第8章综合训练

合集下载

2022学年京改版九年级化学上册期末复习第八章《碳的世界》综合训练卷附答案

2022学年京改版九年级化学上册期末复习第八章《碳的世界》综合训练卷附答案

2022学年九年级化学上册期末复习第八章《碳的世界》综合训练卷一、单选题1.为应对气候变化,我国提出“二氧化碳排放力争于2030年前达到峰值,努力争取2060年前实现碳中和”的庄严目标。

下列措施中不利于实现该目标的是()A.绿色出行B.植树造林C.发展氢能源D.推广燃煤发电2.海洋酸化与全球气候变暖并称“邪恶双子”。

迄今为止,人类排人大气中的二氧化碳有三分之一左右被海洋吸收。

海洋酸化可能会损伤诸如贝类、珊瑚类等海洋生物形成钙质骨骼和外壳的能力,进而影响整个海洋生态系统的结构和功能。

下列措施不能有效减缓海洋酸化的是A.大力推广电动汽车替代汽油车B.减少一次性塑料袋、泡沫饭盒的使用C.积极植树造林D.利用风能、太阳能、水能发电,减少火力发电3.成都以“碳达峰、碳中和”为目标,引领城市绿色低碳发展。

下列做法利于实现此目标的是A.石油炼制B.太阳能发电C.燃煤脱硫D.酒精作燃料4.按如图进行实验,下列分析或结论正确的是A.导管口刚有气泡冒出说明反应开始B.实验结束应立即倒出粉末C.木炭能使氧化铜还原为铜D.固体减少的质量一定等于生成二氧化碳质量5.归纳与比较是化学学习的主要方法。

关于CO2与CO的知识总结错误的是A.构成:一个二氧化碳分子比一个一氧化碳分子多一个氧原子B.性质:通常情况下,CO2不支持燃烧;CO支持燃烧C.用途:固体CO2可用于人工降雨;CO可作燃料D.危害:CO2无毒:CO易与血液中的血红蛋白结合引起中毒6.石墨烯是一种非常优良的纳米材料,由碳元素组成,化学性质和石墨相似,还具有超强导电、导热的性能。

关于石墨烯的认识错误的是A.可作散热材料B.是一种新型化合物C.常温下化学性质稳定D.可作新型电池的电极7.下列物质中,硬度最大的是A.C60B.活性炭C.石墨D.金刚石8.规范的实验操作是实验成功和安全的重要保证。

下列实验操作正确的是A.取用稀盐酸B.读取液体体积C.气体的验满D.处理废弃药品9.碳单质的性质与用途对应关系错误的是A.石墨导电性好可作电池电极B.活性炭吸附性强可作冰箱除味剂C.金刚石硬度大可制作铅笔芯D.炭黑常温化学性质稳定可制墨汁10.下列关于碳及其化合物的说法正确的是A.金刚石、石墨和C60的性质相似B.木炭在氧气中燃烧,生成物一定是二氧化碳C.CO2灭火既利用了CO2的物理性质,又利用了其化学性质D.在煤炉上放一壶水能防止一氧化碳中毒11.氧循环和碳循环是自然界中的重要循环(如图)。

