湖北省近五年(2008-2012)高考数学最新分类汇编1 集合 (2) 理

合集下载

湖北省近五年(-)高考数学最新分类汇编5 数列 理

湖北省近五年(-)高考数学最新分类汇编5 数列 理

湖北省2013届高三最新理科数学(精选试题16套+2008-2012五年湖北高考理科试题)分类汇编5:数列一、选择题1 .(湖北省武汉市2013届高三5月供题训练数学理试题(三)(word 版) )设函数f(x)=(x-3)3+x-1,数列{a n }是公差不为0的等差数列,f(a 1)+f(a 2) + + f(a 7) =14,则 a 1 +a 2 ++a 7 = ( ) A .0 B .7 C .14 D .21 【答案】D 2 .(湖北省黄冈市2013届高三数学(理科)综合训练题 )在圆x y x 522=+内,过点)23,25(P 有n 条长度成等差数列的弦,最小弦长为数列的首项1a ,最大弦长为n a ,若公差⎥⎦⎤⎢⎣⎡∈52,132d ,那么n 的取值集合内所有元素平方和为( )A .126B .86C .77D .50【答案】A3 .(湖北省武汉市2013届高三第二次(4月)调研考试数学(理)试题)已知数列{a n }的前n 项和为S n ,a 1=-(n 2) ,S ( )A . 20122011-B .-20152014【答案】D4 .(湖北省黄梅一中2013届高三下学期综合适应训练(四)数学(理)试题 )已知等比数列{n a }的前n 项和12-=n n S ,则++2221a a 2na +等于 ( )A .2)12(-n B .)12(31-nC .14-nD .)14(31-n【答案】D5 .(湖北省黄冈市2013届高三3月份质量检测数学(理)试题)等差数列{}n a 前n 项和为n S ,已知310061006(1)2013(1)1,a a -+-= 310081008(1)2013(1)1,a a -+-=-则( )A .2013100810062013,S a a =>B .2013100810062013,S a a =<C .2013100810062013,S a a =->D .2013100810062013,S a a =-<【答案】B6 .(湖北省天门市2013届高三模拟测试(一)数学理试题 )在等差数列{}n a 中,0>n a ,且301021=+++a a a ,则65a a ⋅的最大值是( )A .3B .6C .9D .36 【答案】C 7 .(湖北省八市2013届高三3月联考数学(理)试题)《莱因德纸草书》(Rhind Papyrus)是世界上最古老的数学著作之一,书中有这样的一道题目:把100个面包分给5个人,使每人所得成等差数列,且使较大的三份之和的17是较小的两份之和,则最小1份为 ( )A .56 B .103C .53D .116【答案】C 8 .(湖北省襄阳市2013届高三3月调研考试数学(理)试题)在等差数列{a n }中,若a 4+ a 6+ a 8 +a 10 + a 12 = 90,( )A .12 :B .14C .16D .18【答案】A 9 .(2010年高考(湖北理))如图,在半径为r 的圆内作内接正六边形,再作正六边形的内切圆,又在此内切圆内作内接正六边形,如此无限继续下去.设n S 为前n 个圆的面积之和,则lim n x S →∞=( )A .22r πB .283r πC .24r πD .26r π【答案】 【答案】C10.(湖北省武汉市2013届高三5月模拟考试数学(理)试题)在数列{}n a 中,已知1222,7,n a a a +==等于*1()n n a a n N +⋅∈的个位数字,则2013a 的值为 ( )A .8B .6C .4D .2【答案】C11.(湖北省浠水一中2013届高三理科数学模拟测试 )已知数列{}n a 为等比数列,且5642a a a =⋅,设等差数列{}n b 的前n 项和为n S ,若552b a =,则9S = ( )A .36B .32C .24D .22【答案】( )A .5252a a =,25=∴a ,36959==∴b S12.(湖北省荆州市2013届高三3月质量检测(Ⅱ)数学(理)试题)已知a1,a2,,an∈(0,+∞),且=2013,则 的最小值是 ( )A .2013 /4B .2013/2C .2013D .4026【答案】B 二、填空题 13.(湖北省荆州市2013届高三3月质量检测(Ⅱ)数学(理)试题)如图,为美化环境,某地决定在一个大型广场建一个同心圆形花坛,花坛分为两部分,中间小圆部分种植草坪,周围的圆环分为n(n≥3,n∈)部分;现将红、黄、蓝三种不同颜色的花种植在圆环中的各部分,要求三种花色齐全且相邻两部分花色不同.设圆环分为n 部分时,共有种种法;例如= 6,=18,则(1)=_________;(2)将用含有的式子表示为_____(n≥3,n∈).【答案】(1)30;(2)132n n n a a +=⨯-14.(湖北省八市2013届高三3月联考数学(理)试题)如图表中数阵为“森德拉姆素数筛”,其特点是每行每列都成等差数列,记第i 行第j 列的数为*(,)ij a i j N ∈,则(Ⅰ)99a =_______; (Ⅱ)表中数82共出现________次.(二)选考题(请考生在第15、16两题中任选一题作答,如果全选,则按第15题作答结果计分.) 【答案】(Ⅰ) 82 (Ⅱ) 515.(2009高考(湖北理))已知数列{}n a 满足:1a =m (m 为正整数),1,231,nn n n n a a a a a +⎧⎪=⎨⎪+⎩当为偶数时,当为奇数时。

湖北省近五年(2008-2012)高考数学最新分类汇编5 数列 (1) 理

湖北省近五年(2008-2012)高考数学最新分类汇编5 数列 (1) 理

湖北省2013届高三最新理科数学(精选试题16套+2008-2012五年湖北高考理科试题)分类汇编5:数列一、选择题1 .(湖北省武汉市2013届高三5月供题训练数学理试题(三)(word 版) )设函数f(x)=(x-3)3+x-1,数列{a n }是公差不为0的等差数列,f(a 1)+f(a 2) + + f(a 7) =14,则 a 1 +a 2 ++a 7 = ( ) A .0 B .7 C .14 D .21 【答案】D 2 .(湖北省黄冈市2013届高三数学(理科)综合训练题 )在圆x y x 522=+内,过点)23,25(P 有n 条长度成等差数列的弦,最小弦长为数列的首项1a ,最大弦长为n a ,若公差⎥⎦⎤⎢⎣⎡∈52,132d ,那么n 的取值集合内所有元素平方和为 ( ) A .126 B .86 C .77 D .50 【答案】A 3 .(湖北省武汉市2013届高三第二次(4月)调研考试数学(理)试题)已知数列{a n }的前n 项和为S n ,a 1=-(n 2) ,S ( )A .20122011-B .-20152014【答案】D4 .(湖北省黄梅一中2013届高三下学期综合适应训练(四)数学(理)试题 )已知等比数列{n a }的前n 项和12-=n n S ,则++2221a a 2na +等于 ( )A .2)12(-n B .)12(31-nC .14-nD .)14(31-n【答案】D5 .(湖北省黄冈市2013届高三3月份质量检测数学(理)试题)等差数列{}n a 前n 项和为n S ,已知310061006(1)2013(1)1,a a -+-= 310081008(1)2013(1)1,a a -+-=-则( )A .2013100810062013,S a a =>B .2013100810062013,S a a =<C .2013100810062013,S a a =->D .2013100810062013,S a a =-<【答案】B6 .(湖北省天门市2013届高三模拟测试(一)数学理试题 )在等差数列{}n a 中,0>n a ,且301021=+++a a a ,则65a a ⋅的最大值是( )A .3B .6C .9D .36【答案】C 7 .(湖北省八市2013届高三3月联考数学(理)试题)《莱因德纸草书》(Rhind Papyrus)是世界上最古老的数学著作之一,书中有这样的一道题目:把100个面包分给5个人,使每人所得成等差数列,且使较大的三份之和的17是较小的两份之和,则最小1份为 ( )A .56 B .103C .53D .116【答案】C 8 .(湖北省襄阳市2013届高三3月调研考试数学(理)试题)在等差数列{a n }中,若a 4+ a 6+ a 8 +a 10 + a 12 = 90,( )A .12 :B .14C .16D .18【答案】A 9 .(2010年高考(湖北理))如图,在半径为r 的圆内作内接正六边形,再作正六边形的内切圆,又在此内切圆内作内接正六边形,如此无限继续下去.设n S 为前n 个圆的面积之和,则lim n x S →∞=( )A .22r πB .283r πC .24r πD .26r π【答案】 【答案】C10.(湖北省武汉市2013届高三5月模拟考试数学(理)试题)在数列{}n a 中,已知1222,7,n a a a +==等于*1()n n a a n N +⋅∈的个位数字,则2013a 的值为 ( )A .8B .6C .4D .2【答案】C11.(湖北省浠水一中2013届高三理科数学模拟测试 )已知数列{}n a 为等比数列,且5642a a a =⋅,设等差数列{}n b 的前n 项和为n S ,若552b a =,则9S = ( )A .36B .32C .24D .22【答案】( )A .5252a a =,25=∴a ,36959==∴b S12.(湖北省荆州市2013届高三3月质量检测(Ⅱ)数学(理)试题)已知a1,a2,,an∈(0,+∞),且=2013,则 的最小值是 ( )A .2013 /4B .2013/2C .2013D .4026【答案】B 二、填空题 13.(湖北省荆州市2013届高三3月质量检测(Ⅱ)数学(理)试题)如图,为美化环境,某地决定在一个大型广场建一个同心圆形花坛,花坛分为两部分,中间小圆部分种植草坪,周围的圆环分为n(n≥3,n∈)部分;现将红、黄、蓝三种不同颜色的花种植在圆环中的各部分,要求三种花色齐全且相邻两部分花色不同.设圆环分为n 部分时,共有种种法;例如= 6,=18,则(1)=_________;(2)将用含有的式子表示为_____(n≥3,n∈).【答案】(1)30;(2)132n n n a a +=⨯-14.(湖北省八市2013届高三3月联考数学(理)试题)如图表中数阵为“森德拉姆素数筛”,其特点是每行每列都成等差数列,记第i 行第j 列的数为*(,)ij a i j N ∈,则(Ⅰ)99a =_______; (Ⅱ)表中数82共出现________次.(二)选考题(请考生在第15、16两题中任选一题作答,如果全选,则按第15题作答结果计分.) 【答案】(Ⅰ) 82 (Ⅱ) 515.(2009高考(湖北理))已知数列{}n a 满足:1a =m (m 为正整数),1,231,nn n n n a a a a a +⎧⎪=⎨⎪+⎩当为偶数时,当为奇数时。

