高一数学数列复习题精华

合集下载

高一必修数列测试题及答案详解高一数学

高一必修数列测试题及答案详解高一数学

高一必修数列测试题及答案详解高一数学一、填空题1. 若\[a_n = 2n - 1\],则数列\[\{a_n\}\]的前5项分别为\[1, 3, 5, 7, 9\]。

2. 若\[b_n = 3^n\],则数列\[\{b_n\}\]的前4项分别为\[3, 9, 27, 81\]。

3. 若\[c_n = \frac{n(n+1)}{2}\],则数列\[\{c_n\}\]的前6项分别为\[1, 3, 6, 10, 15, 21\]。

二、选择题1. 以下是等差数列的是(B)。

A. 1, 2, 4, 7, 11B. 2, 4, 8, 16, 32C. 1, 3, 6, 10, 15D. 3, 8, 15, 24, 352. 若\[a_1=2\],\[a_2=5\],则\[a_3=8\),\[a_4=11\),则\(a_n\)的通项公式是(C)。

A. \(a_n=2n+1\)B. \(a_n=3n-1\)C. \(a_n=3n-1\)D. \(a_n=2n+4\)3. 若对于等差数列\(\{a_n\}\)有\(\frac{{a_5 - a_2}}{7}=3\),则\(d=\)(A)。

A. 1B. 2C. 3D. 4三、解答题1. 求等差数列\(\{a_n\}\)的前5项之和,已知\(a_1=1\),\(a_3=7\)。

(解答略)2. 若等差数列\(\{a_n\}\)的首项为-3,公差为4,求该数列的第n项和。

\({S_n}=\)(解答略)3. 若等差数列\(\{a_n\}\)的首项为2,公差为3,已知\(\frac{{a_m+a_n}}{2}=13\),求\(m\)与\(n\)的值。

(解答略)四、解题思路详解1. 填空题1解析:根据数列通项公式\[a_n = 2n - 1\],带入\[n=1,2,3,4,5\],即可得到\[a_n\]的前5项。

2. 填空题2解析:根据数列通项公式\[b_n=3^n\],带入\[n=1,2,3,4\],即可得到\[b_n\]的前4项。

(完整word版)高一数学数列部分经典习题及答案

(完整word版)高一数学数列部分经典习题及答案

.数 列一.数列的概念:(1)已知*2()156n n a n N n =∈+,则在数列{}n a 的最大项为__(答:125); (2)数列}{n a 的通项为1+=bn an a n ,其中b a ,均为正数,则n a 与1+n a 的大小关系为__(答:n a <1+n a ); (3)已知数列{}n a 中,2n a n n λ=+,且{}n a 是递增数列,求实数λ的取值范围(答:3λ>-);二.等差数列的有关概念:1.等差数列的判断方法:定义法1(n n a a d d +-=为常数)或11(2)n n n n a a a a n +--=-≥。

设{}n a 是等差数列,求证:以b n =na a a n +++Λ21 *n N ∈为通项公式的数列{}nb 为等差数列。

2.等差数列的通项:1(1)n a a n d =+-或()n m a a n m d =+-。

(1)等差数列{}n a 中,1030a =,2050a =,则通项n a = (答:210n +);(2)首项为-24的等差数列,从第10项起开始为正数,则公差的取值范围是______(答:833d <≤) 3.等差数列的前n 和:1()2n n n a a S +=,1(1)2n n n S na d -=+。

(1)数列 {}n a 中,*11(2,)2n n a a n n N -=+≥∈,32n a =,前n 项和152n S =-,求1a ,n (答:13a =-,10n =); (2)已知数列 {}n a 的前n 项和212n S n n =-,求数列{||}n a 的前n 项和n T (答:2*2*12(6,)1272(6,)n n n n n N T n n n n N ⎧-≤∈⎪=⎨-+>∈⎪⎩). 三.等差数列的性质:1.当公差0d ≠时,等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的一次函数,且率为公差d ;前n 和211(1)()222n n n d d S na d n a n -=+=+-是关于n 的二次函数且常数项为0. 2.若公差0d >,则为递增等差数列,若公差0d <,则为递减等差数列,若公差0d =,则为常数列。

高一数学数列练习题及答案

高一数学数列练习题及答案

高一数学数列练习题及答案一、选择题1. 设数列 {an} 为等差数列,已知 a1 = 3,d = 2,求 a4 的值。

A. 4B. 5C. 6D. 72. 若数列 {bn} 的前 n 项和为 Sn = 2n^2 + 3n,求 b1 的值。

A. 3B. 4C. 5D. 63. 已知数列 {cn} 为等差数列,前 n 项和为 Sn = 3n^2 + n,求通项c3 的值。

A. 4B. 5C. 6D. 74. 数列 {dn} 的通项公式为 an = 2n^3,求第 5 项的值。

A. 200B. 250C. 300D. 3505. 若数列 {en} 的前 n 项和为 Sn = n(5n + 1),求 e1 的值。

A. 0B. 1C. 2D. 3二、填空题1. 设数列 {an} 的前 n 项和为 Sn = 3n^2 + 4n,其中 a1 = 2,则 a2 的值为 ________。

2. 已知等差数列 {bn} 的前 n 项和为 Sn = n^2 + 3n,其中 b2 = 7,则b1 的值为 ________。

3. 若数列 {cn} 的通项公式为 cn = 2n^2 + n,则第 4 项的值为________。

4. 设数列 {dn} 的前 n 项和为 Sn = 4n + 5n^2,则 d1 的值为________。

5. 已知数列 {en} 的前 n 项和为 Sn = 2n(3n + 1),其中 e3 = 28,则e1 的值为 ________。

三、解答题1. 设等差数列 {an} 前 n 项和为 Sn,已知 a1 = 3,an = 7,求 n 的值及 Sn 的表达式。

2. 设等差数列 {bn} 前 n 项和为 Sn,已知 b1 = 1,d = 5,求 n 的值及 Sn 的表达式。

3. 已知等差数列 {cn} 的通项公式为 cn = an - 2n,前 n 项和为 Sn = 3n^2 + 2n,求 a1 的值。

(word版)高一数学数列部分经典习题及答案

(word版)高一数学数列部分经典习题及答案

..数列一.数列的概念:〔1〕a n n2n(n*),那么在数列{a n}的最大项为__〔答:1〕;156N25〔2〕数列{a n}的通项为a n an ,其中a,b均为正数,那么a n与a n1的大小关系为__〔答:an a n1〕;bn1〔3〕数列{a n}中,a n n2n,且{a n}是递增数列,求实数的取值范围〔答:3〕;二.等差数列的有关概念:1.等差数列的判断方法:定义法a n1a n d(d为常数〕或a n1a n a n a n1(n2)。

设{a n}是等差数列,求证:以b n=a1a2n a n nN*为通项公式的数列{b n}为等差数列。

2.等差数列的通项:a n a1(n1)d或a n a m(n m)d。

(1)等差数列{a n}中,a1030,a2050,那么通项a n〔答:2n10〕;〔2〕首项为-24的等差数列,从第10项起开始为正数,那么公差的取值范围是______〔答:8d3〕33.等差数列的前n和:S n n(a1a n),Sn na1n(n1)d。

22〔1〕数列{a n}中,a n a n11(n2,n N*),a n3,前n项和S n15,求a1,n〔答:a13,n10〕;222〔2〕数列{a n}的前n项和S n12n2{|a n|}的前n项和T n〔答:T n12n n2(n6,n N*)〕. n,求数列n212n72(n6,n N*)三.等差数列的性质:1.当公差d0时,等差数列的通项公式a n a1(n1)d dna1d是关于n的一次函数,且率为公差d;前n和S n na1n(n1)d d n2(a1d)n是关于n的二次函数且常数项为0 .2222.假设公差d0,那么为递增等差数列,假设公差d0,那么为递减等差数列,假设公差d0,那么为常数列。

3.当mn p q时,那么有a m a n a pa q,特别地,当m n2p时,那么有a m a n2a p.〔1〕等差数列{a n}中,S n18,a n a n1a n23,S31,那么n=____〔答:27〕〔2〕在等差数列a n中,a100,a110,且a11|a10|,Sn是其前n项和,那么..A、S1,S2L S10都小于0,S11,S12L都大于0B、S1,S2L S19都小于0,S20,S21L都大于0C、S1,S2L S5都小于0,S6,S7L都大于0D、S1,S2L S20都小于0,S21,S22L都大于0〔答:B〕4.假设{a n}、{b n}是等差数列,{ka n}、{ka n pb n}(k、p是非零常数)、{a pnq}(p,q N*)、S n,S2n S n,S3n S2n,⋯也成等差数列,而{a a n}成等比数列;假设{a n}是等比数列,且a n0,{lg a n}是等差数列.等差数列的前n和25,前2n和100,它的前3n和。

