高中数学第一章导数及其应用1.4生活中的优化问题举例学案新人教A版选修2_2
高中数学第1章导数及其应用1.4生活中的优化问题举例学案新人教A版选修2_2
1.4 生活中的优化问题举例1.优化问题生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题. 2.用导数解决优化问题的基本思路思考:解决生活中优化问题应注意什么?[提示] (1)在建立函数模型时,应根据实际问题确定出函数的定义域.(2)求实际问题的最大(小)值时,一定要从问题的实际意义去考查,不符合实际意义的应舍去,如:长度、宽度应大于0,销售价为正数等.1.已知某生产厂家的年利润y (单位: 万元)与年产量x (单位:万件)的函数关系式为y =-13x 3+81x -234,则使该生产厂家获取最大年利润的年产量为( )A .7万件B .9万件C .11万件D .13万件B [设y =f (x ),即f (x )=-13x 3+81x -234.故f ′(x )=-x 2+81.令f ′(x )=0,即-x 2+81=0, 解得x =9或x =-9(舍去).当0<x <9时,f ′(x )>0,函数y =f (x )单调递增; 当x >9时,f ′(x )<0,函数y =f (x )单调递减. 因此,当x =9时,y =f (x )取最大值.故使该生产厂家获取最大年利润的年产量为9万件.]2.炼油厂某分厂将原油精炼为汽油,需对原油进行冷却和加热,如果第x 小时,原油温度(单位:℃)为f (x )=13x 3-x 2+8(0≤x ≤5),那么原油温度的瞬时变化率的最小值是( )A .8B .203C .-1D .-8C [由题意,f ′(x )=x 2-2x =(x -1)2-1, ∵0≤x ≤5,∴x =1时,f ′(x )的最小值为-1, 即原油温度的瞬时变化率的最小值是-1.]3.做一个容积为256 m 3的方底无盖水箱,所用材料最省时,它的高为( ) A .6 m B .8 m C .4 mD .2 mC [设底面边长为x m ,高为h m ,则有x 2h =256,所以h =256x2.所用材料的面积设为S m 2,则有S =4x ·h +x 2=4x ·256x 2+x 2=256×4x +x 2.S ′=2x -256×4x2,令S ′=0,得x =8,因此h =25664=4(m).] 4.某一件商品的成本为30元,在某段时间内,若以每件x 元出售,可卖出(200-x )件,当每件商品的定价为______元时,利润最大.115 [利润为S (x )=(x -30)(200-x ) =-x 2+230x -6 000,S ′(x )=-2x +230, 由S ′(x )=0,得x =115,这时利润达到最大.]去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A ,B ,C ,D 四个点重合于图中的点P ,正好形成一个正四棱柱形状的包装盒,E ,F 在AB 上,是被切去的一个等腰直角三角形斜边的两个端点,设AE =FB =x (cm).(1)某广告商要求包装盒的侧面积S (cm 2)最大,试问x 应取何值?(2)某厂商要求包装盒的容积V (cm 3)最大,试问x 应取何值?并求出此时包装盒的高与底面边长的比值.[解] 设包装盒的高为h cm ,底面边长为a cm.由已知得a =2x ,h =60-2x2=2(30-x ),0<x <30.(1)S =4ah =8x (30-x )=-8(x -15)2+1 800, 所以当x =15时,S 取得最大值.(2)V =a 2h =22(-x 3+30x 2),V ′=62x (20-x ). 由V ′=0,得x =0(舍去)或x =20.当x ∈(0,20)时,V ′>0;当x ∈(20,30)时,V ′<0. 所以当x =20时,V 取得极大值,也是最大值.此时h a =12,即包装盒的高与底面边长的比值为12.1.立体几何中的最值问题往往涉及空间图形的表面积、体积,在此基础上解决与实际相关的问题.2.解决此类问题必须熟悉简单几何体的表面积与体积公式,如果已知图形是由简单几何体组合而成,则要分析其组合关系,将图形进行拆分或组合,以便简化求值过程.1.周长为20 cm 的矩形,绕一条边旋转成一个圆柱,则圆柱体积的最大值为________cm 3. 4 00027π [设矩形的长为x cm , 则宽为(10-x )cm(0<x <10). 由题意可知圆柱体积为V =πx 2(10-x )=10πx 2-πx 3.∴V ′=20πx -3πx 2,令V ′(x )=0,得x =0(舍去)或x =203,且当x ∈⎝⎛⎭⎪⎫0,203时,V ′(x )>0,当x ∈⎝⎛⎭⎪⎫203,10时,V ′(x )<0, ∴当x =203时,V (x )max =4 00027π cm 3.]层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C (单位:万元)与隔热层厚度x (单位:cm)满足关系:C (x )=k 3x +5(0≤x ≤10),若不建隔热层,每年能源消耗费用为8万元.设f (x )为隔热层建造费用与20年的能源消耗费用之和.(1)求k 的值及f (x )的表达式;(2)隔热层修建多厚时,总费用f (x )达到最小?并求最小值. 思路探究:(1)由C (0)=8可求k 的值从而求出f (x )的表达式. (2)求函数式f (x )的最小值.[解] (1)由题设,每年能源消耗费用为C (x )=k3x +5(0≤x ≤10),再由C (0)=8,得k=40,因此C (x )=403x +5.而建造费用为C 1(x )=6x .最后得隔热层建造费用与20年的能源消耗费用之和为f (x )=20C (x )+C 1(x )=20×403x +5+6x =8003x +5+6x (0≤x ≤10).(2)f ′(x )=6-2 400(3x +5)2,令f ′(x )=0,即2 400(3x +5)2=6,解得x =5或x =-253(舍去).当0<x <5时,f ′(x )<0,当5<x <10时,f ′(x )>0,故x =5是f (x )的最小值点,对应的最小值为f (5)=6×5+80015+5=70.当隔热层修建5 cm 厚时,总费用达到最小值70万元.1.用料最省、成本(费用)最低问题是日常生活中常见的问题之一,解决这类问题要明确自变量的意义以及最值问题所研究的对象.正确书写函数表达式,准确求导,结合实际作答.2.利用导数的方法解决实际问题,当在定义区间内只有一个点使f ′(x )=0时,如果函数在这点有极大(小)值,那么不与端点值比较,也可以知道在这个点取得最大(小)值.2.甲、乙两地相距400千米,汽车从甲地匀速行驶到乙地,速度不得超过100千米/时,已知该汽车每小时的运输成本P (元)关于速度v (千米/时)的函数关系是P =119 200v 4-1160v 3+15v ,(1)求全程运输成本Q (元)关于速度v 的函数关系式;(2)为使全程运输成本最少,汽车应以多大速度行驶?并求此时运输成本的最小值. [解] (1)Q =P ·400v=⎝ ⎛⎭⎪⎫119 200v 4-1160v 3+15v ·400v=⎝ ⎛⎭⎪⎫119 200v 3-1160v 2+15·400 =v 348-52v 2+6 000(0<v ≤100). (2)Q ′=v 216-5v ,令Q ′=0,则v =0(舍去)或v =80,当0<v <80时,Q ′<0;当80<v ≤100时,Q ′>0,∴v =80千米/时时,全程运输成本取得极小值,即最小值,且Q min =Q (80)=2 0003(元).1.在实际问题中,如果在定义域内函数只有一个极值点,则函数在该点处取最值吗? [提示] 根据函数的极值与单调性的关系可以判断,函数在该点处取最值,并且极小值点对应最小值,极大值点对应最大值.2.你能列举几个有关利润的等量关系吗? [提示] (1)利润=收入-成本. (2)利润=每件产品的利润×销售件数.【例3】 某商场销售某种商品的经验表明,该商品每日的销售量y (单位:千克)与销售价格x (单位:元/千克)满足关系式y =ax -3+10(x -6)2,其中3<x <6,a 为常数,已知销售价格为5元/千克时,每日可售出该商品11千克.(1)求a 的值;(2)若该商品的成本为3元/千克,试确定销售价格x 的值,使商场每日销售该商品所获得的利润最大.思路探究:(1)根据x =5时,y =11求a 的值.(2)把每日的利润表示为销售价格x 的函数,用导数求最大值.[解] (1)因为x =5时,y =11,所以a2+10=11,a =2.(2)由(1)知,该商品每日的销售量y =2x -3+10(x -6)2, 所以商场每日销售该商品所获得的利润f (x )=(x -3)⎣⎢⎡⎦⎥⎤2x -3+10(x -6)2=2+10(x -3)(x -6)2,3<x <6,从而,f ′(x )=10[(x -6)2+2(x -3)(x -6)] =30(x -4)·(x -6),于是,当x 变化时,f ′(x ),f (x )的变化情况如下表:所以,当x =4时,函数f (x )取得最大值,且最大值等于42.故当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大.利润最大问题是生活中常见的一类问题,一般根据“利润=收入-成本”建立函数关系式,再利用导数求最大值.解此类问题需注意两点:①价格要大于或等于成本,否则就会亏本;②销量要大于0,否则不会获利.1.利用导数解决生活中优化问题的一般步骤(1)分析实际问题中各量之间的关系,列出实际问题的数学模型,写出实际问题中变量之间的函数关系y=f(x);(2)求函数的导数f′(x),解方程f′(x)=0;(3)比较函数在区间端点和使f′(x)=0的点的数值的大小,最大(小)者为最大(小)值.2.正确理解题意,建立数学模型,利用导数求解是解答应用问题的主要思路.另外需要特别注意:(1)合理选择变量,正确写出函数解析式,给出函数定义域;(2)与实际问题相联系;(3)必要时注意分类讨论思想的应用.1.某箱子的体积与底面边长x 的关系为V (x )=x 2⎝ ⎛⎭⎪⎫60-x 2(0<x <60),则当箱子的体积最大时,箱子底面边长为( )A .30B .40C .50D .60B [V ′(x )=-32x 2+60x =-32x (x -40),因为0<x <60,所以当0<x <40时,V ′(x )>0, 此时V (x )单调递增;当40<x <60时,V ′(x )<0,此时V (x )单调递减,所以V (40)是V (x )的极大值,即当箱子的体积最大时,箱子底面边长为40.]2.某商场从生产厂家以每件20元购进一批商品,若该商品零售价定为p 元,销售量为Q 件,则销售量Q 与零售价p 有如下关系:Q =8 300-170p -p 2.则最大毛利润为(毛利润=销售收入-进货支出)( )A .30元B .60元C .28 000元D .23 000元D [设毛利润为L (p ),由题意知L (p )=pQ -20Q =Q (p -20) =(8 300-170p -p 2)(p -20) =-p 3-150p 2+11 700p -166 000, 所以L ′(p )=-3p 2-300p +11 700.令L ′(p )=0,解得p =30或p =-130(舍去). 此时,L (30)=23 000.因为在p =30附近的左侧L ′(p )>0,右侧L ′(p )<0,所以L (30)是极大值,根据实际问题的意义知,L (30)是最大值,即零售价定为每件30元时,最大毛利润为23 000元.]3.做一个无盖的圆柱形水桶,若要使水桶的体积是27π,且用料最省,则水桶的底面半径为________.3 [设圆柱形水桶的表面积为S ,底面半径为r (r >0),则水桶的高为27r2,所以S =πr2+2πr ×27r 2=πr 2+54πr (r >0),求导数,得S ′=2πr -54πr2,令S ′=0,解得r =3.当0<r <3时,S ′<0;当r >3时,S ′>0,所以当r =3时,圆柱形水桶的表面积最小,即用料最省.]4.某银行准备新设一种定期存款业务,经预测,存款量与存款利率的平方成正比,比例系数为k (k >0),贷款的利率为0.048,假设银行吸收的存款能全部放贷出去.若存款利率为x (x ∈(0,0.048)),为使银行获得最大收益,则存款利率应定为________.0.032 [存款利率为x ,依题意:存款量是kx 2,银行应支付的利息是kx 3,贷款的收益是0.048kx 2,x ∈(0,0.048).所以银行的收益是y =0.048kx 2-kx 3(0<x <0.048),由于y ′=0.096kx -3kx 2,令y ′=0得x =0.032或x =0(舍去),又当0<x <0.032时,y ′>0;当0.032<x <0.048时,y ′<0,所以当x =0.032时,y 取得最大值.]5.用长为18 m 的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为2∶1,问该长方体的长、宽、高各为多少时,其体积最大?最大体积是多少?[解] 设长方体的宽为x m ,则长为2x m , 高为h =18-12x 4=(4.5-3x )m(0<x <32).故长方体的体积为V (x )=2x 2(4.5-3x )=(9x 2-6x 3)m 3⎝⎛⎭⎪⎫0<x <32.从而V ′(x )=18x -18x 2=18x (1-x ). 令V ′(x )=0,解得x =0(舍去)或x =1, 因此x =1.当0<x <1时,V ′(x )>0; 当1<x <32时,V ′(x )<0,故在x =1处V (x )取得极大值,并且这个极大值就是V (x )的最大值.从而最大体积V =V (1)=9×12-6×13=3(m)3,此时长方体的长为2 m ,高为1.5 m. 故当长方体的长为2 m ,宽为1 m ,高为1.5 m 时,体积最大,最大体积为3 m 3.。
2高中数学 第一章 导数及其应用 1.4 生活中的优化问题举例课件 新人教A版选修2-2
『规律总结』 1.利用导数解决优化问题的基本思路
2.关于平面图形中的最值问题 平面图形中的最值问题一般涉及线段、三角形、四边形等图形,主要研 究与面积相关的最值问题,一般将面积用变量表示出来后求导数,求极值,从 而求最值.
跟踪练习2
已知矩形的两个顶点位于x轴上,另两个顶点位于抛物线y=4-x2在x轴 上方的曲线上,求这个矩形面积最大时的长和宽.
2.实际优化问题中,若只有一个极值点,则极值就是_最__值______. 3.解决优化问题的基本思路:
预习自测
1.已知某生产厂家的年利润 y(单位:万元)与年产量 x(单位:万件)的函数关
系式为 y=-13x3+81x-234,则使该生产厂家获取最大年利润的年产量为( C )
A.13 万件
B.11 万件
[解析] 每月生产 x 吨时的利润为 f(x)=(24 200-15x2)x-(50 000+200x)=-15x3+24 000x-50 000 (x≥0). 由 f′(x)=-35x2+24 000=0, 解得 x1=200,x2=-200(舍去). 因 f(x)在[0,+∞)内只有一个点 x=200 使 f′(x)=0,故它就是最大值点, 且最大值为:f(200)=-15×2003+24 000×200-50 000=3 150 000(元) 答:每月生产 200 吨产品时利润达到最大,最大利润为 315 万元.
4.一张1.4 m高的图片挂在墙上,它的底边高于观察者的眼睛1.8 m,要 使观察者观察得最清晰,他与墙的距离应为(视角最大时最清晰,视角是指观察 图片上底的视线与观察图片下底的视线所夹的角)_2_.4__m______.
[解析] 如图所示,设 OD=x,∠ADO=β,∠BDO=γ,α 为视角, 则 α=γ-β,tanγ=3x.2,tanβ=1x.8, tanα=tan(γ-β)=1t+anγta-nγttaannββ=1+3x.23- .2×x12x.81.8=x2+1.45x.76(x>0), 令(tanα)′=1.4x2+x52.+765.-762x2 ×1.4x=0, 解得 x=2.4 或 x=-2.4(舍去),在 x=2.4 附近,导数值由正到负, 所以在 x=2.4 时,tanα 取得最大值,α 也取得最大值.