2008年湖北省高考数学试卷(理科)及答案

2008年湖北省高考数学试卷(理科)及答案

2008年湖北省高考数学试卷(理科)一、选择题(共10小题,每小题5分,满分50分)1.(5分)设=(1,﹣2),=(﹣3,4),=(3,2)则=()A.(﹣15,12)B.0 C.﹣3 D.﹣112.(5分)若非空集合A,B,C满足A∪B=C,且B不是A的子集,则()A.“x∈C”是“x∈A”的充分条件但不是必要条件B.“x∈C”是“x∈A”的必要条件但不是充分条件C.“x∈C”是“x∈A”的充要条件D.“x∈C”既不是“x∈A”的充分条件也不是“x∈A”必要条件3.(5分)用与球心距离为1的平面去截球,所得的截面面积为π,则球的体积为()A. B.C.D.4.(5分)函数的定义域为()A.(﹣∞,﹣4]∪[2,+∞)B.(﹣4,0)∪(0.1) C.[﹣4,0)∪(0,1] D.[﹣4,0)∪(0,1)5.(5分)将函数y=sin(x﹣θ)的图象F向右平移个单位长度得到图象F′,若F′的一条对称轴是直线则θ的一个可能取值是()A.B. C.D.6.(5分)将5名志愿者分配到3个不同的奥运场馆参加接待工作,每个场馆至少分配一名志愿者的方案种数为()A.540 B.300 C.180 D.1507.(5分)若f(x)=﹣x2+bln(x+2)在(﹣1,+∞)上是减函数,则b的取值范围是()A.[﹣1,+∞)B.(﹣1,+∞)C.(﹣∞,﹣1]D.(﹣∞,﹣1)8.(5分)已知m∈N*,a,b∈R,若,则a•b=()A.﹣m B.m C.﹣1 D.19.(5分)过点A(11,2)作圆x2+y2+2x﹣4y﹣164=0的弦,其中弦长为整数的共有()A.16条B.17条C.32条D.34条10.(5分)如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P变轨进入以月球球心F为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P点第二次变轨进入仍以F为一个焦点的椭圆轨道Ⅱ绕月飞行,最终卫星在P点第三次变轨进入以F为圆心的圆形轨道Ⅲ绕月飞行,若用2c1和2c2分别表示椭圆轨道Ⅰ和Ⅱ的焦距,用2a1和2a2分别表示椭圆轨道Ⅰ和Ⅱ的长轴的长,给出下列式子:①a1+c1=a2+c2;②a1﹣c1=a2﹣c2;③c1a2>a1c2;④.其中正确式子的序号是()A.①③B.②③C.①④D.②④二、填空题(共5小题,每小题5分,满分25分)11.(5分)设z1是复数,z2=z1﹣i1,(其中1表示z1的共轭复数),已知z2的实部是﹣1,则z2的虚部为.12.(5分)在△ABC中,三个角A,B,C的对边边长分别为a=3,b=4,c=6,则bccosA+cacosB+abcosC的值为.13.(5分)已知函数f(x)=x2+2x+a,f(bx)=9x2﹣6x+2,其中x∈R,a,b为常数,则方程f(ax+b)=0的解集为.14.(5分)已知函数f(x)=2x,等差数列{a x}的公差为2.若f(a2+a4+a6+a8+a10)=4,则log2[f(a1)•f(a2)•f(a3)•…•f(a10)]=.15.(5分)观察下列等式:,,,,,,…,=.可以推测,当k≥2(k∈N*)时,=a k﹣2三、解答题(共6小题,满分75分)16.(12分)已知函数f(t)=.(Ⅰ)将函数g(x)化简成Asin(ωx+φ)+B(A>0,ω>0,φ∈[0,2π))的形式;(Ⅱ)求函数g(x)的值域.17.(12分)袋中有20个大小相同的球,其中记上0号的有10个,记上n号的有n个(n=1,2,3,4).现从袋中任取一球.ξ表示所取球的标号.(Ⅰ)求ξ的分布列,期望和方差;(Ⅱ)若η=aξ+b,Eη=1,Dη=11,试求a,b的值.18.(12分)如图,在直三棱柱ABC﹣A1B1C1中,平面A1BC⊥侧面A1ABB1.(Ⅰ)求证:AB⊥BC;(Ⅱ)若直线AC与平面A1BC所成的角为θ,二面角A1﹣BC﹣A的大小为φ,试判断θ与φ的大小关系,并予以证明.19.(13分)如图,在以点O为圆心,|AB|=4为直径的半圆ADB中,OD⊥AB,P是半圆弧上一点,∠POB=30°,曲线C是满足||MA|﹣|MB||为定值的动点M 的轨迹,且曲线C过点P.(Ⅰ)建立适当的平面直角坐标系,求曲线C的方程;(Ⅱ)设过点D的直线l与曲线C相交于不同的两点E、F.若△OEF的面积不小于,求直线l斜率的取值范围.20.(12分)水库的蓄水量随时间而变化,现用t表示时间,以月为单位,年初为起点,根据历年数据,某水库的蓄水量(单位:亿立方米)关于t的近似函数关系式为(Ⅰ)该水库的蓄求量小于50的时期称为枯水期.以i﹣1<t<i表示第i月份(i=1,2,…,12),同一年内哪几个月份是枯水期?(Ⅱ)求一年内该水库的最大蓄水量(取e=2.7计算).21.(14分)已知数列{a n}和{b n}满足:a1=λ,,其中λ为实数,n为正整数.(Ⅰ)对任意实数λ,证明数列{a n}不是等比数列;(Ⅱ)试判断数列{b n}是否为等比数列,并证明你的结论;(Ⅲ)设0<a<b,S n为数列{b n}的前n项和.是否存在实数λ,使得对任意正整数n,都有a<S n<b?若存在,求λ的取值范围;若不存在,说明理由.2008年湖北省高考数学试卷(理科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)1.(5分)(2008•湖北)设=(1,﹣2),=(﹣3,4),=(3,2)则=()A.(﹣15,12)B.0 C.﹣3 D.﹣11【分析】先求出向量,然后再与向量进行点乘运算即可得到答案.【解答】解:∵=(1,﹣2)+2(﹣3,4)=(﹣5,6),=(﹣5,6)•(3,2)=﹣3,故选C2.(5分)(2008•湖北)若非空集合A,B,C满足A∪B=C,且B不是A的子集,则()A.“x∈C”是“x∈A”的充分条件但不是必要条件B.“x∈C”是“x∈A”的必要条件但不是充分条件C.“x∈C”是“x∈A”的充要条件D.“x∈C”既不是“x∈A”的充分条件也不是“x∈A”必要条件【分析】找出A,B,C之间的联系,画出韦恩图【解答】解:x∈A⇒x∈C,但是x∈C不能⇒x∈A,所以B正确.另外画出韦恩图,也能判断B选项正确故选B.3.(5分)(2008•湖北)用与球心距离为1的平面去截球,所得的截面面积为π,则球的体积为()A. B.C.D.【分析】做该题需要将球转换成圆,再利用圆的性质,获得球的半径,解出该题即可.【解答】解:截面面积为π⇒截面圆半径为1,又与球心距离为1⇒球的半径是,所以根据球的体积公式知,故选B.4.(5分)(2008•湖北)函数的定义域为()A.(﹣∞,﹣4]∪[2,+∞)B.(﹣4,0)∪(0.1) C.[﹣4,0)∪(0,1] D.[﹣4,0)∪(0,1)【分析】函数的定义域要求分母不为0,负数不能开偶次方,真数大于零.【解答】解:函数的定义域必须满足条件:故选D.5.(5分)(2008•湖北)将函数y=sin(x﹣θ)的图象F向右平移个单位长度得到图象F′,若F′的一条对称轴是直线则θ的一个可能取值是()A.B. C.D.【分析】根据题设中函数图象平移可得F,的解析式为,进而得到对称轴方程,把代入即可.【解答】解:平移得到图象F,的解析式为,对称轴方程,把代入得,令k=﹣1,故选A6.(5分)(2008•湖北)将5名志愿者分配到3个不同的奥运场馆参加接待工作,每个场馆至少分配一名志愿者的方案种数为()A.540 B.300 C.180 D.150【分析】根据题意,分析有将5个人分成满足题意的3组有1,1,3与2,2,1两种,分别计算可得分成1、1、3与分成2、2、1时的分组情况种数,进而相加可得答案.【解答】解:将5个人分成满足题意的3组有1,1,3与2,2,1两种,分成1、1、3时,有C53•A33种分法,分成2、2、1时,有种分法,所以共有种方案,故选D.7.(5分)(2008•湖北)若f(x)=﹣x2+bln(x+2)在(﹣1,+∞)上是减函数,则b的取值范围是()A.[﹣1,+∞)B.(﹣1,+∞)C.(﹣∞,﹣1]D.(﹣∞,﹣1)【分析】先对函数进行求导,根据导函数小于0时原函数单调递减即可得到答案.【解答】解:由题意可知,在x∈(﹣1,+∞)上恒成立,即b<x(x+2)在x∈(﹣1,+∞)上恒成立,由于y=x(x+2)在(﹣1,+∞)上是增函数且y(﹣1)=﹣1,所以b≤﹣1,故选C8.(5分)(2008•湖北)已知m∈N*,a,b∈R,若,则a•b=()A.﹣m B.m C.﹣1 D.1【分析】通过二项式定理,由可得=b,结合极限的性质可知a=﹣1,b=m,由此可得a•b=﹣m.【解答】解:∵,∴=b,结合极限的性质可知,∴a=﹣1,b=m⇒a•b=﹣m故选A.9.(5分)(2008•湖北)过点A(11,2)作圆x2+y2+2x﹣4y﹣164=0的弦,其中弦长为整数的共有()A.16条B.17条C.32条D.34条【分析】化简圆的方程为标准方程,求出弦长的最小值和最大值,取其整数个数.【解答】解:圆的标准方程是:(x+1)2+(y﹣2)2=132,圆心(﹣1,2),半径r=13过点A(11,2)的最短的弦长为10,最长的弦长为26,(分别只有一条)还有长度为11,12,…,25的各2条,所以共有弦长为整数的2+2×15=32条.故选C.10.(5分)(2008•湖北)如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P变轨进入以月球球心F为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P点第二次变轨进入仍以F为一个焦点的椭圆轨道Ⅱ绕月飞行,最终卫星在P点第三次变轨进入以F为圆心的圆形轨道Ⅲ绕月飞行,若用2c1和2c2分别表示椭圆轨道Ⅰ和Ⅱ的焦距,用2a1和2a2分别表示椭圆轨道Ⅰ和Ⅱ的长轴的长,给出下列式子:①a1+c1=a2+c2;②a1﹣c1=a2﹣c2;③c1a2>a1c2;④.其中正确式子的序号是()A.①③B.②③C.①④D.②④【分析】根据图象可知a1>a2,c1>c2,进而根据基本不等式的性质可知a1+c1>a2+c2;进而判断①④不正确.③正确;根据a1﹣c1=|PF|,a2﹣c2=|PF|可知a1﹣c1=a2﹣c2;【解答】解:如图可知a1>a2,c1>c2,∴a1+c1>a2+c2;∴①不正确,∵a1﹣c1=|PF|,a2﹣c2=|PF|,∴a1﹣c1=a2﹣c2;②正确.a1+c2=a2+c1可得(a1+c2)2=(a2+c1)2,a12﹣c12+2a1c2=a22﹣c22+2a2c1,即b12+2a1c2=b22+2a2c1,∵b1>b2所以c1a2>a1c2③正确;可得,④不正确.二、填空题(共5小题,每小题5分,满分25分)11.(5分)(2008•湖北)设z1是复数,z2=z1﹣i1,(其中1表示z1的共轭复数),已知z2的实部是﹣1,则z2的虚部为1.【分析】设出复数z1的代数形式,代入z2并化简为a+bi(a,b∈R)的形式,令实部为﹣1,可求虚部的值.【解答】解:设z1=x+yi(x,y∈R),则z2=x+yi﹣i(x﹣yi)=(x﹣y)+(y﹣x)i,故有x﹣y=﹣1,y﹣x=1.答案:112.(5分)(2008•湖北)在△ABC中,三个角A,B,C的对边边长分别为a=3,b=4,c=6,则bccosA+cacosB+abcosC的值为.【分析】利用余弦定理的变式化角为边,进行化简.【解答】解:由余弦定理,bccosA+cacosB+abcosC=bc×+ca×+ab×=故应填13.(5分)(2008•湖北)已知函数f(x)=x2+2x+a,f(bx)=9x2﹣6x+2,其中x ∈R,a,b为常数,则方程f(ax+b)=0的解集为∅.【分析】先通过f(x)的解析式求出f(bx),建立等量关系,利用对应相等求出a,b,最后解一个一元二次方程即得.【解答】解:由题意知f(bx)=b2x2+2bx+a=9x2﹣6x+2∴a=2,b=﹣3.所以f(2x﹣3)=4x2﹣8x+5=0,△<0,所以解集为∅.14.(5分)(2008•湖北)已知函数f(x)=2x,等差数列{a x}的公差为2.若f (a2+a4+a6+a8+a10)=4,则log2[f(a1)•f(a2)•f(a3)•…•f(a10)]=﹣6.【分析】先根据等差数列{a x}的公差为2和a2+a4+a6+a8+a10=2进而可得到a1+a3+a5+a7+a9=2﹣5×2=﹣8,即可得到a1+…+a10=﹣6,,即可求出答案.【解答】解:依题意a2+a4+a6+a8+a10=2,所以a1+a3+a5+a7+a9=2﹣5×2=﹣8∴⇒log2[f(a1)•f(a2)•f(a3)•…•f(a10)]=﹣6故答案为:﹣615.(5分)(2008•湖北)观察下列等式:,,,,,,…,可以推测,当k≥2(k∈N*)时,=a k=0.﹣2【分析】观察每一个式子当k≥2时,第一项的系数发现符合,第二项的系数发现都是,第三项的系数是成等差数列的,所以,第四项均为零,=0.所以a k﹣2【解答】解:由观察可知当k≥2时,每一个式子的第三项的系数是成等差数列的,=0,所以,第四项均为零,所以a k﹣2故答案为,0.三、解答题(共6小题,满分75分)16.(12分)(2008•湖北)已知函数f(t)=.(Ⅰ)将函数g(x)化简成Asin(ωx+φ)+B(A>0,ω>0,φ∈[0,2π))的形式;(Ⅱ)求函数g(x)的值域.【分析】(1)将f(sinx),f(cosx)代入g(x),分子分母分别乘以(1﹣sinx),(1﹣cosx)去掉根号,再由x的范围去绝对值可得答案.(2)先由x的范围求出x+的范围,再由三角函数的单调性可得答案.【解答】解:(Ⅰ)=∵,∴=sinx+cosx﹣2=(Ⅱ)由,得∵sint在上为减函数,在上为增函数,又(当),即,故g(x)的值域为17.(12分)(2008•湖北)袋中有20个大小相同的球,其中记上0号的有10个,记上n号的有n个(n=1,2,3,4).现从袋中任取一球.ξ表示所取球的标号.(Ⅰ)求ξ的分布列,期望和方差;(Ⅱ)若η=aξ+b,Eη=1,Dη=11,试求a,b的值.【分析】(1)ξ的所有可能取值为0,1,2,3,4,P(ξ=k)=,可出分布列,再由期望、方差的定义求期望和方差;(2)若η=aξ+b,由期望和方差的性质Eη=aEξ+b,Dη=a2Dξ,解方程组可求出a 和b.【解答】解:(Ⅰ)ξ的所有可能取值为0,1,2,3,4分布列为:ξ01234P∴..(Ⅱ)由Dη=a2Dξ,得a2×2.75=11,即a=±2.又Eη=aEξ+b,所以当a=2时,由1=2×1.5+b,得b=﹣2;当a=﹣2时,由1=﹣2×1.5+b,得b=4.∴或即为所求.18.(12分)(2008•湖北)如图,在直三棱柱ABC﹣A1B1C1中,平面A1BC⊥侧面A1ABB1.(Ⅰ)求证:AB⊥BC;(Ⅱ)若直线AC与平面A1BC所成的角为θ,二面角A1﹣BC﹣A的大小为φ,试判断θ与φ的大小关系,并予以证明.【分析】本小题主要考查直棱柱、直线与平面所成角、二面角和线面关系等有关知识,同时考查空间想象能力和推理能力.(1)若要证明AB⊥BC,可以先证明AB⊥平面BC1,由线面垂直的性质得到线线垂直.(2)要判断直线AC与平面A1BC所成的角为θ,二面角A1﹣BC﹣A的大小为φ的大小关系,可以先做出二面角的平面角,再根据三角函数的单调性进行解答.也可以根据(1)的结论,以以点B为坐标原点,以BC、BA、BB1所在的直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系利用空间向量,求出两个角的正弦值,再根据三角函数的单调性解答.【解答】解:(Ⅰ)证明:如图,过点A在平面A1ABB1内作AD⊥A1B于D,由平面A1BC⊥侧面A1ABB1,且平面A1BC∩侧面A1ABB1=A1B,得AD⊥平面A1BC,又BC⊂平面A1BC,所以AD⊥BC.因为三棱柱ABC﹣A1B1C1是直三棱柱,则AA1⊥底面ABC,所以AA1⊥BC.又AA1∩AD=A,从而BC⊥侧面A1ABB1,又AB⊂侧面A1ABB1,故AB⊥BC.(Ⅱ)解法1:连接CD,则由(Ⅰ)知∠ACD是直线AC与平面A1BC所成的角,∠ABA1是二面角A1﹣BC﹣A的平面角,即∠ACD=θ,∠ABA1=φ,于是在Rt△ADC中,,在Rt△ADB中,,由AB<AC,得sinθ<sinφ,又,所以θ<φ,解法2:由(Ⅰ)知,以点B为坐标原点,以BC、BA、BB1所在的直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系,设AA1=a,AC=b,AB=c,则B(0,0,0),A(0,c,0),,于是,.设平面A1BC的一个法向量为n=(x,y,z),则由.得.可取n=(0,﹣a,c),于是与n的夹角β为锐角,则β与θ互为余角.,,所以,于是由c<b,得,即sinθ<sinφ,又,所以θ<φ,19.(13分)(2008•湖北)如图,在以点O为圆心,|AB|=4为直径的半圆ADB 中,OD⊥AB,P是半圆弧上一点,∠POB=30°,曲线C是满足||MA|﹣|MB||为定值的动点M的轨迹,且曲线C过点P.(Ⅰ)建立适当的平面直角坐标系,求曲线C的方程;(Ⅱ)设过点D的直线l与曲线C相交于不同的两点E、F.若△OEF的面积不小于,求直线l斜率的取值范围.【分析】(Ⅰ)以O为原点,AB、OD所在直线分别为x轴、y轴,建立平面直角坐标系,由题意得|MA|﹣|MB|=|PA|﹣|PB|=﹣=2<|AB|=4.由此可知曲线C的方程;(Ⅱ)依题意,可设直线l的方程为y=kx+2,代入双曲线C的方程并整理,得(1﹣k2)x2﹣4kx﹣6=0.由此入手能够求出直线l的斜率的取值范围.【解答】解:(Ⅰ)解:以O为原点,AB、OD所在直线分别为x轴、y轴,建立平面直角坐标系,则A(﹣2,0),B(2,0),D(0,2),P(),依题意得|MA|﹣|MB|=|PA|﹣|PB|=﹣=2<|AB|=4.∴曲线C是以原点为中心,A、B为焦点的双曲线.设实半轴长为a,虚半轴长为b,半焦距为c,则c=2,2a=2,∴a2=2,b2=c2﹣a2=2.∴曲线C的方程为.(Ⅱ)解:依题意,可设直线l的方程为y=kx+2,代入双曲线C的方程并整理,得(1﹣k2)x2﹣4kx﹣6=0.∵直线l与双曲线C相交于不同的两点E、F,∴⇔.∴.②设E(x1,y1),F(x2,y2),则由①式得|x1﹣x2|=.③当E、F在同一支上时S△OEF=|S△ODF﹣S△ODE|=|OD|•||x1|﹣|x2||=|OD|•|x1﹣x2|;当E、F在不同支上时S△OEF=S△ODF+S△ODE=|OD|•(|x1|+|x2|)=|OD|•|x1﹣x2|.综上得S=,于是由|OD|=2及③式,△OEF=.得S△OEF若△OEF面积不小于2,即,则有⇔k2≤2,解得.④综合②、④知,直线l的斜率的取值范围为且k≠±120.(12分)(2008•湖北)水库的蓄水量随时间而变化,现用t表示时间,以月为单位,年初为起点,根据历年数据,某水库的蓄水量(单位:亿立方米)关于t的近似函数关系式为(Ⅰ)该水库的蓄求量小于50的时期称为枯水期.以i﹣1<t<i表示第i月份(i=1,2,…,12),同一年内哪几个月份是枯水期?(Ⅱ)求一年内该水库的最大蓄水量(取e=2.7计算).【分析】(1)分段求出水库的蓄求量小于50时x的取值范围,注意实际问题x要取整.(2)一年内该水库的最大蓄水量肯定不在枯水期,则V(t)的最大值只能在(4,10)内达到,然后通过导数在给定区间上研究V(t)的最大值,最后注意作答.【解答】解:(Ⅰ)①当0<t≤10时,,化简得t2﹣14t+40>0,解得t<4,或t>10,又0<t≤10,故0<t<4.②当10<t≤12时,V(t)=4(t﹣10)(3t﹣41)+50<50,化简得(t﹣10)(3t ﹣41)<0,解得,又10<t≤12,故10<t≤12.综合得0<t<4,或10<t≤12;故知枯水期为1月,2月,3月,4,11月,12月共6个月.(Ⅱ)(Ⅰ)知:V(t)的最大值只能在(4,10)内达到.由V′(t)=,令V′(t)=0,解得t=8(t=﹣2舍去).当t变化时,V′(t)与V(t)的变化情况如下表:t(4,8)8(8,10)V′(t)+0﹣V(t)极大值由上表,V(t)在t=8时取得最大值V(8)=8e2+50=108.32(亿立方米).故知一年内该水库的最大蓄水量是108.32亿立方米21.(14分)(2008•湖北)已知数列{a n}和{b n}满足:a1=λ,,其中λ为实数,n为正整数.(Ⅰ)对任意实数λ,证明数列{a n}不是等比数列;(Ⅱ)试判断数列{b n}是否为等比数列,并证明你的结论;(Ⅲ)设0<a<b,S n为数列{b n}的前n项和.是否存在实数λ,使得对任意正整数n,都有a<S n<b?若存在,求λ的取值范围;若不存在,说明理由.【分析】(1)这种证明数列不是等比数列的问题实际上不好表述,我们可以选择反证法来证明,假设存在推出矛盾.(2)用数列a n构造一个新数列,我们写出新数列的第n+1项和第n项之间的关系,发现λ的取值影响数列的性质,所以要对λ进行讨论.(3)根据前面的运算写出数列的前n项和,把不等式写出来观察不等式的特点,构造新函数,根据函数的最值进行验证,注意n的奇偶情况要分类讨论.【解答】解:(Ⅰ)证明:假设存在一个实数λ,使{a n}是等比数列,则有a22=a1a3,即,矛盾.所以{a n}不是等比数列.(Ⅱ)解:因为b n=(﹣1)n+1[a n+1﹣3(n+1)+21]=(﹣1)n+1(a n﹣2n+14)+1=(﹣1)n•(a n﹣3n+21)=﹣b n又b1=﹣(λ+18),所以当λ=﹣18,b n=0(n∈N+),此时{b n}不是等比数列:当λ≠﹣18时,b1=(λ+18)≠0,由上可知b n≠0,∴(n∈N+).故当λ≠﹣18时,数列{b n}是以﹣(λ+18)为首项,﹣为公比的等比数列.(Ⅲ)由(Ⅱ)知,当λ=﹣18,b n=0,S n=0,不满足题目要求.∴λ≠﹣18,故知b n=﹣(λ+18)•(﹣)n﹣1,于是可得S n=﹣,要使a<S n<b对任意正整数n成立,即a<﹣(λ+18)•[1﹣(﹣)n]<b(n∈N+)得①当n为正奇数时,1<f(n)≤;当n为正偶数时,,∴f(n)的最大值为f(1)=,f(n)的最小值为f(2)=,.于是,由①式得a<﹣(λ+18)<.当a<b≤3a时,由﹣b﹣18≥=﹣3a﹣18,不存在实数满足题目要求;当b>3a存在实数λ,使得对任意正整数n,都有a<S n<b,且λ的取值范围是(﹣b﹣18,﹣3a﹣18)。

2008年普通高等学校招生全国统一考试(湖北卷)理科数学试题及解答

2008年普通高等学校招生全国统一考试(湖北卷)理科数学试题及解答

绝密★启用前2008年普通高等学校招生全国统一考试(湖北卷)数 学(理工农医类)本试卷共4面,满分150分,考试时间120分钟★祝考试顺利★注意事项:1. 答卷前,考生务必将自己的姓名,准考证号填写在试题卷和答题卡上,并将准考证号条形码粘巾在答题卡上指定位置。

