《信号与系统》综合复习资料全
《信号与系统》复习
物理意义:非周期信号可以分解为无数个频率为, 复振幅为[X(j)/2p]d 的虚指数信号ejw t的线性组合。
简述傅氏反变换公式的物理意义?
傅里叶变换性质
F 时移特性 x(t t 0 ) X( j) e jt
0
x(t)
X(j)
展缩特性
1 F x (at) X( j ) a a
(n = 1,2) (n = 1,2)
奇对称周期信号其傅里叶级数只含有正弦项。
周期信号的傅里叶级数 周期信号x(t) 如图 所示,其傅氏级数系数的特点是
偶对称周期信号其傅里叶级数只含有直流项与余弦项 周期信号f(t)如图所示,其直流分量等于_____
周期信号的频谱及特点
Cn是频率的函数,它反映了组成信号各次谐波 的幅度和相位随频率变化的规律,称频谱函数。
《信号与系统》复习
考核方式
平时成绩20% 实验成绩20% 期末成绩60%
题型: 选择题(每题3分,共30分) 填空题(每空2分,共20分) 简答题(每题4分,共20分)
计算题(每题10分,共30分)
第一章:信号与系统分析导论
周期信号平均功率计算 若电路中电阻R=1Ω,流过的电流为周期电流i(t)= 4cos(2πt)+2cos(3πt) A,其平均功率为( ) 系统的数学模型 连续时间系统:系统的输入激励与输出响应都必须为 连续时间信号,其数学模型是微分方程式。 离散时间系统: 系统的输入激励与输出响应都必须 为离散时间信号,其数学模型是差分方程式。
L[ yzs (t )] Yzs ( s) H ( s) L[ x(t )] X ( s)
写出系统函数H (s) 的定义式
简述拉氏变换求解微分方程的过程
信号与系统总复习要点
《信号与系统》总复习要点第一章绪论1.信号的分类:模拟信号,数字信号,离散信号,抽样信号2.信号的运算:移位、反褶、尺度、微分、积分、加法和乘法3. δ(t)的抽样性质 (式1-14)4.线性系统的定义:齐次性、叠加性5.描述连续时间系统的数字模型:微分方程描述离散时间系统的数字模型:差分方程6.连续系统的基本运算单元:加法器,乘法器,积分器离散系统的基本运算单元:加法器,乘法器,延时器7.连续系统的分析方法:时域分析方法,频域分析法(FT),复频域分析法(LT)离散子系统的分析方法:时域分析方法,Z域分析方法8.系统模拟图的画法9.系统线性、时不变性、因果性的判定第二章连续时间系统的时域分析1.微分方程的齐次解+特解的求法自由响应+强迫响应2.系统的零输入响应+零状态响应求法3.系统的暂态响应+稳态响应求法4.0-→0+跳变量冲激函数匹配法5.单位冲激响应h(t), 单位阶跃响应g(t), 与求法h(t)=g'(t), g(t)=h (-1)(t)类似δ(t)与u(t)的关系6.卷积的计算公式,零状态响应y zs (t)=e(t)*h(t)=∫∞-∞e(τ)h(t-τ)d τ=h(t)*e(t)7.卷积的性质串连系统,并联系统的单位冲激响应f(t)*δ(t)= f(t)f(t)*δ(t-3)= f(t-3)8. 理解系统的线性 P57 (1) (2) (3)第三章 傅立叶变换 t →w1.周期信号FS ,公式,频谱:离散谱,幅度谱2.非周期信号FT ,公式,频谱:连续谱,密度谱3. FT FT -14.吉布斯现象 P100---P1015.典型非周期信号的FT (单矩形脉冲)6.FT 的性质①对称性②信号时域压缩,频域展宽 P127,P128 ()[]⎪⎭⎫ ⎝⎛=a F a at f F ω1()()j t F f t e dt ωω∞--∞=⎰1()()2j t f t F e d ωωωπ∞-∞=⎰③尺度和时移性质 P129④频移性质:频谱搬移 cos(w 0t)的FT⑤时域微积分特性,频域微分特性⑥卷积定理(时域卷积定理、频域卷积定理)7.周期信号的FT :冲激8.抽样信号f s (t)的FT 及频谱F s (ω)9.抽样定理①条件 f s >=2f m w s >=2w m②奈奎斯特频率 f s =2f m③奈奎斯特间隔 T s =1/f s10.关于频谱混叠的概念第四章 拉普拉斯变换、连续时间系统的s 域分析 t →s 1. LT LT -12.典型信号的LT3.LT 性质:时移,频移,尺度,卷积()j 1e baf at b F a a ωω⎛⎫+↔⋅ ⎪⎝⎭0001[()cos()][()()]2F f t t F F ωωωωω=++-()()⎰∞∞--=tt f s F ts d e ()()⎰∞+∞-=j j d e j π21 σσss F t f t s []000()()()e st L f t t u t t F s ---=()e ()αt L f t F s α-⎡⎤=+⎣⎦[]()1() 0s L f at F a a a ⎛⎫=> ⎪⎝⎭4.LT 的逆变换①查表法②部分分式展开法(系数求法)③留数法5.LT 分析法 (第四章课件63张,64张,78张,81张) 求H(s), h(t), y zi (t), y zs (t), y(t)6.系统函数H(s) h(t) 一对拉氏变换对 H(s)的极点决定h(t)的形式H(s)的零点影响h(t)的幅度和相位7.H(s)的零极点 稳定性: ①②极点全在S 面左半面 P241 例4-26 8.连续系统的频响特性 H(jw)=H(s)│s=jw9.全通网络(相位校正),最小相移网络第五章 傅立叶变换应用于通信系统-滤波、调制与抽样1.h(t) H(jw) 构成傅式变换对2.无失真传输概念3.实现无失真传输的系统要满足的时域条件、频域条件4.理想低通滤波器的频响特性,及其单位冲激响应5.信号调制、解调的原理()||h t dt M ∞-∞≤⎰第七章 离散时间系统的时域分析1.离散序列的周期判定:2π/w 0,分三种情况讨论2.离散时间信号的运算、典型离散时间信号3.离散系统的阶次确定4.离散时间系统的差分方程,及模拟图的画法5.u(n), δ(n), g(n), h(n)的关系δ(n)= u(n)- u(n-1) h(n)= g(n)- g(n-1) 6.离散时间系统的时域求解法 (迭代、齐次解+特解、零输入+零状态)7.离散系统的单位冲激响应h(n)及其求法8.卷积和9.系统的零状态响应y zs (n)=x(n)*h(n) 10.有限长两序列求卷积:x 1(n):长N x 2(n):长M 见书例7-16, 对位相乘求和法, 长度:N+M-111.卷积性质:见课件第七章2,第35张12.离散系统的因果性,稳定性时域:因果性 n<0 ,h(n)=0稳定性 h(n)绝对可和()()k u n n k δ∞==-∑0()()k g n h n k ∞==-∑()()()()∑∞-∞=-=*m m n h m x n h n x ()n h n ∞=-∞<∞∑第八章 Z 变换、离散时间系统的Z 域分析1.LT →ZT: z=e sTZ 平面与S 平面的映射关系2. ZTZT -13.典型序列的Z 变换 4.Z 变换的收敛域: 有限长序列 有无0,∞右边序列 圆外左边序列 圆内双边序列 圆环5.逆Z 变换 ①查表法②部分分式展开法(与LT -1不同的,先得除以Z ) ③留数法6.ZT 的性质时移性质 (1)双边序列移位(2)单边序列移位 ①左移 ②右移 序列的线性加权性质序列的指数加权性质卷积定理7.Z 域分析法解差分方程:书P81 例8-16第八章课件2 第33张~37张 ()()n n X z x n z ∞-=-∞=∑()⎰-π=c n z z z X jn x d 21)(18.系统函数H(z) h(n) H(z) Z 变换对 求H(z), h(n), y zs (n), y zi (n), y(n), H(e jw ) *见书P86:例8-19, P109 8-36 8-379.离散系统的稳定性,因果性稳定性 因果性时域 n<0, h(n)=0 频域 H(z)所有极点在单位圆内 收敛域(圆外)含单位圆10.离散系统的频响特性H(e jw )=H(z)│z=ejw =│H(e jw )│e j ψ(w)幅度谱:描点作图,2π为周期相位谱书P98,例8-22, 第八章课件:59张,60张 ()n h n ∞=-∞<∞∑。
期末复习资料(信号与系统)
《信号与系统》期末复习材料一、考核目标和范围通过考核使学生了解和掌握信号与系统的基本原理、概念和方法,运用数学分析的方法解决一些简单问题,使学生在分析问题和解决问题的能力上有所提高,为学生进一步学习后续课程打下坚实的基础。
课程考核的命题严格限定在教材第1—8章内,对第9、10章不做要求。
二、考核方式三、复习资源和复习方法(1)教材《信号与系统》第2版,陈后金,胡健,薛健编著,清华大学出版社,北方交通大学出版社,2003年。
结合教材习题解答参考书(陈后金,胡健,薛健,钱满义,《信号与系统学习指导与习题精解》,清华大学出版社,北京交通大学出版社,2005)进行课后习题的练习、复习。
(2)离线作业。
两次离线作业题目要熟练掌握。
(3)复习方法:掌握信号与系统的时域、变换域分析方法,理解各种变换(傅里叶变换、拉普拉斯变换、Z变换)的基本内容、性质与应用。