高中数学第一章导数及其应用1.4生活中的优化问题举例学案新人教A版选修2_220181022346
§1.4生活中的优化问题举例学习目标 1.了解导数在解决实际问题中的作用.2.掌握利用导数解决简单的实际生活中的优化问题.知识点生活中的优化问题(1)生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题.(2)利用导数解决优化问题的实质是求函数最值.(3)解决优化问题的基本思路:上述解决优化问题的过程是一个典型的数学建模过程.1.生活中常见到的收益最高,用料最省等问题就是数学中的最大、最小值问题.( √) 2.解决应用问题的关键是建立数学模型.( √)类型一几何中的最值问题例1 请你设计一个包装盒,如图所示,ABCD是边长为60 cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A,B,C,D四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒.点E,F在边AB上,是被切去的一个等腰直角三角形斜边的两个端点.设AE=FB=x(cm).某厂商要求包装盒的容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.考点利用导数求几何模型的最值问题题点 利用导数求几何体体积的最值问题 解 ∵V (x )=(2x )2×(60-2x )×22=2x 2×(60-2x )=-22x 3+602x 2(0<x <30). ∴V ′(x )=-62x 2+1202x =-62x (x -20). 令V ′(x )=0,得x =0(舍去)或x =20. ∵当0<x <20时,V ′(x )>0; 当20<x <30时,V ′(x )<0.∴V (x )在x =20时取极大值也是唯一的极值,故为最大值. ∴底面边长为2x =202(cm), 高为2(30-x )=102(cm), 即高与底面边长的比值为12.引申探究本例条件不变,若要求包装盒的侧面积S (cm 2)最大,试问x 应取何值? 解 ∵AE =x ,∴HE =2x . ∵EF =60-2x , ∴EG =22EF =22(60-2x )=2(30-x ). ∴S 侧=4×HE ×EG =4×2x ×2(30-x ) =8x (30-x )=-8x 2+240x =-8(x -15)2+8×152.∴当x =15时,S 侧最大为1 800 cm 2.反思与感悟 面积、体积(容积)最大,周长最短,距离最小等实际几何问题,求解时先设出恰当的变量,将待求解最值的问题表示为变量的函数,再按函数求最值的方法求解,最后检验. 跟踪训练1 (1)已知圆柱的表面积为定值S ,当圆柱的容积V 最大时,圆柱的高h 的值为________.考点 利用导数求几何模型的最值问题 题点 利用导数求几何体体积的最值问题(2)将一段长为100 cm 的铁丝截成两段,一段弯成正方形,一段弯成圆,当正方形与圆形面积之和最小时,圆的周长为________ cm. 考点 利用导数求几何模型的最值问题 题点 利用导数求面积的最值问题答案 (1)6πS 3π (2)100π4+π解析 (1)设圆柱的底面半径为r , 则S 圆柱底=2πr 2,S 圆柱侧=2πrh , ∴圆柱的表面积S =2πr 2+2πrh .∴h =S -2πr 22πr,又圆柱的体积V =πr 2h =r2(S -2πr 2)=rS -2πr 32,V ′(r )=S -6πr 22,令V ′(r )=0,得S =6πr 2,∴h =2r , ∵V ′(r )只有一个极值点, ∴当h =2r 时圆柱的容积最大. 又r =S6π,∴h =2S6π=6πS3π. 即当圆柱的容积V 最大时, 圆柱的高h 为6πS3π. (2)设弯成圆的一段铁丝长为x (0<x <100),则另一段长为100-x . 设正方形与圆形的面积之和为S ,则正方形的边长a =100-x 4,圆的半径r =x2π.故S =π⎝⎛⎭⎪⎫x 2π2+⎝ ⎛⎭⎪⎫100-x 42(0<x <100).因此S ′=x2π-252+x 8=x 2π-100-x 8, 令S ′=0,则x =100π4+π.由于在(0,100)内,函数只有一个导数为0的点,则问题中面积之和的最小值显然存在,故当x =100π4+πcm 时,面积之和最小. 类型二 实际生活中的最值问题 命题角度1 利润最大问题例2 某商场销售某种商品的经验表明,该商品每日的销售量y (单位:千克)与销售价格x (单位:元/千克)满足关系式y =ax -3+10(x -6)2,其中3<x <6,a 为常数.已知销售价格为5元/千克时,每日可售出该商品11千克. (1)求a 的值;(2)若该商品的成本为3元/千克,试确定销售价格x 的值,使商场每日销售该商品所获得的利润最大.考点 利用导数求解生活中的最值问题 题点 利用导数求解最大利润问题解 (1)因为当x =5时,y =11,所以a2+10=11,所以a =2.(2)由(1)可知,该商品每日的销售量为y =2x -3+10(x -6)2, 所以商场每日销售该商品所获得的利润为f (x )=(x -3)⎣⎢⎡⎦⎥⎤2x -3+10(x -6)2=2+10(x -3)(x -6)2,3<x <6.从而f ′(x )=10[(x -6)2+2(x -3)(x -6)] =30(x -4)(x -6),令f ′(x )=0,得x =4或x =6. 当x 变化时,f ′(x ),f (x )的变化情况如下表:由上表可得,x =4是函数f (x )在区间(3,6)内的极大值点,也是最大值点. 所以当x =4时,函数f (x )取得最大值,且最大值等于42.答 当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大.反思与感悟 解决此类有关利润的实际应用题,应灵活运用题设条件,建立利润的函数关系,常见的基本等量关系有 (1)利润=收入-成本.(2)利润=每件产品的利润×销售件数.跟踪训练2 已知一家公司生产某种品牌服装的年固定成本为10万元,每生产1千件需另投入2.7万元.设该公司一年内生产该品牌服装x 千件并全部销售完,每千件的销售收入为R (x )万元,且R (x )=⎩⎪⎨⎪⎧10.8-130x 2,0<x ≤10,108x -1 0003x 2,x >10.(1)求年利润W (万元)关于年产量x (千件)的函数解析式;(2)当年产量为多少千件时,该公司在这一品牌服装的生产中所获得的年利润最大,并求出最大值.考点 利用导数求解生活中的最值问题 题点 利用导数求解最大利润问题 解 (1)当0<x ≤10时,W =xR (x )-(10+2.7x )=8.1x -x 330-10;当x >10时,W =xR (x )-(10+2.7x )=98-1 0003x-2.7x .所以W =⎩⎪⎨⎪⎧8.1x -x 330-10,0<x ≤10,98-1 0003x-2.7x ,x >10.(2)当0<x ≤10时,由W ′=8.1-x 210=0,得x =9,当x ∈(0,9)时,W ′>0,当x ∈(9,10)时,W ′<0, 所以当x =9时,W 取得最大值, 且W max =8.1×9-130×93-10=38.6,当x >10时,W =98-⎝ ⎛⎭⎪⎫1 0003x +2.7x≤98-21 0003x×2.7x =38, 当且仅当1 0003x =2.7 x ,即x =1009时,W max =38,综上可得,当x =9时,W 取得最大值38.6.故当年产量为9千件时,该公司在这一品牌服装的生产中所获得的年利润最大,最大利润为38.6万元.命题角度2 用料、费用最少问题例3 某地建一座桥,两端的桥墩已建好,这两墩相距m 米,余下工程只需建两端桥墩之间的桥面和桥墩.经测算,一个桥墩的工程费用为256万元;距离为x 米的相邻两墩之间的桥面工程费用为(2+x )x 万元.假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素,记余下工程的费用为y 万元. (1)试写出y 关于x 的函数关系式;(2)当m =640米时,需新建多少个桥墩才能使y 最小? 考点 利用导数求解生活中的最值问题 题点 用料、费用最少问题 解 (1)设需新建n 个桥墩, 则(n +1)x =m ,即n =m x-1.所以y =f (x )=256n +(n +1)(2+x )x=256⎝ ⎛⎭⎪⎫m x -1+m x(2+x )x=256mx+m x +2m -256.(2)由(1)知,f ′(x )=-256m x 2+12m 12x -=m2x2(32x -512). 令f ′(x )=0,得32x =512, 所以x =64.当0<x <64时,f ′(x )<0,f (x )在区间(0,64)上为减函数; 当64<x <640时,f ′(x )>0,f (x )在区间(64,640)上为增函数, 所以f (x )在x =64处取得最小值.此时n =m x -1=64064-1=9.反思与感悟 (1)用料最省、成本最低问题是日常生活中常见的问题之一,解决这类问题要明确自变量的意义以及最值问题所研究的对象.正确书写函数表达式,准确求导,结合实际作答. (2)利用导数的方法解决实际问题,当在定义区间内只有一个点使f ′(x )=0时,如果函数在这点有极大(小)值,那么不与端点值比较,也可以知道在这个点取得最大(小)值. 跟踪训练3 为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C (单位:万元)与隔热层厚度x (单位:cm)满足关系:C (x )=k3x +5(0≤x ≤10),若不建隔热层,每年能源消耗费用为8万元.设f (x )为隔热层建造费用与20年的能源消耗费用之和. (1)求k 的值及f (x )的表达式;(2)隔热层修建多厚时,总费用f (x )达到最小,并求最小值. 考点 利用导数求解生活中的最值问题 题点 用料、费用最少问题 解 (1)设隔热层厚度为x cm ,由题设,每年能源消耗费用为C (x )=k3x +5,再由C (0)=8,得k =40,因此C (x )=403x +5, 而建造费用为C 1(x )=6x .因此得隔热层建造费用与20年的能源消耗费用之和为f (x )=20C (x )+C 1(x )=20×403x +5+6x =8003x +5+6x (0≤x ≤10). (2)f ′(x )=6-2 400(3x +5)2.令f ′(x )=0,即2 400(3x +5)2=6,解得x =5,x =-253(舍去).当0<x <5时,f ′(x )<0;当5<x <10时,f ′(x )>0,故当x =5时,f (x )取到最小值,对应的最小值为f (5)=6×5+80015+5=70.答 当隔热层修建5 cm 厚时,总费用达到最小值为70万元.1.炼油厂某分厂将原油精炼为汽油,需对原油进行冷却和加热,如果第x 小时,原油温度(单位:℃)为f (x )=13x 3-x 2+8(0≤x ≤5),那么原油温度的瞬时变化率的最小值是( )A .8 B.203 C .-1D .-8考点 利用导数求解生活中的最值问题 题点 利用导数求解生活中的其他最值问题答案 C解析 原油温度的瞬时变化率为f ′(x )=x 2-2x =(x -1)2-1(0≤x ≤5),所以当x =1时,原油温度的瞬时变化率取得最小值-1.2.要做一个圆锥形漏斗,其母线长为20 cm ,要使其体积最大,则高应为( ) A.1033 cm B.2033 cm C.1633cm D.33cm 考点 利用导数求几何模型的最值问题 题点 利用导数求几何体体积的最值问题 答案 B解析 设圆锥的高为h cm,0<h <20, ∴V 圆锥=13π(202-h 2)×h =13π(400-h 2)h∴V ′=13π(400-3h 2),令V ′(h )=0得h =2033,当h ∈⎝ ⎛⎭⎪⎫0,2033时,V ′>0,当h ∈⎝ ⎛⎭⎪⎫2033,20时,V ′<0,故当h =2033时,体积最大.3.某商场从生产厂家以每件20元的价格购进一批商品.若该商品零售价定为P 元,销售量为Q 件,且销量Q 与零售价P 有如下关系:Q =8 300-170P -P 2,则最大毛利润为(毛利润=销售收入-进货支出)( ) A .30元 B .60元 C .28 000元D .23 000元考点 利用导数求解生活中的最值问题 题点 利用导数求解最大利润问题 答案 D解析 毛利润为(P -20)Q ,即f (P )=(P -20)(8 300-170P -P 2),f ′(P )=-3P 2-300P +11 700=-3(P +130)(P -30). 令f ′(P )=0,得P =30或P =-130(舍去). 又P ∈[20,+∞),故f (P )max =f (P )极大值, 故当P =30时,毛利润最大, 所以f (P )max =f (30)=23 000(元).4.要制作一个容积为4 m 3,高为1 m 的无盖长方体容器,已知底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是________元. 考点 利用导数求解生活中的最值问题 题点 用料、费用最少问题 答案 160解析 设底面长为x ,由题意得底面宽为4x.设总造价为y ,则y =20x ×4x+10×1×⎝ ⎛⎭⎪⎫2x +2×4x ,即y =20x +80x+80,y ′=20-80x2,令y ′=0,得x =2.∴当x =2时,y min =160(元).5.某商品每件成本9元,售价30元,每星期卖出432件.如果降低价格,销售量可以增加,且每星期多卖出的商品件数与商品单价的降低额x (单位:元,0≤x ≤21)的平方成正比.已知商品单价降低2元时,每星期多卖出24件. (1)将一个星期的商品销售利润表示成x 的函数; (2)如何定价才能使一个星期的商品销售利润最大? 考点 利用导数求解生活中的最值问题 题点 利用导数求解最大利润问题解 (1)设商品降价x 元,则多卖出的商品件数为kx 2. 若记商品一个星期的获利为f (x ),则有f (x )=(30-x -9)(432+kx 2)=(21-x )(432+kx 2).由已知条件,得24=k ×22,于是有k =6.所以f (x )=-6x 3+126x 2-432x +9 072,x ∈[0,21]. (2)由(1)得,f ′(x )=-18x 2+252x -432 =-18(x -2)(x -12).当x 变化时,f ′(x ),f (x )的变化情况如下表:故当x =12时,f (x )取得极大值. 因为f (0)=9 072,f (12)=11 664.所以定价为30-12=18(元),才能使一个星期的商品销售利润最大.1.利用导数解决生活中优化问题的一般步骤(1)分析实际问题中各量之间的关系,列出实际问题的数学模型,写出实际问题中变量之间的函数关系y =f (x );(2)求函数的导数f ′(x ),解方程f ′(x )=0;(3)比较函数在区间端点和极值点处的函数值的大小,最大(小)者为最大(小)值. 2.正确理解题意,建立数学模型,利用导数求解是解答应用问题的主要思路.另外需要特别注意(1)合理选择变量,正确写出函数解析式,给出函数定义域; (2)与实际问题相联系;(3)必要时注意分类讨论思想的应用.一、选择题1若底面为等边三角形的直棱柱的体积为V ,则当其表面积最小时底面边长为( ) A.3V B.32V C.34VD .23V考点 利用导数求几何模型的最值问题 题点 利用导数求面积的最值问题 答案 C解析 设底面边长为x , 则表面积S =32x 2+43xV (x >0), ∴S ′=3x2(x 3-4V ).令S ′=0,得x =34V ,可判断当x =34V 时,S 取得最小值.2.如果圆柱轴截面的周长l 为定值,则体积的最大值为( ) A.⎝ ⎛⎭⎪⎫l 63πB.⎝ ⎛⎭⎪⎫l 33πC.⎝ ⎛⎭⎪⎫l 43π D.14⎝ ⎛⎭⎪⎫l 43π 考点 利用导数求几何模型的最值问题 题点 利用导数求几何体体积的最值问题 答案 A解析 设圆柱的底面半径为r ,高为h ,体积为V , 则4r +2h =l ,∴h =l -4r2.∴V =πr 2h =l2πr 2-2πr 3⎝ ⎛⎭⎪⎫0<r <l 4,则V ′=l πr -6πr 2.令V ′=0,得r =0或r =l6,而r >0, ∴r =l6是其唯一的极值点.∴当r =l6时,V 取得最大值,最大值为⎝ ⎛⎭⎪⎫l 63π.3.某公司生产一种产品, 固定成本为20 000元,每生产一单位的产品,成本增加100元,若总收入R 与年产量x 的关系是R (x )=⎩⎪⎨⎪⎧-x 3900+400x ,0≤x ≤390,90 090,x >390,则当总利润P (x )最大时,每年生产产品的单位数是( ) A .150 B .200 C .250D .300考点 利用导数求解生活中的最值问题 题点 利用导数求解最大利润问题 答案 D解析 由题意得,总利润P (x )=⎩⎪⎨⎪⎧-x 3900+300x -20 000,0≤x ≤390,70 090-100x ,x >390,当0≤x ≤390时,令P ′(x )=0,得x =300, 又当x >390时,P (x )=70 090-100x 为减函数, 所以当每年生产300单位的产品时,总利润最大,故选D. 4.若方底无盖水箱的容积为256,则最省材料时,它的高为( ) A .4B .6C .4.5D .8考点 利用导数求解生活中的最值问题 题点 用料、费用最少问题 答案 A解析 设底面边长为x ,高为h , 则V (x )=x 2·h =256,∴h =256x2.∴S (x )=x 2+4xh =x 2+4x ·256x 2=x 2+4×256x, ∴S ′(x )=2x -4×256x2. 令S ′(x )=0,解得x =8,∴当x =8时,S (x )取得最小值. ∴h =25682=4.5.某超市中秋前30天,月饼销售总量f (t )与时间t (0<t ≤30,t ∈Z )的关系大致满足f (t )=t 2+10t +12,则该超市前t 天平均售出⎝⎛⎭⎪⎫如前10天平均售出为f (10)10的月饼最少为( ) A .14个 B .15个 C .16个D .17个考点 利用导数求解生活中的最值问题 题点 利用导数求解生活中的其他最值问题 答案 D 解析 记g (t )=f (t )t =t +12t+10, 令g ′(t )=1-12t2=0,得t =23(负值舍去),则g (t )在区间(0,23)上单调递减,在区间(23,30]上单调递增, 由于t ∈Z ,且g (3)=g (4)=17,∴g (t )min =17.6.某银行准备新设一种定期存款业务,经预算,存款量与存款利率的平方成正比,比例系数为k (k >0).已知贷款的利率为0.048 6,且假设银行吸收的存款能全部放贷出去.设存款利率为x ,x ∈(0,0.048 6),若使银行获得最大收益,则x 的取值为( ) A .0.016 2 B .0.032 4 C .0.024 3D .0.048 6考点 利用导数求解生活中的最值问题 题点 利用导数求解最大利润问题 答案 B解析 依题意,得存款量是kx 2,银行支付的利息是kx 3,获得的贷款利息是0.048 6kx 2,其中x ∈(0,0.048 6).