六种典型环节的阶跃响应曲线

合集下载

典型环节的模拟研究及阶跃响应分析

典型环节的模拟研究及阶跃响应分析

典型环节的模拟研究及阶跃响应分析实验二典型环节的模拟研究及阶跃响应分析一实验目的1.掌握各典型环节(比例、积分、比例积分、比例微分、惯性环节、比例积分微分环节等)模拟电路的构成方法,培养实验技能。

2.测试并熟悉各典型环节(比例、积分、比例积分、比例微分、惯性环节、比例积分微分环节等)的阶跃响应曲线。

3.了解参数变化对典型环节(比例、积分、比例积分、比例微分、惯性环节、比例积分微分环节等)阶跃响应的影响。

二实验任务与要求1.观测各种典型环节的阶跃响应曲线。

2.观测参数变化对典型环节阶跃响应的影响。

三实验原理本实验是利用运算放大器的基本特性(开环增益高、输入阻抗大、输出阻抗小等),设置不同的反馈网络来模拟各种环节。

典型环节原理方框图及其模拟电路如下:1、比例环节(P)。

其方框图如图2-1所示:Ui(S)Uo(S)K图1-1A 比例环节方框图图 2-1RRR1010KR10KiUUo--op5op6++10K100K图1-1B 比例环节模拟电路 R0=200K R1=100K;(200K)图 2-2U(S)0其传递函数是: ,K (2-1) Ui(S)比例环节的模拟电路图如图2-2所示,其传递函数是:U(S)R01 (2-2) ,Ui(S)R0比较式(2-1)和(2-2)得 (2-3) K,RR10当输入为单位阶跃信号,即U(t),1(t)时,,则由式(1-1)得到: U(s),1/Sii1 U(S)K,,0S所以输出响应为: (2-4) U,K(t,0)02、积分环节。

其方框图如图2-3所示。

其传递函数为:Ui(S)Uo(S)1TS图 2-3 图1-2A 积分环节方框图RC10KUiRUo--op5op610KR010K100K图1-2B 积分环节模拟电路C=1μf(2μf);R0=200K图 2-4U(S)10 (2-5) ,Ui(S)TS积分环节的模拟电路图如图2-4所示。

积分环节的模拟电路的传递函数为:US()10 (2-6) ,UiSRCS()0比较式(2-5)和(2-6)得:(2-7) T,RC0当输入为单位阶跃信号,即时,,则由式(2-5)得到:U(t),1(t)U(S),1Sii111 ,,,U(S)o2TSSTS所以输出响应为:1 (2-8) Utt(),oT3、比例积分(PI)环节。

闭环、开环频率特性与阶跃响应的关系

闭环、开环频率特性与阶跃响应的关系

(s)
1 s
H
2
(s)
=

2
(
s)
1 s
1(s) = H1(s)s = H2 (ns)ns = 2 (ns)
3. 频带宽度 b 与快速性的关系(一般情况)
r1(t) = 1(t)
h1 (t )
1(s)
r2 (t) = 1(t)
h2 (t)
2 (s)
h(t)
h2
h1
M ()
0.707M (0)
20log G 0
c
高频段
G( j) 1 ( j) = G( j) G( j)
1+ G(j)
闭环幅频特性近似等于开环幅频特性,因此,开环幅频特性的高频段近似反映 了系统对高频输入的抑制作用,高频段的分贝值越低,系统抵抗高频干扰的能力越强。
20log G
-20dB/dec
-40dB/dec
t→
s→0
当 M (0) = 1 时,稳态误差 ess = 0 当 M (0) 1 时,稳态误差 ess 0
M ()
2. 闭环幅频峰值 M m 与平稳性的关系
一阶系统 (s) = 1
M () = 1
Ts +1
(T)2 +1
幅频特性曲线无峰值,阶跃响应无超调,平稳性好。
二阶系统
(s)
越低,系统抵抗高频干扰的能力越强。
本章小结 • 频率特性的定义、物理意义和图示方法; • 典型环节的频率特性; • 系统的开环频率特性(开环幅相特性曲线和对数频率特性曲线); • 频率稳定判据(Nyquist稳定判据和对数频率稳定判据); • 稳定裕度的概念及计算方法; • 闭环频率特性与系统阶跃响应的关系; • 开环频率特性与系统阶跃响应的关系。

典型环节及其阶跃响应

典型环节及其阶跃响应

图1-1 运放的反馈连接 典型环节及其阶跃响应
比例环节:
参数设置:Z1=100K Ω Z2=100K Ω 单位阶跃响应波形如下:
波形分析如下: 惯性环节:
图 1-2 惯性环节模拟电路
参数设置:R1=100K Ω R2=100K C1=1f 单位阶跃响应波形如下:
分析波形如下:
积分环节
参数设置:R1=100K C1=1f
单位阶跃响应波形如下:
波形分析如下:
微分环节
微分环节模拟电路参数设置:C1=1f C2=0.01f R2=100K
单位阶跃响应波形如下:
波形分析如下:
比例微分环节
比例微分模拟电路
参数设置:R1=100K R2=100K C1=1f C2=0.01f 单位阶跃波形如下
波形分析如下:
比例积分环节
比例积分环节模拟电路
参数设置:R1=100K R2=200K C1=1f
单位阶跃波形如下
波形分析如下:
比例积分微分环节
比例积分微分模拟电路
参数设置1:R1=100K R2=200K C1=1f C2=0.1f 单位阶跃波形如下
单位阶跃波形如下
波形分析如下:。

