得到a=m,得到答案.【解答】解:设△EFC的面积为a,∵E是BC的中点,∴BC=2EC,则AD=2EC,∵AD∥BC,∴△AFD∽△CFE,∴△AFD的面积为4a,∵DF=2FE,∴△DFC的面积为2a,∴△ADC的面积为6a,则四边形ABEF的面积为5a,又∵平行四边形ABCD的面积是m,即12a=m,a=m,∴四边形ABEF的面积m.故答案为:m.【点评】本题考查的是面积的计算,掌握相似三角形的面积比等于相似比的平方是解题的关键,解答时,注意等高的两个三角形的面积比等于底的比.三、解答题(本大题共8小题,共66分,解答应写出文字说明、证明过程或验算步骤)19.计算:4cos45°+(﹣1)2015﹣+()﹣2.【考点】实数的运算;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】原式第一项利用特殊角的三角函数值计算,第二项利用乘方的意义计算,最后一项利用负整数指数幂法则计算即可得到结果.【解答】解:原式=4×﹣1﹣+36=2﹣+35.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.如图,方格纸中的每个小正方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC 的顶点均在格点上,O、M都在格点上.(1)画出△ABC关于直线OM对称的△A1B1C1;(2)画出将△ABC绕点O按顺时针方向旋转90°后得到的△A2B2C2(3)△A1B1C1与△A2B2C2组成的图形是轴对称图形码?如果是轴对称图形,请画出对称轴.【考点】作图-旋转变换;作图-轴对称变换.【专题】作图题.【分析】(1)根据网格结构找出点A、B、C关于直线OM的对称点A1、B1、C1的位置,然后顺次连接即可;(2)根据网格结构找出点A、B、C绕点O顺时针旋转90°后的对应点A2、B2、C2的位置,然后顺次连接即可;(3)根据轴对称的概念作出判断并画出对称轴.【解答】解:(1)△A1B1C1如图;(2)△A2B2C2如图;(3)是轴对称,如图直线l为对称轴.【点评】本题考查了利用旋转变换作图,利用轴对称变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.21.已知:如图,在△ABC中,∠A=30°,∠B=60°.(1)作∠B的平分线BD,交AC于点D;作AB的中点E(要求:尺规作图,保留作图痕迹,不必写作法和证明);(2)连接DE,求证:△ADE≌△BDE.【考点】作图—复杂作图;全等三角形的判定.【专题】压轴题.【分析】(1)①以B为圆心,任意长为半径画弧,交AB、BC于F、N,再以F、N为圆心,大于FN长为半径画弧,两弧交于点M,过B、M画射线,交AC于D,线段BD就是∠B的平分线;②分别以A、B为圆心,大于AB长为半径画弧,两弧交于X、Y,过X、Y画直线与AB交于点E,点E 就是AB的中点;(2)首先根据角平分线的性质可得∠ABD的度数,进而得到∠ABD=∠A,根据等角对等边可得AD=BD,再加上条件AE=BE,ED=ED,即可利用SSS证明△ADE≌△BDE.【解答】解:(1)作出∠B的平分线BD;作出AB的中点E.(2)证明:∵∠ABD=×60°=30°,∠A=30°,∴∠ABD=∠A,∴AD=BD,在△ADE和△BDE中∴△ADE≌△BDE(SSS).【点评】此题主要考查了复杂作图,以及全等三角形的判定,关键是掌握基本作图的方法和证明三角形全等的判定方法.22.小明对所在班级的“小书库”进行了分类统计,并制作了如下的统计图表:根据上述信息,完成下列问题:(1)图书总册数是100册,a=14册;(2)请将条形统计图补充完整;(3)数据22,20,18,a,12,14中的众数是14,极差是10;(4)小明从这些书中任意拿一册来阅读,求他恰好拿到数学或英语书的概率.【考点】条形统计图;众数;极差;概率公式.【专题】数形结合.【分析】(1)用其他类的册数除以频率即可求出总本数,再减去已知的本书即可求出a的值.(2)根据上题求出的结果将统计图补充完整即可.(3)根据众数与极差的概念直接解答即可.(4)根据概率的求法,用数学与英语书的总本数除以总本数即可解答.【解答】解:(1)总本数=14÷0.14=100本,a=100﹣22﹣20﹣18=12﹣14=14本.(2)如图:(3)数据22,20,18,a,12,14中a=14,所以众数是14,极差是22﹣12=10;(4)(20+18)÷100=0.38,即恰好拿到数学或英语书的概率为0.38.故答案为100,14,14,10.【点评】本题考查的是条形统计图和统计表的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.23.某商店第一次用3000元购进某款书包,很快卖完,第二次又用2400元购进该款书包,但这次每个书包的进价是第一次进价的1.2倍,数量比第一次少了20个.(1)求第一次每个书包的进价是多少元?(2)若第二次进货后按80元/个的价格销售,恰好销售完一半时,根据市场情况,商店决定对剩余的书包全部按同一标准一次性打折销售,但要求这次的利润不少于480元,问最低可打几折?【考点】分式方程的应用;一元一次不等式的应用.【分析】(1)设第一次每个书包的进价是x元,根据某商店第一次用300元购进某款书包,很快卖完,第二次又用2400元购进该款书包,但这次每个书包的进价是第一次进价的1.2倍,数量比第一次少了20个可列方程求解.(2)设最低可以打x折,根据若第二次进货后按80元/个的价格销售,恰好销售完一半时,根据市场情况,商店决定对剩余的书包全部按同一标准一次性打折销售,但要求这次的利润不少于480元,可列出不等式求解.【解答】解:(1)设第一次每个书包的进价是x元,﹣20=x=50.经检验得出x=50是原方程的解,且符合题意,答:第一次书包的进价是50元.(2)设最低可以打y折.2400÷(50×1.2)=4080×20+80×0.1y•20﹣2400≥480y≥8故最低打8折.【点评】本题考查理解题意能力,第一问以数量做为等量关系列方程求解,第二问以利润做为不等量关系列不等式求解.24.已知反比例函数y1=的图象与一次函数y2=ax+b的图象交于点A(1,4)和点B(m,﹣2),(1)求这两个函数的关系式;(2)观察图象,写出使得y1>y2成立的自变量x的取值范围;(3)如果点C与点A关于x轴对称,求△ABC的面积.【考点】反比例函数与一次函数的交点问题.【专题】计算题.【分析】(1)先根据点A的坐标求出反比例函数的解析式为y1=,再求出B的坐标是(﹣2,﹣2),利用待定系数法求一次函数的解析式;(2)当一次函数的值小于反比例函数的值时,直线在双曲线的下方,直接根据图象写出一次函数的值小于反比例函数的值x的取值范围x<﹣2 或0<x<1.(3)根据坐标与线段的转换可得出:AC、BD的长,然后根据三角形的面积公式即可求出答案.【解答】解:(1)∵函数y1=的图象过点A(1,4),即4=,∴k=4,即y1=,又∵点B(m,﹣2)在y1=上,∴m=﹣2,∴B(﹣2,﹣2),又∵一次函数y2=ax+b过A、B两点,即,解之得.∴y2=2x+2.综上可得y1=,y2=2x+2.(2)要使y1>y2,即函数y1的图象总在函数y2的图象上方,如图所示:当x<﹣2 或0<x<1时y1>y2.(3)由图形及题意可得:AC=8,BD=3,∴△ABC的面积S△ABC=AC×BD=×8×3=12.【点评】本题主要考查了待定系数法求反比例函数与一次函数的解析式.以及三角形面积的求法,这里体现了数形结合的思想.25.如图,点P是菱形ABCD的对角线BD上一点,连接CP并延长,交AD于E,交BA的延长线于F.(1)求证:∠DCP=∠DAP;(2)若AB=2,DP:PB=1:2,且PA⊥BF,求对角线BD的长.【考点】相似三角形的判定与性质;全等三角形的判定与性质;勾股定理;菱形的性质.【专题】几何综合题;压轴题.【分析】(1)根据菱形的性质得CD=AD,∠CDP=∠ADP,证明△CDP≌△ADP即可;(2)由菱形的性质得CD∥BA,可证△CPD∽△FPB,利用相似比,结合已知DP:PB=1:2,CD=BA,可证A为BF的中点,又PA⊥BF,从而得出PB=PF,已证PA=CP,把问题转化到Rt△PAB中,由勾股定理,列方程求解.【解答】(1)证明:∵四边形ABCD为菱形,∴CD=AD,∠CDP=∠ADP,∴△CDP≌△ADP,∴∠DCP=∠DAP;(2)解:∵四边形ABCD为菱形,∴CD∥BA,CD=BA,∴∠CDP=∠FBP,∠BFP=∠DCP,∴△CPD∽△FPB,∴===,∴CD=BF,CP=PF,∴A为BF的中点,又∵PA⊥BF,∴PB=PF,由(1)可知,PA=CP,∴PA=PB,在Rt△PAB中,PB2=22+(PB)2,解得PB=,则PD=,∴BD=PB+PD=2.【点评】本题考查了全等三角形、相似三角形的判定与性质,菱形的性质及勾股定理的运用.关键是根据菱形的四边相等,对边平行及菱形的轴对称性解题.26.如图,半径为1的⊙M经过直角坐标系的原点O,且分别与x轴正半轴、y轴正半轴交于点A、B,∠OMA=60°,过点B的切线交x轴负半轴于点C,抛物线过点A、B、C.(1)求点A、B的坐标;(2)求抛物线的函数关系式;(3)若点D为抛物线对称轴上的一个动点,问是否存在这样的点D,使得△BCD是等腰三角形?若存在,求出符合条件的点D的坐标;若不存在,请说明理由.【考点】二次函数综合题.【专题】压轴题.【分析】(1)由题意可直接得出点A、B的坐标为A(1,0),B(0,);(2)再根据BC是切线,可求出BC的长,即得出点C的坐标,由待定系数法求出抛物线的解析式;(3)先假设存在,看能否求出符合条件的点D即可.【解答】解:(1)∵MO=MA=1,∠OMA=60°,∴∠ABO=30°,∴OB=,∴A(1,0),B(0,);(2)∵BC是切线,∴∠ABC=90°,∴∠ACB=30°,∴AC=4,∴C(﹣3,0),设抛物线的解析式为y=ax2+bx+c,将点A、B、C代入得,,解得∴抛物线的解析式为y=﹣x2﹣x+;(3)设在对称轴上存在点D,使△BCD是等腰三角形,对称轴为直线x=﹣1,设点D(﹣1,m),分3种情况讨论:①BC=BD;=2,解得m=±+;②BC=CD;=2,解得m=±2;③BD=CD;=,解得:m=0,∴符合条件的点D的坐标为,(﹣1,+),(﹣1,﹣+),(﹣1,2),(﹣1,﹣2),(﹣1,0).【点评】本题是二次函数的综合题,其中涉及到的知识点有抛物线的公式的求法和等腰三角形判定等知识点,是各地中考的热点和难点,解题时注意数形结合等数学思想的运用,同学们要加强训练,属于中档题.。

2018年九年级第二次模拟考试数学试卷

2018年九年级第二次模拟考试数学试卷

九年级模拟试卷 试第1页 共6页 九年级模拟试卷 第2页 共6页学校 班级 姓名 考号密 封 线 内 不 要 答 题2018年中考模拟试卷(二)科目 数学满分:120分 考试时间:120分钟一、单项选择题:本大题共10个小题,每小题3分,共30分,每小题给出的四个选项中,只有一项是符合题目要求的,将此选项的字母填入题后的括号内.1.下列图形中,既是中心对称图形,又是轴对称图形的个数是( )A .1B . 2C .3D .42.一种新病毒的直径约为0.00000043毫米,用科学记数法表示为( ) A .0.43×10﹣6B .0.43×106C .4.3×107D .4.3×10﹣73.已知不等式组,其解集在数轴上表示正确的是( )A .B .C .D .4.下列运算正确的是( )A .x 2•x 3=x 6B .x 6÷x 5=xC .(﹣x 2)4=x 6D .x 2+x 3=x 5 5.如图所示,该几何体的俯视图是( )A .B .C .D .6.下列二次分式中,与是同类二次根式的是( )A .B .C .D .7.若分式方程2+=有增根,则k 的值为( )A .﹣2B .﹣1C .1D .28.从边长为a 的正方形内去掉一个边长为b 的小正方形(如图1),然后将剩余部分剪拼成一个矩形(如图2),上述操作所能验证的等式是( )A .(a ﹣b )2=a 2﹣2ab +b 2B .a 2﹣b 2=(a +b )(a ﹣b )C .(a +b )2=a 2+2ab +b 2D .a 2+ab=a (a +b )9.如图,在▱ABCD 中,E 为CD 上一点,连接AE 、BD ,且AE 、BD 交于点F ,若EF :AF=2:5,则S △DEF :S 四边形EFBC 为( )A .2:5B .4:25C .4:31D .4:35第8题图 第9题图 第10题图 10.已知如图,等腰三角形ABC 的直角边长为a ,正方形MNPQ 的边为b (a <b ),C 、M 、A 、N 在同一条直线上,开始时点A 与点M 重合,让△ABC 向右移动,最后点C 与点N 重合.设三角形与正方形的重合面积为y ,点A 移动的距离为x ,则y 关于x 的大致图象是( )A .B .C .D .二、填空题(本大题共8小题,每小题3分,共24分.把答案写在答题卡中的横线上.)11.多项式2x 3﹣8x 2y +8xy 2分解因式的结果是 . 12.计算:﹣= .13.若等腰三角形的顶角为120°,腰长为2cm ,则它的底边长为 cm .14.关于x 的一元二次方程mx 2+(m ﹣2)x +m ﹣2=0有两个不相等的实数根,则m 的取值范围是 .15.如图,△ABC 中,点D 、E 在BC 边上,∠BAD=∠CAE 请你添加一对相等的线段或一对相等九年级模拟试卷 第3页 共6页 九年级模拟试卷 第4页 共6页密 封 线 内 不 要 答 题的角的条件,使△ABD ≌△ACE .你所添加的条件是 .第15题图 第16题图 第17题图 16.在Rt △ABC 中,∠C=90°,D 为BC 上一点,∠DAC=30°,BD=2,,则AC 的长是 .17.在开展“全民阅读”活动中,某校为了解全校1500名学生课外阅读的情况,随机调查了50名学生一周的课外阅读时间,并绘制成如图所示的条形统计图.根据图中数据,估计该校1500名学生一周的课外阅读时间不少于7小时的人数是 .18.正整数按如图所示的规律排列,则第29行第30列的数字为 .三、解答题(一):本大题共5小题,共26分.解答时,应写出必要的文字说明、证明过程或演算步骤.19.(5分)计算:﹣22﹣+|1﹣4sin60°|+(π﹣)0.20.(5分)解分式方程:+=3.21.(6分)如图,在△ABC 中,AB=AC ,AD ⊥BC ,AE ∥BC .(1)作∠ADC 的平分线DF ,与AE 交于点F ;(用尺规作图,保留作图痕迹,不写作法) (2)在(1)的条件下,若AD=2,求DF 的长.22.(5分)如图,山区某教学楼后面紧邻着一个土坡,坡面BC 平行于地面AD ,斜坡AB 的坡比为i=1:,且AB=26米.为了防止山体滑坡,保障安全,学校决定对该土坡进行改造.经地质人员勘测,当坡角不超过53°时,可确保山体不滑坡. (1)求改造前坡顶与地面的距离BE 的长.(2)为了消除安全隐患,学校计划将斜坡AB 改造成AF (如图所示),那么BF 至少是多少米?(结果精确到1米)(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈1.33,cot53°≈0.75).23.(5分)如图,在平面直角坐标系xOy 中,一次函数y=﹣ax +b 的图象与反比例函数y=的图象相交于点A (﹣4,﹣2),B (m ,4),与y 轴相交于点C . (1)求反比例函数和一次函数的表达式; (2)求点C 的坐标及△AOB 的面积.九年级模拟试卷 试第1页 共6页 九年级模拟试卷 第6页 共6页学校 班级 姓名 考号密 封 线 内 不 要 答 题四、解答题(二):本大题共5小题,共40分.解答时,应写出必要的文字说明、证明过程或演算步骤.24.(7分)如图,转盘被平均分成三块扇形,转动转盘,转动过程中,指针保持不动,转盘停止后,如果指针恰好指在分割线上,则重转一次,直到指针指向一个数字所在的区域为止. (1)转动转盘两次,用画树状图或列表的方法求两次指针所指区域数字不同的概率;(2)在第(1)题中,两次转到的区域的数字作为两条线段的长度,如果第三条线段的长度为5,求这三条线段能构成三角形的概率.25.(8分)“世界那么大,我想去看看”一句话红遍网络,随着国际货币基金组织正式宣布人民币2016年10月1日加入SDR (特别提款权),以后出国看世界更加方便.为了解某区6000名初中生对“人民币加入SD R”知晓的情况,某校数学兴趣小组随机抽取区内部分初中生进行问卷调查,将问卷调查的结果划分为“非常了解”、“比较了解”、“基本了解”、“不了解”四个等级,并将调查结果整理分析,得到下列图表:某区抽取学生对“人民币加入SDR”知晓情况频数分布表(1)本次问卷调查抽取的学生共有 人,其中“不了解”的学生有 人;(2)在扇形统计图中,学生对“人民币加入SDR”基本了解的区域的圆心角为 °;(3)根据抽样的结果,估计该区6000名初中生对“人民币加入SDR”了解的有多少人(了解是指“非常了解”、“比较了解”和“基本了解”)?26.(7分)如图,在菱形ABCD 中,AB=2,∠DAB=60°,点E 是AD 边的中点,点M 是AB 边上的一个动点(不与点A 重合),延长ME 交CD 的延长线于点N ,连接MD ,AN . (1)求证:四边形AMDN 是平行四边形.(2)当AM 的值为何值时,四边形AMDN 是矩形?请说明理由.27.(8分)如图,在Rt △ABC 中,∠ACB=90°,以AC 为直径的⊙O 与AB 边交于点D ,点E 是边BC 的中点.(1)求证:BC 2=BD•BA ;(2)判断DE 与⊙O 位置关系,并说明理由.28.(10分)如图,已知抛物线与x 轴交于A (﹣1,0)、B (4,0)两点,与y 轴交于点C (0,3). (1)求抛物线的解析式; (2)求直线BC 的函数解析式;(3)在抛物线上,是否存在一点P ,使△PAB 的面积等于△ABC 的面积?若存在,求出点P 的坐标;若不存在,请说明理由.。

2018届中考数学二模试卷(带答案) (3)

2018届中考数学二模试卷(带答案)  (3)