2. 选择题每小题选出答案后,用2B 铅笔将答题卡上,对应题目的答案标号涂写,如写改动,用橡皮擦干净后,再选涂其它答案标号,答在试题卷上无效。

3. 非选择题用0.5毫米的黑色墨水签字夂答在答题卡上每题对应的答题区域内,答在试题卷上无效。

4. 考试结束,请将本试题卷和答题卡一并上交。

一、选择题:本次题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 设a =(1,-2),b =(-3,4),c =(3,2),则(a +2b )·c =A.(-15,12)B.0C.-3D.-11 2. 若非空集合A ,B ,C 满足A ∪B=C ,且B 不是A 的子集,则A.“x ∈C ”是“x ∈A ”的充分条件但不是必要条件B. “x ∈C ”是“x ∈A ”的必要条件但不是充分条件C. “x ∈C ”是“x ∈A ”的充分条件D. “x ∈C ”不是“x ∈A ”的充分条件也不是“x ∈A ”必要条件3. 用与球心距离为1的平面去截球,所得的截面面积为π,则球的休积为 A.38πB. 328πC.π28D. 332π4. 函数f (x )=)4323(1122+--++-x x x x n x的定义域为A. (- ∞,-4) ∪[2,+ ∞]B.(-4,0) ∪(0,1)C. [)(]1,00,4⋃-D. [))1,0(0,4⋃- 5.将函数y=3sin (x -θ)的图象F 按向量(3π,3)平移得到图象F ′,若F ′的一条对称轴是直线x=4π,则θ的一个可能取值是 A.π125 B. π125- C. π1211 D. π12116.将5名志愿者分配到3个不同的奥运场馆参加接待工作,每个场馆至少分配一名志愿者的方案种数为A.540B.300C.180D.150 7.若f(x)=21ln(2)2x b x -++∞在(-1,+)上是减函数,则b 的取值范围是 A.[-1,+∞] B.(-1,+∞) C. (]1,-∞- D.(-∞,-1)8.已知m ∈N*,a,b ∈R ,若0(1)limm x x ab x→++=,则a ·b = A .-m B .m C .-1 D .19.过点A (11,2)作圆22241640x y x y ++--=的弦,其中弦长为整数的共有A.16条B.17条C.32条D.34条10.如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P 轨进入以月球球心F 为一个焦点的椭圆轨道I 绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点的椭圆轨道Ⅱ绕月飞行,最终卫星在P 点第三次变轨进入以F 为圆心的圆形轨道Ⅲ绕月飞行,若用2c 1和2c 2分别表示椭轨道Ⅰ和Ⅱ的焦距,用2a 1和2a 2分别表示椭圆轨道Ⅰ和Ⅱ的长轴的长,给出下列式子:①a 1+c 1=a 2+c 2;②a 1-c 1=a 2-c 2;③c 1a 2>a 1c 1;④31c c <22c a . 其中正确式子的序号是A.①③B.②③C.①④D.②④二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡相应位置上. 11.设z 1=z 1-z 1(其中z 1表示z 1的共轭复数),已知z 2的实部是-1,则z 2的虚部为 .12.在△ABC 中,三个角A ,B ,C 的对边边长分别为a=3,b=4,c=6,则bc cosA+ca cosB+ab cosC 的值为 .13.已知函数f(x)=x 2+2x+a , f(bx)=9x 2-6x +2,其中x ∈R ,a ,b 为常数,则方程f (ax+b )=0的解集为 .14.已知函数f(x)=2x ,等差数列{a x }的公差为2.若f(a 2+a 4+a b +a 2+a 1)=4,则 Log 2[f(a 1)·f(a 2)·f(a)·…·f(a 10)]= . 15.观察下列等式:2122213222111,22111,326111,424ni ni n i i n n i n n n i n n n ====+=++=++∑∑∑ 444311111,52330ni i n n n n ==++-∑ 24,(1)(321),3n n n n a n b a n +-=--+ ……………………………………212112101,nkk k k k k k k k i ia n a n a n a n a n a +--+--==++++⋅⋅⋅++∑可以推测,当x ≥2(k ∈N*)时,1111,,12k k k a a a k +-===+ a k -2= .三、解答题:本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分12分) 已知函数f (t17()cos (sin )sin (cos ),(,).12g x x f x x f x x ππ=+∈ (Ⅰ)将函数g(x )化简成Asin(ωx +φ)+B (A >0,ω>0,φ∈[0,2π])的形式;(Ⅱ)求函数g(x )的值域. 17.(本小题满分12分)袋中有20个大小相同的球,其中记上0号的有10个,记上n 号的有n 个(n =1,2,3,4).现从袋中任取一球.ξ表示所取球的标号.(Ⅰ)求ξ的分布列,期望和方差;(Ⅱ)若η=a ξ+b ,E η=1,D η=11,试求a,b 的值.18.(本小题满分12分)如图,在直三棱柱ABC-A 1B 1C 1中,平面ABC ⊥侧面A 1ABB 1.(Ⅰ)求证:AB ⊥BC ;(Ⅱ)若直线AC 与平面A 1BC 所成的角为θ,二面角A 1-BC-A 的大小为φ的大小关系,并予以证明.19.(本小题满分13分)如图,在以点O 为圆心,|AB|=4为直径的半圆ADB 中,OD ⊥AB ,P 是半圆弧上一点, ∠POB=30°,曲线C 是满足||MA|-|MB||为定值的动点M 的轨迹,且曲线C 过点P. (Ⅰ)建立适当的平面直角坐标系,求曲线C 的方程; (Ⅱ)设过点D 的直线l 与曲线C 相交于不同的两点E 、F. 若△OEF 的面积不小于...,求直线l 斜率的取值范围.20.(本小题满分12分)水库的蓄水量随时间而变化,现用t 表示时间,以月为单位,年初为起点,根据历年数据,某水库的蓄水量(单位:亿立方米)关于t 的近似函数关系式为V (t )=12(1440)50,010,4(10)(341)50,1012.x t t e t t t t ⎧⎪-+-+≤⎨⎪--+≤⎩(Ⅰ)该水库的蓄求量小于50的时期称为枯水期.以i-1<t <t 表示第1月份(i=1,2,…,12),同一年内哪几个月份是枯水期?(Ⅱ)求一年内该水库的最大蓄水量(取e=2.7计算).21.(本小题满分14分)已知数列{a n}和{b n}满足:a1=λ,a n+1=24,(1)(321),3nn n na nb a n+-=--+其中λ为实数,n为正整数.(Ⅰ)对任意实数λ,证明数列{a n}不是等比数列;(Ⅱ)试判断数列{b n}是否为等比数列,并证明你的结论;(Ⅲ)设0<a<b,S n为数列{b n}的前n项和.是否存在实数λ,使得对任意正整数n,都有a<S n<b?若存在,求λ的取值范围;若不存在,说明理由.2008年普通高等学校招生全国统一考试(湖北卷)数学(理工农医类)试题参考答案一、选择题:本题考查基础知识和基本运算.每小题5分,满分50分. 1.C 2.B 3.B 4.D 5.A 6.D 7.C 8.A 9.C 10.B二、填空题:本题考查基础知识和基本运算,每小题5分,满分25分. 11.1 12.612 13.∅ 14.-6 15. 12k,0 三、解答题:本大题共6小题,共75分.16.本小题主要考查函数的定义域、值域和三角函数的性质等基本知识,考查三角恒等变换、代数式的化简变形和运算能力.(满分12分)解:(Ⅰ)1sin 1cos ()cos sin 1sin 1cos xxg x xxx x--=+++2222(1sin )(1cos )cos sin cos sin x x xxx x--=+1sin 1cos cos sin .cos sin x xxx x x--=+17,,cos cos ,sin sin ,12x x x x x π⎛⎤∈π∴=-=- ⎥⎝⎦1sin 1cos ()cos sin cos sin x x g x x x x x --∴=+--sin cos 2x x =+-2.4x π⎛⎫+- ⎪⎝⎭(Ⅱ)由1712x ππ≤<,得55.443x πππ+≤< sin t 在53,42ππ⎛⎤ ⎥⎝⎦上为减函数,在35,23ππ⎛⎤⎥⎝⎦上为增函数,又5535sinsin ,sin sin()sin 34244x πππππ∴≤+<<(当17,2x π⎛⎤∈π ⎥⎝⎦),即1sin()2)23424x x ππ-≤+-≤+--<<,故g (x )的值域为)2,3.⎡-⎣17.本小题主要考查概率、随机变量的分布列、期望和方差等概念,以及基本的运算能力.(满分12分)解:(Ⅰ)ξ的分布列为:∴01234 1.5.22010205E ξ=⨯+⨯+⨯+⨯+⨯=2222211131(0 1.5)(1 1.5)(2 1.5)(3 1.5)(4 1.5) 2.75.22010205ξ=-⨯+-⨯+-⨯+-⨯+-⨯=(Ⅱ)由D a D η=ξ2,得a 2×2.75=11,即 2.a =±又,E aE b η=ξ+所以当a =2时,由1=2×1.5+b ,得b =-2; 当a =-2时,由1=-2×1.5+b ,得b =4.∴2,2a b =⎧⎨=-⎩或2,4a b =-⎧⎨=⎩即为所求.18.本小题主要考查直棱柱、直线与平面所成角、二面角和线面关系等有关知识,同时考查空间想象能力和推理能力.(满分12分) (Ⅰ)证明:如右图,过点A 在平面A 1ABB 1内作 AD ⊥A 1B 于D ,则由平面A 1BC ⊥侧面A 1ABB 1,且平面A 1BC 侧面A 1ABB 1=A 1B ,得AD ⊥平面A 1BC ,又BC ⊂平面A 1BC , 所以AD ⊥BC .因为三棱柱ABC —A 1B 1C 1是直三棱柱, 则AA 1⊥底面ABC , 所以AA 1⊥BC. 又AA 1AD =A ,从而BC ⊥侧面A 1ABB 1,又AB ⊂侧面A 1ABB 1,故AB ⊥BC .(Ⅱ)解法1:连接CD ,则由(Ⅰ)知ACD ∠是直线AC 与平面A 1BC 所成的角,1ABA ∠是二面角A 1—BC —A 的平面角,即1,,ACD ABA ∠=θ∠=ϕ于是在Rt △ADC 中,sin ,AD AC θ=在Rt △ADB 中,sin ,ADABϕ= 由AB <AC ,得sin sin θϕ<,又02πθϕ<,<,所以θϕ<,解法2:由(Ⅰ)知,以点B 为坐标原点,以BC 、BA 、BB 1所在的直线分 别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,设AA 1=a ,AC =b , AB =c ,则B (0,0,0),A (0,c,0),1(0,,),C A c a 于是 221(,0,0),(0,,),BC b c BA c a =-= 221(,,0),(0,0,).AC b c c AA a =--=设平面A 1BC 的一个法向量为n =(x ,y ,z ),则由10,0,n BAn BC ⎧=⎪⎨=⎪⎩得0,0,cy az +=⎧=可取n =(0,-a ,c ),于是0n AC ac AC =>,与n 的夹角β为锐角,则β与θ互为余角. sin cos n AC n AC b a θ-β==11cos BA BABA BAa ϕ==所以sin ϕ=于是由c <b即sin sin ,θϕ<又0,2πθϕ<,<所以,θϕ<19.本小题主要考查直线、圆和双曲线等平面解析几何的基础知识,考查轨迹方程的求法、不等式的解法以及综合解题能力.(满分13分)(Ⅰ)解法1:以O 为原点,AB 、OD 所在直线分别为x 轴、y 轴,建立平面直角坐标系,则A (-2,0),B (2,0),D (0,2),P (1,3),依题意得|MA |-|MB |=|PA |-|PB |=221321)32(2222=)(+--++<|AB |=4.∴曲线C 是以原点为中心,A 、B 为焦点的双曲线. 设实平轴长为a ,虚半轴长为b ,半焦距为c , 则c =2,2a =22,∴a 2=2,b 2=c 2-a 2=2.∴曲线C 的方程为12222=-y x . 解法2:同解法1建立平面直角坐标系,则依题意可得|MA |-|MB |=|PA |-|PB |<|AB |=4.∴曲线C 是以原点为中心,A 、B 为焦点的双曲线.设双曲线的方程为a b y a x (12222=->0,b >0).则由.4,11)3(222222=+=-b a ba 解得a 2=b 2=2, ∴曲线C 的方程为.12222=-y x(Ⅱ)解法1:依题意,可设直线l 的方程为y =kx +2,代入双曲线C 的方程并整理得(1-K 2)x 2-4kx-6=0.∵直线l 与双曲线C 相交于不同的两点E 、F , ∴,0)1(64)4(,01222>-⨯+-=∆≠-k k k ⇔.33,1<<-±≠k k∴k ∈(-3,-1)∪(-1,1)∪(1,3). 设E (x ,y ),F (x 2,y 2),则由①式得x 1+x 2=k x x kk --=-16,14212,于是 |EF |=2212221221))(1()()(x x k x y x x -+=++-=.132214)(1222212212kk k x x x x k --⋅+=-+⋅+而原点O 到直线l 的距离d =212k+,∴S △DEF =.132213221122121222222kk k k k k EF d --=--⋅+⋅+⋅=⋅ 若△OEF 面积不小于22,即S △OEF 22≥,则有 解得.22,022********2≤≤-≤--⇔≥--k k k k k ③综合②、③知,直线l 的斜率的取值范围为[-2,-1]∪(1-,1) ∪(1, 2).解法2:依题意,可设直线l 的方程为y =kx +2,代入双曲线C 的方程并整理,得(1-K 2)x 2-4kx -6=0.∵直线l 与双曲线C 相交于不同的两点E 、F , ∴.0)1(64)4(,01222>-⨯+-=∆≠-k k k ⇔33,1<<-±≠k k .∴k ∈(-3,-1)∪(-1,1)∪(1,3). 设E (x 1,y 1),F (x 2,y 2),则由①式得 |x 1-x 2|=.132214)(22221221kk kx x x x --=-∆=-+ ③当E 、F 在同一去上时(如图1所示), S △OEF =;21212121x x OD x x OD S S ODE ODF -⋅=-⋅=-∆∆ 当E 、F 在不同支上时(如图2所示).+=∆∆ODF OEF S S S △ODE =.21)(212121x x OD x x OD -⋅=+⋅综上得S △OEF =,2121x x OD -⋅于是 由|OD |=2及③式,得S △OEF =.132222kk --若△OEF 面积不小于2则有即,22,2≥∆OEF S.22,022*******2≤≤-≤-⇔≥--k k k kk 解得 ④综合②、④知,直线l 的斜率的取值范围为[-2,-1]∪(-1,1)∪(1,2).20.本小题主要考查函数、导数和不等式等基本知识,考查用导数求最值和综合运用数学知识解决实际问题能力.(满分12分)解:(Ⅰ)①当0<t ≤10时,V (t )=(-t 2+14t -40),5050441<+e化简得t 2-14t +40>0,解得t <4,或t >10,又0<t ≤10,故0<t <4.②当10<t ≤12时,V (t )=4(t -10)(3t -41)+50<50, 化简得(t -10)(3t -41)<0, 解得10<t <341,又10<t ≤12,故 10<t ≤12. 综合得0<t <4,或10<t 12,故知枯水期为1月,2月,,3月,4月,11月,12月共6个月. (Ⅱ)(Ⅰ)知:V (t )的最大值只能在(4,10)内达到.由V ′(t )=),8)(2(41)42341(41241-+-=++-t t c t t c tt令V ′(t )=0,解得t=8(t=-2舍去).由上表,V (t )在t =8时取得最大值V (8)=8e +50-108.52(亿立方米). 故知一年内该水库的最大蓄水量是108.32亿立方米21.本小题主要考查等比数列的定义、数列求和、不等式等基础知识和分类讨论的思想,考查综合分析问题的能力和推理认证能力,(满分14分)(Ⅰ)证明:假设存在一个实数λ,使{a n }是等比数列,则有a 22=a 1a 3,即,094949494)494()332(222=⇔-=+-⇔-=-λλλλλλλ矛盾. 所以{a n }不是等比数列.(Ⅱ)解:因为b n +1=(-1)n +1[a n +1-3(n -1)+21]=(-1)n +1(32a n -2n +14)=32(-1)n ·(a n -3n +21)=-32b n 又b 1x -(λ+18),所以当λ=-18,b n =0(n ∈N +),此时{b n }不是等比数列:当λ≠-18时,b 1=(λ+18) ≠0,由上可知b n ≠0,∴321-=+n a b b (n ∈N +). 故当λ≠-18时,数列{b n }是以-(λ+18)为首项,-32为公比的等比数列. (Ⅲ)由(Ⅱ)知,当λ=-18,b n =0,S n =0,不满足题目要求.∴λ≠-18,故知b n = -(λ+18)·(-32)n -1,于是可得 S n =-.321·)18(53⎥⎦⎤⎢⎣⎡+n )-(- λ 要使a <S n <b 对任意正整数n 成立,即a <-53(λ+18)·[1-(-32)n ]〈b(n ∈N +) ,则令 得)2(1)()32(1)18(53)32(1--=--<+-<--n f b annλ ①当n 为正奇数时,1<f (n ),1)(95;35<≤≤n f n 为正偶数时,当 ∴f (n )的最大值为f (1)=35,f (n )的最小值为f (2)= 95, 于是,由①式得95a <-53(λ+18),<.1831853--<<--⇔a b b λ 当a <b ≤3a 时,由-b -18≥=-3a -18,不存在实数满足题目要求; 当b >3a 存在实数λ,使得对任意正整数n ,都有a <S n <b ,且λ的取值范围是(-b -18,-3a -18).。

2008高考湖北数学理科试题含答案(word版)

2008高考湖北数学理科试题含答案(word版)