部编版五年级上册语文第八单元综合训练PPT含答案

部编版五年级上册语文第八单元综合训练PPT含答案

总而言之,书对我们的作用是( 不言而喻 )的,我们应该多读书, 读好书。
1.请把“不言而喻”“略逊一筹”“淋漓尽致”“引人入胜” 四个词分别填入文中合适的地方。(2 分)
2.阅读短文,梳理作者的读书经历。(8 分)
3.短文是按照时间 顺序来进行叙述的,从作者的读书经历中, 我们可以看出他是一个 热爱读书,善于从读书中总结方法的人 。(3 分)
因此,某年的“六一”国际儿童节,有个儿童刊物要我给儿童 写几句指导读书的话,我只写了九个字,就是:
读书好,多读书,读好书。 1.第 1 自然段中有一句话可以帮我们把握本段的内容要点,请 在文中用“____”画出来。(2 分)
2.作者用 对比的手法来讲述自己对读书的理解,填一填,想一 想作者选书的标准。(9 分)
2.下列对“世人患作文字少,又懒读书,每一篇出,即求过人”的理解正确
的一项是( B )(2 分)
A.世人就怕自己的作文字数太少,又懒,读书一篇,就去求别人 帮忙。
B.世人的弊病在于写作太少,又懒于读书,写出一篇,就想超过 别人。
C.世人的弊病在于作文字数太少,又懒于读书,每读一篇,就想超过别人。 D.世人就怕自己写作太少,又懒于读书,每次写出一篇,就想超过别人。
《封神榜》,看了人物栩栩如生的《水浒传》就不会看索然无味的《荡 寇志》。对于现代的文艺作品,那些写得朦朦胧胧的、堆砌了许多华 丽词句的、无病而呻的文字,我一看就从脑中抹去。但是那些满带 着真情实感、十分质朴浅显的篇章,哪怕只有几百上千字,也往往 使我心动神移,不能自己!
书看多了,从中也得到了一个体会,物怕比,人怕比,书也怕 比,“不比不知道,一比吓一跳”。
那时的作文就是写话,而每次写话,在我眼里都是一次显示才 华的好机会。因为读书让我积累词句、了解故事;而评书让我有了 真情实感,对故事了解更深。虽然我那时还不懂什么叫总结概括, 更不知道什么叫读书方法,但是我在心中已经总结出了一些方法: 写文章一开始绝对离不开模仿,因为模仿可以借鉴文中的思路、想 法、好词、好句,可谓受益无穷。

proe三维建模综合训练

proe三维建模综合训练

图8-76
(4)投影曲线。
图8-80
(5)修建曲面。
图8-85
(6)创建曲面(2)。
图8-89
5. 创建镜像特征。 6. 草绘曲线。
图8-91
图8-95
7. 投影曲线。
图8-97
8. 创建镜像特征。
图8-98
9. 创建拉伸特征。
图8-101
10.创建基准曲线。 (1)创建基准面。
图8-102
(2)创建基准曲线。
图8-47
22.创建倒圆角特征。
图8-49
23.创建阵列特征。
图8-52
8.2
瓶体设计
本节主要通过瓶体的设计来学习复杂的曲面与实体建 模的综合方法。本例是一个训练性很强的操作,通过实际 操作帮助读者熟悉和掌握曲面建模和实体建模的工具。本 例最后创建的模型如图8-53所示。
图8-53
8.2.1 设计分析
最终设计效果
8.1.1 设计分析
整个模型的设计过程如下图所示。
设置过程图
8.1.2 设计过程
【操作步骤】 1. 新建零件文件。 2. 创建旋转实体。 3. 创建基准曲线。 图8-5 图8-7 图8-12 4. 创建投影曲线。 【要点提示】 投影曲线就是将已知曲线按照一定的方向投影到指 定曲面上得到的曲线,特别适合于创建位于曲面上的空 间曲线。创建投影曲线时,需要设定3个基本要素:被 投影曲线、投影曲面和投影方向参照。
图8-122
16.创建合并特征。 17.创建实体化特征。
图8-124
图8-125
18.创建倒圆角特征。 (1)单击 按钮,启动倒圆角工具。 (2)选择如图8-126所示的两边。 (3)设置倒圆角半径值为“1”

部编版二年级语文下册第八单元综合训练附答案 (2)

部编版二年级语文下册第八单元综合训练附答案 (2)

部编版二年级语文下册第八单元综合训练时间:60分钟满分:100分基础积累一、下列词语中,加点字的读音全部正确的一项是()(3分)①粗糙.(cāo)熔.化(yónɡ)②年纪.(jǐ)滋.润(zī)③掏.空(tāo)蔷.薇(qiánɡ)④逮.住(dài)譬.如(pì)二、看拼音,写词语。