特别要建立信号与系统的频域分析的概念以及系统函数的概念。
结合习题进行反复练习。
四、期末复习重难点第1章信号与系统分析导论1. 掌握信号的定义及分类。
2. 掌握系统的描述、分类及特性。
3. 重点掌握确定信号及线性非时变系统的特性。
第2章信号的时域分析1.掌握典型连续信号与离散信号的定义、特性及其相互关系。
2.掌握连续信号与离散信号的基本运算。
3.掌握信号的分解,重点掌握任意连续信号分解为冲激信号的线性组合,任意离散信号分解为单位脉冲序列的线性组合。
第3章系统的时域分析1.掌握线性非时变连续时间系统时域描述。
2.掌握用卷积法计算连续时间系统的零状态响应3.掌握离散时间系统的时域描述。
4.掌握用卷积法计算离散时间系统的零状态响应。
第4章周期信号的频域分析1.掌握连续周期信号的频域分析方法。
2.掌握离散周期信号的频域分析方法。
第5章非周期信号的频域分析1.掌握常见连续时间信号的频谱,以及Fourier变换的基本性质及物理含义。
2.掌握连续非周期信号的频域分析。
3.掌握离散非周期信号的频域分析。
信号与系统复习题资料
一、选择题 1.积分(cos )(1)d t t t t t t π∞∞-∞-∞+δ-=0δ-=⎰⎰的值为( )。
A. )(3t etδ-B.1C.)1(-t δD.02.积分⎰∞∞-+dtt t )()1(δ的值为( )A.4B.3C.2D.1 3.()()[]=*-t t e dtd tεε2( ) A.()t δ B.()t e tε2- C.()t δ2- D.t e 22-- 4、信号)()(2t e t f tε=的拉氏变换及收敛域为( )。
B.2]Re[,21)(-<-=s s s FC. 2]Re[,21)(->+=s s s F D.2]Re[,21)(<+=s s s F 5. 信号f(t)=ε(t)*(δ(t)-δ(t -4))的单边拉氏变换F(s)=( )。
A.1B.4s 1s 1+-D.se -4s6.某一因果线性时不变系统,其初始状态为零,当输入信号为ε(t)时,其输出r(t)的拉氏变换为R(s),问当输入r 1(t)=ε(t -1)-ε(t -2)时,响应r 1(t)的拉氏变换R 1(s)=( )。
A.(e-s-e-2s)R(s) B.R(s-1)-R(s-2) C.(2-s 11-s 1-)R(s) D.R(s)s )e -(e -2s -s 7.已知信号f(t)的波形如下图所示,则f(t)的表达式为( )。
A.)1()()(--=t u t u t fB.)1()()(-+=t u t u t fC.)1()()(+-=t u t u t fD.)()1()(t u t u t f -+= 8.求信号)()52(t u etj +-的傅里叶变换( )。
A.ωω521j e j + C.)5(21-+-ωj D.ωω251j e j+ t9.)2)(1()2(2)(-++=s s s s s H ,属于其极点的是( )。
A.1B.2C.0D.-210.已知信号f (t )的频带宽度为Δω,则f (3t -2)的频带宽度为( )。
信号与系统
信号与系统期末复习资料(仅供参考)1、什么叫做LTIS ,它有什么特点?LTIS 是线性是不变系统,具有线性(齐次性、叠加性),时不变性,微分性,积分性。
1、傅氏变换、拉氏变换、Z 变换三者的关系是什么?拉氏变换是傅氏变换的升级版,Z 变换是离散的拉氏变换。
2、什么叫DTF 、FFT ,两者关系是什么?DTF 表示离散的傅里叶变换,FFT 表示快速傅里叶变换,FFT 是DTF 的一种快速变换。
3、消息、信号、信息三者关系? 4、时域抽样定理5、离散时间系统稳定性6、连续时间系统稳定性8、信号基本运算9、连续时间信号、离散时间信号、数字信号的图像判定 10、卷积(图像法)(),(),()()()f t h t g t f t h t =⊗例:已知求11、1、一线性时不变系统,在相同的初始条件下,若当激励为时,其全响应为,当激励为时,其全响应,求:(1)初始条件不变,当激励为时的全响应,为大于零的常数。
(2)初始条件增大一倍,当激励为时的全响应。
解:根据线性系统的性质则解得则小结:对于线性时不变系统,其全响应包括零状态响应和零输入响应,即,如果输入改变为原来的倍,对应的零状态响应变为原来的倍,即为。
如零状态改变为原来的倍,对应的零输入响应变为原来的倍,即为。
系统的响应变为。
12、画频谱图(可能已知单边画双边)已知周期电压()()()()22cos 45sin 245cos 360u t t t t =++-+++,试画出其单边、双边幅度谱和相位谱。
解:()()()()22cos 45sin 245cos 360u t t t t =++-+++()()()22cos 45cos 2135cos 360t t t =++++++所以令01ω=,即有 01121332,2,45,1,135,1,60,A A A A ϕϕϕ=======因此单边幅度谱和相位谱如下:根据单双边谱之间的关系得:3124513560001122331112,,0.5,0.5222j j j j j j F A F Ae e F A e e F A e e ϕϕϕ±±±±±±±±±========由此的双边谱如下:ω 0ω02ω03ω 2 1A n ω0ω 02ω03ω 3ππn ϕπ/4ωω3ω20.5nF2ωω-02ω-03ω-113、已知系统的微分方程为 ()()()()()323y t y t y t f t f t ''''++=+,求在下列两种情况下系统的全响应。
信号与系统复习资料
得分一、选择题(共分)。
2010-2011学年第二学期信号与系统期末考试试卷班级:_______________学号:_______________姓名:_______________得分:_______________(卷面共有50题,总分100分,各大题标有题量和总分,每小题标号后有小分)一、选择题(50小题,共100分)[2分](1)下列信号中属于功率信号的是( )。
A、 B、 C、 D、[2分](2)已知某系统激励f(k)与响应y(k)之间的关系为y(k)=f(k)+80,则该系统为。
A、线性系统B、非线性系统[2分](3)下列说法正确的是。
A、是功率信号B、两个周期信号之和一定是周期信号C、所有非周期信号都是能量信号D、所有非周期信号都是功率信号[2分](4)下列叙述正确的是。
A、各种数字信号都是离散信号B、数字信号的幅度只取0和1C、各种离散信号都是数字信号D、将数字信号滤波可得模拟信号[2分](5)已知如下四个系统,f(t)、f(k)代表系统输入,y(t)、y(k)代表响应。
其中,线性系统的有();时不变系统有();因果系统有();记忆系统有。
A、B、C、D、[2分](6)A、B、C、D、[2分](7)A、sin3B、-sin3C、sin3tD、0[2分](8)A、3B、-3C、5D、-5[2分](9)A、0B、costC、sintD、u(t)[2分](10)信号[2分](11)下图中x(t)的表示式是A、B、C、D、[2分](12)已知A、B、C、D、[2分](13)已知,则()。
A是常数A、B、C、D、[2分](14)已知一个LTI系统的单位冲激响应h(t)如下图,若输入,则输出是。
A、1B、-1C、D、0[2分](15)已知一个LTI系统输入为时,输出、如下图所示,则系统单位冲激响应是。
A、u(t)B、2u(t)C、u(t)-u(t-1)D、u(t-1)-u(t-2)[2分](16)已知一个LTI系统输入为时,输出,若输入为,则对应的输出是()。
信号与系统复习知识总结