2008年普通高等学校招生全国统一考试(湖北卷)数学(理工农医类)一、选择题:本次题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设(1,2)a =-,(3,4)b =-,则(2)a b c +=A.(15,12)-B.0C.3-D.11- 2. 若非空集合,,A B C 满足A B C = ,且B 不是A 的子集,则A. “x C ∈”是“x A ∈”的充分条件但不是必要条件B. “x C ∈”是“x A ∈”的必要条件但不是充分条件C. “x C ∈”是“x A ∈”的充要条件D. “x C ∈”既不是“x A ∈”的充分条件也不是“x A ∈”必要条件 3. 用与球心距离为1的平面去截球,所得的截面面积为π,则球的体积为A.38π B. 328πC. π28D. 332π4. 函数1()f x x=的定义域为 A. (,4][2,)-∞-+∞ B. (4,0)(0.1)-C. [-4,0)(0,1D. [4,0)(0,1)- 5.将函数3sin()y x θ=-的图象F 按向量(,3)3π平移得到图象F ',若F '的一条对称轴是直线4x π=,则θ的一个可能取值是A.π125 B. π125- C. π1211 D. 1112π-6.将5名志愿者分配到3个不同的奥运场馆参加接待工作,每个场馆至少分配一名志愿者的方案种数为A. 540B. 300C. 180D. 150 7.若21()ln(2)2f x x b x =-++∞在(-1,+)上是减函数,则b 的取值范围是 A. [1,)-+∞ B. (1,)-+∞ C. (,1]-∞- D. (,1)-∞-8.已知*m N ∈,,a b R ∈,若0(1)limm x x ab x→++=,则a b ⋅= A .m - B .m C .1- D .19.过点(11,2)A 作圆22241640x y x y ++--=的弦,其中弦长为整数的共有 A. 16条 B. 17条 C. 32条 D. 34条 10.如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P 轨进入以月球球心F 为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点的椭圆轨道Ⅱ绕月飞行,最终卫星在P 点第三次变轨进入以F 为圆心的圆形轨道Ⅲ绕月飞行,若用12c 和22c 分别表示椭轨道Ⅰ和Ⅱ的焦距,用12a 和22a 分别表示椭圆轨道Ⅰ和Ⅱ的长轴的长,给出下列式子: ①1122a c a c +=+; ②1122a c a c -=-; ③1212c a a c >; ④11c a <22c a . 其中正确式子的序号是A. ①③B. ②③C. ①④D. ②④二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡相应位置上. 11.设211z z iz =-(其中1z 表示z 1的共轭复数),已知z 2的实部是1-,则z 2的虚部为 . 12.在△ABC 中,三个角,,A B C 的对边边长分别为3,4,6a b c ===,则cos cos cos bc A ca B ab C ++的值为 .13.已知函数2()2f x x x a =++,2()962f bx x x =-+,其中x R ∈,,a b 为常数,则方程()0f ax b +=的解集为 .14.已知函数()2xf x =,等差数列{}x a 的公差为2.若246810()4f a a a a a ++++=,则212310log [()()()()]f a f a f a f a ⋅⋅⋅= .15.观察下列等式:2111,22ni i n n ==+∑ 2321111,326ni i n n n ==++∑ 34321111,424n i i n n n ==++∑ 454311111,52330n i i n n n n ==++-∑ 5654211151,621212ni in n n n ==++-∑ 67653111111,722642ni i n n n n n ==++-+∑ ……………………………………212112101,nkk k k k k k k k i ia n a n a n a n a n a +--+--==++++⋅⋅⋅++∑可以推测,当x ≥2(*k N ∈)时,1111,,12k k k a a a k +-===+ 2k a -= .三、解答题:本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分12分)已知函数17()()cos (sin )sin (cos ),(,).12f tg x x f x x f x x ππ==⋅+⋅∈ (Ⅰ)将函数()g x 化简成sin()A x B ωϕ++(0A >,0ω>,[0,2)ϕπ∈)的形式; (Ⅱ)求函数()g x 的值域.袋中有20个大小相同的球,其中记上0号的有10个,记上n 号的有n 个(n =1,2,3,4).现从袋中任取一球.ξ表示所取球的标号. (Ⅰ)求ξ的分布列,期望和方差;(Ⅱ)若a b ηξ=+, 1E η=,11D η=,试求a,b 的值.18.(本小题满分12分)如图,在直三棱柱111ABC A B C -中,平面ABC ⊥侧面11A ABB . (Ⅰ)求证:AB BC ⊥;(Ⅱ)若直线AC 与平面1A B C 所成的角为θ,二面角1A B C A --的大小为ϕ,试判断θ与ϕ的大小关系,并予以证明.如图,在以点O 为圆心,||4AB =为直径的半圆ADB 中,OD AB ⊥,P 是半圆弧上一点,30POB ∠=︒,曲线C 是满足||||||MA MB -为定值的动点M 的轨迹,且曲线C 过点P .(Ⅰ)建立适当的平面直角坐标系,求曲线C 的方程; (Ⅱ)设过点D 的直线l 与曲线C 相交于不同的两点E 、F . 若△OEF 的面积不小于...l 斜率的取值范围.20.(本小题满分12分)水库的蓄水量随时间而变化,现用t 表示时间,以月为单位,年初为起点,根据历年数据,某水库的蓄水量(单位:亿立方米)关于t 的近似函数关系式为124(1440)50,010,()4(10)(341)50,1012.x t t e t V t t t t ⎧⎪-+-+<≤=⎨⎪--+<≤⎩ (Ⅰ)该水库的蓄求量小于50的时期称为枯水期.以1i t i -<<表示第1月份(1,2,,12i = ),同一年内哪几个月份是枯水期?(Ⅱ)求一年内该水库的最大蓄水量(取 2.7e =计算).已知数列{}n a 和{}n b 满足:1a λ=,124,(1)(321),3n n n n n a a n b a n +=+-=--+其中λ为实数,n 为正整数.(Ⅰ)对任意实数λ,证明数列{}n a 不是等比数列; (Ⅱ)试判断数列{}n b 是否为等比数列,并证明你的结论;(Ⅲ)设0a b <<,n S 为数列{}n b 的前n 项和.是否存在实数λ,使得对任意正整数n ,都有n a S b <<?若存在,求λ的取值范围;若不存在,说明理由.2008年普通高等学校招生全国统一考试(湖北卷)数学(理工农医类)试题参考答案一、选择题:本题考查基础知识和基本运算.每小题5分,满分50分. 1.C 2.B 3.B 4.D 5.A 6.D 7.C 8.A 9.C 10.B二、填空题:本题考查基础知识和基本运算,每小题5分,满分25分. 11.1 12.612 13.∅ 14.-6 15. 12k,0 三、解答题:本大题共6小题,共75分.16.本小题主要考查函数的定义域、值域和三角函数的性质等基本知识,考查三角恒等变换、代数式的化简变形和运算能力.(满分12分)解:(Ⅰ)()cos sin g x x x =cos sin x x = 1sin 1cos cos sin .cos sin x xx x x x--=+17,,cos cos ,sin sin ,12x x x x x π⎛⎤∈π∴=-=- ⎥⎝⎦1sin 1cos ()cos sin cos sin x x g x x x x x --∴=+-- sin cos 2x x =+-2.4x π⎛⎫+- ⎪⎝⎭(Ⅱ)由1712x ππ≤<,得55.443x πππ+≤< sin t 在53,42ππ⎛⎤ ⎥⎝⎦上为减函数,在35,23ππ⎛⎤⎥⎝⎦上为增函数,又5535sinsin ,sin sin()sin 34244x πππππ∴≤+<<(当17,2x π⎛⎤∈π ⎥⎝⎦),即1sin()2)23424x x ππ-≤+-≤+--<<,故g (x )的值域为)2,3.⎡-⎣17.本小题主要考查概率、随机变量的分布列、期望和方差等概念,以及基本的运算能力.(满分12分)解:(Ⅰ)ξ的分布列为:∴01234 1.5.22010205E ξ=⨯+⨯+⨯+⨯+⨯= 2222211131(0 1.5)(1 1.5)(2 1.5)(3 1.5)(4 1.5) 2.75.22010205ξ=-⨯+-⨯+-⨯+-⨯+-⨯=(Ⅱ)由D a D η=ξ2,得a 2×2.75=11,即 2.a =±又,E aE b η=ξ+所以 当a =2时,由1=2×1.5+b ,得b =-2; 当a =-2时,由1=-2×1.5+b ,得b =4.∴2,2a b =⎧⎨=-⎩或2,4a b =-⎧⎨=⎩即为所求.18.本小题主要考查直棱柱、直线与平面所成角、二面角和线面关系等有关知识,同时考查空间想象能力和推理能力.(满分12分) (Ⅰ)证明:如右图,过点A 在平面A 1ABB 1内作 AD ⊥A 1B 于D ,则由平面A 1BC ⊥侧面A 1ABB 1,且平面A 1BC 侧面A 1ABB 1=A 1B ,得 AD ⊥平面A 1BC ,又BC ⊂平面A 1BC , 所以AD ⊥BC .因为三棱柱ABC —A 1B 1C 1是直三棱柱, 则AA 1⊥底面ABC , 所以AA 1⊥BC.又AA 1 AD =A ,从而BC ⊥侧面A 1ABB 1, 又AB ⊂侧面A 1ABB 1,故AB ⊥BC .(Ⅱ)解法1:连接CD ,则由(Ⅰ)知ACD ∠是直线AC 与平面A 1BC 所成的角,1ABA ∠是二面角A 1—BC —A 的平面角,即1,,ACD ABA ∠=θ∠=ϕ于是在Rt △ADC 中,sin ,AD AC θ=在Rt △ADB 中,sin ,ADABϕ= 由AB <AC ,得sin sin θϕ<,又02πθϕ<,<,所以θϕ<,解法2:由(Ⅰ)知,以点B 为坐标原点,以BC 、BA 、BB 1所在的直线分 别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,设AA 1=a ,AC =b , AB =c ,则B (0,0,0),A (0,c,0),1(0,,),C A c a 于是1(0,,),BC BA c a ==1,0),(0,0,).AC c AA a =-=设平面A 1BC 的一个法向量为n =(x ,y ,z ),则由10,0,n BA n BC ⎧=⎪⎨=⎪⎩得0,0,cy az +=⎧= 可取n =(0,-a ,c ),于是0n AC ac AC =>,与n 的夹角β为锐角,则β与θ互为余角.sin cos n AC n AC θ-β==11cos BA BA BA BA ϕ==所以sin ϕ= 于是由c <b即sin sin ,θϕ<又0,2πθϕ<,<所以,θϕ<19.本小题主要考查直线、圆和双曲线等平面解析几何的基础知识,考查轨迹方程的求法、不等式的解法以及综合解题能力.(满分13分)(Ⅰ)解法1:以O 为原点,AB 、OD 所在直线分别为x 轴、y 轴,建立平面直角坐标系,则A (-2,0),B (2,0),D (0,2),P (1,3),依题意得|MA |-|MB |=|PA |-|PB |=221321)32(2222=)(+--++<|AB |=4.∴曲线C 是以原点为中心,A 、B 为焦点的双曲线.设实平轴长为a ,虚半轴长为b ,半焦距为c , 则c =2,2a =22,∴a 2=2,b 2=c 2-a 2=2.∴曲线C 的方程为12222=-y x . 解法2:同解法1建立平面直角坐标系,则依题意可得|MA |-|MB |=|PA |-|PB |< |AB |=4.∴曲线C 是以原点为中心,A 、B 为焦点的双曲线.设双曲线的方程为a b y a x (12222=->0,b >0).则由.4,11)3(222222=+=-b a ba 解得a 2=b 2=2, ∴曲线C 的方程为.12222=-y x(Ⅱ)解法1:依题意,可设直线l 的方程为y =kx +2,代入双曲线C 的方程并整理得(1-K 2)x 2-4kx-6=0. ∵直线l 与双曲线C 相交于不同的两点E 、F , ∴,0)1(64)4(,01222>-⨯+-=∆≠-k k k ⇔.33,1<<-±≠k k∴k ∈(-3,-1)∪(-1,1)∪(1,3). 设E (x ,y ),F (x 2,y 2),则由①式得x 1+x 2=k x x k k --=-16,14212,于是 |EF |=2212221221))(1()()(x x k x y x x -+=++-=.132214)(1222212212kk k x x x x k --⋅+=-+⋅+而原点O 到直线l 的距离d =212k+,∴S △DEF =.132213221122121222222kk k k k k EF d --=--⋅+⋅+⋅=⋅ 若△OEF 面积不小于22,即S △OEF 22≥,则有 解得.22,022********2≤≤-≤--⇔≥--k k k k k ③综合②、③知,直线l 的斜率的取值范围为[-2,-1]∪(1-,1) ∪(1, 2).解法2:依题意,可设直线l 的方程为y =kx +2,代入双曲线C 的方程并整理, 得(1-K 2)x 2-4kx -6=0.∵直线l 与双曲线C 相交于不同的两点E 、F , ∴.0)1(64)4(,01222>-⨯+-=∆≠-k k k ⇔33,1<<-±≠k k .∴k ∈(-3,-1)∪(-1,1)∪(1,3). 设E (x 1,y 1),F (x 2,y 2),则由①式得 |x 1-x 2|=.132214)(22221221kk kx x x x --=-∆=-+ ③当E 、F 在同一去上时(如图1所示), S △OEF =;21212121x x OD x x OD S S ODE ODF -⋅=-⋅=-∆∆ 当E 、F 在不同支上时(如图2所示).+=∆∆O D F O EF S S S △ODE =.21)(212121x x OD x x OD -⋅=+⋅ 综上得S △OEF =,2121x x OD -⋅于是 由|OD |=2及③式,得S △OEF =.132222kk --若△OEF 面积不小于2则有即,22,2≥∆O EF S.22,022*******2≤≤-≤-⇔≥--k k k k k 解得 ④综合②、④知,直线l 的斜率的取值范围为[-2,-1]∪(-1,1)∪(1,2).20.本小题主要考查函数、导数和不等式等基本知识,考查用导数求最值和综合运用数学知识解决实际问题能力.(满分12分)解:(Ⅰ)①当0<t ≤10时,V (t )=(-t 2+14t -40),5050441<+e化简得t 2-14t +40>0,解得t <4,或t >10,又0<t ≤10,故0<t <4.②当10<t ≤12时,V (t )=4(t -10)(3t -41)+50<50, 化简得(t -10)(3t -41)<0, 解得10<t <341,又10<t ≤12,故 10<t ≤12. 综合得0<t <4,或10<t 12,故知枯水期为1月,2月,,3月,4月,11月,12月共6个月. (Ⅱ)(Ⅰ)知:V (t )的最大值只能在(4,10)内达到.由V ′(t )=),8)(2(41)42341(41241-+-=++-t t c t t c tt令V ′(t )=0,解得t=8(t=-2舍去).当t 变化时,V ′(t ) 与V (t )的变化情况如下表:由上表,V (t )在t =8时取得最大值V (8)=8e 2+50-108.52(亿立方米). 故知一年内该水库的最大蓄水量是108.32亿立方米21.本小题主要考查等比数列的定义、数列求和、不等式等基础知识和分类讨论的思想,考查综合分析问题的能力和推理认证能力,(满分14分)(Ⅰ)证明:假设存在一个实数λ,使{a n }是等比数列,则有a 22=a 1a 3,即,094949494)494()332(222=⇔-=+-⇔-=-λλλλλλλ矛盾. 所以{a n }不是等比数列.(Ⅱ)解:因为b n +1=(-1)n +1[a n +1-3(n -1)+21]=(-1)n +1(32a n -2n +14) =32(-1)n ·(a n -3n +21)=-32b n 又b 1x -(λ+18),所以当λ=-18,b n =0(n ∈N +),此时{b n }不是等比数列: 当λ≠-18时,b 1=(λ+18) ≠0,由上可知b n ≠0,∴321-=+n a b b (n ∈N +). 故当λ≠-18时,数列{b n }是以-(λ+18)为首项,-32为公比的等比数列. (Ⅲ)由(Ⅱ)知,当λ=-18,b n =0,S n =0,不满足题目要求. ∴λ≠-18,故知b n = -(λ+18)·(-32)n -1,于是可得 S n =-.321·)18(53⎥⎦⎤⎢⎣⎡+n )-(- λ 要使a <S n <b 对任意正整数n 成立, 即a <-53(λ+18)·[1-(-32)n ]〈b(n ∈N +) ,则令 得)2(1)()32(1)18(53)32(1--=--<+-<--n f b a nnλ ①当n 为正奇数时,1<f (n ),1)(95;35<≤≤n f n 为正偶数时,当 ∴f (n )的最大值为f (1)=35,f (n )的最小值为f (2)= 95,于是,由①式得95a <-53(λ+18),<.1831853--<<--⇔a b b λ当a <b ≤3a 时,由-b -18≥=-3a -18,不存在实数满足题目要求;当b >3a 存在实数λ,使得对任意正整数n ,都有a <S n <b ,且λ的取值范围是(-b -18,-3a -18).。

湖北省近五年(-)高考数学最新分类汇编8解析几何理

湖北省近五年(-)高考数学最新分类汇编8解析几何理

|MM M ,则
| 的最大值为
3
| AB |
()
43 A. 3
【答案】 B
4 .(湖北省黄梅一中
3 B. 3
23 C. 3
D. 3
2013 届高三下学期综合适应训练(四)数学(理)试题
)我国发射的“神舟 3 号”
宇宙飞船的运行轨道是以地球的中心 F2 为一个焦点的椭圆 , 近地点 A距地面为 m千米 , 远地点 B距地面
,
2
2
【答案】 A.
2
【解析】易得准线方程是 x a
2 1
b2
2
2
所以 c2 a 2 b 2 4 b 2 1 即 b2 3 所以方程是 x y 1
43
联立 y kx 2 可得 3x2 +(4k 2 +16k)x 4 0 由 0 可解得 A
16.(湖北省八校 2013 届高三第二次联考数学(理)试题)定义 : 平面内两条相交但不垂直的数轴构成的
【答案】 B 11.(湖北省天门市 2013 届高三模拟测试(一)数学理试题
y2 )双曲线 a2
x2 b2
1与抛物线 y
1
2
x
有一
8
个公共焦点 F, 双曲线上过点 F 且垂直实轴的弦长为 2 3 , 则双曲线的离心率等于 3
()
A.2
B. 2 3 3
C. 3 2 2
D. 3
【答案】 B 12.(湖北省武汉市 2013 届高三 5 月供题训练数学理试题(三) ( word 版) )过抛物线 y 2= 4x 的焦点 F
F, 则该双曲线的离心率为
()
A. 2
【答案】 C 二、填空题
B. 2

2008年普通高等学校招生全国统一考试理科数学试题及答案-湖北卷

2008年普通高等学校招生全国统一考试理科数学试题及答案-湖北卷

绝密★启用前2008年普通高等学校招生全国统一考试(湖北卷)数 学(理工农医类)本试卷共4面,满分150分,考试时间120分钟注意事项:1. 答卷前,考生务必将自己的姓名,准考证号填写在试题卷和答题卡上,并将准考证号条形码粘巾在答题卡上指定位置。

2. 选择题每小题选出答案后,用2B 铅笔将答题卡上,对应题目的答案标号涂写,如写改动,用橡皮擦干净后,再选涂其它答案标号,答在试题卷上无效。

3. 非选择题用0、5毫米的黑色墨水签字笔答在答题卡上每题对应的答题区域内,答在试题卷上无效。

4. 考试结束,请将本试题卷和答题卡一并上交。

一、选择题:本次题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 设a =(1,-2),b =(-3,4),c =(3,2),则(a +2b )·c =A 、(-15,12)B 、0C 、-3D 、-11 2. 若非空集合A ,B ,C 满足A ∪B=C ,且B 不是A 的子集,则A 、 “x ∈C ”是“x ∈A ”的充分条件但不是必要条件B 、 “x ∈C ”是“x ∈A ”的必要条件但不是充分条件 C 、 “x ∈C ”是“x ∈A ”的充要条件D 、 “x ∈C ”既不是“x ∈A ”的充分条件也不是“x ∈A ”的必要条件 3. 用与球心距离为1的平面去截球,所得的截面面积为π,则球的体积为A 、38π B 、 328πC 、π28D 、 332π 4. 函数f (x )=)4323(1122+--++-x x x x n x的定义域为A 、(- ∞,-4) ∪[2,+ ∞]B 、(-4,0)∪(0,1)C 、[-4,0]∪(0,1)D 、 [-4,0]∪(0,1) 5、将函数y=3sin (x -θ)的图象F 按向量(3π,3)平移得到图象F ′ ,若F ′的一条对称轴是直线x=4π,则θ的一个可能取值是 A 、π125 B 、 π125- C 、π1211 D 、 -π12116、将5名志愿者分配到3个不同的奥运场馆参加接待工作,每个场馆至少分配一名志愿者的方案种数为A 、540B 、300C 、180D 、150 7、若f(x)=21ln(2)2x b x -++∞在(-1,+)上是减函数,则b 的取值范围是 A 、[-1,+∞) B 、(-1,+∞) C 、(-∞,-1] D 、(-∞,-1)8、已知m ∈N*,a,b ∈R ,若0(1)limm x x ab x→++=,则a ·b = A 、-m B 、m C 、-1 D 、19、过点A (11,2)作圆22241640x y x y ++--=的弦,其中弦长为整数的共有 A 、16条 B 、17条 C 、32条 D 、34条10、如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P 变轨进入以月球球心F 为一个焦点的椭圆轨道I 绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点的椭圆轨道Ⅱ绕月飞行,最终卫星在P 点第三次变轨进入以F 为圆心的圆形轨道Ⅲ绕月飞行,若用2c 1和2c 2分别表示椭圆轨道Ⅰ和Ⅱ的焦距,用2a 1和2a 2分别表示椭圆轨道Ⅰ和Ⅱ的长轴的长,给出下列式子:①a 1+c 1=a 2+c 2; ②a 1-c 1=a 2-c 2; ③c 1a 2>a 1c 2; ④11a c <22c a 、 其中正确式子的序号是A 、①③B 、②③C 、①④D 、②④二、填空题:本大题共5小题,每小题5分,共25分、把答案填在答题卡相应位置上、 11、设z 1是复数,z 2=z 1-i 1z (其中1z 表示z 1的共轭复数),已知z 2的实部是-1,则z 2的虚部为 、 12、在△ABC 中,三个角A ,B ,C 的对边边长分别为a=3,b=4,c=6,则bc cosA+ca cosB+ab cosC 的值为 、13、已知函数f(x)=x 2+2x+a, f(bx)=9x 2-6x +2,其中x ∈R ,a,b 为常数,则方程f (ax+b )=0的解集为 、14、已知函数f (x )=2x ,等差数列{a x }的公差为2,若 f(a 2+a 4+a 6+a 8+a 10)=4,则 log 2[f (a 1)·f (a 2)·f (a 3)·…·f(a 10)]= 、 15、观察下列等式:2123213432111,22111,326111,424ni ni n i i n n i n n n i n n n ====+=++=++∑∑∑ 454311111,52330ni i n n n n ==++-∑ 5654211151,621212ni in n n n ==++-∑67653111111,722642ni in n n n n ==++--∑ ……………………………………212112101,nkk k k k k k k k i ia n a n a n a n a n a +--+--==++++⋅⋅⋅++∑可以推测,当k ≥2(k ∈N*)时,1111,,12k k k a a a k +-===+ a k -2= 、三、解答题:本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤、 16、(本小题满分12分) 已知函数f (t17()cos (sin )sin (cos ),(,].12g x x f x x f x x ππ=∙+∙∈ (Ⅰ)将函数g(x )化简成Asin(ωx +φ)+B (A >0,ω>0,φ∈[0,2π))的形式;(Ⅱ)求函数g(x )的值域、 17、(本小题满分12分)袋中有20个大小相同的球,其中记上0号的有10个,记上n 号的有n 个(n =1,2,3,4)、现从袋中任取一球、ξ表示所取球的标号、(Ⅰ)求ξ的分布列,期望和方差;(Ⅱ)若η=a ξ-b ,E η=1,D η=11,试求a,b 的值、 18、(本小题满分12分)如图,在直三棱柱ABC -A 1B 1C 1中,平面A 1BC ⊥侧面A 1ABB 1、(Ⅰ)求证:AB ⊥BC ;(Ⅱ)若直线AC 与平面A 1BC 所成的角为θ,二面角A 1-BC -A 的大小为ϕ,试判断θ与ϕ的大小关系,并予以证明、19、(本小题满分13分)如图,在以点O 为圆心,|AB|=4为直径的半圆ADB 中,OD ⊥AB ,P 是半圆弧上一点, ∠POB=30°,曲线C 是满足||MA|-|MB||为定值的动点M 的轨迹,且曲线C 过点P 、(Ⅰ)建立适当的平面直角坐标系,求曲线C 的方程;(Ⅱ)设过点D 的直线l 与曲线C 相交于不同的两点E 、F 、 若△OEF 的面积不小于...l 斜率的取值范围、20、(本小题满分12分)水库的蓄水量随时间而变化,现用t 表示时间,以月为单位,年初为起点,根据历年数据,某水库的蓄水量(单位:亿立方米)关于t 的近似函数关系式为V (t )=⎪⎩⎪⎨⎧≤<+--≤<+-+-1210,50)413)(10(4,100,50)4014(412t t t t e t t t(Ⅰ)该水库的蓄水量小于50的时期称为枯水期、以i -1<t <i 表示第i 月份(i=1,2,…,12),问一年内哪几个月份是枯水期?(Ⅱ)求一年内该水库的最大蓄水量(取e=2、7计算)、 21、(本小题满分14分)已知数列{a n }和{b n }满足:a 1=λ,a n+1=24,(1)(321),3n n n n a n b a n +-=--+其中λ为实数,n 为正整数、(Ⅰ)对任意实数λ,证明数列{a n }不是等比数列;(Ⅱ)试判断数列{b n }是否为等比数列,并证明你的结论;(Ⅲ)设0<a <b ,S n 为数列{b n }的前n 项和。