(16分)fānɡ shì huí yì yán rè jiǎn dānjué de zhí rì fǎn fù sài pǎo三、词语练习。

(20分)1.辨字组词。

(6分)蓝()掏()功()篮()淘()劝()2.写出下列词语的近义词。

(8分)忽然——()立刻——()徐徐——()慢吞吞——()3.连一连,动词巧搭配。

(6分)摘蘑菇数星星采野果捉神弓挖野菜拉蜻蜓四、照样子,写句子。

(8分)1.例:最后一个太阳害怕极了....,慌慌张张地躲进了大海里。

状状高兴极了....,___________________跑进了教室。

2.例:美丽的小鸟在天空中自由自在地飞翔。

____________妹妹在舞台上______________跳舞。

五、读一读,了解天文现象“七星连珠”,给句子排排序。

(8分)()作为平均77年一遇的罕见天象,“七星连珠”吸引了广大天文爱好者的关注。

()2022年6月17日凌晨4时左右,“七星连珠”震撼上演。

()七颗太阳系行星--水星、金星、天王星、海王星、木星、土星和火星,由东到西一字排开,同时亮相天幕。

()这七颗行星“连珠成串”,排成了一串“糖葫芦”的形状。

六、回顾课文内容,完成练习。

(13分)1.偏旁是“衤”的字大多与()有关。

(3分)①神仙②祭祀(sì)、礼仪③衣服④水2.课文《祖先的摇篮》中,“祖先的摇篮”是指()(3分)①大地②睡觉的床③大树④原始森林3.当世界年纪还小的时候,太阳学会的是()(3分)①发光②一直往低处流③开花④不断变化4.将古诗《舟夜书所见》补充完整。

人教A版高中同步学案数学选择性必修第三册精品习题课件 第八章 综合训练

人教A版高中同步学案数学选择性必修第三册精品习题课件 第八章 综合训练
= . × − = . ,预测身高为
的学生体重为. ,故C错误;这些学生的身高每增加. ,其体重约
增加. × . = . (),故D错误.
故选B.
4.下列关于回归分析的说法错误的是( D )
A.经验回归直线一定过点(, )
6.某校为了解学生“玩手机游戏”和“学习成绩”是否有关,随机抽取了100名学生,运用
2 × 2列联表进行独立性检验,经计算得到 2 = 3.936,所以判定玩手机游戏与学习成绩
有关系,那么这种判断犯错误的概率不大于() B

பைடு நூலகம்
0.10
0.05
0.01
0.005
0.001

2.706
3.841
6.635
7.某公司为了确定下一年投入某种产品的宣传费,需了解年宣传费(单位:万元)对年
销售量(单位:千件)的影响.现收集了近5年的年宣传费(单位:万元)和年销售量
෠ − 8.2,则
(单位:千件)的数据,其数据如下表所示,且关于的经验回归方程为ො =
下列结论错误的是() C

4
6
8
10
12
性别
喜欢攀岩
不喜欢攀岩
合计
男生
.
.

女生
.
.

合计
.
.

所以参与调查的学生中喜欢攀岩的男生人数比喜欢攀岩的女生人数多,参与调查的
女生中喜欢攀岩的人数比不喜欢攀岩的人数少,故A正确,B错误;
零假设为 :喜欢攀岩和性别无关联.由列联表中的数据,计算得到
第八章
综合训练
一、选择题(本题共8小题,在每小题给出的四个选项中,只有一项是符合题