所以银行的收益是y =0.048 6kx 2-kx 3(0<x <0.048 6), 则y ′=0.097 2kx -3kx 2.令y ′=0,得x =0.032 4或x =0(舍去). 当0<x <0.032 4时,y ′>0; 当0.032 4<x <0.048 6时,y ′<0.所以当x =0.032 4时,y 取得最大值,即当存款利率为0.032 4时,银行获得最大收益. 7.圆柱形金属饮料罐的体积一定,要使生产这种金属饮料罐所用的材料最省,则它的高与底面半径的比为( ) A .2∶1 B .1∶2 C .1∶4D .4∶1考点 利用导数求解生活中的最值问题 题点 用料、费用最少问题 答案 A解析 设其体积为V ,高与底面半径分别为h ,r , 则V =πr 2h ,即h =V πr2. 由题意知,当表面积S 最小时所用材料最省.S =2πr 2+2πrh =2πr 2+2πrV πr 2=2πr 2+2V r. 令S ′=4πr -2Vr2=0,得r =3V2π,当r =3V2π时,h =Vπ⎝⎛⎭⎪⎫3V 2π2=34V π. 则h ∶r =2∶1时,表面积S 最小. 二、填空题8.如图,内接于抛物线y =1-x 2的矩形ABCD ,其中A ,B 在抛物线上运动,C ,D 在x 轴上运动,则此矩形的面积的最大值是________. 考点 利用导数求几何模型的最值问题 题点 利用导数求面积的最值问题 答案439解析 设CD =x ,则点C 坐标为⎝ ⎛⎭⎪⎫x 2,0,点B 坐标为⎝ ⎛⎭⎪⎫x2,1-x 24,∴矩形ABCD 的面积S =f (x )=x ·⎝ ⎛⎭⎪⎫1-x 24=-x 34+x ,x ∈(0,2).令f ′(x )=-34x 2+1=0,得x 1=-233(舍),x 2=233,∴当x ∈⎝⎛⎭⎪⎫0,233时,f ′(x )>0,f (x )是单调递增的,当x ∈⎝⎛⎭⎪⎫233,2时,f ′(x )<0,f (x )是单调递减的, ∴当x =233时,f (x )取最大值439.9.统计表明:某种型号的汽车在匀速行驶中每小时的耗油量y (升)关于行驶速度x (千米/时)的函数解析式可以表示为y =1128 000x 3-380x +8,x ∈(0,120],且甲、乙两地相距100千米,则当汽车以________千米/时的速度匀速行驶时,从甲地到乙地的耗油量最少. 考点 利用导数求解生活中的最值问题 题点 用料、费用最少问题 答案 80解析 当速度为x 千米/时时,汽车从甲地到乙地行驶了100x小时,设耗油量为y 升,依题意得,y =⎝⎛⎭⎪⎫1128 000x 3-380x +8·100x=1 1 280x 2+800x -154(0<x ≤120). 则y ′=x640-800x 2=x 3-803640x 2(0<x ≤120).令y ′=0,得x =80,当x ∈(0,80)时,y ′<0,该函数递减;当x ∈(80,120]时,y ′>0,该函数递增,所以当x =80时,y 取得最小值.10.某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费为4x 万元,要使一年的总运费与总存储费用之和最小,则x =________吨.考点 利用导数求解生活中的最值问题 题点 用料、费用最少问题 答案 20解析 设该公司一年内总共购买n 次货物,则n =400x,∴总运费与总存储费之和f (x )=4n +4x =1 600x+4x ,令f ′(x )=4-1 600x2=0,解得x =20,x =-20(舍去),x =20是函数f (x )的最小值点,故当x =20时,f (x )最小.11.某厂生产某种产品x 件的总成本为C (x )=1 200+275x 3(万元),已知产品单价的平方与产品件数x 成反比,生产100件这样的产品单价为50万元,则产量定为____件时总利润最大. 考点 利用导数求解生活中的最值问题 题点 利用导数求解最大利润问题 答案 25解析 由题意知502=k100,解得k =25×104.∴产品的单价P =25×104x=500x.∴总利润L (x )=x 500x -1 200-275x 3=500x -1 200-275x 3,L ′(x )=250x -12-225x 2,令L ′(x )=0,得x =25, ∴当x =25时,总利润最大.12.一个帐篷,它下部的形状是高为1 m 的正六棱柱,上部的形状是侧棱长为3 m 的正六棱锥(如图所示).当帐篷的顶点O 到底面中心O 1的距离为________ m 时,帐篷的体积最大. 考点 利用导数求几何模型的最值问题 题点 利用导数求几何体体积的最值问题 答案 2解析 设OO 1=x ,则1<x <4. 由题设可得正六棱锥底面边长为32-(x -1)2=8+2x -x 2. 于是底面正六边形的面积为 6·34·(8+2x -x 2)2=332(8+2x -x 2). 帐篷的体积为V (x )=332(8+2x -x 2)⎣⎢⎡⎦⎥⎤13(x -1)+1=32(16+12x -x 3). 则V ′(x )=32(12-3x 2). 令V ′(x )=0,解得x =-2(不合题意,舍去)或x =2. 当1<x <2时,V ′(x )>0,V (x )为增函数; 当2<x <4时,V ′(x )<0,V (x )为减函数. 综上,当x =2时,V (x )最大. 三、解答题13.某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱体,左右两端均为半球体,按照设计要求容器的体积为64π3立方米.假设该容器的建造费用仅与其表面积有关.已知圆柱体部分每平方米建造费用为3千元,半球体部分每平方米建造费用为4千元.设该容器的总建造费用为y 千元.(1)将y 表示成r 的函数,并求该函数的定义域;(2)确定r 和l 为何值时,该容器的建造费用最小,并求出最小建造费用. 考点 利用导数求解生活中的最值问题 题点 用料、费用最少问题解 (1)因为容器的体积为64π3立方米,所以4πr 33+πr 2l =643π,解得l =643r 2-43r ,所以圆柱的侧面积为2πrl =2πr ⎝ ⎛⎭⎪⎫643r 2-43r =128π3r -8πr 23, 两端两个半球的表面积之和为4πr 2,所以y =⎝ ⎛⎭⎪⎫128π3r -8πr 23×3+4πr 2×4=128πr +8πr 2.又l =643r 2-43r >0,即r <432,所以定义域为(0, 432).(2)因为y ′=-128πr 2+16πr =16π(r 3-8)r2, 令y ′>0得2<r <243;令y ′<0得0<r <2,所以当r =2时,该容器的建造费用最小为96π千元,此时l =83.四、探究与拓展14.某民营企业生产甲、乙两种产品,根据以往经验和市场调查,甲产品的利润与投入资金成正比,乙产品的利润与投入资金的算术平方根成正比,已知甲、乙产品分别投入资金4万元时,所获得利润(万元)情况如下:该企业计划投入资金10万元生产甲、乙两种产品,那么可获得的最大利润(万元)是( ) A.92 B.6516 C.358D.174 考点 利用导数求解生活中的最值问题 题点 利用导数求解最大利润问题 答案 B解析 ∵甲产品的利润与投入资金成正比, ∴设y 1=k 1x ,当投入4万时,利润为1万, 即4k 1=1,得k 1=14,即y 1=x4.∵乙产品的利润与投入资金的算术平方根成正比, ∴设y 2=k 2x ,当投入4万时,利润为2.5万, 即4k 2=52,得2k 2=52,即k 2=54,即y 2=5x4.设乙产品投入资金为x ,则甲产品投入资金为10-x,0≤x ≤10, 则销售甲、乙两种产品所得利润为y =14(10-x )+5x4, 则y ′=-14+58x =5-2x8x ,由y ′>0,得5-2x >0,即0≤x <254,由y ′<0,得5-2x <0,即254<x ≤10,即当x =254时,函数取得极大值同时也是最大值,此时y =14⎝ ⎛⎭⎪⎫10-254+54·254=1516+5016=6516. 15.某汽车生产企业上年度生产一品牌汽车的投入成本为10万元/辆,出厂价为13万元/辆.本年度为适应市场需求,计划提高产品档次,适当增加投入成本,若每辆车的投入成本增加的比例为x (0<x <1),则出厂价相应提高的比例为0.7x ,年销售量也相应增加,年销售量y 关于x 的函数为y =3 240⎝⎛⎭⎪⎫-x 2+2x +53,则当x 为何值时,本年度的年利润最大?最大利润为多少?(年利润=(每辆车的出厂价-每辆车的投入成本)×年销售量) 考点 利用导数求解生活中的最值问题 题点 利用导数求解最大利润问题解 由题意得,本年度每辆车的投入成本为10(1+x ), 每辆车的出厂价为13(1+0.7x ),年利润为f (x )=[13(1+0.7x )-10(1+x )]·y=(3-0.9x )×3 240×⎝ ⎛⎭⎪⎫-x 2+2x +53=3 240(0.9x 3-4.8x 2+4.5x +5), 则f ′(x )=3 240(2.7x 2-9.6x +4.5) =972(9x -5)(x -3),由f ′(x )=0,解得x =59或x =3(舍去),当x ∈⎝ ⎛⎭⎪⎫0,59时,f ′(x )>0,f (x )是增函数; 当x ∈⎝ ⎛⎭⎪⎫59,1时,f ′(x )<0,f (x )是减函数. 所以当x =59时,f (x )取极大值,f⎝ ⎛⎭⎪⎫59=20 000. 因为f (x )在(0,1)内只有一个极大值,所以它是最大值.所以当x =59时,本年度的年利润最大,最大利润为20 000万元.精美句子1、善思则能“从无字句处读书”。
高中数学 第一章 导数及其应用 1.4 生活中的优化问题举例学案 新人教A版选修2-2
生活的优化问题举例
一、知识要点
1、函数的求导方法
0)()
x
x f x
x
→
+-
c
=(c为常数)
2、应用题的解题步骤是什么?
二、基础盘查
探究一
如果海报为如下图所示的竖向张贴的海报,要求版心面积为2
128dm,上、下两边各空2dm,左、
右两边各空1dm。
若海报版心高为xdm。
1.求四周空白面积关于x的函数解析式;
2.求四周空白面积最小值。
探究二
若海报材料用的是30dm的正方形硬纸板,活动结束后,学校准备将海报做成废品收集箱进行再利用。
如下图所示,从正方形纸板的 4 个角上分别切去面积相等的正方形,再把纸板的边沿虚线折起,用胶粘好,做成一个无盖的长方底箱子,问箱底的边长是多少时,箱子容积最大?最大容积是多少?
三、变式训练
1.建一个面积为512平方米的矩形堆料场,为充分利用已有资源,可以利用原有的墙壁作为一边,其他三边需要砌新的墙壁,要使新砌墙壁所用的材料最省,则长宽分别为多少米?
2.某工厂生产某种产品,已知该产品的月生产量为x 吨,且每吨产品的价格为2
302x -元,生产x 吨的成本为5002x +元,该工厂每月生产多少吨该产品才能使利润最大?并求出最大利润。
四、规律总结:
生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题.
1.解决优化问题的基本思路
2.求函数最值的常用方法
3.本节课所涉及的数学思想方法
五、作业:
(1)复习本节课的知识及方法。
高中数学 第一章 导数及其应用 1.4 生活中的优化问题举例导学案 新人教A版选修2-2(2021
福建省永安市高中数学第一章导数及其应用1.4 生活中的优化问题举例导学案新人教A版选修2-2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(福建省永安市高中数学第一章导数及其应用1.4 生活中的优化问题举例导学案新人教A版选修2-2)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为福建省永安市高中数学第一章导数及其应用1.4 生活中的优化问题举例导学案新人教A 版选修2-2的全部内容。
1.4生活中的优化问题举例【第一环节】:导学 2分钟1、生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题.通过前面的学习,我们知道,导数是求函数最大(小)值的有力工具.这一节,我们利用导数解决一些生活中的优化问题。
2、请认真阅读例题,抓住题目中的关键字眼,并按照提示解决问题。
读题一般要读三遍:粗读、细读、带着问题读,关键字眼还可以划起来。
【第二环节】:自我探究、小组合作、老师评析探究点一面积、体积的最值问题自我探究5分钟、小组合作2分钟、老师评析3分钟例1:学校或班级举行活动,通常需要张贴海报进行宣传。
现让你设计一张如图1.4—1所示的竖向张贴的海报,要求版心面积为128 2dm,上、下两边各空2dm,左、右两边各空1dm.如何设计海报的尺寸,才能使四周空心面积最小?分析:1、这是一个求面积的最值问题。
首先请把题目中的信息标在图上。
2、版心面积为定值128dm2,海报的面积是否也为定值?3、如果设版心的高为xdm,那么版心的宽能用x表示吗?海报的面积能用x表示吗?海报四周空白的面积S能用x表示吗?其定义域是什么?4、海报四周空白的面积S(x)是否存在最值?若存在,如何求其最值?5、如何设计海报的尺寸,才能使四周空白面积最小?反思(1)在解决最优化问题时,往往要建立函数关系式,转化为求函数最值的问题。
高中数学 第一章 导数及其应用 1.4 生活中的优化问题举例说课稿 新人教A版选修22
1.4生活中的优化问题举例1.内容和内容解析“优化问题”是现实生活中常碰到的问题,比如速度最快、距离最小、费用最低、用料最省、效率最高、增长率、膨胀率等。
而解决方法可以多样,学生较为熟悉的是线性规划问题,二次函数最值问题,或结合函数图象解决最值。
而本节内容主要是应用导数解决生活中的优化问题,使学生体会导数在解决生活中的优化问题的广泛作用和强大实力。
教材主要在效率、利润、最大容量三个方面举例说明。
从教学内容分析,教材例题与学生生活经验有一定的差距离,问题信息量大,数学建模要求高,在具体的教学中,可以设置有一定梯度和接近学生生活中的优化问题,提高学生的学习兴趣,同时告诉学生如何去思考解决这类问题的一般思路。
本节内容是导数知识的应用问题,所以数学建模,用导数求函数的单调性、最值,导数的意义是学生学习的必备知识。
2.目标和目标解析本节课主要培养学生数学知识的应用意识,应用导数, 解决生活中的优化问题。
同时教学中应突出导数的应用研究。
(1)熟练掌握生活中常遇到的“效率最高”,“容量最大”,“利润最大”的解决方案;(2)继续培养学生数学建模的能力。
为实现以上目标,可以分以下几步进行:(1)一般信息题的函数建模问题。
(2)设置能用二次函数,基本不等式解决优化问题的应用题。
(3)引导学生用导数解决一般的优化问题。
(4)总结解决优化问题的思路是: 第一步将优化问题转化为用函数表示的数学问题, 第二步是应用导数这个工具解决数学问题, 进而得到优化问题的答案。
3.教学问题诊断分析这一节的难点之一是数学建模问题。
比如,教材例1“汽油的使用效率何时最高”问题,题目的背景不熟悉,呈现形式不是很简洁,即使学生预习,也不知所云。
此题是用到“在曲线上求一点P,使得OP与曲线相切并切于点P”而解决此问题就要学生充分掌握导数几何意义。
作为函数的建模题,信息加工、数据的收集、函数图象呈现、图象的分析等都是学生的策手问题。
既然“导数的应用”作为本节的重点,那么在具体施教中不妨对例题作一些处理,化解难点,突出重点。
18学年高中数学第一章导数及其应用1.4生活中的优化问题举例教学案新人教A版选修2_2
1.4 生活中的优化问题举例[典例] 有一块边长为a 的正方形铁板,现从铁板的四个角各截去一个相同的小正方形,做成一个长方体形的无盖容器.为使其容积最大,截下的小正方形边长应为多少?[解] 设截下的小正方形边长为x ,容器容积为V (x ),则做成的长方体形无盖容器底面边长为a -2x ,高为x ,V (x )=(a -2x )2x,0<x <a2.即V (x )=4x 3-4ax 2+a 2x,0<x <a2.实际问题归结为求V (x )在区间⎝ ⎛⎭⎪⎫0,a 2上的最大值点.为此,先求V (x )的极值点.在开区间⎝ ⎛⎭⎪⎫0,a 2内,V ′(x )=12x 2-8ax +a 2.令V ′(x )=0,得12x 2-8ax +a 2=0. 解得x 1=16a ,x 2=12a (舍去).x 1=16a 在区间⎝ ⎛⎭⎪⎫0,a 2内,x 1可能是极值点.且当0<x <x 1时,V ′(x )>0; 当x 1<x <a2时,V ′(x )<0. 因此x 1是极大值点,且在区间⎝ ⎛⎭⎪⎫0,a 2内,x 1是唯一的极值点,所以x =16a 是V (x )的最大值点.即当截下的小正方形边长为16a 时,容积最大.1.利用导数解决实际问题中的最值的一般步骤(1)分析实际问题中各量之间的关系,找出实际问题的数学模型,写出实际问题中变量之间的函数关系式y =f (x );(2)求函数的导数f ′(x ),解方程f ′(x )=0;(3)比较函数在区间端点和极值点的函数值大小,最大(小)者为最大(小)值; (4)把所得数学结论回归到数学问题中,看是否符合实际情况并下结论. 2.几何中最值问题的求解思路面积、体积(容积)最大,周长最短,距离最小等实际几何问题,求解时先设出恰当的变量,将待求解最值的问题表示为变量的函数,再按函数求最值的方法求解,最后检验.[活学活用]1.已知圆柱的表面积为定值S ,当圆柱的容积V 最大时,圆柱的高h 的值为________. 解析:设圆柱的底面半径为r , 则S 圆柱底=2πr 2,S 圆柱侧=2πrh ,∴圆柱的表面积S =2πr 2+2πrh .∴h =S -2πr 22πr,又圆柱的体积V =πr 2h =r2(S -2πr 2)=rS -2πr 32,V ′(r )=S -6πr 22,令V ′(r )=0得S =6πr 2,∴h =2r ,因为V ′(r )只有一个极值点,故当h =2r 时圆柱的容积量大.又r =S6π,∴h =2S6π=6πS3π. 即当圆柱的容积V 最大时,圆柱的高h 为6πS3π. 答案:6πS3π2.将一段长为100 cm 的铁丝截成两段,一段弯成正方形,一段弯成圆,问如何截可使正方形与圆面积之和最小?解:设弯成圆的一段长为x (0<x <100),另一段长为100-x ,记正方形与圆的面积之和为S ,则S =π⎝⎛⎭⎪⎫x 2π2+⎝ ⎛⎭⎪⎫100-x 42(0<x <100),则S ′=x 2π-18(100-x ).令S ′=0,则x =100ππ+4.由于在(0,100)内函数只有一个导数为零的点,问题中面积之和最小值显然存在,故当x =100ππ+4cm 时,面积之和最小. 故当截得弯成圆的一段长为100ππ+4cm 时,两种图形面积之和最小. 用料、费用最少问题[典例] 某地建一座桥,两端的桥墩已建好,这两墩相距m 米,余下工程只需建两端桥墩之间的桥面和桥墩.经测算,一个桥墩的工程费用为256万元;距离为x 米的相邻两墩之间的桥面工程费用为(2+x )x 万元.假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素,记余下工程的费用为y 万元.(1)试写出y 关于x 的函数关系式;(2)当m =640米时,需新建多少个桥墩才能使y 最小? [解] (1)设需新建n 个桥墩,则(n +1)x =m , 即n =m x-1.