高中数列题目归纳总结大全

高中数列题目归纳总结大全

高中数列题目归纳总结大全数列是高中数学中的一个重要概念,它在数学建模、微积分、概率论等领域都有广泛的应用。

本文将对高中数列相关的题目进行归纳总结,以帮助同学们更好地理解和掌握数列的概念和解题方法。

一、等差数列1. 概念:等差数列指的是一个数列中任意两个相邻项之间的差值都相等的数列。

2. 公式:假设首项为a₁,公差为d,第n项为aₙ,则等差数列的通项公式为aₙ = a₁ + (n - 1)d。

3. 性质:- 任意三项成等差数列时,它们的差值相等。

- 如果知道首项、公差和项数,可以通过通项公式求出数列中任意一项的值。

- 等差数列的前n项和公式为Sₙ = (a₁ + aₙ) * n / 2。

4. 例题:(1) 求等差数列1,4,7,..."首项为1,公差为3,求第n项的值。

(2) 已知等差数列的首项为3,末项为99,项数为33,求公差的值。

(3) 求等差数列3,6,9,...的前20项和。

二、等比数列1. 概念:等比数列指的是一个数列中任意两个相邻项之间的比值都相等的数列。

2. 公式:假设首项为a₁,公比为r,第n项为aₙ,则等比数列的通项公式为aₙ = a₁ * r^(n - 1)。

3. 性质:- 任意三项成等比数列时,它们的比值相等。

- 如果知道首项、公比和项数,可以通过通项公式求出数列中任意一项的值。

- 等比数列的前n项和公式为Sₙ = a₁ * (r^n - 1) / (r - 1),其中r≠1。

4. 例题:(1) 求等比数列2,8,32,..."首项为2,公比为4,求第n项的值。

(2) 已知等比数列的首项为5,末项为320,公比为2,求项数的值。

(3) 求等比数列3,6,12,...的前10项和。

三、斐波那契数列1. 概念:斐波那契数列是一个特殊的数列,前两项为1,1,从第三项开始,每一项都等于前两项之和。

2. 公式:假设首项为a₁,第二项为a₂,第n项为aₙ,则斐波那契数列的通项公式为aₙ = aₙ₋₂ + aₙ₋₁。

高一数学数列复习题有详细答案新人教版必修1

高一数学数列复习题有详细答案新人教版必修1

数列复习题班级______ 姓名______ 学号_______一、选择题1、若数列{a n }的通项公式是a n =2(n +1)+3,则此数列 ( )(A)是公差为2的等差数列 (B)是公差为3的等差数列(C) 是公差为5的等差数列 (D)不是等差数列2、等差数列{a n }中,a 1=3,a 100=36,则a 3+a 98等于 ( )(A)36 (B)38 (C)39 (D)423、含2n+1个项的等差数列,其奇数项的和与偶数项的和之比为 ( ) (A)n n 12+ (B)n n 1+ (C)n n 1- (D)nn 21+ 4、设等差数列的首项为a,公差为d ,则它含负数项且只有有限个负数项的条件是( )(A)a >0,d >0 (B)a >0,d <0 (C)a <0,d >0 (D)a <0,d <05、在等差数列{a n }中,公差为d ,已知S 10=4S 5,则d a 1是 ( ) (A)21 (B)2 (C)41 (D)4 6、设{a n }是公差为-2的等差数列,如果a 1+ a 4+ a 7+……+ a 97=50,则a 3+ a 6+ a 9……+ a 99=( )(A)182 (B)-80 (C)-82 (D)-847、等差数列{a n } 中,S 15=90,则a 8= ( )(A)3 (B)4 (C)6 (D)128、等差数列{a n }中,前三项依次为xx x 1,65,11+,则a 101= ( ) (A)3150 (B)3213 (C)24 (D)328 9、数列{a n }的通项公式nn a n ++=11,已知它的前n 项和为S n =9,则项数n= ( )(A)9 (B)10 (C)99 (D)10010、等差数列{a n }中,a 3+ a 4+ a 5+ a 6+ a 7=450,求a 2+a 8= ( )(A)45 (B)75 (C)180 (D)30011、已知{a n }是等差数列,且a 2+ a 3+ a 8+ a 11=48,则a 6+ a 7= ( )(A)12 (B)16 (C)20 (D)2412、在项数为2n+1的等差数列中,若所有奇数项的和为165,所有偶数项的和为150,则n 等于 ( )(A)9 (B)10 (C)11 (D)1213、等差数列{a n } 的前m 项和为30,前2m 项和为100,则它的前3m 项和为( )(A)130 (B)170 (C)210 (D)16014、等差数列{a n }的公差为21,且S 100=145,则奇数项的和a 1+a 3+a 5+……+ a 99=( ) (A)60 (B)80 (C)72.5 (D)其它的值15、等差数列{a n }中,a 1+a 2+……a 10=15,a 11+a 12+……a 20=20,则a 21+a 22+……a 30=( )(A)15 (B)25 (C)35 (D)4516、等差数列{a n }中,a 1=3,a 100=36,则a 3+a 98= ( )(A)36 (B)39 (C)42 (D)4517、{a n }是公差为2的等差数列,a 1+a 4+a 7+……+a 97=50,则a 3+a 6+……+ a 99= ( )(A)-50 (B)50 (C)16 (D)1.8218、若等差数列{a n }中,S 17=102,则a 9= ( )(A)3 (B)4 (C)5 (D)619、夏季高山上温度从山脚起每升高100米,降低0.7℃,已知山顶的温度是14.1℃,山脚的温度是26℃,则山的相对高度是 ( )(A)1500 (B)1600 (C)1700 (D)180020、若x ≠y ,且两个数列:x ,a 1,a 2,y 和x ,b 1,b 2,b 3,y 各成等差数列,那么=--31b y x a ( )(A)43 (B)34 (C)32 (D)值不确定 21、一个等差数列共有2n 项,奇数项的和与偶数项的和分别为24和30,且末项比首项大10.5,则该数列的项数是 ( )(A)4 (B)8 (C)12 (D)2022、等差数列{a n }中如果a 6=6,a 9=9,那么a 3= ( )(A)3 (B)32 (C)916 (D)4 23、设{a n }是等比数列,且a 1=32,S 3=916,则它的通项公式为a n = ( ) (A)1216-⎪⎭⎫ ⎝⎛∙n (B)n ⎪⎭⎫ ⎝⎛-∙216 (C)1216-⎪⎭⎫ ⎝⎛-∙n (D)1216-⎪⎭⎫ ⎝⎛-∙n 或23 24、已知a 、b 、c 、d 是公比为2的等比数列,则dc b a ++22= ( ) (A)1 (B)21 (C)41 (D)81 25、已知等比数列{a n } 的公比为q ,若21+n a =m (n 为奇数),则213+n a = ( ) (A)mq n -1 (B) mq n (C) mq (D) 8126、已知等比数列前10项的和为10,前20项的和为30,那么前30项的和为( )(A)60 (B)70 (C)90 (D)12627、若{a n }是等比数列,已知a 4 a 7=-512,a 2+a 9=254,且公比为整数,则数列的a 12是( )(A)-2048 (B)1024 (C)512 (D)-51228、数列{a n }、{b n }都是等差数列,它们的前n 项的和为1213-+=n n T S n n ,则这两个数列的第5项的比为 ( ) (A)2949 (B)1934 (C)1728 (D)以上结论都不对29、已知cb b a ac lg lg 4lg 2∙=,则a ,b ,c ( ) (A)成等差数列 (B)成等比数列(C)既成等差数列又成等比数列 (D)既不成等差数列又不成等比数列30、若a+b+c ,b+c -a ,c+a -b ,a+b -c 成等比数列,且公比为q ,则q 3+q 2+q 的值为( )(A)1 (B)-1 (C)0 (D)231、若一等差数列前四项的和为124,后四项的和为156,又各项的和为350,则此数列共有 ( )(A)10项 (B)11项 (C)12项 (D)13项32、在3和9之间插入两个正数,使前三个数成等比数列,后三个数成等差数列,则二数之和为 ( ) (A)2113 (B)04111或 (C)2110 (D)219 33、数列1,211+,3211++,……,n+⋅⋅⋅++211的前n 项和为 ( ) (A) n n 12+ (B)122+n n (C)12++n n (D)12+n n 34、设数列{a n }各项均为正值,且前n 项和S n =21(a n +n a 1),则此数列的通项a n 应为 ( )(A) a n =n n -+1 (B) a n =1--n n(C) a n =12+-+n n (D) a n =12-n35、数列{a n }为等比数列,若a 1+ a 8=387,a 4 a 5=1152,则此数列的通项a n 的表达式为( )(A) a n =3×2n -1 (B) a n =384×(21)n -1 (C) a n =3×2n -1或a n =384×(21)n -1 (D) a n =3×(21)n -1 36、已知等差数{a n }中,a 3+ a 4+ a 5+ a 6+ a 7=450,则a 1+ a 9= ( )(A)45 (B)75 (C)180 (D)30037、已知等比数列{a n }中,a n >0,公比q ≠1,则 ( )(A)26242723a a a a +〉+ (B)26242723a a a a +〈+(C)26242723a a a a +=+ (D)的大小不确定与26242723a a a a ++38、在等比数列中,首项89,末项31,公比32,求项数 ( ) (A)3 (B)4 (C)5 (D)639、等比数列{a n }中,公比为2,前四项和等于1,则前8项和等于 ( )(A)15 (B)17 (C)19 (D)2140、某厂产量第二年增长率为p ,第三年增长率为q ,第四年增长率为r ,设这三年增长率为x ,则有 ( ) (A)3r q p x ++= (B)3r q p x ++<(C)3r q p x ++≤ (D)3r q p x ++≥ 二、填空题1、已知等差数列公差d >0,a 3a 7=-12,a 4+a 6=-4,则S 20=_______2、数列{a n }中,若a 1,a 2,a 3成等差数列,a 2,a 3,a 4成等比数列,a 3,a 4,a 5的倒数又成等差数列,则a 1,a 3,a 5成_______数列3、已知{a n }为等差数列,a 1=1,S 10=100,a n =_______.令a n =log 2b n ,则的前五项之和S 5′=_______4、已知数列 )2)(1(1,,201,121,61++n n 则其前n 项和S n =________. 5、数列前n 项和为S n =n 2+3n,则其通项a n 等于____________.6、等差数列{a n }中, 前4项和为26, 后4项之和为110, 且n 项和为187, 则n 的值为____________.7、已知等差数列{a n }的公差d ≠0, 且a 1,a 3,a 9成等比数列, 1042931a a a a a a ++++的值是________. 8、等差数列{a n }中, S 6=28, S 10=36(S n 为前n 项和), 则S 15等于________.9、等比数列{a n }中, 公比为2, 前99项之和为56, 则a 3+a 6+a 9+…a 99等于________.10、等差数列{a n }中, a 1=1,a 10=100,若存在数列{b n }, 且a n =log 2b n ,则b 1+b 2+b 3+b 4+b 5等于____________.11、已知数列1, ,3,2,1nn n n n n --- , 前n 项的和为____________. 12、已知{a n }是等差数列,且有a 2+a 3+a 10+a 11=48, 则a 6+a 7=____________.13、等比数列{a n }中, a 1+a 2+a 3+a 4=80, a 5+a 6a 7+a 8=6480, 则a 1必为________.14、三个数a 1、1、c 1成等差数列,而三个数a 2、1、c 2成等比数列, 则22c a c a ++等于____________.15、已知12, lgy 成等比数列, 且x >1,y >1, 则x 、y 的最小值为________. 16、在数列{a n }中, 5221-=+n n n a a a , 已知{a n }既是等差数列, 又是等比数列,则{a n }的前20项的和为________.17、若数列{a n }, )1)(2(1,3211+++==+n n a a a n n 且 (n ∈N), 则通项a n =________. 18、已知数列{a n }中, n n a a a )12(,22314-=-=+(n ≥1), 则这个数列的通项公式a n =________.19、正数a 、b 、c 成等比数列, x 为a 、b 的等差中项, y 为b 、c 的等差中项, 则a c x y+的值为________. 20、等比数列{a n }中, 已知a 1·a 2·a 3=1,a 2+a 3+a 4=47, 则a 1为________. 三、解答题1、在等差数列{a n }中,a 1=-250,公差d=2,求同时满足下列条件的所有a n 的和,(1)70≤n ≤200;(2)n 能被7整除.2、设等差数列{a n }的前n 项和为S n .已知a 3=12, S 12>0,S 13<0.(Ⅰ)求公差d 的取值范围; (Ⅱ)指出S 1,S 2,…,S 12,中哪一个值最大,并说明理由.3、数列{n a }是首项为23,公差为整数的等差数列,且前6项为正,从第7项开始变为负的,回答下列各问:(1)求此等差数列的公差d;(2)设前n 项和为n S ,求n S 的最大值;(3)当n S 是正数时,求n 的最大值.4、设数列{n a }的前n 项和n S .已知首项a 1=3,且1+n S +n S =21+n a ,试求此数列的通项公式n a 及前n 项和n S .5、已知数列{n a }的前n 项和31=n S n(n +1)(n +2),试求数列{n a 1}的前n 项和.6、已知数列{n a }是等差数列,其中每一项及公差d 均不为零,设2122++++i i i a x a x a =0(i=1,2,3,…)是关于x 的一组方程.回答:(1)求所有这些方程的公共根;(2)设这些方程的另一个根为i m ,求证111+m ,112+m ,113+m ,…, 11+n m ,…也成等差数列.7、如果数列{n a }中,相邻两项n a 和1+n a 是二次方程n n n c nx x ++32=0(n=1,2,3…)的两个根,当a 1=2时,试求c 100的值.8、有两个无穷的等比数列{n a }和{n a },它们的公比的绝对值都小于1,它们的各项和分别是1和2,并且对于一切自然数n,都有1+n a ,试求这两个数列的首项和公比.9、有两个各项都是正数的数列{n a },{n b }.如果a 1=1,b 1=2,a 2=3.且n a ,n b ,1+n a 成等差数列, n b ,1+n a ,1+n b 成等比数列,试求这两个数列的通项公式.10、若等差数列{log 2x n }的第m 项等于n ,第n 项等于m(其中m ≠n),求数列{x n }的前m +n 项的和。