2008年高考理数试题参考答案(湖北卷)

2008年高考理数试题参考答案(湖北卷)

西北工业大学网络教育学院2010年5月大作业试题学习中心:命题教师周琳注:学生必须在答题纸上答题,否则没有成绩。

第 3 页共11 页《市场营销学》学习参考警示:请考生在答题时加入自己思路和观点,避免雷同,特别是标注为红色字体的内容。

一、案例分析题1.宝洁公司开发一次性尿布的决策是在什么基础上进行的?(5分)答:宝洁公司开发一次性尿布的决策充分证明企业进行产品开发和市场营销活动必须真正理解和把握市场需求,而对市场需求的把握和确认则必须以科学且充分的市场调研为基础。

2.宝洁公司所把握的企业经营观念是什么?(5分)答:宝洁公司所把握的企业经营观念是:在市场上,20%的品牌占了80%的市场份额;在顾客中,20%的大客户,给企业带来80%的收益。

3.宝洁为什么用“娇娃”?如果当初是你给一次性尿布起名,你会起一个什么名?(10分)答:因为宝洁公司生产的尿布主要针对于父母,而“娇娃”能更好的体现该产品对宝宝的细心呵护,与父母爱子的心情很贴切,所以会选择命名为“娇娃”。

如果当初是我取名,我也会取一个能引起父母感情上共鸣的名字,如“***”等,意味着用了我的尿布,将“*** ***”。

4.此案例中有哪些营销知识的体现?(10分)答:一次性尿布虽然不是宝洁公司最先开发的产品,但该公司却通过详尽的市场调研认识到了该产品巨大的市场潜力和其他品牌的产品不能畅销的根本原因。

于是根据调研所了解的有关资讯对该产品进行重新设计,使之符合市场要求,并设法降低成本和销售价格使之符合消费者的支付能力和期望价格,从而使一次性尿布终于成为具有方便、卫生和经济等诸多优点且满足市场消费需求特征的畅销产品。

宝洁公司开发一次性尿布的过程,始终是一个深入了解消费需求、适应消费需求的过程。

向我们充分展示了现代市场营销“在适当的时间和地点、以适当的价格把适当的产品提供给适当消费者”的本质,充分体现了现代市场营销以消费需求为中心,在满足消费需求的基础上讲求企业长期合理利润的基本精神。

2012年湖北省高考数学试卷(理科)答案及解析

2012年湖北省高考数学试卷(理科)答案及解析

2012年湖北省高考数学试卷(理科)一、选择题:本大题共 小题,每小题 分,共 分,在每小题给出的四个选项中,只有一项是符合题目要求的.( ❿湖北)方程⌧ ⌧的一个根是()✌.﹣ ♓ . ♓ .﹣ ♓ . ♓.( ❿湖北)命题❽ ⌧ ✈, ✈❾的否定是()✌. ⌧  ✈, ✈ . ⌧ ✈, ✈ . ⌧  ✈, ✈ . ⌧ ✈, ✈ .( ❿湖北)已知二次函数⍓♐(⌧)的图象如图所示,则它与✠轴所围图形的面积为 ()✌. . . ..( ❿湖北)已知某几何体的三视图如图所示,则该集合体的体积为()✌. . ⇨ . . ⇨.( ❿湖北)设♋ ☪,且 ♎♋♎,若   ♋能被 整除,则♋()✌. . .  . .( ❿湖北)设♋,♌,♍,⌧,⍓, 是正数,且♋ ♌ ♍ ,⌧ ⍓  ,♋⌧♌⍓♍,则 ()✌. . . ..( ❿湖北)定义在(﹣ , )✉( , )上的函数♐(⌧),如果对于任意给定的等比数列 ♋⏹❝,♐(♋⏹)❝仍是等比数列,则称♐(⌧)为❽保等比数列函数❾.现有定义在(﹣ , )✉( , )上的如下函数:♊♐(⌧) ⌧ ;♋♐(⌧) ⌧;♌♐(⌧) ;♍♐(⌧) ●⏹⌧.则其中是❽保等比数列函数❾的♐(⌧)的序号为()✌.♊♋ .♌♍ .♊♌ .♋♍.( ❿湖北)如图,在圆心角为直角的扇形 ✌中,分别以 ✌, 为直径作两个半圆.在扇形 ✌内随机取一点,则此点取自阴影部分的概率是()✌. ﹣ .﹣ . ..( ❿湖北)函数♐(⌧) ⌧♍☐♦⌧ 在区间☯, 上的零点个数为()✌. . . ..( ❿湖北)我国古代数学名著《九章算术》中❽开立圆术❾曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径,❽开立圆术❾相当于给出了已知球的体积✞,求其直径♎的一个近似公式♎☟.人们还用过一些类似的近似公式.根据⌧⑤判断,下列近似公式中最精确的一个是()✌.♎☟ .♎☟ .♎☟ .♎☟二、填空题:(一)必考题( 题)本大题共 小题,考试共需作答 小题,每小题 分,共 分.请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分..( ❿湖北)设 ✌的内角✌, , ,所对的边分别是♋,♌,♍.若(♋♌﹣♍)(♋♌♍) ♋♌,则角 ♉♉♉♉♉♉♉♉♉..( ❿湖北)阅读如图所示的程序框图,运行相应的程序,输出的结果♦♉♉♉♉♉♉♉♉♉..( ❿湖北)回文数是指从左到右与从右到左读都一样的正整数.如 ,, , , 等.显然 位回文数有 个: , , ⑤, 位回文数有 个: , , ,⑤, , ,⑤, .则:(♊) 位回文数有♉♉♉♉♉♉♉♉♉个;(♋) ⏹(⏹ ☠ )位回文数有♉♉♉♉♉♉♉♉♉个..( ❿湖北)如图,双曲线﹣ (♋,♌> )的两顶点为✌ ,✌ ,虚轴两端点为 , ,两焦点为☞ ,☞ .若以✌ ✌ 为直径的圆内切于菱形☞ ☞ ,切点分别为✌, , , .则:(♊)双曲线的离心率♏♉♉♉♉♉♉♉♉♉;(♋)菱形☞ ☞ 的面积 与矩形✌的面积 的比值 ♉♉♉♉♉♉♉♉♉.二、填空题:(二)选考题(请考生在第 、 两题中任选一题作答,请先在答题卡指定位置将你所选的题目序号后的方框用 铅笔涂黑,如果全选,则按第 题作答结果计分.).( ❿湖北)(选修 ﹣ :几何证明选讲)如图,点 在 的弦✌上移动,✌,连接 ,过点 作 的垂线交 于点 ,则 的最大值为♉♉♉♉♉♉♉♉♉..( ❿湖北)(选修 ﹣ :坐标系与参数方程):在直角坐标系⌧⍓中,以原点 为极点,⌧轴的正半轴为极轴建立极坐标系,已知射线→与曲线(♦为参数)相较于✌, 来两点,则线段✌的中点的直角坐标为♉♉♉♉♉♉♉♉♉.三、解答题:本大题共 小题,共 分.解答应写出文字说明、证明过程或演算步骤..( ❿湖北)已知向量 (♍☐♦⌧﹣♦♓⏹⌧,♦♓⏹⌧), (﹣♍☐♦⌧﹣♦♓⏹⌧, ♍☐♦⌧),设函数♐(⌧) ❿ ↖(⌧ )的图象关于直线⌧⇨对称,其中 ,↖为常数,且 (, )( )求函数♐(⌧)的最小正周期;( )若⍓♐(⌧)的图象经过点(, )求函数♐(⌧)在区间☯, 上的取值范围..( ❿湖北)已知等差数列 ♋⏹❝前三项的和为﹣ ,前三项的积为 .( )求等差数列 ♋⏹❝的通项公式;( )若♋ ,♋ ,♋ 成等比数列,求数列 ♋⏹ ❝的前⏹项和..( ❿湖北)如图 , ✌, ,过动点✌作✌,垂足 在线段 上且异于点 ,连接✌,沿✌将 ✌折起,使 (如图 所示),( )当 的长为多少时,三棱锥✌﹣ 的体积最大;( )当三棱锥✌﹣ 的体积最大时,设点☜, 分别为棱 ,✌的中点,试在棱 上确定一点☠,使得☜☠,并求☜☠与平面 ☠所成角的大小..( ❿湖北)根据以往的经验,某工程施工期间的将数量✠(单位:❍❍)对工期的影响如下表:降水量✠✠<  ♎✠<  ♎✠< ✠♏工期延误天数✡ 历年气象资料表明,该工程施工期间降水量✠小于 , , 的概率分别为 , , ,求:(✋)工期延误天数✡的均值与方差;(♋)在降水量✠至少是 的条件下,工期延误不超过 天的概率..( ❿湖北)设✌是单位圆⌧ ⍓ 上的任意一点,♓是过点✌与⌧轴垂直的直线, 是直线♓与⌧轴的交点,点 在直线●上,且满足丨 丨 ❍丨 ✌丨(❍> ,且❍♊).当点✌在圆上运动时,记点 的轨迹为曲线 .(✋)求曲线 的方程,判断曲线 为何种圆锥曲线,并求焦点坐标;(♋)过原点且斜率为 的直线交曲线 于 、✈两点,其中 在第一象限,它在⍓轴上的射影为点☠,直线✈☠交曲线 于另一点☟,是否存在❍,使得对任意的 > ,都有 ✈☟?若存在,求❍的值;若不存在,请说明理由..( ❿湖北)(✋)已知函数♐(⌧) ❒⌧﹣⌧❒ ( ﹣❒)(⌧> ),其中❒为有理数,且 <❒< .求♐(⌧)的最小值;(✋✋)试用(✋)的结果证明如下命题:设♋ ♏,♋ ♏,♌ ,♌ 为正有理数,若♌ ♌ ,则♋ ♌ ♋ ♌♎♋ ♌ ♋ ♌ ;(✋✋✋)请将(✋✋)中的命题推广到一般形式,并用数学归纳法证明你所推广的命题.注:当↑为正有理数时,有求道公式(⌧↑)❒ ↑⌧↑﹣ .年湖北省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共 小题,每小题 分,共 分,在每小题给出的四个选项中,只有一项是符合题目要求的.( ❿湖北)考点:复数相等的充要条件。

五年高考新课标理科数学试题分类汇编(2011-2015)(答案详解版)

五年高考新课标理科数学试题分类汇编(2011-2015)(答案详解版)