2020-2021学年人教版 七年级数学下册 第八章 二元一次方程组 综合训练

2020-2021学年人教版 七年级数学下册 第八章 二元一次方程组 综合训练

人教版七年级数学下册第八章二元一次方程组综合训练一、选择题1. (2020·嘉兴)用加减消元法解二元一次方程组3421x yx y+=⎧⎨-=⎩,①,②时,下列方法中无法消元....的是()A.①×2–②B.②×(﹣3)–①C.①×(﹣2)+②D.①–②×32. 如果是关于x,y的二元一次方程mx-10=3y的一个解,那么m的值为()A.B.C.-3D.-23. 已知方程组则x+y+z的值是()A.3B.4C.5D.64. 某市某九年一贯制学校现共有学生3000人,计划一年后初中在校生增加8%,小学在校生增加11%,这样全校在校生将增加10%,则这所学校现初中在校生,小学在校生分别有()A.1000人,2000人B.2000人,1000人C.1500人,1500人D.1200人,1800人5. (2020·绥化)“十·一”国庆期间,学校组织466名八年级学生参加社会实践活动,现已准备了49座和37座两种客车共10辆,刚好坐满,设49座客车x辆,37座客车y辆,根据题意,得( )A.10,4937466.x yx y=⎧⎨+=⎩+B.10,3749466.x yx y=⎧⎨+=⎩+C.466,493710.x yx y=⎧⎨+=⎩+D.466, 374910. x yx y=⎧⎨+=⎩+6. (2020·随州)我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何”.设鸡有x只,兔有y只,则根据题意,下列方程组中正确的是( ) A.⎩⎨⎧94=4y +2x 35=y +x B.⎩⎨⎧94=2y +4x 35=y +x C.⎩⎨⎧94=4y +x 35=y +2x D.⎩⎨⎧94=y +2x 35=4y +x7. (2020·绍兴)同型号的甲、乙两辆车加满气体燃料后均可行驶210km .它们各自单独行驶并返回的最远距离是105km .现在它们都从A 地出发,行驶途中停下来从甲车的气体燃料桶抽一些气体燃料注入乙车的气体燃料桶,然后甲车再行驶返回A 地,而乙车继续行驶,到B 地后再行驶返回A 地.则B 地最远可距离A 地( ) A .120km B .140km C .160km D .180km8. (2020·绵阳)《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三.问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出五钱,还差45钱;若每人出七钱,还差3钱.问合伙人数、羊价各是多少?此问题中羊价为( ) A .160钱 B .155钱 C .150钱 D .145钱9. (2020·恩施)我国古代数学著作《九章算术》“盈不足”一章中记载:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何”.意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛.问1个大桶、1个小桶分别可以盛酒多少斛?设1个大桶盛酒x 斛,1个小桶盛酒y 斛,下列方程组正确的是( ).A. 5352x y x y +=⎧⎨+=⎩B. 5253x y x y +=⎧⎨+=⎩C. 53125x y x y +=⎧⎨+=⎩D. 35251x y x y +=⎧⎨+=⎩10. 若关于x ,y 的二元一次方程组5,9x y k x y k +=⎧⎨-=⎩的解也是二元一次方程2x +3y =6的解,则k 的值为( )A .-34 B.34 C.43 D .-43二、填空题11. 方程组2,21x y x y -=⎧⎨+=⎩的解是__________.12. (2020·泰安)方程组⎩⎪⎨⎪⎧x +y ﹦16,5x +3y ﹦72的解是___________.13. (2019·上海)《九章算术》中有一道题的条件是:“今有大器五小器一容三斛,大器一小器五容二斛.”大致意思是:有大小两种盛米的桶,5大桶加1小桶共盛3斛米,1大桶加5小桶共盛2斛米,依据该条件,1大桶加1小桶共盛 斛米.(注:斛是古代一种容量单位).14. 某药店用3000元购进甲、乙两种体温计,体温计卖出后,甲种体温计的利润率是25%,乙种体温计的利润率是20%,两种体温计共获利675元,若甲种体温计的进价为每支2元,乙种体温计的进价为每支5元,则甲、乙两种体温计共购进 支.15. 秋天到了,花溪区高坡乡美景如画,其中露营基地吸引了不少露营爱好者,露营基地为了接待30名露营爱好者,需要搭建可容纳3人或2人的帐篷若干,若所搭建的帐篷恰好能容纳这30名露营爱好者,则不同的搭建方案有 种.16. 若关于x ,y 的二元一次方程组的解是其中y 的值被墨渍盖住了,则b 的值是 .17. 若方程x 2m-1+5y 3n-2=7是关于x ,y 的二元一次方程,则(m-n )2021= .18. 已知⎩⎨⎧x =3y =-2是方程组⎩⎨⎧ax +by =3bx +ay =-7的解,则代数式(a +b )(a -b )的值为________.19. 已知关于x ,y 的二元一次方程组的解互为相反数,则k 的值是.20. (2020·重庆B 卷)为刺激顾客到实体店消费,某商场决定再星期六开展促销活动.活动方案如下:在商场收银台旁放置一个不透明的箱子,箱子里有红、黄、绿三种颜色的球各一个(除颜色大小、形状、质地等完全相同),顾客购买的商品达到一定金额可获得一次摸球机会,摸中红、黄、绿三种颜色的球可分别返还现金50元、30元、10元.商场分三个时段统计摸球次数和返现金额,汇总统计结果为:第二时段摸到红球次数为第一时段的3倍,摸到黄球次数为第一时段的2倍,摸到绿球次数为第一时段的4倍;第三时段摸到红球次数与第一时段相同,摸到黄球次数为第一时段的4倍,摸到绿球次数为第一时段的2倍,三个时段返现总金额为2510元,第三时段返现金额比第一时段多420元,则第二时段返现金额为__________元.三、解答题21. 2020·江苏徐州)本地某快递公司规定:寄件不超过1千克的部分按起步价计费;寄件超过1千克部分的按千克计费.小丽分别寄快递到上海和北京,收费标准及实际收费如下表:收费标准实际收费求a、b的值.22. 放学后,小贤和小艺来到学校附近的地摊上购买一种特殊型号的笔芯和卡通笔记本,这种笔芯每盒10支,如果整盒买比单支买每支可优惠0.5元,小贤要买3支笔芯,2本笔记本需花19元,小艺要买7支笔芯,1本笔记本需花费26元.(1)求笔记本的单价和单独购买一支笔芯的价格;(2)小贤和小艺都还想再买一件单价为3元的小工艺品,但如果他们各自为要买的文具付款后,只有小贤还剩2元钱,他们要怎样做才能既买到各自的文具,又都买到小工艺品,请通过运算说明.23. (12分)某校计划为教师购买甲、乙两种词典.已知购买1本甲种词典和2本乙种词典共需170元,购买2本甲种词典和3本乙种词典共需290元.(1)求每本甲种词典和每本乙种词典的价格分别为多少元?(2)学校计划购买甲种词典和乙种词典共30本,总费用不超过1600元,那么最多可购买甲种词典多少本?24. (2020·扬州)阅读感悟:有些关于方程组的问题,欲求的结果不是每一个未知数的值,而是关于未知数的代数式的值,如以下问题:已知实数x、y满足3x-y=5①,2x+3y=7②,求x-4y和7x+5y的值.本题常规思路是将①②两式联立组成方程组,解得工y的值再代入欲求值的代数式得到答案,常规思路运算量比较大.其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式的值,如由①-②可得x-4y=-2,由①+②X2可得7x+5y=19.这样的解題思想就是通常所说的“整体思想”。