2018年中考数学二模试卷一、选择题(共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.函数的自变量x的取值范围是()A.x>0 B.x≥0 C.x>1 D.x≠12.数轴上的点A到原点的距离是6,则点A表示的数为()A.6或﹣6 B.6 C.﹣6 D.3或﹣33.民族图案是数学文化中的一块瑰宝.下列图案中,既不是中心对称图形也不是轴对称图形的是()A. B.C.D.4.下列说法不正确的是()A.某种彩票中奖的概率是,买1000张该种彩票一定会中奖B.了解一批电视机的使用寿命适合用抽样调查C.若甲组数据的标准差S甲=0.31,乙组数据的标准差S乙=0.25,则乙组数据比甲组数据稳定D.在一个装有白球和绿球的袋中摸球,摸出黑球是不可能事件5.货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x千米/小时,依题意列方程正确的是()A.B.C.D.6.如图所示的几何体的主视图、左视图、俯视图中有两个视图是相同的,则不同的视图是()A.B.C.D.7.下列命题中,真命题是()A.对角线相等的四边形是等腰梯形B.对角线互相垂直平分的四边形是正方形C.对角线互相垂直的四边形是菱形D.四个角相等的四边形是矩形8.下列函数中,当x>0时,y随x的增大而增大的是()A.y=﹣x+1 B.y=x2﹣1 C.y=D.y=﹣x2+19.如图,已知△ABC,求作一点P,使P到∠A的两边的距离相等,且PA=PB,下列确定P点的方法正确的是()A.P是∠A与∠B两角平分线的交点B.P为∠A的角平分线与AB的垂直平分线的交点C.P为AC、AB两边上的高的交点D.P为AC、AB两边的垂直平分线的交点10.如图,正方形ABCD的顶点A(0,),B(,0),顶点C,D位于第一象限,直线x=t,(0≤t≤),将正方形ABCD分成两部分,设位于直线l左侧部分(阴影部分)的面积为S,则函数S与t的图象大致是()A.B.C.D.二、填空题.(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置上.)11.如果与(2x﹣4)2互为相反数,那么2x﹣y=.12.一个圆锥的母线长为4,侧面积为8π,则这个圆锥的底面圆的半径是.13.若关于x的方程无解,则m=.14.如图,是一副普通扑克牌中的13张黑桃牌,将它们洗匀后正面向下放在桌子上,从中任意抽取一张,则抽出的牌点数小于9的概率为.15.如图(1)是四边形纸片ABCD,其中∠B=120°,∠D=50度.若将其右下角向内折出△PCR,恰使CP∥AB,RC∥AD,如图(2)所示,则∠C=度.16.如图是二次函数和一次函数y2=kx+t的图象,当y1≥y2时,x的取值范围是.17.如图,正方形ABCD内接于⊙O,⊙O的半径为2,以圆心O为顶点作∠MON,使∠MON=90°,OM、ON分别与⊙O交于点E、F,与正方形ABCD的边交于点G、H,则由OE、OF、及正方形ABCD的边围成的图形(阴影部分)的面积S=.18.如图,已知直线l:y=x,过点A(0,1)作y轴的垂线交直线l于点B,过点B作直线l的垂线交y轴于点A1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2;…按此作法继续下去,则点A2015的坐标为.三.解答题(本大题共10小题,共66分.请在答题卡指定区域内作答、解答时应写出文字说明、证明过程或演算步骤)19.计算:.20.解不等式组,并将解集在数轴上表示.21.先化简,再求值:﹣÷.其中x=.22.如图,已知双曲线,经过点D(6,1),点C是双曲线第三象限上的动点,过C作CA⊥x轴,过D 作DB⊥y轴,垂足分别为A,B,连接AB,BC.(1)求k的值;(2)若△BCD的面积为12,求直线CD的解析式.23.为了解某区九年级学生学业考试体育成绩,现从中随机抽取部分学生的体育成绩进行分段(A:40分;B:39﹣35分;C:34﹣30分;D:29﹣20分;E:19﹣0分)统计如下:根据上面提供的信息,回答下列问题:(1)在统计表中,a的值为,b的值为,并将统计图补充完整;(2)甲同学说:“我的体育成绩是此次抽样调查所得数据的中位数.”请问:甲同学的体育成绩应在什么分数段内?(填相应分数段的字母)(3)如果把成绩在30分以上(含30分)定为优秀,那么该区今年2400名九年级学生中体育成绩为优秀的学生人数有多少名?24.在一次数学活动课上,数学老师在同一平面内将一副直角三角板如图位置摆放,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,试求CD的长.25.在学习“二元一次方程组的解”时,数学张老师设计了一个数学活动.有A、B 两组卡片,每组各3张,A 组卡片上分别写有0,2,3;B组卡片上分别写有﹣5,﹣1,1.每张卡片除正面写有不同数字外,其余均相同.甲从A组中随机抽取一张记为x,乙从B组中随机抽取一张记为y.(1)若甲抽出的数字是2,乙抽出的数是﹣1,它们恰好是ax﹣y=5的解,求a的值;(2)在(1)的条件下,求甲、乙随机抽取一次的数恰好是方程ax﹣y=5的解的概率.(请用树形图或列表法求解)26.某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?27.如图,已知在△ABP中,C是BP边上一点,∠PAC=∠PBA,⊙O是△ABC的外接圆,AD是⊙O的直径,且交BP于点E.(1)求证:PA是⊙O的切线;(2)过点C作CF⊥AD,垂足为点F,延长CF交AB于点G,若AG•AB=12,求AC的长;(3)在满足(2)的条件下,若AF:FD=1:2,GF=1,求⊙O的半径及sin∠ACE的值.28.如图,抛物线y=﹣(x﹣1)2+c与x轴交于A,B(A,B分别在y轴的左右两侧)两点,与y轴的正半轴交于点C,顶点为D,已知A(﹣1,0).(1)求点B,C的坐标;(2)判断△CDB的形状并说明理由;(3)将△COB沿x轴向右平移t个单位长度(0<t<3)得到△QPE.△QPE与△CDB重叠部分(如图中阴影部分)面积为S,求S与t的函数关系式,并写出自变量t的取值范围.参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.函数的自变量x的取值范围是()A.x>0 B.x≥0 C.x>1 D.x≠1【考点】函数自变量的取值范围.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:根据题意得,x﹣1>0,解得x>1.故选C.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.2.数轴上的点A到原点的距离是6,则点A表示的数为()A.6或﹣6 B.6 C.﹣6 D.3或﹣3【考点】数轴;绝对值.【专题】计算题.【分析】与原点距离为6的点有两个,分别在原点的左边和右边,左边用减法,右边用加法计算即可.【解答】解:当点A在原点左边时,为0﹣6=﹣6;点A在原点右边时为6﹣0=6.故选A.【点评】主要考查了数的绝对值的几何意义.注意:与一个点的距离为a的数有2个,在该点的左边和右边各一个.3.民族图案是数学文化中的一块瑰宝.下列图案中,既不是中心对称图形也不是轴对称图形的是()A. B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,也是中心对称图形,故本选项错误;C、旋转角是,只是每旋转与原图重合,而中心对称的定义是绕一定点旋转180度,新图形与原图形重合.因此不符合中心对称的定义,不是中心对称图形.D、是轴对称图形,不是中心对称图形,故本选项错误.故选C.【点评】本题考查了中心对称及轴对称的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.下列说法不正确的是()A.某种彩票中奖的概率是,买1000张该种彩票一定会中奖B.了解一批电视机的使用寿命适合用抽样调查C.若甲组数据的标准差S甲=0.31,乙组数据的标准差S乙=0.25,则乙组数据比甲组数据稳定D.在一个装有白球和绿球的袋中摸球,摸出黑球是不可能事件【考点】概率公式;全面调查与抽样调查;标准差;随机事件;可能性的大小.【分析】根据抽样调查适用的条件、方差的定义及意义和可能性的大小找到正确答案即可.【解答】解:A、某种彩票中奖的概率是,只是一种可能性,买1000张该种彩票不一定会中奖,故错误;B、调查电视机的使用寿命要毁坏电视机,有破坏性,适合用抽样调查,故正确;C、标准差反映了一组数据的波动情况,标准差越小,数据越稳定,故正确;D、袋中没有黑球,摸出黑球是不可能事件,故正确.故选A.【点评】用到的知识点为:破坏性较强的调查应采用抽样调查的方式;随机事件可能发生,也可能不发生;标准差越小,数据越稳定;一定不会发生的事件是不可能事件.5.货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x千米/小时,依题意列方程正确的是()A.B.C.D.【考点】由实际问题抽象出分式方程.【分析】题中等量关系:货车行驶25千米与小车行驶35千米所用时间相同,列出关系式.【解答】解:根据题意,得.故选:C.【点评】理解题意是解答应用题的关键,找出题中的等量关系,列出关系式.6.如图所示的几何体的主视图、左视图、俯视图中有两个视图是相同的,则不同的视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】判断出组合体的左视图、主视图及俯视图,即可作出判断.【解答】解:几何体的左视图和主视图是相同的,则不同的视图是俯视图,俯视图是D选项所给的图形.故选D.【点评】本题考查了简单组合体的三视图,属于基础题,注意理解三视图观察的方向.7.下列命题中,真命题是()A.对角线相等的四边形是等腰梯形B.对角线互相垂直平分的四边形是正方形C.对角线互相垂直的四边形是菱形D.四个角相等的四边形是矩形【考点】命题与定理.【分析】根据矩形、菱形、正方形的判定与性质分别判断得出答案即可.【解答】解:A、根据对角线相等的四边形也可能是矩形,故此选项错误;B、根据对角线互相垂直平分的四边形是菱形,故此选项错误;C、根据对角线互相垂直平分的四边形是菱形,故此选项错误;D、根据四个角相等的四边形是矩形,是真命题,故此选项正确.故选:D.【点评】此题主要考查了命题与定理,熟练掌握矩形、菱形、正方形的判定与性质是解题关键.8.下列函数中,当x>0时,y随x的增大而增大的是()A.y=﹣x+1 B.y=x2﹣1 C.y=D.y=﹣x2+1【考点】二次函数的性质;一次函数的性质;反比例函数的性质.【分析】根据二次函数、一次函数、反比例函数的增减性,结合自变量的取值范围,逐一判断.【解答】解:A、y=﹣x+1,一次函数,k<0,故y随着x增大而减小,故A错误;B、y=x2﹣1(x>0),故当图象在对称轴右侧,y随着x的增大而增大;而在对称轴左侧(x<0),y随着x 的增大而减小,故B正确.C、y=,k=1>0,在每个象限里,y随x的增大而减小,故C错误;D、y=﹣x2+1(x>0),故当图象在对称轴右侧,y随着x的增大而减小;而在对称轴左侧(x<0),y随着x 的增大而增大,故D错误;故选:B.【点评】本题综合考查二次函数、一次函数、反比例函数的增减性(单调性),是一道难度中等的题目.9.如图,已知△ABC,求作一点P,使P到∠A的两边的距离相等,且PA=PB,下列确定P点的方法正确的是()A.P是∠A与∠B两角平分线的交点B.P为∠A的角平分线与AB的垂直平分线的交点C.P为AC、AB两边上的高的交点D.P为AC、AB两边的垂直平分线的交点【考点】角平分线的性质;线段垂直平分线的性质.【专题】压轴题.【分析】根据角平分线及线段垂直平分线的判定定理作答.【解答】解:∵点P到∠A的两边的距离相等,∴点P在∠A的角平分线上;又∵PA=PB,∴点P在线段AB的垂直平分线上.即P为∠A的角平分线与AB的垂直平分线的交点.故选B.【点评】本题考查了角平分线及线段垂直平分线的判定定理.到一个角的两边距离相等的点在这个角的角平分线上;到一条线段两端距离相等的点在这条线段的垂直平分线上.10.如图,正方形ABCD的顶点A(0,),B(,0),顶点C,D位于第一象限,直线x=t,(0≤t≤),将正方形ABCD分成两部分,设位于直线l左侧部分(阴影部分)的面积为S,则函数S与t的图象大致是()A.B.C.D.【考点】动点问题的函数图象.【专题】压轴题.【分析】通过图象得到函数是随自变量的增大,知道函数值是增大还是减小.【解答】解:根据图形知道,当直线x=t在BD的左侧时,如果直线匀速向右运动,左边的图形是三角形;因而面积应是t的二次函数,并且面积增加的速度随t的增大而增大;直线x=t在B点左侧时,S=t2,t在B点右侧时S=﹣(t﹣)2+1,显然D是错误的.故选C.【点评】读函数的图象时首先要理解横纵坐标表示的含义,理解问题叙述的过程.二、填空题.(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置上.)11.如果与(2x﹣4)2互为相反数,那么2x﹣y=1.【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】根据互为相反数的两个数的和等于0列出等式,再根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【解答】解:∵与(2x﹣4)2互为相反数,∴+(2x﹣4)2=0,∴y﹣3=0,2x﹣4=0,解得x=2,y=3,∴2x﹣y=2×2﹣3=4﹣3=1.故答案为:1.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.12.一个圆锥的母线长为4,侧面积为8π,则这个圆锥的底面圆的半径是2.【考点】圆锥的计算.【分析】根据扇形的面积公式求出扇形的圆心角,再利用弧长公式求出弧长,再利用圆的面积公式求出底面半径.【解答】解:解得n=180则弧长==4π2πr=4π解得r=2故答案是:2.【点评】解决本题的关键是根据圆锥的侧面积公式得到圆锥的底面半径的求法.13.若关于x的方程无解,则m=﹣8.【考点】分式方程的解.【专题】计算题.【分析】分式方程去分母转化为整式方程,将x=5代入计算即可求出m的值.【解答】解:分式方程去分母得:2(x﹣1)=﹣m,将x=5代入得:m=﹣8.故答案为:﹣8【点评】此题考查了分式方程的解,方程的解即为能使方程左右两边相等的未知数的值.14.如图,是一副普通扑克牌中的13张黑桃牌,将它们洗匀后正面向下放在桌子上,从中任意抽取一张,则抽出的牌点数小于9的概率为.【考点】概率公式.【专题】探究型.【分析】抽出的牌的点数小于9有1,2,3,4,5,6,7,8共8个,总的样本数目为13,由此可以容易知道事件抽出的牌的点数小于9的概率.【解答】解:∵抽出的牌的点数小于9有1,2,3,4,5,6,7,8共8个,总的样本数目为13,∴从中任意抽取一张,抽出的牌点数小于9的概率是:.故答案为:.【点评】此题主要考查了概率的求法.用到的知识点为:概率=所求情况数与总情况数之比.15.如图(1)是四边形纸片ABCD,其中∠B=120°,∠D=50度.若将其右下角向内折出△PCR,恰使CP∥AB,RC∥AD,如图(2)所示,则∠C=95度.【考点】翻折变换(折叠问题).【分析】根据折叠前后图形全等和平行线,先求出∠CPR和∠CRP,再根据三角形内角和定理即可求出∠C.【解答】解:因为折叠前后两个图形全等,故∠CPR=∠B=×120°=60°,∠CRP=∠D=×50°=25°;∴∠C=180°﹣25°﹣60°=95°;∠C=95度;故应填95.【点评】折叠前后图形全等是解决折叠问题的关键.16.如图是二次函数和一次函数y2=kx+t的图象,当y1≥y2时,x的取值范围是﹣1≤x≤2.【考点】二次函数与不等式(组).【分析】根据图象可以直接回答,使得y1≥y2的自变量x的取值范围就是直线y1=kx+m落在二次函数y2=ax2+bx+c的图象上方的部分对应的自变量x的取值范围.【解答】解:根据图象可得出:当y1≥y2时,x的取值范围是:﹣1≤x≤2.故答案为:﹣1≤x≤2.【点评】本题考查了二次函数的性质.本题采用了“数形结合”的数学思想,使问题变得更形象、直观,降低了题的难度.17.如图,正方形ABCD内接于⊙O,⊙O的半径为2,以圆心O为顶点作∠MON,使∠MON=90°,OM、ON分别与⊙O交于点E、F,与正方形ABCD的边交于点G、H,则由OE、OF、及正方形ABCD的边围成的图形(阴影部分)的面积S=π﹣2.【考点】扇形面积的计算;全等三角形的判定与性质;正方形的性质.【专题】压轴题;数形结合.【分析】可以作OP⊥AB,OQ⊥BC,利用全等的知识即可证明△OPH≌△OQG,从而可得四边形OHBG与正方形OQBP的面积,从而利用面积差法即可得出阴影部分的面积.【解答】解:过点O 作OP ⊥AB ,OQ ⊥BC ,则OP=OQ ,在△OPH 和△OQG 中,,故可得△OPH ≌△OQG ,从而可得四边形OHBG 与正方形OQBP 的面积, ∵圆的半径为2, ∴OQ=OP=,S 阴影=S 扇形OEF ﹣S OHBG =S 扇形OEF ﹣S OQBP =﹣×=π﹣2.故答案为:π﹣2.【点评】此题考查了扇形的面积及正方形的性质,有一定难度,解答本题的关键是利用全等的知识得出四边形OHBG 与正方形OQBP 的面积.18.如图,已知直线l :y=x ,过点A (0,1)作y 轴的垂线交直线l 于点B ,过点B 作直线l 的垂线交y轴于点A 1;过点A 1作y 轴的垂线交直线l 于点B 1,过点B 1作直线l 的垂 线交y 轴于点A 2;…按此作法继续下去,则点A 2015的坐标为 (0,42015)或(0,24030) .【考点】一次函数图象上点的坐标特征. 【专题】规律型.【分析】根据所给直线解析式可得l 与x 轴的夹角,进而根据所给条件依次得到点A 1,A 2的坐标,通过相应规律得到A 2013坐标即可.【解答】解:∵直线l 的解析式为:y=x ,∴l 与x 轴的夹角为30°,∵AB∥x轴,∴∠ABO=30°,∵OA=1,∴AB=,∵A1B⊥l,∴∠ABA1=60°,∴AA1=3,∴A1(0,4),同理可得A2(0,16),…,∴A2015纵坐标为:42015,∴A2013(0,42015).故答案为:(0,42015)或(0,24030).【点评】本题考查的是一次函数综合题,先根据所给一次函数判断出一次函数与x轴夹角是解决本题的突破点;根据含30°的直角三角形的特点依次得到A、A1、A2、A3…的点的坐标是解决本题的关键.三.解答题(本大题共10小题,共66分.请在答题卡指定区域内作答、解答时应写出文字说明、证明过程或演算步骤)19.计算:.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】分别进行负整数指数幂、特殊角的三角函数值、绝对值、零指数幂等运算,然后按照实数的运算法则计算即可.【解答】解:原式=+×+5﹣1=6.【点评】本题考查了实数的运算,涉及了负整数指数幂、特殊角的三角函数值、绝对值、零指数幂等知识,属于基础题.20.解不等式组,并将解集在数轴上表示.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】求出每个不等式的解集,找出不等式组的解集即可.【解答】解:∵由①得,x<2,由②得,x≥﹣1,∴不等式组的解集是:﹣1≤x<2,在数轴上表示不等式组的解集为.【点评】本题考查了解一元一次不等式(组),在数轴上表示不等式组的解集的应用,关键是能根据不等式的解集找出不等式组的解集.21.先化简,再求值:﹣÷.其中x=.【考点】分式的化简求值.【专题】计算题.【分析】原式第二项利用除法法则变形,约分后利用同分母分式的减法法则计算得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=﹣•=﹣=,当x=时,原式==﹣1.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.22.如图,已知双曲线,经过点D(6,1),点C是双曲线第三象限上的动点,过C作CA⊥x轴,过D 作DB⊥y轴,垂足分别为A,B,连接AB,BC.(1)求k的值;(2)若△BCD的面积为12,求直线CD的解析式.【考点】反比例函数与一次函数的交点问题.【分析】(1)把点D的坐标代入函数解析式,计算即可求出k值;(2)根据点D的坐标求出BD的长度,再根据△BCD的面积求出点C到BD的长度,然后求出CA的长度,再代入反比例函数解析式求出AC的长度,从而得到点C的坐标,再利用待定系数法求一次函数解析式解答即可.【解答】解:(1)∵y=经过点D(6,1),∴=1,∴k=6;(2)∵点D(6,1),∴BD=6,设△BCD边BD上的高为h,∵△BCD的面积为12,∴BD•h=12,即×6h=12,解得h=4,∴CA=3,∴=﹣3,解得x=﹣2,∴点C(﹣2,﹣3),设直线CD的解析式为y=kx+b,则,解得,所以,直线CD的解析式为y=x﹣2.【点评】本题考查了反比例函数与一次函数的交点问题,主要利用了待定系数法求反比例函数解析式,三角形的面积,比较简单,(2)求出点C的坐标是解题的关键.23.为了解某区九年级学生学业考试体育成绩,现从中随机抽取部分学生的体育成绩进行分段(A:40分;B:39﹣35分;C:34﹣30分;D:29﹣20分;E:19﹣0分)统计如下:根据上面提供的信息,回答下列问题:(1)在统计表中,a的值为60,b的值为0.15,并将统计图补充完整;(2)甲同学说:“我的体育成绩是此次抽样调查所得数据的中位数.”请问:甲同学的体育成绩应在什么分数段内?C(填相应分数段的字母)(3)如果把成绩在30分以上(含30分)定为优秀,那么该区今年2400名九年级学生中体育成绩为优秀的学生人数有多少名?【考点】频数(率)分布直方图;用样本估计总体;频数(率)分布表;中位数.【分析】(1)首先根据:频率=,由表格A中的数据可以求出随机抽取部分学生的总人数,然后根据B 中频率即可求解a,同时也可以求出b;(2)根据中位数的定义可以确定中位数的分数段,然后确定位置;(3)首先根据频率分布直方图可以求出样本中在30分以上的人数,然后利用样本估计总体的思想即可解决问题.【解答】解:(1)随机抽取部分学生的总人数为:48÷0.2=240,∴a=240×0.25=60,b=84÷240=0.35,如图所示:(2)∵总人数为240人,∴根据频率分布直方图知道中位数在C分数段;(3)∵30分以上(含30分)定为优秀,故优秀的频率为:0.2+0.25+0.35=0.8,∴0.8×2400=1920(名)答:该市九年级考生中体育成绩为优秀的学生人数约有1920名.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.24.在一次数学活动课上,数学老师在同一平面内将一副直角三角板如图位置摆放,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,试求CD的长.【考点】解直角三角形.【分析】过点B作BM⊥FD于点M,解直角三角形求出BC,在△BMC值解直角三角形求出CM,BM,推出BM=DM,即可求出答案.【解答】解:过点B作BM⊥FD于点M,在△ACB中,∠ACB=90°,∠A=60°,AC=10,∴∠ABC=30°,BC=AC tan60°=10,∵AB∥CF,∴∠BCM=∠ABC=30°.∴BM=BC•sin30°=10×=5,CM=BC•cos30°=10×=15,在△EFD中,∠F=90°,∠E=45°,∴∠EDF=45°,∴MD=BM=5,∴CD=CM﹣MD=15﹣5.【点评】本题考查了解直角三角形的应用,关键是能通过解直角三角形求出线段CM、MD的长.25.在学习“二元一次方程组的解”时,数学张老师设计了一个数学活动.有A、B 两组卡片,每组各3张,A 组卡片上分别写有0,2,3;B组卡片上分别写有﹣5,﹣1,1.每张卡片除正面写有不同数字外,其余均相同.甲从A组中随机抽取一张记为x,乙从B组中随机抽取一张记为y.(1)若甲抽出的数字是2,乙抽出的数是﹣1,它们恰好是ax﹣y=5的解,求a的值;(2)在(1)的条件下,求甲、乙随机抽取一次的数恰好是方程ax﹣y=5的解的概率.(请用树形图或列表法求解)【考点】列表法与树状图法;二元一次方程的解.【专题】计算题.【分析】(1)将x=2,y=﹣1代入方程计算即可求出a的值;(2)列表得出所有等可能的情况数,找出甲、乙随机抽取一次的数恰好是方程ax﹣y=5的解的情况数,即可求出所求的概率.【解答】解:(1)将x=2,y=﹣1代入方程得:2a+1=5,即a=2;(2)列表得:所有等可能的情况有9种,其中(x,y)恰好为方程2x﹣y=5的解的情况有(0,﹣5),(2,﹣1),(3,1),共3种情况,则P==.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.26.某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?【考点】二次函数的应用.【分析】(1)根据题意易求y与x之间的函数表达式.(2)已知函数解析式,设y=4800可从实际得x的值.(3)利用x=﹣求出x的值,然后可求出y的最大值.【解答】解:(1)根据题意,得y=(2400﹣2000﹣x)(8+4×),即y=﹣x2+24x+3200;(2)由题意,得﹣x2+24x+3200=4800.整理,得x2﹣300x+20000=0.解这个方程,得x1=100,x2=200.要使百姓得到实惠,取x=200元.∴每台冰箱应降价200元;(3)对于y=﹣x2+24x+3200=﹣(x﹣150)2+5000,当x=150时,=5000(元).y最大值所以,每台冰箱的售价降价150元时,商场的利润最大,最大利润是5000元.【点评】求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法.借助二次函数解决实际问题.。

2018届中考数学二模试卷(带答案) (1)

2018届中考数学二模试卷(带答案)  (1)

