multisim仿真教程比例求和运算放大器

合集下载

最详细最好的multisim仿真教程

最详细最好的multisim仿真教程

最详细最好的multisim仿真教程最详细最好的multisim仿真教程第13章 Multisim模拟电路仿真本章Multisim10电路仿真软件,讲解使⽤Multisim进⾏模拟电路仿真的基本⽅法。

⽬录1. Multisim软件⼊门2. ⼆极管电路3. 基本放⼤电路4. 差分放⼤电路5. 负反馈放⼤电路6. 集成运放信号运算和处理电路7. 互补对称(OCL)功率放⼤电路8. 信号产⽣和转换电路9. 可调式三端集成直流稳压电源电路13.1 Multisim⽤户界⾯及基本操作13.1.1 Multisim⽤户界⾯在众多的EDA仿真软件中,Multisim软件界⾯友好、功能强⼤、易学易⽤,受到电类设计开发⼈员的青睐。

Multisim⽤软件⽅法虚拟电⼦元器件及仪器仪表,将元器件和仪器集合为⼀体,是原理图设计、电路测试的虚拟仿真软件。

Multisim来源于加拿⼤图像交互技术公司(Interactive Image Technologies,简称IIT公司)推出的以Windows为基础的仿真⼯具,原名EWB。

IIT公司于1988年推出⼀个⽤于电⼦电路仿真和设计的EDA⼯具软件Electronics Work Bench(电⼦⼯作台,简称EWB),以界⾯形象直观、操作⽅便、分析功能强⼤、易学易⽤⽽得到迅速推⼴使⽤。

1996年IIT推出了EWB5.0版本,在EWB5.x版本之后,从EWB6.0版本开始,IIT对EWB进⾏了较⼤变动,名称改为Multisim(多功能仿真软件)。

IIT后被美国国家仪器(NI,National Instruments)公司收购,软件更名为NI Multisim,Multisim经历了多个版本的升级,已经有Multisim2001、Multisim7、 Multisim8、Multisim9 、Multisim10等版本,9版本之后增加了单⽚机和LabVIEW虚拟仪器的仿真和应⽤。

下⾯以Multisim10为例介绍其基本操作。

multisim电路仿真图

multisim电路仿真图

一.直流叠加定理仿真图1.1图1.2图1.3结果分析:从上面仿真结果可以看出,V1和I1共同作用时R3两端的电压为36.666V;V1和I1单独工作时R3两端的电压分别为3.333V和33.333V,这两个数值之和等于前者,符合叠加定理。

二.戴维南定理仿真戴维南定理是指一个具有直流源的线性电路,不管它如何复杂,都可以用一个电压源UTH与电阻RTH串联的简单电路来代替,就它们的性能而言,两者是相同的。

图2.1如上图2.1电路所示,可以看出在XMM1和XMM2的两个万用表的面板上显示出电流和电压值为:IRL=16.667mA,URL=3.333V。

图2.2如上图2.2所示电路中断开负载R4,用电压档测量原来R4两端的电压,记该电压为UTH,从万用表的面板上显示出来的电压为UTH=6V。

图2.3在图2.2所测量的基础之上,将直流电源V1用导线替换掉,测量R4两端的的电阻,将其记为RTH,测量结果为RTH=160Ω。

图2.4在R4和RTH 之间串联一个万用表,在R4上并接一个万用表,这时可以读出XMM1和XMM2上读数分别为:IRL1=16.667mA ,URL1=3.333V 。

结果分析:从图2.1的测试结果和图2.4的测试结果可以看出两组的数据基本一样,从而验证了戴维南定理。

三.动态电路的仿真1、一阶动态电路:V1 1 VR110kΩC110uF12图3.12、二阶动态电路分析:图3.2 2、二阶动态电路:V110 VC11uFR12kΩL11H123图3.3一阶动态电路中V2随时间的变化可以看出,在0~500ms之间随时间的增大而非线性增大,大于500ms后趋于稳定。

图3.4当R1电位器阻值分别为500Ω,2000Ω,4700Ω时,输出瞬态波形的变化如上图所示。

四.交流波形叠加仿真图4.1图4.2结果分析:在信号分析中,一个周期的波形只要满足狄利克雷条件,该波形就可以分解为傅里叶级数。

图4.1为波形叠加仿真电路,将1kHz 15V,3kHz 5V和5kHz 3V的3路正弦信号通过电阻网络予以叠加,从图4.2可以看出示波器D通道的波形正好是示波器A,B,C通道波形的叠加,满足交流波形叠加。