自动控制实验报告一-典型环节及其阶跃响应

自动控制实验报告一-典型环节及其阶跃响应

实验一环典型环节节及其阶跃响应班级:学号:姓名:一、实验目的1.学习构成典型环节的模拟电路,了解电路参数对环节特性的影响;2.学习典型环节阶跃响应的测量方法,并学会根据阶跃响应曲线计算典型环节的传递函数;二、实验仪器1.EL-AT-II型自动控制系统实验箱一台2.计算机一台三、实验原理1.模拟实验的基本原理:控制系统模拟实验采用复合网络法来模拟各种典型环节,即利用运算放大器不同的输入网络和反馈网络模拟各种典型环节,然后按照给定系统的结构图将这些模拟环节连接起来,便得到了相应的模拟系统。

再将输入信号加到模拟系统的输入端,并利用计算机等测量仪器,测量系统的输出,便可得到系统的动态响应曲线及性能指标。

若改变系统的参数,还可进一步分析研究参数对系统性能的影响。

2.时域性能指标的测量方法:超调量Ó%:1)启动计算机,在桌面双击图标[自动控制实验系统] 运行软件。

2)测试计算机与实验箱的通信是否正常,通信正常继续。

如通信不正常查找原因使通信正常后才可以继续进行实验。

3)连接被测量典型环节的模拟电路。

电路的输入U1接A/D、D/A卡的DA1输出,电路的输出U2接A/D、D/A卡的AD1输入。

检查无误后接通电源。

4)在实验课题下拉菜单中选择实验一[典型环节及其阶跃响应] 。

5)鼠标单击实验课题弹出实验课题参数窗口。

在参数设置窗口中设置相应的实验参数后鼠标单击确认等待屏幕的显示区显示实验结果。

6)用软件上的游标测量响应曲线上的最大值和稳态值,代入下式算出超调量:YM A X- Y∞Ó%=——————×100%Y∞ T P 与T S :利用软件的游标测量水平方向上从零到达最大值与从零到达95%稳态 值所需的时间值,便可得到T P 与T S 。

四、实验内容构成下述典型一阶系统的模拟电路,并测量其阶跃响应: 1.比例环节的模拟电路及其传递函数:G (s )=-R1/R22.惯性环节:G(s)= -K/TS+1 K=R2/R1 ,T=R2C; 3.积分环节 G(S)= 1/TS T=RC 4.微分环节G(S)=-RCS5.比例+微分环节G(S)= -K(TS+1) K=R2/R1 T=R2C6.比例+积分环节G(S)=K(1+1/TS) K=R2/R1 T=R2C五、实验步骤1.启动计算机,在桌面双击图标【自动控制实验系统】运行软件。

自动控制原理实验指导书

自动控制原理实验指导书

自动控制原理实验指导书内蒙古工业大学电力学院自动化系2012年10月目录实验一典型环节模拟及二阶系统的时域瞬态响应分析 (1)实验二频率特性的测试 (8)实验三控制系统的动态校正 (12)实验四非线性系统的相平面分析 (14)实验五状态反馈 (20)TKKL—1型控制理论电子模拟实验箱使用说明书 (23)实验一 典型环节模拟及二阶系统的时域瞬态响应分析一、实验目的1.通过搭建典型环节模拟电路,熟悉并掌握控制理论电子模拟实验箱的使用方法。

2.了解并掌握各典型环节的传递函数及其特性,掌握用运放搭建电子模拟线路实现典型环节的方法。

3.掌握二阶系统单位阶跃响应的特点,理解二阶系统参数变化对输出响应的影响。

二、实验仪器1.控制理论电子模拟实验箱一台;2.超低频扫描示波器一台;3.万用表一只。

三、实验原理1.典型环节的传递函数及其模拟电路图(1)比例环节图1-1 比例环节的方框图比例环节的方框图如图1-1所示,其传递函数为()()C s K R s (1-1)比例环节的模拟电路图如图1-2所示,其传递函数为21()()R C s R s R = (1-2) 比较式(1-1)和式(1-2),得:21R K R =图1-2 比例环节的模拟电路图当输入为单位阶跃信号,即()1()r t t =时,由式(1-1)得输出() (0)c t K t =≥,其输出波形如图1-3所示。

图1-3 比例环节的单位阶跃响应(2)积分环节图1-4 积分环节的方框图积分环节的方框图如图1-4所示,其传递函数为()1()C s R s Ts= (1-3)图1-5 积分环节的模拟电路图积分环节的模拟电路图如图1-5所示,其传递函数为()1()C s R s RCs= (1-4) 比较式(1-3)和式(1-4),得:T RC =当输入为单位阶跃信号,即()1()r t t =时,由式(1-3)得输出1()c t t T= 其输出波形如图1-6所示。