人教版2019七年级数学下册第八章二元一次方程组单元综合训练题A(培优附答案)

人教版2019七年级数学下册第八章二元一次方程组单元综合训练题A(培优附答案)

24. 一辆汽车从 A地驶往 B地,前三分之一路段为普通公路,其余路段为高速公路.已 知汽车在普通公路上行驶的速度为 60km/ h,在高速公路上行驶的速度为 100km/ h.汽
车从 A地到 B地共行驶了 2.2h .请你根据以上信息,就该汽车行驶的 “路程 ”或 “时间 ”,提
出一个问题:
,并列出 方程,求出解.
上岗 , 也能独立进行电动汽车的安装。 生产开始后 , 调研部门发现 : 1 名熟练工和 2 名新工
人每月可安装 8 辆电动汽车; 2 名熟练工和 3 名新工人每月可安装 14 辆电动汽车。
( 1) 每名熟练工和新工人每月分别可以安装多少辆电动汽车? ( 2) 如果工厂招聘新工人若干名 ( 新工人人数少于 10 人 ) 和抽调的熟练工合作 , 刚好能完
18 .明代数学读本《直接算法统宗》里有一道算题:“一百馒头一百僧,大僧三个更无
争,小僧三人分一个,大小和尚各几丁?”意即:
100 个和尚分 100 个馒头,如果大和
尚一人分 3 个,小和尚 3 人分一个,正好分完.则大和尚有 __________人,小和尚有
__________ 人. 19 .现有古代数学问题:“今有牛五羊二值金八两;牛二羊五值金六两,则一牛一羊值 金 __两.
解:

① - ②得: 2x- 2y=- 2, 解得: x- y=- 1, 故答案为: - 1 17. -3
解:把
代入方程组
,得
,解得

3a+b=-3 , 故答案为: -3. 18. 25 75 解:设大和尚有 x 人,小和尚有 y 人,
根据题意得
,解得

答:大和尚有 25 人,则小和尚有 75 人.