2018年中考数学二模试卷一、选择题(共12小题,每小题3分,满分36分)1.我国雾霾天气多发,PM2.5颗粒被称为大气污染的元凶.PM2.5是指直径小于或等于2.5微米的颗粒物,已知1毫米=1000微米,用科学记数法表示2.5微米是多少毫米.()A.2.5×10﹣3B.0.25×103C.2.5×103D.25×1062.﹣的相反数是()A.3 B.﹣3 C.D.﹣3.下列运算正确的是()A.x2•x3=x6B.3﹣2=﹣6 C.(x3)2=x5D.40=14.下列说法正确的是()A.相切两圆的连心线经过切点 B.长度相等的两条弧是等弧C.平分弦的直径垂直于弦 D.相等的圆心角所对的弦相等5.如图,等边△DEF的顶点分别在等边△ABC的各边上,且DE⊥BC于E,若AB=1,则DB的长为()A.B.C.D.6.如图,下列条件中,不能判断直线l1∥l2的是()A.∠1=∠3 B.∠2=∠3 C.∠4=∠5 D.∠2+∠4=180°7.一组数据﹣2,1,0,﹣1,2的极差和方差分别是()A.4和2 B.4和1 C.3和2 D.2和18.若一次函数y=kx+b的图象经过第二、三、四象限,则反比例函数y=的图象在()A.一、三象限B.二、四象限C.一、二象限D.三、四象限9.现有一圆心角为90°,半径为12cm的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计),则该圆锥的高为()A.cm B.2cm C.3cm D.6cm10.下列图中阴影部分面积与算式|﹣|+()2+2﹣1的结果相同的是()A.B.C.D.11.如图,⊙O是以原点为圆心,为半径的圆,点P是直线y=﹣x+6上的一点,过点P作⊙O的一条切线PQ,Q为切点,则切线长PQ的最小值为()A.3 B.4 C.6﹣D.3﹣112.函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中正确的个数为()A.1 B.2 C.3 D.4二、填空题(本大题共有6小题,每小题3分,共18分)13.使有意义的x的取值范围是.14.因式分解:x3﹣xy2=.15.如果|a﹣1|+(b+2)2=0,则(a+b)2015的值是.16.一个直角三角形两条直角边的长分别为6cm,8cm,则这个直角三角形的内心与外心之间的距离是cm.17.如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,联结DE,F为线段DE上一点,且∠AFE=∠B.若AB=5,AD=8,AE=4,则AF的长为.18.阅读材料:设一元二次方程ax2+bx+c=0的两根为x1,x2,则两根与方程系数之间有如下关系式x1+x2=﹣,x1•x2=根据该材料填空,已知x1,x2是方程x2+3x+1=0的两实数根,则的值为.三、解答题(本大题共有8小题,共66分)19.(1)计算:(﹣1.414)0﹣|﹣2|+﹣3tan30°(2)化简求值:(﹣)÷,其中x=1+,y=1﹣.20.如图,将小旗ACDB放于平面直角坐标系中,得到各顶点的坐标为A(﹣6,12),B(﹣6,0),C (0,6),D(﹣6,6).以点B为旋转中心,在平面直角坐标系内将小旗顺时针旋转90°.(1)画出旋转后的小旗A′C′D′B′;(2)写出点A′,C′,D′的坐标;(3)求出线段BA旋转到B′A′时所扫过的扇形的面积.21.如图,一次函数y=kx+b的图象l与坐标轴分别交于点E、F,与双曲线y=﹣(x<0)交于点P(﹣1,n),且F是PE的中点.(1)求直线l的解析式;(2)若直线x=a与l交于点A,与双曲线交于点B(不同于A),问a为何值时,PA=PB?22.我市某中学艺术节期间,向全校学生征集书画作品.九年级美术王老师从全年级14个班中随机抽取了4个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图.(1)王老师采取的调查方式是(填“普查”或“抽样调查”),王老师所调查的4个班征集到作品共件,其中b班征集到作品件,请把图2补充完整;(2)王老师所调查的四个班平均每个班征集作品多少件?请估计全年级共征集到作品多少件?(3)如果全年级参展作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生.现在要在其中抽两人去参加学校总结表彰座谈会,请直接写出恰好抽中一男一女的概率.23.京广高速铁路工程指挥部,要对某路段工程进行招标,接到了甲、乙两个工程队的投标书.从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的;若由甲队先做10天,剩下的工程再由甲、乙两队合作30天完成.(1)求甲、乙两队单独完成这项工程各需多少天?(2)已知甲队每天的施工费用为8.4万元,乙队每天的施工费用为5.6万元.工程预算的施工费用为500万元.为缩短工期并高效完成工程,拟安排预算的施工费用是否够用?若不够用,需追加预算多少万元?请给出你的判断并说明理由.24.如图,已知,⊙O为△ABC的外接圆,BC为直径,点E在AB上,过点E作EF⊥BC,点G在FE的延长线上,且GA=GE.(1)求证:AG与⊙O相切.(2)若AC=6,AB=8,BE=3,求线段OE的长.25.如图1,抛物线y=nx2﹣11nx+24n (n<0)与x轴交于B、C两点(点B在点C的左侧),抛物线上另有一点A在第一象限内,且∠BAC=90°.(1)填空:点B的坐标为(),点C的坐标为();(2)连接OA,若△OAC为等腰三角形.①求此时抛物线的解析式;②如图2,将△OAC沿x轴翻折后得△ODC,点M为①中所求的抛物线上点A与点C两点之间一动点,且点M的横坐标为m,过动点M作垂直于x轴的直线l与CD交于点N,试探究:当m为何值时,四边形AMCN的面积取得最大值,并求出这个最大值.26.如图1,正六边形ABCDEF的边长为a,P是BC边上一动点,过P作PM∥AB交AF于M,作PN∥CD 交DE于N.(1)①∠MPN=;②求证:PM+PN=3a;(2)如图2,点O是AD的中点,连接OM、ON,求证:OM=ON;(3)如图3,点O是AD的中点,OG平分∠MON,判断四边形OMGN是否为特殊四边形?并说明理由.参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.我国雾霾天气多发,PM2.5颗粒被称为大气污染的元凶.PM2.5是指直径小于或等于2.5微米的颗粒物,已知1毫米=1000微米,用科学记数法表示2.5微米是多少毫米.()A.2.5×10﹣3B.0.25×103C.2.5×103D.25×106【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:2.5微米=0.0025毫米=2.5×10﹣3毫米,故选:A.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.2.﹣的相反数是()A.3 B.﹣3 C.D.﹣【考点】相反数.【分析】一个数的相反数就是在这个数前面添上“﹣”号.【解答】解:﹣的相反数是,故选C【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.3.下列运算正确的是()A.x2•x3=x6B.3﹣2=﹣6 C.(x3)2=x5D.40=1【考点】负整数指数幂;同底数幂的乘法;幂的乘方与积的乘方;零指数幂.【分析】利用同底数幂、负指数、零指数以及幂的乘方的性质求解即可求得答案,注意排除法在解选择题中的应用.【解答】解:A、x2•x3=x5,故本选项错误;B、3﹣2==,故本选项错误;C、(x3)2=x6,故本选项错误;D、40=1,故本选项正确.故选D.【点评】此题考查了同底数幂、负指数、零指数以及幂的乘方的性质.注意掌握指数的变化是解此题的关键.4.下列说法正确的是()A.相切两圆的连心线经过切点 B.长度相等的两条弧是等弧C.平分弦的直径垂直于弦 D.相等的圆心角所对的弦相等【考点】切线的性质;圆的认识;垂径定理;圆心角、弧、弦的关系.【分析】要找出正确命题,可运用相关基础知识分析找出正确选项,也可以通过举反例排除不正确选项,从而得出正确选项.(1)等弧指的是在同圆或等圆中,能够完全重合的弧.长度相等的两条弧,不一定能够完全重合;(2)此弦不能是直径;(3)相等的圆心角所对的弦相等指的是在同圆或等圆中.【解答】解:A、根据圆的轴对称性可知此命题正确.B、等弧指的是在同圆或等圆中,能够完全重合的弧.而此命题没有强调在同圆或等圆中,所以长度相等的两条弧,不一定能够完全重合,此命题错误;B、此弦不能是直径,命题错误;C、相等的圆心角指的是在同圆或等圆中,此命题错误;故选A.【点评】本题考查知识较多,解题的关键是运用相关基础知识逐一分析才能找出正确选项.5.如图,等边△DEF的顶点分别在等边△ABC的各边上,且DE⊥BC于E,若AB=1,则DB的长为()A.B.C.D.【考点】等边三角形的性质;全等三角形的判定与性质;含30度角的直角三角形;勾股定理.【分析】根据等边三角形性质,直角三角形性质求△BDE≌△AFD,得BE=AD,再求得BD的长.【解答】解:∵∠DEB=90°∴∠BDE=90°﹣60°=30°∴∠ADF=180﹣30°﹣90°=90°同理∠EFC=90°又∵∠A=∠B=∠C,DE=DF=EF∴△BED≌△ADF≌△CFE∴AD=BE设BE=x,则BD=2x,∴由勾股定理得BE=,∴BD=.故选C.【点评】本题利用了:1、等边三角形的性质,2、勾股定理,3、全等三角形的判定和性质.6.如图,下列条件中,不能判断直线l1∥l2的是()A.∠1=∠3 B.∠2=∠3 C.∠4=∠5 D.∠2+∠4=180°【考点】平行线的判定.【分析】根据平行线的判定定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行分别进行分析即可.【解答】解:A、根据内错角相等,两直线平行可判断直线l1∥l2,故此选项不合题意;B、∠2=∠3,不能判断直线l1∥l2,故此选项符合题意;C、根据同位角相等,两直线平行可判断直线l1∥l2,故此选项不合题意;D、根据同旁内角互补,两直线平行可判断直线l1∥l2,故此选项不合题意;故选:B.【点评】此题主要考查了平行线的判定,关键是掌握平行线的判定定理.7.一组数据﹣2,1,0,﹣1,2的极差和方差分别是()A.4和2 B.4和1 C.3和2 D.2和1【考点】方差;极差.【分析】根据极差、平均数、方差的公式计算.【解答】解:极差就是这组数中最大值与最小值的差,为2﹣(﹣2)=4;平均数=(﹣2﹣1+0+1+2)÷5=0,方差S2=[(﹣2)2+(1)2+(0)2+(﹣1)2+(2)2]=2.故选A.【点评】本题考查了极差和方差的定义.8.若一次函数y=kx+b的图象经过第二、三、四象限,则反比例函数y=的图象在()A.一、三象限B.二、四象限C.一、二象限D.三、四象限【考点】反比例函数的性质;一次函数的性质.【分析】先由一次函数的性质判断出k,b的正负,再根据反比例函数的性质即可得出结果.【解答】解:∵一次函数y=kx+b的图象经过第二、三、四象限,∴k<0,b<0,kb>0,反比例函数y=中,kb>0,∴图象在一、三象限.故选A.【点评】本题考查了反比例函数的性质,应注意y=中k的取值.9.现有一圆心角为90°,半径为12cm的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计),则该圆锥的高为()A.cm B.2cm C.3cm D.6cm【考点】弧长的计算;勾股定理.【专题】压轴题.【分析】利用底面周长=展开图的弧长可得.【解答】解:=2πR,解得R=3cm,再利用勾股定理可知,高=3cm.故选C.【点评】解答本题的关键是有确定底面周长=展开图的弧长这个等量关系,然后再利用勾股定理可求得值.10.下列图中阴影部分面积与算式|﹣|+()2+2﹣1的结果相同的是()A.B.C.D.【考点】二次函数的性质;一次函数的性质;反比例函数的性质.【专题】压轴题.【分析】先把算式的值求出,然后根据函数的性质分别求出四个图中的阴影部分面积,看是否与算式的值相同,如相同,则是要选的选项.【解答】解:原式=++==.A、作TE⊥X轴,TG⊥Y轴,易得,△GTF≌△ETD,故阴影部分面积为1×1=1;B、当x=1时,y=3,阴影部分面积1×3×=;C、当y=0时,x=±1,当x=0时,y=﹣1.阴影部分面积为[1﹣(﹣1)]×1×=1;D、阴影部分面积为xy=×2=1.故选B.【点评】解答A时运用了全等三角形的性质,B、C、D都运用了函数图象和坐标的关系,转化为三角形的面积公式来解答.11.如图,⊙O是以原点为圆心,为半径的圆,点P是直线y=﹣x+6上的一点,过点P作⊙O的一条切线PQ,Q为切点,则切线长PQ的最小值为()A.3 B.4 C.6﹣D.3﹣1【考点】一次函数综合题.【专题】计算题;压轴题.【分析】由P在直线y=﹣x+6上,设P(m,6﹣m),连接OQ,OP,由PQ为圆O的切线,得到PQ⊥OQ,在直角三角形OPQ中,利勾股定理列出关系式,配方后利用二次函数的性质即可求出PQ的最小值.【解答】解:∵P在直线y=﹣x+6上,∴设P坐标为(m,6﹣m),连接OQ,OP,由PQ为圆O的切线,得到PQ⊥OQ,在Rt△OPQ中,根据勾股定理得:OP2=PQ2+OQ2,∴PQ2=m2+(6﹣m)2﹣2=2m2﹣12m+34=2(m﹣3)2+16,则当m=3时,切线长PQ的最小值为4.故选:B.【点评】此题考查了一次函数综合题,涉及的知识有:切线的性质,勾股定理,配方法的应用,以及二次函数的性质,熟练掌握二次函数的性质是解本题的关键.12.函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中正确的个数为()A.1 B.2 C.3 D.4【考点】二次函数图象与系数的关系.【分析】由函数y=x2+bx+c与x轴无交点,可得b2﹣4c<0;当x=1时,y=1+b+c=1;当x=3时,y=9+3b+c=3;当1<x<3时,二次函数值小于一次函数值,可得x2+bx+c<x,继而可求得答案.【解答】解:∵函数y=x2+bx+c与x轴无交点,∴b2﹣4ac<0;故①错误;当x=1时,y=1+b+c=1,故②错误;∵当x=3时,y=9+3b+c=3,∴3b+c+6=0;③正确;∵当1<x<3时,二次函数值小于一次函数值,∴x2+bx+c<x,∴x2+(b﹣1)x+c<0.故④正确.故选B.【点评】主要考查图象与二次函数系数之间的关系.此题难度适中,注意掌握数形结合思想的应用.二、填空题(本大题共有6小题,每小题3分,共18分)13.使有意义的x的取值范围是x≤1.【考点】二次根式有意义的条件.【专题】计算题.【分析】根据二次根式的被开方数为非负数,即可得出x的范围.【解答】解:∵有意义,∴1﹣x≥0,解得:x≤1.故答案为:x≤1.【点评】此题考查了二次根式有意义的条件,属于基础题,解答本题的关键是熟练掌握二次根式的被开方数为非负数.14.因式分解:x3﹣xy2=x(x﹣y)(x+y).【考点】提公因式法与公式法的综合运用.【分析】先提取公因式x,再对余下的多项式利用平方差公式继续分解.【解答】解:x3﹣xy2=x(x2﹣y2)=x(x﹣y)(x+y).故答案为:x(x﹣y)(x+y).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.15.如果|a﹣1|+(b+2)2=0,则(a+b)2015的值是﹣1.【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,a﹣1=0,b+2=0,解得a=1,b=﹣2,所以,(a+b)2015=(1﹣2)2015=﹣1.故答案为:﹣1.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.16.一个直角三角形两条直角边的长分别为6cm,8cm,则这个直角三角形的内心与外心之间的距离是cm.【考点】三角形的内切圆与内心;三角形的外接圆与外心.【分析】利用在Rt△ABC,可求得AB=10cm,根据内切圆的性质可判定四边形OECE是正方形,所以用r分别表示:CE=CD=r,AE=AN=6﹣r,BD=BN=8﹣r;再利用AB作为相等关系求出r=2cm,则可得AN=4cm,N为圆与AB的切点,M为AB的中点,根据直角三角形中外接圆的圆心是斜边的中点,即M为外接圆的圆心;在Rt△OMN中,先求得MN=AM﹣AN=1cm,由勾股定理可求得OM=cm.【解答】解:如图,在Rt△ABC,∠C=90°,AC=8cm,BC=6cm,∴AB=10cm,设Rt△ABC的内切圆的半径为r,则OD=OE=r,∵∠C=90°,∴CE=CD=r,AE=AN=6﹣r,BD=BN=8﹣r,∴8﹣r+6﹣r=10,解得r=2cm,∴AN=4cm,在Rt△OMN中,MN=AM﹣AN=1cm,∴OM=cm.【点评】此题考查了直角三角形的外心与内心概念,及内切圆的性质.17.如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,联结DE,F为线段DE上一点,且∠AFE=∠B.若AB=5,AD=8,AE=4,则AF的长为2.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】如图,证明AE⊥AD,求出DE的长度;证明△ADF∽△DEC,得到;运用AD=8,DE=4,CD=AB=5,求出AF的长度,即可解决问题.【解答】解:如图,∵四边形ABCD为平行四边形,∴AD∥BC,∠B=∠ADC;而AE⊥BC,∴AE⊥AD,∠ADF=∠DEC;∴DE2=AE2+AD2=16+64=80,∴DE=4而∠AFE=∠B,∴∠AFE=∠ADC,即∠ADF+∠DAF=∠ADF+∠EDC,∴∠DAF=∠EDC;∴△ADF∽△DEC,∴;而AD=8,DE=4,CD=AB=5,∴AF=2.故答案为2.【点评】该题以平行四边形为载体,以相似三角形的判定及其性质的应用为考查的核心构造而成;应牢固掌握相似三角形的判定及其性质.18.阅读材料:设一元二次方程ax2+bx+c=0的两根为x1,x2,则两根与方程系数之间有如下关系式x1+x2=﹣,x1•x2=根据该材料填空,已知x1,x2是方程x2+3x+1=0的两实数根,则的值为7.【考点】根与系数的关系.【专题】压轴题;阅读型.【分析】根据一元二次方程根与系数的关系,可以求得两根之积或两根之和,根据=,代入数值计算即可.【解答】解:∵x1,x2是方程x2+3x+1=0的两个实数根,∴x1+x2=﹣3,x1x2=1.∴===7.故答案为:7.【点评】此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.三、解答题(本大题共有8小题,共66分)19.(1)计算:(﹣1.414)0﹣|﹣2|+﹣3tan30°(2)化简求值:(﹣)÷,其中x=1+,y=1﹣.【考点】分式的化简求值;实数的运算;零指数幂;特殊角的三角函数值.【分析】(1)先利用零指数幂法则,绝对值及特殊角的三角函数化简,再利用实数的运算顺序求解即可,(2)先化简,再代入求值即可.【解答】解:(1)(﹣1.414)0﹣|﹣2|+﹣3tan30°=1﹣2++3﹣,=2,(2)(﹣)÷,=•,=,当x=1+,y=1﹣,原式===.【点评】本题主要考查了分式的化简求值,实数的运算,零指数幂及特殊角的三角函数,解题的关键是正确的化简及实数的运算顺序,零指数幂法则及特殊角的三角函数.20.如图,将小旗ACDB放于平面直角坐标系中,得到各顶点的坐标为A(﹣6,12),B(﹣6,0),C (0,6),D(﹣6,6).以点B为旋转中心,在平面直角坐标系内将小旗顺时针旋转90°.(1)画出旋转后的小旗A′C′D′B′;(2)写出点A′,C′,D′的坐标;(3)求出线段BA旋转到B′A′时所扫过的扇形的面积.【考点】作图-旋转变换;扇形面积的计算.【专题】作图题.【分析】(1)根据平面直角坐标系找出A′、C′、D′、B′的位置,然后顺次连接即可;(2)根据旋转的性质分别写出点A′,C′,D′的坐标即可;(3)先求出AB的长,再利用扇形面积公式列式计算即可得解.【解答】解:(1)小旗A′C′D′B′如图所示;(2)点A′(6,0),C′(0,﹣6),D′(0,0);(3)∵A(﹣6,12),B(﹣6,0),∴AB=12,∴线段BA旋转到B′A′时所扫过的扇形的面积==36π.【点评】本题考查了利用旋转变换作图,扇形的面积计算,熟练掌握旋转变换只改变图形的位置不改变图形的形状与大小是解题的关键.21.如图,一次函数y=kx+b的图象l与坐标轴分别交于点E、F,与双曲线y=﹣(x<0)交于点P(﹣1,n),且F是PE的中点.(1)求直线l的解析式;(2)若直线x=a与l交于点A,与双曲线交于点B(不同于A),问a为何值时,PA=PB?【考点】反比例函数与一次函数的交点问题.【专题】数形结合.【分析】(1)先由y=﹣,求出点P的坐标,再根据F为PE中点,求出F的坐标,把P,F的坐标代入求出直线l的解析式;(2)过P作PD⊥AB,垂足为点D,由A点的纵坐标为﹣2a+2,B点的纵坐标为﹣,D点的纵坐标为4,列出方程求解即可.【解答】解:由P(﹣1,n)在y=﹣上,得n=4,∴P(﹣1,4),∵F为PE中点,∴OF=n=2,∴F(0,2),又∵P,F在y=kx+b上,∴,解得.∴直线l的解析式为:y=﹣2x+2.(2)如图,过P作PD⊥AB,垂足为点D,∵PA=PB,∴点D为AB的中点,又由题意知A点的纵坐标为﹣2a+2,B点的纵坐标为﹣,D点的纵坐标为4,∴得方程﹣2a+2﹣=4×2,解得a1=﹣2,a2=﹣1(舍去).∴当a=﹣2时,PA=PB.【点评】本题主要考查了反比例函数与一次函数的交点,解题的重点是求出直线l的解析式.22.我市某中学艺术节期间,向全校学生征集书画作品.九年级美术王老师从全年级14个班中随机抽取了4个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图.(1)王老师采取的调查方式是抽样调查(填“普查”或“抽样调查”),王老师所调查的4个班征集到作品共12件,其中b班征集到作品3件,请把图2补充完整;(2)王老师所调查的四个班平均每个班征集作品多少件?请估计全年级共征集到作品多少件?(3)如果全年级参展作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生.现在要在其中抽两人去参加学校总结表彰座谈会,请直接写出恰好抽中一男一女的概率.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)由全面调查和抽样调查的定义可知王老师采取的调查方式是抽样调查;由题意得:所调查的4个班征集到的作品数为:5÷=12(件),B作品的件数为:12﹣2﹣5﹣2=3(件);继而可补全条形统计图;(2)四个班平均每个班征集作品件数=总数÷4,全校作品总数=平均每个班征集作品件数×班级数;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好抽中一男一女的情况,再利用概率公式即可求得答案.【解答】解:(1)王老师采取的调查方式是抽样调查;所调查的4个班征集到的作品数为:5÷=12(件),B作品的件数为:12﹣2﹣5﹣2=3(件);补全图2,如图所示:(2)12÷4=3,3×20=60;(3)画树状图得:∵共有20种等可能的结果,恰好抽中一男一女的有12种情况,∴恰好抽中一男一女的概率为:=.【点评】此题考查了列表法或树状图法求概率以及条形统计图与扇形统计图.用到的知识点为:概率=所求情况数与总情况数之比.23.京广高速铁路工程指挥部,要对某路段工程进行招标,接到了甲、乙两个工程队的投标书.从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的;若由甲队先做10天,剩下的工程再由甲、乙两队合作30天完成.(1)求甲、乙两队单独完成这项工程各需多少天?(2)已知甲队每天的施工费用为8.4万元,乙队每天的施工费用为5.6万元.工程预算的施工费用为500万元.为缩短工期并高效完成工程,拟安排预算的施工费用是否够用?若不够用,需追加预算多少万元?请给出你的判断并说明理由.【考点】分式方程的应用.【专题】压轴题.【分析】(1)设甲单独完成这项工程所需天数,表示出乙单独完成这项工程所需天数及各自的工作效率.根据工作量=工作效率×工作时间列方程求解;(2)根据题意,甲乙合作工期最短,所以须求合作的时间,然后计算费用,作出判断.【解答】解:(1)设乙队单独完成这项工程需要x天,则甲队单独完成这项工程需要x天.根据题意,得.解得x=90.经检验,x=90是原方程的根.∴x=×90=60.答:甲、乙两队单独完成这项工程分别需60天和90天.(2)设甲、乙两队合作完成这项工程需要y天,则有.解得y=36.需要施工费用:36×(8.4+5.6)=504(万元).∵504>500.∴工程预算的施工费用不够用,需追加预算4万元.【点评】此题考查分式方程的应用,涉及方案决策问题,所以综合性较强.24.如图,已知,⊙O为△ABC的外接圆,BC为直径,点E在AB上,过点E作EF⊥BC,点G在FE的延长线上,且GA=GE.(1)求证:AG与⊙O相切.(2)若AC=6,AB=8,BE=3,求线段OE的长.【考点】切线的判定;勾股定理;圆周角定理;相似三角形的判定与性质.【专题】证明题;几何综合题.【分析】(1)连接OA,由OA=OB,GA=GE得出∠ABO=∠BAO,∠GEA=∠GAE;再由EF⊥BC,得出∠BFE=90°,进一步由∠ABO+∠BEF=90°,∠BEF=∠GEA,最后得出∠GAO=90°求得答案;(2)BC为直径得出∠BAC=90°,利用勾股定理得出BC=10,由△BEF∽△BCA,求得EF、BF的长,进一步在△OEF中利用勾股定理得出OE的长即可.【解答】(1)证明:如图,连接OA,∵OA=OB,GA=GE∴∠ABO=∠BAO,∠GEA=∠GAE∵EF⊥BC,∴∠BFE=90°,∴∠ABO+∠BEF=90°,又∵∠BEF=∠GEA,∴∠GAE=∠BEF,∴∠BAO+∠GAE=90°,即AG与⊙O相切.(2)解:∵BC为直径,∴∠BAC=90°,AC=6,AB=8,∴BC=10,∵∠EBF=∠CBA,∠BFE=∠BAC,∴△BEF∽△BCA,∴==∴EF=1.8,BF=2.4,∴0F=0B﹣BF=5﹣2.4=2.6,∴OE==.【点评】本题考查了切线的判定:过半径的外端点与半径垂直的直线是圆的切线.也考查了勾股定理、相似三角形的判定与性质以及圆周角定理的推论.25.如图1,抛物线y=nx2﹣11nx+24n (n<0)与x轴交于B、C两点(点B在点C的左侧),抛物线上另有一点A在第一象限内,且∠BAC=90°.(1)填空:点B的坐标为((3,0)),点C的坐标为((8,0));(2)连接OA,若△OAC为等腰三角形.①求此时抛物线的解析式;②如图2,将△OAC沿x轴翻折后得△ODC,点M为①中所求的抛物线上点A与点C两点之间一动点,且点M的横坐标为m,过动点M作垂直于x轴的直线l与CD交于点N,试探究:当m为何值时,四边形AMCN的面积取得最大值,并求出这个最大值.【考点】二次函数综合题.【分析】(1)根据二次函数与x轴交点坐标求法,解一元二次方程即可得出;(2)①利用菱形性质得出AD⊥OC,进而得出△ACE∽△BAE,即可得出A点坐标,进而求出二次函数解析式;=S△AMN+S△CMN求出即可.②首先求出过C、D两点的坐标的直线CD的解析式,进而利用S四边形AMCN【解答】解:(1)∵抛物线y=nx2﹣11nx+24n (n<0)与x轴交于B、C两点(点B在点C的左侧),∴抛物线与x轴的交点坐标为:0=nx2﹣11nx+24n,解得:x1=3,x2=8,∴OB=3,OC=8,故B点坐标为(3,0),C点坐标为:(8,0);(2)①如图1,作AE⊥OC,垂足为点E∵△OAC是等腰三角形,∴OE=EC=×8=4,∴BE=4﹣3=1,又∵∠BAC=90°,∴△ACE∽△BAE,∴=,∴AE2=BE•CE=1×4,∴AE=2,∴点A的坐标为(4,2),把点A的坐标(4,2)代入抛物线y=nx2﹣11nx+24n,得n=﹣,∴抛物线的解析式为y=﹣x2+x﹣12,②∵点M的横坐标为m,且点M在①中的抛物线上,∴点M的坐标为(m,﹣m2+m﹣12),由①知,点D的坐标为(4,﹣2),则C、D两点的坐标求直线CD的解析式为y=x﹣4,∴点N的坐标为(m,m﹣4),∴MN=(﹣m2+m﹣12)﹣(m﹣4)=﹣m2+5m﹣8,=S△AMN+S△CMN=MN•CE=(﹣m2+5m﹣8)×4,∴S四边形AMCN=﹣(m﹣5)2+9,=9.∴当m=5时,S四边形AMCN【点评】此题主要考查了二次函数与坐标轴交点坐标求法以及菱形性质和四边形面积求法等知识,根据已知得出△ACE∽△BAE是解决问题的关键.26.如图1,正六边形ABCDEF的边长为a,P是BC边上一动点,过P作PM∥AB交AF于M,作PN∥CD 交DE于N.(1)①∠MPN=60°;②求证:PM+PN=3a;(2)如图2,点O是AD的中点,连接OM、ON,求证:OM=ON;(3)如图3,点O是AD的中点,OG平分∠MON,判断四边形OMGN是否为特殊四边形?并说明理由.【考点】四边形综合题.【专题】几何综合题;压轴题.【分析】(1)①运用∠MPN=180°﹣∠BPM﹣∠NPC求解,②作AG⊥MP交MP于点G,BH⊥MP于点H,CL⊥PN于点L,DK⊥PN于点K,利用MP+PN=MG+GH+HP+PL+LK+KN求解,(2)连接OE,由△OMA≌△ONE证明,(3)连接OE,由△OMA≌△ONE,再证出△GOE≌△NOD,由△ONG是等边三角形和△MOG是等边三角形求出四边形MONG是菱形.,【解答】解:(1)①∵六边形ABCDEF是正六边形,∴∠A=∠B=∠C=∠D=∠E=∠F=120°又∴PM∥AB,PN∥CD,∴∠BPM=60°,∠NPC=60°,∴∠MPN=180°﹣∠BPM﹣∠NPC=180°﹣60°﹣60°=60°,故答案为;60°.②如图1,作AG⊥MP交MP于点G,BH⊥MP于点H,CL⊥PN于点L,DK⊥PN于点K,MP+PN=MG+GH+HP+PL+LK+KN∵正六边形ABCDEF中,PM∥AB,作PN∥CD,∵∠AMG=∠BPH=∠CPL=∠DNK=60°,∴GM=AM,HP=BP,PL=PC,NK=ND,∵AM=BP,PC=DN,∴MG+HP+PL+KN=a,GH=LK=a,∴MP+PN=MG+GH+HP+PL+LK+KN=3a.(2)如图2,连接OE,∵六边形ABCDEF是正六边形,AB∥MP,PN∥DC,∴AM=BP=EN,∵∠MAO=∠OEN=60°,OA=OE,在△ONE和△OMA中,∴△OMA≌△ONE(SAS)∴OM=ON.(3)如图3,连接OE,由(2)得,△OMA≌△ONE∴∠MOA=∠EON,∵EF∥AO,AF∥OE,∴四边形AOEF是平行四边形,∴∠AFE=∠AOE=120°,。