六个典型环节的阶跃响应曲线详解

六个典型环节的阶跃响应曲线详解

六个典型环节的阶跃响应曲线详解1. 引言在信号处理领域中,阶跃响应曲线是描述系统对单位阶跃输入信号的输出响应的一种常用方法。

通过分析阶跃响应曲线,我们可以了解系统的动态特性、稳态误差和稳定性等重要信息。

本文将详细探讨六个典型环节的阶跃响应曲线,以帮助读者更好地理解信号处理中的阶跃响应。

2. 一阶惯性环节让我们来讨论一阶惯性环节的阶跃响应曲线。

一阶惯性环节由一个惯性成分和一个系数组成,其传递函数可以表示为G(s) = k / (τs + 1),其中k为增益,τ为时间常数。

在阶跃输入信号下,一阶惯性环节的输出响应会经历一个指数衰减的过程。

初始阶段,响应曲线呈现出较大的上升斜率,接近输入信号的增量。

随着时间的推移,响应逐渐趋于稳定的平衡状态。

通过观察阶跃响应曲线的时间常数τ,我们可以推断系统的动态特性以及稳态稳定性。

3. 一阶积分环节接下来,我们将研究一阶积分环节的阶跃响应曲线。

一阶积分环节的传递函数可以表示为G(s) = k / s,其中k为增益。

与一阶惯性环节不同,一阶积分环节的阶跃响应曲线呈现出线性增长的特点。

输出信号随时间的增加而持续积分,并逐渐达到稳态。

在实际应用中,一阶积分环节常用于控制系统中,以改善系统的稳定性和对常数误差的补偿。

4. 一阶滞后环节第三个环节是一阶滞后环节,其传递函数可以表示为G(s) = k / (τs + 1),其中k为增益,τ为时间常数。

一阶滞后环节的阶跃响应曲线表现出一种惰性的特点。

初始阶段,响应曲线的上升斜率较小,逐渐接近输入信号的增量。

随着时间的推移,响应曲线逐渐逼近稳定的平衡状态。

一阶滞后环节常用于减小系统的动态响应,并提高稳态精度。

5. 二阶过阻尼环节接下来,我们将研究二阶过阻尼环节的阶跃响应曲线。

二阶过阻尼环节的传递函数可以表示为G(s) = k / (τ^2s^2 + 2ζτs + 1),其中k为增益,τ为时间常数,ζ为阻尼比。

二阶过阻尼环节的阶跃响应曲线表现出较小的震荡和较快的收敛特性。

自动控制原理实验典型环节及其阶跃响应,二阶系统阶跃

自动控制原理实验典型环节及其阶跃响应,二阶系统阶跃

实验一、典型环节及其阶跃响应实验目的1、学习构成典型环节的模拟电路,了解电路参数对环节特性的影响。

2、学习典型环节阶跃响应的测量方法,并学会由阶跃响应曲线计算典型环节的传递函数。

实验内容构成下述典型环节的模拟电路,并测量其阶跃响应。

比例环节的模拟电路及其传递函数示图2-1。

G(S)=-R2/R1惯性环节的模拟电路及其传递函数示图2-2。

G(S)=-K/TS+1 K=R2/R1 ,T=R2*C积分环节的模拟电路及其传递函数示图2-3。

G(S)=1/TS T=RC微分环节的模拟电路及其传递函数示图2-4。

G(S)=-RCS比例加微分环节的模拟电路及其传递函数示图2-5。

G(S)=-K(TS+1) K=R2/R1 T=R2C比例加积分环节的模拟电路及其传递函数示图2-6。

G(S)=K(1+1/TS) K=R2/R1,T=R2C软件使用1、打开实验课题菜单,选中实验课题。

2、在课题参数窗口中,填写相应AD,DA或其它参数。

3、选确认键执行实验操作,选取消键重新设置参数。

实验步骤1、连接被测量典型环节的模拟电路及D/A、A/D连接,检查无误后接通电源。

2、启动应用程序,设置T和N。

参考值:T=0.05秒,N=200。

3、观测计算机屏幕示出的响应曲线及数据记录波形及数据(由实验报告确定)。

实验报告1、画出惯性环节、积分环节、比例加微分环节的模拟电路图,用坐标纸画出所有记录的惯性环节、积分环节、比例加微分环节的响应曲线。

2、由阶跃响应曲线计算出惯性环节、积分环节的传递函数,并与由电路计算的结果相比较。

实验二二阶系统阶跃响应一、实验目的1、研究二阶系统的特征参数,阻尼比ζ和无阻尼自然频ωn 对系统动态性能的影响,定量分析ζ和ωn与最大超调量Mp和调节时间 ts 之间的关系。

2、进一步学习实验仪器的使用方法。

3、学会根据系统阶跃响应曲线确定传递函数。

二、实验原理及电路典型二阶系统的闭环传递函数为其中ζ和ωn对系统的动态品质有决定的影响。

《自动控制》一二阶典型环节阶跃响应实验分析报告讲解

《自动控制》一二阶典型环节阶跃响应实验分析报告讲解

自动控制原理实验分析报告姓名:学号:班级:一、典型一阶系统的模拟实验:1.比例环节(P) 阶跃相应曲线。

传递函数:G(S)=-R2/R1=K说明:K为比例系数(1)R1=100KΩ,R2=100KΩ;特征参数实际值:K=-1.(2)(2)R1=100KΩ,R2=200KΩ;即K=-2.〖分析〗:经软件仿真,比例环节中的输出为常数比例增益K;比例环节的特性参数也为K,表征比例环节的输出量能够无失真、无滞后地按比例复现输入量。