最详细最好的Multisim仿真教程

最详细最好的Multisim仿真教程

第13章Multisim模拟电路仿真本章Multisim10电路仿真软件,讲解使用Multisim进行模拟电路仿真的基本方法。

目录1. Multisim软件入门2. 二极管电路3. 基本放大电路4. 差分放大电路5. 负反馈放大电路6. 集成运放信号运算和处理电路7. 互补对称(OCL)功率放大电路8. 信号产生和转换电路9. 可调式三端集成直流稳压电源电路Multisim用户界面及基本操作13.1.1 Multisim用户界面在众多的EDA仿真软件中,Multisim软件界面友好、功能强大、易学易用,受到电类设计开发人员的青睐。

Multisim用软件方法虚拟电子元器件及仪器仪表,将元器件和仪器集合为一体,是原理图设计、电路测试的虚拟仿真软件。

Multisim来源于加拿大图像交互技术公司(Interactive Image Technologies,简称IIT公司)推出的以Windows为基础的仿真工具,原名EWB。

IIT公司于1988年推出一个用于电子电路仿真和设计的EDA工具软件Electronics Work Bench(电子工作台,简称EWB),以界面形象直观、操作方便、分析功能强大、易学易用而得到迅速推广使用。

1996年IIT推出了版本,在版本之后,从版本开始,IIT对EWB进行了较大变动,名称改为Multisim (多功能仿真软件)。

IIT后被美国国家仪器(NI,National Instruments)公司收购,软件更名为NI Multisim,Multisim经历了多个版本的升级,已经有Multisim2001、Multisim7、Multisim8、Multisim9 、Multisim10等版本,9版本之后增加了单片机和LabVIEW虚拟仪器的仿真和应用。

下面以Multisim10为例介绍其基本操作。

图是Multisim10的用户界面,包括菜单栏、标准工具栏、主工具栏、虚拟仪器工具栏、元器件工具栏、仿真按钮、状态栏、电路图编辑区等组成部分。

同相、反相放大电路multisim仿真实验

同相、反相放大电路multisim仿真实验

同相、反相放大电路仿真实验一.同向放大电路:1.搭建同向比例运算电路。

如下图1所示:图1:同向比例运算电路2.输入端接交流正弦信号源,输出端接示波器,示波器A 通道接放大器输出,B通道接输入。

对示波器进行时基、刻度等调整。

截图如下图2:图2:示波器显示同向比例电路3.改变R1,R2,R3的阻值,其中R2为反馈电阻。

观察放大倍数与电阻阻值间的关系。

输入恒定为60Hz,500mv交流电。

变化阻值示波器测得输出,列表如下:(电阻单位千欧)R1 R2 R3 放大倍数截图10 100 10 15.491/1.408=11 图3 10 200 10 29.687/1.414=20.995 图41 200 10 283.611/1.414=200.574 图510 200 1 29.687/1.414=20.995 图6综上,可以看出,R2的阻值与放大倍数成正比,R1的阻值与放大倍数成反比,R3的阻值对放大倍数的影响不大。

截图如下:图3:R1=10 K R2=100K R3=10K图4:R1=10 K R2=200K R3=10K图5:R1=1K R2=200K R3=10K图6:R1=10 K R2=200K R3=1K二.反向放大电路:1.搭建反向比例运算电路。

如下图7所示:图7:反向比例运算电路2.输入端接交流正弦信号源,输出端接示波器,示波器A 通道接放大器输出,B通道接输入。

对示波器进行时基、刻度等调整。

截图如下图8:图8:示波器显示反向比例电路3.改变R1,R2,R3的阻值,其中R2为反馈电阻。

观察放大倍数与电阻阻值间的关系。

输入恒定为60Hz,10mv交流电。

变化阻值示波器测得输出,列表如下:(电阻单位KΩ)R1 R2 R3 放大倍数截图10 100 10 -282.461 /28.249=10.015 图910 200 10 -564.865/28.249=19.996 图101 200 10 -5643/28.270=199.611 图1110 200 1 -564.417/28.227=19.996 图12图9:R1=10K R2=100K R3=10K图10:R1=10K R2=200K R3=10K图11:R1=1K R2=200K R3=10K图12:R1=10K R2=200K R3=1K综上,可以看出,R1变大,放大倍数变小;R2变大,放大倍数变大;R3变大,放大倍数变化不大。