2018届中考数学二模试卷(带详解) (23)

2018届中考数学二模试卷(带详解)  (23)

2018中考数学二模试卷一、选择题:(共10个小题,30分)1.已知两圆半径分别是方程x2﹣7x+10=0的两根,两圆的圆心距为6,则两圆的位置关系是()A.相交 B.内切 C.外切 D.外离2.设a=2°,b=(﹣3)2,c=,d=()﹣1,则a,b,c,d按由小到大的顺序排列正确的是()A.c<a<d<b B.b<d<a<c C.a<c<d<b D.b<c<a<d3.如图,是某几何体的三视图及相关数据,则该几何体的侧面积是()A.10πB.15πC.20πD.30π4.下列图形:①平行四边形;②正方形;③等腰梯形;④菱形;⑤正六边形.其中既是轴对称图形又是中心对称图形的有()A.1个B.2个C.3个D.4个5.下列运算正确的是()A.B.C.(ab)2=ab2D.(﹣a2)3=a66.下列说法正确的是()A.一个游戏中奖的概率是,则做100次这样的游戏一定会中奖B.为了了解全国中学生的心理健康状况,应采用普查的方式C.一组数据0,1,2,1,1的众数和中位数都是1D.若甲组数据的方差S甲2=0.2,乙组数据的方差S乙2=0.5,则乙组数据比甲组数据稳定7.设0<k<2,关于x的一次函数y=kx+2(1﹣x),当1≤x≤2时的最大值是()A.2k﹣2 B.k﹣1 C.k D.k+18.如图,延长RT△ABC斜边AB到点D,使BD=AB,连接CD,若tan∠BCD=,则tanA=()A.B.1 C.D.9.如图,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为()A.48 B.96 C.84 D.4210.已知二次函数y=x2+bx+c过点(0,﹣3)和(﹣1,2m﹣2)对于该二次函数有如下说法:①它的图象与x轴有两个公共点;②若存在一个正数x0,使得当x<x0时,函数值y随x的增大而减小,则m>0;若存在一个负数x0,使得当x>x0时,函数值y随x的增大而增大,则m<0;③若将它的图象向左平移3个单位后过原点,则m=﹣1;④若当x=2时的函数值与x=2012时的函数值相等,则当x=20时的函数值为﹣3.其中正确的说法的个数是()A.1 B.2 C.3 D.4二、填空题:(共6个小题,18分)11.使式子有意义的x的取值范围是.12.如图,在△ABC中,∠B=50°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=°.13.甲、乙玩猜数字游戏,游戏规则如下:有四个数字0、1、2、3,先由甲心中任选一个数字,记为m,再由乙猜甲刚才所选的数字,记为n.若m、n满足|m﹣n|≤1,则称甲、乙两人“心有灵犀”,则甲、乙两人“心有灵犀”的概率是.14.如图,AB是半⊙O的直径,CD切半⊙O于点C,P是△OAC的重心,且OP=,CD=,BD=1.则图中阴影部分的面积为.15.如图,在正方形ABCD内有一折线段,其中AE⊥EF,EF⊥FC,并且AE=6,EF=8,FC=10,则正方形的边长为.16.如图放置的△OAB1,△B1A1B2,△B2A2B3,…都是边长为2的等边三角形,边AO在y轴上,点B1,B2,B3,…都在直线y=x上,则A2015的坐标是.三、解答题:(共8个小题,72分)17.化简求值:(﹣x﹣1)÷,其中x=﹣(cos45°)﹣1.18.某中学为了预测本校应届毕业女生“一分钟跳绳”项目考试情况,从九年级随机抽取部分女生进行该项目测试,并以测试数据为样本,绘制出如图10所示的部分频数分布直方图(从左到右依次分为六个小组,每小组含最小值,不含最大值)和扇形统计图.根据统计图提供的信息解答下列问题:(1)补全频数分布直方图,并指出这个样本数据的中位数落在第小组;(2)若测试九年级女生“一分钟跳绳”次数不低于130次的成绩为优秀,本校九年级女生共有260人,请估计该校九年级女生“一分钟跳绳”成绩为优秀的人数;(3)如测试九年级女生“一分钟跳绳”次数不低于170次的成绩为满分,在这个样本中,从成绩为优秀的女生中任选一人,她的成绩为满分的概率是多少?19.如图,一次函数的图象与反比例函数y1=﹣(x<0)的图象相交于A点,与y轴、x 轴分别相交于B、C两点,且C(2,0).当x<﹣1时,一次函数值大于反比例函数的值,当x>﹣1时,一次函数值小于反比例函数值.(1)求一次函数的解析式;(2)设函数y2=(x>0)的图象与y1=﹣(x<0)的图象关于y轴对称.在y2=(x>0)的图象上取一点P(P点的横坐标大于2),过P作PQ⊥x轴,垂足是Q,若四边形BCQP 的面积等于2,求P点的坐标;(3)在(2)的条件下,过原点O作直线交线段BQ于点M,若BM:MQ=4:5,在双曲线y2=(x>0)上,是否存在点P′,使点P′与点P关于直线OM对称?若存在,请直接写出点P′的坐标;若不存在,请说明理由.20.从甲地到乙地,先是一段平路,然后是一段上坡路,小明骑车从甲地出发,到达乙地后立即原路返回甲地,途中休息了一段时间,假设小明骑车在平路、上坡、下坡时分别保持匀速前进.已知小明骑车上坡的速度比在平路上的速度每小时少5km,下坡的速度比在平路上的速度每小时多5km.设小明出发x h后,到达离甲地y km的地方,图中的折线OABCDE表示y与x之间的函数关系.(1)小明骑车在平路上的速度为km/h;他途中休息了h;(2)求线段AB、BC所表示的y与x之间的函数关系式;(3)如果小明两次经过途中某一地点的时间间隔为0.15h,那么该地点离甲地多远?21.如图,点A是⊙O上一点,OA⊥AB,且OA=1,AB=,OB交⊙O于点D,作AC⊥OB,垂足为M,并交⊙O于点C,连接BC.(1)求证:BC是⊙O的切线;(2)过点B作BP⊥OB,交OA的延长线于点P,连接PD,求sin∠BPD的值.22.如图1,图2,是一款家用的垃圾桶,踏板AB(与地面平行)或绕定点P(固定在垃圾桶底部的某一位置)上下转动(转动过程中始终保持AP=A′P,BP=B′P).通过向下踩踏点A到A′(与地面接触点)使点B上升到点B′,与此同时传动杆BH运动到B'H'的位置,点H绕固定点D旋转(DH为旋转半径)至点H',从而使桶盖打开一个张角∠HDH′.如图3,桶盖打开后,传动杆H′B′所在的直线分别与水平直线AB、DH垂直,垂足为点M、C,设H′C=B′M.测得AP=6cm,PB=12cm,DH′=8cm.要使桶盖张开的角度∠HDH'不小于60°,那么踏板AB离地面的高度至少等于多少cm?(结果保留两位有效数字)(参考数据:≈1.41,≈1.73)23.如图,在矩形ABCD中,AB=3,BC=4.动点P从点A出发沿AC向终点C运动,同时动点Q从点B出发沿BA向点A运动,到达A点后立刻以原来的速度沿AB返回.点P,Q运动速度均为每秒1个单位长度,当点P到达点C时停止运动,点Q也同时停止.连结PQ,设运动时间为t(t>0)秒.(1)求线段AC的长度;(2)当点Q从B点向A点运动时(未到达A点),求△APQ的面积S关于t的函数关系式,并写出t的取值范围;(3)伴随着P,Q两点的运动,线段PQ的垂直平分线为l:①当l经过点A时,射线QP交AD于点E,求AE的长;②当l经过点B时,求t的值.24.如图,四边形ABCD是平行四边形,过点A、C、D作抛物线y=ax2+bx+c(a≠0),与x轴的另一交点为E,连结CE,点A、B、D的坐标分别为(﹣2,0)、(3,0)、(0,4).(1)求抛物线的解析式;(2)已知抛物线的对称轴l交x轴于点F,交线段CD于点K,点M、N分别是直线l和x 轴上的动点,连结MN,当线段MN恰好被BC垂直平分时,求点N的坐标;(3)在满足(2)的条件下,过点M作一条直线,使之将四边形AECD的面积分为3:4的两部分,求出该直线的解析式.参考答案与试题解析一、选择题:(共10个小题,30分)1.已知两圆半径分别是方程x2﹣7x+10=0的两根,两圆的圆心距为6,则两圆的位置关系是()A.相交 B.内切 C.外切 D.外离【考点】圆与圆的位置关系;解一元二次方程-因式分解法.【分析】先解一元二次方程得到两圆半径分别为2和5,再计算两半径之和和两半径之差,然后把它们与圆心距进行大小比较,再根据圆和圆的位置关系进行判断.【解答】解:解方程x2﹣7x+10=0得x1=1,x2=3,即两圆半径分别为2和5,∵2+5=7,5﹣2=3,∴3<6<7,∴两圆的位置关系是相交.故答案为:相交.【点评】本题考查了圆和圆的位置关系:若两圆的圆心距、半径分别为d、R、r,则两圆外离⇔d>R+r;两圆外切⇔d=R+r;两圆相交⇔R﹣r<d<R+r(R≥r);两圆内切⇔d=R﹣r(R>r);两圆内含⇔d<R﹣r(R>r).也考查了因式分解法解一元二次方程.2.设a=2°,b=(﹣3)2,c=,d=()﹣1,则a,b,c,d按由小到大的顺序排列正确的是()A.c<a<d<b B.b<d<a<c C.a<c<d<b D.b<c<a<d【考点】实数大小比较;零指数幂;负整数指数幂.【专题】计算题.【分析】直接计算,再根据负数小于一切正数,两个负数比较大小,两个负数绝对值大的反而小进行解答.【解答】解:∵a=2°=1,b=(﹣3)2=9,﹣3<c=<﹣2,d=()﹣1=2,∴<1<2<9,即c<a<d<b.故选A.【点评】本题涉及到实数的零指数幂,负整数指数及负数开立方,要把它们逐一计算再比较大小.3.如图,是某几何体的三视图及相关数据,则该几何体的侧面积是()A.10πB.15πC.20πD.30π【考点】圆锥的计算;由三视图判断几何体.【分析】根据三视图可以判定此几何体为圆锥,根据三视图的尺寸可以知圆锥的底面半径为3,圆锥的母线长为5,代入公式求得即可.【解答】解:由三视图可知此几何体为圆锥,∴圆锥的底面半径为3,母线长为5,∵圆锥的底面周长等于圆锥的侧面展开扇形的弧长,∴圆锥的底面周长=圆锥的侧面展开扇形的弧长=2πr=2π×3=6π,∴圆锥的侧面积==×6π×5=15π,故选B.【点评】本题考查了圆锥的侧面积的计算,解题的关键是正确的理解圆锥的底面周长等于圆锥的侧面展开扇形的面积.4.下列图形:①平行四边形;②正方形;③等腰梯形;④菱形;⑤正六边形.其中既是轴对称图形又是中心对称图形的有()A.1个B.2个C.3个D.4个【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:平行四边形不是轴对称图形,是中心对称图形.故错误;正方形是轴对称图形,也是中心对称图形.故正确;等腰梯形是轴对称图形,不是中心对称图形.故错误;菱形是轴对称图形,也是中心对称图形.故正确;正六边形是轴对称图形,也是中心对称图形.故正确.共3个.故选C.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.5.下列运算正确的是()A.B.C.(ab)2=ab2D.(﹣a2)3=a6【考点】幂的乘方与积的乘方;算术平方根;立方根.【分析】根据幂的乘方的性质,积的乘方的性质,立方根、平方根的知识,对各选项分析判断后利用排除法求解,即可求得答案.【解答】解:A、=﹣2,故本选项正确;B、=3,故本选项错误;C、(ab)2=a2b2,故本选项错误;D、(﹣a2)3=﹣a6,故本选项错误.故选A.【点评】此题考查了幂的乘方,积的乘方,立方根,平方根的知识.此题比较简单,注意理清指数的变化是解题的关键,注意掌握立方根与平方根的定义.6.下列说法正确的是()A.一个游戏中奖的概率是,则做100次这样的游戏一定会中奖B.为了了解全国中学生的心理健康状况,应采用普查的方式C.一组数据0,1,2,1,1的众数和中位数都是1D.若甲组数据的方差S甲2=0.2,乙组数据的方差S乙2=0.5,则乙组数据比甲组数据稳定【考点】概率的意义;全面调查与抽样调查;中位数;众数;方差.【分析】根据概率、方差、众数、中位数的定义对各选项进行判断即可.【解答】A、一个游戏中奖的概率是,则做100次这样的游戏有可能中奖一次,该说法错误,故本选项错误;B、为了了解全国中学生的心理健康状况,应采用抽样调查的方式,该说法错误,故本选项错误;C、这组数据的众数是1,中位数是1,故本选项正确;D、方差越大,则平均值的离散程度越大,稳定性也越小,则甲组数据比乙组稳定,故本选项错误;故选C.【点评】本题考查了概率、方差、众数、中位数等知识,属于基础题,掌握各知识点是解题的关键.7.设0<k<2,关于x的一次函数y=kx+2(1﹣x),当1≤x≤2时的最大值是()A.2k﹣2 B.k﹣1 C.k D.k+1【考点】一次函数的性质.【专题】压轴题.【分析】首先确定一次函数的增减性,根据增减性即可求解.【解答】解:原式可以化为:y=(k﹣2)x+2,∵0<k<2,∴k﹣2<0,则函数值随x的增大而减小.∴当x=1时,函数值最大,最大值是:(k﹣2)+2=k.故选:C.【点评】本题主要考查了一次函数的性质,正确根性质确定当x=2时,函数取得最小值是解题的关键.8.如图,延长RT△ABC斜边AB到点D,使BD=AB,连接CD,若tan∠BCD=,则tanA=()A.B.1 C.D.【考点】锐角三角函数的定义;三角形中位线定理.【专题】计算题.【分析】若想利用tan∠BCD的值,应把∠BCD放在直角三角形中,也就得到了Rt△ACD 的中位线,可分别得到所求的角的正切值相关的线段的比.【解答】解:过B作BE∥AC交CD于E.∵AC⊥BC,∴BE⊥BC,∠CBE=90°.∴BE∥AC.∵AB=BD,∴AC=2BE.又∵tan∠BCD=,设BE=x,则AC=2x,∴tanA===,故选A.【点评】本题涉及到三角形的中位线定理,锐角三角函数的定义,解答此题关键是作出辅助线构造直角三角形,再进行计算.9.如图,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为()A.48 B.96 C.84 D.42【考点】平移的性质.=S 【分析】根据平移的性质得出BE=6,DE=AB=10,则OE=6,则阴影部分面积=S四边形ODFC,根据梯形的面积公式即可求解.梯形ABEO【解答】解:由平移的性质知,BE=6,DE=AB=10,∴OE=DE﹣DO=10﹣4=6,∴S四边形ODFC =S梯形ABEO=(AB+OE)•BE=(10+6)×6=48.故选:A.【点评】本题主要考查了平移的性质及梯形的面积公式,得出阴影部分和梯形ABEO的面积相等是解题的关键.10.已知二次函数y=x2+bx+c过点(0,﹣3)和(﹣1,2m﹣2)对于该二次函数有如下说法:①它的图象与x轴有两个公共点;②若存在一个正数x0,使得当x<x0时,函数值y随x的增大而减小,则m>0;若存在一个负数x0,使得当x>x0时,函数值y随x的增大而增大,则m<0;③若将它的图象向左平移3个单位后过原点,则m=﹣1;④若当x=2时的函数值与x=2012时的函数值相等,则当x=20时的函数值为﹣3.其中正确的说法的个数是()A.1 B.2 C.3 D.4【考点】二次函数的性质.【分析】把已知点的坐标代入可得y=x2﹣2mx﹣3,可利用方程x2﹣2mx﹣3=0的判别式判断①;可求得其对称轴为x=m,结合二次函数的增减性可判断②;根据左加右减的原则,可求得平移后的解析式,可判断③;根据二次函数的对称性,可求得对称轴,可求得m的值,再把x=20代入,可求得对应函数值,可判断④;可得出答案.【解答】解:∵二次函数y=x2+bx+c过点(0,﹣3)和(﹣1,2m﹣2)∴代入可求得c=﹣3,b=﹣2m,∴二次函数解析式为y=x2﹣2mx﹣3,令y=0可得x2﹣2mx﹣3=0,则其判别式△=4m2+12>0,故二次函数图象与x轴有两个公共点,∴①正确;∴二次函数的对称轴为x=m,且二次函数图象开口向上,∴若存在一个正数x0,使得当x<x0时,函数值y随x的增大而减小,则m>0;若存在一个负数x0,使得当x>x0时,函数值y随x的增大而增大,则m<0,∴②正确;由平移可得向左平移3个单位后其函数解析式为y=(x+3)2﹣2m(x+3)﹣3,把点(0,0)代入可得m=1,∴③不正确;由当x=2时的函数值与x=2012时的函数值相等,代入可求得m=1007,∴函数解析式为y=x2﹣2014x﹣3,当x=20时,代入可得y=400﹣4028﹣3≠﹣3,∴④不正确;综上可知正确的有两个,故选B.【点评】本题主要考查二次函数的性质及与方程的关系,掌握二次函数的对称轴、增减性及图象的平移是解题的关键.注意与一元二次方程的关系.二、填空题:(共6个小题,18分)11.使式子有意义的x的取值范围是﹣1≤x≤2.【考点】二次根式有意义的条件.【分析】根据二次根式的性质,被开方数大于等于0,就可以求解.【解答】解:根据题意得:,解得:﹣1≤x≤2.故答案是:﹣1≤x≤2.【点评】本题考查的知识点为:二次根式的被开方数是非负数.12.如图,在△ABC中,∠B=50°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=65°.【考点】三角形内角和定理;三角形的外角性质.【分析】根据三角形内角和定理、角平分线的定义以及三角形外角定理求得∠DAC+∠ACF=(∠B+∠B+∠1+∠2);最后在△AEC中利用三角形内角和定理可以求得∠AEC 的度数.【解答】解:∵三角形的外角∠DAC和∠ACF的平分线交于点E,∴∠EAC=∠DAC,∠ECA=∠ACF;又∵∠B=47°(已知),∠B+∠1+∠2=180°(三角形内角和定理),∴∠DAC+∠ACF=(∠B+∠2)+(∠B+∠1)=(∠B+∠B+∠1+∠2)==115°(外角定理),∴∠AEC=180°﹣(∠DAC+∠ACF)=180°﹣115°=65°;故答案为:65.【点评】本题考查了三角形内角和定理、三角形外角性质.解题时注意挖掘出隐含在题干中已知条件“三角形内角和是180°”.13.甲、乙玩猜数字游戏,游戏规则如下:有四个数字0、1、2、3,先由甲心中任选一个数字,记为m,再由乙猜甲刚才所选的数字,记为n.若m、n满足|m﹣n|≤1,则称甲、乙两人“心有灵犀”,则甲、乙两人“心有灵犀”的概率是.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与m、n满足|m ﹣n|≤1的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有16种等可能的结果,m、n满足|m﹣n|≤1的有10种情况,∴甲、乙两人“心有灵犀”的概率是:=.故答案为:.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.14.如图,AB是半⊙O的直径,CD切半⊙O于点C,P是△OAC的重心,且OP=,CD=,BD=1.则图中阴影部分的面积为π﹣.【考点】切线的性质;扇形面积的计算.【分析】延长OP交AC于点E,则可求得OE=1,连接BC,可求得BC=2,在△BCD中可求得其为直角三角形,且∠DCB=∠A=30°可求得AO及∠AOC的大小,利用面积公式可求得答案.【解答】解:如图,延长OP交AC于点E,∵P是△OAC的重心,且OP=,∴OE=1,且E为AC中点,连接BC,则OE为△ABC的中位线,∴BC=2OE=2,在△BCD中,BC=2,BD=1,CD=,满足BC2=BD2+CD2,∴△BCD为直角三角形,且∠BCD=30°,∵DC为⊙O的切线,∴∠CAO=30°,∴∠AOE=60°,AO=2OE=2,AE=,∴∠AOC=120°,AC=2AE=2,∴S 扇形AOC =πOA 2=π,S △AOC =AC •OE=×2×1=,∴S 阴影=S 扇形AOC ﹣S △AOC =π﹣,故答案为:π﹣.【点评】本题主要考查切线的性质及扇形的面积的计算,由条件求得△BCD 为直角三角形,求得∠CAO=30°是解题的关键.15.如图,在正方形ABCD 内有一折线段,其中AE ⊥EF ,EF ⊥FC ,并且AE=6,EF=8,FC=10,则正方形的边长为 4.【考点】相似三角形的判定与性质;勾股定理;正方形的性质.【分析】首先连接AC ,则可证得△AEM ∽△CFM ,根据相似三角形的对应边成比例,即可求得EM 与FM 的长,然后由勾股定理求得AM 与CM 的长,进而得到AC 的长,在Rt △ABC 中,由AB=AC •sin45°,即可求出正方形的边长. 【解答】解:解:连接AC , ∵AE 丄EF ,EF 丄FC , ∴∠E=∠F=90°, ∵∠AME=∠CMF , ∴△AEM ∽△CFM , ∴,∵AE=6,EF=8,FC=10, ∴==,∴EM=3,FM=5,在Rt△AEM中,AM==3,在Rt△FCM中,CM==5,∴AC=8,在Rt△ABC中,AB=AC•sin45°=8×=4,故答案为:4.【点评】此题考查了相似三角形的判定与性质,正方形的性质以及勾股定理的应用.此题综合性较强,解题时要注意数形结合思想的应用.16.如图放置的△OAB1,△B1A1B2,△B2A2B3,…都是边长为2的等边三角形,边AO在y轴上,点B1,B2,B3,…都在直线y=x上,则A2015的坐标是(2015,2017).【考点】一次函数图象上点的坐标特征;等边三角形的性质.【专题】规律型.【分析】根据题意得出直线AA1的解析式为:y=x+2,进而得出A,A1,A2,A3坐标,进而得出坐标变化规律,进而得出答案.【解答】解:过B1向x轴作垂线B1C,垂足为C,由题意可得:A(0,2),AO∥A1B1,∠B1OC=30°,∴CO=OB1cos30°=,∴B1的横坐标为:,则A1的横坐标为:,连接AA1,可知所有三角形顶点都在直线AA1上,∵点B1,B2,B3,…都在直线y=x上,AO=2,∴直线AA1的解析式为:y=x+2,∴y=×+2=3,∴A1(,3),同理可得出:A2的横坐标为:2,∴y=×2+2=4,∴A2(2,4),∴A3(3,5),…A2015(2015,2017).故答案为:(2015,2017).【点评】此题主要考查了一次函数图象上点的坐标特征以及数字变化类,得出A点横纵坐标变化规律是解题关键.三、解答题:(共8个小题,72分)17.化简求值:(﹣x﹣1)÷,其中x=﹣(cos45°)﹣1.【考点】分式的化简求值;负整数指数幂;特殊角的三角函数值.【分析】根据分式混合运算的法则把原式进行化简,再把a的值代入进行计算即可.【解答】解:原式=(﹣)÷=﹣×=﹣(x+2)(x﹣1)=﹣x2﹣x+2.当x=﹣(cos45°)﹣1=﹣时,原式=﹣(﹣)2﹣(﹣)+2=﹣2++2=.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.18.某中学为了预测本校应届毕业女生“一分钟跳绳”项目考试情况,从九年级随机抽取部分女生进行该项目测试,并以测试数据为样本,绘制出如图10所示的部分频数分布直方图(从左到右依次分为六个小组,每小组含最小值,不含最大值)和扇形统计图.根据统计图提供的信息解答下列问题:(1)补全频数分布直方图,并指出这个样本数据的中位数落在第三小组;(2)若测试九年级女生“一分钟跳绳”次数不低于130次的成绩为优秀,本校九年级女生共有260人,请估计该校九年级女生“一分钟跳绳”成绩为优秀的人数;(3)如测试九年级女生“一分钟跳绳”次数不低于170次的成绩为满分,在这个样本中,从成绩为优秀的女生中任选一人,她的成绩为满分的概率是多少?【考点】频数(率)分布直方图;用样本估计总体;扇形统计图;中位数;概率公式.【分析】(1)首先求得总人数,然后求得第四组的人数,即可作出统计图;(2)利用总人数260乘以所占的比例即可求解;(3)利用概率公式即可求解.【解答】解:(1)总人数是:10÷20%=50(人),第四组的人数是:50﹣4﹣10﹣16﹣6﹣4=10,,中位数位于第三组;(2)该校九年级女生“一分钟跳绳”成绩为优秀的人数是:×260=104(人);(3)成绩是优秀的人数是:10+6+4=20(人),成绩为满分的人数是4,则从成绩为优秀的女生中任选一人,她的成绩为满分的概率是=0.2.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题19.如图,一次函数的图象与反比例函数y1=﹣(x<0)的图象相交于A点,与y轴、x 轴分别相交于B、C两点,且C(2,0).当x<﹣1时,一次函数值大于反比例函数的值,当x>﹣1时,一次函数值小于反比例函数值.(1)求一次函数的解析式;(2)设函数y2=(x>0)的图象与y1=﹣(x<0)的图象关于y轴对称.在y2=(x>0)的图象上取一点P(P点的横坐标大于2),过P作PQ⊥x轴,垂足是Q,若四边形BCQP 的面积等于2,求P点的坐标;(3)在(2)的条件下,过原点O作直线交线段BQ于点M,若BM:MQ=4:5,在双曲线y2=(x>0)上,是否存在点P′,使点P′与点P关于直线OM对称?若存在,请直接写出点P′的坐标;若不存在,请说明理由.【考点】反比例函数综合题.【分析】(1)根据当x<﹣1时,一次函数值大于反比例函数值;当x>﹣1时,一次函数值小于反比例函数值,利用函数图象得到A横坐标为﹣1,将x=﹣1代入反比例解析式求出y的值,确定出A的坐标,设一次函数解析式为y=kx+b,将A与C坐标代入求出k与b的值,即可确定出一次函数解析式;(2)由函数y2═(x>0)的图象与y1=﹣(x<0)的图象关于y轴对称,可确定出函数y2=(x>0)的解析式,求出三角形BOC面积,设P(n,),表示出PQ,OQ的长,利用梯形的面积公式表示出梯形PQOB的面积,由梯形PQOB面积减去三角形BOC面积表示出四边形BCQP的面积,根据四边形BCQP面积为2列出关于n的方程,求出方程的解得到n的值,即可得到点P的坐标;(3)根据双曲线的对称性,点P关于直线y=x的对称点P′必在此双曲线上,因此,只需计算直线OM是否为第一、三象限的角平分线.过点M作MN⊥x轴于N,可证RT△MNQ∽RT△BOQ,利用相似三角形的性质,可得MN=,再利用,求得NQ=,从而得到ON=,故可得MN=ON,所以直线OM是否为第一、三象限的角平分线,即可得到答案.【解答】解:(1)∵x<﹣1时,一次函数值大于反比例函数值,当x>﹣1时,一次函数值小于反比例函数值.∴A点的横坐标是﹣1,把x=﹣1代入y1=﹣,得y=3∴A(﹣1,3),设一次函数解析式为y=kx+b,因直线过A、C,则,解得:,∴一次函数解析式为y=﹣x+2(2)∵y2=(x>0)的图象与y1=﹣(x<0)的图象y轴对称,∴y2=(x>0),∵B点是直线y=﹣x+2与y轴的交点,∴B (0,2),设P(n,),n>2 S﹣S△BOC=2,四边形BOQP∴(2+)n﹣×2×2=2,n=,∴P(,);(3)存在,P′(,).【点评】此题属于反比例函数综合题,涉及的知识有:待定系数法求一次函数解析式,一次函数与坐标轴的交点,对称的性质,坐标与图形性质,利用了数形结合的思想,熟练掌握待定系数法及数形结合思想是解本题的关键.20.从甲地到乙地,先是一段平路,然后是一段上坡路,小明骑车从甲地出发,到达乙地后立即原路返回甲地,途中休息了一段时间,假设小明骑车在平路、上坡、下坡时分别保持匀速前进.已知小明骑车上坡的速度比在平路上的速度每小时少5km,下坡的速度比在平路上的速度每小时多5km.设小明出发x h后,到达离甲地y km的地方,图中的折线OABCDE表示y与x之间的函数关系.(1)小明骑车在平路上的速度为15km/h;他途中休息了0.1h;(2)求线段AB、BC所表示的y与x之间的函数关系式;(3)如果小明两次经过途中某一地点的时间间隔为0.15h,那么该地点离甲地多远?【考点】一次函数的应用.【专题】数形结合.【分析】(1)由速度=路程÷时间就可以求出小明在平路上的速度,就可以求出返回的时间,进而得出途中休息的时间;(2)先由函数图象求出小明到达乙地的时间就可以求出B的坐标和C的坐标就可以由待定系数法求出解析式;(3)小明两次经过途中某一地点的时间间隔为0.15h,由题意可以得出这个地点只能在坡路上.设小明第一次经过该地点的时间为t,则第二次经过该地点的时间为(t+0.15)h,根据距离甲地的距离相等建立方程求出其解即可.【解答】解:(1)小明骑车在平路上的速度为:4.5÷0.3=15(km/h),∴小明骑车在上坡路的速度为:15﹣5=10(km/h),小明骑车在下坡路的速度为:15+5=20(km/h).∴小明在AB段上坡的时间为:(6.5﹣4.5)÷10=0.2(h),BC段下坡的时间为:(6.5﹣4.5)÷20=0.1(h),DE段平路的时间和OA段平路的时间相等为0.3h,∴小明途中休息的时间为:1﹣0.3﹣0.2﹣0.1﹣0.3=0.1(h).故答案为:15,0.1.(2)小明骑车到达乙地的时间为0.5小时,∴B(0.5,6.5).小明下坡行驶的时间为:2÷20=0.1,∴C(0.6,4.5).设直线AB的解析式为y=k1x+b1,由题意,得,解得:,∴y=10x+1.5(0.3≤x≤0.5);设直线BC的解析式为y=k2x+b2,由题意,得。