2、惯性环节(T) 阶跃相应曲线及其分析。

传递函数:G(S)=-K/(TS+l) K=R2/R1 , T=R2C说明:特征参数为比例增益K和惯性时间常数T。

(1)、R2=R1=100KΩ , C=1µF;特征参数实际值:K=-1,T=0.1。

(2)、R2=R1=100KΩ , C=0.1µF;特征参数实际值:K=-1,T=0.01。

〖分析〗:惯性环节的阶跃相应是非周期的指数函数,当t=T时,输出量为0.632K,当t=3~4T时,输出量才接近稳态值。

比例增益K表征环节输出的放大能力,惯性时间常数T表征环节惯性的大小,T越大表示惯性越大,延迟的时间越长,反之亦然。

传递函数:G(S)= -l/TS ,T=RC说明:特征参数为积分时间常数T。

(1)、R=100KΩ , C=1µF;特征参数实际值:T=0.1。

(2)R=100KΩ , C=0.1µF;特征参数实际值:T=0.01。

〖分析〗:只要有一个恒定输入量作用于积分环节,其输出量就与时间成正比地无限增加,当t=T时,输出量等于输入信号的幅值大小。

积分时间常数T表征环节积累速率的快慢,T越大表示积分能力越强,反之亦然。

4、比例积分环节(PI) 阶跃相应曲线及其分析。

传递函数:G(S)=K( l+l/TS) K=-R2/R1, T=R2C说明:特征参数为比例增益K和积分时间常数T。

(1)、R2=R1=100KΩ , C=1µF;特征参数实际值:K=-1,T=0.1。

自动控制原理实验

自动控制原理实验

2014-2015学年第二学期自动控制原理实验报告姓名:王丽学号:20122527班级:交控3班指导教师:周慧实验一:典型系统的瞬态响应和稳定性1. 比例环节的阶跃响应曲线图(1:1)比例环节的阶跃响应曲线图(1:2)2. 积分环节的阶跃响应曲线图(c=1uf)3. 比例积分环节的阶跃响应曲线图(c=1uf)比例积分环节的阶跃响应曲线图(c=2uf)4. 惯性环节的阶跃响应曲线图(c=1uf)惯性环节的阶跃响应曲线图(c=2uf)5. 比例微分环节的阶跃响应曲线图(r=100k)比例微分环节的阶跃响应曲线图(r=200k)6. 比例积分微分环节的阶跃响应曲线图(r=100k)比例积分微分环节的阶跃响应曲线图(r=200k)实验结论1. 积分环节的阶跃响应曲线图可以看出,积分环节有两个明显的特征:(1)输出信号是斜坡信号(2)积分常数越大,达到顶峰需要的时间就越长2. 比例积分环节就是把比例环节与积分环节并联,分别取得结果之后再叠加起来,所以从图像上看,施加了阶跃信号以后,输出信号先有一个乘了系数K的阶跃,之后则逐渐按斜坡形式增加,形式同比例和积分的加和是相同的,因而验证了这一假设。

3. 微分环节对于阶跃信号的响应,在理论上,由于阶跃信号在施加的一瞬间有跳变,造成其微分结果为无穷大,之后阶跃信号不再变化,微分为0,表现为输出信号开始衰减。

4. PID环节同时具备了比例、积分、微分三个环节的特性,输出图像其实也就是三个环节输出特性的叠加。

三个环节在整个系统中的工作实际上是相互独立的,这也与它们是并联关系的事实相符合。

5.惯性环节的传递函数输出函数:可以看到,当t→∞时,r(t)≈Ku(t),这与图中的曲线是匹配的。

实验心得通过本实验我对试验箱更加熟悉,会连接电路;更直观的看到电路的数学模型和电路的响应曲线图三者之间的关系,这让我能够将在此之前所学的知识联系到一起。

不管是什么电路,如果要研究它首先就是得到它的数学模型,然后再通过对数学模型的研究间接的来研究该电路。

典型环节数学模型与阶跃响应

典型环节数学模型与阶跃响应

第三章 自动控制系统的数学模型
当输入量r(t)=1(t)时, 输出量 C(s)为
K 1 C ( s ) G ( s ) R( s ) Ts 1 s
可得其单位阶跃响应为
c(t)= L-1[C(s)]=K(1-e-t/T)
第三章 自动控制系统的数学模型
当K=1时, 惯性环节的单位阶跃响 应曲线如上图 (b)所示。 对惯性环节的阶 跃 响 应 曲 线 进 行 分 析, 可 得 C(0)=0 , C(T)=0.632 , C(3T)=0.95 , C(4T)=0.982 , C(∞)→1。因此, 惯性环节在输入量突变 时, 输出量不能突变, 只能随着时间的 推移按指数规律变化, 这表明该环节具 有惯性特点。 常见的惯性环节如下图所 示。
2 n G( s ) 2 2 s 2n s n
振荡环节的方框图如下图 (a)所示。
c(t) c(t) R(s)
2 n 2 s 2 2 n s n
C(s)
1
r(t)
0 (a) (b)
t
图 振荡环节方框图及单位阶跃响应曲线 (a) 振荡环节方框图; (b) 振荡环节单位阶跃响应
第三章 自动控制系统的数学模型
对上式作拉氏变换, 可得 T2s2C(s)+2ζTsC(s)+C(s)=R(s) 移项整理有
C ( s) 1 G( s) 2 2 R( s) T s 2Ts 1
第三章 自动控制系统的数学模型
令T=1/ωn, ωn为该环节的无阻尼自然 振荡频率, 则上式可改写成如下形式:
振荡环节的单位阶跃响应曲线一般 如上图 (b)所示。 振荡环节的单位阶跃响应, 随着阻 尼比 ζ 的不同, 表现出不同的动态响应 过程, 如下图 所示。