运算放大器构成的18种功能电路(带multisim仿真)

运算放大器构成的18种功能电路(带multisim仿真)

(1)反相比例放大器:将输入加至反相端,同时将正相端子接地,由运放的虚短和虚断V U U 0==+-,又有102R U U R U U i -=---,得输出为:i U R RU 210-= 仿真电路为:取:Ω==k R R 2221,tV U sin 21=,得到输出结果为:tV U sin 40-=输出波形为:(2)电压跟随器:当同相比例放大器的增益为1时,可得到电压跟随器,其在两个电路的级联中具有隔离缓冲作用。

可消除两级电路间的相互影响。

其仿真波形为:取输入为4V,频率为1kHz的方波,得到输出结果为:(3)同相比例放大器:将INA133的2,5和1,3端子分别并联,以此运放作为基本放大器,反馈网络串联在输入回路中,且反馈电压正比于输入电压,引入串联电压负反馈。

反馈电压1211U R R R U f +=由运放的虚短和虚断,有输出电压为:1120)1(U R R U += 其仿真电路为:取tV U sin 21=,Ω==k R R 2212,得到结果为:tV U sin 60= 其输出波形为:(4)反相器:当方向比例放大器增益为1时可得到反相器电路,其仿真电路为:取:tV U sin 21=,输出结果为:tV U U sin 210-=-=仿真输出波形为:(5)同相相加器;将输入信号引至同相端,得到同相相加器由INA133内置电阻设计如下电路,得到输出结果为:210U U U += 仿真电路为:取tV U sin 21=,tV U sin 32=,由公式得到结果为:tV U sin 50= 仿真输出波形为:(6)相减器:将输入信号分别加在INA133的正相和反相输入端,可得到相减电路,其仿真电路如下: 其输出结果为:210U U U -=取tV U sin 51=,tV U sin 22=,计算输出结果为:tV U sin 30=其仿真输出波形为:(7)积分器:利用INA133及电容可构成反相积分器,仿真电路如下图,电阻2R 与运放构成积分器,电阻1R 可起到保护作用,防止低频信号增益过大。

用Multisim仿真积分求和运算实验

用Multisim仿真积分求和运算实验

用Multisim仿真积分求和运算实验王桑田 5130309480一、实验目的1、学习用Multisim仿真模拟电路的方法;2、加深对用运算放大器实现信号运算的理解。

二、实验原理1、实验电路图图1、图2为本实验电路图。

图1 图22、理论分析图1实现积分求和运算,u o从反向输入端输入,利用R2与C串联实现求和、积分运算,电阻上电压与输入电压的比例系数为−R2R1⁄。

根据节点电流法可以解出图1电路的运算关系为:u o=−R2R1u I−1R1C∫u I dt=−u I−1000∫u I dt从上式可以看出,u o是两部分的叠加,一部分是−u I,另一部分是−1000∫u I dt,实现了求和、积分运算。