所以y =f (x )=256n +(n +1)(2+x )x=256⎝ ⎛⎭⎪⎫m x -1+m x(2+x )x=256mx+m x +2m -256.(2)由(1)知,f ′(x )=-256m x 2+12mx -12=m 2x 2(x 32-512).令f ′(x )=0,得x 32=512,所以x =64.当0<x <64时,f ′(x )<0,f (x )在区间(0,64)内为减函数; 当64<x <640时,f ′(x )>0,f (x )在区间(64,640)内为增函数, 所以f (x )在x =64处取得最小值.此时n =m x -1=64064-1=9.故需新建9个桥墩才能使y 最小.费用、用料最省问题是日常生活中常见的问题之一,解决这类问题要明确自变量的意义以及最值问题所研究的对象.正确书写函数表达式,准确求导,结合实际做答.[活学活用]某工厂要围建一个面积为128 m 2的矩形堆料场,一边可以用原有的墙壁,其它三边要砌新的墙壁,要使砌墙所用的材料最省,则堆料场的长、宽应分别是多少?解:设场地宽为x m ,则长为128xm ,因此新墙总长度为y =2x +128x(x >0),y ′=2-128x2,令y ′=0,∵x >0,∴x =8.因为当0<x <8时,y ′<0;当x >8时,y ′>0, 所以当x =8时,y 取最小值,此时宽为8 m ,长为16 m. 即当堆料场的长为16 m ,宽为8 m 时,可使砌墙所用材料最省.[典例] 某商场销售某种商品的经验表明,该商品每日的销售量y (单位:千克)与销售价格x (单位:元/千克)满足关系式y =ax -3+10(x -6)2.其中3<x <6,a 为常数.已知销售价格为5元/千克时,每日可售出该商品11千克.(1)求a 的值;(2)若该商品的成本为3元/千克,试确定销售价格x 的值,使商场每日销售该商品所获得的利润最大.[解] (1)因为x =5时,y =11, 所以a2+10=11,a =2.(2)由(1)可知,该商品每日的销售量y =2x -3+10(x -6)2, 所以商场每日销售该商品所获得的利润f (x )=(x -3)⎣⎢⎡⎦⎥⎤2x -3+x -2=2+10(x -3)·(x -6)2,3<x <6. 从而f ′(x )=10[(x -6)2+2(x -3)(x -6)] =30(x -4)(x -6).于是,当x 变化时,f ′(x ),f (x )的变化情况如下表:由上表可得,x =4是函数f (x )在区间(3,6)内的极大值点,也是最大值点.所以当x =4时,函数f (x )取得最大值,且最大值等于42.即当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大.1.经济生活中优化问题的解法经济生活中要分析生产的成本与利润及利润增减的快慢,以产量或单价为自变量很容易建立函数关系,从而可以利用导数来分析、研究、指导生产活动.2.关于利润问题常用的两个等量关系 (1)利润=收入-成本.(2)利润=每件产品的利润×销售件数. [活学活用]工厂生产某种产品,次品率p 与日产量x (万件)间的关系为p =⎩⎪⎨⎪⎧16-x ,0<x ≤c ,23,x >c ,(c 为常数,且0<c <6).已知每生产1件合格产品盈利3元,每出现1件次品亏损1.5元.(1)将日盈利额y (万元)表示为日产量x (万件)的函数;(2)为使日盈利额最大,日产量应为多少万件?(注:次品率=次品数产品总数×100%)解:(1)当x >c 时,p =23,y =⎝ ⎛⎭⎪⎫1-23·x ·3-23·x ·32=0; 当0<x ≤c 时,p =16-x,∴y =⎝ ⎛⎭⎪⎫1-16-x ·x ·3-16-x ·x ·32=x -2x 2-x.∴日盈利额y (万元)与日产量x (万件)的函数关系为y =⎩⎪⎨⎪⎧x -2x 2-x ,0<x ≤c ,0,x >c ,(c 为常数,且0<c <6).(2)由(1)知,当x >c 时,日盈利额为0. 当0<x ≤c 时,∵y =x -2x 2-x,∴y ′=32·-4x-x +9x -2x2-x2=x -x --x2,令y ′=0,得x =3或x =9(舍去),∴①当0<c <3时,y ′>0,∴y 在区间(0,c ]上单调递增,∴y 最大值=f (c )=c -2c 2-c.②当3≤c <6时,在(0,3)上,y ′>0,在(3,c )上,y ′<0,∴y 在(0,3)上单调递增,在(3,c )上单调递减.∴y 最大值=f (3)=92.综上,若0<c <3,则当日产量为c 万件时,日盈利额最大;若3≤c <6,则当日产量为3万件时,日盈利额最大.层级一 学业水平达标1.福建炼油厂某分厂将原油精炼为汽油,需对原油进行冷却和加热,如果第x 小时时,原油温度(单位:℃)为f (x )=13x 3-x 2+8(0≤x ≤5),那么原油温度的瞬时变化率的最小值是( )A .8 B.203C .-1D .-8解析:选C 瞬时变化率即为f ′(x )=x 2-2x 为二次函数,且f ′(x )=(x -1)2-1,又x ∈[0,5],故x =1时,f ′(x )min =-1.2.把一段长为12 cm 的细铁丝锯成两段,各自围成一个正三角形,那么这两个正三角形面积之和的最小值是( )A.332cm 2B .4 cm 2C .3 2 cm 2D .2 3 cm 2解析:选D 设一段为x ,则另一段为12-x (0<x <12),则S (x )=12×⎝ ⎛⎭⎪⎫x 32×32+12×⎝ ⎛⎭⎪⎫12-x 32×32=34⎝ ⎛⎭⎪⎫2x 29-8x 3+16,∴S ′(x )=34⎝ ⎛⎭⎪⎫49x -83.令S ′(x )=0,得x =6, 当x ∈(0,6)时,S ′(x )<0, 当x ∈(6,12)时,S ′(x )>0, ∴当x =6时,S (x )最小. ∴S =34⎝ ⎛⎭⎪⎫2×19×62-83×6+16=23(cm 2). 3.某公司生产某种产品,固定成本为20 000元,每生产一单位产品,成本增加100元,已知总收益R 与年产量x 的关系是R (x )=⎩⎪⎨⎪⎧400x -12x 2x,x ,则总利润最大时,每年生产的产品是( )A .100B .150C .200D .300解析:选 D 由题意,总成本为:C =20 000+100x ,所以总利润为P =R -C =⎩⎪⎨⎪⎧300x -x 22-20 000,0≤x ≤400,60 000-100x ,x >400,P ′=⎩⎪⎨⎪⎧300-x ,0≤x ≤400,-100,x >400,令P ′=0,当0≤x ≤400时,得x =300;当x >400时,P ′<0恒成立,易知当x =300时,总利润最大.4.设正三棱柱的体积为V ,那么其表面积最小时,底面边长为( ) A.4V B .23V C.34VD.12V 解析:选C 设底面边长为x ,则高为h =4V 3x2,∴S 表=3×4V 3x2×x +2×34x 2=43V x +32x 2, ∴S 表′=-43Vx2+3x ,令S 表′=0,得x =34V .经检验知,当x =34V 时,S 表取得最小值.5.内接于半径为R 的球且体积最大的圆锥的高为( ) A .R B .2R C.43R D.34R 解析:选C 设圆锥高为h ,底面半径为r ,则R 2=(h -R )2+r 2,∴r 2=2Rh -h 2,∴V =13πr 2h =π3h (2Rh -h 2)=23πRh 2-π3h 3,V ′=43πRh -πh 2.令V ′=0得h =43R . 当0<h <4R 3时,V ′>0;当4R 3<h <2R 时,V ′<0. 因此当h =43R 时,圆锥体积最大.故应选C.6.某公司在甲、乙两地销售一种品牌车,利润(单位:万元)分别为L 1=5.06x -0.15x2和L 2=2x ,其中x 为销售量(单位:辆),若该公司在这两地共销售15辆车,则能获得的最大利润为________万元.解析:设甲地销售x 辆,则乙地销售(15-x )辆. 总利润L =5.06x -0.15x 2+2(15-x ) =-0.15x 2+3.06x +30(x ≥0). 令L ′=-0.3x +3.06=0,得x =10.2. ∴当x =10时,L 有最大值45.6. 答案:45.67.如图,内接于抛物线y =1-x 2的矩形ABCD ,其中A ,B 在抛物线上运动,C ,D 在x 轴上运动,则此矩形的面积的最大值是________.解析:设CD =x ,则点C 坐标为⎝ ⎛⎭⎪⎫x 2,0,点B 坐标为⎝ ⎛⎭⎪⎫x2,1-x 24,∴矩形ABCD 的面积S =f (x )=x ·⎝ ⎛⎭⎪⎫1-x 24=-x 34+x ,x ∈(0,2).由f ′(x )=-34x 2+1=0,得x 1=-23(舍),x 2=23, ∴x ∈⎝⎛⎭⎪⎫0,23时,f ′(x )>0,f (x )是递增的, x ∈⎝⎛⎭⎪⎫23,2时,f ′(x )<0,f (x )是递减的,当x =23时,f (x )取最大值439.答案:4398.某厂生产某种产品x 件的总成本:C (x )=1 200+275x 3,又产品单价的平方与产品件数x 成反比,生产100件这样的产品的单价为50元,总利润最大时,产量应定为__________件.解析:设产品单价为a 元,又产品单价的平方与产品件数x 成反比,即a 2x =k ,由题知a =500x.总利润y =500x -275x 3-1 200(x >0),y ′=250x -225x 2,由y ′=0,得x =25,x ∈(0,25)时, y ′>0,x ∈(25,+∞)时,y ′<0,所以x =25时, y 取最大值.答案:259.为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C (单位:万元)与隔热层厚度x (单位:cm)满足关系:C (x )=k3x +5(0≤x ≤10),若不建隔热层,每年能源消耗费用为8万元,设f (x )为隔热层建造费用与20年的能源消耗费用之和.(1)求k 的值及f (x )的表达式;(2)隔热层修建多厚时,总费用f (x )达到最小,并求最小值.解:(1)设隔热层厚度为x cm ,由题设,每年能源消耗费用为C (x )=k3x +5,再由C (0)=8,得k =40,因此C (x )=403x +5.而建造费用为C 1(x )=6x .最后得隔热层建造费用与20年的能源消耗费用之和为f (x )=20C (x )+C 1(x )=20×403x +5+6x =8003x +5+6x (0≤x ≤10). (2)f ′(x )=6- 2 400x +2, 令f ′(x )=0,即2 400x +2=6,解得x =5,x =-253(舍去).当0<x <5时,f ′(x )<0,当5<x <10时,f ′(x )>0, 故x =5是f (x )的最小值点,对应的最小值为f (5)=6×5+80015+5=70. 当隔热层修建5 cm 厚时,总费用达到最小值70万元.10.某厂生产某种电子元件,如果生产出一件正品,可获利200元,如果生产出一件次品,则损失100元.已知该厂制造电子元件过程中,次品率p 与日产量x 的函数关系是:p =3x 4x +32(x ∈N *).(1)写出该厂的日盈利额T (元)用日产量x (件)表示的函数关系式; (2)为获最大日盈利,该厂的日产量应定为多少件?解:(1)由题意可知次品率p =日产次品数/日产量,每天生产x 件,次品数为xp ,正品数为x (1-p ).因为次品率p =3x4x +32,当每天生产x 件时, 有x ·3x 4x +32件次品,有x ⎝ ⎛⎭⎪⎫1-3x 4x +32件正品.所以T =200x ⎝ ⎛⎭⎪⎫1-3x 4x +32-100x ·3x 4x +32 =25·64x -x 2x +8(x ∈N *).(2)T ′=-25·x +x -x +2,由T ′=0得x =16或x =-32(舍去).当0<x ≤16时,T ′≥0;当x ≥16时,T ′≤0;所以当x =16时,T 最大.即该厂的日产量定为16件,能获得最大日盈利.层级二 应试能力达标1.已知某生产厂家的年利润y (单位:万元)与年产量x (单位:万件)的函数关系式为y =-13x 3+81x -234,则使该生产厂家获得最大年利润的年产量为( )A .13万件B .11万件C .9万件D .7万件解析:选C y ′=-x 2+81,令y ′=0,解得x =9或x =-9(舍去),当0<x <9时,y ′>0;当x >9时,y ′<0. 所以当x =9时,y 取得最大值.2.若一球的半径为r ,作内接于球的圆柱,则圆柱侧面积的最大值为( ) A .2πr 2B .πr 2C .4πr 2D.12πr 2 解析:选A 设内接圆柱的底面半径为r 1,高为t ,则S =2πr 1t =2πr 12r 2-r 21=4πr 1r 2-r 21. ∴S =4πr 2r 21-r 41. 令(r 2r 21-r 41)′=0得r 1=22r . 此时S =4π·22r ·r 2-⎝⎛⎭⎪⎫22r 2=4π·22r ·22r =2πr 2.3.某商品一件的成本为30元,在某段时间内若以每件x 元出售,可卖出(200-x )件,要使利润最大每件定价为( )A .80元B .85元C .90元D .95元解析:选B 设每件商品定价x 元,依题意可得 利润为L =x (200-x )-30x =-x 2+170x (0<x <200).L ′=-2x +170,令-2x +170=0,解得x =1702=85. 因为在(0,200)内L 只有一个极值,所以以每件85元出售时利润最大. 4.内接于半径为R 的半圆的周长最大的矩形的宽和长分别为( )A.R 2和32R B.55R 和455R C.45R 和75R D .以上都不对解析:选B 设矩形的宽为x ,则长为2R 2-x 2, 则l =2x +4R 2-x 2(0<x <R ),l ′=2-4xR 2-x 2,令l ′=0,解得x 1=55R ,x 2=-55R (舍去). 当0<x <55R 时,l ′>0,当55R <x <R 时,l ′<0, 所以当x =55R 时,l 取最大值,即周长最大的矩形的宽和长分别为55R ,455R . 5.某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费为4x 万元,要使一年的总运费与总存储费用之和最小,则x =________吨.解析:设该公司一年内总共购买n 次货物,则n =400x,∴总运费与总存储费之和f (x )=4n +4x =1 600x +4x ,令f ′(x )=4-1 600x2=0,解得x =20,x =-20(舍去),x =20是函数f (x )的最小值点,故当x =20时,f (x )最小.答案:206.一个帐篷,它下部的形状是高为1 m 的正六棱柱,上部的形状是侧棱长为3 m 的正六棱锥(如图所示).当帐篷的顶点O 到底面中心O 1的距离为__________ m 时,帐篷的体积最大.解析:设OO 1为x m ,底面正六边形的面积为S m 2,帐篷的体积为V m 3. 则由题设可得正六棱锥底面边长为32-x -2=8+2x -x 2(m),于是底面正六边形的面积为S =6×34(8+2x -x 2)2=332(8+2x -x 2). 帐篷的体积为V =13×332(8+2x -x 2)(x -1)+332(8+2x -x 2) =32(8+2x -x 2)[]x -+3=32(16+12x -x 3), V ′=32(12-3x 2). 令V ′=0,解得x =2或x =-2(不合题意,舍去). 当1<x <2时,V ′>0;当2<x <4时,V ′<0. 所以当x =2时,V 最大. 答案:27.某集团为了获得更大的收益,每年要投入一定的资金用于广告促销,经调查,每年投入广告费t (百万元),可增加销售额约为-t 2+5t (百万元)(0≤t ≤3).(1)若该公司将当年的广告费控制在3百万元之内,则应投入多少广告费,才能使该公司由此获得的收益最大?(2)现该公司准备共投入3百万元,分别用于广告促销和技术改造,经预测,每投入技术改造费x 百万元,可增加的销售额约为-13x 3+x 2+3x (百万元).请设计一个资金分配方案,使该公司由此获得的收益最大.(收益=销售额-投入)解:(1)设投入t (百万元)的广告费后增加的收益为f (t ), 则有f (t )=(-t 2+5t )-t =-t 2+4t =-(t -2)2+4(0≤t ≤3),∴当t =2时,f (t )取得最大值4,即投入2百万元的广告费时,该公司由此获得的收益最大.(2)设用于技术改造的资金为x (百万元),则用于广告促销的资金为(3-x )(百万元),又设由此获得的收益是g (x )(百万元),则g (x )=⎝ ⎛⎭⎪⎫-13x 3+x 2+3x +[-(3-x )2+5(3-x )]-3=-13x 3+4x +3(0≤x ≤3),∴g ′(x )=-x 2+4,令g ′(x )=0,解得x =-2(舍去)或x =2.又当0≤x <2时,g ′(x )>0;当2<x ≤3时,g ′(x )<0,∴当x =2时,g (x )取得最大值,即将2百万元用于技术改造,1百万元用于广告促销,该公司由此获得的收益最大.8.统计表明某型号汽车在匀速行驶中每小时的耗油量y (升)关于行驶速度x (千米/小时)的函数为y =1128 000x 3-380x +8(0<x <120).(1)当x =64千米/小时时,行驶100千米耗油量多少升? (2)若油箱有22.5升油,则该型号汽车最多行驶多少千米? 解:(1)当x =64千米/小时时,要行驶100千米需要10064=2516小时, 要耗油⎝⎛⎭⎪⎫1128 000×643-380×64+8×2516=11.95(升).(2)设22.5升油能使该型号汽车行驶a 千米,由题意得,⎝ ⎛⎭⎪⎫1128 000x 3-380x +8×a x =22.5,∴a =22.51128 000x 2+8x -380,设h (x )=1128 000x 2+8x -380,则当h (x )最小时,a 取最大值, h ′(x )=164 000x -8x 2=x 3-80364 000x 2,令h ′(x )=0⇒x =80, 当x ∈(0,80)时,h ′(x )<0, 当x ∈(80,120)时,h ′(x )>0,故当x ∈(0,80)时,函数h (x )为减函数, 当x ∈(80,120)时,函数h (x )为增函数,∴当x =80时,h (x )取得最小值,此时a 取最大值为a =22.51128 000×802+880-380=200.故若油箱有22.5升油,则该型号汽车最多行驶200千米.。
高中数学第一章导数及其应用1.4生活中的优化问题举例优化练习新人教A版选修2-2(2021年整理)
2017-2018学年高中数学第一章导数及其应用1.4 生活中的优化问题举例优化练习新人教A版选修2-2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017-2018学年高中数学第一章导数及其应用1.4 生活中的优化问题举例优化练习新人教A版选修2-2)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017-2018学年高中数学第一章导数及其应用1.4 生活中的优化问题举例优化练习新人教A版选修2-2的全部内容。