实验一典型环节及其阶跃响应

实验一典型环节及其阶跃响应

计算机模拟系统D/A A/D 输入信号输入信号输出信号输出信号121)(ZZ uu s G -=-=由上式可求得由下列模拟电路组成典型环节的传递函数及其单位阶跃响应。

2.一阶系统时域性能指标s r d t t t ,,的测量方法:的测量方法:利用软件上的游标测量响应曲线上的值,带入公式算出一阶系统时域性能指标。

标。

d t :响应曲线第一次到达其终值¥y 一半所需的时间。

r t :响应曲线从终值¥y %10上升到终值¥y %90所需的时间。

所需的时间。

s t :响应曲线从0到达终值¥y 95%95%所需的时间。

所需的时间。

所需的时间。

3.3.实验线路与原理实验线路与原理实验线路与原理 (注:输入加在反相端,输出信号与输入信号的相位相反) 1.比例环节.比例环节K R R Z Z s G -=-=-=1212)( 比例环节的模拟电路及其响应曲线如图1-31-3。

K ——放大系数。

K 是比例环节的特征量,它表示阶跃输入后,输出与输入的比例关系,可以从响应曲线上求出。

改变1R 或2R 的电阻值便可以改变比例图1-2 运放的反馈连接运放的反馈连接tK -1 0 图1-3 比例环节的模拟电路及其响应曲线比例环节的模拟电路及其响应曲线器的放大倍数K 。

实际物理系统中的比例环节:实际物理系统中的比例环节: Ø 无弹性变形的杠杆;无弹性变形的杠杆; Ø 不计非线性和惯性的电子放大器;不计非线性和惯性的电子放大器; Ø 传递链的速度比;传递链的速度比;Ø 测速发电机的电压与转速的关系。

测速发电机的电压与转速的关系。

2.惯性环节.惯性环节1212121212,11)(C R T R RK Ts KC R R R Z Z s G ==+-=+-=-=惯性环节的模拟电路及其响应曲线如图1-41-4。

式中:K ——静态放大倍数;——静态放大倍数; T ——惯性时间常数;T 和K 是响应曲线的两个特征量。

六种典型环节的阶跃响应曲线

六种典型环节的阶跃响应曲线

六种典型环节的阶跃响应曲线阶跃响应曲线是描述控制系统响应特性的重要工具。

在工程设计和控制系统优化中,我们需要了解不同环节的阶跃响应曲线特点,以便更好地控制控制系统的响应。

以下是六种典型环节的阶跃响应曲线: 1. 一阶惯性环节一阶惯性环节是指包含一个惯性元件的控制系统环节。

它的阶跃响应曲线由一个指数衰减函数和一个常数项组成。

响应曲线的初期斜率为K/τ,随着时间的增加,响应曲线趋于常数项K。

2. 二阶过阻尼环节二阶过阻尼环节是指包含两个惯性元件的控制系统环节。

它的阶跃响应曲线由两个指数衰减函数和一个常数项组成。

响应曲线初期斜率为K/τ,随着时间的增加,响应曲线出现振荡,但振荡幅度逐渐减小,最终趋于常数项K。

3. 二阶欠阻尼环节二阶欠阻尼环节是指包含两个惯性元件的控制系统环节。

它的阶跃响应曲线由两个指数衰减函数和一个正弦函数组成。

响应曲线初期斜率为K/τ,随着时间的增加,响应曲线出现振荡,但振荡幅度逐渐增大,最终出现超调现象。

4. 一阶滞后环节一阶滞后环节是指包含一个滞后元件的控制系统环节。

它的阶跃响应曲线由一个指数衰减函数和一个常数项组成。

响应曲线的初期斜率为K/τ,随着时间的增加,响应曲线趋于常数项K,但响应时间比一阶惯性环节长。

5. 一阶超前环节一阶超前环节是指包含一个超前元件的控制系统环节。

它的阶跃响应曲线由一个指数增长函数和一个常数项组成。

响应曲线的初期斜率为K/τ,随着时间的增加,响应曲线趋于常数项K,但响应时间比一阶惯性环节短。

6. 传递函数为常数的环节传递函数为常数的环节是指不包含惯性元件的控制系统环节。

它的阶跃响应曲线为一条水平直线,即输出信号等于常数项K。

典型环节及其阶跃响应.

典型环节及其阶跃响应.