重难点1.信号的概念与分类 按所具有的时间特性划分:确定信号和随机信号; 连续信号和离散信号; 周期信号和非周期信号; 能量信号与功率信号; 因果信号与反因果信号;正弦信号是最常用的周期信号,正弦信号组合后在任一对频率或周期的比值是有理分数时才是周期的;其周期为各个周期的最小公倍数;① 连续正弦信号一定是周期信号;② 两连续周期信号之和不一定是周期信号;周期信号是功率信号;除了具有无限能量及无限功率的信号外,时限的或,∞→t 0)(=t f 的非周期信号就是能量信号,当∞→t ,0)(≠t f 的非周期信号是功率信号;1. 典型信号① 指数信号: ()at f t Ke =,a ∈R ② 正弦信号: ()sin()f t K t ωθ=+ ③ 复指数信号: ()st f t Ke =,s j σω=+ ④ 抽样信号: sin ()tSa t t= 奇异信号(1) 单位阶跃信号1()u t ={ 0t =是()u t 的跳变点;(2) 单位冲激信号单位冲激信号的性质:1取样性 11()()(0)()()()f t t dt f t t f t dt f t δδ∞∞-∞-∞=-=⎰⎰()0t δ=当0t ≠时相乘性质:()()(0)()f t t f t δδ= 2是偶函数 ()()t t δδ=- 3比例性 ()1()at t aδδ=4微积分性质 d ()()d u t t tδ= ; ()d ()t u t δττ-∞=⎰5冲激偶 ()()(0)()(0)()f t t f t f t δδδ'''=- ; ()()d (0)f t t t f δ∞-∞''=-⎰ ()d ()tt t t δδ-∞'=⎰ ;带跳变点的分段信号的导数,必含有冲激函数,其跳变幅度就是冲激函数的强度;正跳变对应着正冲激;负跳变对应着负冲激;重难点2.信号的时域运算 ① 移位: 0()f t t +, 0t 为常数当0t >0时,0()f t t +相当于()f t 波形在t 轴上左移0t ;当0t <0时, 0()f t t +相当于()f t 波形在t 轴上右移0t ;② 反褶: ()f t - ()f t -的波形相当于将()f t 以t =0为轴反褶; ③ 尺度变换: ()f at ,a 为常数当a >1时,()f at 的波形时将()f t 的波形在时间轴上压缩为原来的1a; 当0<a <1时,()f at 的波形在时间轴上扩展为原来的1a; ④ 微分运算: ()df t dt信号经微分运算后会突出其变化部分; 2. 系统的分类根据其数学模型的差异,可将系统划分为不同的类型:连续时间系统与离散时间系统;线性系统与非线性系统;时变系统与时不变系统; 重难点3.系统的特性(1) 线性性若同时满足叠加性与均匀性,则称满足线性性;当激励为1122()()C f t C f t +1C 、2C 分别为常数时,系统的响应为1122()()C y t C y t +;线性系统具有分解特性:)()()(t y t y t y zs zi +=零输入响应是初始值的线性函数,零状态响应是输入信号的线性函数,但全响应既不是输入信号也不是初始值的线性函数;(2) 时不变性 :对于时不变系统,当激励为0()f t t -时,响应为0()f t t -; (3) 因果性线性非时变系统具有微分特性、积分特性; 重难点4.系统的全响应可按三种方式分解:各响应分量的关系:重难点5.系统的零输入响应就是解齐次方程,形式由特征根确定,待定系数由-0初始状态确定;零输入响应必然是自由响应的一部分;重难点6.任意信号可分解为无穷多个冲激函数的连续和:那么系统的的零状态响应为激励信号与单位冲激响应的卷积积分,即)()()(t h t f t y zs *=;零状态响应可分解为自由响应和强迫响应两部分;重难点7.单位冲激响应的求解;冲激响应)(t h 是冲激信号作用系统的零状态响应; 重难点8.卷积积分(1) 定义 ττττττd f t f d t f f t f t f )()()()()(*)(212121-=-=⎰⎰∞∞-∞∞-(2) 卷积代数① 交换律 )(*)()(*)((1221t f t f t f t f =② 分配率 )(*)()(*)()]()([*)(3121321t f t f t f t f t f t f t f +=+ ③ 结合律 )](*)([*)()(*)](*)([321321t f t f t f t f t f t f = 重难点9.卷积的图解法 求某一时刻卷积值 卷积过程可分解为四步:1换元: t 换为τ→得 f 1τ, f 2τ2反转平移:由f 2τ反转→ f 2–τ 右移t → f 2t-τ 3乘积: f 1τ f 2t-τ4积分: τ从 –∞到∞对乘积项积分; 3性质1ft δt=δtft = ft )()(*)(00t t f t t t f -=-δ)()(*)(2121t t t f t t t t f --=--δ 210,,t t t 为常数2ft δ’t = f’t 3ftut ()()d ()d tf u t f τττττ∞-∞-∞=-=⎰⎰ut ut = tut4[]121221d ()d ()d ()*()*()()*d d d n n nn n nf t f t f t f t f t f t t t t ==5121212[()*()]d [()d ]*()()*[()d ]t t tf f f f t f t f τττττττ-∞-∞-∞==⎰⎰⎰6 f 1t –t 1 f 2t –t 2 = f 1t –t 1 –t 2 f 2t = f 1t f 2t –t 1 –t 2 = f t –t 1 –t 27 两个因果信号的卷积,其积分限是从0到t ; 8系统全响应的求解方法过程归纳如下:a.根据系统建立微分方程;b.由特征根求系统的零输入响应)(t y zi ;c.求冲激响应)(t h ;d.求系统的零状态响应)()()(t h t f t y zs *=;e.求系统的全响应)()()(t y t y t y zs zi +=;重难点10.周期信号的傅里叶级数任一满足狄利克雷条件的周期信号()f t 1T 为其周期可展开为傅里叶级数; 1三角函数形式的傅里叶级数0111()[cos()sin()]n n n f t a a n t b n t ωω∞==++∑ 式中112T πω=,n 为正整数;直流分量010011()t T t a f t dt T +=⎰ 余弦分量的幅度01112()cos()t T n t a f t n t dt T ω+=⎰ 正弦分量的幅度01112()sin()t T n t b f t n t dt T ω+=⎰三角函数形式的傅里叶级数的另一种形式为011()cos()n n n f t a A n t ωϕ∞==++∑2指数形式的傅里叶级数 1()jn tnn f t F eω∞=-∞=∑ 式中,n 为从-∞到+∞的整数;复数频谱011011()t T jn t n t F f t e dt T ω+-=⎰利用周期信号的对称性可以简化傅里叶级数中系数的计算;从而可知周期信号所包含的频率成分;有些周期信号的对称性是隐藏的,删除直流分量后就可以显示其对称性;①实偶函数的傅里叶级数中不包含正弦项,只可能包含直流项和余弦项; ②实奇数的傅里叶级数中不包含余弦项和直流项,只可能包含正弦项;③实奇谐函数的傅里叶级数中只可能包含基波和奇次谐波的正弦、余弦项,而不包含偶次谐波项;重难点11.从对周期矩形脉冲信号的分析可知:1 信号的持续时间与频带宽度成反比;2 周期T 越大,谱线越密,离散频谱将变成连续频谱;3 周期信号频谱的三大特点:离散性、谐波性、收敛性;重难点12.傅里叶变换 傅里叶变换定义为正变换()[()]()j t F f f t f t e dt ωω∞--∞==⎰逆变换11()[()]()2j t f t f F F e d ωωωωπ∞--∞==⎰频谱密度函数()F ω一般是复函数,可以写作 ()()()j F F e ϕωωω=其中()F ω是()F ω的模,它代表信号中个频谱分量的相对大小,是ω的偶函数;()ϕω是()F ω的相位函数,它表示信号中各频率分量之间的相位关系,是ω的奇函数;常用函数 F 变换对:δtπδωut 1()j πδωω+e -t ut 1j ωα+ g τt2Sa ωττ⎛⎫⎪⎝⎭sgn t 2j ωe –|t |222ααω+ 重难点13.傅里叶变换的基本性质 1 线性特性1212()()()()af t bf t aF j bF j ωω+↔+2 对称特性 ()2()F jt f πω↔-3 展缩特性 1()()f at F j a aω←−→ 4 时移特性0-j t 0()()f t t F j e ωω-←→⋅5 频移特性 0j 0()[()]t f t e F j ωωω⋅←→- 6 时域卷积特性 1212()()()()f t f t F j F j ωω*←→⋅ 7 频域卷积特性 12121()()[()()]2f t f t F j F j ωωπ⋅←→*8 时域微分特性 ()()n n n d fj F j dtωω←→⋅9 积分特性1()()(0)()tf d F j F j ττωπδωω-∞←→+⎰10.频域微分特性 ()()n nnndF j t f t j d ωω←→⋅ 11奇偶虚实性若()()()F R jX ωωω=+,则①()f t 是实偶函数()()f R ωω=,即()f ω为ω的实偶函数; ②()f t 是实奇函数()()f jX ωω=,即()f ω为ω的虚奇函数; 重难点14.周期信号的傅里叶变换周期信号()f t 的傅里叶变换是由一些冲激函数组成的,这些冲激位于信号的谐频11(0,,2,)ωω±±处,每个冲激的强度等于()f t 的傅里叶级数的相应系数n F 的2π倍;即重难点15.冲激抽样信号的频谱冲激抽样信号()s f t 的频谱为1()()s sn sf F n T ωωω∞=-∞=-∑其中s T 为抽样周期,()f ω为被抽样信号()f t 的频谱;上式表明,信号在时域被冲激序列抽样后,它的频谱()s F ω是连续信号频谱()f ω以抽样频谱s ω为周期等幅地重复;重难点16.