1。
4 生活中的优化问题举例[课时作业][A组基础巩固]1.炼油厂某分厂将原油精炼为汽油,需对原油进行冷却和加热,如果第x小时,原油温度(单位:℃)为f(x)=13x3-x2+8(0≤x≤5),那么,原油温度的瞬时变化率的最小值是( )A.8 B.20 3C.-1 D.-8解析:原油温度的瞬时变化率为f′(x)=x2-2x=(x-1)2-1(0≤x≤5),所以当x=1时,原油温度的瞬时变化率取得最小值-1.答案:C2.以长为10的线段AB为直径作半圆,则它的内接矩形的面积的最大值为( )A.10 B.15C.25 D.50解析:如图,CDEF为半圆O的内接矩形,C、D为圆上的动点,连接OC,设∠COF=α,则CF=5sin α,OF=5cos α,∴S矩形CDEF=2×5cos α·5sin α=25sin 2α(0<α〈π2).∴S矩形CDEF的最大值为25。
答案:C3.某人要购买8件礼物,分两次购买,商家规定每次购买礼物付款金额为当次购买礼物数量的三次方,若使购买礼物付款额最省,此人每次购买礼物的数量分别为( ) A.2,6 B.4,4C.3,5 D.1,7解析:设第一次购买了x件礼物,则第二次购买了8-x件,则付款额f(x)=x3+(8-x)3,f′(x)=3x2-3(8-x)2=3(16x-64),令f′(x)=0,得x=4,∴当x=4时,付款额最省.答案:B4.某公司生产一种产品,固定成本为20 000元,每生产一单位的产品,成本增加100元,若总收入R与年产量x(0≤x≤390)的关系是R(x)=-错误!+400x,(0≤x≤390),则当总利润最大时,每年生产的产品单位数是( )A.150 B.200C.250 D.300解析:由题意可得总利润P(x)=-错误!+300x-20 000,0≤x≤390,由P′(x)=-错误!+300=0,得x=300.当0≤x<300时,P′(x)〉0;当300〈x≤390时,P′(x)〈0,所以当x=300时,P(x)最大.答案:D5.某银行准备新设一种定期存款业务,经预测,存款量与存款利率的平方成正比,比例系数为k(k〉0),贷款的利率为0。
人教版高中数学第一章导数及其应用1.4生活中的优化问题举例学案新人教A版选修2_2
1.4 生活中的优化问题举例学习目标:1.体会导数在解决实际问题中的作用.2.能利用导数解决简单的实际问题.(重点、难点)[自 主 预 习·探 新 知]1.优化问题生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题.2.用导数解决优化问题的基本思路思考:解决生活中优化问题应注意什么?[提示](1)在建立函数模型时,应根据实际问题确定出函数的定义域.(2)求实际问题的最大(小)值时,一定要从问题的实际意义去考查,不符合实际意义的应舍去,如:大度、宽度应大于0,销售价为正数等.[基础自测]1.已知某生产厂家的年利润y (单位: 万元)与年产量x (单位:万件)的函数关系式为y =-13x 3+81x -234,则使该生产厂家获取最大年利润的年产量为( )A .7万件B .9万件C .11万件D .13万件B [设y =f (x ),即f (x )=-13x 3+81x -234.故f ′(x )=-x 2+81.令f ′(x )=0,即-x 2+81=0, 解得x =9或x =-9(舍去).当0<x <9时,f ′(x )>0,函数y =f (x )单调递增; 当x >9时,f ′(x )<0,函数y =f (x )单调递减. 因此,当x =9时,y =f (x )取最大值.故使该生产厂家获取最大年利润的年产量为9万件.]2.炼油厂某分厂将原油精炼为汽油,需对原油进行冷却和加热,如果第x 小时,原油温度(单位:℃)为f (x )=13x 3-x 2+8(0≤x ≤5),那么原油温度的瞬时变化率的最小值是( )【导学号:31062069】A .8B .203C .-1D .-8C [由题意,f ′(x )=x 2-2x =(x -1)2-1, ∵0≤x ≤5,∴x =1时,f ′(x )的最小值为-1, 即原油温度的瞬时变化率的最小值是-1.]3.做一个容积为256 m 3的方底无盖水箱,所用材料最省时,它的高为( )A .6 mB .8 mC .4 mD .2 mC [设底面边长为x m ,高为h m ,则有x 2h =256,所以h =256x2.所用材料的面积设为S m 2,则有S =4x ·h +x 2=4x ·256x2+x 2=256×4x +x 2.S ′=2x -256×4x2,令S ′=0,得x =8,因此h =25664=4(m).]4.某一件商品的成本为30元,在某段时间内,若以每件x 元出售,可卖出(200-x )件,当每件商品的定价为______元时,利润最大.【导学号:31062070】[解析] 利润为S (x )=(x -30)(200-x ) =-x 2+230x -6 000,S ′(x )=-2x +230, 由S ′(x )=0,得x =115,这时利润达到最大. [答案] 115[合 作 探 究·攻 重 难]切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A ,B ,C ,D 四个点重合于图中的点P ,正好形成一个正四棱柱形状的包装盒,E ,F 在AB 上,是被切去的一个等腰直角三角形斜边的两个端点,设AE =FB =x (cm).图141(1)某广告商要求包装盒的侧面积S (cm 2)最大,试问x 应取何值?(2)某厂商要求包装盒的容积V (cm 3)最大,试问x 应取何值?并求出此时包装盒的高与底面边长的比值.[解] 设包装盒的高为h cm ,底面边长为a cm. 由已知得a =2x ,h =60-2x2=2(30-x ),0<x <30.(1)S =4ah =8x (30-x )=-8(x -15)2+1 800, 所以当x =15时,S 取得最大值.(2)V =a 2h =22(-x 3+30x 2),V ′=62x (20-x ). 由V ′=0,得x =0(舍去)或x =20.当x ∈(0,20)时,V ′>0;当x ∈(20,30)时,V ′<0. 所以当x =20时,V 取得极大值,也是最大值. 此时h a =12,即包装盒的高与底面边长的比值为12.[规律方法]1立体几何中的最值问题往往涉及空间图形的表面积、体积,在此基础上解决与实际相关的问题.2解决此类问题必须熟悉简单几何体的表面积与体积公式,如果已知图形是由简单几何体组合而成,则要分析其组合关系,将图形进行拆分或组合,以便简化求值过程.[跟踪训练]1.周长为20 cm 的矩形,绕一条边旋转成一个圆柱,则圆柱体积的最大值为________cm 3.【导学号:31062071】[解析] 设矩形的长为x cm , 则宽为(10-x )cm(0<x <10).由题意可知圆柱体积为V =πx 2(10-x )=10πx 2-πx 3.∴V ′=20πx -3πx 2,令V ′(x )=0,得x =0(舍去)或x =203,且当x ∈⎝⎛⎭⎪⎫0,203时,V ′(x )>0,当x ∈⎝⎛⎭⎪⎫203,10时,V ′(x )<0, ∴当x =203时,V (x )max =4 00027π cm 3.[答案]4 00027π热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C (单位:万元)与隔热层厚度x (单位:cm)满足关系:C (x )=k3x +5(0≤x ≤10),若不建隔热层,每年能源消耗费用为8万元.设f (x )为隔热层建造费用与20年的能源消耗费用之和.(1)求k 的值及f (x )的表达式;(2)隔热层修建多厚时,总费用f (x )达到最小?并求最小值. [思路探究] (1)由C (0)=8可求k 的值从而求出f (x )的表达式. (2)求导数式f (x )的最小值.[解] (1)由题设,每年能源消耗费用为C (x )=k3x +5(0≤x ≤10),再由C (0)=8,得k =40,因此C (x )=403x +5.而建造费用为C 1(x )=6x .最后得隔热层建造费用与20年的能源消耗费用之和为f (x )=20C (x )+C 1(x )=20×403x +5+6x =8003x +5+6x (0≤x ≤10).(2)f ′(x )=6-2 400+,令f ′(x )=0,即2 400+=6,解得x =5或x =-253(舍去).当0<x <5时,f ′(x )<0,当5<x <10时,f ′(x )>0,故x =5是f (x )的最小值点,对应的最小值为f (5)=6×5+80015+5=70. 当隔热层修建5 cm 厚时,总费用达到最小值70万元. [规律方法] 1.用料最省、成本费用最低问题是日常生活中常见的问题之一,解决这类问题要明确自变量的意义以及最值问题所研究的对象.正确书写函数表达式,准确求导,结合实际作答.2.利用导数的方法解决实际问题,当在定义区间内只有一个点使f x =0时,如果函数在这点有极大小值,那么不与端点值比较,也可以知道在这个点取得最大小值. [跟踪训练]2.甲、乙两地相距400千米,汽车从甲地匀速行驶到乙地,速度不得超过100千米/时,已知该汽车每小时的运输成本P (元)关于速度v (千米/时)的函数关系是P =119 200v 4-1160v 3+15v , (1)求全程运输成本Q (元)关于速度v 的函数关系式;(2)为使全程运输成本最少,汽车应以多大速度行驶?并求此时运输成本的最小值.【导学号:31062072】[解] (1)Q =P ·400v=⎝ ⎛⎭⎪⎫119 200v4-1160v3+15v ·400v=⎝⎛⎭⎪⎫119 200v3-1160v2+15·400 =v348-52v 2+6 000(0<v ≤100). (2)Q ′=v216-5v ,令Q ′=0,则v =0(舍去)或v =80,当0<v <80时,Q ′<0; 当80<v ≤100时,Q ′>0,∴v =80千米/时时,全程运输成本取得极小值,即最小值,且Q min =Q (80)=2 0003(元).[1.在实际问题中,如果在定义域内函数只有一个极值点,则函数在该点处取最值吗? 提示:根据函数的极值与单调性的关系可以判断,函数在该点处取最值,并且极小值点对应最小值,极大值点对应最大值.2.你能列举几个有关利润的等量关系吗? 提示:(1)利润=收入-成本. (2)利润=每件产品的利润×销售件数.某商场销售某种商品的经验表明,该商品每日的销售量y (单位:千克)与销售价格x (单位:元/千克)满足关系式y =a x -3+10(x -6)2,其中3<x <6,a 为常数,已知销售价格为5元/千克时,每日可售出该商品11千克.(1)求a 的值;(2)若该商品的成本为3元/千克,试确定销售价格x 的值,使商场每日销售该商品所获得的利润最大.[思路探究] (1)根据x =5时,y =11求a 的值.(2)把每日的利润表示为销售价格x 的函数,用导数求最大值. [解] (1)因为x =5时,y =11,所以a2+10=11,a =2.(2)由(1)知,该商品每日的销售量y =2x -3+10(x -6)2, 所以商场每日销售该商品所获得的利润f (x )=(x -3)⎣⎢⎡⎦⎥⎤2x -3+-=2+10(x -3)(x -6)2,3<x <6, 从而,f ′(x )=10[(x -6)2+2(x -3)(x -6)] =30(x -4)·(x -6),于是,当x 变化时,f ′(x ),f (x )的变化情况如下表:所以,当x =4时,函数f (x )取得最大值,且最大值等于42.故当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大. 母题探究:(变条件)本例条件换为:该商品每日的销售量y (单位:千克)与销售价格x (单位:元/千克,1<x ≤12)满足:当1<x ≤4时,y =a (x -3)2+b x -1,(a ,b 为常数);当4<x ≤12时,y =2 800x -100.已知当销售价格为2元/千克时,每日可销售出该特产800千克;当销售价格为3元/千克时,每日可售出150千克.(1)求a ,b 的值,并确定y 关于x 的函数解析式;(2)若该商品的销售成本为1元/千克,试确定销售价格x 的值,使店铺每日销售该特产所获利润f (x )最大,(7≈2.65)[解] (1)由题意:x =2时y =800,∴a +b =800, 又∵x =3时y =150,∴b =300,可得a =500.∴y =⎩⎪⎨⎪⎧-+300x -1,1<2800x -100,4<x≤12,(2)由题意:f (x )=y (x -1)=⎩⎪⎨⎪⎧--+300,1<⎝⎛⎭⎪⎫2 800x -100-,4<x≤12,当1<x ≤4时,f (x )=500(x -3)2(x -1)+300=500x 3-3 500x 2+7 500x -4 200,f ′(x )=500(3x -5)(x -3),∴由f ′(x )>0,得53<x <3,∴f (x )在⎝ ⎛⎭⎪⎫1,53,(3,4)上递增,在⎝ ⎛⎭⎪⎫53,3上递减,∵f ⎝ ⎛⎭⎪⎫53=8 0009+450<f (4)=1 800, ∴当x =4时有最大值,f (4)=1 800 当4<x ≤12时,f (x )=⎝⎛⎭⎪⎫2 800x -100(x -1)=2 900-100x +2 800x ≤2 900-4007≈1 840,当且仅当100x =2 800x ,即x =27≈5.3时取等号,∴x =5.3时有最大值1 840, ∵1 800<1 840,∴当x =5.3时f (x )有最大值1 840,即当销售价格为5.3元的值,使店铺所获利润最大.[规律方法] 利润最大问题是生活中常见的一类问题,一般根据“利润=收入-成本”建立函数关系式,再利用导数求最大值.解此类问题需注意两点:①价格要大于或等于成本,否则就会亏本;②销量要大于0,否则不会获利.[当 堂 达 标·固 双 基]1.某箱子的体积与底面边长x 的关系为V (x )=x 2⎝ ⎛⎭⎪⎫60-x 2(0<x <60),则当箱子的体积最大时,箱子底面边长为( )【导学号:31062073】A .30B .40C .50D .60B [V ′(x )=-32x 2+60x =-32x (x -40),因为0<x <60,所以当0<x <40时,V ′(x )>0, 此时V (x )单调递增;当40<x <60时,V ′(x )<0,此时V (x )单调递减,所以V (40)是V (x )的极大值,即当箱子的体积最大时,箱子底面边长为40.]2.某商场从生产厂家以每件20元购进一批商品,若该商品零售价定为p 元,销售量为Q 件,则销售量Q 与零售价p 有如下关系:Q =8 300-170p -p 2.则最大毛利润为(毛利润=销售收入-进货支出)( )A .30元B .60元C .28 000元D .23 000元D [设毛利润为L (p ),由题意知L (p )=pQ -20Q =Q (p -20) =(8 300-170p -p 2)(p -20) =-p 3-150p 2+11 700p -166 000, 所以L ′(p )=-3p 2-300p +11 700.令L ′(p )=0,解得p =30或p =-130(舍去). 此时,L (30)=23 000.因为在p =30附近的左侧L ′(p )>0,右侧L ′(p )<0,所以L (30)是极大值,根据实际问题的意义知,L (30)是最大值,即零售价定为每件30元时,最大毛利润为23 000元.]3.做一个无盖的圆柱形水桶,若要使水桶的体积是27π,且用料最省,则水桶的底面半径为________. 【导学号:31062074】[解析] 设圆柱形水桶的表面积为S ,底面半径为r (r >0),则水桶的高为27r2,所以S =πr 2+2πr ×27r2=πr 2+54πr (r >0),求导数,得S ′=2πr -54πr2,令S ′=0,解得r =3.当0<r <3时,S ′<0;当r >3时,S ′>0,所以当r =3时,圆柱形水桶的表面积最小,即用料最省.[答案] 34.某银行准备新设一种定期存款业务,经预测,存款量与存款利率的平方成正比,比例系数为k (k >0),贷款的利率为0.048,假设银行吸收的存款能全部放贷出去.若存款利率为x (x ∈(0,0.048)),为使银行获得最大收益,则存款利率应定为________.[解析] 存款利率为x ,依题意:存款量是kx 2,银行应支付的利息是kx 3,贷款的收益是0.048kx 2,x ∈(0,0.048).所以银行的收益是y =0.048kx 2-kx 3(0<x <0.048),由于y ′=0.096kx -3kx 2,令y ′=0得x =0.032或x =0(舍去),又当0<x <0.032时,y ′>0;当0.032<x <0.048时,y ′<0,所以当x =0.032时,y 取得最大值.[答案] 0.0325.用长为18 m 的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为2∶1,问该长方体的长、宽、高各为多少时,其体积最大?最大体积是多少?[解] 设长方体的宽为x m ,则长为2x m ,高为h =18-12x 4=(4.5-3x )m(0<x <32).故长方体的体积为V (x )=2x 2(4.5-3x )=(9x 2-6x 3)m 3⎝⎛⎭⎪⎫0<x <32.从而V ′(x )=18x -18x 2=18x (1-x ). 令V ′(x )=0,解得x =0(舍去)或x =1, 因此x =1.当0<x <1时,V ′(x )>0; 当1<x <32时,V ′(x )<0,故在x =1处V (x )取得极大值,并且这个极大值就是V (x )的最大值.从而最大体积V =V (1)=9×12-6×13=3(m)3,此时长方体的长为2 m ,高为1.5 m. 故当长方体的长为2 m ,宽为1 m ,高为1.5 m 时,体积最大,最大体积为3 m 3.。
高中数学第一章导数及其应用1.4生活中的优化问题举例课件新人教A版选修2_2
令 V′(x)=0,得 x=0(舍去)或 x=1. 当 0<x<1 时,V′(x)>0; 当 1<x<32时,V′(x)<0,故在 x=1 处 V(x)取得极大值,并 且这个极大值就是 V(x)的最大值, 从而 Vmax=V(1)=9×12-6×13=3 m3,此时长方体的长为 2 m,高为 1.5 m. 即当长方体的长为 2 m、宽为 1 m、高为 1.5 m 时,体积最 大,最大体积为 3 m3.
费用最省(成本最低)问题
统计表明,某种型号的汽车在匀速行驶中每小时的 耗油量 y(升)关于行驶速度 x(千米/时)的函数解析式可以表示为 y=1281000x3-830x+8(0<x≤120).已知甲、乙两地相距 100 千 米.
(1)当汽车以 40 千米/时的速度匀速行驶时,从甲地到乙地 要耗油多少升?
家获取最大年利润的年产量为( )
A.13 万件
B.11 万件
C.9 万件
D.7 万件
解析: y′=-x2+81, ∴当 x>9 时,y′<0,当 x∈(0,9)时,y′>0, ∴函数 y=-13x3+81x-234 在(0,9)上递增,在(9,+∞)上 递减. 故当 x=9 时,y 有最大值.