2018年中考数学二模试卷含答案

2018年中考数学二模试卷含答案

2018年中考数学二模试卷一、选择题(本大题共20小题,每小题3分,共60分)1.(﹣)﹣1的倒数是()A.B.C.﹣ D.﹣2.下列计算正确的是()A.(﹣3a)2+4a2=a2B.3a2﹣(﹣2a)2=﹣a2C.3a•4a2=12a2D.(3a2)2÷4a2=a23.已知点M(1﹣2m,m﹣1)关于原点的对称点在第一象限,则m的取值范围在数轴上表示正确的是()A.B.C.D.4.下列图形是几家电信公司的标志,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.5.化简÷(1+)的结果是()A.B.C.D.6.长方体的主视图、俯视图如图所示(单位:m),则其左视图面积是()A.4m2B.12m2C.1m2D.3m27.某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x2)=196 B.50+50(1+x2)=196C.50+50(1+x)+50(1+x)2=196 D.50+50(1+x)+50(1+2x)=1968.2017年“端午节”期间,小明与小亮两家准备从东营港、黄河入海口、龙悦湖中选择一景点游玩,小明与小亮通过抽签方式确定景点,则两家都抽到东营港的概率是()A.B.C.D.9.已知空气的单位体积质量为1.24×10﹣3克/厘米3,1.24×10﹣3用小数表示为()A.0.000124 B.0.0124 C.﹣0.00124 D.0.0012410.某班七个合作学习小组人数如下:4、5、5、x、6、7、8,已知这组数据的平均数是6,则这组数据的中位数是()A.5 B.5.5 C.6 D.711.把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6,DC=7,把三角板DCE绕点C顺时针旋转15°得到△D1CE1(如图乙),此时AB与CD1交于点O,则线段AD1的长为()A.B.5 C.4 D.12.如图,直线y=与双曲线y=(k>0,x>0)交于点A,将直线y=向上平移4个单位长度后,与y轴交于点C,与双曲线y=(k>0,x>0)交于点B,若OA=3BC,则k 的值为()A.3 B.6 C.D.13.如图,半圆O的直径AB=10cm,弦AC=6cm,AD平分∠BAC,则AD的长为()A. cm B. cm C. cm D.4cm14.如图,已知⊙O的半径为1,锐角△ABC内接于⊙O,BD⊥AC于点D,OM⊥AB于点M,则sin∠CBD的值等于()A.OM的长B.2OM的长C.CD的长D.2CD的长15.若正比例函数y=mx(m≠0),y随x的增大而减小,则它和二次函数y=mx2+m的图象大致是()A.B.C.D.16.如图,分别以直角△ABC的斜边AB,直角边AC为边向△ABC外作等边△ABD和等边△ACE,F为AB的中点,DE与AB交于点G,EF与AC交于点H,∠ACB=90°,∠BAC=30°.给出如下结论:①EF⊥AC;②四边形ADFE为菱形;③AD=4AG;④FH=BD;其中正确结论的是()A.①②③B.①②④C.①③④D.②③④17.如图,点E是矩形ABCD的边CD上一点,把△ADE沿AE对折,点D的对称点F恰好落在BC上,已知折痕AE=10cm,且tan∠EFC=,那么该矩形的周长为()A.72cm B.36cm C.20cm D.16cm18.如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF 于G,下列结论:①BE=DF;②∠DAF=15°;③AC垂直平分EF;④BE+DF=EF;⑤S△CEF=2S△ABE,其中正确结论有()A.2个B.3个C.4个D.5个19.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若点A(﹣3,y1)、点B(﹣,y2)、点C(,y3)在该函数图象上,则y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2.其中正确的结论有()A.2个B.3个C.4个D.5个20.如图,正方形ABCD中,AB=8cm,对角线AC,BD相交于点O,点E,F分别从B,C两点同时出发,以1cm/s的速度沿BC,CD运动,到点C,D时停止运动,设运动时间为t(s),△OEF的面积为s(cm2),则s(cm2)与t(s)的函数关系可用图象表示为()A.B.C.D.二、填空题(本小题共4小题,每小题3分,共12分)21.因式分解2x4﹣2= .22.方程=的解为.23.如图,正三角形ABC的边长是2,分别以点B,C为圆心,以r为半径作两条弧,设两弧与边BC围成的阴影部分面积为S,当r=时,S为.24.如图,在平面直角坐标系中,直线l经过原点,且与y轴正半轴所夹的锐角为60°,过点A(0,1)作y轴的垂线l于点B,过点B1作直线l的垂线交y轴于点A1,以A1B、BA 为邻边作▱ABA1C1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2,以A2B1、B1A1为邻边作▱A1B1A2C2;…;按此作法继续下去,则C2017的坐标是.三、解答题(本题共5小题,48分)25.(8分)甲、乙两个工程队共同承担一项筑路任务,甲队单独施工完成此项任务比乙队单独施工完成此项任务多用10天,且甲队单独施工45天和乙队单独施工30天的工作量相同.(1)甲、乙两队单独完成此项任务需要多少天?(2)若甲、乙两队共同工作了3天后,乙队因设备检修停止施工,由甲队继续施工,为了不影响工程进度,甲队的工作效率提高到原来的2倍,要使甲队总的工作量不少于乙队的工作量的2倍,那么甲队至少再单独施工多少天?26.(8分)如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直与x轴,垂足为点B,反比例函数y=(x>0)的图象经过AO的中点C,且与AB相交于点D,OB=4,AD=3,(1)求反比例函数y=的解析式;(2)求cos∠OAB的值;(3)求经过C、D两点的一次函数解析式.27.(10分)已知∠ACD=90°,MN是过点A的直线,AC=DC,DB⊥MN于点B,如图(1),易证BD+AB=CB,过程如下:过点C 作CE ⊥CB 于点C ,与MN 交于点E ∵∠ACB+∠BCD=90°,∠ACB+∠ACE=90°,∴∠BCD=∠ACE .∵四边形ACDB 内角和为360°,∴∠BDC+∠CAB=180°. ∵∠EAC+∠CAB=180°,∴BD+AB=CB .∴∠EAC=∠BDC 又∵AC=DC , ∴△ACE ≌△DCB , ∴AE=DB ,CE=CB , ∴△ECB 为等腰直角三角形,∴BE=CB .又∵BE=AE+AB , ∴BE=BD+AB .(1)当MN 绕A 旋转到如图(2)和图(3)两个位置时,BD 、AB 、CB 满足什么样关系式,请写出你的猜想,并对图(3)给予证明. (2)MN 在绕点A 旋转过程中,当∠BCD=30°,BD=时,则CD= ,CB= .28.(10分)如图1,在Rt △ABC 中,∠BAC=90°,AD ⊥BC 于点D ,点O 是AC 边上一点,连接BO 交AD 于F ,OE ⊥OB 交BC 边于点E . (1)求证:△ABF ∽△COE ; (2)当O 为AC 的中点,时,如图2,求的值; (3)当O 为AC 边中点,时,请直接写出的值.29.(12分)如图,已知抛物线y=x 2+bx+c 经过△ABC 的三个顶点,其中点A (0,1),点B (﹣9,10),AC ∥x 轴,点P 是直线AC 下方抛物线上的动点. (1)求抛物线的解析式;(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与△ABC相似,若存在,求出点Q的坐标,若不存在,请说明理由.2018年中考数学二模试卷参考答案与试题解析一、选择题(本大题共20小题,每小题3分,共60分)1.(﹣)﹣1的倒数是()A.B.C.﹣ D.﹣【考点】6F:负整数指数幂;17:倒数.【分析】先计算负整数指数幂,再依据倒数的定义可得.【解答】解:∵(﹣)﹣1=﹣,∴(﹣)﹣1的倒数为﹣,故选:C.【点评】本题主要考查负整数指数幂和倒数的定义,熟练掌握负整数指数幂是解题的关键.2.下列计算正确的是()A.(﹣3a)2+4a2=a2B.3a2﹣(﹣2a)2=﹣a2C.3a•4a2=12a2D.(3a2)2÷4a2=a2【考点】4I:整式的混合运算.【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=9a2+4a2=13a2,不符合题意;B、原式=3a2﹣4a2=﹣a2,符合题意;C、原式=12a3,不符合题意;D、原式=9a4÷4a2=a2,不符合题意,故选B【点评】此题考查了整式的混合运算,熟练掌握公式及法则是解本题的关键.3.已知点M(1﹣2m,m﹣1)关于原点的对称点在第一象限,则m的取值范围在数轴上表示正确的是()A.B.C.D.【考点】R6:关于原点对称的点的坐标;C4:在数轴上表示不等式的解集;CB:解一元一次不等式组.【分析】先确定出点M在第三象限,然后根据第三象限内点的横坐标与纵坐标都是负数列出不等式组,然后求解得到m的取值范围,从而得解.【解答】解:∵点M(1﹣2m,m﹣1)关于原点的对称点在第一象限,∴点M(1﹣2m,m﹣1)在第三象限,∴,解不等式①得,m>,解不等式②得,m<1,所以,m的取值范围是<m<1,在数轴上表示如下:.故选C.【点评】本题主要考查了平面直角坐标系中,各象限内点的坐标的符号的确定方法,以及关于原点对称的两点坐标之间的关系以及一元一次不等式组的解法.4.下列图形是几家电信公司的标志,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】P3:轴对称图形;R5:中心对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,也不是中心对称图形.故错误;B、不是轴对称图形,也不是中心对称图形.故错误;C、是轴对称图形,也是中心对称图形.故正确;D、不是轴对称图形,是中心对称图形.故错误.故选C.【点评】掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180°后与原图重合.5.化简÷(1+)的结果是()A.B.C.D.【考点】6C:分式的混合运算.【分析】首先对括号内的式子通分相加,然后把除法转化成乘法,进行约分即可.【解答】解:原式=÷=•=.故选A.【点评】本题主要考查分式的混合运算,通分、因式分解和约分是解答的关键.6.长方体的主视图、俯视图如图所示(单位:m),则其左视图面积是()A.4m2B.12m2C.1m2D.3m2【考点】U3:由三视图判断几何体.【分析】左视图面积=宽×高.【解答】解:由主视图易得高为1,由俯视图易得宽为3.∴左视图面积=1×3=3(m2).故选D.【点评】主视图确定物体的长与高;俯视图确定物体的长与宽.7.某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x2)=196 B.50+50(1+x2)=196C.50+50(1+x)+50(1+x)2=196 D.50+50(1+x)+50(1+2x)=196【考点】AC:由实际问题抽象出一元二次方程.【分析】主要考查增长率问题,一般增长后的量=增长前的量×(1+增长率),如果该厂八、九月份平均每月的增长率为x,那么可以用x分别表示八、九月份的产量,然后根据题意可得出方程.【解答】解:依题意得八、九月份的产量为50(1+x)、50(1+x)2,∴50+50(1+x)+50(1+x)2=196.故选C.【点评】本题考查了由实际问题抽象出一元二次方程,增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.8.2017年“端午节”期间,小明与小亮两家准备从东营港、黄河入海口、龙悦湖中选择一景点游玩,小明与小亮通过抽签方式确定景点,则两家都抽到东营港的概率是()A.B.C.D.【考点】X6:列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两家抽到东营港的情况,再利用概率公式求解即可求得答案.【解答】解:用A、B、C表示:东营港、黄河入海口、龙悦湖;画树状图得:∵共有9种等可能的结果,则两家都抽到东营港的有3种情况,∴则两家都抽到东营港的概率是=;故选D.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.9.已知空气的单位体积质量为1.24×10﹣3克/厘米3,1.24×10﹣3用小数表示为()A.0.000124 B.0.0124 C.﹣0.00124 D.0.00124【考点】1K:科学记数法—原数.【分析】科学记数法的标准形式为a×10n(1≤|a|<10,n为整数).本题把数据“1.24×10﹣3中1.24的小数点向左移动3位就可以得到.【解答】解:把数据“1.24×10﹣3中1.24的小数点向左移动3位就可以得到为0.001 24.故选D.【点评】本题考查写出用科学记数法表示的原数.将科学记数法a×10﹣n表示的数,“还原”成通常表示的数,就是把a的小数点向左移动n 位所得到的数.把一个数表示成科学记数法的形式及把科学记数法还原是两个互逆的过程,这也可以作为检查用科学记数法表示一个数是否正确的方法.10.某班七个合作学习小组人数如下:4、5、5、x、6、7、8,已知这组数据的平均数是6,则这组数据的中位数是()A.5 B.5.5 C.6 D.7【考点】W4:中位数;W1:算术平均数.【分析】根据平均数的定义先求出这组数据x,再将这组数据从小到大排列,然后找出最中间的数即可.【解答】解:∵4、5、5、x、6、7、8的平均数是6,∴(4+5+5+x+6+7+8)÷7=6,解得:x=7,将这组数据从小到大排列为4、5、5、6、7、7、8,最中间的数是6;则这组数据的中位数是6;故选:C.【点评】此题考查了中位数,掌握中位数的概念是解题的关键,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).11.把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6,DC=7,把三角板DCE绕点C顺时针旋转15°得到△D1CE1(如图乙),此时AB与CD1交于点O,则线段AD1的长为()A.B.5 C.4 D.【考点】R2:旋转的性质.【分析】先求出∠ACD=30°,再根据旋转角求出∠ACD1=45°,然后判断出△ACO是等腰直角三角形,再根据等腰直角三角形的性质求出AO、CO,AB⊥CO,再求出OD1然后利用勾股定理列式计算即可得解.【解答】解:∵∠ACB=∠DEC=90°,∠D=30°,∴∠DCE=90°﹣30°=60°,∴∠ACD=90°﹣60°=30°,∵旋转角为15°,∴∠ACD1=30°+15°=45°,又∵∠A=45°,∴△ACO是等腰直角三角形,∴AO=CO=AB=×6=3,AB⊥CO,∵DC=7,∴D1C=DC=7,∴D1O=7﹣3=4,在Rt△AOD1中,AD1===5.故选B.【点评】本题考查了旋转的性质,等腰直角三角形的判定与性质,勾股定理的应用,根据等腰直角三角形的性质判断出AB⊥CO是解题的关键,也是本题的难点.12.如图,直线y=与双曲线y=(k>0,x>0)交于点A,将直线y=向上平移4个单位长度后,与y轴交于点C,与双曲线y=(k>0,x>0)交于点B,若OA=3BC,则k 的值为()A.3 B.6 C.D.【考点】GB:反比例函数综合题.【分析】先根据一次函数平移的性质求出平移后函数的解析式,再分别过点A、B作AD⊥x 轴,BE⊥x轴,CF⊥BE于点F,再设A(3x, x),由于OA=3BC,故可得出B(x, x+4),再根据反比例函数中k=xy为定值求出x【解答】解:∵将直线y=向上平移4个单位长度后,与y轴交于点C,∴平移后直线的解析式为y=x+4,分别过点A、B作AD⊥x轴,BE⊥x轴,CF⊥BE于点F,设A(3x, x),∵OA=3BC,BC∥OA,CF∥x轴,∴△BCF∽△AOD,∴CF=OD,∵点B在直线y=x+4上,∴B(x, x+4),∵点A、B在双曲线y=上,∴3x•x=x•(x+4),解得x=1,∴k=3×1××1=.故选:D.【点评】本题考查的是反比例函数综合题,根据题意作出辅助线,设出A、B两点的坐标,再根据k=xy的特点求出k的值即可.13.如图,半圆O的直径AB=10cm,弦AC=6cm,AD平分∠BAC,则AD的长为()A. cm B. cm C. cm D.4cm【考点】M4:圆心角、弧、弦的关系;KD:全等三角形的判定与性质;KQ:勾股定理.【分析】连接OD,OC,作DE⊥AB于E,OF⊥AC于F,运用圆周角定理,可证得∠DOB=∠OAC,即证△AOF≌△OED,所以OE=AF=3cm,根据勾股定理,得DE=4cm,在直角三角形ADE中,根据勾股定理,可求AD的长.【解答】解:连接OD,OC,作DE⊥AB于E,OF⊥AC于F,∵∠CAD=∠BAD(角平分线的性质),∴=,∴∠DOB=∠OAC=2∠BAD,∴△AOF≌△ODE,∴OE=AF=AC=3(cm),在Rt△DOE中,DE==4(cm),在Rt△ADE中,AD==4(cm).故选:A.【点评】本题考查了翻折变换及圆的有关计算,涉及圆的题目作弦的弦心距是常见的辅助线之一,注意熟练运用垂径定理、圆周角定理和勾股定理.14.如图,已知⊙O的半径为1,锐角△ABC内接于⊙O,BD⊥AC于点D,OM⊥AB于点M,则sin∠CBD的值等于()A.OM的长B.2OM的长C.CD的长D.2CD的长【考点】M5:圆周角定理;T1:锐角三角函数的定义.【分析】作直径AE,连接BE.得直角三角形ABE.根据圆周角定理可证∠CBD=∠MAO,运用三角函数定义求解.【解答】解:连接AO并延长交圆于点E,连接BE.则∠C=∠E,由AE为直径,且BD⊥AC,得到∠BDC=∠ABE=90°,所以△ABE和△BCD都是直角三角形,所以∠CBD=∠EAB.又△OAM是直角三角形,∵AO=1,∴sin∠CBD=sin∠EAB==OM,即sin∠CBD的值等于OM的长.故选:A.【点评】考查了圆周角定理和三角函数定义.此题首先要观察题目涉及的线段,然后根据已知条件结合定理进行角的转换.15.若正比例函数y=mx(m≠0),y随x的增大而减小,则它和二次函数y=mx2+m的图象大致是()A.B.C.D.【考点】H2:二次函数的图象;F4:正比例函数的图象.【分析】由y=mx(m≠0),y随x的增大而减小,推出m<0,可知二次函数y=mx2+m的图象的开口向下,与y则交于负半轴上,由此即可判断.【解答】解:∵y=mx(m≠0),y随x的增大而减小,∴m<0,∴二次函数y=mx2+m的图象的开口向下,与y则交于负半轴上,故选A.【点评】本题参考二次函数的性质、正比例函数的性质等知识,解题的关键是熟练掌握正比例函数以及二次函数的性质,属于中考常考题型.16.如图,分别以直角△ABC的斜边AB,直角边AC为边向△ABC外作等边△ABD和等边△ACE,F为AB的中点,DE与AB交于点G,EF与AC交于点H,∠ACB=90°,∠BAC=30°.给出如下结论:①EF⊥AC;②四边形ADFE为菱形;③AD=4AG;④FH=BD;其中正确结论的是()A.①②③B.①②④C.①③④D.②③④【考点】L9:菱形的判定;KK:等边三角形的性质;KO:含30度角的直角三角形.【分析】根据已知先判断△ABC≌△EFA,则∠AEF=∠BAC,得出EF⊥AC,由等边三角形的性质得出∠BDF=30°,从而证得△DBF≌△EFA,则AE=DF,再由FE=AB,得出四边形ADFE为平行四边形而不是菱形,根据平行四边形的性质得出AD=4AG,从而得到答案.【解答】解:∵△ACE是等边三角形,∴∠EAC=60°,AE=AC,∵∠BAC=30°,∴∠FAE=∠ACB=90°,AB=2BC,∵F为AB的中点,∴AB=2AF,∴BC=AF,∴△ABC≌△EFA,∴FE=AB,∴∠AEF=∠BAC=30°,∴EF⊥AC,故①正确,∵EF⊥AC,∠ACB=90°,∴HF∥BC,∵F是AB的中点,∴HF=BC,∵BC=AB,AB=BD,∴HF=BD,故④说法正确;∵AD=BD,BF=AF,∴∠DFB=90°,∠BDF=30°,∵∠FAE=∠BAC+∠CAE=90°,∴∠DFB=∠EAF,∵EF⊥AC,∴∠AEF=30°,∴∠BDF=∠AEF,∴△DBF≌△EFA(AAS),∴AE=DF,∵FE=AB,∴四边形ADFE为平行四边形,∵AE≠EF,∴四边形ADFE不是菱形;故②说法不正确;∴AG=AF,∴AG=AB,∵AD=AB,则AD=4AG,故③说法正确,故选:C.【点评】本题考查了菱形的判定和性质,以及全等三角形的判定和性质,解决本题需先根据已知条件先判断出一对全等三角形,然后按排除法来进行选择.17.如图,点E是矩形ABCD的边CD上一点,把△ADE沿AE对折,点D的对称点F恰好落在BC上,已知折痕AE=10cm,且tan∠EFC=,那么该矩形的周长为()A.72cm B.36cm C.20cm D.16cm【考点】LB:矩形的性质;PB:翻折变换(折叠问题).【分析】根据矩形的性质可得AB=CD,AD=BC,∠B=∠D=90°,再根据翻折变换的性质可得∠AFE=∠D=90°,AD=AF,然后根据同角的余角相等求出∠BAF=∠EFC,然后根据tan∠EFC=,设BF=3x、AB=4x,利用勾股定理列式求出AF=5x,再求出CF,根据tan∠EFC=表示出CE并求出DE,最后在Rt△ADE中,利用勾股定理列式求出x,即可得解.【解答】解:在矩形ABCD中,AB=CD,AD=BC,∠B=∠D=90°,∵△ADE沿AE对折,点D的对称点F恰好落在BC上,∴∠AFE=∠D=90°,AD=AF,∵∠EFC+∠AFB=180°﹣90°=90°,∠BAF+∠AFB=90°,∴∠BAF=∠EFC,∵tan∠EFC=,∴设BF=3x、AB=4x,在Rt△ABF中,AF===5x,∴AD=BC=5x,∴CF=BC﹣BF=5x﹣3x=2x,∵tan∠EFC=,∴CE=CF•tan∠EFC=2x•=x,∴DE=CD﹣CE=4x﹣x=x,在Rt△ADE中,AD2+DE2=AE2,即(5x)2+(x)2=(10)2,整理得,x2=16,解得x=4,∴AB=4×4=16cm,AD=5×4=20cm,矩形的周长=2(16+20)=72cm.故选A.【点评】本题考查了矩形的对边相等,四个角都是直角的性质,锐角三角函数,勾股定理的应用,根据正切值设出未知数并表示出图形中的各线段是解题的关键,也是本题的难点.18.如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF 于G,下列结论:①BE=DF;②∠DAF=15°;③AC垂直平分EF;④BE+DF=EF;⑤S△CEF=2S△ABE,其中正确结论有()A.2个B.3个C.4个D.5个【考点】LE:正方形的性质;KD:全等三角形的判定与性质;KK:等边三角形的性质.【分析】通过条件可以得出△ABE≌△ADF,从而得出∠BAE=∠DAF,BE=DF,由正方形的性质就可以得出EC=FC,就可以得出AC垂直平分EF,设EC=x,BE=y,由勾股定理就可以得出x 与y的关系,表示出BE与EF,利用三角形的面积公式分别表示出S△CEF和2S△ABE,再通过比较大小就可以得出结论.【解答】解:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠BCD=∠D=∠BAD=90°.∵△AEF等边三角形,∴AE=EF=AF,∠EAF=60°.∴∠BAE+∠DAF=30°.在Rt△ABE和Rt△ADF中,,Rt△ABE≌Rt△ADF(HL),∴BE=DF(故①正确).∠BAE=∠DAF,∴∠DAF+∠DAF=30°,即∠DAF=15°(故②正确),∵BC=CD,∴BC﹣BE=CD﹣DF,即CE=CF,∵AE=AF,∴AC垂直平分EF.(故③正确).设EC=x,由勾股定理,得EF=x,CG=x,AG=AEsin60°=EFsin60°=2×CGsin60°=x,∴AC=,∴AB=,∴BE=﹣x=,∴BE+DF=x﹣x≠x,(故④错误),∵S△CEF=x2,S△ABE=x2,∴2S△ABE=x2=S△CEF,(故⑤正确).综上所述,正确的有4个,故选:C.【点评】本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,等边三角形的性质的运用,三角形的面积公式的运用,解答本题时运用勾股定理的性质解题时关键.19.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若点A(﹣3,y1)、点B(﹣,y2)、点C(,y3)在该函数图象上,则y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2.其中正确的结论有()A.2个B.3个C.4个D.5个【考点】H4:二次函数图象与系数的关系.【分析】(1)正确.根据对称轴公式计算即可.(2)错误,利用x=﹣3时,y<0,即可判断.(3)正确.由图象可知抛物线经过(﹣1,0)和(5,0),列出方程组求出a、b即可判断.(4)错误.利用函数图象即可判断.(5)正确.利用二次函数与二次不等式关系即可解决问题.【解答】解:(1)正确.∵﹣ =2,∴4a+b=0.故正确.(2)错误.∵x=﹣3时,y<0,∴9a﹣3b+c<0,∴9a+c<3b,故(2)错误.(3)正确.由图象可知抛物线经过(﹣1,0)和(5,0),∴解得,∴8a+7b+2c=8a﹣28a﹣10a=﹣30a,∵a<0,∴8a+7b+2c>0,故(3)正确.(4)错误,∵点A(﹣3,y1)、点B(﹣,y2)、点C(,y3),∵﹣2=,2﹣(﹣)=,∴<∴点C离对称轴的距离近,∴y3>y2,∵a<0,﹣3<﹣<2,∴y1<y2∴y1<y2<y3,故(4)错误.(5)正确.∵a<0,∴(x+1)(x﹣5)=﹣3/a>0,即(x+1)(x﹣5)>0,故x<﹣1或x>5,故(5)正确.∴正确的有三个,故选B.【点评】本题考查二次函数与系数关系,灵活掌握二次函数的性质是解决问题的关键,学会利用图象信息解决问题,属于中考常考题型.20.如图,正方形ABCD中,AB=8cm,对角线AC,BD相交于点O,点E,F分别从B,C两点同时出发,以1cm/s的速度沿BC,CD运动,到点C,D时停止运动,设运动时间为t(s),△OEF的面积为s(cm2),则s(cm2)与t(s)的函数关系可用图象表示为()A.B.C.D.【考点】E7:动点问题的函数图象.【分析】由点E,F分别从B,C两点同时出发,以1cm/s的速度沿BC,CD运动,得到BE=CF=t,则CE=8﹣t,再根据正方形的性质得OB=OC,∠OBC=∠OCD=45°,然后根据“SAS”可判断△OBE≌△OCF,所以S△OBE=S△OCF,这样S四边形OECF=S△OBC=16,于是S=S四边形OECF﹣S△CEF=16﹣(8﹣t)•t,然后配方得到S=(t﹣4)2+8(0≤t≤8),最后利用解析式和二次函数的性质对各选项进行判断.【解答】解:根据题意BE=CF=t,CE=8﹣t,∵四边形ABCD为正方形,∴OB=OC,∠OBC=∠OCD=45°,∵在△OBE和△OCF中,∴△OBE≌△OCF(SAS),∴S△OBE=S△OCF,∴S四边形OECF=S△OBC=×82=16,∴S=S四边形OECF﹣S△CEF=16﹣(8﹣t)•t=t2﹣4t+16=(t﹣4)2+8(0≤t≤8),∴s(cm2)与t(s)的函数图象为抛物线一部分,顶点为(4,8),自变量为0≤t≤8.故选:B.【点评】本题考查了动点问题的函数图象:先根据几何性质得到与动点有关的两变量之间的函数关系,然后利用函数解析式和函数性质画出其函数图象,注意自变量的取值范围.二、填空题(本小题共4小题,每小题3分,共12分)21.因式分解2x4﹣2= 2(x2+1)(x+1)(x﹣1).【考点】55:提公因式法与公式法的综合运用.【分析】首先提公因式2,然后利用平方差公式即可分解.【解答】解:原式=2(x4﹣1)=2(x2+1)(x2﹣1)=2(x2+1)(x+1)(x﹣1).故答案是:2(x2+1)(x+1)(x﹣1).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.22.方程=的解为x=2 .【考点】B3:解分式方程.【分析】方程两边都乘以最简公分母(x﹣1)(2x+1)把分式方程化为整式方程,求解后进行检验.【解答】解:方程两边都乘以(x﹣1)(2x+1)得,2x+1=5(x﹣1),解得x=2,检验:当x=2时,(x﹣1)(2x+1)=(2﹣1)×(2×2+1)=5≠0,所以,原方程的解是x=2.故答案为:x=2.【点评】本题考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.23.如图,正三角形ABC的边长是2,分别以点B,C为圆心,以r为半径作两条弧,设两弧与边BC围成的阴影部分面积为S,当r=时,S为﹣1 .【考点】MO:扇形面积的计算.【分析】首先求出S关于r的函数表达式,分析其增减性;然后根据r的取值,求出S的最大值与最小值,从而得到S的取值.【解答】解:如右图所示,过点D作DG⊥BC于点G,易知G为BC的中点,CG=1,在Rt△CDG中,由勾股定理得:DG==,设∠DCG=θ,则由题意可得:S=2(S扇形CDE﹣S△CDG)=2(﹣×1×)=﹣,∴S=﹣.当r增大时,∠DCG=θ随之增大,故S随r的增大而增大.当r=时,DG=1,∵CG=1,故θ=45°,∴S=﹣=﹣1,故答案为:﹣1.【点评】本题考查扇形面积的计算、等边三角形的性质、勾股定理等重要知识点.解题关键是求出S的函数表达式.24.如图,在平面直角坐标系中,直线l经过原点,且与y轴正半轴所夹的锐角为60°,过点A(0,1)作y轴的垂线l于点B,过点B1作直线l的垂线交y轴于点A1,以A1B、BA 为邻边作▱ABA1C1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2,以A2B1、B1A1为邻边作▱A1B1A2C2;…;按此作法继续下去,则C2017的坐标是(﹣×42016,42017).【考点】F8:一次函数图象上点的坐标特征;D2:规律型:点的坐标;L5:平行四边形的性质.【分析】先求出直线l的解析式为y=x,设B点坐标为(x,1),根据直线l经过点B,求出B点坐标为(,1),解Rt△A1AB,得出AA1=3,OA1=4,由平行四边形的性质得出A1C1=AB=,则C1点的坐标为(﹣,4),即(﹣×40,41);根据直线l经过点B1,求出B1点坐标为(4,4),解Rt△A2A1B1,得出A1A2=12,OA2=16,由平行四边形的性质得出A2C2=A1B1=4,则C2点的坐标为(﹣4,16),即(﹣×41,42);同理,可得C3点的坐标为(﹣16,64),即(﹣×42,43);进而得出规律,求得C n的坐标是(﹣×4n﹣1,4n),即可求得C2017的坐标.【解答】解:∵直线l经过原点,且与y轴正半轴所夹的锐角为60°,∴直线l的解析式为y=x,∵AB⊥y轴,点A(0,1),∴可设B点坐标为(x,1),将B(x,1)代入y=x,得1=x,解得x=,∴B点坐标为(,1),AB=.在Rt△A1AB中,∠AA1B=90°﹣60°=30°,∠A1AB=90°,∴AA1=AB=3,OA1=OA+AA1=1+3=4,∵▱ABA1C1中,A1C1=AB=,∴C1点的坐标为(﹣,4),即(﹣×40,41);由x=4,解得x=4,∴B1点坐标为(4,4),A1B1=4.在Rt△A2A1B1中,∠A1A2B1=30°,∠A2A1B1=90°,∴A1A2=A1B1=12,OA2=OA1+A1A2=4+12=16,∵▱A1B1A2C2中,A2C2=A1B1=4,∴C2点的坐标为(﹣4,16),即(﹣×41,42);同理,可得C3点的坐标为(﹣16,64),即(﹣×42,43);以此类推,则C n的坐标是(﹣×4n﹣1,4n),∴C2017的坐标是(﹣×42016,42017).故答案为(﹣×42016,42017).【点评】本题考查了平行四边形的性质,解直角三角形以及一次函数的综合应用,先分别求出C1、C2、C3点的坐标,从而发现规律是解题的关键.三、解答题(本题共5小题,48分)25.甲、乙两个工程队共同承担一项筑路任务,甲队单独施工完成此项任务比乙队单独施工完成此项任务多用10天,且甲队单独施工45天和乙队单独施工30天的工作量相同.(1)甲、乙两队单独完成此项任务需要多少天?(2)若甲、乙两队共同工作了3天后,乙队因设备检修停止施工,由甲队继续施工,为了不影响工程进度,甲队的工作效率提高到原来的2倍,要使甲队总的工作量不少于乙队的工作量的2倍,那么甲队至少再单独施工多少天?【考点】B7:分式方程的应用;C9:一元一次不等式的应用.【分析】(1)设乙队单独完成此项任务需要x天,则甲队单独完成此项任务需要(x+10)天,根据甲队单独施工45天和乙队单独施工30天的工作量相同建立方程求出其解即可;(2)设甲队再单独施工a天,根据甲队总的工作量不少于乙队的工作量的2倍建立不等式求出其解即可.【解答】解:(1)设乙队单独完成此项任务需要x天,则甲队单独完成此项任务需要(x+10)天,由题意,得,解得:x=20.经检验,x=20是原方程的解,∴x+10=30(天)答:甲队单独完成此项任务需要30天,乙队单独完成此项任务需要20天;(2)设甲队再单独施工a天,由题意,得,解得:a≥3.答:甲队至少再单独施工3天.【点评】本题是一道工程问题的运用,考查了工作时间×工作效率=工作总量的运用,列分式方程解实际问题的运用,分式方程的解法的运用,解答时验根是学生容易忽略的地方.26.如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直与x轴,垂足为点B,反比例函数y=(x>0)的图象经过AO的中点C,且与AB相交于点D,OB=4,AD=3,(1)求反比例函数y=的解析式;(2)求cos∠OAB的值;(3)求经过C、D两点的一次函数解析式.【考点】G8:反比例函数与一次函数的交点问题;G6:反比例函数图象上点的坐标特征.【分析】(1)设点D的坐标为(4,m)(m>0),则点A的坐标为(4,3+m),由点A的坐标表示出点C的坐标,根据C、D点在反比例函数图象上结合反比例函数图象上点的坐标特征即可得出关于k、m的二元一次方程,解方程即可得出结论;。

2018届中考数学二模试卷(带答案) (12)

2018届中考数学二模试卷(带答案)  (12)

2018年中考数学二模试卷一、选择题:每小题3分,共36分。

1.下列计算错误的是()A.•=B.+=C.÷=2 D.=22.﹣8的立方根是()A.﹣2 B.±2 C.2 D.﹣3.下列运算正确的是()A.x2•x3=x6B.x6÷x5=x C.(﹣x2)4=x6D.x2+x3=x54.下列函数,其图象经过点(2,2)的是()A.y=3x B.y=1﹣2x C.y=D.y=x2﹣15.如图所示的几何体的主视图是()A.B. C.D.6.函数y=中,自变量x的取值范围是()A.x≠0 B.x≥2 C.x>2且x≠0 D.x≥2且x≠07.有19位同学参加歌咏比赛,成绩互不相同,前10名的同学进入决赛.某同学知道自己的分数后,要判断自己能够进入决赛,他只需知道这19位同学成绩的()A.平均数B.中位数C.众数 D.方差8.如图,OB是∠AOC的角平分线,OD是∠COE的角平分线,如果∠AOB=40°,∠COE=60°,则∠BOD 的度数为()A.50°B.60°C.65°D.70°9.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x≥ax+4的解集为()A.x≥B.x≤3 C.x≤D.x≥310.如图,圆锥体的高h=2cm,底面半径r=2cm,则圆锥体的全面积为()cm2.A.4πB.8πC.12πD.(4+4)π11.下列判断错误的是()A.对角线相互垂直且相等的平行四边形是正方形B.对角线相互垂直平分的四边形是菱形C.对角线相等的四边形是矩形D.对角线相互平分的四边形是平行四边形12.若不等式组有解,则m的取值范围是()A.m≥2 B.m<1 C.m>2 D.m<2二、填空题:每小题3分,共18分。

13.将0.00305用科学记数法表示为.14.分解因式:x2﹣x+=.15.单项式的系数与次数之积为.16.如图,若AD∥BE,且∠ACB=90°,∠CBE=30°,则∠CAD=度.17.已知x、y满足,则x+2y=.18.如图是以△ABC的边AB为直径的半圆O,点C恰好在半圆上,过C作CD⊥AB交AB于D,已知cos∠ACD=,BC=3,则AC的长为.三、解答题:本大题共66分。

河南省2018届九年级中考数学二模试题(解析版)

河南省2018届九年级中考数学二模试题(解析版)

2018年河南省天宏大联考中考数学二模试卷一、选择题1.2018的绝对值是A. B. 2018 C. D.【答案】B【解析】【分析】根据正数的绝对值是它本身可得答案.【详解】2018的绝对值是2018,故选B.【点睛】此题主要考查了绝对值,关键是掌握绝对值的性质.2.生活中有很多美味的食物,它们的包装盒也很漂亮,观察以下食品的包装盒,从正面看、从上面看看到的平面图形分别是长方形、圆的是A. B. C. D.【答案】C【解析】【分析】根据从正面看得到的图形是主视图,从上面看得到的图形是俯视图,可得答案.【详解】A、从正面看是梯形,从上面看是圆环,故A错误;B、从正面看是三角形,从上面看是圆,故B错误;C、从正面看是长方形,从上面看是圆,故C正确;D、从正面看是长方形,从上面看是长方形,故D错误;故选C.【点睛】本题考查了简单组合体的三视图,从正面看得到的图形是主视图,从上面看得到的图形是俯视图.3.为了进一步降低机动车污染物排放,减轻重污染天气污染发生频次和污染程度,保障人民群众身体健康,郑州市从2017年12月4日0时至2017年12月31日24时起对机动车实施单双号限行措施,此次限行将会大大减少空气中的排放量,指的是雾天气时大气中直径小于或等于的颗粒物,将用科学记数法表示为A. B. C. D.【答案】A【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】将0.0000025用科学记数法表示为2.5×10-6,故选A.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.直角三角板和直尺如图放置,若,则的度数为A. B. C. D.【答案】C【解析】【分析】过E作EF∥AB,则AB∥EF∥CD,根据平行线的性质即可得到结论.【详解】如图,过E作EF∥AB,则AB∥EF∥CD,∴∠1=∠3,∠2=∠4,∵∠3+∠4=60°,∴∠1+∠2=60°,∵∠1=20°,∴∠2=40°,故选C.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质定理是解题的关键.5.某校进行广播操比赛,比赛打分包括以下几项:服装统一、进退有序、动作规范、动作整齐每项满分10分其中四个班级的成绩见如表,如果将各班这四项的得分依次按照1:2:3:4的权重来计算的话,最终得分最高的班级为A. 一班B. 二班C. 三班D. 四班【答案】C【解析】【分析】根据加权平均数的计算公式分别求出四个班级的平均成绩,再判断即可得出答案.【详解】因为一半的平均成绩为=8.4(分),二班的平均成绩为=7.9(分),三班的平均成绩为=8.6(分),四班的平均成绩为=8.1(分),所以最终得分最高的班级是三班,故选C.【点睛】本题主要考查加权平均数,解题的关键是熟练掌握若n个数x1,x2,x3,…,x n的权分别是w1,w2,w3,…,w n,则(x1w1+x2w2+…+x n w n)÷(w1+w2+w3+…+w n)叫做这n个数的加权平均数.6.春节期间,中国诗词大会》节目的播出深受观众喜爱,进一步激起了人们对古诗词的喜爱,现有以下四句古诗词:锄禾日当午;春眠不觉晓;白日依山尽;床前明月光,甲、乙两名同学从中各随机选取了一句写在了纸上,则他们选取的诗句恰好相同的概率为A. B. C. D.【答案】B【解析】【分析】画树状图列出所有等可能结果,从中找到他们选取的诗句恰好相同的结果数,根据概率公式计算可得.【详解】画树状图如下:由树状图可知共有16种等可能结果,其中他们选取的诗句恰好相同的结果有4种,∴他们选取的诗句恰好相同的概率为,故选B.【点睛】此题考查了树状图法与列表法求概率.此题难度不大,解题的关键是根据题意画出树状图或列出表格,注意树状图法与列表法可以不重不漏的表示出所有等可能的结果,注意用到的知识点为:概率=所求情况数与总情况数之比.7.二次函数的图象如图,反比例函数与正比例函数在同一坐标系内的大致图象是A. B. C. D.【答案】C【解析】【分析】根据函数图象的开口方向,对称轴,可得a、b的值,根据a、b的值,可得相应的函数图象.【详解】由y=ax2+bx+c的图象开口向下,得a<0.由图象,得->0.由不等式的性质,得b>0.a<0,y=图象位于二四象限,b>0,y=bx图象位于一三象限,故选C.【点睛】本题考查了二次函数的性质,利用函数图象的开口方向,对称轴得出a、b的值是解题关键.8.不等式组的整数解的个数为A. 3B. 4C. 5D. 6【答案】B【解析】【分析】分别求出两个不等式的解,然后求其解集,最后找出整数解的个数.【详解】解不等式3-(3x-2)≥1得:x≤,解不等式2+x<3x+8得:x>-3,故不等式的解集为:-3<x≤,则整数解为-2,-1,0,1,共4个.故选B.【点睛】本题考查了一元一次不等式组的整数解,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.9.如图:有一块三角形状的土地平均分给四户人家,现有四种不同的分法,如图中,D、E、F分别是BC、AC、AB的中点,G、H分别是BF、AF的中点,其中正确的分法有A. 1种B. 2种C. 3种D. 4种【答案】D【解析】【分析】根据D、E、F分别是AB、BC、AC的中点,G、H分别是线段BD和AD的中点,利用三角形中位线定理,求证△ADF,△BDE,△DEF,△EFC是同底同高,然后即可证明其面积相等,其他3种情况,同理可得.【详解】∵D、E、F分别是AB、BC、AC的中点,∴在图①中,DE=AC,EF=AB,DF=BC,∴△ADF,△BDE,△DEF,△EFC是同底同高,∴根据三角形面积公式可得△ADF,△BDE,△DEF,△EFC面积相等.同理可得图②,∵D、E、F分别是AB、BC、AC的中点,G、H分别是线段BD和AD的中点.同理可得图③,图④中4个三角形面积相等,所以四种分法都正确.故选D.【点睛】此题主要考查三角形中位线定理和三角形面积的计算。

2018届中考数学二模试卷(带答案) (24)

2018届中考数学二模试卷(带答案)  (24)