高一教学数列专项典型总结复习计划练试题及分析答案

高一教学数列专项典型总结复习计划练试题及分析答案

数列综合练习1.已知函数 f (x )=( a > 0,a ≠1),数列 {a n } 知足 a n =f ( n )( n ∈N *),且 {a n }是单一递加数列,则实数a 的取值范围( )A .[7,8)B .( 1,8)C .(4,8)D .(4,7)2.设 {a n } 的首项为 a 1,公差为﹣ 1 的等差数列, S n 为其前 n 项和,若S 1, S 2, S 4 成等比数列,则a 1=()A .2B .﹣ 2C .D . ﹣3.设 n 是等差数列 {a n项和,若,则=()S } 的前 nA .1B .﹣ 1C . 2D .4.阅读图的程序框图,该程序运转后输出的k 的值为()A .5B .6C . 7D . 85.设 S n 为等比数列 {a n } 的前 n 项和, 8a 2+a 5=0,则 等于()A .11B .5C .﹣8D .﹣116.数列 {a n } 知足 a 1=2, a n =,其前 n 项积为 T n ,则 T 2016=()A .B . ﹣C . 1D .﹣17.已知数列 {a n } 的前 n 项和为 S n ,知足 a n+2=2a n+1﹣ a n ,a 6=4﹣ a 4,则 S 9=( )A .9B .12C . 14D .18 8.已知 S n 为等差数列 {a n } 的前 n 项和, S 7=28 , S 11=66 ,则 S 9 的值为( ) A .47B .45C . 38D .549.在等比数列 {a n } 中,,则 a 3=()A .±9B . 9C . ±3D . 310.在等差数列 {a n } 中, 4( a 3+a 4+a 5)+3( a 6+a 8+a 14+a 16) =36 ,那么该数列的前 14 项和为( )A .20B .21C . 42D .8411. 设 {a n } 是首项为 a 1,公差为﹣ 1 的等差数列, S n 为其前 n 项和,若 S 1, S 2, S 4 成等比数列,则 a 1的值为_________a n ( n ∈N *),12.某企业推出了下表所示的QQ 在线等级制度,设等级为 n 级需要的天数为等级 等级图标 需要天数 等级 等级图标 需要天数1 5 7 77 2128963 21 12 1924 32 16 320 545 32 1152 6 60482496等 50需要的天数 a 50=_________ .13.数列 {a} 等比数列, a +a=1, a +a = 2, a +a +a = _________ .n 23345 6 714.已知数列 {a n } 中, a n+1=2a n , a 3=8, 数列 {log 2a n } 的前 n 和等于 _________ .15.已知数列 {a n } 的前 n 和 S n ,并 足 a n+2=2a n+1 a n , a 6=4 a 4, S 9= _________.16. 等差数列 n n ,已知 a 2 4 4 10_________ .{a } 的前 n 和 S +a =6 , S =10. a =17. S n 是等比数列 {a n } 的前 n 和, S 3,S 9, S 6 成等差数列,且 a 2+a 5=2a m , m= _________ .18.已知数列 {a n } 的前 n 和 S n = a n+2( n ∈N * ),数列 {b n } 足 b n =2na n .( 1)求 数列 {b n } 是等差数列,并求数列 {a n } 的通 公式;( 2) 数列 {a n } 的前 n 和 T n , 明: n ∈N *且 n ≥3 , T n >( 3) 数列 {c n n ( c n 3n )=( 1)n ﹣ 1*), 能否存在整数 λ,使得} 足 aλn ( λ 非零常数, n ∈N随意 n ∈N *,都有 c n+1> c n .19.在等差数列 {a n } 中, a 1=3,其前 n 和 S n ,等比数列 {b n } 的各 均 正数, b 1=1,公比 q ,且 b 2+S 2=12,.(Ⅰ)求 a n 与 b n ;(Ⅱ) c n =a n ?b n ,求数列 {c n } 的前 n 和 T n .20.已知等差数列 {a n } 足 a 3+a 4=9,a 2+a 6=10 ;又数列 {b n } 足 nb 1+( n 1) b 2+⋯+2b n ﹣1+b n =S n ,此中 S n 是首 1,公比 的等比数列的前 n 和. ( 1)求 a n 的表达式;( 2)若 c n = a n b n , 数列 {c n } 中能否存在整数 k ,使得 随意的正整数n 都有 c n ≤c k 建立?并 明你的 .22n+q ( p , q ∈R ), n ∈N*21.已知等差数列 {a n } 的前 n 和 s n =pm ( I )求 q 的 ;(Ⅱ)若 a 3=8 ,数列 {b n }} 足 a n =4log 2b n ,求数列 {b n } 的前 n 和.22.已知等比数列 {a n } 足 a 2=2 ,且 2a 3+a 4=a 5, a n > 0. ( 1)求数列 {a n } 的通 公式;n( 2) b n =( 1) 3a n +2n+1 ,数列 {b n } 的前 和 T n ,求 T n .23.已知有 数列 a n 共有 2k( k ≧ 2,k ∈ Z) ,首 a 1=2。

高一数学数列重点复习训练

高一数学数列重点复习训练

高一数学数列重点复习训练1、数列1,2-,( ),5,( ),7的一个通项公式为__________。

2、若数列}{n a 的通项公式是n n a 23-=,则n a 2=__________,20032004a a =__________。

3、420是数列}{2n n +的第__________项。

4、已知数列}{n a 中,11=a ,22=a ,当3≥n 时,21--+=n n n a a a ,则5a =__________。

5、已知等差数列中105=a ,3112=a ,则30a =5a 。

6、已知数列通项公式c bn a n +=,则}{n a 一定是________数列,11-+-n n a a =________。

7、228-与2212+等差中项为________,537+与537-等比中项为________。

8、等差数列}{n a 中,若1261=+a a ,74=a ,则9a =________。

9、若∆ABC 中三内角A 、B 、C 成等差数列,则B=________。

10、d c b a ,,,四个数成等比数列,则可得的三个条件等式为________________。

11、已知}{n a ,}{n b 都是等差数列,且931=a ,793=a ,171=b 413=b ,则两个数列中的第________项相同。

12、等差数列}{n a 中,63111)()(a a a a =+=+,设n S 是它的前n 项和,则)(9)(a S =,)(17)(a S =,)()(a a a k n k n =+-+。

13、等比数列}{n a 中,23111)()(=⋅=a a a 。

14、已知}{n a 与}{n b 是项数相同的两个等差数列,则}43{n n b a -是一个公差为________的等差数列(}{n a }{n b 的公差分别为21d d ,)。

15、已知}{n a 是公比为q 的等比数列,则}{3n a 是公比为________的等比数列。

高一数学期末复习数列

高一数学期末复习数列

期末复习——————————数列1、设数列{a n }的前n 项和为S n ,S n =2)13(1-n a (对于所有n≥1),且a 4=54,则a 1的数值是 .2、在各项都为正数的等比数列{}n a 中,首项31=a ,前三项和为21,则543a a a ++= .3、在各项均不为零的等差数列{}n a 中,若a 1n +- a n2+ a1-n =0(n ≥2),则S 1-n 2-4n = 。

4、设等比数列{}n a 的前n 项和为n S ,若424=S S ,则84S S = . 5、数列{}n a 满足11()2n n a a n *++=∈N ,112a =-,n S 是{}n a 的前n 项和,则2011S = .6、数列{}n a 满足11a =,223a =,且11112(2)n n n n a a a -++=≥,则n a = 。

7、已知等差数列{a n }的公差d 不为0,且a 1,a 3,a 7成等比数列,则a 1d的值为 . 8、现有10个数,它们能构成一个以1为首项,3-为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是 .14、公差为d ,各项均为正整数的等差数列{}n a 中,若11,65n a a ==,则n d +的最小值等于______.15、在递增等比数列{a n }中,4,2342=-=a a a ,则公比q =______16、已知等比数列{}n a 的前n 项和为1136n n S x -=⋅-,则x 的值为 。