• 答案: C
•
解决面积或体积的最值问题,要正确
引入变量,将面积或体积表示为变量的函数,结合
实际问题的定义域,利用导数求解函数的最值.
• 1.用长为18 m的钢条围成一个长方体的框架,要求 长方体的长与宽之比为2∶1,则该长方体的长、宽、 高各为多少时,其体积最大?最大体积是多少?
解析: 设长方体的宽为 x m,长为 2x m, 则高为 h=18-412x=4.5-3x0<x<32. 故长方体的体积为 V(x)=2x2(4.5-3x)=9x2-6x30<x<32, 从而 V′(x)=18x-18x2=18x(1-x).
福建省永安市高中数学第一章导数及其应用1.4生活中的优化问题举例教案新人教A版选修22
福建省永安市高中数学第一章导数及其应用1.4生活中的优化问题举例教案新人教A版选修22【教材分析】本节课是人教版高中数学选修2-2第一章第四节“生活中的优化问题举例”第一课时,主要内容是用导数求生活中面积、体积的最值问题。
生活中的优化问题是在导数的概念、运算,用导数求极值、最值等内容的基础上教学的,它既是对导数知识的复习巩固,也是导数知识在实际生活中的应用。
本节课以生活实例为题材,培养学生的阅读能力和建模意识。
学习过程中的认知冲突,不同思维的碰撞,易激发学生思维的积极性,有助于创新能力的培养。
【学情分析】学生刚学完导数的概念、运算、用导数求极值、最值等知识,为用导数解决实际生活中的问题创造了条件。
高二年级的学生正值身心发展的鼎盛时期,思维活跃,并有相应的认知基础,乐于探索、敢于探究。
但逻辑思维能力还属于经验型,运算能力不强,数学建模方法的运用还不够熟练,有待进一步加强训练。
【教学目标】知识与技能:掌握利用函数思想、导数方法求有关面积、体积的最值问题。
过程与方法:以日常生活、生产实践中典型的问题为载体,探讨利用函数思想、导数方法求面积和体积问题的应用。
情感态度与价值观:学生分享将实际问题转化为数学问题的学习乐趣,感受数学与生活的密切联系。
【教学重点】从实际问题中抽象出函数模型,用导数方法求解函数最值问题的程序化步骤。
【教学难点】从实际问题中抽象出函数模型,对最值、最值与极值概念的区别与联系的理解。
授课人:永安一中罗薇授课时间:12月1日授课地点:永安市十二中教学环节教学活动设计意图学情预设小试牛刀,知识复习问题一1.求函数导数的常用方法有哪些?(1)定义法(2)公式法问题一的引入目的在于帮助学生简单回顾一些常用函数学生对于问题二如何求解应用题,学生可能存在较多遗忘。
(3)运算法则 (4)复合函数法2.请写出以下函数的导数公式()f x c =(c 为常数) '()f x = *()()af x x a Q =∈ '()f x =()sin f x x = '()f x = ()cos f x x = '()f x = ()xf x a = '()f x = ()x f x e = '()f x = ()log a f x x = '()f x =()ln f x x = '()f x =问题二应用题的解题步骤是什么? 审题—建模—求解—还原实际的导数公式以及如何利用导数工具求解函数单调区间、最值。
高中数学第一章导数及其应用1.4生活中的优化问题举例学案新人教A版选修22
§1.4生活中的优化问题举例学习目标 1.了解导数在解决实际问题中的作用.2.掌握利用导数解决简单的实际生活中的优化问题.知识点生活中的优化问题(1)生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题.(2)利用导数解决优化问题的实质是求函数最值.(3)解决优化问题的基本思路:上述解决优化问题的过程是一个典型的数学建模过程.1.生活中常见到的收益最高,用料最省等问题就是数学中的最大、最小值问题.( √) 2.解决应用问题的关键是建立数学模型.( √)类型一几何中的最值问题例1 请你设计一个包装盒,如图所示,ABCD是边长为60 cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A,B,C,D四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒.点E,F在边AB上,是被切去的一个等腰直角三角形斜边的两个端点.设AE=FB=x(cm).某厂商要求包装盒的容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.考点利用导数求几何模型的最值问题题点 利用导数求几何体体积的最值问题 解 ∵V (x )=(2x )2×(60-2x )×22=2x 2×(60-2x )=-22x 3+602x 2(0<x <30). ∴V ′(x )=-62x 2+1202x =-62x (x -20). 令V ′(x )=0,得x =0(舍去)或x =20. ∵当0<x <20时,V ′(x )>0; 当20<x <30时,V ′(x )<0.∴V (x )在x =20时取极大值也是唯一的极值,故为最大值. ∴底面边长为2x =202(cm), 高为2(30-x )=102(cm), 即高与底面边长的比值为12.引申探究本例条件不变,若要求包装盒的侧面积S (cm 2)最大,试问x 应取何值? 解 ∵AE =x ,∴HE =2x . ∵EF =60-2x , ∴EG =22EF =22(60-2x )=2(30-x ). ∴S 侧=4×HE ×EG =4×2x ×2(30-x ) =8x (30-x )=-8x 2+240x =-8(x -15)2+8×152.∴当x =15时,S 侧最大为1 800 cm 2.反思与感悟 面积、体积(容积)最大,周长最短,距离最小等实际几何问题,求解时先设出恰当的变量,将待求解最值的问题表示为变量的函数,再按函数求最值的方法求解,最后检验. 跟踪训练1 (1)已知圆柱的表面积为定值S ,当圆柱的容积V 最大时,圆柱的高h 的值为________.考点 利用导数求几何模型的最值问题 题点 利用导数求几何体体积的最值问题(2)将一段长为100 cm 的铁丝截成两段,一段弯成正方形,一段弯成圆,当正方形与圆形面积之和最小时,圆的周长为________ cm. 考点 利用导数求几何模型的最值问题 题点 利用导数求面积的最值问题答案 (1)6πS 3π (2)100π4+π解析 (1)设圆柱的底面半径为r , 则S 圆柱底=2πr 2,S 圆柱侧=2πrh , ∴圆柱的表面积S =2πr 2+2πrh .∴h =S -2πr 22πr,又圆柱的体积V =πr 2h =r2(S -2πr 2)=rS -2πr 32,V ′(r )=S -6πr 22,令V ′(r )=0,得S =6πr 2,∴h =2r , ∵V ′(r )只有一个极值点, ∴当h =2r 时圆柱的容积最大. 又r =S6π,∴h =2S6π=6πS3π. 即当圆柱的容积V 最大时, 圆柱的高h 为6πS3π. (2)设弯成圆的一段铁丝长为x (0<x <100),则另一段长为100-x . 设正方形与圆形的面积之和为S ,则正方形的边长a =100-x 4,圆的半径r =x2π.故S =π⎝⎛⎭⎪⎫x 2π2+⎝ ⎛⎭⎪⎫100-x 42(0<x <100).因此S ′=x2π-252+x 8=x 2π-100-x 8, 令S ′=0,则x =100π4+π.由于在(0,100)内,函数只有一个导数为0的点,则问题中面积之和的最小值显然存在,故当x =100π4+πcm 时,面积之和最小. 类型二 实际生活中的最值问题 命题角度1 利润最大问题例2 某商场销售某种商品的经验表明,该商品每日的销售量y (单位:千克)与销售价格x (单位:元/千克)满足关系式y =ax -3+10(x -6)2,其中3<x <6,a 为常数.已知销售价格为5元/千克时,每日可售出该商品11千克. (1)求a 的值;(2)若该商品的成本为3元/千克,试确定销售价格x 的值,使商场每日销售该商品所获得的利润最大.考点 利用导数求解生活中的最值问题 题点 利用导数求解最大利润问题解 (1)因为当x =5时,y =11,所以a2+10=11,所以a =2.(2)由(1)可知,该商品每日的销售量为y =2x -3+10(x -6)2, 所以商场每日销售该商品所获得的利润为f (x )=(x -3)⎣⎢⎡⎦⎥⎤2x -3+10(x -6)2=2+10(x -3)(x -6)2,3<x <6.从而f ′(x )=10[(x -6)2+2(x -3)(x -6)] =30(x -4)(x -6),令f ′(x )=0,得x =4或x =6. 当x 变化时,f ′(x ),f (x )的变化情况如下表:由上表可得,x =4是函数f (x )在区间(3,6)内的极大值点,也是最大值点. 所以当x =4时,函数f (x )取得最大值,且最大值等于42.答 当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大.反思与感悟 解决此类有关利润的实际应用题,应灵活运用题设条件,建立利润的函数关系,常见的基本等量关系有 (1)利润=收入-成本.(2)利润=每件产品的利润×销售件数.跟踪训练2 已知一家公司生产某种品牌服装的年固定成本为10万元,每生产1千件需另投入2.7万元.设该公司一年内生产该品牌服装x 千件并全部销售完,每千件的销售收入为R (x )万元,且R (x )=⎩⎪⎨⎪⎧10.8-130x 2,0<x ≤10,108x -1 0003x 2,x >10.(1)求年利润W (万元)关于年产量x (千件)的函数解析式;(2)当年产量为多少千件时,该公司在这一品牌服装的生产中所获得的年利润最大,并求出最大值.考点 利用导数求解生活中的最值问题 题点 利用导数求解最大利润问题 解 (1)当0<x ≤10时,W =xR (x )-(10+2.7x )=8.1x -x 330-10;当x >10时,W =xR (x )-(10+2.7x )=98-1 0003x-2.7x .所以W =⎩⎪⎨⎪⎧8.1x -x 330-10,0<x ≤10,98-1 0003x-2.7x ,x >10.(2)当0<x ≤10时,由W ′=8.1-x 210=0,得x =9,当x ∈(0,9)时,W ′>0,当x ∈(9,10)时,W ′<0, 所以当x =9时,W 取得最大值, 且W max =8.1×9-130×93-10=38.6,当x >10时,W =98-⎝ ⎛⎭⎪⎫1 0003x +2.7x≤98-21 0003x×2.7x =38, 当且仅当1 0003x =2.7 x ,即x =1009时,W max =38,综上可得,当x =9时,W 取得最大值38.6.故当年产量为9千件时,该公司在这一品牌服装的生产中所获得的年利润最大,最大利润为38.6万元.命题角度2 用料、费用最少问题例3 某地建一座桥,两端的桥墩已建好,这两墩相距m 米,余下工程只需建两端桥墩之间的桥面和桥墩.经测算,一个桥墩的工程费用为256万元;距离为x 米的相邻两墩之间的桥面工程费用为(2+x )x 万元.假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素,记余下工程的费用为y 万元. (1)试写出y 关于x 的函数关系式;(2)当m =640米时,需新建多少个桥墩才能使y 最小? 考点 利用导数求解生活中的最值问题 题点 用料、费用最少问题 解 (1)设需新建n 个桥墩, 则(n +1)x =m ,即n =m x-1.所以y =f (x )=256n +(n +1)(2+x )x=256⎝ ⎛⎭⎪⎫m x -1+m x(2+x )x=256mx+m x +2m -256.(2)由(1)知,f ′(x )=-256m x 2+12m 12x -=m2x2(32x -512). 令f ′(x )=0,得32x =512, 所以x =64.当0<x <64时,f ′(x )<0,f (x )在区间(0,64)上为减函数; 当64<x <640时,f ′(x )>0,f (x )在区间(64,640)上为增函数, 所以f (x )在x =64处取得最小值.此时n =m x -1=64064-1=9.反思与感悟 (1)用料最省、成本最低问题是日常生活中常见的问题之一,解决这类问题要明确自变量的意义以及最值问题所研究的对象.正确书写函数表达式,准确求导,结合实际作答. (2)利用导数的方法解决实际问题,当在定义区间内只有一个点使f ′(x )=0时,如果函数在这点有极大(小)值,那么不与端点值比较,也可以知道在这个点取得最大(小)值. 跟踪训练3 为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C (单位:万元)与隔热层厚度x (单位:cm)满足关系:C (x )=k3x +5(0≤x ≤10),若不建隔热层,每年能源消耗费用为8万元.设f (x )为隔热层建造费用与20年的能源消耗费用之和. (1)求k 的值及f (x )的表达式;(2)隔热层修建多厚时,总费用f (x )达到最小,并求最小值. 考点 利用导数求解生活中的最值问题 题点 用料、费用最少问题 解 (1)设隔热层厚度为x cm ,由题设,每年能源消耗费用为C (x )=k3x +5,再由C (0)=8,得k =40,因此C (x )=403x +5, 而建造费用为C 1(x )=6x .因此得隔热层建造费用与20年的能源消耗费用之和为f (x )=20C (x )+C 1(x )=20×403x +5+6x =8003x +5+6x (0≤x ≤10). (2)f ′(x )=6-2 400(3x +5)2.令f ′(x )=0,即2 400(3x +5)2=6,解得x =5,x =-253(舍去).当0<x <5时,f ′(x )<0;当5<x <10时,f ′(x )>0,故当x =5时,f (x )取到最小值,对应的最小值为f (5)=6×5+80015+5=70.答 当隔热层修建5 cm 厚时,总费用达到最小值为70万元.1.炼油厂某分厂将原油精炼为汽油,需对原油进行冷却和加热,如果第x 小时,原油温度(单位:℃)为f (x )=13x 3-x 2+8(0≤x ≤5),那么原油温度的瞬时变化率的最小值是( )A .8 B.203 C .-1D .-8考点 利用导数求解生活中的最值问题 题点 利用导数求解生活中的其他最值问题答案 C解析 原油温度的瞬时变化率为f ′(x )=x 2-2x =(x -1)2-1(0≤x ≤5),所以当x =1时,原油温度的瞬时变化率取得最小值-1.2.要做一个圆锥形漏斗,其母线长为20 cm ,要使其体积最大,则高应为( ) A.1033 cm B.2033 cm C.1633cm D.33cm 考点 利用导数求几何模型的最值问题 题点 利用导数求几何体体积的最值问题 答案 B解析 设圆锥的高为h cm,0<h <20, ∴V 圆锥=13π(202-h 2)×h =13π(400-h 2)h∴V ′=13π(400-3h 2),令V ′(h )=0得h =2033,当h ∈⎝ ⎛⎭⎪⎫0,2033时,V ′>0,当h ∈⎝ ⎛⎭⎪⎫2033,20时,V ′<0,故当h =2033时,体积最大.3.某商场从生产厂家以每件20元的价格购进一批商品.若该商品零售价定为P 元,销售量为Q 件,且销量Q 与零售价P 有如下关系:Q =8 300-170P -P 2,则最大毛利润为(毛利润=销售收入-进货支出)( ) A .30元 B .60元 C .28 000元D .23 000元考点 利用导数求解生活中的最值问题 题点 利用导数求解最大利润问题 答案 D解析 毛利润为(P -20)Q ,即f (P )=(P -20)(8 300-170P -P 2),f ′(P )=-3P 2-300P +11 700=-3(P +130)(P -30). 令f ′(P )=0,得P =30或P =-130(舍去). 又P ∈[20,+∞),故f (P )max =f (P )极大值, 故当P =30时,毛利润最大, 所以f (P )max =f (30)=23 000(元).4.要制作一个容积为4 m 3,高为1 m 的无盖长方体容器,已知底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是________元. 考点 利用导数求解生活中的最值问题 题点 用料、费用最少问题 答案 160解析 设底面长为x ,由题意得底面宽为4x.设总造价为y ,则y =20x ×4x+10×1×⎝ ⎛⎭⎪⎫2x +2×4x ,即y =20x +80x+80,y ′=20-80x,令y ′=0,得x =2.∴当x =2时,y min =160(元).5.某商品每件成本9元,售价30元,每星期卖出432件.如果降低价格,销售量可以增加,且每星期多卖出的商品件数与商品单价的降低额x (单位:元,0≤x ≤21)的平方成正比.已知商品单价降低2元时,每星期多卖出24件. (1)将一个星期的商品销售利润表示成x 的函数; (2)如何定价才能使一个星期的商品销售利润最大? 考点 利用导数求解生活中的最值问题 题点 利用导数求解最大利润问题解 (1)设商品降价x 元,则多卖出的商品件数为kx 2. 若记商品一个星期的获利为f (x ),则有f (x )=(30-x -9)(432+kx 2)=(21-x )(432+kx 2).由已知条件,得24=k ×22,于是有k =6.所以f (x )=-6x 3+126x 2-432x +9 072,x ∈[0,21]. (2)由(1)得,f ′(x )=-18x 2+252x -432 =-18(x -2)(x -12).当x 变化时,f ′(x ),f (x )的变化情况如下表:故当x =12时,f (x )取得极大值. 因为f (0)=9 072,f (12)=11 664.所以定价为30-12=18(元),才能使一个星期的商品销售利润最大.1.利用导数解决生活中优化问题的一般步骤(1)分析实际问题中各量之间的关系,列出实际问题的数学模型,写出实际问题中变量之间的函数关系y =f (x );(2)求函数的导数f ′(x ),解方程f ′(x )=0;(3)比较函数在区间端点和极值点处的函数值的大小,最大(小)者为最大(小)值. 2.正确理解题意,建立数学模型,利用导数求解是解答应用问题的主要思路.另外需要特别注意(1)合理选择变量,正确写出函数解析式,给出函数定义域; (2)与实际问题相联系;(3)必要时注意分类讨论思想的应用.一、选择题1若底面为等边三角形的直棱柱的体积为V ,则当其表面积最小时底面边长为( ) A.3V B.32V C.34VD .23V考点 利用导数求几何模型的最值问题 题点 利用导数求面积的最值问题 答案 C解析 设底面边长为x , 则表面积S =32x 2+43xV (x >0), ∴S ′=3x2(x 3-4V ).