对于线性非时变系统,若输入为非周期信号,系统的零状态响可用傅里叶变换求得;其方法为:1 求激励ft 的傅里叶变换F j;2 求频域系统函数H j;3 求零状态响应y zs t 的傅里叶变换Y zs j,即Y zs j= H j F j;4 求零状态响应的时域解,即y zs t = F -1Y zs j重难点17.对于线性非时变稳定系统,若输入为正弦信号)cos()(0t A t f ω=,则稳态响应为其中,)()(00ϕωωj e j H j H =为频域系统函数;重难点18.对于线性非时变系统,若输入为非正弦的周期信号,则系统的稳态响应的频谱为其中,n F 是输入信号的频谱,即)(t f 的指数傅里叶级数的复系统;)(Ωjn H 是系统函数,为基波;n Y 是输出信号的频谱;时间响应为重难点19.在时域中,无失真传输的条件是 )()(0t t f K t y -=在频域中,无失真传输系统的特性为 0)(t j e K j H ωω-=20.理想滤波器是指可使通带之内的输入信号的所有频率分量以相同的增益和延时完全通过,且完全阻止通带之外的输入信号的所有频率分量的滤波器;理想滤波器是非因果性的,物理上不可实现的;重难点21.理想低通滤波器的阶跃响应的上升时间与系统的截止频率带宽成反比;重难点22.时域取样定理注意:为恢复原信号,必须满足两个条件:1f t 必须是带限信号;2取样频率不能太低,必须f s ≥2f m,或者说,取样间隔不能太大,必须T s ≤1/2f m ;否则将发生混叠; 通常把最低允许的取样频率f s=2f m 称为奈奎斯特Nyquist 频率; 把最大允许的取样间隔T s=1/2f m 称为奈奎斯特间隔;重难点23.单边拉氏变换的定义为积分下限定义为-=0t ;因此,单位冲激函数1)(⇔t δ,求解微分方程时,初始条件取为-=0t ;重难点24.拉普拉斯变换收敛域:使得拉氏变换存在的S 平面上σ的取值范围称为拉氏变换的收敛域;)(t f 是有限长时,收敛域整个S 平面;)(t f 是右边信号时,收敛域0σσ>的右边区域;)(t f 是左边信号时,收敛域0σσ<的左边区域;)(t f 是双边信号时,收敛域是S 平面上一条带状区域;要说明的是,我们讨论单边拉氏变换,只要σ取得足够大总是满足绝对可积条件,因此一般不写收敛域;单边拉氏变换,只要σ取得足够大总是满足绝对可积条件,因此一般不写收敛域;重难点25.拉普拉斯正变换求解:常用信号的单边拉氏变换 重难点26.拉普拉斯变换的性质6时域卷积定理 f 1t f 2t ←→ F 1s F 2s7周期信号,只要求出第一周期的拉氏变换1()F s ,1()()1sTF s F s e-=- 频域微分性: d ()()()d F s t f t s-←→频域积分性: ()()s f t F d tηη∞←→⎰初值定理:0(0)lim ()lim ()t s f f t sF s →+→∞+==终值定理若ft 当t →∞时存在,并且 ft ← → F s , Res>0, 0<0,则 0()lim ()s f sF s →∞=拉氏变换的性质及应用;一般规律:有t 相乘时,用频域微分性质; 有实指数t e α相乘时,用频移性质; 分段直线组成的波形,用时域微分性质;周期信号,只要求出第一周期的拉氏变换1()F s ,1()()1sTF s F s e-=- 由于拉氏变换均指单边拉氏变换,对于非因果信号,在求其拉氏变换时应当作因果信号处理;重难点27.拉普拉斯反变换求解:掌握部分分式展开法求解拉普拉斯逆变换的方法1单实根时 )(t Ke a s Kt a ε-⇔+2二重根时2()()t KKte t s αεα-↔+ 重难点28.微分方程的拉普拉斯变换分析:当线性时不变系统用线性常系数微分方程描述时,可对方程取拉氏变换,并代入初始条件,从而将时域方程转化为S 域代数方程,求出响应的象函数,再对其求反变换得到系统的响应;重难点29.动态电路的S 域模型:由时域电路模型能正确画出S 域电路模型,是用拉普拉斯变换分析电路的基础; 引入复频域阻抗后,电路定律的复频域形式与其相量形式相似;重难点30.系统的零状态响应为 )()()(s F s H s Y zs =其中,)()(s H t h ⇔,)(s H 是冲激响应的象函数,称为系统函数;系统函数定义为)()()(s F s Y s H zs =重难点31.系统函数的定义重难点32.系统函数的零、极点分布图重难点33.系统函数H ·与时域响应h · :LTI 连续因果系统的h t 的函数形式由H s 的极点确定;① Hs 在左半平面的极点无论一阶极点或重极点,它们对应的时域函数都是按指数规律衰减的;结论:极点全部在左半开平面的系统因果是稳定的系统;② Hs 在虚轴上的一阶极点对应的时域函数是幅度不随时间变化的阶跃函数或正弦函数;Hs 在虚轴上的二阶极点或二阶以上极点对应的时域函数随时间的增长而增大;③ H s 在虚轴上的高阶极点或右半平面上的极点,其所对应的响应函数都是递增的;重难点34.系统的稳定性:稳定系统 Hs 的极点都在左半开平面,)θ+边界稳定系统 Hs 的极点都在虚轴上,且为一阶, 不稳定系统 Hs 的极点都在右半开平面或虚轴上二阶以上;H s=11101110()()m m m m n n n n b s b s b s b N s D s a s a s a s a ----++++=++++ 判断准则:1多项式的全部系数i a 符号相同为正数;2无缺项;3对三阶系统,323210()D s a s a s a s a =+++的各项系数全为正,且满足1203a a a a > 重难点35、常用的典型信号 1.单位抽样序列)(n δ)(n δ的延迟形式: 1,()0,n m n m n mδ=⎧-=⎨≠⎩推出一般式: ∑∞-∞=-=k k n k x n x )()()(δ2.单位阶跃序列()n ε与)(n δ的关系: ()()(1)n n n δεε=-- 延迟的表达式()n m ε-; 3. 矩形序列)(n R N -----有限长序列 4. 实指数序列----实指数序列)(n u a n 重难点36、离散系统的时域模拟它的基本单元是延时器,乘法器,相加器; 重难点37、系统的零输入响应若其特征根均为单根,则其零输入响应为:1()nkx xi i i y k c λ==∑C 由初始状态定相当于0-的条件 重难点38、卷积和的定义12()()()k f n f k f n k ∞=-∞=-∑=f 1n f 2n卷积和的性质1 交换律:()()()()1221f n f n f n f n *=*2 分配律:()()()()()()123123f n f n f n f n f n f n **=**⎡⎤⎡⎤⎣⎦⎣⎦3 结合律.:()()()()()()()1231213f n f n f n f n f n f n f n *+=*+*⎡⎤⎣⎦f n δn = f n , f n δn – n 0 = f n – n 0 f n εn =()nk f k =-∞∑f 1n – n 1 f 2n – n 2 = f 1n – n 1 – n 2 f 2n卷和的计算:不进位乘法求卷积、利用列表法计算、卷积的图解法 重难点39、离散系统的零状态响应离散系统的零状态响应等于系统激励与系统单位序列响应的卷积和;即 重难点40.z 变换定义()()n n F z f n z ∞-=-∞=∑称为序列f k 的双边z 变换()()n n F z f n z ∞-==∑ 称为序列f k 的单边z 变换重难点41.收敛域因果序列的收敛域是半径为|a|的圆外部分; 重难点42.熟悉基本序列的Z 变换;k ←→ 1 , z>0 k ←→1zz -, z>1 重难点43.z 变换的性质 1移位特性双边z 变换的移位:()n z F z -↔f(k -n)单边z 变换的移位: f k-2 ←→ z -2F z + f -2 + f -1z -1 2序列乘a k z 域尺度变换 a k f k ←→ F z/a3卷积定理 f 1k f 2k ←→ F 1z F 2z 重难点44.掌握部分分式法求逆Z 变换; 重难点45.掌握离散系统Z 域的分析方法; 1差分方程的变换解 2系统的z 域框图 3稳定性Hz 按其极点在z 平面上的位置可分为:在单位圆内、在单位圆上和在单位圆外三类;① 极点全部在单位圆内的系统因果是稳定系统;② Hz 在单位圆上是一阶极点,单位圆外无极点,系统是临界稳定系统;③ Hz 在单位圆上的高阶极点或单位圆外的极点,系统是不稳定系统;。
信号与系统期末考试复习资料
第一章绪论1、选择题1。
1、f (5-2t )是如下运算的结果 CA 、 f (-2t )右移5B 、 f (-2t )左移5C 、 f (-2t )右移25 D 、 f (—2t )左移251.2、f (t 0-a t )是如下运算的结果 C .A 、f (—a t )右移t 0;B 、f (—a t )左移t 0 ;C 、f (-a t )右移a t 0;D 、f (-a t )左移at0 1。
3、已知 系统的激励e(t )与响应r(t )的关系为:)()()(t u t e t r = 则该系统为 B 。