17.已知数列{}n a 满足11a =,且111()(233n n n a a n -=+≥,且*),n N ∈则数列{}n a 的通项公式为 。

18、已知n S 是等差数列{}n a 的前n 项和,若77S =,1575S =,则数列n S n ⎧⎫⎨⎬⎩⎭的前20项和为_______.19、等差数列{}n a 的前n 项和为n S ,已知110a =,2a 为整数,且4n S S ≤. (1)求{}n a 的通项公式; (2)设11n n n b a a +=,求数列{}n b 的前n 项和n T .20、已知等差数列{}n a 满足:37a =,5726a a +=,{}n a 的前n 项和为nS .(Ⅰ)求n a 及nS ;(Ⅱ)令b n =211n a -(n ∈N *),求数列{}n b 的前n 项和nT .21.(本题满分12分)已知数列{}n a 满足11121,(*)2n n n nn a a a n N a ++==∈+. (Ⅰ)证明数列2n n a ⎧⎫⎨⎬⎩⎭是等差数列;(Ⅱ)求数列{}n a 的通项公式;(Ⅲ)设(1)n n b n n a =+,求数列{}n b 的前n 项和n S22、已知首项都是1的两个数列(),满足.(1) 令,求数列的通项公式; (2) 若,求数列的前n 项和.23、已知等差数列{}n a 的公差为2,前n 项和为n S ,且124,,S S S 成等比数列.(1)求数列{}n a 的通项公式;(2)令114(1)n n n n nb a a -+=-,求数列{}n b 的前n 项和n T .24、若{}n a 满足1=a a 且1(1)21nn n a a n ++-=-(其中a 为常数),n S 是{}n a 的前n 项和,{}n b 满足2=n n b a .(1)求13a a +的值;(2)试判断{}n b 是否为等差数列,并说明理由;(3)求n S (用a 表示).25、(本小题满分16分) 已知数列{n a }满足,*1n n N )n n a a ++∈=4-3(.(1)若数列{n a }是等差数列,求1a 的值; (2)当1a =2时,求数列{n a }的前n 项和n S ;(3)若对任意*N n ∈,都有a 2n + a 2n +1≥20n -15成立,求1a 的取值范围.。

高一数学数列试题

高一数学数列试题

高一数学数列试题一、填空题1. 已知等差数列的前五项依次为2,5,8,11,14,则它的公差d 为_________。

2. 某等差数列的前n项和Sn可以表示为Sn=3n²-2n,则该数列的首项a1为_________。

3. 设等差数列前n项和为Sn,公差为d,则Sn=3n²-4n,则该数列的首项a1为_________。

4. 已知等比数列的前两项依次为6和3/2 ,则该数列的公比q为_________。

5. 某等比数列的第四项是48,公比为2,则该数列的首项a1为_________。

二、选择题1. 若等差数列的前三项为2,4,6,则后5项的和为A. 55B. 60C. 65D. 702. 已知等差数列的前n项和为Sn=2n²-n ,则该数列的首项a1为A. -2B. -1C. 0D. 13. 若数列1, 3, 9, 27, ...中的每一项都是前一项乘以2得到,那么该数列的第10项是A. 256B. 384C. 512D. 7684. 若数列{an}满足a1=2,an+1=3an-2,则该数列的公差d为A. 1B. 2C. 4D. 85. 某数列的首项为2,公比为1/2 ,若该数列的第n项小于0.01,那么n的取值范围是A. n≥4B. n≥5C. n≥6D. n≥7三、解答题1. 求等差数列2,5,8,11,...的第n项表达式。

2. 已知等差数列{an}的公差d=2,前n项和Sn=7n²-3n ,求该等差数列的首项a1和前15项的和S15。

3. 某等差数列的前三项之和为9,前五项之和为20,求该等差数列的公差和首项。

4. 若数列{bn}满足bn=b(n-1) + 3n,其中b1=3 ,求数列的通项表达式。

四、应用题1. 田中养了一些蚯蚓,第1天仅有1条,第2天变成3条,第3天变成5条,以后每天蚯蚓数量都比前一天增加2条,求第10天有多少条蚯蚓。

2. 一个等差数列的第3项为6,最后一项为12,在此数列中第n项为18,求n的值。

高一数列专项典型练习题及解析答案

高一数列专项典型练习题及解析答案

数列综合练习1.函数f〔*〕=〔a>0,a≠1〕,数列{a n}满足a n=f〔n〕〔n∈N*〕,且{a n}是单调递增数列,则实数a的取值围〔 〕A.[7,8〕B.〔1,8〕C.〔4,8〕D.〔4,7〕2.设{a n}的首项为a1,公差为﹣1的等差数列,S n为其前n项和,假设S1,S2,S4成等比数列,则a1=〔 〕A.2B.﹣2C.D.﹣3.设S n是等差数列{a n}的前n项和,假设,则=〔 〕A.1B.﹣1C.2D.4.阅读图的程序框图,该程序运行后输出的k的值为〔 〕A.5B.6C.7D.85.设S n为等比数列{a n}的前n项和,8a2+a5=0,则等于〔 〕A.11B.5C.﹣8D.﹣116.数列{a n}满足a1=2,a n=,其前n项积为T n,则T2016=〔 〕C.1D.﹣1A.B.﹣7.数列{a n}的前n项和为S n,满足a n+2=2a n+1﹣a n,a6=4﹣a4,则S9=〔 〕A.9B.12C.14D.188.S n为等差数列{a n}的前n项和,S7=28,S11=66,则S9的值为〔 〕A.47B.45C.38D.549.在等比数列{a n}中,,则a3=〔 〕A.±9B.9C.±3D.310.在等差数列{a n}中,4〔a3+a4+a5〕+3〔a6+a8+a14+a16〕=36,则该数列的前14项和为〔 〕A.20B.21C.42D.8411.设{a n}是首项为a1,公差为﹣1的等差数列,S n为其前n项和,假设S1,S2,S4成等比数列,则a1的值为 _________ 12.*公司推出了下表所示的QQ在线等级制度,设等级为n级需要的天数为a n〔n∈N*〕,等级等级图标需要天数等级等级图标需要天数157772128963211219243216320545321152660482496则等级为50级需要的天数a50= _________ .13.数列{a n}为等比数列,a2+a3=1,a3+a4=﹣2,则a5+a6+a7= _________ .14.数列{a n}中,a n+1=2a n,a3=8,则数列{log2a n}的前n项和等于 _________ .15.数列{a n }的前n 项和为S n ,并满足a n+2=2a n+1﹣a n ,a 6=4﹣a 4,则S 9= _________ .16.记等差数列{a n }的前n 项和为S n ,a 2+a 4=6,S 4=10.则a 10= _________ .17.设S n 是等比数列{a n }的前n 项和,S 3,S 9,S 6成等差数列,且a 2+a 5=2a m ,则m= _________ .18.数列{a n }的前n 项和S n =﹣a n ﹣+2〔n ∈N *〕,数列{b n }满足b n =2n a n .〔1〕求证数列{b n }是等差数列,并求数列{a n }的通项公式;〔2〕设数列{a n }的前n 项和为T n ,证明:n ∈N *且n ≥3时,T n >〔3〕设数列{}满足a n 〔﹣3n 〕=〔﹣1〕n﹣1λn 〔λ为非零常数,n ∈N *〕,问是否存在整数λ,使得对任意n ∈N *,都有+1>.19.在等差数列{a n }中,a 1=3,其前n 项和为S n ,等比数列{b n }的各项均为正数,b 1=1,公比为q ,且b 2+S 2=12,.〔Ⅰ〕求a n 与b n ;〔Ⅱ〕设=a n •b n ,求数列{}的前n 项和T n .20.等差数列{a n }满足a 3+a 4=9,a 2+a 6=10;又数列{b n }满足nb 1+〔n﹣1〕b 2+…+2b n﹣1+b n =S n ,其中S n 是首项为1,公比为的等比数列的前n 项和.〔1〕求a n 的表达式;〔2〕假设=﹣a n b n ,试问数列{}中是否存在整数k ,使得对任意的正整数n 都有≤c k 成立?并证明你的结论.21.等差数列{a n }的前n 项和为s n =pm 2﹣2n+q〔p ,q ∈R 〕,n ∈N *〔I 〕求q 的值;〔Ⅱ〕假设a 3=8,数列{b n }}满足a n =4log 2b n ,求数列{b n }的前n 项和.22.等比数列{a n }满足a 2=2,且2a 3+a 4=a 5,a n >0.〔1〕求数列{a n }的通项公式;〔2〕设b n =〔﹣1〕n 3a n +2n+1,数列{b n }的前项和为T n ,求T n .23.有穷数列﹛a n ﹜共有2k(k ≧2,k ∈Z)项,首项a 1=2。