图2实现同相积分运算,u o从同向输入端输入,利用R和C串联实现求积分运算。

根据节点电流法可以解出图2电路的运算关系为:u o=1RC∫u I dt=1000∫u I dt从上式可以看出,u o是u I的积分,并放大1000倍。

不同于图1电路,图2电路输入信号是从同相输入端输入,所以系数为正。

三、实验过程利用Multisim搭建实验电路,如图3、图4所示。

图3实现电路图1中电路,图4实现图2中电路。

图3图4对两个电路分别输入方波,如图5所示。

图5从示波器输出观察波形,可以明显观察出这个电路输出是对输入的积分。

输入为方波,输出为三角波。

结果如图6、图7所示。

图6四、实验心得通过做这个实验,我学会了Multisim的基本使用方法,这个软件操作简单,使用起来非常方便,功能很强大,可以帮助我们设计电路,仿真结果。

做这个实验过程感觉很有趣,只要搭建好电路,就能得到想要的结果。

之前学模电课程只是进行理论上的分析和计算,对于结果不是很确定。

通过Multisim仿真,我能更直观的看到结果。

而且,改变不同的参数,可以看到电路各部分电压、电流以及输出的变化,这对理解电路各部分组成有很大帮助。

集成运算放大器Multisim仿真

集成运算放大器Multisim仿真

集成运算放大器Multisim仿真
Multisim是一款集成仿真软件,可以用来创建、测试和设计各种电子电路。

它可以为复杂的系统提供模拟、仿真和分析功能。

它还具有强大的图形界面,可以帮助用户快速编写代码,并且可以自动化复杂任务。

Multisim也可以对运算放大器进行仿真。

例如,用户可以使用Multisim 来设计一个具有特定输入和输出的运算放大器。

Multisim 还可以用来检查运算放大器在特定情况下的性能,从而帮助用户找到最佳的设计方案。

另外,Multisim也可以用来模拟不同的环境,以便查看运算放大器的表现情况。

最详细最好地Multisim仿真教程

最详细最好地Multisim仿真教程

第13章Multisim模拟电路仿真本章Multisim10电路仿真软件,讲解使用Multisim进展模拟电路仿真的根本方法。

目录1. Multisim软件入门2. 二极管电路3.根本放大电路4.差分放大电路5. 负反应放大电路6.集成运放信号运算和处理电路7.互补对称〔OCL〕功率放大电路8.信号产生和转换电路9.可调式三端集成直流稳压电源电路13.1 Multisim用户界面与根本操作13.1.1 Multisim用户界面在众多的EDA仿真软件中,Multisim软件界面友好、功能强大、易学易用,受到电类设计开发人员的青睐。

Multisim用软件方法虚拟电子元器件与仪器仪表,将元器件和仪器集合为一体,是原理图设计、电路测试的虚拟仿真软件。

Multisim来源于加拿大图像交互技术公司〔Interactive Image Technologies,简称IIT公司〕推出的以Windows为根底的仿真工具,原名EWB。

IIT公司于1988年推出一个用于电子电路仿真和设计的EDA工具软件Electronics Work Bench〔电子工作台,简称EWB〕,以界面形象直观、操作方便、分析功能强大、易学易用而得到迅速推广使用。

1996年IIT推出了EWB5.0版本,在EWB5.x版本之后,从EWB6.0版本开始,IIT对EWB进展了较大变动,名称改为Multisim〔多功能仿真软件〕。

IIT后被美国国家仪器〔NI,National Instruments〕公司收购,软件更名为NI Multisim,Multisim经历了多个版本的升级,已经有Multisim2001、Multisim7、Multisim8、Multisim9 、Multisim10等版本,9版本之后增加了单片机和LabVIEW虚拟仪器的仿真和应用。

下面以Multisim10为例介绍其根本操作。

图13.1-1是Multisim10的用户界面,包括菜单栏、标准工具栏、主工具栏、虚拟仪器工具栏、元器件工具栏、仿真按钮、状态栏、电路图编辑区等组成局部。

最详细最好的Multisim仿真教程资料

最详细最好的Multisim仿真教程资料

第13章Multisim模拟电路仿真本章Multisim10电路仿真软件,讲解使用Multisim进行模拟电路仿真的基本方法。

目录1. Multisim软件入门2. 二极管电路3. 基本放大电路4. 差分放大电路5. 负反馈放大电路6. 集成运放信号运算和处理电路7. 互补对称(OCL)功率放大电路8. 信号产生和转换电路9. 可调式三端集成直流稳压电源电路13.1 Multisim用户界面及基本操作13.1.1 Multisim用户界面在众多的EDA仿真软件中,Multisim软件界面友好、功能强大、易学易用,受到电类设计开发人员的青睐。

Multisim用软件方法虚拟电子元器件及仪器仪表,将元器件和仪器集合为一体,是原理图设计、电路测试的虚拟仿真软件。

Multisim来源于加拿大图像交互技术公司(Interactive Image Technologies,简称IIT公司)推出的以Windows为基础的仿真工具,原名EWB。

IIT公司于1988年推出一个用于电子电路仿真和设计的EDA工具软件Electronics Work Bench(电子工作台,简称EWB),以界面形象直观、操作方便、分析功能强大、易学易用而得到迅速推广使用。

1996年IIT推出了EWB5.0版本,在EWB5.x版本之后,从EWB6.0版本开始,IIT对EWB进行了较大变动,名称改为Multisim(多功能仿真软件)。

IIT后被美国国家仪器(NI,National Instruments)公司收购,软件更名为NI Multisim,Multisim经历了多个版本的升级,已经有Multisim2001、Multisim7、Multisim8、Multisim9 、Multisim10等版本,9版本之后增加了单片机和LabVIEW虚拟仪器的仿真和应用。