A 、线性时不变系统;B 、线性时变系统;C 、非线性时不变系统;D 、非线性时变系统 1.4、已知 系统的激励e(t )与响应r (t )的关系为:)()(2t e t r = 则该系统为 C 。
A 、线性时不变系统 B 、线性时变系统 C 、非线性时不变系统 D 、非线性时变系统 1.5、已知 系统的激励e (t )与响应r(t)的关系为:)1()(t e t r -= 则该系统为 B 。
A 、线性时不变系统B 、线性时变系统C 、非线性时不变系统D 、非线性时变系统1。
6、已知 系统的激励e (t)与响应r(t )的关系为:)2()(t e t r = 则该系统为 B A 、线性时不变系统 B 、线性时变系统 C 、非线性时不变系统 D 、非线性时变系统 1。
7.信号)34cos(3)(π+=t t x 的周期为 C . A 、π2 B 、π C 、2π D 、π21.8、信号)30cos()10cos(2)(t t t f -=的周期为: B 。
A 、15π B 、5π C 、π D 、10π1.9、dt t t )2(2cos 33+⎰-δπ等于 B 。
A 。
0 B 。
-1 C 。
2 D.—21.10、 若)(t x 是己录制声音的磁带,则下列表述错误的是: BA. )(t x -表示将此磁带倒转播放产生的信号B. )2(t x 表示将此磁带放音速度降低一半播放 C 。
信号与系统复习资料
信 号 与 系 统 复 习 资 料一 填空1.如果一线性时不变系统的单位冲激响应为h(t),则该系统的阶跃响应g(t)为_________。
2.如果一线性时不变系统的输入为f(t),零状态响应为)(2)(0t t f t y f -=,则该系统的单位冲激响应h(t)为_________________。
3.如果一线性时不变系统的单位冲激响应)()(t t h ε=,则当该系统的输入信号)()(t t t f ε=时,其零状态响应为_________________。
4.傅里叶变换的时移性质是:当f(t)↔F(j ω),则f(t ±t 0)↔____________。
5.=--)]([)1(2t e dtd t tδ___________ 6.根据线性时不变系统的微分特性,若:)()(t y t f f −−→−系统则有:f ′(t)−−→−系统______。
7.卷积(1-2t)ε(t)*ε(t)等于________________。
8.信号f(n)=δ(n)+(21)nε(n)的Z 变换等于____________。
9.单位序列响应 h(n) 是指离散系统的激励为δ (n) 时,系统的 ____________。
10.线性性质包含两个内容:________,__________ 。
11.余弦信号)cos(0t ω的傅里叶变换为___________。
12.若)()()(21t f t f t f *=,则=)()1(t f________)(2t f *。
13.已知)()]([ωj F t f F =,则=-)52(t f ________。
14.已知15.011)(--=z Z F ,则=)(k f __________。
15.=⋅-)()3(t t εε________________。
16.离散系统稳定的z 域充要条件是系统函数H (z )的所有极点位于z 平面的__________。
信号与系统复习资料第六章
信号与系统第五章(5.1~5.3)一、知识储备正交分解矢量正交信号正交正交定义31==∑=i yi xi Ty x v v V V 两矢量内积为0⎰=21d )()(*21t t t t t ϕϕ两函数内积为0正交集正交矢量集两两正交的矢量组成的矢量集合。
正交函数集⎰⎩⎨⎧=≠≠=21,0,0d )()(*t t i j i ji K j i t t t ϕϕ构成空间矢量空间例如矢量A 可表示为A =a Vx +b Vy +c Vz信号空间1122n ()...nf t C C C φφφ=+++二、傅里叶级数三角形式∑∑∞=∞=Ω+Ω+=110)sin()cos(2)(n nn nt n bt n aat f或∑∞=+Ω+=10)cos(2)(n n n t n A At f ϕ式中,A0=a0,22nn nba A +=,nnn a b arctan-=ϕ. 指数形式e )(j t n n n F tf Ω∞-∞=∑=以上为复傅里叶级数展开式,可以将f (t )理解成由一系列旋转向量合成的信号,各旋转向量的初始位置(严格来讲是t=0时刻所在的位置)就是复傅里叶系数Fn 。
画出三维频谱图如下图所示:三角形式和指数形式傅里叶系数之间的关系)j (21e 21e j n n n n n b a A F F n n -===ϕϕnnnnA b a F 212122=+=⎪⎪⎭⎫ ⎝⎛-=n nnab arctan ϕnn n A a ϕcos =nn n A b ϕsin -=n 的偶函数:an ,An ,|Fn |n 的奇函数:bn ,n波形对称性和谐波特性(四点)f(t)为偶函数——对称纵坐标)()(t f t f -=bn =0,展开为余弦级数f(t)为奇函数——对称于原点)()(t f t f --=an =0,展开为正弦级数此时其傅里叶级数中只含偶次谐波分量,而不含奇次谐波分量,即a1=a3=…=b1=b3=…=0周期信号的功率∑∑⎰∞-∞=∞==+=n nn n T FA A dt t f T2122002||212()(1周期信号一般是功率信号,上式为其平均功率,直流和n 次谐波分量在1Ω电阻上消耗的平均功率之和。
信号与系统复习题(答案全)
1、 若系统的输入f (t )、输出y (t) 满足()3()4t y t e ft -=,则系统为 线性的 (线性的、非线性的)、 时变的 (时变的、时不变)、 稳定的 (稳定的、非稳定的).2、 非周期、连续时间信号具有 连续 、非周期频谱;周期、连续时间信号具有离散、非周期 频谱;非周期、离散时间信号具有 连续 、周期频谱;周期、离散时间信号具有离散、 周期 频谱。
3、 信号f(t)的占有频带为0-10KHz,被均匀采样后,能恢复原信号的最大采样周期为 5×10—5 s 。
4、 )100()(2t Sa t f =是 能量信号 (功率信号、能量信号、既非功率亦非能量信号)。
5、 ()2cos()f t t =+是 功率信号 (功率信号、能量信号、既非功率亦非能量信号)。
6、 连续信号f(t )=sint 的周期T 0= 2π ,若对f (t )以fs=1Hz 进行取样,所得离散序列f(k)=sin(k ) ,该离散序列是周期序列? 否 。
7、 周期信号2sin(/2)()j n tn n f t e n ππ+∞=-∞=∑,此信号的周期为 1s 、直流分量为 2/π 、频率为5Hz 的谐波分量的幅值为 2/5 。
8、 f (t) 的周期为0。
1s 、傅立叶级数系数**03355532F F F F F j --=====、其余为0。
试写出此信号的时域表达式f (t ) = 5 + 6 cos ( 60 π t ) - 4 sin (100 π t ) . 9、 f (k ) 为周期N=5的实数序列,若其傅立叶级数系数()205=F ()52511,πjeF -+=()54512πjeF -+=、 则F 5 (3 )= ()54512πjeF +=- 、F 5 (4 )= ()52511πj eF +=- 、F 5 (5 )= 2 ;f(k ) =())1.7254cos(62.052)9.3552cos(62.152525140525︒-⨯+︒-⨯+=∑=k k e n F n k jn πππ。
信号与系统复习题(答案全)-信号与系统大题
37、单位阶跃序列的卷积和(k)*(k)=(k+1)(k).
38、已知时间连续系统的系统函数有极点 ,( 均为正实数),零点z = 0,该系统 为带通滤波器。
39、已知信号 ,则其Z变换为 。
40、 1。
41、 。
sin(k),该离散序列是周期序列?否。
7、周期信号 ,此信号的周期为1s、直流分量为 、频率为5Hz的谐波分量的幅值为2/5。
8、f (t) 的周期为0.1s、傅立叶级数系数 、其余为0。试写出此信号的时域表达式f (t) =5 + 6 cos ( 60t ) - 4 sin (100t )。
9、f (k) 为周期N=5的实数序列,若其傅立叶级数系数 、则F5(3 )= 、F5(4 )= 、F5(5 )=2;f(k) = 。
22、某LTI系统的冲激响应为 ,系统的频率响应 1-1/(1+jω)。若输入 ,则输出
23、某LTI系统的 ,若输入 ,则输出 2cos(2t+π/2)。
24、因果系统 的频率响应特性 不存在。
25、设离散因果系统 ,则其阶跃响应的终值 20/3。
26、现有系统函数 ,其频响特性H (jω)=不存在。
32、以10Hz为抽样频率对 Sa(t)进行冲激抽样 ,则fs(t) 的傅立叶变换为 。
33、f(k)=Sa (0.2k),则DTFT[f(k)] .