高一数学《数列》经典练习题-附答案

高一数学《数列》经典练习题-附答案

强力推荐人教版数学高中必修5习题第二章 数列1.{a n }是首项a 1=1,公差为d =3的等差数列,如果a n =2 005,则序号n 等于( ). A .667B .668C .669D .6702.在各项都为正数的等比数列{a n }中,首项a 1=3,前三项和为21,则a 3+a 4+a 5=( ). A .33B .72C .84D .1893.如果a 1,a 2,…,a 8为各项都大于零的等差数列,公差d ≠0,则( ). A .a 1a 8>a 4a 5B .a 1a 8<a 4a 5C .a 1+a 8<a 4+a 5D .a 1a 8=a 4a 54.已知方程(x 2-2x +m )(x 2-2x +n )=0的四个根组成一个首项为41的等差数列,则 |m -n |等于( ).A .1B .43 C .21 D .83 5.等比数列{a n }中,a 2=9,a 5=243,则{a n }的前4项和为( ). A .81 B .120 C .168 D .1926.若数列{a n }是等差数列,首项a 1>0,a 2 003+a 2 004>0,a 2 003·a 2 004<0,则使前n 项和S n >0成立的最大自然数n 是( ).A .4 005B .4 006C .4 007D .4 0087.已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列, 则a 2=( ). A .-4B .-6C .-8D . -108.设S n 是等差数列{a n }的前n 项和,若35a a =95,则59S S =( ). A .1B .-1C .2D .219.已知数列-1,a 1,a 2,-4成等差数列,-1,b 1,b 2,b 3,-4A .21 B .-21 C .-21或21 D .4110.在等差数列{a n }中,a n ≠0,a n -1-2n a +a n +1=0(n ≥2),若S 2n -1=38,则n =( ).A .38B .20C .10D .9二、填空题 11.设f (x )=221+x ,利用课本中推导等差数列前n 项和公式的方法,可求得f (-5)+f (-4)+…+f (0)+…+f (5)+f (6)的值为 .12.已知等比数列{a n }中,(1)若a 3·a 4·a 5=8,则a 2·a 3·a 4·a 5·a 6= . (2)若a 1+a 2=324,a 3+a 4=36,则a 5+a 6= . (3)若S 4=2,S 8=6,则a 17+a 18+a 19+a 20= .13.在38和227之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为 .14.在等差数列{a n }中,3(a 3+a 5)+2(a 7+a 10+a 13)=24,则此数列前13项之和为 . 15.在等差数列{a n }中,a 5=3,a 6=-2,则a 4+a 5+…+a 10= .16.设平面内有n 条直线(n ≥3),其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用f (n )表示这n 条直线交点的个数,则f (4)= ;当n >4时,f (n )= .三、解答题17.(1)已知数列{a n }的前n 项和S n =3n 2-2n ,求证数列{a n }成等差数列.(2)已知a 1,b 1,c 1成等差数列,求证ac b +,b a c +,c b a +也成等差数列.18.设{a n }是公比为 q 的等比数列,且a 1,a 3,a 2成等差数列. (1)求q 的值;(2)设{b n }是以2为首项,q 为公差的等差数列,其前n 项和为S n ,当n ≥2时,比较S n 与b n 的大小,并说明理由.19.数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=nn 2S n (n =1,2,3…). 求证:数列{nS n}是等比数列.第二章 数列参考答案一、选择题 1.C解析:由题设,代入通项公式a n =a 1+(n -1)d ,即2 005=1+3(n -1),∴n =699. 2.C解析:本题考查等比数列的相关概念,及其有关计算能力. 设等比数列{a n }的公比为q (q >0),由题意得a 1+a 2+a 3=21, 即a 1(1+q +q 2)=21,又a 1=3,∴1+q +q 2=7. 解得q =2或q =-3(不合题意,舍去),∴a 3+a 4+a 5=a 1q 2(1+q +q 2)=3×22×7=84. 3.B .解析:由a 1+a 8=a 4+a 5,∴排除C . 又a 1·a 8=a 1(a 1+7d )=a 12+7a 1d ,∴a 4·a 5=(a 1+3d )(a 1+4d )=a 12+7a 1d +12d 2>a 1·a 8. 4.C 解析: 解法1:设a 1=41,a 2=41+d ,a 3=41+2d ,a 4=41+3d ,而方程x 2-2x +m =0中两根之和为2,x 2-2x +n =0中两根之和也为2,∴a 1+a 2+a 3+a 4=1+6d =4, ∴d =21,a 1=41,a 4=47是一个方程的两个根,a 1=43,a 3=45是另一个方程的两个根. ∴167,1615分别为m 或n , ∴|m -n |=21,故选C . 解法2:设方程的四个根为x 1,x 2,x 3,x 4,且x 1+x 2=x 3+x 4=2,x 1·x 2=m ,x 3·x 4=n . 由等差数列的性质:若γ+s =p +q ,则a γ+a s =a p +a q ,若设x 1为第一项,x 2必为第四项,则x 2=47,于是可得等差数列为41,43,45,47, ∴m =167,n =1615, ∴|m -n |=21. 5.B解析:∵a 2=9,a 5=243,25a a =q 3=9243=27, ∴q =3,a 1q =9,a 1=3, ∴S 4=3-13-35=2240=120.6.B 解析:解法1:由a 2 003+a 2 004>0,a 2 003·a 2 004<0,知a 2 003和a 2 004两项中有一正数一负数,又a 1>0,则公差为负数,否则各项总为正数,故a 2 003>a 2 004,即a 2 003>0,a 2 004<0.∴S 4 006=2+006400641)(a a =2+006400420032)(a a >0,∴S 4 007=20074·(a 1+a 4 007)=20074·2a 2 004<0, 故4 006为S n >0的最大自然数. 选B .解法2:由a 1>0,a 2 003+a 2 004>0,a 2 003·a 2 004<0,同解法1的分析得a 2 003>0,a 2 004<0,∴S 2 003为S n 中的最大值.∵S n 是关于n 的二次函数,如草图所示,∴2 003到对称轴的距离比2 004到对称轴的距离小, ∴20074在对称轴的右侧. 根据已知条件及图象的对称性可得4 006在图象中右侧零点B 的左侧,4 007,4 008都在其右侧,S n >0的最大自然数是4 006.7.B解析:∵{a n }是等差数列,∴a 3=a 1+4,a 4=a 1+6, 又由a 1,a 3,a 4成等比数列,∴(a 1+4)2=a 1(a 1+6),解得a 1=-8, ∴a 2=-8+2=-6. 8.A解析:∵59S S =2)(52)(95191a a a a ++=3559a a ⋅⋅=59·95=1,∴选A .9.A解析:设d 和q 分别为公差和公比,则-4=-1+3d 且-4=(-1)q 4, ∴d =-1,q 2=2, ∴212b a a -=2q d -=21. 10.C解析:∵{a n }为等差数列,∴2n a =a n -1+a n +1,∴2n a =2a n ,又a n ≠0,∴a n =2,{a n }为常数数列,(第6题)而a n =1212--n S n ,即2n -1=238=19,∴n =10. 二、填空题 11.23. 解析:∵f (x )=221+x ,∴f (1-x )=2211+-x =x x 2222⋅+=x x22221+, ∴f (x )+f (1-x )=x 221++x x 22221+⋅=x x222211+⋅+=x x 22)22(21++=22.设S =f (-5)+f (-4)+…+f (0)+…+f (5)+f (6), 则S =f (6)+f (5)+…+f (0)+…+f (-4)+f (-5),∴2S =[f (6)+f (-5)]+[f (5)+f (-4)]+…+[f (-5)+f (6)]=62, ∴S =f (-5)+f (-4)+…+f (0)+…+f (5)+f (6)=32. 12.(1)32;(2)4;(3)32.解析:(1)由a 3·a 5=24a ,得a 4=2,∴a 2·a 3·a 4·a 5·a 6=54a =32.(2)9136)(324222121=⇒⎩⎨⎧=+=+q q a a a a , ∴a 5+a 6=(a 1+a 2)q 4=4.(3)2=+=+++=2=+++=4444821843214q q S S a a a S a a a a S ⇒⎪⎩⎪⎨⎧⋅⋅⋅, ∴a 17+a 18+a 19+a 20=S 4q 16=32. 13.216.解析:本题考查等比数列的性质及计算,由插入三个数后成等比数列,因而中间数必与38,227同号,由等比中项的中间数为22738⋅=6,∴插入的三个数之积为38×227×6=216. 14.26.解析:∵a 3+a 5=2a 4,a 7+a 13=2a 10, ∴6(a 4+a 10)=24,a 4+a 10=4, ∴S 13=2+13131)(a a =2+13104)(a a =2413 =26.15.-49.解析:∵d =a 6-a 5=-5, ∴a 4+a 5+…+a 10=2+7104)(a a =25++-755)(d a d a=7(a 5+2d ) =-49. 16.5,21(n +1)(n -2). 解析:同一平面内两条直线若不平行则一定相交,故每增加一条直线一定与前面已有的每条直线都相交,∴f (k )=f (k -1)+(k -1).由f (3)=2,f (4)=f (3)+3=2+3=5, f (5)=f (4)+4=2+3+4=9, ……f (n )=f (n -1)+(n -1),相加得f (n )=2+3+4+…+(n -1)=21(n +1)(n -2). 三、解答题17.分析:判定给定数列是否为等差数列关键看是否满足从第2项开始每项与其前一项差为常数. 证明:(1)n =1时,a 1=S 1=3-2=1,当n ≥2时,a n =S n -S n -1=3n 2-2n -[3(n -1)2-2(n -1)]=6n -5, n =1时,亦满足,∴a n =6n -5(n ∈N*).首项a 1=1,a n -a n -1=6n -5-[6(n -1)-5]=6(常数)(n ∈N*), ∴数列{a n }成等差数列且a 1=1,公差为6. (2)∵a 1,b 1,c1成等差数列,∴b 2=a 1+c1化简得2ac =b (a +c ). a c b ++c b a +=ac ab a c bc +++22=ac c a c a b 22+++)(=ac c a 2+)(=2++2)()(c a b c a =2·b c a +,∴a cb +,b ac +,cba +也成等差数列. 18.解:(1)由题设2a 3=a 1+a 2,即2a 1q 2=a 1+a 1q , ∵a 1≠0,∴2q 2-q -1=0, ∴q =1或-21. (2)若q =1,则S n =2n +21-)(n n =23+2nn .当n ≥2时,S n -b n =S n -1=22+1-))((n n >0,故S n >b n .若q =-21,则S n =2n +21-)(n n (-21)=49+-2n n .当n ≥2时,S n -b n =S n -1=4-11-)0)((n n ,故对于n ∈N +,当2≤n ≤9时,S n >b n ;当n =10时,S n =b n ;当n ≥11时,S n <b n . 19.证明:∵a n +1=S n +1-S n ,a n +1=nn 2+S n , ∴(n +2)S n =n (S n +1-S n ),整理得nS n +1=2(n +1) S n , 所以1+1+n S n =nSn 2. 故{nS n}是以2为公比的等比数列.。

高中数学数列复习 题集附答案

高中数学数列复习 题集附答案

高中数学数列复习题集附答案高中数学数列复习题集附答案一、选择题1. 设数列 {an} 的通项公式为 an = 3n + 2,则 {an} 的首项是:A. 1B. 2C. 3D. 4答案:B2. 数列 {an} 的通项公式为 an = 2^n,则 {an} 的前5项分别是:A. 1, 2, 3, 4, 5B. 2, 4, 8, 16, 32C. 1, 4, 9, 16, 25D. 2, 3, 4, 5, 6答案:B3. 已知数列 {an} 的首项是 a1 = -5,公差是 d = 3,求 {an} 的通项公式。

A. an = -5 + 3nB. an = -5 - 3nC. an = -5n + 3D. an = -5 - 3^n答案:A二、填空题1. 求等差数列 {an} 的前5项和,已知首项 a1 = 3,公差 d = 4。

答案:S5 = 752. 求等差数列 {an} 的第10项,已知首项 a1 = 2,公差 d = -3。

答案:a10 = -253. 若等差数列 {an} 的第7项是 20,末项是 74,求首项和公差。

答案:a1 = -16,d = 6三、解答题1. 求等差数列 {an} 的通项公式,已知前三项分别是:a1 = 3,a2 = 7,a3 = 11。

解答:设通项公式为 an = a + (n-1)d,代入前三项得到以下等式:3 = a + 0d7 = a + 1d11 = a + 2d解上述方程组可得,a = 3,d = 4。

因此,该数列的通项公式为an = 3 + 4(n-1)。

2. 若等差数列 {bn} 的前5项的和为 40,已知首项 b1 = 1,公差 d = 2,求数列的前n项和 Sn。

解答:首先确定数列的通项公式为 bn = 1 + (n-1)2 = 2n-1。

因此,前n项和 Sn = (b1 + bn) * n / 2 = (1 + (2n-1)) * n / 2 = n^2。

高一数学习题集绝对经典3篇

高一数学习题集绝对经典3篇

高一数学习题集绝对经典第一篇:数列1.已知数列$\{a_n\}$的通项公式为$a_n=n^2-3n+2$,求$\sum_{i=1}^{100}(a_i-a_{i-1})$的值。