2018年中考数学二模试卷一.选择题1.下列运算正确的是()A.a3•a2=a6B.(﹣a3)2=a6C.2a+3a2=5a3D.2.下列各数中,最小的数是()A.B.0 C.D.﹣13.随着经济的发展,节能与环保问题越来越得到重视,据宁波环境保护局披露:2015年宁波市区节能环保支出将达到18957.74万元.18957.74万元用科学记数法应记为()A.18957.74×104元B.1.895774×107元C.1.895774×108元D.1.895774×109元4.为了参加市中学生篮球赛,某校一支篮球队购买了10双运动鞋,尺码如下表:则这10双运动鞋尺码的众数和中位数分别为()A.25.5cm,26cm B.26cm,25.5cmC.25.5cm,25.5cm D.26cm,26cm5.函数y=中,自变量x的取值范围是()A.x≥﹣3 B.x≥﹣3且x≠1 C.x≠1 D.x≠﹣3且x≠16.一个几何体的三视图如图所示,则这个几何体摆放的位置是()A.B.C.D.7.在tan45°,sin60°,3.14,π,0.101001,中,无理数的个数是()A.2个B.3个C.4个D.5个8.小月的讲义夹里放了大小相同的试卷共12页,其中语文5页、数学3页、英语4页,她随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率是()A.B.C.D.9.如图,⊙O是△ABC的外接圆,已知AD平分∠BAC交⊙O于点D,AD=5,BD=2,则AE的长为()A.B.C.D.10.如图,在平面直角坐标系中,过格点A,B,C作一圆弧,点B与下列格点的连线中,能够与该圆弧相切的是()A.点(0,3)B.点(2,3)C.点(5,1)D.点(6,1)11.高速公路上,从3千米处开始,每隔4千米经过一个限速标志牌,并且从10千米处开始,每隔9千米经过一个速度监控仪,司机小王刚好在19千米的A处第一次同时经过这两种设施,那么,司机小王第二次同时经过这两种设施需要从A处继续行驶()千米.A.36 B.37 C.55 D.9112.如图1,E为矩形ABCD边AD上一点,点P从点B沿折线BE﹣ED﹣DC运动到点C时停止,点Q从点B沿BC运动到点C时停止,它们运动的速度都是1cm/s.若P,Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2).已知y与t的函数图象如图2,则下列结论:①AE=6cm;②sin∠EBC=;③当0<t≤10时,y=t2;④当t=12s时,△ABP是等腰三角形;其中正确的结论是()A.②③④ B.①②③ C.①③④ D.①②④二.填空题13.分解因式:ab2﹣4ab+4a=.14.抛物线y=﹣2x2向左平移2个单位,再向下平移3个单位后,所得抛物线的表达式是.15.如图,经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),则不等式kx+b<4x+2<0 的解集为.16.如图,将半径为2,圆心角为60°的扇形纸片AOB,在直线l上向右作无滑动的滚动至扇形A′O′B′处,则顶点O经过的路线总长为.17.对非负整数x“四舍五入”到个位的值记为<x>,即:当n为非负整数时,如果n﹣≤x≤n+,那么<x>=n.如:<0>=<0.48>=0,<0.64>=<1.493>=1,<2>=2,<3.5>=<4.12>=4,….如果<x﹣1>=3,则实数x的取值范围是.18.如图所示,在△ABC中,AB=AC,AD⊥BC,CG∥AB,BG分别交AD,AC于E,F.若,那么的值为.三.解答题(共8道大题,19-20题,每题8分,第21题9分,第22题8分,第23题9分,24题10分,25题12分,26题14分,共78分)19.(1)计算:°﹣(π﹣3.14)0(2)已知a2+a=3,求代数式﹣•的值.20.如图所示,将一个大正方形分割成几个相同的小正方形,小正方形的顶点称为格点,连接格点而成的三角形称为格点三角形,请在图(1)、(2)、(3)、(4)中分别画出四个互不全等的格点三角形,要求所画三角形与格点三角形△ABC相似但与△ABC不全等.21.为了迎接全市体育达标测试,某中学对全校初三男生进行了立定跳远项目揣测,并从参加测试的500名男生中随机抽取了部分男生的测试成绩(单位:米,精确到0.1米)作为样本进行分析,绘制了如图所示的频数分布直方图,已知图中从左到右每个小长方形的高的比依次为2:4:6:5:3,其中1.85~2.05这个小组的频数为8,请根据有关信息解答下列问题:(1)填空:这次调查的样本容量为,2.45~2.65这一小组的频率为;(2)样本中男生立定跳远的中位数在哪一小组?(3)请估计该校初三男生立定跳远成绩在2.00米以上(不包括2.00米)的约有多少人?22.如图是大型输气管的截面图(圆形),某次数学实践活动中,数学课题学习小组为了计算大型输气管的直径,在圆形弧上取了A,B两点并连接AB,在劣弧AB上取中点C连接CB,经测量米,∠ABC=36.87°,请根据这些数据计算出大型输气管的直径(精确到0.1米).(sin36.87°≈0.60,cos36.87°≈0.80,tan36.87°≈0.75)23.如图,梯形ABCD中,AD∥BC,∠A=90°,AD=10,AB=3,BC=14,点E、F分别在BC、DC上,将梯形ABCD沿直线EF折叠,使点C落在AD上一点C',再沿C'G折叠四边形C'ABE,使AC'与C'E重合,且C'A过点E.(1)试证明C'G∥EF;(2)若点A'与点E重合,求此时图形重叠部分的面积.24.已知抛物线y=ax2+bx+c(a≠0)过点A(﹣3,0),B(1,0),C(0,3)三点.(1)求该抛物线的函数关系式;(2)若抛物线的顶点为P,连接PA、AC、CP,求△PAC的面积;(3)过点C作y轴的垂线,交抛物线于点D,连接PD、BD,BD交AC于点E,判断四边形PCED的形状,并说明理由.25.某养鸡场计划购买甲、乙两种小鸡苗共2000只进行饲养,已知甲种小鸡苗每只2元,乙种小鸡苗每只3元.(1)若购买这批小鸡苗共用了4500元,求甲、乙两种小鸡苗各购买了多少只?(2)若购买这批小鸡苗的钱不超过4700元,问应选购甲种小鸡苗至少多少只?(3)相关资料表明:甲、乙两种小鸡苗的成活率分别为94%和99%,若要使这批小鸡苗的成活率不低于96%且买小鸡的总费用最小,问应选购甲、乙两种小鸡苗各多少只?总费用最小是多少元?26.如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=5cm,D是BC边上一点,CD=3cm,点P为边AC上一动点(点P与A、C不重合),过点P作PE∥BC,交AD于点E.点P以1cm/s的速度从A到C匀速运动.(1)设点P的运动时间为t(s),DE的长为y(cm),求y关于t的函数关系式,并写出t的取值范围;(2)当t为何值时,以PE为半径的⊙E与以DB为半径的⊙D外切?并求此时∠DPE的正切值;(3)将△ABD沿直线AD翻折,得到△AB’D,连接B’C.如果∠ACE=∠BCB’,求t的值.参考答案与试题解析一.选择题1.下列运算正确的是()A.a3•a2=a6B.(﹣a3)2=a6C.2a+3a2=5a3D.【考点】整式的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】直接利用同底数幂的乘法运算法则以及幂的乘方和整式的除法运算法则分别分析得出即可.【解答】解:A、a3•a2=a5,故此选项错误;B、(﹣a3)2=a6,正确;C、2a+3a2,无法计算,故此选项错误;D、3a3÷2a=a2,故此选项错误;故选:B.【点评】此题主要考查了同底数幂的乘法运算以及幂的乘方和整式的除法运算等知识,正确掌握运算法则是解题关键.1.下列各数中,最小的数是()A.B.0 C.D.﹣1【考点】实数大小比较.【分析】根据负数都小于0,负数都小于正数,得出﹣和﹣1小,根据两个负数比较大小,其绝对值大的反而小,即可得出答案.【解答】解:∵﹣<﹣1<0<,∴最小的数是﹣,故选C.【点评】实数的大小比较法则是:正数都大于0,负数都小于0,负数都小于正数,两个负数比较大小,其绝对值大的反而小.3.随着经济的发展,节能与环保问题越来越得到重视,据宁波环境保护局披露:2015年宁波市区节能环保支出将达到18957.74万元.18957.74万元用科学记数法应记为()A.18957.74×104元B.1.895774×107元C.1.895774×108元D.1.895774×109元【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于18957.74万有9位整数,所以可以确定n=9﹣1=8.【解答】解:18957.74万=189 577 400=1.895774×108.故选C.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.4.为了参加市中学生篮球赛,某校一支篮球队购买了10双运动鞋,尺码如下表:则这10双运动鞋尺码的众数和中位数分别为()A.25.5cm,26cm B.26cm,25.5cmC.25.5cm,25.5cm D.26cm,26cm【考点】众数;中位数.【分析】众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.【解答】解:数据26出现了3次最多,这组数据的众数是26,共10个数据,从小到大排列此数据处在第5、6位的数都为26,故中位数是26.故选D.【点评】本题属于基础题,考查了确定一组数据的中位数和众数的能力.要注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求;如果是偶数个则找中间两位数的平均数.5.函数y=中,自变量x的取值范围是()A.x≥﹣3 B.x≥﹣3且x≠1 C.x≠1 D.x≠﹣3且x≠1【考点】函数自变量的取值范围.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:根据题意得,x+3≥0且x﹣1≠0,解得x≥﹣3且x≠1.故选B.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.6.一个几何体的三视图如图所示,则这个几何体摆放的位置是()A.B.C.D.【考点】由三视图判断几何体.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.结合图形,使用排除法来解答.【解答】解:根据几何体的主视图和左视图是矩形,俯视图是三角形可以得到该几何体是三棱柱,根据俯视图三角形的方向可以判定选A,故选A.【点评】本题考查了由三视图判断几何体的知识,难度一般,考生做此类题时可利用排除法解答.请查一下题干.7.在tan45°,sin60°,3.14,π,0.101001,中,无理数的个数是()A.2个B.3个C.4个D.5个【考点】无理数.【分析】根据无理数是无限不循环小数,可得答案.【解答】解:tan45°=1是有理数,sin60°=是无理数,3.14是有理数,π是无理数,0.101001是有理数,是有理数,故选:A.【点评】本题考查了无理数,先求出三角函数值,再判断无理数.8.小月的讲义夹里放了大小相同的试卷共12页,其中语文5页、数学3页、英语4页,她随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率是()A.B.C.D.【考点】概率公式.【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.【解答】解:∵小月的讲义夹里放了大小相同的试卷共12页,数学3页,∴她随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为:=.故选:C.【点评】本题考查概率的求法与运用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.9.如图,⊙O是△ABC的外接圆,已知AD平分∠BAC交⊙O于点D,AD=5,BD=2,则AE的长为()A.B.C.D.【考点】相似三角形的判定与性质;圆周角定理.【分析】根据AD平分∠BAC,可得∠BAD=∠DAC,再利用同弧所对的圆周角相等,得出△ABD∽△BED,利用其对应边成比例可得=,然后将已知数值代入求出DE的长,进而得到AE的长.【解答】解:∵AD平分∠BAC,∴∠BAD=∠DAC,∵∠DBC=∠DAC(同弧所对的圆周角相等),∴∠DBC=∠BAD,∴△ABD∽△BED,∴=,∴DE==,∴AE=AD﹣DE=5﹣=.故选D.【点评】此题主要考查相似三角形的判定与性质和圆周角定理等知识点的理解和掌握,难度不大,属于基础题,要求学生应熟练掌握.10.如图,在平面直角坐标系中,过格点A,B,C作一圆弧,点B与下列格点的连线中,能够与该圆弧相切的是()A.点(0,3)B.点(2,3)C.点(5,1)D.点(6,1)【考点】切线的性质;坐标与图形性质;勾股定理;垂径定理.【专题】压轴题;网格型.【分析】根据垂径定理的性质得出圆心所在位置,再根据切线的性质得出,∠OBD+∠EBF=90°时F点的位置即可.【解答】解:连接AC,作AC,AB的垂直平分线,交格点于点O′,则点O′就是所在圆的圆心,∴三点组成的圆的圆心为:O′(2,0),∵只有∠O′BD+∠EBF=90°时,BF与圆相切,∴当△BO′D≌△FBE时,∴EF=BD=2,F点的坐标为:(5,1),∴点B与下列格点的连线中,能够与该圆弧相切的是:(5,1).故选:C.【点评】此题主要考查了切线的性质以及垂径定理和坐标与图形的性质,得出△BOD≌△FBE时,EF=BD=2,即得出F点的坐标是解决问题的关键.11.高速公路上,从3千米处开始,每隔4千米经过一个限速标志牌,并且从10千米处开始,每隔9千米经过一个速度监控仪,司机小王刚好在19千米的A处第一次同时经过这两种设施,那么,司机小王第二次同时经过这两种设施需要从A处继续行驶()千米.A.36 B.37 C.55 D.91【考点】一元一次方程的应用.【分析】让4和9的最小公倍数加上19即为第二次同时经过这两种设施的千米数.【解答】解:∵4和9的最小公倍数为36,∴第二次同时经过这两种设施是在36千米处.故选A.【点评】考查推理与论证;得到第二次同时经过这两种设施的千米数的关系式是解决本题的关键.12.如图1,E为矩形ABCD边AD上一点,点P从点B沿折线BE﹣ED﹣DC运动到点C时停止,点Q从点B沿BC运动到点C时停止,它们运动的速度都是1cm/s.若P,Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2).已知y与t的函数图象如图2,则下列结论:①AE=6cm;②sin∠EBC=;③当0<t≤10时,y=t2;④当t=12s时,△ABP是等腰三角形;其中正确的结论是()A.②③④ B.①②③ C.①③④ D.①②④【考点】动点问题的函数图象.【分析】由图2可知,在点(10,40)至点(14,40)区间,△BPQ的面积不变,因此可推论BC=BE,由此分析动点P的运动过程如下:(1)在BE段,BP=BQ;持续时间10s,则BE=BC=10;y是t的二次函数;(2)在ED段,y=40是定值,持续时间4s,则ED=4;(3)在DC段,y持续减小直至为0,y是t的一次函数.【解答】解:(1)分析函数图象可知,BC=10cm,ED=4cm,故AE=AD﹣ED=BC﹣ED=10﹣4=6cm,故①正确;(2)如答图1所示,连接EC,过点E作EF⊥BC于点F,由函数图象可知,BC=BE=10cm,S△BEC=40=BC•EF=×10×EF,∴EF=8,∴sin∠EBC=,故②正确;(3)如答图2所示,过点P作PG⊥BQ于点G,∵BQ=BP=t,∴y=S△BPQ=BQ•PG=BQ•BP•sin∠EBC=t•t•=t2.故③正确;(4)结论D错误.理由如下:当t=12s时,点Q与点C重合,点P运动到ED的中点,设为N,如答图3所示,连接NB,NC.此时AN=8,ND=2,由勾股定理求得:NB=8,NC=2,∵BC=10,∴△BCN不是等腰三角形,即此时△PBQ不是等腰三角形.故④错误;正确的结论有:①②③.故选:B.【点评】本题考查动点问题的函数图象,需要结合几何图形与函数图象,认真分析动点的运动过程.突破点在于正确判断出BC=BE=10cm.二.填空题13.分解因式:ab2﹣4ab+4a=a(b﹣2)2.【考点】提公因式法与公式法的综合运用.【专题】因式分解.【分析】先提取公因式a,再根据完全平方公式进行二次分解.完全平方公式:a2﹣2ab+b2=(a﹣b)2.【解答】解:ab2﹣4ab+4a=a(b2﹣4b+4)﹣﹣(提取公因式)=a(b﹣2)2.﹣﹣(完全平方公式)故答案为:a(b﹣2)2.【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.14.抛物线y=﹣2x2向左平移2个单位,再向下平移3个单位后,所得抛物线的表达式是y=﹣2(x+2)2﹣3.【考点】二次函数图象与几何变换.【分析】根据函数图象平移规律,可得答案.【解答】解:抛物线y=﹣2x2向左平移2个单位,再向下平移3个单位后,所得抛物线的表达式是y=﹣2(x+2)2﹣3,故答案为:y=﹣2(x+2)2﹣3.【点评】本题考查了二次函数图象与几何变换,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.15.如图,经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),则不等式kx+b<4x+2<0 的解集为﹣1<x<﹣.【考点】一次函数与一元一次不等式.【分析】由图象得到直线y=kx+b与直线y=4x+2的交点A的坐标(﹣1,﹣2),求出直线y=4x+2与x轴的交点坐标,观察直线y=kx+b落在直线y=4x+2的下方且直线y=4x+2落在x轴下方的部分对应的x的取值即为所求.【解答】解:∵经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),∴直线y=kx+b与直线y=4x+2的交点A的坐标为(﹣1,﹣2),∵当x>﹣1时,kx+b<4x+2,当x<﹣时,4x+2<0,∴不等式kx+b<4x+2<0的解集为﹣1<x<﹣.故答案为﹣1<x<﹣.【点评】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.16.如图,将半径为2,圆心角为60°的扇形纸片AOB,在直线l上向右作无滑动的滚动至扇形A′O′B′处,则顶点O经过的路线总长为π.【考点】弧长的计算.【专题】压轴题.【分析】仔细观察顶点O经过的路线可得,顶点O经过的路线可以分为三段,分别求出三段的长,再求出其和即可.【解答】解:顶点O经过的路线可以分为三段,当弧AB切直线l于点B时,有OB⊥直线l,此时O点绕不动点B转过了90°;第二段:OB⊥直线l到OA⊥直线l,O点绕动点转动,而这一过程中弧AB始终是切于直线l的,所以O与转动点P的连线始终⊥直线l,所以O点在水平运动,此时O点经过的路线长=BA’=AB的弧长第三段:OA⊥直线l到O点落在直线l上,O点绕不动点A转过了90°所以,O点经过的路线总长S=π+π+π=π.【点评】本题关键是理解顶点O经过的路线可得,则顶点O经过的路线总长为三个扇形的弧长.17.对非负整数x“四舍五入”到个位的值记为<x>,即:当n为非负整数时,如果n﹣≤x≤n+,那么<x>=n.如:<0>=<0.48>=0,<0.64>=<1.493>=1,<2>=2,<3.5>=<4.12>=4,….如果<x﹣1>=3,则实数x的取值范围是≤x<.【考点】一元一次不等式组的应用.【专题】新定义.【分析】根据题意可看出对非负实数x“四舍五入”到个位的值记为<x>,所以看看四舍五入后,个位数就是要求的值.近似数值到3的范围是2.5到3.5的范围,包括2.5不包括3.5,可列不等式组求解.【解答】解:依题意有,解得≤x<.故答案为:≤x<.【点评】本题考查理解题意的能力,关键是看到所得值是个位数四舍五入后的值,问题可得解.18.如图所示,在△ABC中,AB=AC,AD⊥BC,CG∥AB,BG分别交AD,AC于E,F.若,那么的值为.【考点】相似三角形的判定与性质.【分析】过F作FH⊥BC于H,通过三角形相似得到比例式即可解出结果.【解答】解:过F作FH⊥BC于H,∵AD⊥BC,∴FH∥AD,∴==,设BE=3k,EF=2k,则BF=5k,∴==,∵CG∥AB,∴===,∴GF=k,∴EG=,∴=.故答案为:.【点评】本题考查了相似三角形的判定和性质,正确的周长辅助线是解题的关键.三.解答题(共8道大题,19-20题,每题8分,第21题9分,第22题8分,第23题9分,24题10分,25题12分,26题14分,共78分)19.(1)计算:°﹣(π﹣3.14)0(2)已知a2+a=3,求代数式﹣•的值.【考点】分式的化简求值;实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】(1)原式第一项化为最简二次根式,第二项利用负指数幂法则计算,第三项利用特殊角的三角函数值计算,最后一项利用零指数幂法则计算即可得到结果;(2)原式第二项约分后,两项通分并利用同分母分式的减法法则计算得到最简结果,把已知等式代入计算即可求出值.【解答】解:(1)原式=2﹣3×+2×﹣1=2﹣1;(2)原式=﹣•=﹣==,当a2+a=3时,原式=.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.20.如图所示,将一个大正方形分割成几个相同的小正方形,小正方形的顶点称为格点,连接格点而成的三角形称为格点三角形,请在图(1)、(2)、(3)、(4)中分别画出四个互不全等的格点三角形,要求所画三角形与格点三角形△ABC相似但与△ABC不全等.【考点】作图—相似变换.【专题】作图题.【分析】先要确定所画的△A′B′C′中∠A′B′C′=∠ABC=135°,再利用BC:AB=:1把∠A′B′C′的两边按照:1进行放大或缩小即可得到△A′B′C′,则△A′B′C′与△ABC相似,如图(1)、(2)、(3)、(4).【解答】解:如图,【点评】本题考查了作图﹣位似变换:两个图形相似,其中一个图形可以看作由另一个图形放大或缩小得到.本题从∠ABC=135°,BC:AB=:1找到突破口.21.为了迎接全市体育达标测试,某中学对全校初三男生进行了立定跳远项目揣测,并从参加测试的500名男生中随机抽取了部分男生的测试成绩(单位:米,精确到0.1米)作为样本进行分析,绘制了如图所示的频数分布直方图,已知图中从左到右每个小长方形的高的比依次为2:4:6:5:3,其中1.85~2.05这个小组的频数为8,请根据有关信息解答下列问题:(1)填空:这次调查的样本容量为40,2.45~2.65这一小组的频率为0.15;(2)样本中男生立定跳远的中位数在哪一小组?(3)请估计该校初三男生立定跳远成绩在2.00米以上(不包括2.00米)的约有多少人?【考点】频数(率)分布直方图;用样本估计总体;中位数.【分析】(1)由于从左到右每个小长方形的高的比依次为2:4:6:5:3,其中1.85~2.05这一小组的频数为8,由此即可求出各个小组的频数,也就可以求出样本容量,也可以求出2.45~2.65这一小组的频率;(2)根据样本容量和各个小组的人数可以确定样本成绩的中位数落在哪一小组内;(3)首先确定样本中立定跳远成绩在2.00米以上的频率,然后利用样本估计总体的思想即可估计该校初三男生立定跳远成绩在2.00米以上(不包括2.00米)的约有多少人.【解答】解:(1)∵从左到右每个小长方形的高的比依次为2:4:6:5:3,其中1.85~2.05这一小组的频数为8,∴样本容量为8÷=8÷=40,其中2.45~2.65这一小组的频率为=0.15.故答案为40,0.15;(2)∵各小组的频数分别为:×40=4,8,×40=12,×40=10,×40=6,而中位数是40个成绩从小到大排列后第20个数据和第21个数据的平均数,∴中位数落在第三小组即2.05~2.25这一小组内;(3)∵500×=350(人),∴估计该校初三男生立定跳远成绩在2.00米以上(不包括2.00米)的约有350人.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力,也考查了样本容量和中位数的定义;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断,并且能够解决问题.22.如图是大型输气管的截面图(圆形),某次数学实践活动中,数学课题学习小组为了计算大型输气管的直径,在圆形弧上取了A,B两点并连接AB,在劣弧AB上取中点C连接CB,经测量米,∠ABC=36.87°,请根据这些数据计算出大型输气管的直径(精确到0.1米).(sin36.87°≈0.60,cos36.87°≈0.80,tan36.87°≈0.75)【考点】垂径定理的应用;解直角三角形的应用.【分析】连接BO、CO,根据垂径定理和三角函数求出CD的长,再根据勾股定理求出圆的半径即可得出结论.【解答】解:设圆心为O,连接BO、CO交AB于D,∵C是弧AB的中点,CO是半径,∴AD=BD,CO⊥AB.在Rt△BCD中BC=米,∠ABC=36.87°,∴CD=BCsin∠ABC=sin36.87°=,BD=BCcos∠ABC=cos36.87°=1,在Rt△BOD中,设圆的半径为x,DO2+BD2=BO2,(x﹣)2+12=x2,x=,2x=≈2.1(米).答:大型输气管的直径约为2.1米.【点评】此题考查了垂径定理的应用,连接BO、CO,构造直角三角形是解题的关键.由实际问题抽象出垂径定理是解题的关键.23.如图,梯形ABCD中,AD∥BC,∠A=90°,AD=10,AB=3,BC=14,点E、F分别在BC、DC上,将梯形ABCD沿直线EF折叠,使点C落在AD上一点C',再沿C'G折叠四边形C'ABE,使AC'与C'E重合,且C'A过点E.(1)试证明C'G∥EF;(2)若点A'与点E重合,求此时图形重叠部分的面积.【考点】翻折变换(折叠问题);一元二次方程的应用;梯形.【分析】(1)首先由折叠知:∠1=∠C′EC,∠2=∠AC′E,即可证得:AD∥BC,然后由平行线的性质与判定,即可证得:C′G∥EF;(2)首先过C′作C′H⊥BC于H,设AC′=C′A′=A′C=x,则由勾股定理即可求得x的值,又由C′D=A′C,C′D∥A′C,可证得四边形C′A′CD是菱形,则可得:此时图形重叠部分的面积=平行四边形C′GA′D的面积=GA′•C′H,则问题得解.【解答】解:(1)由折叠知:∠1=∠C′EC,∠2=∠AC′E;∵AD∥BC,∴∠C′EC=∠AC′E,∴∠1=∠2,∴C′G∥EF;(2)过C′作C′H⊥BC于H,设AC′=C′A′=A′C=x,则A′H=14﹣2x,∴x2=32+(14﹣2x)2,解得:x1=5,x2=>7(舍去),∴AC′=C′A′=A′C=5,C′D=5;∴C′D=A′C,C′D∥A′C,∴四边形C′A′CD是菱形,∴点F与点D重合,∵∠AC′G=∠A′C′G,∠A′GC′=∠AC′G,∴∠A′GC′=∠A′C′G,∴A′G=A′C′=5,∴此时图形重叠部分的面积=平行四边形C′GA′D的面积=GA′•C′H=15.【点评】此题考查了平行线的判定与性质,菱形的判定与性质,以及折叠的性质等知识.此题综合性很强,难度适中,解题的关键是注意数形结合与方程思想的应用.24.已知抛物线y=ax2+bx+c(a≠0)过点A(﹣3,0),B(1,0),C(0,3)三点.(1)求该抛物线的函数关系式;(2)若抛物线的顶点为P,连接PA、AC、CP,求△PAC的面积;(3)过点C作y轴的垂线,交抛物线于点D,连接PD、BD,BD交AC于点E,判断四边形PCED的形状,并说明理由.【考点】二次函数综合题.【分析】(1)根据待定系数法将A(﹣3,0),B(1,0),C(0,3)三点代入解析式求出即可;(2)利用两点之间距离公式求出,,,进而得出△PAC为直角三角形,求出面积即可;(3)首先求出点D的坐标为(﹣2,3),PC=DP,进而得出四边形PCED是菱形,再利用∠PCA=90°,得出答案即可.【解答】(1)由题意得:,解得:,∴y=﹣x2﹣2x+3;(2)∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴P(﹣1,4),∵A(﹣3,0),B(1,0),C(0,3),∴,,,∵PA2=PC2+AC2,∴∠PCA=90°,∴;(3)四边形PCED是正方形,∵点C与点D关于抛物线的对称轴对称,点P为抛物线的顶点,∴点D的坐标为(﹣2,3),PC=DP,∵A(﹣3,0),C(0,3),代入y=ax+b,,解得:,∴直线AC的函数关系式是:y=x+3,同理可得出:直线DP的函数关系式是:y=x+5,∴AC∥DP,同理可得:PC∥BD,∴四边形PCED是菱形,又∵∠PCA=90°,∴四边形PCED是正方形.【点评】此题考查了二次函数解析式的确定、函数图象交点坐标的求法以及菱形与正方形的判定方法,难度不大,细心求解即可.25.某养鸡场计划购买甲、乙两种小鸡苗共2000只进行饲养,已知甲种小鸡苗每只2元,乙种小鸡苗每只3元.(1)若购买这批小鸡苗共用了4500元,求甲、乙两种小鸡苗各购买了多少只?(2)若购买这批小鸡苗的钱不超过4700元,问应选购甲种小鸡苗至少多少只?(3)相关资料表明:甲、乙两种小鸡苗的成活率分别为94%和99%,若要使这批小鸡苗的成活率不低于96%且买小鸡的总费用最小,问应选购甲、乙两种小鸡苗各多少只?总费用最小是多少元?【考点】一次函数的应用;一元一次方程的应用;一元一次不等式的应用.【专题】应用题.【分析】(1)利用这批鸡苗的总费用为等量关系列出一元一次方程后解之即可;(2)利用这批鸡苗费用不超过4700元列出一元一次不等式求解即可;(3)列出有关总费用的函数关系式,求得当总费用最少时自变量的取值范围即可.【解答】解:设购买甲种小鸡苗x只,那么乙种小鸡苗为(2000﹣x)只.(1)根据题意列方程,得2x+3(2000﹣x)=4500,解这个方程得:x=1500,2000﹣x=2000﹣1500=500,即:购买甲种小鸡苗1500只,乙种小鸡苗500只;(2)根据题意得:2x+3(2000﹣x)≤4700,解得:x≥1300,即:选购甲种小鸡苗至少为1300只;(3)设购买这批小鸡苗总费用为y元,根据题意得:y=2x+3(2000﹣x)=﹣x+6000,又由题意得:94%x+99%(2000﹣x)≥2000×96%,解得:x≤1200,因为购买这批小鸡苗的总费用y随x增大而减小,所以当x=1200时,总费用y最小,乙种小鸡为:2000﹣1200=800(只),即:购买甲种小鸡苗为1200只,乙种小鸡苗为800只时,总费用y最小,最小为4800元.【点评】本题考查的是用一次函数解决实际问题,此类题是近年中考中的热点问题.注意利用一次函数求最值时,关键是应用一次函数的性质;即由函数y随x的变化,结合自变量的取值范围确定最值.26.如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=5cm,D是BC边上一点,CD=3cm,点P为边AC上一动点(点P与A、C不重合),过点P作PE∥BC,交AD于点E.点P以1cm/s的速度从A到C匀速运动.(1)设点P的运动时间为t(s),DE的长为y(cm),求y关于t的函数关系式,并写出t的取值范围;(2)当t为何值时,以PE为半径的⊙E与以DB为半径的⊙D外切?并求此时∠DPE的正切值;(3)将△ABD沿直线AD翻折,得到△AB’D,连接B’C.如果∠ACE=∠BCB’,求t的值.。

2018届中考数学二模试卷(带答案) (25)

2018届中考数学二模试卷(带答案)  (25)