下面以Multisim10为例介绍其基本操作。

图13.1-1是Multisim10的用户界面,包括菜单栏、标准工具栏、主工具栏、虚拟仪器工具栏、元器件工具栏、仿真按钮、状态栏、电路图编辑区等组成部分。

最详细最好的Multisim仿真教程

最详细最好的Multisim仿真教程

第13章Multisim模拟电路仿真本章Multisim10电路仿真软件,讲解使用Multisim进行模拟电路仿真的根本方法。

目录1. Multisim软件入门2. 二极管电路3. 根本放大电路4. 差分放大电路5. 负反应放大电路6. 集成运放信号运算和处理电路7. 互补对称〔OCL〕功率放大电路8. 信号产生和转换电路9. 可调式三端集成直流稳压电源电路13.1 Multisim用户界面及根本操作Multisim用户界面在众多的EDA仿真软件中,Multisim软件界面友好、功能强大、易学易用,受到电类设计开发人员的青睐。

Multisim用软件方法虚拟电子元器件及仪器仪表,将元器件和仪器集合为一体,是原理图设计、电路测试的虚拟仿真软件。

Multisim来源于加拿大图像交互技术公司〔Interactive Image Technologies,简称IIT公司〕推出的以Windows为根底的仿真工具,原名EWB。

IIT公司于1988年推出一个用于电子电路仿真和设计的EDA工具软件Electronics Work Bench〔电子工作台,简称EWB〕,以界面形象直观、操作方便、分析功能强大、易学易用而得到迅速推广使用。

1996年IIT推出了EWB5.0版本,在EWB5.x版本之后,从EWB6.0版本开始,IIT对EWB进行了较大变动,名称改为Multisim〔多功能仿真软件〕。

IIT后被美国国家仪器〔NI,National Instruments〕公司收购,软件更名为NI Multisim,Multisim经历了多个版本的升级,已经有Multisim2001、Multisim7、Multisim8、Multisim9 、Multisim10等版本,9版本之后增加了单片机和LabVIEW虚拟仪器的仿真和应用。

下面以Multisim10为例介绍其根本操作。

Multisim10的用户界面,包括菜单栏、标准工具栏、主工具栏、虚拟仪器工具栏、元器件工具栏、仿真按钮、状态栏、电路图编辑区等组成局部。

最详细最好地Multisim仿真教程

最详细最好地Multisim仿真教程

第13章Multisim模拟电路仿真本章Multisim10电路仿真软件,讲解使用Multisim进展模拟电路仿真的根本方法。

目录1. Multisim软件入门2. 二极管电路3.根本放大电路4.差分放大电路5. 负反应放大电路6.集成运放信号运算和处理电路7.互补对称〔OCL〕功率放大电路8.信号产生和转换电路9.可调式三端集成直流稳压电源电路13.1 Multisim用户界面与根本操作13.1.1 Multisim用户界面在众多的EDA仿真软件中,Multisim软件界面友好、功能强大、易学易用,受到电类设计开发人员的青睐。

Multisim用软件方法虚拟电子元器件与仪器仪表,将元器件和仪器集合为一体,是原理图设计、电路测试的虚拟仿真软件。

Multisim来源于加拿大图像交互技术公司〔Interactive Image Technologies,简称IIT公司〕推出的以Windows为根底的仿真工具,原名EWB。

IIT公司于1988年推出一个用于电子电路仿真和设计的EDA工具软件Electronics Work Bench〔电子工作台,简称EWB〕,以界面形象直观、操作方便、分析功能强大、易学易用而得到迅速推广使用。

1996年IIT推出了EWB5.0版本,在EWB5.x版本之后,从EWB6.0版本开始,IIT对EWB进展了较大变动,名称改为Multisim〔多功能仿真软件〕。

IIT后被美国国家仪器〔NI,National Instruments〕公司收购,软件更名为NI Multisim,Multisim经历了多个版本的升级,已经有Multisim2001、Multisim7、Multisim8、Multisim9 、Multisim10等版本,9版本之后增加了单片机和LabVIEW虚拟仪器的仿真和应用。