34、已知f (t) F(ω),则f (t) cos (200t) 的傅立叶变换为[F(ω+200)+ F(ω-200)]/2.
35、已知周期信号fT(t) = ,则其傅立叶变换为 .
信号与系统(郑君里)复习要点
信号与系统复习书中最重要的三大变换几乎都有。
第一章 信号与系统 1、信号的分类①连续信号和离散信号 ②周期信号和非周期信号 连续周期信号f (t )满足f (t ) = f (t + m T ), 离散周期信号f(k )满足f (k ) = f (k + m N ),m = 0,±1,±2,…两个周期信号x(t),y(t)的周期分别为T 1和T 2,若其周期之比T 1/T 2为有理数,则其和信号x(t)+y(t)仍然是周期信号,其周期为T 1和T 2的最小公倍数。
③能量信号和功率信号 ④因果信号和反因果信号2、信号的基本运算(+ - × ÷) 2.1信号的(+ - × ÷)2.2信号的时间变换运算 (反转、平移和尺度变换) 3、奇异信号3.1 单位冲激函数的性质f (t ) δ(t ) = f (0) δ(t ) , f (t ) δ(t –a) = f (a) δ(t –a)例: 3.2序列δ(k )和ε(k ) f (k )δ(k ) = f (0)δ(k ) f (k )δ(k –k 0) = f (k 0)δ(k –k 0) 4、系统的分类与性质4.1连续系统和离散系统4.2 动态系统与即时系统 4.3 线性系统与非线性系统 ①线性性质 T [a f (·)] = a T [ f (·)](齐次性) T [ f 1(·)+ f 2(·)] = T[ f 1(·)]+T[ f 2(·)] (可加性)②当动态系统满足下列三个条件时该系统为线性系统:)0(d )()(f t t t f =⎰∞∞-δ)(d )()(a f t a t t f =-⎰∞∞-δ?d )()4sin(91=-⎰-t t t δπ)0('d )()('f t t f t -=⎰∞∞-δ)0()1(d )()()()(n n n f t t f t -=⎰∞∞-δ4)2(2])2[(d d d )(')2(0022=--=--=-==∞∞-⎰t t t t tt t t δ)(1||1)()()(t a a at n n n δδ⋅=)(||1)(t a at δδ=)(||1)(00a t t a t at -=-δδ)0()()(f k k f k =∑∞-∞=δy (·) = y f (·) + y x (·) = T[{ f (·) }, {0}]+ T[ {0},{x (0)}] (可分解性) T[{a f (·) }, {0}] = a T[{ f (·) }, {0}]T[{f 1(t ) + f 2(t ) }, {0}] = T[{ f 1 (·) }, {0}] + T[{ f 2 (·) }, {0}](零状态线性)T[{0},{a x 1(0) +b x 2(0)} ]= aT[{0},{x 1(0)}] +bT[{0},{x 2(0)}](零输入线性) 4.4时不变系统与时变系统T[{0},f (t - t d )] = y f (t - t d)(时不变性质)直观判断方法:若f (·)前出现变系数,或有反转、展缩变换,则系统为时变系统。
《信号与系统》复习资料(2)——几个核心问题
《信号与系统》几个核心问题(期末复习)第一部分:连续时间信号与系统一、连续时间信号分析1、给定周期信号70),求其傅里叶级数。
2、给定非周期信号/(f),求其傅里叶变换尸(。
).3、给定信号/(/),求其拉氏变换尸(5)。
4、给定某因果信号/⑺的拉氏变换尸(三),求信号/«)(用部分分式分解法求逆拉氏变换)。
5、给定二信号e(r)和g),求e(f)*%α)0二、1.Tl系统分析1、给定1.Tl系统的微分方程(2阶)和0_状态,用时域经典法求系统全响应。
2、给定1.Tl系统的微分方程(2阶)和0_状态,求系统的零输入响应和零状态响应。
3、给定1.Tl系统的微分方程(2阶),求系统的冲激响应力⑺。
4、给定系统电路图,求系统函数。
5、给定系统微分方程(2阶),求系统函数H6、给定激励e(f)及系统的零状态响应"f),求系统函数”(三)。
7、给定1.Tl系统的系统函数H(三),求冲激响应8、给定1.TI系统的系统函数H(三),画系统函数的零、极点分布图并判断系统的稳定性。
9、给定因果、稳定1.Tl系统的系统函数”(三),画出系统频率响应特性的大致曲线(s平面几何分析法)第二部分:离散时间信号与系统1、给定序列M〃),求其Z变换X(Z)。
2、给定某因果序列x(〃)的Z变换X(z),求X5)(用部分分式分解法求逆Z变换)。
3、给定序列x(〃),求其离散傅里叶变换X(∕°).4、给定二系列x(ti)和h(n),求x(ri)*Λ(n),>二、1.TI系统分析1、给定DTEn系统的差分方程(2阶)和边界条件,用时域经典法求系统全响应。
2、给定DTEn系统的差分方程(2阶)和边界条件,求系统的零输入响应和零状态响应。
3、给定DTEn系统的差分方程(2阶),求系统的单位样值响应力(〃)。
4、给定算法结构框图,写出系统的差分方程。
5、给定系统差分方程(2阶),求系统函数”(Z)。
6、给定激励X。
信号与系统复习资料
信号与系统复习资料一、信号与系统的基本概念信号在工程和科学领域中起着重要的作用,它们传输着信息和能量。
信号可以是连续的或离散的,并且可以是模拟的或数字的。
系统是用来处理信号的工具,它们可以是线性的或非线性的,并且可以是时不变的或时变的。
在信号与系统的学习中,我们需要了解信号的性质、系统的特性以及它们之间的相互关系。
二、连续时间信号与离散时间信号连续时间信号是在连续时间域上表示的信号,它们在每个时间点都有定义。
离散时间信号是在离散时间点上采样的信号,它们只在有限的时间点上有定义。
连续时间信号和离散时间信号可以通过采样和保持操作相互转换。
三、信号的分类根据信号的性质,信号可以被分类为周期信号和非周期信号。
周期信号具有重复的模式,并且在无穷远处也保持有界。
非周期信号则没有重复的模式,并且在无穷远处不保持有界。
另外,信号还可以是基带信号或带通信号,基带信号是直接由信息源产生的信号,而带通信号是通过调制技术从基带信号中得到的。
四、连续时间系统与离散时间系统连续时间系统是用连续时间输入信号产生连续时间输出信号的系统,离散时间系统是用离散时间输入信号产生离散时间输出信号的系统。
系统可以是线性的或非线性的。
线性系统遵循叠加原则,输出信号是输入信号的线性组合。
非线性系统则不遵循叠加原则。
五、信号的时域分析时域分析是通过观察信号在时间上的变化来研究信号的性质。
常用的时域分析技术包括时域图、自相关函数、互相关函数等。
时域图是信号在时间轴上的表示,可以直观地观察信号的振幅、频率和相位等特性。
自相关函数衡量信号与自身在不同时间点之间的相似度,互相关函数衡量两个信号之间的相似度。
六、信号的频域分析频域分析是通过观察信号在频率上的变化来分析信号的性质。
傅里叶变换是常用的频域分析工具,它将信号从时域转换到频域。
傅里叶变换可以将信号表示为一系列复指数函数的线性组合,其中每个复指数函数对应一个频率。
功率谱密度函数是衡量信号在不同频率上的能量分布情况和频率成分的重要工具。
信号与系统复习资料及答案
信号与系统复习资料及答案2.设系统零状态响应与激励的关系是:"s (r )=∣∕α)∣,则以下表述不对的是(.A )。
B.系统是时不变的C.系统是因果的D.系统是稳定的4 .设一个矩形脉冲的面积为S,则矩形脉冲的FT (傅氏变换)在原点处的函数值等)o5 .信号(£(t )-£(t-2))的拉氏变换的收敛域为(C )。
6 .已知连续系统二阶微分方程的零输入响应κ,⑺的形式为A/+8",则其2个7 .函数£⑺是(8 .周期矩形脉冲序列的频谱的谱线包络线为()09 .能量信号其(B )010 .在工程上,从抽样信号恢复原始信号时需要通过的滤波器是(B )0A.高通滤波器C.带通滤波器D.带阻滤波器 二、填空题L 系统的激励是e(“,响应为若满足也乜,则该系统为线性、时不dt 变、因果。
一、选择题L 线性系统具有 D)o A.分解特性 B.零状态线性C.零输入线性D.ABC A.系统是线性的 3.零输入响应是( )0A.全部自由响应B.部分自由响应C.部分零状态响应D.全响应与强迫响应之差A.S/2B.S/3C.S/4D.SA.Re[s]>OB.Re[s]>2C.全S 平面D.不存在特征根为(AA. -1,-2)o B. -1,2 C. 1,-2 D. 1,2 A.奇函数B.偶函数C.非奇非偶函数D.奇谐函数 A. δ函数B. Sa 函数C. £函数D.无法给出 A.能量E=OB.功率P=OC.能量E=8D.功率P=OOB.低通滤波器2.求积分Jjr2+∖)δ(t-2)dt的值为o3.当信号是脉冲信号/⑺时,其低频分量主要影响脉冲的顶部,其高频分量主要影响脉冲的跳变沿。
4.若信号/⑺的最高频率是2kHz,则"2。
的乃奎斯特抽样频率为8kHz。
5.信号在通过线性系统不产生失真,必须在信号的全部频带内,要求系统幅频特性为相频特性为o6.系统阶跃响应的上升时间和系统的截止频率成反比。
信号与系统复习资料总结
– 4 –2 O 2 4 6
τ
卷积图形计算
f1(τ) 2
• 卷积积分图解(积分3)
O2 4
τ
▫ 积分区间:
2<t<4
f2(t–τ) 1.5