2018中考数学二模拟试卷一、选择题1.下列计算正确的是()A.a+a=2a B.b3•b3=2b3C.a3÷a=a3D.(a5)2=a72.3的相反数是()A.﹣3 B.C.3 D.﹣3.今年参观“5.18”海交会的总人数约为489000人,将489000用科学记数法表示为()A.48.9×104B.4.89×105C.4.89×104D.0.489×1064.二元一次方程组的解是()A.B.C.D.5.在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号大于2的概率为()A.B.C.D.6.下列函数中,当x<0时,函数值y随x的增大而增大的有()①y=x ②y=﹣2x+1 ③y=﹣④y=3x2.A.1个B.2个C.3个D.4个7.下列事件是必然事件的是()A.从一副扑克牌中任意抽出一张牌,花色是红桃B.掷一枚均匀的骰子,骰子停止转动后6点朝上C.在同一年出生的367名学生中,至少有两人的生日是同一天D.两条线段可以组成一个三角形8.分式方程的解是()A.x=2 B.x=1 C. D.x=﹣29.一个多边形的内角和是720°,这个多边形的边数是()A.4 B.5 C.6 D.710.在下列四个立体图形中,俯视图为正方形的是()A.B.C.D.二、填空题11.分解因式:x2﹣16=.12.已知∠A=40°,则∠A的余角的度数是.13.“x与y的和大于1”用不等式表示为.14.已知a+b=2,ab=﹣1,则a2+b2=.15.化简:+=.16.今年高考第一天,漳州的最低气温25℃,最高气温33℃,则这天的温差是℃.三、解答题17.计算:|﹣3|+(π+1)0﹣.18.解方程组:.19.已知:如图,D是AC上一点,AB=DA,DE∥AB,∠B=∠DAE.求证:BC=AE.参考答案与试题解析一、选择题1.下列计算正确的是()A.a+a=2a B.b3•b3=2b3C.a3÷a=a3D.(a5)2=a7【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据合并同类项法则;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;幂的乘方,底数不变指数相乘对各选项分析判断后利用排除法求解.【解答】解:A、a+a=2a,故本选项正确;B、b3•b3=b3+3=b6,故本选项错误;C、a3÷a=a3﹣1=a2,故本选项错误;D、(a5)2=a5×2=a10,故本选项错误.故选A.【点评】本题考查了合并同类项,同底数幂的乘法,幂的乘方的性质,同底数幂的除法,熟练掌握运算性质和法则是解题的关键.2.3的相反数是()A.﹣3 B.C.3 D.﹣【考点】相反数.【专题】存在型.【分析】根据相反数的定义进行解答.【解答】解:由相反数的定义可知,3的相反数是﹣3.故选A.【点评】本题考查的是相反数的定义,即只有符号不同的两个数叫做互为相反数.3.今年参观“5.18”海交会的总人数约为489000人,将489000用科学记数法表示为()A.48.9×104B.4.89×105C.4.89×104D.0.489×106【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:489 000=4.89×105.故选B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.二元一次方程组的解是()A.B.C.D.【考点】解二元一次方程组.【专题】计算题.【分析】根据y的系数互为相反数,利用加减消元法计算即可得解.【解答】解:,①+②得,3x=9,解得x=3,把x=3代入①得,3+y=3,解得y=0,所以,原方程组的解是.故选D.【点评】本题考查的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单.5.在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号大于2的概率为()A.B.C.D.【考点】概率公式.【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目,②全部情况的总数,二者的比值就是其发生的概率的大小.【解答】解:根据题意可得:大于2的有3,4,5三个球,共5个球,任意摸出1个,摸到大于2的概率是.故选C.【点评】本题考查概率的求法与运用,一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,难度适中.6.下列函数中,当x<0时,函数值y随x的增大而增大的有()①y=x ②y=﹣2x+1 ③y=﹣④y=3x2.A.1个B.2个C.3个D.4个【考点】二次函数的性质;一次函数的性质;正比例函数的性质;反比例函数的性质.【专题】压轴题.【分析】根据正比例函数、一次函数、反比例函数、二次函数的增减性,结合自变量的取值范围,逐一判断.【解答】解:①y=x,正比例函数,k=1>0,y随着x增大而增大,正确;②y=﹣2x+1,一次函数,k=﹣2<0,y随x的增大而减小,错误;③y=﹣,反比例函数,k=﹣1<0,当x<0时,函数值y随x的增大而增大,正确;④y=3x2,二次函数,a=3>0,开口向上,对称轴为x=0,故当x<0时,图象在对称轴左侧,y随着x的增大而减小,错误.故选B.【点评】本题综合考查了二次函数、一次函数、反比例函数、正比例函数的增减性(单调性),是一道难度中等的题目.掌握函数的性质解答此题是关键.7.下列事件是必然事件的是()A.从一副扑克牌中任意抽出一张牌,花色是红桃B.掷一枚均匀的骰子,骰子停止转动后6点朝上C.在同一年出生的367名学生中,至少有两人的生日是同一天D.两条线段可以组成一个三角形【考点】随机事件.【分析】必然事件就是一定发生的事件,即发生的概率是1的事件.【解答】解:A、从一副扑克牌中任意抽出一张牌,花色是红桃是随机事件,故选项错误;B、掷一枚均匀的骰子,骰子停止转动后6点朝上是随机事件,故选项错误;C、在同一年出生的367名学生中,至少有两人的生日是同一天是必然事件,故选项正确;D、两条线段可以组成一个三角形是不可能事件,故选项错误.故选C.【点评】本题考查了必然事件、不可能事件、随机事件的概念,透彻理解概念是解决基础题的主要方法.用到的知识点为:必然事件指在一定条件下一定发生的事件;不可能事件是在一定条件下一定不会发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.8.分式方程的解是()A.x=2 B.x=1 C. D.x=﹣2【考点】解分式方程.【专题】计算题.【分析】先把方程两边同乘以x(x+3)得到5x=2(x+3),解得x=2,然后进行检验确定原方程的解.【解答】解:去分母得,5x=2(x+3),解得x=2,检验:当x=2时,x(x+3)≠0,所以原方程的解为x=2.故选A.【点评】本题考查了解分式方程:先去分母,把分式方程转化为整式方程,再解整式方程,然后把整式方程的解代入原方程进行检验,最后确定分式方程的解.9.一个多边形的内角和是720°,这个多边形的边数是()A.4 B.5 C.6 D.7【考点】多边形内角与外角.【分析】根据内角和定理180°•(n﹣2)即可求得.【解答】解:∵多边形的内角和公式为(n﹣2)•180°,∴(n﹣2)×180°=720°,解得n=6,∴这个多边形的边数是6.故选C.【点评】本题主要考查了多边形的内角和定理即180°•(n﹣2),难度适中.10.在下列四个立体图形中,俯视图为正方形的是()A.B.C.D.【考点】简单几何体的三视图.【分析】根据从上面看到的图形是俯视图,可得答案.【解答】解:A、俯视图是一个圆,故本选项错误;B、俯视图是带圆心的圆,故本选项错误;C、俯视图是一个圆,故本选项错误;D、俯视图是一个正方形,故本选项正确;故选:D.【点评】此题主要考查了简单几何体的三视图,关键是掌握俯视图的定义.从上面看到的图形是俯视图.二、填空题11.分解因式:x2﹣16=(x﹣4)(x+4).【考点】因式分解-运用公式法.【分析】运用平方差公式分解因式的式子特点:两项平方项,符号相反.直接运用平方差公式分解即可.a2﹣b2=(a+b)(a﹣b).【解答】解:x2﹣16=(x+4)(x﹣4).【点评】本题考查因式分解.当被分解的式子只有两项平方项;符号相反,且没有公因式时,应首要考虑用平方差公式进行分解.12.已知∠A=40°,则∠A的余角的度数是50°.【考点】余角和补角.【分析】设∠A的余角是∠B,则∠A+∠B=90°,再根据∠A=40°求出∠B的度数即可.【解答】解:设∠A的余角是∠B,则∠A+∠B=90°,∵∠A=40°,∴∠B=90°﹣40°=50°.故答案为:50°.【点评】本题考查的是余角的定义,即如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角.13.“x与y的和大于1”用不等式表示为x+y>1.【考点】由实际问题抽象出一元一次不等式.【专题】和差倍关系问题.【分析】表示出两个数的和,用“>”连接即可.【解答】解:x与y的和可表示为:x+y,“x与y的和大于1”用不等式表示为:x+y>1,故答案为:x+y>1.【点评】考查列一元一次不等式;根据关键词得到两个数的和与1的关系是解决本题的关键.14.已知a+b=2,ab=﹣1,则a2+b2=6.【考点】完全平方公式.【专题】计算题.【分析】原式利用完全平方公式变形,将a+b与ab代入计算即可求出值.【解答】解:∵a+b=2,ab=﹣1,∴原式=(a+b)2﹣2ab=4+2=6,故答案为:6【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.15.化简:+=1.【考点】分式的加减法.【专题】计算题.【分析】将分式中第二项变形,即可和第一项分母相同,然后分母不变,分子相减即可.【解答】解:原式==1.【点评】本题比较容易,考查分式的运算法则.16.今年高考第一天,漳州的最低气温25℃,最高气温33℃,则这天的温差是8℃.【考点】有理数的减法.【专题】计算题.【分析】用最高气温减去最低气温,再根据有理数的减法运算法则进行计算即可得解.【解答】解:33﹣25=8℃.故答案为:8.【点评】本题考查了有理数的减法,根据题意正确列出算式是解题的关键.三、解答题17.计算:|﹣3|+(π+1)0﹣.【考点】实数的运算;零指数幂.【分析】首先分别求出|﹣3|、(π+1)0、的值各是多少;然后根据实数的运算顺序,从左向右依次计算,求出算式|﹣3|+(π+1)0﹣的值是多少即可.【解答】解:|﹣3|+(π+1)0﹣=3+1﹣2=4﹣2=2【点评】(1)此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到有的顺序进行.另外,有理数的运算律在实数范围内仍然适用.(2)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a≠0);②00≠1.18.解方程组:.【考点】解二元一次方程组.【专题】探究型.【分析】先用加减消元法求出x的值,再用代入消元法求出y的值即可.【解答】解:,①+②得,5x=5,解得x=1;把x=1代入②得,2﹣y=1,解得y=1,故此方程组的解为:.【点评】本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.19.已知:如图,D是AC上一点,AB=DA,DE∥AB,∠B=∠DAE.求证:BC=AE.【考点】全等三角形的判定与性质.【专题】证明题.【分析】根据两直线平行,内错角相等求出∠CAB=∠ADE,然后利用“角边角”证明△ABC和△DAE 全等,再根据全等三角形对应边相等证明即可.【解答】证明:∵DE∥AB,∴∠CAB=∠ADE,∵在△ABC和△DAE中,,∴△ABC≌△DAE(ASA),∴BC=AE.【点评】本题考查了全等三角形的判定与性质,平行线的性质,利用三角形全等证明边相等是常用的方法之一,要熟练掌握并灵活运用.第11页(共11页)。

2018年山东省济南市市中区中考数学二模试卷含答案解析

2018年山东省济南市市中区中考数学二模试卷含答案解析

2018年山东省济南市市中区中考数学二模试卷一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(4分)国家主席习近平在2018年新年贺词中说道:“安得广厦千万间,大庇天下寒士俱欢颜!2017年我国3400000贫困人口实现易地扶贫搬迁、有了温暖的新家.”其中3400000用科学记数法表示为()A.0.34×107B.3.4×106C.3.4×105D.34×1052.(4分)如图是某零件的直观图,则它的主视图为()A. B. C. D.3.(4分)如图,已知AB∥CD,DE⊥AC,垂足为E,∠A=120°,则∠D的度数为()A.30°B.60°C.50°D.40°4.(4分)下列计算正确的是()A.a4÷a3=1 B.a4+a3=a7 C.(2a3)4=8a12 D.a4•a3=a75.(4分)如图,△ABC内接于⊙O,连接OA,OB,∠C=40°,则∠OBA的度数是()A.60°B.50°C.45°D.40°6.(4分)下列图形中既是中心对称图形又是轴对称图形的是()A.B.C.D.7.(4分)不等式组的解集在数轴上表示正确的是()A. B. C.D.8.(4分)初三体育素质测试,某小组5名同学成绩如下所示,有两个数据被遮盖,如图:那么被遮盖的两个数据依次是()A.35,2 B.36,4 C.35,3 D.36,39.(4分)济南大明湖畔的“超然楼”被称作“江北第一楼”,某校数学社团的同学对超然楼的高度进行了测量,如图,他们在A处仰望塔顶,测得仰角为30°,再往楼的方向前进60m至B处,测得仰角为60°,若学生的身高忽略不计,≈1.7,结果精确到1m,则该楼的高度CD为()A.47m B.51m C.53m D.54m10.(4分)如果关于x的方程(m﹣1)x2+x+1=0有实数根,那么m的取值范围是()A.B.且m≠1 C.D.且m≠111.(4分)如图,把矩形纸片OABC放入平面直角坐标系中,使OA、OC分别落在x轴,y轴上,连OB,将纸片OABC沿OB折叠,使点A落在A′的位置,若OB=,tan∠BOC=,则点A′的坐标()A.(﹣,) B.(﹣,) C.(﹣,)D.(﹣,)12.(4分)如图,在平面直角坐标系中2条直线为l1:y=﹣3x+3,l2:y=﹣3x+9,直线l1交x轴于点A,交y轴于点B,直线l2交x轴于点D,过点B作x轴的平行线交l2于点C,点A、E关于y轴对称,抛物线y=ax2+bx+c过E、B、C三点,下列判断中:①a﹣b+c=0;②2a+b+c=5;③抛物线关于直线x=1对称;④抛物线过点(b,c);=5,⑤S四边形ABCD其中正确的个数有()A.5 B.4 C.3 D.2二、填空题(本大题共6小题,每小题4分,共24分)13.(4分)分解因式:2a2﹣8a+8=.14.(4分)不透明的袋子里装有2个红球和1个白球,这些球除了颜色外都相同,从中任意摸出一个,放回摇匀,再从中摸一个,则两次摸到球的颜色相同的概率是.15.(4分)已知方程组,则x+y的值为.16.(4分)如图所示,扇形AOB的圆心角为120°,半径为2,则图中阴影部分的面积为.17.(4分)如图,△ABC的三个顶点分别为A(1,2),B(2,5),C(6,1).若函数y=在第一象限内的图象与△ABC有交点,则k的取值范围是.18.(4分)如图,M、N是正方形ABCD的边CD上的两个动点,满足AM=BN,连接AC交BN于点E,连接DE交AM于点F,连接CF,若正方形的边长为4,则线段CF的最小值是.三、解答题(本大题共9小题,共计78分。

2018届中考数学二模试卷(带详解) (1)

2018届中考数学二模试卷(带详解)  (1)

2018年中考数学二模试卷一、选择题(共12小题,每小题3分,满分36分)1.我国雾霾天气多发,PM2.5颗粒被称为大气污染的元凶.PM2.5是指直径小于或等于2.5微米的颗粒物,已知1毫米=1000微米,用科学记数法表示2.5微米是多少毫米.()A.2.5×10﹣3B.0.25×103C.2.5×103D.25×1062.﹣的相反数是()A.3 B.﹣3 C.D.﹣3.下列运算正确的是()A.x2•x3=x6B.3﹣2=﹣6 C.(x3)2=x5D.40=14.下列说法正确的是()A.相切两圆的连心线经过切点 B.长度相等的两条弧是等弧C.平分弦的直径垂直于弦 D.相等的圆心角所对的弦相等5.如图,等边△DEF的顶点分别在等边△ABC的各边上,且DE⊥BC于E,若AB=1,则DB的长为()A.B.C.D.6.如图,下列条件中,不能判断直线l1∥l2的是()A.∠1=∠3 B.∠2=∠3 C.∠4=∠5 D.∠2+∠4=180°7.一组数据﹣2,1,0,﹣1,2的极差和方差分别是()A.4和2 B.4和1 C.3和2 D.2和18.若一次函数y=kx+b的图象经过第二、三、四象限,则反比例函数y=的图象在()A.一、三象限B.二、四象限C.一、二象限D.三、四象限9.现有一圆心角为90°,半径为12cm的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计),则该圆锥的高为()A.cm B.2cm C.3cm D.6cm10.下列图中阴影部分面积与算式|﹣|+()2+2﹣1的结果相同的是()A.B.C.D.11.如图,⊙O是以原点为圆心,为半径的圆,点P是直线y=﹣x+6上的一点,过点P 作⊙O的一条切线PQ,Q为切点,则切线长PQ的最小值为()A.3 B.4 C.6﹣D.3﹣112.函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中正确的个数为()A.1 B.2 C.3 D.4二、填空题(本大题共有6小题,每小题3分,共18分)13.使有意义的x的取值范围是.14.因式分解:x3﹣xy2=.15.如果|a﹣1|+(b+2)2=0,则(a+b)2015的值是.16.一个直角三角形两条直角边的长分别为6cm,8cm,则这个直角三角形的内心与外心之间的距离是cm.17.如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,联结DE,F为线段DE上一点,且∠AFE=∠B.若AB=5,AD=8,AE=4,则AF的长为.18.阅读材料:设一元二次方程ax2+bx+c=0的两根为x1,x2,则两根与方程系数之间有如下关系式x1+x2=﹣,x1•x2=根据该材料填空,已知x1,x2是方程x2+3x+1=0的两实数根,则的值为.三、解答题(本大题共有8小题,共66分)19.(1)计算:(﹣1.414)0﹣|﹣2|+﹣3tan30°(2)化简求值:(﹣)÷,其中x=1+,y=1﹣.20.如图,将小旗ACDB放于平面直角坐标系中,得到各顶点的坐标为A(﹣6,12),B(﹣6,0),C(0,6),D(﹣6,6).以点B为旋转中心,在平面直角坐标系内将小旗顺时针旋转90°.(1)画出旋转后的小旗A′C′D′B′;(2)写出点A′,C′,D′的坐标;(3)求出线段BA旋转到B′A′时所扫过的扇形的面积.21.如图,一次函数y=kx+b的图象l与坐标轴分别交于点E、F,与双曲线y=﹣(x<0)交于点P(﹣1,n),且F是PE的中点.(1)求直线l的解析式;(2)若直线x=a与l交于点A,与双曲线交于点B(不同于A),问a为何值时,PA=PB?22.我市某中学艺术节期间,向全校学生征集书画作品.九年级美术王老师从全年级14个班中随机抽取了4个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图.(1)王老师采取的调查方式是(填“普查”或“抽样调查”),王老师所调查的4个班征集到作品共件,其中b班征集到作品件,请把图2补充完整;(2)王老师所调查的四个班平均每个班征集作品多少件?请估计全年级共征集到作品多少件?(3)如果全年级参展作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生.现在要在其中抽两人去参加学校总结表彰座谈会,请直接写出恰好抽中一男一女的概率.23.京广高速铁路工程指挥部,要对某路段工程进行招标,接到了甲、乙两个工程队的投标书.从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的;若由甲队先做10天,剩下的工程再由甲、乙两队合作30天完成.(1)求甲、乙两队单独完成这项工程各需多少天?(2)已知甲队每天的施工费用为8.4万元,乙队每天的施工费用为5.6万元.工程预算的施工费用为500万元.为缩短工期并高效完成工程,拟安排预算的施工费用是否够用?若不够用,需追加预算多少万元?请给出你的判断并说明理由.24.如图,已知,⊙O为△ABC的外接圆,BC为直径,点E在AB上,过点E作EF⊥BC,点G在FE的延长线上,且GA=GE.(1)求证:AG与⊙O相切.(2)若AC=6,AB=8,BE=3,求线段OE的长.25.如图1,抛物线y=nx2﹣11nx+24n (n<0)与x轴交于B、C两点(点B在点C的左侧),抛物线上另有一点A在第一象限内,且∠BAC=90°.(1)填空:点B的坐标为(),点C的坐标为();(2)连接OA,若△OAC为等腰三角形.①求此时抛物线的解析式;②如图2,将△OAC沿x轴翻折后得△ODC,点M为①中所求的抛物线上点A与点C两点之间一动点,且点M的横坐标为m,过动点M作垂直于x轴的直线l与CD交于点N,试探究:当m为何值时,四边形AMCN的面积取得最大值,并求出这个最大值.26.如图1,正六边形ABCDEF的边长为a,P是BC边上一动点,过P作PM∥AB交AF 于M,作PN∥CD交DE于N.(1)①∠MPN=;②求证:PM+PN=3a;(2)如图2,点O是AD的中点,连接OM、ON,求证:OM=ON;(3)如图3,点O是AD的中点,OG平分∠MON,判断四边形OMGN是否为特殊四边形?并说明理由.参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.我国雾霾天气多发,PM2.5颗粒被称为大气污染的元凶.PM2.5是指直径小于或等于2.5微米的颗粒物,已知1毫米=1000微米,用科学记数法表示2.5微米是多少毫米.()A.2.5×10﹣3B.0.25×103C.2.5×103D.25×106【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:2.5微米=0.0025毫米=2.5×10﹣3毫米,故选:A.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.2.﹣的相反数是()A.3 B.﹣3 C.D.﹣【考点】相反数.【分析】一个数的相反数就是在这个数前面添上“﹣”号.【解答】解:﹣的相反数是,故选C【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.3.下列运算正确的是()A.x2•x3=x6B.3﹣2=﹣6 C.(x3)2=x5D.40=1【考点】负整数指数幂;同底数幂的乘法;幂的乘方与积的乘方;零指数幂.【分析】利用同底数幂、负指数、零指数以及幂的乘方的性质求解即可求得答案,注意排除法在解选择题中的应用.【解答】解:A、x2•x3=x5,故本选项错误;B、3﹣2==,故本选项错误;C、(x3)2=x6,故本选项错误;D、40=1,故本选项正确.故选D.【点评】此题考查了同底数幂、负指数、零指数以及幂的乘方的性质.注意掌握指数的变化是解此题的关键.4.下列说法正确的是()A.相切两圆的连心线经过切点 B.长度相等的两条弧是等弧C.平分弦的直径垂直于弦 D.相等的圆心角所对的弦相等【考点】切线的性质;圆的认识;垂径定理;圆心角、弧、弦的关系.【分析】要找出正确命题,可运用相关基础知识分析找出正确选项,也可以通过举反例排除不正确选项,从而得出正确选项.(1)等弧指的是在同圆或等圆中,能够完全重合的弧.长度相等的两条弧,不一定能够完全重合;(2)此弦不能是直径;(3)相等的圆心角所对的弦相等指的是在同圆或等圆中.【解答】解:A、根据圆的轴对称性可知此命题正确.B、等弧指的是在同圆或等圆中,能够完全重合的弧.而此命题没有强调在同圆或等圆中,所以长度相等的两条弧,不一定能够完全重合,此命题错误;B、此弦不能是直径,命题错误;C、相等的圆心角指的是在同圆或等圆中,此命题错误;故选A.【点评】本题考查知识较多,解题的关键是运用相关基础知识逐一分析才能找出正确选项.5.如图,等边△DEF的顶点分别在等边△ABC的各边上,且DE⊥BC于E,若AB=1,则DB的长为()A.B.C.D.【考点】等边三角形的性质;全等三角形的判定与性质;含30度角的直角三角形;勾股定理.【分析】根据等边三角形性质,直角三角形性质求△BDE≌△AFD,得BE=AD,再求得BD的长.【解答】解:∵∠DEB=90°∴∠BDE=90°﹣60°=30°∴∠ADF=180﹣30°﹣90°=90°同理∠EFC=90°又∵∠A=∠B=∠C,DE=DF=EF∴△BED≌△ADF≌△CFE∴AD=BE设BE=x,则BD=2x,∴由勾股定理得BE=,∴BD=.故选C.【点评】本题利用了:1、等边三角形的性质,2、勾股定理,3、全等三角形的判定和性质.6.如图,下列条件中,不能判断直线l1∥l2的是()A.∠1=∠3 B.∠2=∠3 C.∠4=∠5 D.∠2+∠4=180°【考点】平行线的判定.【分析】根据平行线的判定定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行分别进行分析即可.【解答】解:A、根据内错角相等,两直线平行可判断直线l1∥l2,故此选项不合题意;B、∠2=∠3,不能判断直线l1∥l2,故此选项符合题意;C、根据同位角相等,两直线平行可判断直线l1∥l2,故此选项不合题意;D、根据同旁内角互补,两直线平行可判断直线l1∥l2,故此选项不合题意;故选:B.【点评】此题主要考查了平行线的判定,关键是掌握平行线的判定定理.7.一组数据﹣2,1,0,﹣1,2的极差和方差分别是()A.4和2 B.4和1 C.3和2 D.2和1【考点】方差;极差.【分析】根据极差、平均数、方差的公式计算.【解答】解:极差就是这组数中最大值与最小值的差,为2﹣(﹣2)=4;平均数=(﹣2﹣1+0+1+2)÷5=0,方差S2=[(﹣2)2+(1)2+(0)2+(﹣1)2+(2)2]=2.故选A.【点评】本题考查了极差和方差的定义.8.若一次函数y=kx+b的图象经过第二、三、四象限,则反比例函数y=的图象在()A.一、三象限B.二、四象限C.一、二象限D.三、四象限【考点】反比例函数的性质;一次函数的性质.【分析】先由一次函数的性质判断出k,b的正负,再根据反比例函数的性质即可得出结果.【解答】解:∵一次函数y=kx+b的图象经过第二、三、四象限,∴k<0,b<0,kb>0,反比例函数y=中,kb>0,∴图象在一、三象限.故选A.【点评】本题考查了反比例函数的性质,应注意y=中k的取值.9.现有一圆心角为90°,半径为12cm的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计),则该圆锥的高为()A.cm B.2cm C.3cm D.6cm【考点】弧长的计算;勾股定理.【专题】压轴题.【分析】利用底面周长=展开图的弧长可得.【解答】解:=2πR,解得R=3cm,再利用勾股定理可知,高=3cm.故选C.【点评】解答本题的关键是有确定底面周长=展开图的弧长这个等量关系,然后再利用勾股定理可求得值.10.下列图中阴影部分面积与算式|﹣|+()2+2﹣1的结果相同的是()A.B.C.D.【考点】二次函数的性质;一次函数的性质;反比例函数的性质.【专题】压轴题.【分析】先把算式的值求出,然后根据函数的性质分别求出四个图中的阴影部分面积,看是否与算式的值相同,如相同,则是要选的选项.【解答】解:原式=++==.A、作TE⊥X轴,TG⊥Y轴,易得,△GTF≌△ETD,故阴影部分面积为1×1=1;B、当x=1时,y=3,阴影部分面积1×3×=;C、当y=0时,x=±1,当x=0时,y=﹣1.阴影部分面积为[1﹣(﹣1)]×1×=1;D、阴影部分面积为xy=×2=1.故选B.【点评】解答A时运用了全等三角形的性质,B、C、D都运用了函数图象和坐标的关系,转化为三角形的面积公式来解答.11.如图,⊙O是以原点为圆心,为半径的圆,点P是直线y=﹣x+6上的一点,过点P 作⊙O的一条切线PQ,Q为切点,则切线长PQ的最小值为()A.3 B.4 C.6﹣D.3﹣1【考点】一次函数综合题.【专题】计算题;压轴题.【分析】由P在直线y=﹣x+6上,设P(m,6﹣m),连接OQ,OP,由PQ为圆O的切线,得到PQ⊥OQ,在直角三角形OPQ中,利勾股定理列出关系式,配方后利用二次函数的性质即可求出PQ的最小值.【解答】解:∵P在直线y=﹣x+6上,∴设P坐标为(m,6﹣m),连接OQ,OP,由PQ为圆O的切线,得到PQ⊥OQ,在Rt△OPQ中,根据勾股定理得:OP2=PQ2+OQ2,∴PQ2=m2+(6﹣m)2﹣2=2m2﹣12m+34=2(m﹣3)2+16,则当m=3时,切线长PQ的最小值为4.【点评】此题考查了一次函数综合题,涉及的知识有:切线的性质,勾股定理,配方法的应用,以及二次函数的性质,熟练掌握二次函数的性质是解本题的关键.12.函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中正确的个数为()A.1 B.2 C.3 D.4【考点】二次函数图象与系数的关系.【分析】由函数y=x2+bx+c与x轴无交点,可得b2﹣4c<0;当x=1时,y=1+b+c=1;当x=3时,y=9+3b+c=3;当1<x<3时,二次函数值小于一次函数值,可得x2+bx+c<x,继而可求得答案.【解答】解:∵函数y=x2+bx+c与x轴无交点,∴b2﹣4ac<0;故①错误;当x=1时,y=1+b+c=1,故②错误;∵当x=3时,y=9+3b+c=3,∴3b+c+6=0;∵当1<x<3时,二次函数值小于一次函数值,∴x2+bx+c<x,∴x2+(b﹣1)x+c<0.故④正确.故选B.【点评】主要考查图象与二次函数系数之间的关系.此题难度适中,注意掌握数形结合思想的应用.二、填空题(本大题共有6小题,每小题3分,共18分)13.使有意义的x的取值范围是x≤1.【考点】二次根式有意义的条件.【专题】计算题.【分析】根据二次根式的被开方数为非负数,即可得出x的范围.【解答】解:∵有意义,∴1﹣x≥0,解得:x≤1.故答案为:x≤1.【点评】此题考查了二次根式有意义的条件,属于基础题,解答本题的关键是熟练掌握二次根式的被开方数为非负数.14.因式分解:x3﹣xy2=x(x﹣y)(x+y).【考点】提公因式法与公式法的综合运用.【分析】先提取公因式x,再对余下的多项式利用平方差公式继续分解.【解答】解:x3﹣xy2=x(x2﹣y2)=x(x﹣y)(x+y).故答案为:x(x﹣y)(x+y).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.15.如果|a﹣1|+(b+2)2=0,则(a+b)2015的值是﹣1.【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,a﹣1=0,b+2=0,解得a=1,b=﹣2,所以,(a+b)2015=(1﹣2)2015=﹣1.故答案为:﹣1.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.16.一个直角三角形两条直角边的长分别为6cm,8cm,则这个直角三角形的内心与外心之间的距离是cm.【考点】三角形的内切圆与内心;三角形的外接圆与外心.【分析】利用在Rt△ABC,可求得AB=10cm,根据内切圆的性质可判定四边形OECE是正方形,所以用r分别表示:CE=CD=r,AE=AN=6﹣r,BD=BN=8﹣r;再利用AB作为相等关系求出r=2cm,则可得AN=4cm,N为圆与AB的切点,M为AB的中点,根据直角三角形中外接圆的圆心是斜边的中点,即M为外接圆的圆心;在Rt△OMN中,先求得MN=AM﹣AN=1cm,由勾股定理可求得OM=cm.【解答】解:如图,在Rt△ABC,∠C=90°,AC=8cm,BC=6cm,∴AB=10cm,设Rt△ABC的内切圆的半径为r,则OD=OE=r,∵∠C=90°,∴CE=CD=r,AE=AN=6﹣r,BD=BN=8﹣r,∴8﹣r+6﹣r=10,解得r=2cm,∴AN=4cm,在Rt△OMN中,MN=AM﹣AN=1cm,∴OM=cm.【点评】此题考查了直角三角形的外心与内心概念,及内切圆的性质.17.如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,联结DE,F为线段DE上一点,且∠AFE=∠B.若AB=5,AD=8,AE=4,则AF的长为2.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】如图,证明AE⊥AD,求出DE的长度;证明△ADF∽△DEC,得到;运用AD=8,DE=4,CD=AB=5,求出AF的长度,即可解决问题.【解答】解:如图,∵四边形ABCD为平行四边形,∴AD∥BC,∠B=∠ADC;而AE⊥BC,∴AE⊥AD,∠ADF=∠DEC;∴DE2=AE2+AD2=16+64=80,∴DE=4而∠AFE=∠B,∴∠AFE=∠ADC,即∠ADF+∠DAF=∠ADF+∠EDC,∴∠DAF=∠EDC;∴△ADF∽△DEC,∴;而AD=8,DE=4,CD=AB=5,∴AF=2.故答案为2.【点评】该题以平行四边形为载体,以相似三角形的判定及其性质的应用为考查的核心构造而成;应牢固掌握相似三角形的判定及其性质.18.阅读材料:设一元二次方程ax2+bx+c=0的两根为x1,x2,则两根与方程系数之间有如下关系式x1+x2=﹣,x1•x2=根据该材料填空,已知x1,x2是方程x2+3x+1=0的两实数根,则的值为7.【考点】根与系数的关系.【专题】压轴题;阅读型.【分析】根据一元二次方程根与系数的关系,可以求得两根之积或两根之和,根据=,代入数值计算即可.【解答】解:∵x1,x2是方程x2+3x+1=0的两个实数根,∴x1+x2=﹣3,x1x2=1.∴===7.故答案为:7.【点评】此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.三、解答题(本大题共有8小题,共66分)19.(1)计算:(﹣1.414)0﹣|﹣2|+﹣3tan30°(2)化简求值:(﹣)÷,其中x=1+,y=1﹣.【考点】分式的化简求值;实数的运算;零指数幂;特殊角的三角函数值.【分析】(1)先利用零指数幂法则,绝对值及特殊角的三角函数化简,再利用实数的运算顺序求解即可,(2)先化简,再代入求值即可.【解答】解:(1)(﹣1.414)0﹣|﹣2|+﹣3tan30°=1﹣2++3﹣,=2,(2)(﹣)÷,=•,=,当x=1+,y=1﹣,原式===.【点评】本题主要考查了分式的化简求值,实数的运算,零指数幂及特殊角的三角函数,解题的关键是正确的化简及实数的运算顺序,零指数幂法则及特殊角的三角函数.20.如图,将小旗ACDB放于平面直角坐标系中,得到各顶点的坐标为A(﹣6,12),B(﹣6,0),C(0,6),D(﹣6,6).以点B为旋转中心,在平面直角坐标系内将小旗顺时针旋转90°.(1)画出旋转后的小旗A′C′D′B′;(2)写出点A′,C′,D′的坐标;(3)求出线段BA旋转到B′A′时所扫过的扇形的面积.【考点】作图-旋转变换;扇形面积的计算.【专题】作图题.【分析】(1)根据平面直角坐标系找出A′、C′、D′、B′的位置,然后顺次连接即可;(2)根据旋转的性质分别写出点A′,C′,D′的坐标即可;(3)先求出AB的长,再利用扇形面积公式列式计算即可得解.【解答】解:(1)小旗A′C′D′B′如图所示;(2)点A′(6,0),C′(0,﹣6),D′(0,0);(3)∵A(﹣6,12),B(﹣6,0),∴AB=12,∴线段BA旋转到B′A′时所扫过的扇形的面积==36π.【点评】本题考查了利用旋转变换作图,扇形的面积计算,熟练掌握旋转变换只改变图形的位置不改变图形的形状与大小是解题的关键.21.如图,一次函数y=kx+b的图象l与坐标轴分别交于点E、F,与双曲线y=﹣(x<0)交于点P(﹣1,n),且F是PE的中点.(1)求直线l的解析式;(2)若直线x=a与l交于点A,与双曲线交于点B(不同于A),问a为何值时,PA=PB?【考点】反比例函数与一次函数的交点问题.【专题】数形结合.【分析】(1)先由y=﹣,求出点P的坐标,再根据F为PE中点,求出F的坐标,把P,F的坐标代入求出直线l的解析式;(2)过P作PD⊥AB,垂足为点D,由A点的纵坐标为﹣2a+2,B点的纵坐标为﹣,D 点的纵坐标为4,列出方程求解即可.【解答】解:由P(﹣1,n)在y=﹣上,得n=4,∴P(﹣1,4),∵F为PE中点,∴OF=n=2,∴F(0,2),又∵P,F在y=kx+b上,∴,解得.∴直线l的解析式为:y=﹣2x+2.(2)如图,过P作PD⊥AB,垂足为点D,∵PA=PB,∴点D为AB的中点,又由题意知A点的纵坐标为﹣2a+2,B点的纵坐标为﹣,D点的纵坐标为4,∴得方程﹣2a+2﹣=4×2,解得a1=﹣2,a2=﹣1(舍去).∴当a=﹣2时,PA=PB.【点评】本题主要考查了反比例函数与一次函数的交点,解题的重点是求出直线l的解析式.22.我市某中学艺术节期间,向全校学生征集书画作品.九年级美术王老师从全年级14个班中随机抽取了4个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图.(1)王老师采取的调查方式是抽样调查(填“普查”或“抽样调查”),王老师所调查的4个班征集到作品共12件,其中b班征集到作品3件,请把图2补充完整;(2)王老师所调查的四个班平均每个班征集作品多少件?请估计全年级共征集到作品多少件?(3)如果全年级参展作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生.现在要在其中抽两人去参加学校总结表彰座谈会,请直接写出恰好抽中一男一女的概率.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)由全面调查和抽样调查的定义可知王老师采取的调查方式是抽样调查;由题意得:所调查的4个班征集到的作品数为:5÷=12(件),B作品的件数为:12﹣2﹣5﹣2=3(件);继而可补全条形统计图;(2)四个班平均每个班征集作品件数=总数÷4,全校作品总数=平均每个班征集作品件数×班级数;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好抽中一男一女的情况,再利用概率公式即可求得答案.【解答】解:(1)王老师采取的调查方式是抽样调查;所调查的4个班征集到的作品数为:5÷=12(件),B作品的件数为:12﹣2﹣5﹣2=3(件);补全图2,如图所示:(2)12÷4=3,3×20=60;(3)画树状图得:∵共有20种等可能的结果,恰好抽中一男一女的有12种情况,∴恰好抽中一男一女的概率为:=.【点评】此题考查了列表法或树状图法求概率以及条形统计图与扇形统计图.用到的知识点为:概率=所求情况数与总情况数之比.23.京广高速铁路工程指挥部,要对某路段工程进行招标,接到了甲、乙两个工程队的投标书.从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的;若由甲队先做10天,剩下的工程再由甲、乙两队合作30天完成.(1)求甲、乙两队单独完成这项工程各需多少天?(2)已知甲队每天的施工费用为8.4万元,乙队每天的施工费用为5.6万元.工程预算的施工费用为500万元.为缩短工期并高效完成工程,拟安排预算的施工费用是否够用?若不够用,需追加预算多少万元?请给出你的判断并说明理由.【考点】分式方程的应用.【专题】压轴题.【分析】(1)设甲单独完成这项工程所需天数,表示出乙单独完成这项工程所需天数及各自的工作效率.根据工作量=工作效率×工作时间列方程求解;(2)根据题意,甲乙合作工期最短,所以须求合作的时间,然后计算费用,作出判断.【解答】解:(1)设乙队单独完成这项工程需要x天,则甲队单独完成这项工程需要x 天.根据题意,得.解得x=90.经检验,x=90是原方程的根.∴x=×90=60.答:甲、乙两队单独完成这项工程分别需60天和90天.(2)设甲、乙两队合作完成这项工程需要y天,则有.解得y=36.需要施工费用:36×(8.4+5.6)=504(万元).∵504>500.∴工程预算的施工费用不够用,需追加预算4万元.【点评】此题考查分式方程的应用,涉及方案决策问题,所以综合性较强.24.如图,已知,⊙O为△ABC的外接圆,BC为直径,点E在AB上,过点E作EF⊥BC,点G在FE的延长线上,且GA=GE.(1)求证:AG与⊙O相切.(2)若AC=6,AB=8,BE=3,求线段OE的长.【考点】切线的判定;勾股定理;圆周角定理;相似三角形的判定与性质.【专题】证明题;几何综合题.【分析】(1)连接OA,由OA=OB,GA=GE得出∠ABO=∠BAO,∠GEA=∠GAE;再由EF⊥BC,得出∠BFE=90°,进一步由∠ABO+∠BEF=90°,∠BEF=∠GEA,最后得出∠GAO=90°求得答案;(2)BC为直径得出∠BAC=90°,利用勾股定理得出BC=10,由△BEF∽△BCA,求得EF、BF的长,进一步在△OEF中利用勾股定理得出OE的长即可.【解答】(1)证明:如图,连接OA,∵OA=OB,GA=GE∴∠ABO=∠BAO,∠GEA=∠GAE∵EF⊥BC,∴∠BFE=90°,∴∠ABO+∠BEF=90°,又∵∠BEF=∠GEA,∴∠GAE=∠BEF,∴∠BAO+∠GAE=90°,即AG与⊙O相切.(2)解:∵BC为直径,∴∠BAC=90°,AC=6,AB=8,∴BC=10,∵∠EBF=∠CBA,∠BFE=∠BAC,∴△BEF∽△BCA,∴==∴EF=1.8,BF=2.4,∴0F=0B﹣BF=5﹣2.4=2.6,∴OE==.【点评】本题考查了切线的判定:过半径的外端点与半径垂直的直线是圆的切线.也考查了勾股定理、相似三角形的判定与性质以及圆周角定理的推论.25.如图1,抛物线y=nx2﹣11nx+24n (n<0)与x轴交于B、C两点(点B在点C的左侧),抛物线上另有一点A在第一象限内,且∠BAC=90°.(1)填空:点B的坐标为((3,0)),点C的坐标为((8,0));(2)连接OA,若△OAC为等腰三角形.①求此时抛物线的解析式;②如图2,将△OAC沿x轴翻折后得△ODC,点M为①中所求的抛物线上点A与点C两点之间一动点,且点M的横坐标为m,过动点M作垂直于x轴的直线l与CD交于点N,试探究:当m为何值时,四边形AMCN的面积取得最大值,并求出这个最大值.【考点】二次函数综合题.【分析】(1)根据二次函数与x轴交点坐标求法,解一元二次方程即可得出;(2)①利用菱形性质得出AD⊥OC,进而得出△ACE∽△BAE,即可得出A点坐标,进而求出二次函数解析式;=S△AMN+S△CMN ②首先求出过C、D两点的坐标的直线CD的解析式,进而利用S四边形AMCN求出即可.【解答】解:(1)∵抛物线y=nx2﹣11nx+24n (n<0)与x轴交于B、C两点(点B在点C的左侧),∴抛物线与x轴的交点坐标为:0=nx2﹣11nx+24n,解得:x1=3,x2=8,∴OB=3,OC=8,故B点坐标为(3,0),C点坐标为:(8,0);(2)①如图1,作AE⊥OC,垂足为点E∵△OAC是等腰三角形,∴OE=EC=×8=4,∴BE=4﹣3=1,又∵∠BAC=90°,∴△ACE∽△BAE,∴=,∴AE2=BE•CE=1×4,∴AE=2,∴点A的坐标为(4,2),把点A的坐标(4,2)代入抛物线y=nx2﹣11nx+24n,得n=﹣,∴抛物线的解析式为y=﹣x2+x﹣12,②∵点M的横坐标为m,且点M在①中的抛物线上,∴点M的坐标为(m,﹣m2+m﹣12),由①知,点D的坐标为(4,﹣2),则C、D两点的坐标求直线CD的解析式为y=x﹣4,∴点N的坐标为(m,m﹣4),∴MN=(﹣m2+m﹣12)﹣(m﹣4)=﹣m2+5m﹣8,∴S=S△AMN+S△CMN=MN•CE=(﹣m2+5m﹣8)×4,四边形AMCN=﹣(m﹣5)2+9,∴当m=5时,S=9.四边形AMCN【点评】此题主要考查了二次函数与坐标轴交点坐标求法以及菱形性质和四边形面积求法等知识,根据已知得出△ACE∽△BAE是解决问题的关键.26.如图1,正六边形ABCDEF的边长为a,P是BC边上一动点,过P作PM∥AB交AF 于M,作PN∥CD交DE于N.(1)①∠MPN=60°;②求证:PM+PN=3a;(2)如图2,点O是AD的中点,连接OM、ON,求证:OM=ON;(3)如图3,点O是AD的中点,OG平分∠MON,判断四边形OMGN是否为特殊四边形?并说明理由.【考点】四边形综合题.【专题】几何综合题;压轴题.【分析】(1)①运用∠MPN=180°﹣∠BPM﹣∠NPC求解,②作AG⊥MP交MP于点G,BH⊥MP于点H,CL⊥PN于点L,DK⊥PN于点K,利用MP+PN=MG+GH+HP+PL+LK+KN 求解,(2)连接OE,由△OMA≌△ONE证明,(3)连接OE,由△OMA≌△ONE,再证出△GOE≌△NOD,由△ONG是等边三角形和△MOG是等边三角形求出四边形MONG是菱形.,【解答】解:(1)①∵六边形ABCDEF是正六边形,∴∠A=∠B=∠C=∠D=∠E=∠F=120°又∴PM∥AB,PN∥CD,∴∠BPM=60°,∠NPC=60°,∴∠MPN=180°﹣∠BPM﹣∠NPC=180°﹣60°﹣60°=60°,故答案为;60°.②如图1,作AG⊥MP交MP于点G,BH⊥MP于点H,CL⊥PN于点L,DK⊥PN于点K,MP+PN=MG+GH+HP+PL+LK+KN∵正六边形ABCDEF中,PM∥AB,作PN∥CD,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