典型环节及其阶跃响应.⾃动控制原理实验典型环节及其阶跃相应.1 实验⽬的1. 学习构成典型环节的模拟电路,了解电路参数对环节特性的影响。

2. 学习典型环节阶跃响应的测量⽅法,并学会由阶跃响应曲线计算典型环节的传递函数。

3. 学习⽤Multisim 、MATLAB 仿真软件对实验内容中的电路进⾏仿真。

.2 实验原理典型环节的概念对系统建模、分析和研究很有⽤,但应强调典型环节的数学模型是对各种物理系统元、部件的机理和特性⾼度理想化以后的结果,重要的是,在⼀定条件下,典型模型的确定能在⼀定程度上忠实地描述那些元、部件物理过程的本质特征。

1.模拟典型环节是将运算放⼤器视为满⾜以下条件的理想放⼤器:(1) 输⼊阻抗为∞。

流⼊运算放⼤器的电流为零,同时输出阻抗为零;(2) 电压增益为∞:(3) 通频带为∞:(4) 输⼊与输出之间呈线性特性:2.实际模拟典型环节:(1) 实际运算放⼤器输出幅值受其电源限制是⾮线性的,实际运算放⼤器是有惯性的。

(2) 对⽐例环节、惯性环节、积分环节、⽐例积分环节和振荡环节,只要控制了输⼊量的⼤⼩或是输⼊量施加的时间的长短(对于积分或⽐例积分环节),不使其输出⼯作在⼯作期间内达到饱和值,则⾮线性因素对上述环节特性的影响可以避免.但对模拟⽐例微分环节和微分环节的影响则⽆法避免,其模拟输出只能达到有限的最⾼饱和值。

(3) 实际运放有惯性,它对所有模拟惯性环节的暂态响应都有影响,但情况⼜有较⼤的不同。

3.各典型环节的模拟电路及传递函数(1)⽐例环节的模拟电路如图.1所⽰,及传递函数为:12)(R R S G -=.1 ⽐例环节的模拟电路2. 惯性环节的模拟电路如图.2所⽰,及传递函数为:其中12R R K = T=R 2C图.2 惯性环节的模拟电路3. 积分环节的模拟电路如图.3所⽰,其传递函数为:111R /1/)(21212212+-=+-=+-=-=TS K CS R R R CS R CSR Z Z S G其中T=RC.3 积分环节的模拟电路4. 微分环节的模拟电路如图.4所⽰,及传递函数为:TS S C R S G -=-=11)(其中T=R 1C11 1/1)(12TSRCS R CS Z Z S G -=-=-=-=.4 微分环节的模拟电路5. ⽐例+微分环节的模拟电路如图.5所⽰,及传递函数为:)1()(+-=TS K S G 其中12R R K = 11C R T =.5 ⽐例+微分环节的模拟6. ⽐例+积分环节的模拟电路如图.6所⽰,及传递函数为:)11()(TS K S G +-= 其中12R R K = C R T 2=.6 ⽐例+积分环节的模拟电路.3 实验内容(1)分别画出⽐例、惯性、积分、微分、⽐例+微分和⽐例+积分的模拟电路图。

实验一 典型环节及其阶跃响应

实验一  典型环节及其阶跃响应

实验一 典型环节及其阶跃响应一.目的要求1. 了解并掌握教学实验系统的模拟电路的使用方法,掌握典型环节模拟电路的构成方法,培养学生实验技能。

2. 熟悉各种典型环节的阶跃响应曲线。

3. 了解参数变化对典型环节动态特性的影响。

二.实验仪器、设备、工具及材料三.实验原理和设计合理运用运算放大器本身所具有的基本特性(开环增益高、输入阻抗大、输出阻抗小等)用不同的电阻、电容组成不同的反馈网络来模拟各种典型环节。

典型环节方框图及其模拟电路如下:1. 比例(P )环节。

其方块图1——1A 所示。

其传递函数为: (1-1)比例环节的模拟电路如图1-1B 所示,其具体传递函数为:K S U S U i -=)()(0)图1-1A 比例环节方块图21)()(R RS U S U i o -=(1-2)比较式(1-1)和(1-2)得:01R R K = (1-3)当输入为单位阶跃信号,即)(1)(t t U i =时,Ss U i 1)(=。

则由式(1-1)得到:SK S U 1)(0∙= 所以输出响应为:K t U =)(0 (t ≥0) (1-4)其输出波形如图1-1C 。

2. 积分(I )环节。

其方块图如图1-2A 所示。

其传递函数为:(1-5)积分环节模拟电路如图1-2B 所示。

积分环节模拟电路得传递函数为:TSS i U S o U 1)()(-=图1-2A 积分环节方块图(1-6)比较式(1-5)和(1-6)得:(1-7)当输入为单位阶跃信号,即)(1)(t S U i =时,SS U i 1)(=,则由式(1-5)得到20111)(TSS TS S U -=∙-= 所以输出响应为:t Tt U 1)(0-= (1-8) 其输出波形如图1-2C 所示。