· 1 ·五年高考分类汇编§1. 集合及其运算1.(2015·1)已知集合A ={-2,-1,0,2},B ={x |(x -1)(x +2)<0},则A ∩B =( )A .{-1,0}B .{0,1}C .{-1,0,1}D .{0,1,2}2.(2014·1)设集合M ={0, 1, 2},N ={}2|320x x x -+≤,则MN =( )A .{1}B .{2}C .{0,1}D .{1,2}3.(2013·1)已知集合M ={x|(x -1)2 < 4, x ∈R },N ={-1,0,1,2,3},则M ∩ N =( )A .{0, 1, 2}B .{-1, 0, 1, 2}C .{-1, 0, 2, 3}D .{0, 1, 2, 3}4.(2012·1)已知集合A ={1, 2, 3, 4, 5},B ={(x ,y )| x ∈A , y ∈A , x -y ∈A },则B 中所含元素的个数为( )A. 3B. 6C. 8D. 10§2. 复数计算1.(2015·2)若a 为实数且(2+ai )(a -2i ) = -4i ,则a =( )A .-1B .0C .1D .22.(2014·2)设复数1z ,2z 在复平面内的对应点关于虚轴对称,12z i =+,则12z z =( )A .- 5B .5C .- 4 + iD .- 4 - i3.(2013·2)设复数z 满足(1i)2i z -=,则z =( )A .1i -+B .1i --C .1i +D .1i -4.(2012·3)下面是关于复数iz +-=12的四个命题中,真命题为( )P 1: |z |=2, P 2: z 2=2i , P 3: z 的共轭复数为1+i , P 4: z 的虚部为-1 .A. P 2,P 3B. P 1,P 2C. P 2,P 4D. P 3,P 4 5.(2011·1)复数212ii+-的共轭复数是( ) A .35i -B .35i C .i -D .i§3. 简易逻辑1.(2011·10)已知a 与b 均为单位向量,其夹角为θ,有下列四个命题中真命题是( )12:+10,3P πθ⎡⎫>⇔∈⎪⎢⎣⎭a b 22:1,3P πθπ⎛⎤+>⇔∈⎥⎝⎦a b3:10,3P πθ⎡⎫->⇔∈⎪⎢⎣⎭a b 4:1,3P πθπ⎛⎤->⇔∈ ⎥⎝⎦a bA . P 1,P 4B .P 1,P 3C .P 2,P 3D .P 2,P 4§4. 平面向量1.(2014·3)设向量a,b满足10|a b|+=,6|a b|-=,则a b⋅=()A.1 B.2 C.3 D.52.(2015·13)设向量a,b不平行,向量λ+a b与2+a b平行,则实数λ= ____________.3.(2013·13)已知正方形ABCD的边长为2,E为CD的中点,则AE BD⋅=_______. 4.(2012·13)已知向量a,b夹角为45º,且1=||a,102=-||ba,则=||b .§5. 程序框图1.(2015·8)右边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”. 执行该程序框图,若输入a,b分别为14,18,则输出的a =()A.0 B.2 C.4 D.142.(2014·7)执行右面程序框图,如果输入的x,t均为2,则输出的S= ()A.4 B.5 C.6 D.73.(2013·6)执行右面的程序框图,如果输入的10N=,那么输出的S=()A.11112310++++B.11112!3!10!++++C.11112311++++D.11112!3!11!++++4.(2012·6)如果执行右边的程序框图,输入正整数N(N≥2)和实数a1,a2,…,a N,输入A、B,则()A. A+B为a1,a2,…,a N的和B.2BA+为a1,a2,…,a N的算术平均数C. A和B分别是a1,a2,…,a N中最大的数和最小的数D. A和B分别是a1,a2,…,a N中最小的数和最大的数· 2 ·· 3 ·5.(2011·3)执行右面的程序框图, 如果输入的N 是6,那么输出的p 是( )A .120B .720C .1440D .5040 §6. 线性规划1.(2014·9)设x ,y 满足约束条件70310350x y x y x y +-≤⎧⎪-+≤⎨⎪--≥⎩,则2z x y =- 的最大值为( )A .10B .8C .3D .22.(2013·9)已知0a >,x ,y 满足约束条件13(3)x x y y a x ≥⎧⎪+≤⎨⎪≥-⎩,若2z x y =+的最小值为1,则a =( )A .14B .12C .1D .23.(2015·14)若x ,y 满足约束条件1020+220x y x y x y -+≥⎧⎪-≤⎨⎪-≤⎩,则z x y =+的最大值为_______.4.(2014·14)设x ,y 满足约束条件⎪⎪⎩⎪⎪⎨⎧≥≥≤+-≥-0031y x y x y x ,则2z x y =-的取值范围为 . 5.(2011·13)若变量x , y 满足约束条件32969x y x y ≤+≤⎧⎨≤-≤⎩,则2z x y =+的最小值为 . §7. ※二项式定理1.(2013·5)已知5(1)(1)ax x ++的展开式中2x 的系数为5,则a =( )A .4-B .3-C .2-D .1-2.(2011·8)51()(2)a x x x x+-的展开式中各项系数的和为2,则该展开式中常数项为( )A .- 40B .- 20C .20D .403.(2015·15)4()(1)a x x ++的展开式中x 的奇数次幂项的系数之和为32,则a =_______. 4.(2014·13)10()x a +的展开式中,7x 的系数为15,则a =________.· 4 ·§8. 数 列1.(2015·4)已知等比数列{a n }满足a 1=3,a 1+ a 3+ a 5=21,则a 3+ a 5+ a 7 =( )A .21B .42C .63D .842.(2013·3)等比数列{}n a 的前n 项和为n S ,已知32110S a a =+,59a =,则1a =( )A .13B .13-C .19D .19-3.(2012·5)已知{a n }为等比数列,a 4 + a 7 = 2,a 5 a 6 = 8,则a 1 + a 10 =( )A. 7B. 5C. -5D. -74.(2015·16)设S n 是数列{a n }的前项和,且11a =-,11n n n a S S ++=,则S n =________________. 5.(2013·16)等差数列的前项和为,已知,,则的最小值为____. 6.(2012·16)数列}{n a 满足12)1(1-=-++n a a n n n ,则}{n a 的前60项和为 . 7.(2014·17)已知数列{a n }满足a 1 =1,a n +1 =3 a n +1.(Ⅰ)证明1{}2n a +是等比数列,并求{a n }的通项公式;(Ⅱ)证明:123111…2n a a a +++<.8.(2011·17)等比数列{}n a 的各项均为正数,且212326231,9.a a a a a +== (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设31323log log log n n b a a a =+++L L ,求数列1{}nb 的前n 项和.§9. 三角函数1. (2014·4)钝角三角形ABC 的面积是12,AB =1,BCAC =( )A .5BC .2D .12.(2012·9)已知0>ω,函数)4sin()(πω+=x x f 在),2(ππ单调递减,则ω的取值范围是() A. 15[,]24B. 13[,]24C. 1(0,]2D. (0,2]3.(2011·5)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos2θ =( ) A .45- B .35- C .35D .454.(2011·11)设函数()sin()cos()(0,||)2f x x x πωϕωϕωϕ=+++><的最小正周期为π,且()()f x f x -=,则( )A .()f x 在(0,)2π单调递减B .()f x 在3(,)44ππ单调递减C .()f x 在(0,)2π单调递增D .()f x 在3(,)44ππ单调递增{}n a n n S 100S =1525S =n nS· 5 ·5. (2014·14)函数()sin(2)2sin cos()f x x x ϕϕϕ=+-+的最大值为_________.6.(2013·15)设θ为第二象限角,若1tan()42πθ+=,则sin cos θθ+=_________.7.(2011·16)在△ABC中,60,B AC ==2AB BC +的最大值为 . 8.(2015)在∆ABC 中,D 是BC 上的点,AD 平分∠BAC ,∆ABD 面积是∆ADC 面积的2倍.(Ⅰ)求 sin sin BC ∠∠;(Ⅱ) 若AD =1,DC=2 ,求BD 和AC 的长.9.(2013·17)在△ABC 内角A 、B 、C 的对边分别为a ,b ,c ,已知a=bcosC+csinB . (Ⅰ)求B ;(Ⅱ)若b=2,求△ABC 面积的最大值.10. (2012·17)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,0sin 3cos =--+c b C a C a . (Ⅰ)求A ; (Ⅱ)若a =2,△ABC 的面积为3,求b ,c .§9. 立体几何1.(2015·6)一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为( ) A .81 B .71 C .61 D .51 2.(2015·9)已知A ,B 是球O 的球面上两点,∠AOB =90º,C 为该球面上的动点,若三棱锥O -ABC 体积的最大值为36,则球O 的表面积为( ) A .36πB .64πC .144πD .256π3.(2014·6)如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( ) A .1727B .59C .1027D .134.(2014·11)直三棱柱ABC -A 1B 1C 1中,∠BCA =90º,M ,N 分别是A 1B 1,A 1C 1的中点,BC =CA =CC 1,则BM 与AN 所成的角的余弦值为( ) A .110B .25CD5.(2013·4)已知,m n 为异面直线,m ⊥平面α,n ⊥平面β.直线l 满足l m ⊥,l n ⊥,l α⊄,l β⊄,则( )A .α // β且l // αB .αβ⊥且l β⊥C .α与β相交,且交线垂直于lD .α与β相交,且交线平行于l· 6 ·6.(2013·7)一个四面体的顶点在空间直角坐标系O xyz -中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到正视图可以为( )7.(2012·7)如图,网格纸上小正方形的边长为1何体的三视图,则此几何体的体积为( ) A. 6B. 9C. 128.(2012·11)已知三棱锥S -ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形,SC 为球O 的直径,且SC =2,则此棱锥的体积为( ) A.62B. 63C. 32D. 22 9.(2011·6)在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的侧视图可以为( )A. B. C. D.10.(2011·15)已知矩形ABCD 的顶点都在半径为4的球O 的球面上,且6,AB BC ==则棱锥O -ABCD 的体积为 .11.(2015·19)如图,长方体ABCD -A 1B 1C 1D 1中AB =16,BC =10,AA 1=8,点E ,F 分别在A 1B 1,D 1C 1上,A 1E =D 1F =4,过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形. (Ⅰ)在图中画出这个正方形(不必说出画法和理由); (Ⅱ)求直线AF 与平面α所成角的正弦值.12.(2014·18)如图,四棱锥P -ABCD 中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点. (Ⅰ)证明:PB // 平面AEC ;(Ⅱ)设二面角D -AE -C 为60º,AP =1,AD E -ACD 的体积.B. C.14. (2012·19)如图,直三棱柱ABC -A 1B 1C 1中,121AA BC AC ==,D 是棱AA 1的中点,DC 1⊥BD . (Ⅰ)证明:DC 1⊥BC ;(Ⅱ)求二面角A 1-BD -C 1的大小.§10. 排列组合、概率统计1.(2015·3)根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是( )A .逐年比较,2008年减少二氧化硫排放量的效果最显著.B .2007年我国治理二氧化硫排放显现成效.C .2006年以来我国二氧化硫年排放量呈减少趋势.D .2006年以来我国二氧化硫年排放量与年份正相关.2.(2014·5)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( ) A .0.8B .0.75C .0.6D .0.453. (2012·2)将2名教师,4名学生分成两个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由一名教师和2名学生组成,不同的安排方案共有( ) A. 12种B. 10种C. 9种D. 8种5.(2013·14)从个正整数1,2,…,n 中任意取出两个不同的数,若取出的两数之和等于5的概率为114,则n=________.6. (2012·15)某一部件由三个电子元件按下图方式连接而成,元件1或元件2正常工作,n C BADC 1A 1B 11AD1B1CACEB且元件3正常工作,则部件正常工作. 设三个电子元件的使用寿命(单位:小时)服从正态分布N (1000,502),且各元件能否正常工作互相独立,那么该部件的使用寿命超过1000小时的概率为 .7.(2015·18)某公司为了解用户对其产品的满意度,从A ,B 两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:(Ⅰ)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,得出结论即可);(Ⅱ)根据用户满意度评分,将用户的满意度从低到高分为三个等级:记事件评价相互独立,根据所给数据,以事件发生的频率作为相应事件发生的概率,求C 的概率. 8. (2014·19)某地区2007年至2013年农村居民家庭纯收入y (单位:千元)的数据如下表:(Ⅰ)求y 关于t 的线性回归方程;(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.附:回归直线的斜率和截距的估计公式分别为:()()()121ˆnii i ni i tty y bt t ==--=-∑∑,ˆˆay bt =-.· 9 ·(Ⅲ)在直方图的需求量分组中,以各组的区间中点值代表该组的各个需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若x ∈[100, 110),则取x =105,且x =105的概率等于需求量落入[100, 110)的概率),求利润T 的数学期望. 10. (2012·18)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花做垃圾处理. (Ⅰ)若花店某天购进16枝玫瑰花,求当天的利润y (单位:元)关于当天需求量n (单位:枝,n ∈N )的函数解析式;(Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:以100天记录的各需求量的频率作为各需求量发生的概率.(i )若花店一天购进16枝玫瑰花,X 表示当天的利润(单位:元),求X 的分布列、数学期望及方差;(ii )若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?说明理由. 11.(2011·19)某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品,现用两种新配方(分别称为A 配方和B 配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:A 配方的频数分布表(Ⅰ)分别估计用A 配方,B 配方生产的产品的优质品率;(Ⅱ)已知用B 配方生成的一件产品的利润y (单位:元)与其质量指标值t 的关系式为2(94)2(94102)4(102),t <y ,t <,t -⎧⎪=≤⎨⎪≥⎩,从用B 配方生产的产品中任取一件,其利润记为X (单位:元)求X 的分布列及数学期望.(以试验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率)§11. 解析几何1.(2015·7)过三点A(1, 3),B (4, 2),C (1, -7)的圆交于y 轴于M 、N两点,则MN =( )A .B .8C .D .102.(2015·11)已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,∆ABM 为等腰三角形,且顶角为120°,则E 的离心率为( ) AB .2CD· 10 ·3.(2014·10)设F 为抛物线C :23y x =的焦点,过F 且倾斜角为30º的直线交C 于A , B 两点,O 为坐标原点,则△OAB 的面积为( ) ABC .6332D .944.(2013·11)设抛物线2:2(0)C y px p =>的焦点为F ,点M 在C 上,||5MF =,若以MF 为直径的园过点(0,2),则C 的方程为( ) A .24y x =或28y x = B .22y x =或28y x = C .24y x =或216y x =D .22y x =或216y x =5.(2013·12)已知点(1,0)A -,(1,0)B ,(0,1)C ,直线(0)y ax b a =+>将ABC △分割为面积相等的两部分,则b 的取值范围是( ) A .(0,1)B.1(1)2-C.1(1]3D .11[,)326.(2012·4)设F 1,F 2是椭圆E : 12222=+b y a x )0(>>b a 的左右焦点,P 为直线23ax =上的一点,12PF F △是底角为30º的等腰三角形,则E 的离心率为( ) A.21B.32 C.43 D.54 7.(2012·8)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,|AB |=34,则C 的实轴长为( )A.2B. 22C. 4D. 88.(2011·7)设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于A , B两点,|AB |为C 的实轴长的2倍,则C 的离心率为( ) ABC .2D .39.(2014·6)设点M (0x ,1),若在圆O :221x y +=上存在点N ,使得∠OMN =45º,则0x 的取值范围是________.10.(2011·14)在平面直角坐标系xoy 中,椭圆C 的中心为原点,焦点F 1,F 2在x 轴上,过F 1的直线l 交C 于A ,B 两点,且△ABF 2的周长为16,那么C 的方程为 .11.(2015·20)已知椭圆C :2229x y m +=(m >0),直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .(Ⅰ)证明:直线OM 的斜率与l 的斜率的乘积为定值;(Ⅱ)若l 过点(,)3mm ,延长线段OM 与C 交于点P ,四边形OAPB 能否平行四边形?若能,求此时l 的斜率;若不能,说明理由.12.(2014·20)设F 1,F 2分别是椭圆()222210y x a b a b+=>>的左右焦点,M 是C 上一点且MF 2与x 轴垂直,直线MF 1与C 的另一个交点为N . (Ⅰ)若直线MN 的斜率为34,求C 的离心率;(Ⅱ)若直线MN 在y 轴上的截距为2,且15MN F N =,求a, b .13.(2013·20)平面直角坐标系xOy 中,过椭圆2222:1(0)x y M a b a b+=>>右焦点F 的直线0x y +-=交M 于,A B 两点,P 为AB 的中点,且OP 的斜率为12. (Ⅰ)求M 的方程;(Ⅱ),C D 为M 上的两点,若四边形ACBD 的对角线CD AB ⊥,求四边形ACBD 面积的最大值.14.(2012·20)设抛物线:C py x 22=)0(>p 的焦点为F ,准线为l ,A 为C 上的一点,已知以F 为圆心,FA 为半径的圆F 交l 于B ,D 两点. (Ⅰ)若∠BFD =90º,△ABD 面积为24,求p 的值及圆F 的方程;(Ⅱ)若A 、B 、F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到m ,n 的距离的比值.15.(2011·20)在平面直角坐标系xOy 中,已知点A (0, -1),B 点在直线y =-3上,M 点满足//MB OA uuu r uu r, MA AB MB BA ⋅=⋅uuu r uu u r uuu r uu r ,M 点的轨迹为曲线C . (Ⅰ)求C 的方程;(Ⅱ)P 为C 上的动点,l 为C 在P 点处得切线,求O 点到l 距离的最小值 .§12. 函数与导数1.(2015·5)设函数211log (2)(1)()2(1)x x x f x x -+-<⎧=⎨≥⎩,则2(2)(log 12)f f -+=( )A .3B .6C .9D .122.(2015·10)如图,长方形ABCD 的边AB =2,BC =1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记∠BOP =x. 将动点P 到A ,B 两点距离之和表示为x 的函数f (x ),则f (x )的图像大致为 ( )A .B .C .D .3.(2015·12)设函数()f x '是奇函数()()f x x R ∈的导函数,(1)0f -=,当x >0时,()()0xf x f x '-<,则使得f (x ) >0成立的x 的取值范围是( ) A .(,1)(0,1)-∞-U B .(1,0)(1,)-+∞U C .(,1)(1,0)-∞--UD .(0,1)(1,)+∞U4.(2014·8)设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( )A .0B .1C .2D .35.(2014·12)设函数()x f x mπ=,若存在()f x 的极值点0x 满足22200[()]x f x m +<,则m 的取值范围是( ) A .(,6)(6,+)-∞-∞U B .(,4)(4,+)-∞-∞U C .(,2)(2,+)-∞-∞UD .(,1)(4,+)-∞-∞U6.(2013·8)设3log 6a =,5log 10b =,7log 14c =,则( )A .c b a >>B .b c a >>C .a c b >>D .a b c >>7.(2013·10)已知函数32()f x x ax bx c =+++,下列结论中错误的是( )A .00,()0x f x ∃∈=RB .函数()y f x =的图像是中心对称图形C .若0x 是()f x 的极小值点,则()f x 在区间0(,)x -∞单调递减D .若0x 是()f x 的极值点,则0()0f x '= 8.(2012·10)已知函数xx x f -+=)1ln(1)(,则)(x f y =的图像大致为( )A.C. D.xx x x9.(2012·12)设点P 在曲线xe y 21=上,点Q 在曲线)2ln(x y =上,则||PQ 的最小值为( ) A. 2ln 1-B.)2ln 1(2- C. 2ln 1+D.)2ln 1(2+10.(2011·2)下列函数中,既是偶函数又在+∞(0,)单调递增的函数是( ) A .3y x = B .||1y x =+ C .21y x =-+ D .||2x y -=11.(2011·9)由曲线y =2y x =-及y 轴所围成的图形的面积为( )A .103B .4C .163D .612.(2011·12)函数11y x =-的图像与函数2sin ,(24)y x x π=-≤≤的图像所有交点的横坐标之和等于( ) A .2B .4C .6D .813.(2014·15)已知偶函数f (x )在[0, +∞)单调递减,f (2)=0. 若f (x -1)>0,则x 的取值范围是_________.14.(2015·21)设函数2()mx f x e x mx =+-.(Ⅰ)证明:f (x )在(-∞,0)单调递减,在(0,+∞)单调递增;(Ⅱ)若对于任意x 1,,x 2∈[-1,1],都有|f (x 1)- f (x 2)|≤ e -1,求m 的取值范围. 15.(2014·21)已知函数()2x x f x e e x -=--. (Ⅰ)讨论()f x 的单调性;(Ⅱ)设()(2)4()g x f x bf x =-,当0x >时,()0g x >,求b 的最大值;(Ⅲ)已知1.4142 1.4143<<,估计ln2的近似值(精确到0.001). 16.(2013·21)已知函数()ln()x f x e x m =-+.(Ⅰ)设0x =是()f x 的极值点,求m ,并讨论()f x 的单调性; (Ⅱ)当2m ≤时,证明()0f x >.17.(2012·21)已知函数121()(1)(0)2x f x f e f x x -'=-+. (Ⅰ)求)(x f 的解析式及单调区间;(Ⅱ)若b ax x x f ++≥221)(,求b a )1(+的最大值. 18.(2011·21)已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=.(Ⅰ)求a 、b 的值;(Ⅱ)如果当0x >,且1x ≠时,ln ()1x kf x x x>+-,求k 的取值范围. §13. 几何证明选讲1.(2015·22)如图,O 为等腰三角形ABC 内一点,⊙O 与△ABC 的底边BC 交于M 、N 两点,与底边上的高AD 交于点G ,且与AB ,AC 分别相切于E ,F 两点. (Ⅰ)证明:EF ∥BC ;(Ⅱ)若AG 等于⊙O 的半径,且AE=MN=求四边形EBCF 的面积.2.(2014·22)如图,P 是⊙O 外一点,PA 是切线,A 为切点,割线PBC 与⊙O 相交于点B 、C ,PC =2PA ,D 为PC 的中点,AD 的延长线交⊙O 于点E . 证明:(Ⅰ)BE = EC ;(Ⅱ)AD ·DE = 2PB 2.3.(2013·22)如图,为外接圆的切线,的延长线交直线于点,,分别为弦与弦上的点,且,B 、E 、F 、C 四点共圆.(Ⅰ)证明:是外接圆的直径;(Ⅱ)若,求过B 、E 、F 、C 四点的圆的面积与外接圆面积的比值.4.