巢湖市亚父初中九年级数学二模素质检测试卷一、选择题(本大题共10小题,每小题4分,满分40分) 每小题都给出A 、B 、C 、D 四个选项,其中只有一个是正确的.1.若a 与5互为倒数,则a= 【 】 A .15 B.5 C .-5 D.15-2. 下列运算正确的是 【 】 A .x 3•x 3=2x 6B .(xy 2)3=xy 6C .(a 3)2=a 5D .t 10÷t 9=t3. 2018年底安徽省已有13个市迈入“高铁时代”,现正在建设的“合安高铁”项目,计划总投资约334亿元人民币.把334亿用科学记数法可表示为 【 】 A. 110.33410´ B.10103.34⨯ C.9103.34⨯ D.2103.34⨯4. 如图三棱柱ABC -111C B A 的侧棱长和底面边长均为2,且侧棱⊥1AA 底面ABC ,其主视图是边长为2的正方形,则此三棱柱左视图的面积为 【 】 A . 3 B .23C .22D . 4(第4题)5.如图,已知AB ∥CD ,DE ⊥AF ,垂足为E ,若∠CAB=50°,则∠D 的度数为 【 】A .30°B .40°C .50°D .60°6. 等腰Rt △ABC 中,∠BAC=90°,D 是AC 的中点,EC ⊥BD 于E ,交BA 的延长线于F ,若BF=12,则△FBC 的面积为 【 】第6题A .40B .46C .48D .507.某市2017年国内生产总值(GDP )比2016年增长了12%,由于受到国际金融危机的影响,预计2018比2017年增长7%,若这两年GDP 年平均增长率为x %,则x %满足的关系是 【 】 A .12%7%%x +=B .(112%)(17%)2(1%)x ++=+C .%2%7%12x =+D .2(112%)(17%)(1%)x ++=+8.弘扬社会主义核心价值观,推动文明城市建设.根据“文明创建工作评分细则”,10名评审团成员对我市2018人数 2 3 4 1分数 80 85 9095则得分的众数和中位数分别是 【 】 A.90和87.5 B.95和85 C.90和85 D.85和87.59.如图,O 为坐标原点,四边形OACB 是菱形,OB 在x 轴的正半轴上,sin∠AOB=54,反比例函数xy 12=在第一象限内的图象经过点A ,与BC 交于点F ,则△AOF 的面积等于 【 】第9题A.10B.9C.8D.610. 如图,四边形ABCD 是边长为1的正方形,动点E 、F 分别从点C ,D 出发,以相同速度分别沿CB ,DC 运动(点E 到达C 时,两点同时停止运动).连接AE ,BF 交于点P ,过点P 分别作PM ∥CD ,PN ∥BC ,则线段MN 的长度的最小值为 【 】5511....12A B C D -M PDCABE第10题图 二、填空题(本大题共4小题,每小题5分,满分20分) 11. 因式分解:39a b ab -12. 分式2x-有意义时,x 的取值范围是 .13.如图,在平面直角坐标系中,⊙P 的圆心是(2,a )(a >2),半径为2,函数x y =图象被⊙P 所截得的弦AB 的长为23,则a 的值是第13题图 第14题图14.如图,在Rt △ABC 中,∠A=90°,AB=AC ,BC=20,DE 是△ABC 的中位线,点M 是边BC 上一点,BM=3,点N 是线段MC 上的一个动点,连接DN ,ME ,DN 与ME 相交于点O .若△OMN 是直角三角形,则DO 的长是_______________. 三、(本大题共2小题,每小题8分,满分16分)15. 先化简,再求值:(21+a -1)÷212+-a a ,其中a =13+16.某中学为创建园林学校,购买了若干桂花树苗,计划把迎宾大道的一侧全部栽上桂花树(两端必须各栽一棵),并且每两棵树的间隔相等,如果每隔5米栽1棵,则树苗缺11棵;如果每隔6米栽1棵,则树苗正好用完,求购买了桂花树苗多少棵? 四、(本大题共2小题,每小题8分,满分16分) 17. 如图所示,正方形网格中,ABC △为格点三角形(即三角形的顶点都在格点上). (1)把ABC △沿BA 方向平移后,点A 移到点1A ,在网格中画出平移后得到11A B C 1△; (2)把11A B C 1△绕点1A 按逆时针方向旋转90°,在网格中画出旋转后的22A B C 1△;(3)如果网格中小正方形的边长为1,求点B 经过(1)、(2)变换的路径总长.18.一定数量的石子可以摆成如图所示的三角形和四边形,古希腊科学家把数1,3,6,10,15,21,…,称为“三角形数”;把1,4,9,16,25,…,称为“正方形数”.将三角形、正方形、五边形都整齐的由左到右填在所示表格里:三角形数 1 3 6 10 15 21 a … 正方形数 1 4 91625 b49 … 五边形数1 5 12 22C51 70…(1) 按照规律,表格中a=___,b=___,c=___.(2) 观察表中规律,第n 个“正方形数”是________;若第n 个“三角形数”是x ,则用含x 、n 的代数式表示第n 个“五边形数”是___________.五、(本大题共2小题,每小题10分,满分20分)19. 如图,在城市改造中,市政府欲在一条人工河上架一座桥,河的两岸PQ 与MN 平行,河岸MN 上有A 、B 两个相距50米的凉亭,小亮在河对岸D 处测得∠ADP=60°,然后沿河岸走了110米到达C 处,测得∠BCP=30°,求这条河的宽.(结果保留根号)AB CA 120. 如图,AB是⊙O的直径,点C在⊙O上,CE⊥AB于E,CD平分∠ECB,交过点B的射线于D,交AB于F,且BC=BD.(1)求证:BD是⊙O的切线;(2)若AE=9,CE=12,求BF的长.六、(本题满分12分)21. 为了丰富校园文化,促进学生全面发展.我市某区教育局在全区中小学开展“书法、武术、黄梅戏进校园”活动.今年3月份,该区某校举行了“黄梅戏”演唱比赛,比赛成绩评定为A,B,C,D,E五个等级,该校部分学生参加了学校的比赛,并将比赛结果绘制成如下两幅不完整的统计图,请根据图中信息,解答下列问题.(1)求该校参加本次“黄梅戏”演唱比赛的学生人数;(2)求扇形统计图B等级所对应扇形的圆心角度数;(3)已知A等级的4名学生中有1名男生,3名女生,现从中任意选取2名学生作为全校训练的示范者,请你用列表法或画树状图的方法,求出恰好选1名男生和1名女生的概率.七、(本题满分12分)22. 某厂按用户的月需求量x(件)完成一种产品的生产,其中x>0,每件的售价为18万元,每件的成本y(万元)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需求量x(件)成反比,经市场调研发现,月需求量x与月份n(n为整数,1≤n≤12),符合关系式x=2n2-2kn+9(k+3)(k为常数),且月份n(月) 1 2成本y(万元/件)11 12需求量x(件/月)120 100(1)求y与x满足的关系式,请说明一件产品的利润能否是12万元;(2)求k,并推断是否存在某个月既无盈利也不亏损;(3)在这一年12个月中,若第m个月和第(m+1)个月的利润相差最大,求m.八、(本题满分14分)23. 如图,已知正方形ABCD 的边长为4,点P 是AB 边上的一个动点,连接CP ,过点P 作PC 的垂线交AD 于点E ,以 PE 为边作正方形PEFG ,顶点G 在线段PC 上,对角线EG 、PF 相交于点O . (1)若AP =1,则AE = ;(2)①求证:点O 一定在△APE 的外接圆上;②当点P 从点A 运动到点B 时,点O 也随之运动,求点O 经过的路径长;(3)在点P 从点A 到点B 的运动过程中,△APE 的外接圆的圆心也随之运动,求该圆心到AB 边的距离的最大值.巢湖市亚父初中九年级数学二模素质检测数学试题参考答案一、选择题(本大题共10小题,每小题4分,满分40分)二、填空题(本大题共4小题,每小题5分,满分20分)11.ab(a+1)(a-1). 12.x<2 13. 22+14.2550613或三、(本大题共2小题,每小题8分,满分16分)2211111=221(1).(1)1a a a a a a a a a a-----+?==++--+-解:原式 …………5分 题号 1 2 3 4 5 6 7 8 9 10 答案ADBBBCDADB11331=31(31)3a =+=-=--+将代入得:原式 …………8分16.解:设购买了桂花树苗x 棵,根据题意,得5(x+11-1)=6(x-1)………………………………………………………………4分 解得x=56…………………………………………………………………6分 答:购买了桂花树苗56棵……………………………………………………………8分四、(本大题共2小题,每小题8分,满分16分)17.解:(1)如图……………………………………………………………………2分 (2)如图……………………………………………………………………2分(3)∵BB 1=222222+=,弧B 1B 2的长=90221802ππ= ∴点B 所走的路径总长=2222π+…………………………………………… 8分18.解:(1)28,36,35 ……………………………………………………… 3分 (2)n 2 ………………………………… 5分n 2 +x-n ……………………………………… 8分五、(本大题共2小题,每小题10分,满分20分)19.解:作AE ⊥PQ 于E ,CF ⊥MN 于F ,……………………………………………………………..2分∵PQ ∥MN , ∴四边形AECF 为矩形,∴EC=AF ,AE=CF ,设这条河宽为x 米, ∴AE=CF=x ,在Rt △AED 中, ∵∠ADP=60°, ∴333x =,∵PQ ∥MN , ∴∠CBF=∠BCP=30°,∴在Rt △BCF 中,BF==3tan 303o CF x =, ∵EC=ED+CD ,AF=AB+BF ,∴3x+110=50+3x ,………………………………………………………………………………………8分 解得x=303,∴这条河的宽为303米………………………………………………………………………………………10分 20.解:证明:∵CE ⊥AB ,∴∠CEB=90°.∵CD 平分∠ECB ,BC=BD …………………2分 ,∴∠1=∠2,∠2=∠D .∴∠1=∠D , ∴CE ∥BD ,∴∠DBA=∠CEB=90°, ∵AB 是⊙O 的直径,∴BD 是⊙O 的切线;…………………………………………………………………………………..4分 (2)连接AC ,∵AB 是⊙O 直径,∴∠ACB=90°.∵CE ⊥AB ,∴∠AEC=∠BEC=90°,∵∠A+∠ABC=90°,∠A+∠ACE=90°,∴∠ACE=∠ABC , ∴△ACE ∽△CBE ,∴CE AEEB CE=,即CE 2=AE •EB , ∵AE=9,CE=12,∴EB=16,………………………………………………………………….6分 在Rt △CEB 中,∠CEB=90,由勾股定理得BC=20,∴BD=BC=20, ∵∠1=∠D ,∠EFC=∠BFD ,∴△EFC ∽△BFD ,∴1216-,=20CE EF BFBD BF BF=即 ∴BF=10.……………………………………………………………………………………………..10分六、(本大题满分12分)21.解:(1)参加本次比赛的学生有:50%84=÷(人) ………………………… 2分 (2)B 等级的学生共有:162820450=----(人). …………………… 4分 ∴所占的百分比为:%325016=÷∴B 等级所对应扇形的圆心角度数为:︒=⨯︒2.115%32360. ……………… 6分 男 女1 女2 女3 男 ﹣﹣﹣ (女,男) (女,男) (女,男)……………………………………… 10分 ∵共有12种等可能的结果,选中1名男生和1名女生结果的有6种. ∴P (选中1名男生和1名女生)21126==. …………………………… 12分 七、(本大题满分12分)22.(1)解:由题意,设y=a +b x , 由表中数据可得:1112012100b a b a ìïï=+ïïíïï=+ïïïî,解得:6600a b ì=ïïíï=ïî, ∴y=6+600x…………………………………………………………………………………2分由题意,若12=18﹣(6+600x ),则600x =0,∵x >0∴600x>0,∴不可能 ……………4分(2)解:将n=1、x=120代入x=2n 2﹣2kn+9(k+3),得:120=2﹣2k+9k+27, 解得:k=13, ∴x=2n 2﹣26n+144,将n=2、x=100代入x=2n 2﹣26n+144也符合,∴k=13;由题意,得:18=6+600x,解得:x=50,∴50=2n 2﹣26n+144,即n 2﹣13n+47=0,∵△=(﹣13)2﹣4×1×47<0,∴方程无实数根,∴不存在……………………………………………………………………8分 (3)解:第m 个月的利润为W , W=x (18﹣y )=18x ﹣x (6+600x) =12(x ﹣50)=24(m 2﹣13m+47),∴第(m+1)个月的利润为W′=24[(m+1)2﹣13(m+1)+47]=24(m 2﹣11m+35),若W≥W′,W ﹣W′=48(6﹣m ),m 取最小1,W ﹣W′取得最大值240; 若W <W′,W ﹣W′=48(m ﹣6),由m+1≤12知m 取最大11,W ﹣W′取得最大值240;∴m=1或11………………………………………………………………………………………12分 八、(本大题满分14分)23.解(1)34;(2)①证明见解析;②(3)12. 【答案】(1)34;(2)①证明见解析;②;(3)12.试题解析:(1)∵四边形ABCD 、四边形PEFG 是正方形,∴∠A =∠B =∠EPG =90°,PF ⊥EG ,AB =BC =4,∠OEP =45°, ∴∠AEP +∠APE =90°,∠BPC +∠APE =90°, ∴∠AEP =∠PBC ,∴△APE ∽△BCP ,∴AE AP BP BC =,即1414AE =-,解得:AE =34,故答案为: 34;………………………………………………………………..3分(2)①∵PF ⊥EG ,∴∠EOF =90°,∴∠EOF +∠A =180°,∴A 、P 、O 、E 四点共圆,∴点O 一定在△APE 的外接圆上;………………………………………………5分 ②连接OA 、AC ,如图1所示:∵四边形ABCD 是正方形,∴∠B =90°,∠BAC =45°,∴AC =2244+=42,∵A 、P 、O 、E 四点共圆,∴∠OAP =∠OEP =45°, ∴点O 在AC 上,当P 运动到点B 时,O 为AC 的中点,OA =12AC =22, 即点O 经过的路径长为22;………………………………………………8分 (3)设△APE 的外接圆的圆心为M ,作MN ⊥AB 于N ,如图2所示: 则MN ∥AE ,∵ME =MP ,∴AN =PN ,∴MN =12AE , 设AP =x ,则BP =4﹣x ,由(1)得:△APE ∽△BCP ,∴AE AP BP BC =,即44AE x x =-,解得:AE = 214x x - =()21214x --+,∴x =2时,AE 的最大值为1,此时MN 的值最大=12×1=12,即△APE 的圆心到AB 边的距离的最大值为12.……………………………14分。

相关文档
最新文档