令S ′=0,得x =34V ,可判断当x =34V 时,S 取得最小值.2.如果圆柱轴截面的周长l 为定值,则体积的最大值为( ) A.⎝ ⎛⎭⎪⎫l 63πB.⎝ ⎛⎭⎪⎫l 33πC.⎝ ⎛⎭⎪⎫l 43π D.14⎝ ⎛⎭⎪⎫l 43π 考点 利用导数求几何模型的最值问题 题点 利用导数求几何体体积的最值问题 答案 A解析 设圆柱的底面半径为r ,高为h ,体积为V , 则4r +2h =l ,∴h =l -4r2.∴V =πr 2h =l2πr 2-2πr 3⎝ ⎛⎭⎪⎫0<r <l 4,则V ′=l πr -6πr 2.令V ′=0,得r =0或r =l6,而r >0, ∴r =l6是其唯一的极值点.∴当r =l6时,V 取得最大值,最大值为⎝ ⎛⎭⎪⎫l 63π.3.某公司生产一种产品, 固定成本为20 000元,每生产一单位的产品,成本增加100元,若总收入R 与年产量x 的关系是R (x )=⎩⎪⎨⎪⎧-x 3900+400x ,0≤x ≤390,90 090,x >390,则当总利润P (x )最大时,每年生产产品的单位数是( ) A .150 B .200 C .250D .300考点 利用导数求解生活中的最值问题 题点 利用导数求解最大利润问题 答案 D解析 由题意得,总利润P (x )=⎩⎪⎨⎪⎧-x 3900+300x -20 000,0≤x ≤390,70 090-100x ,x >390,当0≤x ≤390时,令P ′(x )=0,得x =300, 又当x >390时,P (x )=70 090-100x 为减函数, 所以当每年生产300单位的产品时,总利润最大,故选D. 4.若方底无盖水箱的容积为256,则最省材料时,它的高为( ) A .4B .6C .4.5D .8考点 利用导数求解生活中的最值问题 题点 用料、费用最少问题 答案 A解析 设底面边长为x ,高为h , 则V (x )=x 2·h =256,∴h =256x2.∴S (x )=x 2+4xh =x 2+4x ·256x 2=x 2+4×256x, ∴S ′(x )=2x -4×256x2. 令S ′(x )=0,解得x =8,∴当x =8时,S (x )取得最小值. ∴h =25682=4.5.某超市中秋前30天,月饼销售总量f (t )与时间t (0<t ≤30,t ∈Z )的关系大致满足f (t )=t 2+10t +12,则该超市前t 天平均售出⎝⎛⎭⎪⎫如前10天平均售出为f (10)10的月饼最少为( ) A .14个 B .15个 C .16个D .17个考点 利用导数求解生活中的最值问题 题点 利用导数求解生活中的其他最值问题 答案 D 解析 记g (t )=f (t )t =t +12t+10, 令g ′(t )=1-12t2=0,得t =23(负值舍去),则g (t )在区间(0,23)上单调递减,在区间(23,30]上单调递增, 由于t ∈Z ,且g (3)=g (4)=17,∴g (t )min =17.6.某银行准备新设一种定期存款业务,经预算,存款量与存款利率的平方成正比,比例系数为k (k >0).已知贷款的利率为0.048 6,且假设银行吸收的存款能全部放贷出去.设存款利率为x ,x ∈(0,0.048 6),若使银行获得最大收益,则x 的取值为( ) A .0.016 2 B .0.032 4 C .0.024 3D .0.048 6考点 利用导数求解生活中的最值问题 题点 利用导数求解最大利润问题 答案 B解析 依题意,得存款量是kx 2,银行支付的利息是kx 3,获得的贷款利息是0.048 6kx 2,其中x ∈(0,0.048 6).所以银行的收益是y =0.048 6kx 2-kx 3(0<x <0.048 6), 则y ′=0.097 2kx -3kx 2.令y ′=0,得x =0.032 4或x =0(舍去). 当0<x <0.032 4时,y ′>0; 当0.032 4<x <0.048 6时,y ′<0.所以当x =0.032 4时,y 取得最大值,即当存款利率为0.032 4时,银行获得最大收益. 7.圆柱形金属饮料罐的体积一定,要使生产这种金属饮料罐所用的材料最省,则它的高与底面半径的比为( ) A .2∶1 B .1∶2 C .1∶4D .4∶1考点 利用导数求解生活中的最值问题 题点 用料、费用最少问题 答案 A解析 设其体积为V ,高与底面半径分别为h ,r , 则V =πr 2h ,即h =V πr2. 由题意知,当表面积S 最小时所用材料最省.S =2πr 2+2πrh =2πr 2+2πrV πr 2=2πr 2+2V r. 令S ′=4πr -2Vr2=0,得r =3V2π,当r =3V2π时,h =Vπ⎝⎛⎭⎪⎫3V 2π2=34V π. 则h ∶r =2∶1时,表面积S 最小. 二、填空题8.如图,内接于抛物线y =1-x 2的矩形ABCD ,其中A ,B 在抛物线上运动,C ,D 在x 轴上运动,则此矩形的面积的最大值是________. 考点 利用导数求几何模型的最值问题 题点 利用导数求面积的最值问题 答案439解析 设CD =x ,则点C 坐标为⎝ ⎛⎭⎪⎫x 2,0,点B 坐标为⎝ ⎛⎭⎪⎫x2,1-x 24,∴矩形ABCD 的面积S =f (x )=x ·⎝ ⎛⎭⎪⎫1-x 24=-x 34+x ,x ∈(0,2).令f ′(x )=-34x 2+1=0,得x 1=-233(舍),x 2=233,∴当x ∈⎝⎛⎭⎪⎫0,233时,f ′(x )>0,f (x )是单调递增的,当x ∈⎝⎛⎭⎪⎫233,2时,f ′(x )<0,f (x )是单调递减的, ∴当x =233时,f (x )取最大值439.9.统计表明:某种型号的汽车在匀速行驶中每小时的耗油量y (升)关于行驶速度x (千米/时)的函数解析式可以表示为y =1128 000x 3-380x +8,x ∈(0,120],且甲、乙两地相距100千米,则当汽车以________千米/时的速度匀速行驶时,从甲地到乙地的耗油量最少. 考点 利用导数求解生活中的最值问题 题点 用料、费用最少问题 答案 80解析 当速度为x 千米/时时,汽车从甲地到乙地行驶了100x小时,设耗油量为y 升,依题意得,y =⎝⎛⎭⎪⎫1128 000x 3-380x +8·100x=1 1 280x 2+800x -154(0<x ≤120). 则y ′=x640-800x 2=x 3-803640x 2(0<x ≤120).令y ′=0,得x =80,当x ∈(0,80)时,y ′<0,该函数递减;当x ∈(80,120]时,y ′>0,该函数递增,所以当x =80时,y 取得最小值.10.某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费为4x 万元,要使一年的总运费与总存储费用之和最小,则x =________吨.考点 利用导数求解生活中的最值问题 题点 用料、费用最少问题 答案 20解析 设该公司一年内总共购买n 次货物,则n =400x,∴总运费与总存储费之和f (x )=4n +4x =1 600x+4x ,令f ′(x )=4-1 600x2=0,解得x =20,x =-20(舍去),x =20是函数f (x )的最小值点,故当x =20时,f (x )最小.11.某厂生产某种产品x 件的总成本为C (x )=1 200+275x 3(万元),已知产品单价的平方与产品件数x 成反比,生产100件这样的产品单价为50万元,则产量定为____件时总利润最大. 考点 利用导数求解生活中的最值问题 题点 利用导数求解最大利润问题 答案 25解析 由题意知502=k100,解得k =25×104.∴产品的单价P =25×104x=500x.∴总利润L (x )=x 500x -1 200-275x 3=500x -1 200-275x 3,L ′(x )=250x -12-225x 2,令L ′(x )=0,得x =25, ∴当x =25时,总利润最大.12.一个帐篷,它下部的形状是高为1 m 的正六棱柱,上部的形状是侧棱长为3 m 的正六棱锥(如图所示).当帐篷的顶点O 到底面中心O 1的距离为________ m 时,帐篷的体积最大. 考点 利用导数求几何模型的最值问题 题点 利用导数求几何体体积的最值问题 答案 2解析 设OO 1=x ,则1<x <4. 由题设可得正六棱锥底面边长为32-(x -1)2=8+2x -x 2. 于是底面正六边形的面积为 6·34·(8+2x -x 2)2=332(8+2x -x 2). 帐篷的体积为V (x )=332(8+2x -x 2)⎣⎢⎡⎦⎥⎤13(x -1)+1=32(16+12x -x 3). 则V ′(x )=32(12-3x 2). 令V ′(x )=0,解得x =-2(不合题意,舍去)或x =2. 当1<x <2时,V ′(x )>0,V (x )为增函数; 当2<x <4时,V ′(x )<0,V (x )为减函数. 综上,当x =2时,V (x )最大. 三、解答题13.某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱体,左右两端均为半球体,按照设计要求容器的体积为64π3立方米.假设该容器的建造费用仅与其表面积有关.已知圆柱体部分每平方米建造费用为3千元,半球体部分每平方米建造费用为4千元.设该容器的总建造费用为y 千元.(1)将y 表示成r 的函数,并求该函数的定义域;(2)确定r 和l 为何值时,该容器的建造费用最小,并求出最小建造费用. 考点 利用导数求解生活中的最值问题 题点 用料、费用最少问题解 (1)因为容器的体积为64π3立方米,所以4πr 33+πr 2l =643π,解得l =643r 2-43r ,所以圆柱的侧面积为2πrl =2πr ⎝ ⎛⎭⎪⎫643r 2-43r =128π3r -8πr 23, 两端两个半球的表面积之和为4πr 2,所以y =⎝ ⎛⎭⎪⎫128π3r -8πr 23×3+4πr 2×4=128πr +8πr 2.又l =643r 2-43r >0,即r <432,所以定义域为(0, 432).(2)因为y ′=-128πr 2+16πr =16π(r 3-8)r2, 令y ′>0得2<r <243;令y ′<0得0<r <2,所以当r =2时,该容器的建造费用最小为96π千元,此时l =83.四、探究与拓展14.某民营企业生产甲、乙两种产品,根据以往经验和市场调查,甲产品的利润与投入资金成正比,乙产品的利润与投入资金的算术平方根成正比,已知甲、乙产品分别投入资金4万元时,所获得利润(万元)情况如下:该企业计划投入资金10万元生产甲、乙两种产品,那么可获得的最大利润(万元)是( ) A.92 B.6516 C.358D.174 考点 利用导数求解生活中的最值问题 题点 利用导数求解最大利润问题 答案 B解析 ∵甲产品的利润与投入资金成正比, ∴设y 1=k 1x ,当投入4万时,利润为1万, 即4k 1=1,得k 1=14,即y 1=x4.∵乙产品的利润与投入资金的算术平方根成正比, ∴设y 2=k 2x ,当投入4万时,利润为2.5万, 即4k 2=52,得2k 2=52,即k 2=54,即y 2=5x4.设乙产品投入资金为x ,则甲产品投入资金为10-x,0≤x ≤10, 则销售甲、乙两种产品所得利润为y =14(10-x )+5x4, 则y ′=-14+58x =5-2x8x ,由y ′>0,得5-2x >0,即0≤x <254,由y ′<0,得5-2x <0,即254<x ≤10,即当x =254时,函数取得极大值同时也是最大值,此时y =14⎝ ⎛⎭⎪⎫10-254+54·254=1516+5016=6516. 15.某汽车生产企业上年度生产一品牌汽车的投入成本为10万元/辆,出厂价为13万元/辆.本年度为适应市场需求,计划提高产品档次,适当增加投入成本,若每辆车的投入成本增加的比例为x (0<x <1),则出厂价相应提高的比例为0.7x ,年销售量也相应增加,年销售量y 关于x 的函数为y =3 240⎝⎛⎭⎪⎫-x 2+2x +53,则当x 为何值时,本年度的年利润最大?最大利润为多少?(年利润=(每辆车的出厂价-每辆车的投入成本)×年销售量) 考点 利用导数求解生活中的最值问题 题点 利用导数求解最大利润问题解 由题意得,本年度每辆车的投入成本为10(1+x ), 每辆车的出厂价为13(1+0.7x ),年利润为f (x )=[13(1+0.7x )-10(1+x )]·y=(3-0.9x )×3 240×⎝ ⎛⎭⎪⎫-x 2+2x +53=3 240(0.9x 3-4.8x 2+4.5x +5), 则f ′(x )=3 240(2.7x 2-9.6x +4.5) =972(9x -5)(x -3),由f ′(x )=0,解得x =59或x =3(舍去),当x ∈⎝ ⎛⎭⎪⎫0,59时,f ′(x )>0,f (x )是增函数; 当x ∈⎝ ⎛⎭⎪⎫59,1时,f ′(x )<0,f (x )是减函数. 所以当x =59时,f (x )取极大值,f⎝ ⎛⎭⎪⎫59=20 000. 因为f (x )在(0,1)内只有一个极大值,所以它是最大值.所以当x =59时,本年度的年利润最大,最大利润为20 000万元.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.4 生活中的优化问题举例[核心必知]1.预习教材,问题导入根据以下提纲,预习教材P 34~P 36的内容,回答下列问题. 某厂家计划用一种材料生产一种盛500 ml 溶液的圆柱形易拉罐. (1)生产这种易拉罐,如何计算材料用的多少呢? 提示:计算出圆柱的表面积即可. (2)如何制作使用材料才能最省?提示:要使用料最省,只需圆柱的表面积最小.可设圆柱的底面半径为x ,列出圆柱表面积S =2πx 2+1 000x(x >0),求S 最小时,圆柱的半径、高即可.2.归纳总结,核心必记 (1)优化问题生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题. (2)解决优化问题的基本思路[问题思考]在实际问题中,如果在定义域内函数只有一个极值点,则函数在该点处取最值吗? 提示:根据函数的极值与单调性的关系可以判断,函数在该点处取最值,并且极小值点对应最小值,极大值点对应最大值.[课前反思](1)生活中的优化问题主要涉及哪些问题?; (2)解决优化问题的基本思路是什么?.讲一讲1.某市在市内主干道北京路一侧修建圆形休闲广场.如图,圆形广场的圆心为O ,半径为100 m ,并与北京路一边所在直线l 相切于点M .点A 为上半圆弧上一点,过点A 作l 的垂线,垂足为点B .市园林局计划在△ABM 内进行绿化.设△ABM 的面积为S (单位:m 2),∠AON =θ(单位:弧度).(1)将S 表示为θ的函数;(2)当绿化面积S 最大时,试确定点A 的位置,并求最大面积. [尝试解答] (1)BM =AO sin θ=100sin θ,AB =MO +AO cos θ=100+100cos θ,θ∈(0,π).则S =12MB ·AB =12×100sin θ×(100+100cos θ)=5 000(sin θ+sin θcos θ),θ∈(0,π). (2)S ′=5 000(2cos 2θ+cos θ-1)=5 000(2cos θ-1)(cos θ+1).令S ′=0, 得cos θ=12或cos θ=-1(舍去),此时θ=π3.当θ变化时,S ′,S 的变化情况如下表:所以,当θ=π3时,S 取得最大值S max =3 750 3 m 2,此时AB =150 m ,即点A 到北京路一边l 的距离为150 m.(1)平面图形中的最值问题一般涉及线段、三角形、四边形等图形,主要研究与面积相关的最值问题,一般将面积用变量表示出来后求导数,求极值,从而求最值.(2)立体几何中的最值问题往往涉及空间图形的表面积、体积,在此基础上解决与实际相关的问题.解决此类问题必须熟悉简单几何体的表面积与体积公式,如果已知图形是由简单几何体组合而成,则要分析其组合关系,将图形进行拆分或组合,以便简化求值过程.练一练1.请你设计一个包装盒.如图所示,ABCD 是边长为60 cm 的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A ,B ,C ,D 四个点重合于图中的点P ,正好形成一个正四棱柱形状的包装盒.E 、F 在AB 上,是被切去的一个等腰直角三角形斜边的两个端点.设AE =FB =x (cm).(1)若广告商要求包装盒的侧面积S (cm 2)最大,试问x 应取何值?(2)某厂商要求包装盒的容积V (cm 3)最大,试问x 应取何值?并求出此时包装盒的高与底面边长的比值.解:设包装盒的高为h (cm),底面边长为a (cm). 由已知得a =2x ,h =60-2x2=2(30-x ),0<x <30.(1)S =4ah =8x (30-x )=-8(x -15)2+1 800, 所以当x =15时,S 取得最大值.(2)V =a 2h =22(-x 3+30x 2),V ′=62x (20-x ). 由V ′=0得x =0(舍)或x =20.当x ∈(0,20)时,V ′>0;当x ∈(20,30)时,V ′<0. 所以当x =20时,V 取得极大值,也是最大值.此时h a =12,即包装盒的高与底面边长的比值为12.讲一讲2.为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C (单位:万元)与隔热层厚度x (单位:cm)满足关系:C (x )=k3x +5(0≤x ≤10),若不建隔热层,每年能源消耗费用为8万元,设f (x )为隔热层建造费用与20年的能源消耗费用之和.(1)求k 的值及f (x )的表达式;(2)隔热层修建多厚时,总费用f (x )达到最小,并求最小值.[尝试解答] (1)由题设,隔热层厚度为x cm ,每年能源消耗费用为C (x )=k3x +5,再由C (0)=8,得k =40, 因此C (x )=403x +5.而建造费用为C 1(x )=6x .最后得隔热层建造费用与20年的能源消耗费用之和为f (x )=20C (x )+C 1(x )=20×403x +5+6x =8003x +5+6x (0≤x ≤10). (2)f ′(x )=6-2 400(3x +5)2,令f ′(x )=0, 即2 400(3x +5)2=6,解得x =5,x =-253(舍去).当0≤x <5时,f ′(x )<0, 当5<x ≤10时,f ′(x )>0, 故x =5是f (x )的最小值点,对应的最小值为f (5)=6×5+80015+5=70.所以,当隔热层修建5 cm 厚时,总费用达到最小值70万元.