2.设$a_1=1$,$a_2=2$,$a_3=3$,$a_n-a_{n-1}=a_{n-2}+a_{n-3}$,求$a_{20}$的值。

3.已知数列$\{a_n\}$满足$a_1=1$,$a_2=2$,$a_{n+1}=2a_n-a_{n-1}+2$,求$a_{100}$的值。

4.已知数列$\{a_n\}$满足$a_1=1$,$a_{n+1}=\frac{1}{2}(a_n+\frac{9}{a_n})$,证明数列$\{a_n\}$是单调递减的,并求$\lim_{n\to\infty}a_n$的值。

5.设$f(n)$为正整数$n$的各位数字的和,$a_n=f(a_{n-1})$,$a_1=2019$,$a_2=f(a_1)$,求数列$\{a_n\}$的最小正周期长度。

第二篇:函数1.已知函数$f(x)=\frac{6x-5e^{2x}}{e^{2x}-1}$,求$f(0)$和$f^{-1}(0)$。

2.已知函数$f(x)$在区间$[1,+\infty)$上为减函数,$g(x)=f(x)+\frac{1}{x}$,求$f(x)$在区间$[1,+\infty)$上的单调性,并判断$g(x)$在区间$[1,+\infty)$上的单调性。

3.已知函数$f(x)=2\log_2{\sin{x}}-\log_2{\cos{x}}$,求$f(x)$的定义域、值域和单调性。

4.已知函数$f(x)=xe^{3-2x}$,$g(x)=f^{-1}(x)$,求$g'(2)$和$g'(e^3)$的值。

5.已知函数$f(x)$在区间$[0,+\infty)$上连续且单调递减,且$\int_0^{+\infty}f(x)dx$收敛,证明$\lim_{x\to\infty}xf(x)=0$。

高一数学数列复习题精华

高一数学数列复习题精华

数列复习题一、选择题1、若数列{a n }的通项公式是a n =2(n +1)+3,则此数列 ( )(A)是公差为2的等差数列 (B)是公差为3的等差数列(C) 是公差为5的等差数列 (D)不是等差数列2、等差数列{a n }中,a 1=3,a 100=36,则a 3+a 98等于 ( )(A)36 (B)38 (C)39 (D)423、含2n+1个项的等差数列,其奇数项的和与偶数项的和之比为 ( ) (A)n n 12+ (B)n n 1+ (C)n n 1- (D)nn 21+ 4、设等差数列的首项为a,公差为d ,则它含负数项且只有有限个负数项的条件是( )(A)a >0,d >0 (B)a >0,d <0 (C)a <0,d >0 (D)a <0,d <05、在等差数列{a n }中,公差为d ,已知S 10=4S 5,则d a 1是 ( ) (A)21 (B)2 (C)41 (D)4 6、设{a n }是公差为-2的等差数列,如果a 1+ a 4+ a 7+……+ a 97=50,则a 3+ a 6+ a 9……+ a 99=( )(A)182 (B)-80 (C)-82 (D)-847、等差数列{a n } 中,S 15=90,则a 8= ( )(A)3 (B)4 (C)6 (D)128、等差数列{a n }中,前三项依次为xx x 1,65,11+,则a 101= ( ) (A)3150 (B)3213 (C)24 (D)328 9、数列{a n }的通项公式n n a n ++=11,已知它的前n 项和为S n =9,则项数n=( )(A)9 (B)10 (C)99 (D)10010、等差数列{a n }中,a 3+ a 4+ a 5+ a 6+ a 7=450,求a 2+a 8= ( )(A)45 (B)75 (C)180 (D)30011、已知{a n }是等差数列,且a 2+ a 3+ a 8+ a 11=48,则a 6+ a 7= ( )(A)12 (B)16 (C)20 (D)2412、在项数为2n+1的等差数列中,若所有奇数项的和为165,所有偶数项的和为150,则n等于 ( )(A)9 (B)10 (C)11 (D)1213、等差数列{a n } 的前m 项和为30,前2m 项和为100,则它的前3m 项和为( )(A)130 (B)170 (C)210 (D)16014、等差数列{a n }的公差为21,且S 100=145,则奇数项的和a 1+a 3+a 5+……+ a 99=( )(A)60 (B)80 (C)72.5 (D)其它的值15、等差数列{a n }中,a 1+a 2+……a 10=15,a 11+a 12+……a 20=20,则a 21+a 22+……a 30=( )(A)15 (B)25 (C)35 (D)4516、等差数列{a n }中,a 1=3,a 100=36,则a 3+a 98= ( )(A)36 (B)39 (C)42 (D)4517、{a n }是公差为2的等差数列,a 1+a 4+a 7+……+a 97=50,则a 3+a 6+……+ a 99= ( )(A)-50 (B)50 (C)16 (D)1.8218、若等差数列{a n }中,S 17=102,则a 9= ( )(A)3 (B)4 (C)5 (D)619、夏季高山上温度从山脚起每升高100米,降低0.7℃,已知山顶的温度是14.1℃,山脚的温度是26℃,则山的相对高度是 ( )(A)1500 (B)1600 (C)1700 (D)180020、若x ≠y ,且两个数列:x ,a 1,a 2,y 和x ,b 1,b 2,b 3,y 各成等差数列,那么=--31b y x a ( )(A)43 (B)34 (C)32 (D)值不确定 21、一个等差数列共有2n 项,奇数项的和与偶数项的和分别为24和30,且末项比首项大10.5,则该数列的项数是 ( )(A)4 (B)8 (C)12 (D)2022、等差数列{a n }中如果a 6=6,a 9=9,那么a 3= ( )(A)3 (B)32 (C)916 (D)4 23、设{a n }是等比数列,且a 1=32,S 3=916,则它的通项公式为a n = ( ) (A)1216-⎪⎭⎫ ⎝⎛∙n (B)n ⎪⎭⎫ ⎝⎛-∙216 (C)1216-⎪⎭⎫ ⎝⎛-∙n (D)1216-⎪⎭⎫ ⎝⎛-∙n 或23 24、已知a 、b 、c 、d 是公比为2的等比数列,则dc b a ++22= ( ) (A)1 (B)21 (C)41 (D)81 25、已知等比数列{a n } 的公比为q ,若21+n a =m (n 为奇数),则213+n a = ( ) (A)mq n -1 (B) mq n (C) mq (D) 8126、已知等比数列前10项的和为10,前20项的和为30,那么前30项的和为( )(A)60 (B)70 (C)90 (D)12627、若{a n }是等比数列,已知a 4 a 7=-512,a 2+a 9=254,且公比为整数,则数列的a 12是( )(A)-2048 (B)1024 (C)512 (D)-51228、数列{a n }、{b n }都是等差数列,它们的前n 项的和为1213-+=n n T S n n ,则这两个数列的第5项的比为 ( ) (A)2949 (B)1934 (C)1728 (D)以上结论都不对 29、已知c b b a a c lg lg 4lg 2∙=,则a ,b ,c ( ) (A)成等差数列 (B)成等比数列(C)既成等差数列又成等比数列 (D)既不成等差数列又不成等比数列30、若a+b+c ,b+c -a ,c+a -b ,a+b -c 成等比数列,且公比为q ,则q 3+q 2+q 的值为( )(A)1 (B)-1 (C)0 (D)231、若一等差数列前四项的和为124,后四项的和为156,又各项的和为350,则此数列共有 ( )(A)10项 (B)11项 (C)12项 (D)13项32、在3和9之间插入两个正数,使前三个数成等比数列,后三个数成等差数列,则二数之和为 ( ) (A)2113(B)04111或 (C)2110 (D)219 33、数列1,211+,3211++,……,n+⋅⋅⋅++211的前n 项和为 ( ) (A) n n 12+ (B)122+n n (C)12++n n (D)12+n n 34、设数列{a n }各项均为正值,且前n 项和S n =21(a n +na 1),则此数列的通项a n 应为 ( )(A) a n =n n -+1 (B) a n =1--n n(C) a n =12+-+n n (D) a n =12-n 35、数列{a n }为等比数列,若a 1+ a 8=387,a 4 a 5=1152,则此数列的通项a n 的表达式为( )(A) a n =3×2n -1 (B) a n =384×(21)n -1 (C) a n =3×2n -1或a n =384×(21)n -1 (D) a n =3×(21)n -1 36、已知等差数{a n }中,a 3+ a 4+ a 5+ a 6+ a 7=450,则a 1+ a 9= ( )(A)45 (B)75 (C)180 (D)30037、已知等比数列{a n }中,a n >0,公比q ≠1,则 ( )(A)26242723a a a a +〉+ (B)26242723a a a a +〈+ (C)26242723a a a a +=+ (D)的大小不确定与26242723a a a a ++38、在等比数列中,首项89,末项31,公比32,求项数 ( ) (A)3 (B)4 (C)5 (D)639、等比数列{a n }中,公比为2,前四项和等于1,则前8项和等于 ( )(A)15 (B)17 (C)19 (D)2140、某厂产量第二年增长率为p ,第三年增长率为q ,第四年增长率为r ,设这三年增长率为x ,则有 ( ) (A)3r q p x ++=(B)3r q p x ++< (C)3r q p x ++≤ (D)3r q p x ++≥ 二、填空题1、已知等差数列公差d >0,a 3a 7=-12,a 4+a 6=-4,则S 20=_______2、数列{a n }中,若a 1,a 2,a 3成等差数列,a 2,a 3,a 4成等比数列,a 3,a 4,a 5的倒数又成等差数列,则a 1,a 3,a 5成_______数列3、已知{a n }为等差数列,a 1=1,S 10=100,a n =_______.令a n =log 2b n ,则的前五项之和S 5′=_______4、已知数列 )2)(1(1,,201,121,61++n n 则其前n 项和S n =________. 5、数列前n 项和为S n =n 2+3n,则其通项a n 等于____________.6、等差数列{a n }中, 前4项和为26, 后4项之和为110, 且n 项和为187, 则n 的值为____________.7、已知等差数列{a n }的公差d ≠0, 且a 1,a 3,a 9成等比数列, 1042931a a a a a a ++++的值是________. 8、等差数列{a n }中, S 6=28, S 10=36(S n 为前n 项和), 则S 15等于________.9、等比数列{a n }中, 公比为2, 前99项之和为56, 则a 3+a 6+a 9+…a 99等于________.10、等差数列{a n }中, a 1=1,a 10=100,若存在数列{b n }, 且a n =log 2b n ,则b 1+b 2+b 3+b 4+b 5等于____________.11、已知数列1, ,3,2,1nn n n n n --- , 前n 项的和为____________. 12、已知{a n }是等差数列,且有a 2+a 3+a 10+a 11=48, 则a 6+a 7=____________.13、等比数列{a n }中, a 1+a 2+a 3+a 4=80, a 5+a 6a 7+a 8=6480, 则a 1必为________.14、三个数a 1、1、c 1成等差数列,而三个数a 2、1、c 2成等比数列, 则22c a c a ++等于____________.15、已知12, lgy 成等比数列, 且x >1,y >1, 则x 、y 的最小值为________. 16、在数列{a n }中, 5221-=+n n n a a a , 已知{a n }既是等差数列, 又是等比数列,则{a n }的前20项的和为________.17、若数列{a n }, )1)(2(1,3211+++==+n n a a a n n 且 (n ∈N), 则通项a n =________.18、已知数列{a n }中, n n a a a )12(,22314-=-=+(n ≥1), 则这个数列的通项公式a n =________.19、正数a 、b 、c 成等比数列, x 为a 、b 的等差中项, y 为b 、c 的等差中项, 则a c x y +的值为________.20、等比数列{a n }中, 已知a 1·a 2·a 3=1,a 2+a 3+a 4=47, 则a 1为________. 三、解答题1、设等差数列{a n }的前n 项和为S n .已知a 3=12, S 12>0,S 13<0.(Ⅰ)求公差d 的取值范围; (Ⅱ)指出S 1,S 2,…,S 12,中哪一个值最大,并说明理由.2、数列{n a }是首项为23,公差为整数的等差数列,且前6项为正,从第7项开始变为负的,回答下列各问:(1)求此等差数列的公差d;(2)设前n 项和为n S ,求n S 的最大值;(3)当n S 是正数时,求n 的最大值.3、设数列{n a }的前n 项和n S .已知首项a 1=3,且1+n S +n S =21+n a ,试求此数列的通项公式n a 及前n 项和n S .4、已知数列{n a }的前n 项和31=n S n(n +1)(n +2),试求数列{n a 1}的前n 项和.数列复习题 〈答卷〉一、选择题1、 A2、 C3、 B 、4、C5、 A6、 C7、 C8、 D9、 C 10、 C11、 D 12、 B 13、 C 14、 A 15、 B 16、 B 17、 D 18、 D 19、 D 20、 B21、 B 22、 A 23、 D 24、 C 25、 B 26、 B 27、 A 28、 C 29、 B 30、A 31、 A32、B 33、 D34、 B 35、 C36、C 37、 A 38、 B 39、 B 40、 C二、填空题1、 1802、 等比3、 2n -1,3624、 )2(2+n n 5、 2n+2.6、 11.7、16138、249、3210、 68211、21+n 12、2413、-4或2. 14、 1或31-15、21016、100. 17、1167+-n 18、()212--n 19、2.20、 2或32- 三、解答题1、解: (Ⅰ)依题意,有 02)112(1212112>∙-⨯+=d a S 02)113(1313113<∙-⨯+=d a S ,即⎩⎨⎧<+>+)2(06)1(011211d a d a 由a 3=12,得 a 1=12-2d (3) 将(3)式分别代入(1),(2)式,得 ⎩⎨⎧<+>+030724d d ,∴3724-<<-d . (Ⅱ)由d <0可知 a 1>a 2>a 3>…>a 12>a 13.因此,若在1≤n ≤12中存在自然数n,使得a n >0,a n+1<0,则S n 就是S 1,S 2,…,S 12中的最大值. 由于 S 12=6(a 6+a 7)>0, S 13=13a 7<0,即 a 6+a 7>0, a 7<0.由此得 a 6>-a 7>0.因为a 6>0, a 7<0,故在S 1,S 2,…,S 12中S 6的值最大.2、 (1)由a 6=23+5d >0和a 7=23+6d <0,得公差d=-4.(2)由a 6>0,a 7<0,∴S 6最大, S 6=8.(3)由a 1=23,d=-4,则n S =21n(50-4n),设n S >0,得n <12.5,整数n 的最大值为12. 3、∵a 1=3, ∴S 1=a 1=3.在S n+1+S n =2a n+1中,设n=1,有S 2+S 1=2a 2.而S 2=a 1+a 2.即a 1+a 2+a 1=2a 2.∴a 2=6. 由S n+1+S n =2a n+1,......(1) S n+2+S n+1=2a n+2, (2)(2)-(1),得S n+2-S n+1=2a n+2-2a n+1,∴a n+1+a n+2=2a n+2-2a n+1即 a n+2=3a n+1此数列从第2项开始成等比数列,公比q=3.a n 的通项公式a n =⎩⎨⎧≥⨯=-.2,32,1,31时当时当n n n 此数列的前n 项和为S n =3+2×3+2×32+…+2×3n – 1=3+13)13(321--⨯-n =3n . 4、n a =n S -1-n S =31n(n +1)(n +2)-31(n -1)n(n +1)=n(n +1).当n=1时,a 1=2,S 1=31×1×(1+1)×(2+1)=2,∴a 1= S 1.则n a =n(n +1)是此数列的通项公式。