下面以Multisim10为例介绍其根本操作。

图13.1-1是Multisim10的用户界面,包括菜单栏、标准工具栏、主工具栏、虚拟仪器工具栏、元器件工具栏、仿真按钮、状态栏、电路图编辑区等组成局部。

模电仿真实验指导书

模电仿真实验指导书

模拟电子技术基础实验指导书计算机与信息技术学院二O一O年三月目录第一部分上机仿真实验实验一Multisim软件的介绍与仿真实验二单管放大电路仿真分析实验三差动放大电路实验四比例运算放大电路仿真实验五加减运算放大电路实验六积分电路和微分电路实验七LC正弦波振荡电路的研究实验八OTL功率放大器仿真实验九串联型晶体管稳压电路实验十波形发生器电路仿真第二部分实验箱实验实验一单级交流放大电路实验二两级阻容耦合放大电路实验三负反馈放大电路实验四比例运算放大电路实验五加减运算放大电路实验六正弦波振荡器实验七整流滤波电路实验一Multisim软件的介绍与仿真一、实验目的1.初步掌握用multisim软件对电路进行仿真实验。

2.掌握电路的基本参数设置和测试方法。

二、实验内容1.电子仿真软件Multisim8简介:运行Multisim8,电子仿真软件后,先出现启动画面如图1所示,几秒钟后进入他的基本界面如图二所示。

基本界面最上方是菜单栏,共11项;菜单栏下方左边为系统工具栏共11项图1Multisim8启动画面图2Multisim8基本界面中间为设计工具栏共8项;再向右是使用中的元件列表和帮助按钮;右上角为仿真开关。

基本界面的左侧为元件工具栏,其中23个元件库中分别放置同一类的元件,左列从上到下分别是:电源库,基本元件库,二极管库,晶体管库,模拟元件库,TTL器件库,CMOS器件库,各种数字元件库,混合器件库,指示器件库,其他元件库,射频元件库等,右列为与实际元件相对应的现实性仿真元件模型快捷键按钮。

2.元件的放置和连接2.1电阻的放置单击基本界面左侧元件库左列第2个基本元件图表,将出现Select a compinent对话框如图3所示图3在Family栏下单击RESISTOR,在Component栏中选100ohm-5%,注意ohm 表示欧姆,单击OK,再在平台上单击左键即可将电阻R1放置到平台上,继续单击左键可连续放置电阻,单击右键停止放置退出,右击R1,可在下拉菜单中单击90 Cloxkwise,可将R1顺时针转90度竖立放置。

模拟电子电路multisim仿真(很全 很好)

模拟电子电路multisim仿真(很全 很好)

仿真1.1.1 共射极基本放大电路按图7.1-1搭建共射极基本放大电路,选择电路菜单电路图选项(Circuit/Schematic Option )中的显示/隐藏(Show/Hide)按钮,设置并显示元件的标号与数值等。

1.静态工作点分析选择分析菜单中的直流工作点分析选项(Analysis/DC Operating Point)(当然,也可以使用仪器库中的数字多用表直接测量)分析结果表明晶体管Q1工作在放大状态。

2.动态分析用仪器库的函数发生器为电路提供正弦输入信号Vi(幅值为5mV,频率为10kH),用示波器观察到输入,输出波形。

由波形图可观察到电路的输入,输出电压信号反相位关系。

再一种直接测量电压放大倍数的简便方法是用仪器库中的数字多用表直接测得。

3.参数扫描分析在图7.1-1所示的共射极基本放大电路中,偏置电阻R1的阻值大小直接决定了静态电流IC的大小,保持输入信号不变,改变R1的阻值,可以观察到输出电压波形的失真情况。

选择分析菜单中的参数扫描选项(Analysis/Parameter Sweep Analysis),在参数扫描设置对话框中将扫描元件设为R1,参数为电阻,扫描起始值为100K,终值为900K,扫描方式为线性,步长增量为400K,输出节点5,扫描用于暂态分析。

4.频率响应分析选择分析菜单中的交流频率分析项(Analysis/AC Frequency Analysis)在交流频率分析参数设置对话框中设定:扫描起始频率为1Hz,终止频率为1GHz,扫描形式为十进制,纵向刻度为线性,节点5做输出节点。

由图分析可得:当共射极基本放大电路输入信号电压VI为幅值5mV的变频电压时,电路输出中频电压幅值约为0.5V,中频电压放大倍数约为-100倍,下限频率(X1)为14.22Hz,上限频率(X2)为25.12MHz,放大器的通频带约为25.12MHz。