(2012·22)如图,D ,E 分别为△ABC 边AB ,AC 的中点,直线DE 交于△ABC 的外接圆于F ,G 两点,若CF // AB ,证明: (Ⅰ)CD = BC ; (Ⅱ)△BCD ∽△GBD .5.(2011·22)如图,D ,E 分别为△ABC 的边AB ,AC 上的点,且不与△ABC 的顶点重合. 已知AE 的长为m ,AC 的长为n ,AD ,AB 的长是关于x 的方程x 2-14x +mn =0的两个根. (Ⅰ)证明:C 、B 、D 、E 四点共圆;(Ⅱ)若∠A =90º,且m =4,n =6,求C 、B 、D 、E 所在圆的半径.CD ABC △AB CD D E F AB AC BC AE DC AF ⋅=⋅CA ABC △DB BE EA ==ABC △G§14. 坐标系与参数方程1.(2015·23)在直角坐标系xOy 中,曲线C 1:cos sin x t y t αα=⎧⎨=⎩(t 为参数,t ≠0)其中0απ≤<,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:2sin ρθ=,C 3:ρθ=. (Ⅰ)求C 2与C 3交点的直角坐标;(Ⅱ)若C 1与C 2相交于点A ,C 1与C 3相交于点B ,求|AB |的最大值.2.(2014·23)在直角坐标系xoy 中,以坐标原点为极点,x 轴为极轴建立极坐标系,半圆C的极坐标方程为2cos ρθ=,[0,]2πθ∈.(Ⅰ)求C 的参数方程;(Ⅱ)设点D 在C 上,C 在D处的切线与直线:2l y =+垂直,根据(Ⅰ)中你得到的参数方程,确定D 的坐标.3.(2013·23)已知动点,都在曲线(为参数)上,对应参数分别为与,为的中点. (Ⅰ)求的轨迹的参数方程;(Ⅱ)将到坐标原点的距离表示为的函数,并判断的轨迹是否过坐标原点.4.(2012·23)已知曲线C 1的参数方程是2cos 3sin x y ϕϕ=⎧⎨=⎩(ϕ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程是ρ = 2. 正方形ABCD 的顶点都在C 2上,且A ,B ,C ,D 依逆时针次序排列,点A 的极坐标为)3,2(π.(Ⅰ)点A ,B ,C ,D 的直角坐标;(Ⅱ)设P 为C 1上任意一点,求|PA |2 + |PB |2 + |PC |2 + |PD |2的取值范围.5.(2011·23)在直角坐标系xOy 中,曲线C 1的参数方程为2cos 22sin x y αα=⎧⎨=+⎩(α为参数),M 是C 1上的动点,P 点满足2OP OM =uu u v uuu v,P 点的轨迹为曲线C 2.(Ⅰ)求C 2的方程;(Ⅱ)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线3πθ=与C 1的异于极点的交点为A ,与C 2的异于极点的交点为B ,求|AB |.P Q 2cos ,:2sin x t C y t =⎧⎨=⎩t t α=2(02)t ααπ=<<M PQ M M d αM§15. 不等式选讲1.(2015·24)设a ,b ,c ,d 均为正数,且a b c d +=+,证明:(Ⅰ)若ab >cd>||||a b c d -<-的充要条件.2.(2014·24)设函数1()||||(0)f x x x a a a=++->.(Ⅰ)证明:f (x ) ≥ 2;(Ⅱ)若f (3) < 5,求a 的取值范围.3.(2013·24)设均为正数,且.证明:(Ⅰ);(Ⅱ).4.(2012·24)已知函数f (x ) = |x + a | + |x -2|.(Ⅰ)当a =-3时,求不等式f (x ) ≥ 3的解集;(Ⅱ)若f (x ) ≤ | x -4 |的解集包含[1, 2],求a 的取值范围.5.(2011·24)设函数()||3f x x a x =-+,其中0a >.(Ⅰ)当1a =时,求不等式()32f x x ≥+的解集; (Ⅱ)若不等式()0f x ≤的解集为{|1}x x ≤-,求a 的值.参 考 答 案§1. 集合及其运算1. 【答案:A 】解析:由已知得,故,故选A.2.【答案:D 】解析:∵2={|320}{|12}N x x x x x -+≤=≤≤,∴{1,2}M N =.3.【答案:A 】解析:解不等式(x -1)2<4,得-1<x <3,即M ={x |-1<x <3}.而N ={-1, 0, 1, 2, 3},所以M ∩Na b c 、、1a b c ++=13ab bc ca ++≤2221a b c b c a ++≥{}21B x x =-<<={0, 1, 2},故选A. 4.【答案:D 】解析:要在1,2,3,4,5中选出两个,大的是x ,小的是y ,共2510C =种选法.§2. 复数计算1. 【答案:B 】解析:由已知得4a + (a 2 -4)i = -4i ,所以4a = 0,a 2 -4 = -4,解得a = 0,故选B.2.【答案:A 】解析:∵12i z =+,复数1z ,2z 在复平面内的对应点关于虚轴对称,∴22z i =-+,∴2212(2)(2)2145z z i i i =+-+=-=--=-.3.【答案:A 】解析:由(1-i )·z =2i ,得221=111i i i z i i i (+)=-(-)(+)=222i-+=-1+i . 4.【答案:C 】解析:经计算2221,||(1)21z i z z i i i==--∴==---+ =,复数z 的共轭复数为1i -+,z 的虚部为1-,综上可知P 2,P 4正确.5.【答案:C 】解析:212i i+-=(2)(12),5i i i ++=共轭复数为C.§3. 简易逻辑5. 【答案:A 】解析:由||1+a b 得2[0,)3πθ⇒∈.由||1-==a b 得(,]3πθπ⇒∈,故选A.§4. 平面向量1.【答案:A 】解析:2222||10||6210,26,a b a b a b a b a b a b +=-=∴++⋅=+-⋅=,两式相减得:1a b ⋅=.2. 【答案:】 解析:因为向量a b λ+与2a b +平行,所以(2)a b k a b λ+=+,则12k kλ=⎧⎨=⎩,所以12λ=.1cos 2θ>-1cos 2θ<123.【答案:2】解析:以AB 所在直线为x 轴,AD 所在直线为y 轴建立平面直角坐标系,则点A 的坐标为(0,0),点B 的坐标为(2,0),点D 的坐标为(0,2),点E 的坐标为(1,2),则AE uu u r =(1,2),BD uu u r=(-2, 2),所以=2AE BD ⋅uu u r uu u r.4.【答案:解析:由已知得222222|2|(2)444||4||||cos45||a b a b a a b b a a b b -=-=-⨯+=-⋅+or r r r r r r r r r r r24|||10b b =-+=r r ,解得||b =r.§5. 程序框图1. 【答案:B 】解析:程序在执行过程中,a ,b 的值依次为a =14,b =18,b =4,a =10,a =6,a =2,b =2,此时a =b =2程序结束,输出a 的值为2,故选B .2.【答案:D 】解析:输入的x ,t 均为2.判断12≤?是,1221M =⋅=,235S =+=,112k =+=;判断22≤?是,2222M =⋅=,257S =+=,213k =+=,判断32≤?否,输出7S =.3.【答案:B 】解析:由程序框图知,当k =1,S =0,T =1时,T =1,S =1;当k =2时,12T =,1=1+2S ; 当k =3时,123T =⨯,111+223S =+⨯;当k =4时,1234T =⨯⨯,1111+223234S =++⨯⨯⨯; … … … … ; 当k =10时,123410T =⨯⨯⨯⨯,1111+2!3!10!S =+++, k 增加1变为11,满足k >N ,输出S ,故选B . 4.【答案:C 】解析:由程序框图判断x >A 得A 应为a 1,a 2,…,a N 中最大的数,由x <B 得B 应为a 1,a 2,…,a N 中最小的数. 5. 【答案:B 】解析:框图表示1n n a n a -=⋅,且11a =所求6a =720,故选B.§6. 线性规划1.【答案:B 】解析:作出x ,y 满足约束条件70310350x y x y x y +-≤⎧⎪-+≤⎨⎪--≥⎩所表示的平面区域为如图阴影部分,做出目标函数l 0:y =2x ,∵y =2x -z ,∴当y =2x -z 的截距最小时,z 取最大值.当y =2x -z 经过C 点时,z 取最大值.由31070x y x y -+=⎧⎨+-=⎩得C (5,2),此时z 取最大值为2×5-2=8. 2.【答案:B 】解析:由题意作出13(3)x x y y a x ≥⎧⎪+≤⎨⎪≥-⎩所表示的区域如图阴影部分所示,当目标函数表示的直线经过点A 时,取得最小值,而点A 的坐标为(1, -2a ),所以2-2a =1,解得12a =. 故选B.3. 【答案:】 解析:画出可行域,如图所示,将目标函数变形为y =-x +z ,当z 取到最大时,直线y = -x + z 的纵截距最大,故将直线尽可能地向上平移到1(1,2D ,则z =x +y 的最大值为32.4.【答案:[3,3]-】解析:画出可行域,易知当直线2Z x y =-经过点(1,2)时,Z小值-3;当直线2Z x y =-经过点(3,0)时,Z 取最大值3. 故2Z x y =-的取值范围为[3,3]-. 5. 【答案:-6】解析:画出可行域如图,当直线2z x y =+过239x y x y +=⎧⎨-=⎩(4,-5)时,min 6z =-.§7. ※二项式定理1.【答案:D 】解析:因为(1+x )5的二项展开式的通项为5C r r x (0≤r ≤5,r ∈Z ),则含x 2的项为225C x +ax ·15C x =(10+5a )x 2,所以10+5a =5,a =-1. 故选D. 2. 【答案:D 】32l 0 l 13x-y-5=0yxo 12 x-3y+1=0l 2x+y-7=052CA BA (1, -2a )解析:由51()(2)a x x x x+-的展开式中各项系数的和为2,得a =1(令x =1). 故原式=511()(2)x x x x+-,所以通项521552155(2)()(1)2r r r r r r r r T C x x C x ----+=-=-,由5-2r =1得r =2,对应的常数项=80,由5-2r =-1得r =3,对应的常数项=-40,故所求的常数项为40,故选D .3. 【答案:3】解析:由已知得,故的展开式中x 的奇数次幂项分别为,,,,,其系数之和为,解得. 4.【答案:12】 解析:∵10110r r r r T C x a -+=,∴107r -=,即3r =,∴373741015T C x a x ==,解得12a =. §8. 数列1. 【答案:B 】解析:设等比数列公比为q ,则a 1+a 1q 2+a 1q 4=21,又因为a 1=3,所以q 4+q 2-6=0,解得q 2=2,所以a 3+a 5+a 7=(a 1+a 3+a 5)q 2=42,故选B.2.【答案:C 】解析:由S 3=a 2+10a 1,得,a 1+a 2+a 3=a 2+10a 1即,a 3=9a 1,亦即a 1q 2=9a 1,解得q 2=9. ∵a 5=a 1·q 4=9,即81a 1=9,∴a 1=19.3.【答案:D 】解析:472∵a a +=,56478a a a a ==-,4742a a ∴==-,或4724a a =-=,,14710∵,,,a a a a 成等比数列,1107a a ∴+=-.4. 【答案:】解析:由已知得,两边同时除以,得,故数列是以为首项,为公差的等差数列,则,所以. 5.【答案:-49】解析:设数列{a n }的首项为a 1,公差为d ,则S 10=1109102a d ⨯+=10a 1+45d=0①,S 15=11514152a d ⨯+=15a 1+105d =25②,联立①②,得a 1=-3,23d =,所以S n 2(1)211032333n n n n n -=-+⨯=-. 令f (n )=nS n ,则32110()33f n n n =-,220()3f n n n '=-. 令f ′(n )=0,得n =0或203n =. 当203n >时,f ′(n )>0,200<<3n 时,f ′(n )<0,所以当203n =时,f (n )取最小值,而n ∈N +,则f (6)=-48,f (7)=-49,所以当n =7时,f (n )取最小值-49.6.【答案:1830】4234(1)1464x x x x x +=++++4()(1)a x x ++4ax 34ax x 36x 5x 441+6+1=32a a ++3a =1n-111n n n n n a S S S S +++=-=⋅1n n S S +⋅1111n nS S +=--1n S ⎧⎫⎨⎬⎩⎭1-1-11(1)n S n n =---=-1n S n=-解析:由1(1)21nn n a a n ++-=-得2212124341①②k k k ka a k a a k -+-=-⎧⎪⎨+=-⎪⎩L L ,由②-①得, 21212k k a a +-+=③ 由①得,2143656059()()()()奇偶S S a a a a a a a a -=-+-+-++-L (1117)30159********+⨯=++++==L .由③得,3175119()()()奇S a a a a a a =++++++5957()21530a a ++=⨯=L , 所以60()217702301830奇奇奇偶偶S S S S S S =+=-+=+⨯=.7.解析:(Ⅰ)证明:∵131n n a a +=+,∴1113()22n n a a ++=+,即:112312n n a a ++=+,又11322a +=,∴1{}2n a +是以32为首项,3为公比的等比数列.∴113322n n a -+=⋅,即312n n a -=.(Ⅱ)证明:由(Ⅰ)知312n n a -=,∴11231()3133n n n n n a -=≤=∈-N*, ∴21211()11111131331[1()]133323213nn n n a a a -++⋅⋅⋅+≤+++⋅⋅⋅+==-<- 故:1211132n a a a ++⋅⋅⋅+< 8.解析:(Ⅰ)设数列{a n }的公比为q ,由23269a a a =得32349a a =所以219q =. 由条件可知a >0,故13q =. 由12231a a +=得12231a a q +=,所以113a =. 故数列{a n }的通项式为13n n a =.(Ⅱ )31323(1)log log log =(12)2n n n n b a a a n +=+++-+++=-, 故12112()(1)1n b n n n n =-=--++,121111111122((1)()())22311nn b b b n n n +++=--+-++-=-++, 所以数列1{}nb 的前n 项和为21nn-+. §9. 三角函数1.【答案:B 】解析:∵1||||sin 2ABC S AB BC B ∆=⋅⋅,即:111sin 22B =⋅,∴s i n B =,即45B =或135.又∵222||||||2||||cos AC AB BC AB BC B =+-⋅⋅,∴2||1AC =或5,又∵ABC ∆为钝角三角形,∴2||5AC =,即:||AC =2.【答案:A 】解析:由322,22442k k k ππππππωπωπ+≤+<+≤+∈Z 得,1542,24k k k ω+≤≤+∈Z ,15024∵,∴ωω>≤≤.3. 【答案:B 】解析:由题知tan 2θ=,222222cos sin 1tan 3cos2cos sin 1tan 5θθθθθθθ--===-++,故选B. 4. 【答案:A 】解析:())(0,||)42f x x ππωϕωϕ=++><的最小正周期为π,所以2ω=,又()()f x f x -=,∴ f (x )为偶函数,=+,4k k Z πϕπ∴∈,())2f x x x π∴=+, 故选A. 5.【答案:1 】解析:∵()sin(2)2sin cos()sin[()]2sin cos()f x x x x x ϕϕϕϕϕϕϕ=+-+=++-+sin cos()cos sin()2sin cos()cos sin()sin cos()sin x x x x x xϕϕϕϕϕϕϕϕϕϕ=+++-+=+-+=∵x R ∈,∴()f x 的最大值为1.6.【答案:】 解析:由π1tan 1tan 41tan 2θθθ+⎛⎫+== ⎪-⎝⎭,得tan θ=13-,即sin θ=13-cos θ. 将其代入sin 2θ+cos 2θ=1,得210cos 19θ=. 因为θ为第二象限角,所以cos θ=sin θsin θ+cos θ=. 7.【答案:解析:00120120A C C A +=⇒=-,0(0,120)A ∈,22sin sin sin BC ACBC A A B==⇒=,022sin 2sin(120)sin sin sin AB ACAB C A A A C B==⇒==-=+,2AB BC ∴+=5sin ))A A A A ϕϕ+=+=+,故最大值是.8.解析:(Ⅰ)1sin 2ABD S AB AD BAD ∆=⋅∠,1sin 2ADC S AC AD CAD ∆=⋅∠,因为2ABD ADC S S ∆∆=,BAD CAD ∠=∠,所以2AB AC =,由正弦定理可得sin 1sin 2B AC C AB ∠==∠.(Ⅱ)因为::2ABD ADC S S BD DC ∆∆==,2DC=,所以BD ABD ∆和ADC ∆中,由余弦定理知,2222cos AB AD BD AD BD ADB =+-⋅∠,2222cos AC AD DC AD DC ADC =+-⋅∠, 故222222326AB AC AD BD DC +=++=,由(Ⅰ)知2AB AC =,所以1AC =.9.解析:(Ⅰ)由已知及正弦定理得sin A =sin B cos C +sin C sin B ①, 又A =π-(B +C ),故sin A =sin(B +C )=sin B cos C +cos B sin C ②,由①,②和C ∈(0,π)得sin B =cos B ,又B ∈(0,π),所以4B π=. (Ⅱ)△ABC的面积1sin 2S ac B ==. 由已知及余弦定理得224=+2cos4a c ac π-. 又a 2+c 2≥2ac ,故ac ≤当且仅当a =c 时,等号成立.因此△ABC.10.解析:(Ⅰ)由cos sin 0a C C b c +--=及正弦定理可得sin cos sin A C A Csin sin 0B C --=,sin cos sin sin()sin 0A C A C A C C -+-=sin cos sin A C A C - sin 0C -=,sin 0C >Q,cos 10A A --=,2sin()106A π∴--=,1sin()62A π-=,0A π<<Q ,5666A πππ∴-<-<,66A ππ∴-=,3A π∴=.(Ⅱ)ABC S =V Q1sin 24bc A bc ∴==4bc ∴=,2,3a A π==Q , 222222cos 4abc bc A b c bc ∴=+-=+-=,228b c ∴+=,解得2b c ==.§10. 立体几何1. 【答案:D 】解析:由三视图得,在正方体ABCD -A 1B 1C 1D 1中,截去四面体A -A 1B 1D 1,如图所示,设正方体棱长为,则,故剩余几何体体积为,所以截去部分体积与剩余部分体积的比值为,故选D.2. 【答案:C 】解析:如图所示,当点C 位于垂直于面的直径端点时,三棱锥的体积最大,设球O 的半径为R ,此时,故R=6,则球O 的表面积为,故选C .3.【答案:C 】解析:原来毛坯体积为π·32·6=54π (cm 2),由三视图得,该零件由左侧底面半径为2cm ,高为4cm 的圆柱和右侧底面半径为3cm ,高为2cm 的圆柱构成,所以该零件的体积为:π·32·2+π·22·4=34π (cm 2),则切削掉部分的体积为54π-34π =20π(cm 2),所以切削掉部分的体积与原来毛a 11133111326A AB D V a a -=⨯=3331566a a a -=AOB O ABC -2311136326O ABC C AOB V V R R R --==⨯⨯==24144S R ππ==1坯体积的比值为20105427ππ=. 4.【答案:C 】解析:取BC 的中点P ,连结NP 、AP , ∵M ,N 分别是A 1B 1,A 1C 1的中点,∴四边形NMBP 为平行四边形,∴BM //PN ,∴所求角的余弦值等于∠ANP 的余弦值,不妨令BC =CA =CC 1=2,则AN =APNP =,∴222||||||cos 2||||AN NP AP ANP AN NP +-∠=⨯⋅10=. 【另解】如图建立坐标系,令AC =BC =C 1C =2,则A (0, 2, 2),B (2, 0, 2),M (1, 1, 0),N (0, 1, 0),(1,1,2)(0,1,2),BM AN ∴=--=--,cos ||||6BM AN θBM AN ⋅===⋅5.【答案:D 】解析:因为m ⊥α,l ⊥m ,l ⊄α,所以l ∥α. 同理可得l ∥β. 又因为m ,n 为异面直线,所以α与β相交,且l 平行于它们的交线.故选D. 6.【答案:A 】解析:如图所示,该四面体在空间直角坐标系O -xyz 的图像为右图,则它在平面zOx 上的投影即正视图为右图,故选A. 7.【答案:B 】解析:由三视图可知,此几何体为底面是斜边为6的等腰直角三角形(俯视图),高为3的三棱锥,故其体积为113932V =⨯⨯=.8.【答案:A 】解析:易知点S 到平面ABC 的距离是点O 到平面ABC 的距离的2倍.显然O -ABC 是棱长为113O ABC V -==2S ABC O ABC V V --=. 9. 【答案:D 】解析:条件对应的几何体是由底面棱长为r 的正四棱锥沿底面对角线截出的部分与底面为半径为r 的圆锥沿对称轴截出的部分构成的. 故选D.10.【答案:解析:设ABCD 所在的截面圆的圆心为M ,则AM=,OM22=,1623O ABCD V -=⨯⨯=11.解析:(Ⅰ)交线围成的正方形EHGF 如图:ACB1A1C 1BNMP(Ⅱ)作EM AB ⊥,垂足为M ,则14AM AE ==,18EM AA ==因为EHGF 为正方形,所以EH EF =10BC ==,于是6MH ==,所以10AH =,以D 为坐标原点,DA 的方向为x 轴正方向,建立如图所以的空间直角坐标系D xyz -,则(10,0,0)A ,(10,10,0)H ,(10,4,8)E ,(0,4,8)F ,(10,0,0)FE =,(0,6,8)HE =-,设(,,)n x y z =是平面EHGF 的法向量,则00n FE n HE ⎧⋅=⎪⎨⋅=⎪⎩,即100680x y z =⎧⎨-+=⎩,所以可取(0,4,3)n =,又(10,4,8)AF =-,故||4|cos ,|||||n AFn AF n AF ⋅<>==AF 与平面EHGF 所成角的正弦值为15. 12.解析:(Ⅰ)证明:连结BD 交AC 于点O ,连结OE .∵底面ABCD 为矩形,∴点O 为BD 的中点,又E 为PD 的中点,∴//OE PB ,∵OE ⊂平面AEC ,PB ⊄平面AEC ,∴PB//平面AEC .(Ⅱ)以A 为原点,直线AB 、AD 、AP 分别为x 、y 、z 轴建立空间直角坐标系,设AB a =,则D ,(0,0,0)A,1)2E ,(C a ,∴1(0,)2AE =,(AC a=,设(,,)n x yz =是平面AEC 的法向量,则310220n AE y zn AC ax⎧⋅=+=⎪⎨⎪⋅=+=⎩,解得:yx z ⎧=⎪⎨⎪=⎩,令x =(3,,)n a =-,又∵(,0,0)AB a =是平面AED 的一个法向量,∴1|cos ,|cos602AB n <>==, 解得32a =,∴111||||||322E A C D V A D C D A P -=⨯⨯⨯⨯113132228=⨯⨯⨯=.13.解析:(Ⅰ)连结AC 1交A 1C 于点F ,则F 为AC 1中点.又D 是AB 中点,连结DF ,则BC 1∥DF . 因为DF ⊂平面A 1CD ,BC 1⊄平面A 1CD ,所以BC 1 // 平面A 1CD . (Ⅱ)由AC =CB =2AB 得,AC ⊥BC . 以C 为坐标原点,CA 的方向为x 轴正方向,建立如图所示的空间直角坐标系C -xyz . 设CA =2,PB CDEA则D (1,1,0),E (0,2,1),A 1(2,0,2),CD =(1,1,0),CE =(0,2,1),1CA =(2,0,2).设n =(x 1,y 1,z 1)是平面A 1CD 的法向量,则100CD CA ⎧⋅=⎪⎨⋅=⎪⎩n n ,即11110,220.x y x z +=⎧⎨+=⎩可取n =(1, -1, -1).同理,设m 是平面A 1CE 的法向量,则100CE CA ⎧⋅=⎪⎨⋅=⎪⎩m m ,可取m =(2, 1, -2).从而cos 〈n ,m〉=||||3=·n m n m ,故sin 〈n ,m即二面角D -A 1C -E14.解析:(Ⅰ) 证明:设112A CBC A Aa ===,直三棱柱111C B A ABC -,1DC DC ∴==,12CC a =,22211DC DC CC ∴+=,1DC DC ∴⊥. 又1DC BD ⊥Q ,1DC DC D =I ,1DC ∴⊥平面BDC . BC ⊂Q 平面BDC ,1DC BC ∴⊥.(Ⅱ)由 (Ⅰ)知,1DC,1BC =,又已知BD DC ⊥1,BD ∴=. 在Rt ABD △中,BD =,,90AD a DAB =∠=o,AB ∴=. 222AC BC AB ∴+=,AC BC ∴⊥.<法一>取11A B 的中点E ,则易证1C E ⊥平面1BDA ,连结DE ,则1C E ⊥BD ,已知BD DC ⊥1,BD ∴⊥平面1DC E ,BD ∴⊥DE ,1C DE ∴∠是二面角11C BD A --平面角. 在1Rt C DE △中,1111s i n 2C E C D E C D ∠===,130C DE ∴∠=. 即二面角11C BD A --的大小为30.<法二>以点C 为坐标原点,为x 轴,CB 为y 轴,1CC 为z 轴,建立空间直角坐标系C xyz -.则()()()()11,0,2,0,,0,,0,,0,0,2A a a B a D a a C a . (),,DB a a a =--,()1,0,DC a a =-,设平面1DBC 的法向量为1111(,,)n x y z =r ,则11111100n D B a x a y a z n DC a x a z ⎧⋅=-+-=⎪⎨⋅=-+=⎪⎩,不妨令11x =,得112,1y z ==,故可取1(1,2,1)n =r .同理,可求得平面1DBA 的一个法向量2(1,1,0)n =r . 设1n r与2n r的夹角为θ,则1212cos ||||6n n n n θ⋅===⋅⨯, 30θ∴=. 由图可知,二面角的大小为锐角,故二面角11C BD A --的大小为30.§11. 排列组合、概率统计1. 【答案:D 】解析:由柱形图可知,从2006年以来,我国二氧化硫排放量呈下降趋势,所以二氧化硫排放量与年份负相关,故选D.2.【答案:A 】解析:设A =“某一天的空气质量为优良”,B =“随后一天的空气质量为优良”,C BADC 1A 1B 1。