3. 比例积分(PI )环节。

其方块图如图1-3A 所示。

其传递函数为:)1()()(0TSK S U S U i +-=(1-9)比例积分环节得模拟电路如图1-3B 所示。

自动控制原理实验报告 典型环节及其阶跃响应 二阶系统阶跃响应 连续系统串联校正

自动控制原理实验报告 典型环节及其阶跃响应 二阶系统阶跃响应 连续系统串联校正

自动控制原理实验报告班级:自动化0906班学生: 伍振希(09213052)张小维(合作)任课教师:苗宇老师目录实验一典型环节及其阶跃响应 (1)一、实验目的 (1)二、实验仪器 (1)三、实验原理 (1)四、实验内容 (1)五、实验步骤 (2)六、实验结果 (3)实验二二阶系统阶跃响应 (6)一、实验目的 (6)二、实验仪器 (6)三、实验原理 (6)四、实验内容 (6)五、实验步骤 (7)六、实验结果 (7)实验三连续系统串联校正 (13)一、实验目的 (13)二、实验仪器 (13)三、实验内容 (13)四、实验步骤 (15)五、实验结果 (15)实验一典型环节及其阶跃响应一、实验目的1. 掌握控制模拟实验的基本原理和一般方法。

2. 掌握控制系统时域性能指标的测量方法。

二、实验仪器1.EL-AT-III型自动控制系统实验箱一台2.计算机一台三、实验原理1.模拟实验的基本原理:控制系统模拟实验采用复合网络法来模拟各种典型环节,即利用运算放大器不同的输入网络和反馈网络模拟各种典型环节,然后按照给定系统的结构图将这些模拟环节连接起来,便得到了相应的模拟系统。

再将输入信号加到模拟系统的输入端,并利用计算机等测量仪器,测量系统的输出,便可得到系统的动态响应曲线及性能指标。

若改变系统的参数,还可进一步分析研究参数对系统性能的影响。

四、实验内容构成下述典型一阶系统的模拟电路,并测量其阶跃响应:1.比例环节的模拟电路及其传递函数如图1-1。

G(S)= R2/R12.惯性环节的模拟电路及其传递函数如图1-2。

G(S)= - K/TS+1K=R2/R1,T=R2C3.积分环节的模拟电路及传递函数如图1-3。

G(S)=1/TST=RC4.微分环节的模拟电路及传递函数如图1-4。

G(S)= - RCS5.比例微分环节的模拟电路及传递函数如图1-5(未标明的C=0.01uf)。

G(S)= -K(TS+1)K=R2/R1,T=R1C五、实验步骤1.启动计算机,在桌面双击图标 [自动控制实验系统] 运行软件。

自动控制原理实验指导典型环节及其阶跃响应

自动控制原理实验指导典型环节及其阶跃响应

%100%max ⨯-=∞∞Y Y Y σ实验一 典型环节及其阶跃响应一、实验目的1. 掌握控制模拟实验的基本原理和一般方法。

2. 掌握控制系统时域性能指标的测量方法。

二、实验仪器1. EL-AT-III 型自动控制系统实验箱一台 2. 计算机一台 三、实验原理1.模拟实验的基本原理:控制系统模拟实验采用复合网络法来模拟各种典型环节,即利用运算放大器不同的输入网络和反馈网络模拟各种典型环节,然后按照给定系统的结构图将这些模拟环节连接起来,便得到了相应的模拟系统。

再将输入信号加到模拟系统的输入端,并利用计算机等测量仪器,测量系统的输出,便可得到系统的动态响应曲线及性能指标。

若改变系统的参数,还可进一步分析研究参数对系统性能的影响。

2. 时域性能指标的测量方法: 超调量Ó %:1) 启动计算机,在桌面双击图标 [自动控制实验系统] 运行软件。

2) 检查USB 线是否连接好,在实验项目下拉框中选中任实验,点击按钮,出现参数设置对话框设置好参数按确定按钮,此时如无警告对话框出现表示通信 正常,如出现警告表示通信不正常,找出原因使通信正常后才可以继续进行实验。

3) 连接被测量典型环节的模拟电路。

电路的输入U1接A/D 、D/A 卡的DA1 输出,电路的输出U2接A/D 、D/A 卡的AD1输入。

检查无误后接通电源。

4) 在实验项目的下拉列表中选择实验一[典型环节及其阶跃响应] 。

5) 鼠标单击按钮,弹出实验课题参数设置对话框。

在参数设置对话框中设置相应的实验参数后鼠标单击确认等待屏幕的显示区显示实验结果。

6) 用软件上的游标测量响应曲线上的最大值和稳态值,代入下式算出超调量: T P 与T S :利用软件的游标测量水平方向上从零到达最大值与从零到达95%稳态值所需的时间值,便可得到T P 与T S 。

四、实验内容构成下述典型一阶系统的模拟电路,并测量其阶跃响应: 1. 比例环节的模拟电路及其传递函数如图1-1。

典型环节的时域响应实验

典型环节的时域响应实验

典型环节的时域响应实验一、实验目的1、熟悉并掌握自动控制原理实验系统的使用方法及各典型环节模拟电路的构成方法。

2、熟悉各种典型环节的理想阶跃响应曲线和实际阶跃响应曲线。

对比差异、分析原因。

3、了解参数变化对典型环节动态特性的影响,掌握各典型环节的工作特点。

二、实验设备1、自动控制原理实验箱2、示波器三、实验原理典型环节分别有比例、积分、微分、惯性、比例积分、比例微分、比例积分微分等环节,在不同输入信号下将会有不同的输出响应,呈现出不同的工作特点,其方框图、传递函数、模拟电路等如下所示:1、比例环节(P)(1)方框图:如图1.1-1所示。