高一数学数列知识复习资料 试题

高一数学数列知识复习资料 试题

2021年高一数学数列知识复习资料一、数列⎩⎨⎧≥-===-)2()1(111n S S n S a a n nn 2. 数列的前n 项和n n a a a a S ++++= 321例1:数列{}n a 的前n 项和为32nn s =-,求数列{}n a 的通项公式答:{11,123,2n n n n a -=•≥=例2:数列{}n a 的前n 项和n s 满足(1)2log 1n s n +=+,求n a答:{3,12,2n n n n a =≥=例3:5年文5题)数数列{}n a满足110,n a a +==(*)n N ∈,那么20a =( B )A.0B.2例4:(05年文14题)在数列{}n a 中,121,2a a ==,且*21(1)()n n n a a n N +-=+-∈,那么10s = 35二、等差数列1.等差数列的概念:假如一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示。

即11n n n n a a d a a d +--=-=或差中项:假如a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项。

即:2ba A +=或者b a A +=2注意:设元技巧:三个数成等差,通常设为a-d,a,a+d 或者a,a+d,a+2d;四个数成等差,通常设为a-3d,a-d,a+d,a+3d.例5:个数成等差数列,且三数之和为9,三数的平方和为35.求此三数. 答:此三数为:1,3,5.3.等差数列的断定方法: (1)定义法:对于数列{}n a ,假设d a a n n =-+1(常数),那么数列{}n a 是等差数列。

(2).等差中项:对于数列{}n a ,假设212+++=n n n a a a ,那么数列{}n a 是等差数列。

例6:正项数列{}n a 中,1,n a =,求数列{}n a 的通项公式.例7:数列{}n a 中,11a =,前n 项和n S 与n a 间的关系是2*2(2,)21n n n S a n n N S =≥∈-①证明1{}nS 为等差数列; ②求通项n a假如等差数列{}n a 的首项是1a ,公差是d ,那么等差数列的通项为d n a a n )1(1-+=。

高一数学数列综合复习知识精讲 试题

高一数学数列综合复习知识精讲 试题

高一数学数列综合复习人教版【同步教育信息】一. 本周教学内容:数列综合复习二. 重点:通过复习对数列、等差数列和等比数列的有关概念、性质进一步掌握和灵敏运用。

【典型例题】[例1] 等差数列}{n a 的首项11=a ,公差0>d ,且其第二、五、十四项分别是等比数列}{n b 的第二、三、四项,求}{n a 与}{n b 的通项公式。

解:依题意)0()4()13)((2111>+=++d d a d a d a ,那么2=d ,又11=a ,故12-=n a n ,又}{n b 为等比且9,332==b b ,故13-=n n b 。

[例2] 等比数列}{n a 中,01>a ,6560,802==n n S S ,前n 项和中,值最大的项是54,求n a 。

解:由01>a ,1≠q ,那么 ⎪⎪⎩⎪⎪⎨⎧=--=--65601)1(801)1(211qq a q q a n n 得81=n q ,且011>-=q a ,即得1>q 。

故}{n a 是递增的等比数列,故前n 项和中最后一项n a 为最大,那么由54=n a ,即5411=-n q a ,又81=n q 那么q a 321=代入11-=q a 中,得2,31==a q 因此132-⋅=n n a[例3] 数列}{n a 的前n 项和1*,,)2(>∈+-=p N n pa p S n n ,且2≠p〔1〕证明:数列}{n a 是等比数列;〔2〕对一切n n a a N n >∈+1*,,务实数p 的取值范围。