2008年湖北高考理科数学试题(解析版)

2008年湖北高考理科数学试题(解析版)

2008年普通高等学校招生全国统一考试(湖北卷)数 学(理科)一、选择题:本次题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设(1,2)a =-,(3,4)b =-,(3,2)c =则(2)a b c +=A.(15,12)-B.0C.3-D.11-解:2(1,2)2(3,4)(5,6)a b +=-+-=-,(2)(5,6)(3,2)3a b c +=-⋅=-,选C 2. 若非空集合,,A B C 满足AB C =,且B 不是A 的子集,则A. “x C ∈”是“x A ∈”的充分条件但不是必要条件B. “x C ∈”是“x A ∈”的必要条件但不是充分条件C. “x C ∈”是“x A ∈”的充要条件D. “x C ∈”既不是“x A ∈”的充分条件也不是“x A ∈”必要条件 解:x A x C ∈⇒∈,但是x C x A ∈⇒∈不能, 所以B 正确。

另外画出韦恩图,也能判断B 选项正确3. 用与球心距离为1的平面去截球,所得的截面面积为π,则球的体积为A.38πB. 328πC. π28D. 332π解:截面面积为π⇒截面圆半径为1,又与球心距离为1⇒,所以根据球的体积公式知3433R V π==球,故B 为正确答案. 4.函数1()f x x=的定义域为 A. (,4][2,)-∞-+∞ B. (4,0)(0.1)-C. [-4,0)(0,1] D. [4,0)(0,1)-解:函数的定义域必须满足条件:220320[4,0)(0,1)3400x x x x x x ≠⎧⎪-+≥⎪⇒∈-⎨--+≥> 5. 将函数3sin()y x θ=-的图象F 按向量(,3)3π平移得到图象F ',若F '的一条对称轴是直线4x π=,则θ的一个可能取值是A.π125 B. π125- C. π1211D. 1112π-解: 平移得到图象F ,的解析式为3sin()33y x πθ=--+,对称轴方程()32x k k Z ππθπ--=+∈,把4x π=带入得75(1)()1212k k k Z ππθππ=--=--+∈,令1k =-,512θπ= 6. 将5名志愿者分配到3个不同的奥运场馆参加接待工作,每个场馆至少分配一名志愿者的方案种数为 A. 540 B. 300 C. 180 D. 150 解:将5分成满足题意的3份有1,1,3与2,2,1两种,所以共有223335353322150C C C A A A += 种方案,故D正确. 7. 若21()ln(2)2f x x b x =-++∞在(-1,+)上是减函数,则b 的取值范围是 A. [1,)-+∞ B. (1,)-+∞ C. (,1]-∞- D. (,1)-∞- 解:由题意可知'()02bf x x x =-+<+,在(1,)x ∈-+∞上恒成立, 即(2)b x x <+在(1,)x ∈-+∞上恒成立,由于1x ≠-,所以1b ≤-,故C为正确答案.8 .已知*m N ∈,,a b R ∈,若0(1)limm x x ab x→++=,则a b ⋅= A .m - B .m C .1- D .1解:12200(1)(1)limlim m mm m m m x x a C x C x C xx ax x→→++++++=21101lim([)m m m m x a m C x C x b x-→+=++++=1,a b m =-=∴a b m ⇒=-另外易知1,a =-由洛必达法则100(1)(1)limlim 1m m x x x a m x m b x -→→+++===,所以a b m =- 9. 过点(11,2)A 作圆22241640x y x y ++--=的弦,其中弦长为整数的共有 A. 16条 B. 17条 C. 32条 D. 34条解:圆的标准方程是:222(1)(2)13x y ++-=,圆心(1,2)-,半径13r =过点(11,2)A 的最短的弦长为10,最长的弦长为26,(分别只有一条) 还有长度为11,12,25的各2条,所以共有弦长为整数的221532+⨯=条。

2008-2012五年高考数学湖北卷集锦

2008-2012五年高考数学湖北卷集锦

2012年普通高等学校招生全国统一考试(湖北卷)选择题:本大题共10小题,每小题5分,共50分 ,在每小题给出的四个选项中,只有一项是符合题目要求的1. 方程 2x +6x +13 =0的一个根是A -3+2iB 3+2iC -2 + 3iD 2 + 3i2 命题“∃x 0∈C R Q ,30x ∈Q ”的否定是 A∃x 0∉C R Q ,30x ∈Q B ∃x 0∈C R Q ,30x ∉Q C ∀x 0∉C R Q , 30x ∈Q D ∀x 0∈C R Q ,30x ∉Q3 已知二次函数y =f(x)的图像如图所示 ,则它与X 轴所围图形的面积为 A.25π B.43 C.32 D.2π4.已知某几何体的三视图如图所示,则该几何体的体积为 A. 83πB.3πC. 103πD.6π5.设a ∈Z ,且0≤a ≤13,若512012+a 能被13整除,则a=A.0B.1C.11D.126.设a,b,c,x,y,z 是正数,且a 2+b 2+c 2=10,x 2+y 2+z 2=40,ax+by+cz=20,则a b c x y z ++=++ A. 14 B. 13 C. 12 D,347.定义在(-∞,0)∪(0,+∞)上的函数f (x ),如果对于任意给定的等比数列{an},{f (an )}仍是等比数列,则称f (x )为“保等比数列函数”。

现有定义在(-∞,0)∪(0,+∞)上的如下函数:①f (x )=x ²;②f (x )=2x ;③;④f (x )=ln|x |。

则其中是“保等比数列函数”的f (x )的序号为A.①②B.③④C.①③D.②④8.如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆。

在扇形OAB 内随机取一点,则此点取自阴影部分的概率是A. B. C. D.9.函数f (x )=xcosx 2在区间[0,4]上的零点个数为A.4B.5C.6D.710.我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径,“开立圆术”相当于给出了已知球的体积V,求其直径d的一个近似公式。

湖北省近五年(2008)高考数学最新分类汇编1 集合 理

湖北省近五年(2008)高考数学最新分类汇编1 集合 理

湖北省2013届高三最新理科数学(精选试题16套+2008-2012五年湖北高考理科试题)分类汇编1:集合一、选择题 1 .(湖北省黄冈市2013届高三3月份质量检测数学(理)试题)如图2所示的韦恩图中, ( )A .B 是两非零集合,定义集合A B ⊗为阴影部分表示的集合,若2,,{|ln(2)},{|,0}x x y R A x y x x B y y e x ∈==-==>,则A B ⊗为( )A .{|02}x x <<B .{|12}x x x ≤≥或C .{|012}x x x ≤≤≥或D .{|012}x x x <≤≥或【答案】D2 .(2009高考(湖北理))已知{|(1,0)(0,1),},{|(1,1)(1,1),}P a a m m R Q b b n n R ==+∈==+-∈是两个向量集合,则P Q =I ( )A .{〔1,1〕}B .{〔-1,1〕}C .{〔1,0〕}D .{〔0,1〕}【答案】 ( ) A .【解析】因为(1,) (1,1)a m b n n ==-+代入选项可得(){}1,1P Q ⋂=故选( )A .3 .(湖北省荆州市2013届高三3月质量检测(Ⅱ)数学(理)试题)已知集合A={x│≥0},集合B={y│y=sinx,x∈R},则B∩C RA= ( )A .ΦB .{1}C .{-1}D .{-1,1} 【答案】B4 .(湖北省武汉市2013届高三5月模拟考试数学(理)试题)若集合{}{}1,2,3,4,5,(,)|,,A B x y x A y A x y A ==∈∈-∈,则B 中所含元素的个数为( )A .3B .6C .8D .10【答案】D5 .(湖北省襄阳市2013届高三3月调研考试数学(理)试题)如图所示的韦恩图中,若A={x|0≤x ≤2},B={x|x>1},则 阴影部分表示的集合为( )A .{x||0<x<2}B .{x|1<x ≤2}C .{x|0≤x ≤1或 x ≥2}D .{x|0≤x ≤1或x>2} 【答案】D 6 .(湖北省黄梅一中2013届高三下学期综合适应训练(四)数学(理)试题 )已知集合{}2320A x x x =-+=,{}log 42x B x ==,则A B =( )A .{}2,1,2-B .{}1,2C .{}2,2-D .{}2【答案】B7 .(2010年高考(湖北理))设集合{}22(,)|1,(,)|3416x x y A x y B x y y ⎧⎫=+===⎨⎬⎩⎭,则A B 的子集的个数是( )A .4B .3C .2D .1【答案】 ( )A .解析】画出椭圆221416x y +=和指数函数3x y =图象,可知其有两个不同交点,记为A 1、A 2,则A B 的子集应为{}{}{}1212,,,,A A A A ∅共四种,故选( )A . 8 .(湖北省黄冈市2013届高三数学(理科)综合训练题 )已知全集U =R ,集合{|021}xA x =<<,3{|log 0}B x x =>,则)(BC A U = ( )A .{|1}x x >B .{|0}x x >C .{|01}x x <<D {|0}x x <【答案】D9 .(2011年全国高考理科数学试题及答案-湖北)已知{}21|log ,1,|,2U y y x x P y y x x ⎧⎫==>==>⎨⎬⎩⎭,则U C P = ( )A .1[,)2+∞ B .10,2⎛⎫ ⎪⎝⎭C .()0,+∞D .1(,0][,)2-∞+∞【答案】A。

湖北省各地市2012年高考数学最新联考试题分类大汇编(2)常用逻辑用语

湖北省各地市2012年高考数学最新联考试题分类大汇编(2)常用逻辑用语

湖北省各地市2012年高考数学最新联考试题分类大汇编(2)常用逻辑用语一、选择题:4.(湖北省荆门、天门等八市2012年3月高三联考理科)下列命题中真命题的个数是①“2,0x R x x ∀∈->”的否定是“2,0x R x x ∃∈-<”; ②若|21|1x ->,则101x <<或10x<; ③*4,21x N x ∀∈+是奇数.A .0B .1C .2D .32. (湖北省黄冈中学2012年2月高三调研理科)已知命题p 、q,“非p 为真命题”是“p 或q 是假命题”的( B )A . 充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 5.(湖北省武汉市2012年2月高三调研文科)若向量3(2,5),(2,)5a mb m =+-=--,则“1m =”是“a b ⊥”的( A )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件8.(湖北省武昌区2012年1月高三调研文科“14a =”是“对任意的正数x ,均有1ax x+≥”的 ( A )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件9.(湖北省部分重点中学2012届高三第一次联考理科)设甲:函数2()||f x x mx n =++有四个单调区间,乙:函数2()lg()g x x mx n =++的值域为R ,那么甲是乙的 ( A ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .以上均不对二、填空题:。

2012年理数高考试题答案及解析-湖北

2012年理数高考试题答案及解析-湖北

2012年普通高等学校招生全国统一考试(湖北卷)数学(理工类)试卷解析一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.方程26130x x ++=的一个根是A .32i -+B .32i +C .23i -+D .23i + 考点分析:本题考察复数的一元二次方程求根. 难易度:★解析:根据复数求根公式:6x 322i -==-±,所以方程的一个根为32i -+ 答案为A.2.命题“0x ∃∈R Q ð,30x ∈Q ”的否定是A .0x ∃∉R Q ð,30x ∈QB .0x ∃∈R Q ð,30x ∉QC .x ∀∉R Q ð,3x ∈QD .x ∀∈R Q ð,3x ∉Q考点分析:本题主要考察常用逻辑用语,考察对命题的否定和否命题的区别. 难易度:★解析:根据对命题的否定知,是把谓词取否定,然后把结论否定。

3.已知二次函数()y f x =的图象如图所示,则它与xA .2π5B .43C .32D .π2考点分析:本题考察利用定积分求面积. 难易度:★解析:根据图像可得: 2()1y f x x ==-+,再由定积分的几何意义,可求得面积为12311114(1)()33S x dx x x --=-+=-+=⎰.4.已知某几何体的三视图如图所示,则该几何体的体积为 A .8π3B .3π俯视图侧视图正视图C .10π3D .6π考点分析:本题考察空间几何体的三视图. 难易度:★解析:显然有三视图我们易知原几何体为 一个圆柱体的一部分,并且有正视图知是一个1/2的圆柱体,底面圆的半径为1,圆柱体的高为6,则知所求几何体体积为原体积的一半为3π.选B.5.设a ∈Z ,且013a ≤<,若201251a +能被13整除,则a = A .0B .1C .11D .12考点分析:本题考察二项展开式的系数. 难易度:★ 解析:由于51=52-1,152...5252)152(1201120122011120122012020122012+-+-=-C C C ,又由于13|52,所以只需13|1+a ,0≤a<13,所以a=12选D.6.设,,,,,a b c x y z 是正数,且22210a b c ++=,22240x y z ++=,20ax by cz ++=,则a b cx y z++=++A .14B .13C .12D .34考点分析:本题主要考察了柯西不等式的使用以及其取等条件.难易度:★★解析:由于222222)())((2cz by ax z y x c b a ++≥++++等号成立当且仅当,t zcy b x a ===则a=t x b=t y c=t z ,10)(2222=++z y x t 所以由题知2/1=t ,又2/1,==++++++++===t zy x cb a z y xc b a z c y b x a 所以,答案选C.7.定义在(,0)(0,)-∞+∞上的函数()f x ,如果对于任意给定的等比数列{}n a , {()}n f a 仍是等比数列,则称()f x 为“保等比数列函数”. 现有定义在(,0)(0,)-∞+∞上的如下函数:①2()f x x =; ②()2x f x =; ③()f x =; ④()ln ||f x x =.则其中是“保等比数列函数”的()f x 的序号为 A .① ② B .③ ④ C .① ③ D .② ④考点分析:本题考察等比数列性质及函数计算.难易度:★解析:等比数列性质,212++=n n n a a a ,①()()()()122212222++++===n n n n n n a f a a a a f a f ;②()()()12221222222+++=≠==+++n a a a a an n a f a f a f n n n n n ;③()()()122122++++===n n n n n n a f a a a a f a f ;④()()()()122122ln ln ln ++++=≠=n n n n n n a f a a a a f a f .选C8.如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆. 在扇形OAB 内随机取一点,则此点取自阴影部分的概率是A .21π-B .112π- C .2π D .1π考点分析:本题考察几何概型及平面图形面积求法.难易度:★解析:令1=OA ,扇形OAB 为对称图形,ACBD 围成面积为1S ,围成OC 为2S ,作对称轴OD ,则过C 点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湖北省2013届高三最新理科数学(精选试题16套+2008-2012五年湖北高考
理科试题)分类汇编1:集合
一、选择题 1 .(湖北省黄冈市2013届高三3月份质量检测数学(理)试题)如图2所示的韦恩图中, ( )
A .
B 是两非零集合,定义集合A B ⊗为阴影部分表示的集合,若
2,,{|ln(2)},{|,0}x x y R A x y x x B y y e x ∈==-==>,则A B ⊗为
( )
A .{|02}x x <<
B .{|12}x x x ≤≥或
C .{|012}x x x ≤≤≥或
D .{|012}x x x <≤≥或
【答案】D
2 .(2009高考(湖北理))已知{|(1,0)(0,1),},{|(1,1)(1,1),}P a a m m R Q b b n n R ==+∈==+-∈是两
个向量集合,则P Q =I ( )
A .{〔1,1〕}
B .{〔-1,1〕}
C .{〔1,0〕}
D .{〔0,1〕}
【答案】 ( ) A .
【解析】因为(1,) (1,1)a m b n n ==-+
代入选项可得(){}1,1P Q ⋂=故选
( )
A .
3 .(湖北省荆州市2013届高三3月质量检测(Ⅱ)数学(理)试题)已知集合A={x│
≥0},集合
B={y│y=sinx,x∈R},则B∩C RA= ( )
A .Φ
B .{1}
C .{-1}
D .{-1,1} 【答案】B
4 .(湖北省武汉市2013届高三5月模拟考试数学(理)试题)若集合
{}{}1,2,3,4,5,(,)|,,A B x y x A y A x y A ==∈∈-∈,
则B 中所含元素的个数为
( )
A .3
B .6
C .8
D .10
【答案】D
5 .(湖北省襄阳市2013届高三3月调研考试数学(理)试题)如图所示的韦恩图中,若A={x|0≤x ≤2},B={x|x>1},
则 阴影部分表示的集合为

A .{x||0<x<2}
B .{x|1<x ≤2}
C .{x|0≤x ≤1或 x ≥2}
D .{x|0≤x ≤1或x>2} 【答案】D 6 .(湖北省黄梅一中2013届高三下学期综合适应训练(四)数学(理)试题 )已知集合
{}
2320A x x x =-+=,{}log 42x B x ==,则A B =
( )
A .{}2,1,2-
B .{}1,2
C .{}2,2-
D .{}2
【答案】B
7 .(2010年高考(湖北理))设集合{}22
(,)|1,(,)|3416x x y A x y B x y y ⎧⎫=+===⎨⎬⎩
⎭,则A B 的子集的个
数是
( )
A .4
B .3
C .2
D .1
【答案】 ( )
A .
解析】画出椭圆22
1416
x y +=和指数函数3x y =图象,可知其有两个不同交点,记为A 1、A 2,则A B 的子
集应为{}{}{}1212,,,,A A A A ∅共四种,故选
( )
A . 8 .(湖北省黄冈市2013届高三数学(理科)综合训练题 )已知全集U =R ,集合
{|021}x
A x =<<,3{|log 0}
B x x =>,则)(B
C A U = ( )
A .{|1}x x >
B .{|0}x x >
C .{|01}x x <<
D {|0}x x <
【答案】D
9 .(2011年全国高考理科数学试题及答案-湖北)已知{}21|log ,1,|,2U y y x x P y y x x ⎧⎫==>==
>⎨⎬⎩⎭
,则U C P = ( )[
A .1
[,)2
+∞ B .10,2⎛⎫ ⎪⎝⎭
C .()0,+∞
D .1(,0][,)2
-∞+∞
【答案】A。

相关文档
最新文档