▫ 计算积分:
t
f (t) 1.5(t )d t2
– 4 –2 O 2 t 4 6
τ1.Leabharlann t0.75 2t t2
3.0 f (t)
1.5
3
– 4 –2 O 2 4 6
求得上图系统的微分方程为
y"(t) 5y'(t) 3y(t) 2 f '(t) 4 f (t)
写出系统的算子方程
( p2 5p 3) y(t) (4 2 p) f (t)
于是,得到系统的传输算子为
H( p)
42p p2 5p 3
利用P算子法,根据电路写出系统微分方程
P算子法
• 冲激信号的性质 • (a) f (t)δ(t) = f (0)δ(t) • (b) f (t)δ(t – τ) = f (τ)δ(t – τ)
• (c ) (t) f (t)dt f (0)
• (d)
(t ) f (t)dt f ( )
冲激函数导数性质
• (e)
(t)dt 0
步骤一:根据电路元件的算子模型写出各器件等效阻 值:电阻的等效阻值R,电容等效阻值1/cP,电感为 LP
根据电路写出微分方程 P算子法(二)
• 步骤二:利用2个定律 • (a)基尔霍夫电压定律(KVL),一个回路电压降之
和为0 • (b)基尔霍夫电流定律(KCL),流入一点的电流之
和等于流出该点电流之和
▫ 6<t<∞
信号与系统试题库
信号与系统综合复习资料一、单项选择题:14、已知连续时间信号,)2(100)2(50sin )(--=t t t f 则信号t t f 410cos ·)(所占有的频带宽度为() A .400rad /s B 。
200 rad /s C 。
100 rad /s D 。
50 rad /sf如下图(a)所示,其反转右移的信号f1(t) 是()15、已知信号)(tf如下图所示,其表达式是()16、已知信号)(1tA、ε(t)+2ε(t-2)-ε(t-3)B、ε(t-1)+ε(t-2)-2ε(t-3)C、ε(t)+ε(t-2)-ε(t-3)D、ε(t-1)+ε(t-2)-ε(t-3)17、如图所示:f(t)为原始信号,f1(t)为变换信号,则f1(t)的表达式是()A、f(-t+1)B、f(t+1)C、f(-2t+1)D、f(-t/2+1)18、若系统的冲激响应为h(t),输入信号为f(t),系统的零状态响应是( )19。
信号)2(4sin 3)2(4cos 2)(++-=t t t f ππ与冲激函数)2(-t δ之积为( )A 、2B 、2)2(-t δC 、3)2(-t δD 、5)2(-t δ,则该系统是()>-系统的系统函数.已知2]Re[,651)(LTI 202s s s s s H +++=A 、因果不稳定系统B 、非因果稳定系统C 、因果稳定系统D 、非因果不稳定系统21、线性时不变系统的冲激响应曲线如图所示,该系统微分方程的特征根是( )A 、常数B 、 实数C 、复数D 、实数+复数22、线性时不变系统零状态响应曲线如图所示,则系统的输入应当是( )A 、阶跃信号B 、正弦信号C 、冲激信号D 、斜升信号23. 积分⎰∞∞-dt t t f )()(δ的结果为( )A )0(fB )(t f C.)()(t t f δ D.)()0(t f δ24. 卷积)()()(t t f t δδ**的结果为( )A.)(t δB.)2(t δC. )(t fD.)2(t f25. 零输入响应是( )A.全部自由响应B.部分自由响应C.部分零状态响应D.全响应与强迫响应之差 2A 、1-eB 、3eC 、3-e D 、1 27.信号〔ε(t)-ε(t -2)〕的拉氏变换的收敛域为 ( )A.Re[s]>0B.Re[s]>2C.全S 平面D.不存在28.已知连续系统二阶微分方程的零输入响应)(t y zi 的形式为t t Be Ae 2--+,则其2个特征根为( )A 。
中国石油大学期末考试题(含答案)-050130信号与系统-20
《信号与系统》课程综合复习资料一、简答题1、已知信号3()sin cos 62f k k k ππ=+,判断该信号是否为周期信号,若是,请求出信号周期,并说明理由。
2、设系统的激励为()f t ,系统的零状态响应)(t y zs 与激励之间的关系为:)1(*)()(-=k f k f k y zs ,判断该系统是否是线性的,并说明理由。
3、已知描述系统的微分方程为'()sin ()()y t ty t f t +=其中()()f t y t 为激励,为响应,试判断此系统是否为线性的?4、若信号()f t 的最高频率为20KHz ,则信号(2)f t 的最高频率为___________KHz ;若对信号(2)f t 进行抽样,则奈奎斯特频率s f 为 ____________KHz 。
5、dtt df t f t f x e t y t )()()()0()(+⋅=- 其中x(0)是初始状态,为激励)(t f 为全响应,,)(t y 试回答该系统是否是线性的? 6、已知()1 1 , 0,1,20 , k f k else==⎧⎨⎩ ,()2 1 , 0,1,2,30 , k k f k else-==⎧⎨⎩设()()()12f k f k f k =*,求()4?f =。
7、设系统的激励为()f t ,系统的零状态响应)(t y zs 与激励之间的关系为:)()(t f t y zs -=,判断该系统是否是时不变的,并说明理由。
8、已知信号()⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=8sin 4cos 2ππk k k f ,判断该信号是否为周期信号,如果是,请求其周期,并说明理由。
9、 若信号)(t f 的最高频率为20KHz ,则信号)3()2()(2t f t f t f +=的最高频率为___________KHz ;若对信号)(2t f 进行抽样,则奈奎斯特频率s f 为 ____________KHz 。
信号与系统复习资料
第一章 绪论一、选择题★1、积分⎰+--00)()2(dt t t δ等于( B )A.)(2t δ-B.2-C. )2(-t εD. )2(2-t δ ★3、积分式⎰-δ+δ++4422)]dt -(t 2(t))[23(t t 的积分结果是( C )A 14B 24C 26D 28★5、⎰∞=+--0)4)(3(dt t t δ( A )。
A 0B 1C -1D ∞★7、dt t t ⎰∞∞--)sin()41(πδ=( D )A 0B 1 C2 D22★13、已知信号f (t )的波形如题1图所示,则f (t )为(B ) A f(t)=tε(t) B f(t)= (t-1)ε(t-1) C f(t)=tε(t-1) D f(t)=2(t-1)ε(t-1)★14、如题4图所示波形可表示为( C )。
A f(t)=ε(t)+ε(t-1)+ε(t-2)-ε(t-3) B f(t)=ε(t)+ε(t+1)+ε(t+2)-3ε(t) C f(t)=ε(t)+ε(t-1)+ε(t-2)-3ε(t-3) D f(t)=2ε(t+1)+ε(t-1)-ε(t-2)★16、已知系统的输入为x(t),输出为y(t),其输入输出关系为y(t)=tx(t),则系统为( C )A 线性时不变B 非线性时不变C 线性时变D 非线性时变 ★17、已知系统响应()y t 与激励()f t 的关系为()(1)(1)y t f t f t =---,则该系统为 ( C )系统。
A 线性非时变非因果B 非线性非时变因果C 线性时变非因果D 线性时变因果★20、系统输入和输出的关系为)(cos )(t f t t y ⋅=,则该系统为( C )。
A 线性时不变因果系统 B 非线性时不变因果系统 C 线性时变因果系统 D 线性时不变非因果系统三、简答题★2、请简单区分即时系统与动态系统?答:动态系统也叫有记忆系统,是指系统某时刻的响应与该时刻的激励及过去的历史状况均有关,否则称为即时系统或者无记忆系统。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《信号与系统》综合复习资料一、简答题1、dtt df t f t f x e t y t)()()()0()(+⋅=-其中x(0)是初始状态,为全响应,为激励,)()(t y t f 试回答该系统是否是线性的?2、已知描述LTI 连续系统的框图如图所示,请写出描述系统的微分方程。
3、若信号)(t f 的最高频率为20KHz ,则信号)3()2()(2t f t f t f +=的最高频率为___________KHz ;若对信号)(2t f 进行抽样,则奈奎斯特频率s f 为 ____________KHz 。
4、设系统的激励为()f t ,系统的零状态响应)(t y zs 与激励之间的关系为:)()(t f t y zs -=,判断该系统是否是时不变的,并说明理由。
5、已知信号()⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=8sin 4cos 2ππk k k f ,判断该信号是否为周期信号,如果是,请求其周期,并说明理由。
6、已知()1k+1 , 0,1,20 , k f k else==⎧⎨⎩,()2 1 , 0,1,2,30 , k f k else==⎧⎨⎩设()()()12f k f k f k =*,求()f k 。