实际生活中用料最省、费用最低、损耗最小、最节省时间等问题都需要利用导数求解相应函数的最小值,此时根据f ′(x )=0求出极值点(注意根据实际意义舍去不合适的极值点)后,函数在该点附近满足左减右增,则此时唯一的极小值就是所求函数的最小值.练一练2.一艘轮船在航行中的燃料费和它的速度的立方成正比,已知在速度为10 km/h 时,燃料费是每小时6元,而其他与速度无关的费用是每小时96元,问此轮船以多大的速度航行时,能使每千米的费用总和最少?解:设燃料费y =kv 3,因为当v =10时,y =6,∴k =3500,∴y =3500v 3. ∴每千米总费用:S =1v ⎝ ⎛⎭⎪⎫3500v 3+96=3500v 2+96v ,S ′=3250v -96v2. 令S ′=0得v =20, 当v ∈(0,20)时,S ′<0; 当v ∈(20,+∞)时,S ′>0.∴v =20 km/h 是S 的极小值点,也是最小值点, ∴v =20 km/h 时,每千米的费用总和最少. 知识点3 利润最大问题讲一讲3.某厂生产某种电子元件,如果生产出一件正品,可获利200元,如果生产出一件次品,则损失100元.已知该厂制造电子元件过程中,次品率p 与日产量x 的函数关系是:p =3x 4x +32(x ∈N *). (1)将该厂的日盈利额T (元)表示为日产量x (件)的函数; (2)为获最大盈利,该厂的日产量应定为多少件? [尝试解答] (1)因为次品率p =3x4x +32, 所以当每天生产x 件时,有x ·3x4x +32件次品,有x ⎝ ⎛⎭⎪⎫1-3x 4x +32件正品. 所以T =200x ·⎝⎛⎭⎪⎫1-3x 4x +32-100x ·3x4x +32=25·64x -x 2x +8(x ∈N *).(2)T ′=-25·(x +32)(x -16)(x +8)2, 由T ′=0,得x =16或x =-32(舍去). 当0<x <16时,T ′>0; 当x >16时,T ′<0; 所以当x =16时,T 最大,即该厂的日产量定为16件,能获得最大盈利.解决此类有关利润的实际应用题,应灵活运用题设条件,建立利润的函数关系,常见的基本等量关系有(1)利润=收入-成本;(2)利润=每件产品的利润×销售件数.练一练3.某商场销售某种商品的经验表明,该商品每日的销售量y (单位:千克)与销售价格x (单位:元/千克)满足关系式y =a x -3+10(x -6)2,其中3<x <6,a 为常数.已知销售价格为5元/千克时,每日可售出该商品11千克.(1)求a 的值;(2)若该商品的成本为3元/千克,试确定销售价格x 的值,使商场每日销售该商品所获得的利润最大.解:(1)因为x =5时,y =11,所以a2+10=11,a =2.(2)由(1)可知,该商品每日的销售量y =2x -3+10(x -6)2, 所以商场每日销售该商品所获得的利润f (x )=(x -3)⎣⎢⎡⎦⎥⎤2x -3+10(x -6)2=2+10(x -3)(x -6)2,3<x <6.从而,f ′(x )=10[(x -6)2+2(x -3)(x -6)] =30(x -4)(x -6).于是,当x 变化时,f ′(x ),f (x )的变化情况如下表:由上表可得,x =4是函数f (x )在区间(3,6)内的极大值点,也是最大值点. 所以,当x =4时,函数f (x )取得最大值,且最大值等于42,即当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大.——————————————[课堂归纳·感悟提升]——————————————1.本节课的重点是利用导数解决生活中的优化问题. 2.本节课要重点掌握的规律方法(1)利用导数解决面积、体积的最值问题,见讲1; (2)利用导数解决成本最低(费用最省)问题,见讲2; (3)利用导数解决利润最大问题,见讲3.3.在利用导数解决生活中的优化问题时,要注意函数的定义域应使实际问题有意义,这也是本节课的易错点.课下能力提升(八)[学业水平达标练]题组1 面积、体积的最值问题1.如果圆柱轴截面的周长l 为定值,则体积的最大值为( )A.⎝ ⎛⎭⎪⎫l 63πB.⎝ ⎛⎭⎪⎫l 33π C.⎝ ⎛⎭⎪⎫l 43π D.14⎝ ⎛⎭⎪⎫l 43π解析:选A 设圆柱的底面半径为r ,高为h ,体积为V ,则4r +2h =l , ∴h =l -4r2,V =πr 2h =12πr 2l -2πr 3⎝⎛⎭⎪⎫0<r <l 4.则V ′=l πr -6πr 2,令V ′=0,得r =0或r =l6,而r >0,∴r =l6是其唯一的极值点.当r =l6时,V 取得最大值,最大值为⎝ ⎛⎭⎪⎫l 63π.2.用边长为48 cm 的正方形铁皮做一个无盖的铁盒时,在铁皮的四角各截去一个面积相等的小正方形,然后把四边折起,就能焊成一个铁盒.所做的铁盒容积最大时,在四角截去的正方形的边长为( )A .6 cmB .8 cmC .10 cmD .12 cm解析:选B 设截去的小正方形的边长为x cm ,铁盒的容积V cm 3.由题意,得V =x (48-2x )2(0<x <24),V ′=12(x -24)(x -8),令V ′=0,得x =8或x =24(舍去).当x ∈(0,8)时,V ′>0;当x ∈(8,24)时,V ′<0. ∴当x =8时,V 取得最大值. 题组2 成本最低(费用最省)问题3.做一个容积为256 m 3的方底无盖水箱,所用材料最省时,它的高为( ) A .6 m B .8 m C .4 m D .2 m解析: 选C 设底面边长为x m ,高为h m ,则有x 2h =256,所以h =256x2.所用材料的面积设为S m 2,则有S =4x ·h +x 2=4x ·256x 2+x 2=256×4x +x 2.S ′=2x -256×4x2,令S ′=0,得x =8,因此h =25664=4(m).4.某公司一年购买某种货物2 000吨,每次都购买x 吨,运费为4万元/次,一年的总存储费为12x 2万元,要使一年的总运费与总存储费之和最小,则x =________.解析:设该公司一年内总共购买n 次货物,则n =2 000x,总运费与总存储费之和f (x )=4n +12x 2=8 000x +12x 2,令f ′(x )=x -8 000x2=0,解得x =20.且当0<x <20时f ′(x )<0,当x >20时f ′(x )>0,故x =20时,f (x )最小. 答案:205.甲、乙两地相距400 千米,汽车从甲地匀速行驶到乙地,速度不得超过100 千米/时,已知该汽车每小时的运输成本P (元)关于速度v (千米/时)的函数是P =119 200v 4-1160v 3+15v ,(1)求全程运输成本Q (元)关于速度v 的函数关系式;(2)为使全程运输成本最少,汽车应以多大的速度行驶?并求此时运输成本的最小值. 解:(1)Q =P ·400v=⎝⎛⎭⎪⎫119 200v 4-1160v 3+15v ·400v=⎝⎛⎭⎪⎫119 200v 3-1160v 2+15·400 =v 348-52v 2+6 000(0<v ≤100). (2)Q ′=v 216-5v ,令Q ′=0,则v =0(舍去)或v =80,当0<v <80时,Q ′<0; 当80<v ≤100时,Q ′>0,∴v =80千米/时时,全程运输成本取得极小值,即最小值,且Q min =Q (80)=2 0003(元).题组3 利润最大问题6.已知某生产厂家的年利润y (单位:万元)与年产量x (单位:万件)的函数关系式为y =-13x 3+81x -234,则使该生产厂家获取最大年利润的年产量为( )A .13万件B .11万件C .9万件D .7万件解析:选C 因为y ′=-x 2+81,所以当∈(9,+∞)时,y ′<0;当x ∈(0,9)时,y ′>0,所以函数y =-13x 3+81x -234在(9,+∞)上单调递减,在(0,9)上单调递增,所以x =9时函数取最大值.7.某商场从生产厂家以每件20元购进一批商品,若该商品零售价定为p 元,销售量为Q 件,则销售量Q 与零售价p 有如下关系:Q =8 300-170p -p 2.则最大毛利润为(毛利润=销售收入—进货支出)( )A .30 元B .60 元C .28 000 元D .23 000 元解析:选D 设毛利润为L (p ),由题意知L (p )=pQ -20Q =Q (p -20)=(8 300-170p -p 2)(p -20) =-p 3-150p 2+11 700p -166 000, 所以L ′(p )=-3p 2-300p +11 700.令L ′(p )=0,解得p =30或p =-130(舍去). 此时,L (30)=23 000.因为在p =30附近的左侧L ′(p )>0,右侧L ′(p )<0,所以L (30)是极大值,根据实际问题的意义知,L (30)是最大值,即零售价定为每件30 元时,最大毛利润为23 000元.8.某银行准备新设一种定期存款业务,经预测,存款量与存款利率的平方成正比,比例系数为k (k >0),贷款的利率为0.048,假设银行吸收的存款能全部放贷出去.若存款利率为x (x ∈(0,0.048)),为使银行获得最大收益,则存款利率应定为________.解析:存款利率为x ,依题意:存款量是kx 2,银行应支付的利息是kx 3,贷款的收益是0.048kx 2,x ∈(0,0.048).所以银行的收益是y =0.048kx 2-kx 3(0<x <0.048),由于y ′=0.096kx -3kx 2,令y ′=0得x =0.032或x =0(舍去),又当0<x <0.032时,y ′>0;当0.032<x <0.048时,y ′<0,所以当x =0.032时,y 取得最大值.答案:0.0329.某分公司经销某种品牌产品,每件产品的成本为3元,并且每件产品需向总公司交4元的管理费,预计当每件产品的售价为x 元(8≤x ≤11)时,一年的销售量为(12-x )2万件.(1)求分公司一年的利润L (万元)与每件产品的售价x 之间的函数关系式;(2)当每件产品的售价为多少元时,分公司一年的利润L 最大?并求出L 的最大值. 解:(1)分公司一年的利润L (万元)与售价x 之间的关系为:L (x )=(x -3-4)(12-x )2=(x -7)(12-x )2,即L (x )=(x -7)(12-x )2,其中x ∈[8,11]. (2)由于L (x )=(x -7)(12-x )2,∴L ′(x )=(12-x )2+(x -7)·2(12-x )·(-1) =(12-x )(12-x -2x +14)=(12-x )(26-3x ), 令L ′(x )=0得x =12或x =263,由于x ∈[8,11],所以取x =263,当x ∈⎣⎢⎡⎭⎪⎫8,263时,L ′(x )>0;x ∈⎝ ⎛⎦⎥⎤263,11时,L ′(x )<0,所以当x =263时,L (x )在[8,11]上取得极大值,也是最大值,L ⎝ ⎛⎭⎪⎫263=50027(万元). 故当每件售价为263元时,分公司一年的利润L 最大,最大利润是50027万元.[能力提升综合练]1.将8分为两个非负数之和,使两个非负数的立方和最小,则应分为( ) A .2和6 B .4和4C .3和5D .以上都不对解析:选B 设一个数为x ,则另一个数为8-x ,则其立方和y =x 3+(8-x )3=83-192x +24x 2(0≤x ≤8),y ′=48x -192.令y ′=0,即48x -192=0,解得x =4.当0≤x <4时,y ′<0;当4<x ≤8时,y ′>0.所以当x =4时,y 最小.2.设底为等边三角形的直棱柱的体积为V ,那么其表面积最小时,底面边长为( ) A.3V B.32V C.34V D .23V 解析:选C 设底面边长为x ,高为h , ∴34x 2·h =V ,∴h =4V 3x2=43V 3x 2. ∴S 表=2·34x 2+3x ·h =32x 2+43Vx, S ′(x )=3x -43Vx2,令S ′(x )=0可得3x =43V x2,x 3=4V ,x =34V .当0<x <34V 时,S ′(x )<0;当x >34V 时,S ′(x )>0, ∴当x =34V 时,S (x )最小.3.某厂要围建一个面积为512 m 2的矩形堆料场,一边可以利用原有的墙壁,其他三边要砌新墙,当砌新墙所用的材料最省时,堆料场的长和宽分别为( )A .32 m ,16 mB .30 m ,15 mC .40 m ,20 mD .36 m ,18 m解析:选A 设建堆料场与原墙平行的一边边长为x m ,其他两边边长为y m ,则xy =512,堆料场的新砌墙的长l =x +2y =512y +2y (y >0),令l ′=-512y2+2=0,解得y =16(另一负根舍去),当0<y <16时,l ′<0;当y >16时,l ′>0,所以当y =16时,函数取得极小值,也就是最小值,此时x =51216=32.4.某公司生产一种产品,固定成本为20 000元,每生产一单位的产品,成本增加100元,若总收入R 与年产量x (0≤x ≤390)的关系是R (x )=-x 3900+400x (0≤x ≤390),则当总利润最大时,每年生产的产品单位数是( )A .150B .200C .250D .300解析:选D 由题意可得总利润P (x )=-x 3900+300x -20 000,0≤x ≤390,由P ′(x )=-x 2300+300=0,得x =300.当0≤x <300时,P ′(x )>0;当300<x ≤390时,P ′(x )<0,所以当x =300时,P (x )最大.5.要做一个圆锥形的漏斗,其母线长为20 cm ,要使其体积最大,则高为________cm. 解析:设高为h ,则底面半径r =400-h 2,0<h <20,V =13π·r 2·h =13π·(400-h 2)·h=4003πh -π3h 3. 由V ′=4003π-πh 2=0得h 2=4003,h =2033或h =-2033(舍去),因为当0<h <2033时,V ′>0,当h >2033时,V ′<0,所以当h =2033时,V 最大.答案:20336.如图,内接于抛物线y =1-x 2的矩形ABCD ,其中A ,B 在抛物线上运动,C ,D 在x 轴上运动,则此矩形的面积的最大值是________.解析:设CD =x ,则点C 坐标为⎝ ⎛⎭⎪⎫x2,0, 点B 坐标为⎝ ⎛⎭⎪⎫x 2,1-⎝ ⎛⎭⎪⎫x 22,∴矩形ACBD 的面积S =f (x )=x ·⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫x 22=-x 34+x ,x ∈(0,2).由f ′(x )=-34x 2+1=0,得x 1=-233(舍),x 2=233,∴x ∈⎝⎛⎭⎪⎫0,233时,f ′(x )>0,f (x )是递增的,x ∈⎝⎛⎭⎪⎫233,2时,f ′(x )<0,f (x )是递减的, ∴当x =233时,f (x )取最大值439.答案:4397.某工厂共有10台机器,生产一种仪器元件,由于受生产能力和技术水平等因素限制,会产生一定数量的次品.根据经验知道,每台机器产生的次品数P (万件)与每台机器的日产量x (万件)(4≤x ≤12)之间满足关系:P =0.1x 2-3.2 ln x +3.已知每生产1万件合格的元件可以盈利2万元,但每生产1万件次品将亏损1万元.(利润=盈利-亏损)(1)试将该工厂每天生产这种元件所获得的利润y (万元)表示为x 的函数; (2)当每台机器的日产量x (万件)为多少时所获得的利润最大,最大利润为多少? 解:(1)由题意得,所获得的利润为y =10[2(x -P )-P ]=20x -3x 2+96ln x -90(4≤x ≤12).(2)由(1)知,y ′=-6x 2+20x +96x =-2(3x +8)(x -6)x.当4≤x <6时,y ′>0,函数在[4,6)上为增函数;当6<x ≤12时,y ′<0,函数在(6,12]上为减函数,所以当x =6时,函数取得极大值,且为最大值,最大利润为y =20×6-3×62+96ln 6-90=96ln 6-78(万元).故当每台机器的日产量为6万件时所获得的利润最大,最大利润为(96ln 6-78)万元. 8.某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路的山区边界的直线型公路,记两条相互垂直的公路为l 1,l 2,山区边界曲线为C ,计划修建的公路为l ,如图所示,M ,N 为C 的两个端点,测得点M 到l 1,l 2的距离分别为5千米和40千米,点N 到l 1,l 2的距离分别为20千米和2.5千米,以l 1,l 2所在的直线分别为y ,x 轴,建立平面直角坐标系xOy ,假设曲线C 符合函数y =ax 2+b(其中a ,b为常数)模型.(1)求a ,b 的值;(2)设公路l 与曲线C 相切于P 点,P 的横坐标为t . ①请写出公路l 长度的函数解析式f (t ),并写出其定义域; ②当t 为何值时,公路l 的长度最短?求出最短长度.解:(1)由题意知,M 点的坐标为(5,40),N 点的坐标为(20,2.5),代入曲线C 的方程y =ax 2+b,可得⎩⎪⎨⎪⎧40=a52+b,2.5=a202+b .解得⎩⎪⎨⎪⎧a =1 000,b =0.(2)①由(1)知曲线C 的方程为y =1 000x 2(5≤x ≤20),y ′=-2 000x3, 所以y ′|x =t =-2 000t3即为l 的斜率.又当x =t 时,y =1 000t2,所以P 点的坐标为⎝⎛⎭⎪⎫t ,1 000t2,所以l 的方程为y -1 000t 2=-2 000t3(x -t ). 令x =0,得y =3 000t2;令y =0,得x =32t .所以f (t )=⎝ ⎛⎭⎪⎫32t 2+⎝ ⎛⎭⎪⎫3 000t 22,其中5≤t ≤20. ②由①知f (t )=⎝ ⎛⎭⎪⎫32t 2+⎝ ⎛⎭⎪⎫3 000t 22,其中5≤t ≤20.令g (t )=⎝ ⎛⎭⎪⎫32t 2+⎝ ⎛⎭⎪⎫3 000t 22=94t 2+9×106t4,所以g ′(t )=92t -4×9×106t 5=92·t 6-8×106t 5=92·t 6-(102)6t 5.因为5≤t ≤20,令g ′(t )<0,得5≤t <102;令g ′(t )=0,得t =102;g ′(t )>0,得102<t ≤20.所以g (t )在区间[5,102)单调递减,在(102,20]单调递增.所以g (102)=675是g (t )的极小值,也是最小值.所以当t =102时,f (t )取得最小值,最小值为f (102)=15 3.即最短长度为15 3.。