〔1〕证明:由n n pa p S +-=)2(,那么11)2(--+-=n n pa p S当2≥n 时,两式相减,得(*)11---=-n n n n pa pa S S而当2≥n 时,1--=n n n S S a故〔*〕式即1--=n n n pa pa a整理,得1)1(-=-n n pa a p又由01>-p ,故11-=-p p a a n n 所以数列}{n a 为以1-p p 为公比的等比数列 〔2〕由*,)2(N n pa p S n n ∈+-=当1=n 时,由11a S =,得11)2(pa p a +-= 即121--=p p a 故11)1(--=n n p p a a ,即1)1(12----=n n pp p p a 由,对任意*N n ∈ 011>-⇔>++n n n n a a a a而)11()1(1211-----=--+p p p p p p a a n n n 即0)11()1(121>------p p p p p p n 由1>p ,那么011,11>-->-p p p p 故上式只有当21<<p 才成立所以)2,1(∈p 时,对一切n n a a N n >∈+1*,[例4] 0>q ,且1≠q ,数列}{n a 是首项与公比都为q 的等比数列,*)(lg N n a a b n n n ∈=,假如数列}{n b 中每一项总小于它后面的项,求q 的取值范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数列复习题班级______ 姓名______ 学号_______一、选择题1、若数列{a n }的通项公式是a n =2(n +1)+3,则此数列 ( )(A)是公差为2的等差数列 (B)是公差为3的等差数列(C) 是公差为5的等差数列 (D)不是等差数列2、等差数列{a n }中,a 1=3,a 100=36,则a 3+a 98等于 ( )(A)36 (B)38 (C)39 (D)423、含2n+1个项的等差数列,其奇数项的和与偶数项的和之比为 ( ) (A)n n 12+ (B)n n 1+ (C)n n 1- (D)nn 21+ 4、设等差数列的首项为a,公差为d ,则它含负数项且只有有限个负数项的条件是( )(A)a >0,d >0 (B)a >0,d <0 (C)a <0,d >0 (D)a <0,d <05、在等差数列{a n }中,公差为d ,已知S 10=4S 5,则d a 1是 ( ) (A)21 (B)2 (C)41 (D)4 6、设{a n }是公差为-2的等差数列,如果a 1+ a 4+ a 7+……+ a 97=50,则a 3+ a 6+ a 9……+ a 99=( )(A)182 (B)-80 (C)-82 (D)-847、等差数列{a n } 中,S 15=90,则a 8= ( )(A)3 (B)4 (C)6 (D)128、等差数列{a n }中,前三项依次为xx x 1,65,11+,则a 101= ( ) (A)3150 (B)3213 (C)24 (D)328 9、数列{a n }的通项公式n n a n ++=11,已知它的前n 项和为S n =9,则项数n=( )(A)9 (B)10 (C)99 (D)10010、等差数列{a n }中,a 3+ a 4+ a 5+ a 6+ a 7=450,求a 2+a 8= ( )(A)45 (B)75 (C)180 (D)30011、已知{a n }是等差数列,且a 2+ a 3+ a 8+ a 11=48,则a 6+ a 7= ( )(A)12 (B)16 (C)20 (D)2412、在项数为2n+1的等差数列中,若所有奇数项的和为165,所有偶数项的和为150,则n等于 ( )(A)9 (B)10 (C)11 (D)1213、等差数列{a n } 的前m 项和为30,前2m 项和为100,则它的前3m 项和为( )(A)130 (B)170 (C)210 (D)16014、等差数列{a n }的公差为21,且S 100=145,则奇数项的和a 1+a 3+a 5+……+ a 99=( ) (A)60 (B)80 (C)72.5 (D)其它的值15、等差数列{a n }中,a 1+a 2+……a 10=15,a 11+a 12+……a 20=20,则a 21+a 22+……a 30=( )(A)15 (B)25 (C)35 (D)4516、等差数列{a n }中,a 1=3,a 100=36,则a 3+a 98= ( )(A)36 (B)39 (C)42 (D)4517、{a n }是公差为2的等差数列,a 1+a 4+a 7+……+a 97=50,则a 3+a 6+……+ a 99= ( )(A)-50 (B)50 (C)16 (D)1.8218、若等差数列{a n }中,S 17=102,则a 9= ( )(A)3 (B)4 (C)5 (D)619、夏季高山上温度从山脚起每升高100米,降低0.7℃,已知山顶的温度是14.1℃,山脚的温度是26℃,则山的相对高度是 ( )(A)1500 (B)1600 (C)1700 (D)180020、若x ≠y ,且两个数列:x ,a 1,a 2,y 和x ,b 1,b 2,b 3,y 各成等差数列,那么=--31b y x a ( )(A)43 (B)34 (C)32 (D)值不确定 21、一个等差数列共有2n 项,奇数项的和与偶数项的和分别为24和30,且末项比首项大10.5,则该数列的项数是 ( )(A)4 (B)8 (C)12 (D)2022、等差数列{a n }中如果a 6=6,a 9=9,那么a 3= ( )(A)3 (B)32 (C)916 (D)4 23、设{a n }是等比数列,且29,2333==S a ,则它的通项公式为a n = ( ) (A)1216-⎪⎭⎫ ⎝⎛∙n (B)n ⎪⎭⎫ ⎝⎛-∙216 (C)1216-⎪⎭⎫ ⎝⎛-∙n (D)1216-⎪⎭⎫ ⎝⎛-∙n 或23 24、已知a 、b 、c 、d 是公比为2的等比数列,则dc b a ++22= ( ) (A)1 (B)21 (C)41 (D)81 25、已知等比数列{a n } 的公比为q ,若21+n a =m (n 为奇数),则213+n a = ( ) (A)mq n -1 (B) mq n (C) mq (D) 8126、已知等比数列前10项的和为10,前20项的和为30,那么前30项的和为( )(A)60 (B)70 (C)90 (D)12627、若{a n }是等比数列,已知a 4 a 7=-512,a 2+a 9=254,且公比为整数,则数列的a 12是( )(A)-2048 (B)1024 (C)512 (D)-51228、数列{a n }、{b n }都是等差数列,它们的前n 项的和为1213-+=n n T S n n ,则这两个数列的第5项的比为 ( ) (A)2949 (B)1934 (C)1728 (D)以上结论都不对 29、已知c b b a a c lg lg 4lg 2∙=,则a ,b ,c ( ) (A)成等差数列 (B)成等比数列(C)既成等差数列又成等比数列 (D)既不成等差数列又不成等比数列30、若a+b+c ,b+c -a ,c+a -b ,a+b -c 成等比数列,且公比为q ,则q 3+q 2+q 的值为( )(A)1 (B)-1 (C)0 (D)231、若一等差数列前四项的和为124,后四项的和为156,又各项的和为350,则此数列共有 ( )(A)10项 (B)11项 (C)12项 (D)13项32、在3和9之间插入两个正数,使前三个数成等比数列,后三个数成等差数列,则二数之和为 ( ) (A)2113(B)04111或 (C)2110 (D)219 33、数列1,211+,3211++,……,n+⋅⋅⋅++211的前n 项和为 ( ) (A) n n 12+ (B)122+n n (C)12++n n (D)12+n n 34、设数列{a n }各项均为正值,且前n 项和S n =21(a n +na 1),则此数列的通项a n 应为 ( )(A) a n =n n -+1 (B) a n =1--n n(C) a n =12+-+n n (D) a n =12-n 35、数列{a n }为等比数列,若a 1+ a 8=387,a 4 a 5=1152,则此数列的通项a n 的表达式为( )(A) a n =3×2n -1 (B) a n =384×(21)n -1 (C) a n =3×2n -1或a n =384×(21)n -1 (D) a n =3×(21)n -1 36、已知等差数{a n }中,a 3+ a 4+ a 5+ a 6+ a 7=450,则a 1+ a 9= ( )(A)45 (B)75 (C)180 (D)30037、已知等比数列{a n }中,a n >0,公比q ≠1,则 ( )(A)26242723a a a a +〉+ (B)26242723a a a a +〈+ (C)26242723a a a a +=+ (D)的大小不确定与26242723a a a a ++38、在等比数列中,首项89,末项31,公比32,求项数 ( ) (A)3 (B)4 (C)5 (D)639、等比数列{a n }中,公比为2,前四项和等于1,则前8项和等于 ( )(A)15 (B)17 (C)19 (D)2140、某厂产量第二年增长率为p ,第三年增长率为q ,第四年增长率为r ,设这三年增长率为x ,则有 ( ) (A)3r q p x ++=(B)3r q p x ++< (C)3r q p x ++≤ (D)3r q p x ++≥ 二、填空题1、已知等差数列公差d >0,a 3a 7=-12,a 4+a 6=-4,则S 20=_______2、数列{a n }中,若a 1,a 2,a 3成等差数列,a 2,a 3,a 4成等比数列,a 3,a 4,a 5的倒数又成等差数列,则a 1,a 3,a 5成_______数列3、已知{a n }为等差数列,a 1=1,S 10=100,a n =_______.令a n =log 2b n ,则的前五项之和S 5′=_______4、已知数列 )2)(1(1,,201,121,61++n n 则其前n 项和S n =________. 5、数列前n 项和为S n =n 2+3n,则其通项a n 等于____________.6、等差数列{a n }中, 前4项和为26, 后4项之和为110, 且n 项和为187, 则n 的值为____________.7、已知等差数列{a n }的公差d ≠0, 且a 1,a 3,a 9成等比数列, 1042931a a a a a a ++++的值是________. 8、等差数列{a n }中, S 6=28, S 10=36(S n 为前n 项和), 则S 15等于________.9、等比数列{a n }中, 公比为2, 前99项之和为56, 则a 3+a 6+a 9+…a 99等于________.10、等差数列{a n }中, a 1=1,a 10=100,若存在数列{b n }, 且a n =log 2b n ,则b 1+b 2+b 3+b 4+b 5等于____________.11、已知数列1, ,3,2,1nn n n n n --- , 前n 项的和为____________. 12、已知{a n }是等差数列,且有a 2+a 3+a 10+a 11=48, 则a 6+a 7=____________.13、等比数列{a n }中, a 1+a 2+a 3+a 4=80, a 5+a 6a 7+a 8=6480, 则a 1必为________.14、三个数a 1、1、c 1成等差数列,而三个数a 2、1、c 2成等比数列, 则22c a c a ++等于____________.15、已知1lg 2, lg 成等比数列, 且x >1,y >1, 则x 、y 的最小值为________. 16、在数列{a n }中, 5221-=+n n n a a a , 已知{a n }既是等差数列, 又是等比数列,则{a n }的前20项的和为________.17、若数列{a n }, )1)(2(1,3211+++==+n n a a a n n 且 (n ∈N), 则通项a n =________. 18、已知数列{a n }中, n n a a a )12(,22314-=-=+(n ≥1), 则这个数列的通项公式a n =________.19、正数a 、b 、c 成等比数列, x 为a 、b 的等差中项, y 为b 、c 的等差中项, 则a c x y +的值为________.20、等比数列{a n }中, 已知a 1·a 2·a 3=1,a 2+a 3+a 4=47, 则a 1为________. 三、解答题1、在等差数列{a n }中,a 1=-250,公差d=2,求同时满足下列条件的所有a n 的和,(1)70≤n ≤200;(2)n 能被7整除.2、设等差数列{a n }的前n 项和为S n .已知a 3=12, S 12>0,S 13<0.(Ⅰ)求公差d 的取值范围; (Ⅱ)指出S 1,S 2,…,S 12,中哪一个值最大,并说明理由.3、数列{n a }是首项为23,公差为整数的等差数列,且前6项为正,从第7项开始变为负的,回答下列各问:(1)求此等差数列的公差d;(2)设前n 项和为n S ,求n S 的最大值;(3)当n S 是正数时,求n 的最大值.4、设数列{n a }的前n 项和n S .已知首项a 1=3,且1+n S +n S =21+n a ,试求此数列的通项公式n a 及前n 项和n S .5、已知数列{n a }的前n 项和31=n S n(n +1)(n +2),试求数列{n a 1}的前n 项和.6、已知数列{n a }是等差数列,其中每一项及公差d 均不为零,设2122++++i i i a x a x a =0(i=1,2,3,…)是关于x 的一组方程.回答:(1)求所有这些方程的公共根;(2)设这些方程的另一个根为i m ,求证111+m ,112+m ,113+m ,…, 11+n m ,…也成等差数列.7、如果数列{n a }中,相邻两项n a 和1+n a 是二次方程n n n c nx x ++32=0(n=1,2,3…)的两个根,当a 1=2时,试求c 100的值.8、有两个无穷的等比数列{n a }和{n a },它们的公比的绝对值都小于1,它们的各项和分别是1和2,并且对于一切自然数n,都有1+n a ,试求这两个数列的首项和公比.9、有两个各项都是正数的数列{n a },{n b }.如果a 1=1,b 1=2,a 2=3.且n a ,n b ,1+n a 成等差数列, n b ,1+n a ,1+n b 成等比数列,试求这两个数列的通项公式.10、若等差数列{log 2x n }的第m 项等于n ,第n 项等于m(其中m ≠n),求数列{x n }的前m +n 项的和。

相关文档
最新文档