由理论分析可得,上述共射极基本放大电路的输入电阻由晶体管的输入电阻rbe限定,输出电阻由集电极电阻R3限定。

multisim仿真 EWB的使用和放大电路的计算机仿真

multisim仿真   EWB的使用和放大电路的计算机仿真

实验四EWB的使用和放大电路的计算机仿真实验目的:1、学习电子线路的计算机仿真软件EWB的使用方法;2、用EWB对胆管放大件路瞬态特性频率特性进行计算机仿真。

实验内容:1、学习和练习在EWB环境下绘制单管放大电路的电路图,电路同实验三;2、学习和使用EWB的交流频率分析功能,对单管放大电路的幅频和相频特性进行计算机仿真,记录放大电路的下限频率f L和上限频率f H,并绘制出幅频和相频特性曲线。

3、在发射级与地之间接一个100 电阻,再做交流频率分析,与第2项实验结果比较。

实验步骤:在multisim环境下的电路仿真简介:设置节点名设置节点名的作用是便于分析节点的静态信息用于静态分析,同时也便于根据节点的动态信息做幅频和相频曲线。

做如图所示的操作:弹出以下窗口后,选中Show All即可:分析静态工作点:做如图所示操作:弹出如下窗口:选中节点名,再点击Add,即可进行添加。

幅频和相频特性的仿真做如下图操作:弹出窗口如下,参数调整到图中所示,选择合适的节点后点击simulate即可。

1、学习和练习在EWB环境下绘制单管放大电路的电路图①在multisim软件环境下绘出单管放大电路:如图在电路中,取交流电流源为5mV,1000Hz,两个电容C1=C5=33μF,取电阻R1=100KΩ,R2=900KΩ,R3=R4=3KΩ。

其中R2本为点位器,通过测试得当R2=900KΩ时,电路工作在稳定的静态工作点。

绘制好的电路图如下图所示:此时的静态工作点为合适的,可通过计算机仿真得到静态工作点即示波器波形:将交流源的参数改变为10mF,电路出现顶部失真,即截止失真,由计算机仿真得到静态工作点和示波器波形如下:若要使电路底部失真,即饱和失真,则需要改变静态工作点,这里讲R2的值由900KΩ改变为400KΩ,由计算机仿真得到静态工作点和示波器波形如下:2、学习和使用EWB的交流频率分析功能,对单管放大电路的幅频和相频特性进行计算机仿真,记录放大电路的下限频率f L和上限频率f H,并绘制出幅频和相频特性曲线。

最详细最好的Multisim仿真教程资料

最详细最好的Multisim仿真教程资料

第13章Multisim模拟电路仿真本章Multisim10电路仿真软件,讲解使用Multisim进行模拟电路仿真的基本方法。

目录1. Multisim软件入门2. 二极管电路3. 基本放大电路4. 差分放大电路5. 负反馈放大电路6. 集成运放信号运算和处理电路7. 互补对称(OCL)功率放大电路8. 信号产生和转换电路9. 可调式三端集成直流稳压电源电路13.1 Multisim用户界面及基本操作13.1.1 Multisim用户界面在众多的EDA仿真软件中,Multisim软件界面友好、功能强大、易学易用,受到电类设计开发人员的青睐。

Multisim用软件方法虚拟电子元器件及仪器仪表,将元器件和仪器集合为一体,是原理图设计、电路测试的虚拟仿真软件。

Multisim来源于加拿大图像交互技术公司(Interactive Image Technologies,简称IIT公司)推出的以Windows为基础的仿真工具,原名EWB。

IIT公司于1988年推出一个用于电子电路仿真和设计的EDA工具软件Electronics Work Bench(电子工作台,简称EWB),以界面形象直观、操作方便、分析功能强大、易学易用而得到迅速推广使用。

1996年IIT推出了EWB5.0版本,在EWB5.x版本之后,从EWB6.0版本开始,IIT对EWB进行了较大变动,名称改为Multisim(多功能仿真软件)。

IIT后被美国国家仪器(NI,National Instruments)公司收购,软件更名为NI Multisim,Multisim经历了多个版本的升级,已经有Multisim2001、Multisim7、Multisim8、Multisim9 、Multisim10等版本,9版本之后增加了单片机和LabVIEW虚拟仪器的仿真和应用。