(2)传递函数:(3)阶跃响应:(4)模拟电路图:如图1.1-2所示。

注意:图中运算放大器的正相输入端已经对地接了100K的电阻,实验中不需要再接。

以后的实验中用到的运放也如此。

(5)理想与实际阶跃响应对照曲线:①取R0=200K;R1=100K。

理想阶跃响应曲线实测阶跃响应曲线②取R0=200K;R1=200K。

理想阶跃响应曲线实测阶跃响应曲线2、积分环节(I)(1)方框图:如右图1.1-3所示。

(2)传递函数:(3)阶跃响应:(4)模拟电路:如图1.1-4所示。

(5)理想与实际阶跃响应曲线对照:①取R0=200K;C=1uF。

理想阶跃响应曲线实测阶跃响应曲线②取R0=200K;C=2uF。

理想阶跃响应曲线实测阶跃响应曲线3.比例积分环节(PI)(1)方框图:如图1.1-5所示。

(2)传递函数:(3)阶跃响应:(4)模拟电路图:如图1.1-6所示。

(6)理想与实际阶跃响应曲线对照:①取R0=R1=200K;C=1uF。

理想阶跃响应曲线实测阶跃响应曲线②取R0=R1=200K;C=2uF。

理想阶跃响应曲线实测阶跃响应曲线4.惯性环节(T)(1)方框图:如图1.1-7所示。

(2)传递函数:(3)模拟电路图:如图1.1-8所示。

(4)理想与实际阶跃响应曲线对照:①取R0=R1=200K;C=1uF。

阶跃响应曲线

阶跃响应曲线
Q2
流出侧阻力可认为是无限 大,也就是说它的流出侧 没有自平衡
1.阶跃响应
起始的工况 :h=h0,Q1=Q10= Q2=Q20 在t=t0时刻 :
控制阀阶跃开大Δμ0 流入量Q1按比例增加ΔQ1, ΔQ2=0
ΔQ=ΔQ1-ΔQ2=ΔQ1为一常数 水槽液位等速(直线)上升
1.阶跃响应


0
t0
Q
h2 (t )
K0
1


T1
T1 T2
t
e T1

T2 T1 T2
t
e T2

2.传递函数
说 明: 双容水槽对象是二阶惯性环节,它是两个一阶惯 性环节串联而成,没有负载效应。 对象的容积个数愈多,其动态方程的阶次愈高, 其容积迟延愈大。
容积数目影响的阶跃响应曲线
Q2
h
衡 状
μ 1 k
Q1

h
2
F
Rs
Q2
有自平衡单容对象的阶跃响应曲线
μ 1 k
Q1
h
F
阀门开度 流量

0
Q t0
Q10 Q20
t0 液位 h
2
Rs
Q2
h0 t0
0 t
Q1
dG Q2
t
dh h()
t
2.微分方程
推导其微分方程得:
RA
dh dt

h

K R
写成标准形式:
T dh h K
初始条件为零、阶跃输入(扰动量为μ(t)=Δμ0)时 的解为:
h2 (t )

0
Ta
t
t T1(1 e T1 )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

六种典型环节的阶跃响应曲线
阶跃响应曲线是描述系统响应速度和稳定性的一种重要方法。

典型的
六种环节系统的阶跃响应曲线可分为惯性环节、比例环节、微分环节、积分环节、一阶惯性环节和二阶惯性环节。

下面分别介绍这六种环节
的阶跃响应曲线特点。

1. 惯性环节
惯性环节是指系统响应变化相对较慢,响应速度较慢,且响应幅值有
惯性的环节系统。

该系统的阶跃响应曲线呈现出逐渐上升并逐步趋于
平稳的特点。

2. 比例环节
比例环节是指系统的输出与输入成正比例关系的环节。

该系统的阶跃
响应曲线呈现出发生瞬间跳跃并在短时间内达到稳态值的特点。

3. 微分环节
微分环节是指系统输出与输入的导数成正比的环节。

该系统的阶跃响
应曲线呈现出瞬间跳跃并持续震荡的特点。

4. 积分环节
积分环节是指系统输出与输入的积分成正比的环节。

该系统的阶跃响应曲线呈现出发生跳跃后,曲线会不断向上弯曲,直到接近水平线的特点。

5. 一阶惯性环节
一阶惯性环节是指系统的输出与输入有一定的滞后性和时间常数的环节。

该系统的阶跃响应曲线呈现出逐渐上升并在一定时间后达到稳态值的特点。

6. 二阶惯性环节
二阶惯性环节是指系统的输出与输入存在两个相邻极点的环节。

该系统的阶跃响应曲线呈现出震荡过程中的不断衰减的特点。

综上所述,不同类型的环节系统响应速度和稳定性都有所不同,掌握不同环节的阶跃响应曲线特点有助于理解系统的动态特性和改善系统响应。

相关文档
最新文档