7、设系统的激励为()f t ,系统的零状态响应)(t y zs 与激励之间的关系为:)1(*)()(-=k f k f k y zs ,判断该系统是否是线性的,并说明理由。
8、已知描述LTI 离散系统的框图如图所示,请写出描述系统的差分方程。
9、已知()f t 的频谱函数1,2/()0,2/rad sF j rad s ωωω⎧≤⎪=⎨>⎪⎩,对(2)f t 进行均匀抽样的奈奎斯特抽样间隔N T 为:_______________s 。
10、若信号()f t 的最高频率为20KHz ,则信号(2)f t 的最高频率为___________KHz ;若对信号(2)f t 进行抽样,则奈奎斯特频率s f 为 ____________KHz 。
11、已知描述系统的微分方程为'()sin ()()y t ty t f t +=其中()()f t y t 为激励,为响应,试判断此系统是否为线性的?12、已知信号3()sin cos 62f k k k ππ=+,判断该信号是否为周期信号;若是则求该信号的周期,并说明理由。
二、作图题1、已知)(1k f 和)(2k f 的波形如图所示,求)(*)(21k f k f .2、已知()()12f t f t 、的波形如下图,求()()()12f t f t f t =*(可直接画出图形)3、已知信号()f k 的波形如图所示,画出信号(2)(2)f k k ε+⋅--的波形。
4、已知函数)(1t f 和)(2t f 波形如图所示,画出)(*)(21t f t f 波形图。
三、综合题)(1k f-2 -1 0 1 2k 1-1 0 1 2 k23)(2k f()t f 2222-t21、 某线性时不变系统在下述12(),()f t f t 两种输入情况下,初始状态都相同,已知当激励1()()f t t δ=时,系统的全响应()()213t y t e t ε-=;当激励()()2f t t ε=时,系统的全响应()()22t y t e t ε-=;试求该系统的单位冲激响应()h t ,写出描述该系统的微分方程。
2、 已知某线性时不变连续系统的阶跃响应为3()(1.50.5)()tt g t ee t ε--=-;当系统的激励为()(2)()f t t t ε=+,系统的初始值为(0)3,(0)9,y y ++'==-求系统的完全响应。
3、 某LTI 连续系统,已知当激励为)()(t t f ε=时,其零状态响应)()(2t e t y tzs ε-=。
求:(1)当输入为冲激函数)(t δ时的零状态响应; (2)当输入为斜升函数)(t t ε时的零状态响应。
4、 描述某LTI 连续系统的微分方程为()()()()()''''3226y t y t y t f t f t ++=+已知输入()(), f t t ε=初始状态 ()()'02, 01y y --==;求系统的零输入响应()zi y t 、零状态响应()zs y t 和全响应()y t 。
5、 某一LTI 连续系统,已知:当起始状态,输入 时,其全响应为 ; 当起始状态 ,输入 时,其全响应为, 求该系统的冲激响应。
6、 已知某LTI 连续系统的系统函数()23122++++=s s s s s H ,求:(1)系统的冲激响应()t h ;(2)当激励)()(t t f ε=,初始状态()'(0) 1 , 01y y --==时系统的零输入响应() zi y t 和零状态响应()zs y t 。
7、某LTI 系统在下述12(),()f t f t 两种输入情况下,初始状态都相同,已知当激励1()()f t t δ= 时,系统的全响应)()()(1t e t t y tεδ-+=;当激励()()2f t t ε=时,系统的全响应)(3)(2t e t y tε-=;求:当激励为)()(23t e t f tε-=时系统的全响应。
8、 已知某LTI 系统的冲激响应2()()(3)()t th t t e et δε--=+-,求()10=-x ()()t t f ε21=()()t t y ε=1()20=-x ()()t t f δ=2()()t e t y tε223-=(1)系统的系统函数)(s H ;(2)求当激励()()()3' (0) 1 01t f t e t y y ε---===时系统的零输入响应() zi y t 和零状态响应()zs y t 。
参考答案一、简答题1、dtt df t f t f x e t y t)()()()0()(+⋅=- 其中x(0)是初始状态,为激励)(t f 为全响应,,)(t y 试回答该系统是否是线性的? 解:由于无法区分零输入响应和零状态响应,因而系统为非线性的。
2、已知描述LTI 连续系统的框图如图所示,请写出描述系统的微分方程。
解:由于输入输入之间无直接联系,设中间变量)(t x 如图所示,则各积分器的的输入信号分别如图所示。
由加法器的输入输出列些方程:左边加法器:)(3)(2)()(t x t x t f t x '--='' (1) 右边加法器:)(2)()(t x t x t y '-''= (2) 由(1)式整理得到:)()(2)(3)(t f t x t x t x =+'+'' (3) 消去中间变量)(t x : )](2)([2)(2t x t x t y '-''= (4) )]'(2)([3)(3t x t x t y '-''=' (5)])(2)([)('''-''=''t x t x t y (6)将(4)(5)(6)左右两边同时相加可得:)](2)([2])(2)([3])('2)([)(2)(3)(t x t x t x t x t x t x t y t y t y '-''+''-''+''-''=+'+''整理可得到:)(2)()(2)(3)(t f t f t y t y t y '-''=+'+''3、 若信号)(t f 的最高频率为20KHz ,则信号)3()2()(2t f t f t f +=的最高频率为___________KHz ;若对信号)(2t f 进行抽样,则奈奎斯特频率s f 为 ____________KHz 。
解:本题目主要考查的是取样定理的条件:)2(21)2(ωj F t f ↔)3(31)3(ωj F t f ↔ 因而:)2(t f 的最高频率为40KHz ,)3(t f 的最高频率为60KHz)3()2()(2t f t f t f +=的最高频率为两个分信号最高频率,为60KHz ,若对信号)(2t f 进行抽样,奈奎斯特频率12022=≥m s f f KHz4、 设系统的激励为()f t ,系统的零状态响应)(t y zs 与激励之间的关系为:)()(t f t y zs -=,判断该系统是否是时不变的,并说明理由。
解:设)()(01t t f t f -=,若系统为时不变的,则必有结论)(01t t y y zs zs -=。
根据题意,由)(1t f 作用于系统的零状态响应为:)()(011t t f t y zs -=,根据信号的基本运算,)()()(0011t t f t t f t y zs +-=-=,很明显,)(01t t y y zs zs -≠,因而系统为时变的。
5、 已知信号()⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=8sin 4cos 2ππk k k f ,判断该信号是否为周期信号,如果是,请求其周期,并说明理由。
解:设)4cos(2)(1πk k f =,则其周期81=T ; 设)8sin()(2πk k f =,则其周期162=T ;1T 和2T 的最小公倍数为16,因而)(k f 为周期信号,其周期为16. 6、 已知()1k+1 , 0,1,20 , k f k else ==⎧⎨⎩,()2 1 , 0,1,2,30 , k f k else ==⎧⎨⎩设()()()12f k f k f k =*,求()f k 。
解:根据列表法,⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧======elsek k k k k k f ,05,34,53,2,61,30,1)(7、 设系统的激励为()f t ,系统的零状态响应)(t y zs 与激励之间的关系为:)1(*)()(-=k f k f k y zs ,判断该系统是否是线性的,并说明理由。
解:系统为非线性的。
因为表达式中出现了)(k f 的二次方。
8、 已知描述LTI 离散系统的框图如图所示,请写出描述系统的差分方程。
解:该系统是一个二阶离散系统。
由于有两个加法器,因而输入与输出之间的联系被割断,必须设定中间变量,)(k x ,位置如图所示,各个延迟单元的输入如图所示,根据加法器列写方程:左边加法器:)()1(3)2-(2)(k x k x k x k f =---整理可得:)()2-(2)1(3)(k f k x k x k x =+-+ (1) 右边加法器:)1(2)()(--=k x k x k y (2) 由(1)(2)两式,消去中间变量可得:)1(2)()2-(2)1(3)(--=+-+k f k f k y k y k y9、已知()f t 的频谱函数1,2/()0,2/rad sF j rad sωωω⎧≤⎪=⎨>⎪⎩,对(2)f t 进行均匀抽样的奈奎斯特抽样间隔N T 为:_______________s 。