下面以Multisim10为例介绍其基本操作。

图13.1-1是Multisim10的用户界面,包括菜单栏、标准工具栏、主工具栏、虚拟仪器工具栏、元器件工具栏、仿真按钮、状态栏、电路图编辑区等组成部分。

最详细最好的Multisim仿真教程

最详细最好的Multisim仿真教程

第13章MUltiSim模拟电路仿真本章MUltiSimIO电路仿真软件,讲解使用MUltiSim进行模拟电路仿真的基本方法。

目录1.MUltiSim软件入门2.二极管电路3.基本放大电路4.差分放大电路5.负反馈放大电路6.集成运放信号运算和处理电路7.互补对称(OCL)功率放大电路&信号产生和转换电路9.可涮式三端集成宜流稳压电源电路13.1MUltiSim用户界面及基本操作13.1.1MUItiSinI 用户界面在众多的EDA仿真软件中,IVIiiltisim软件界面友好、功能强大、易学易用,受到电类设计开发人员的青睐。

MUItiSim用软件方法虚拟电子元器件及仪器仪表,将元器件和仪器集合为一体,是原理图设计、电路测试的虚拟仿真软件。

MUItiSim来源于加拿大图像交互技术公司(InteraCtiVe Image Technologies,简称IIT公司)推岀的以WindOWS 为基础的仿真工具,原名EWB。

HT公司于1988年推出一个用于电子电路仿真和设计的EDA工具软件EleCtrOniCS WOrk BCnCh (电子工作台,简称EWB),以界面形象直观、操作方便、分析功能强大、易学易用而得到迅速推广使用。

1996年IIT推岀了 EWB5.0版本,在EWB5.x版本之后,从EWB6.0版本开始,IIT对EWB进行了较大变动,名称改为MUItiSim (多功能仿真软件)。

Irr后被美国国家仪器(NI, NatiOnal InStrUlnentS)公司收购,软件更名为Nl MUltiSinK MUItiSim经历了多个版本的升级,已经有 MUItiSim2001X MUItiSin17X MUItiSim8X MUItiSim9、MUltiSimlO 等版本, 9版本之后增加了单片机和LabVIEW虚拟仪器的仿真和应用。

下面以MUItiSimIO为例介绍其基本操作。

图13.1-1是MUltiSimIO的用户界而,包括菜单栏、标准工具栏、主工具栏、虚拟仪器工具栏、元器件工具栏、仿真按钮、状态栏.电路图编辑区等组成部分。

基于Mulitisim的集成运算放大器应用电路仿真

基于Mulitisim的集成运算放大器应用电路仿真

电子课程实验报告题目:基于Mulitisim的集成运算放大器应用电路仿真设计目的1、集成运算放大电路当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系,在线性应用方面,可组成比例、加法、减法、积分、微分等模拟运算电路。

2、本课程设计通过Mulitisim编写程序几种运算放大电路仿真程序,通过输入不同类型与幅度的波形信号,测量输出波形信号对电路进行验证,并利用Protel软件对实现对积累运算放大电路的设计,并最终实现PC板图形式。

二、电路的理论知识1.反相放大器图1中所示的电路是最常见的运放电路,它显示出了如何在牺牲增益的条件下获得稳定,线性的放大器。

标号为R f的反馈电阻用于将输出信号反馈作用于输入端,反馈电阻连接到负输入端表示电路为负反馈连接。

输入电压V1通过输入电阻R1产生了一个输入电路i1。

电压差△V加载在+、—输入端之间,放大器的正输入端接地。

图1利用回路公式计算传输特性:输入回路:V R i V ∆+=111 (2)反馈回路:V R i V f f out ∆+-= (3)求和节点in f i i i +-=1 (4)增益公式:V A V out ∆•-= (5)由以上4个式子可以得到输出:Z R V Z i V in out /)/(/11-= (6)式中,闭环阻抗Z=1/R f +1/AR f +1/R f 。

反馈电阻和输入电阻通常都较大)(Ωk 级,并且A 很大(大于100000),因此Z=1/R f 。

更进一步,△V 通常很小(几微伏)且放大器的输入阻抗Z in 很大(大约ΩM 10),那么输入输入电流(I in =△V/Z in )非常小,可以认为为零。

则传输曲线变为:111)()/(V G V R R V f out -=-= (7)式中,R f /R 1的比值称为闭环增益G ,负号表示输出反向。

闭环增益可以通过选择两个电阻R f 和R 1来设定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档