2022年必考点解析沪教版(全国)九年级化学下册第8章食品中的有机化合物综合训练试题(含答案解析)

2022年必考点解析沪教版(全国)九年级化学下册第8章食品中的有机化合物综合训练试题(含答案解析)

九年级化学下册第8章食品中的有机化合物综合训练考试时间:90分钟;命题人:化学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、维生素C(C6H8O6)主要存在于蔬菜和水果中,它能促进人体生长发育,增强人体对疾病的抵抗力。

近年来科学家还发现维生素C有防癌作用。

下列关于维生素C的说法中正确的是A.维生素C是氧化物B.青少年应多吃蔬菜水果,切勿偏食C.维生素是由6个碳元素、8个氢元素和15个氧元素组成的D.维生素C中C、H、O三种元素的原子个数比为9:1:22、糖类、油脂均可以为人体提供能量。

在人类食物所提供的总能量中,最多来自A.蛋白质B.油脂C.维生素D.糖类3、下列归类正确的是A.A B.B C.C D.D4、下列物质的用途错误的是A.液氮冷冻机B.酒精可以做燃料C.氧气用于航空航天D.稀有气体制成霓虹灯5、2021年诺贝尔化学奖共同颁给本亚明·利斯特和戴维·麦克米伦,他们发现脯氨酸(C5H9NO2)等小分子能实现不对称有机催化。

下列有关脯氨酸的说法正确的是A.脯氨酸是氧化物B.一个脯氨酸分子中含有一个氧分子C.脯氨酸中氮、氧元素的质量比为1:2 D.脯氨酸由碳、氢、氧、氮四种元素组成6、开展实验学习的前提是安全,下列危险化学品标志适合贴在盛放酒精的试剂柜上的是A.B.C.D.7、石榴营养丰富,含有维生素C、蛋白质、糖类、脂肪,以及钙、磷、钾等矿物质。

下列说法错误的是A.石榴中钙、磷、钾是指元素B.维生素C有助于保护视力C.蛋白质遇到重金属盐会失去生理活性D.糖类与脂肪的组成元素相同,但分子结构不同8、下列有关说法错误的是A.动植物体的腐烂和塑料的老化都属于缓慢氧化B.在通风不良的室内使用煤炉、燃气灶及燃气热水器等易产生有毒的一氧化碳气体C.如果不慎将浓硫酸沾到皮肤上,应该立即用大量水冲洗,然后涂上3%~5%的小苏打溶液D.含有碳元素的化合物均为有机物,均具有可燃性9、分析推理是化学常用的思维方法,下列分析推理正确的是A.燃烧的温度一定要达到着火点,所以温度低于着火点就能灭火B.有机物一定含碳元素,所以含碳元素的化合物一定是有机物C.置换反应中有单质生成,所以有单质生成的反应一定是置换反应D.单质中只含有一种元素,所以只含有一种元素的物质一定是单质10、淀粉(化学式为(C6H10O5)n)是粮食最主要的成分,通常由农作物通过自然光合作用固定二氧化碳生产。

2020-2021学年七年级数学鲁教版下册《第8章平行线的证明》单元综合训练(附答案)(五四制)

2020-2021学年七年级数学鲁教版下册《第8章平行线的证明》单元综合训练(附答案)(五四制)

2020-2021年度鲁教版七年级数学下册《第8章平行线的证明》单元综合训练(附答案)1.小明将含30°的三角板和一把直尺如图放置,测得∠1=25°,则∠2的度数是()A.25°B.30°C.35°D.40°2.如图,∠DAC+∠ACB=180°,EF∥BC,CE平分∠BCF,∠DAC=3∠BCF,∠ACF=20°,则∠FEC的度数是()A.10°B.20°C.15°D.30°3.如图,将一块含有30°的直角三角板的顶点放在直尺的一边上,若∠1=43°,那么∠2的度数是()A.48°B.107°C.92°D.73°4.在下列结论中正确的是()A.三角形的三个内角中最多有一个锐角B.三角形的三条高都在三角形内C.钝角三角形最多有一个锐角D.三角形的三条角平分线都在三角形内部5.如图,CD∥AB,点O在AB上,OE平分∠BOD,OF⊥OE,∠D=120°,∠AOF的度数是()A.20°B.30°C.40°D.60°6.如图所示,BD是△ABC的角平分线,DE∥BC交AB于点E,∠A=45°,∠BDC=60°,则∠C的度数是()A.100°B.105°C.110°D.115°7.如图,l1∥l2,则∠1、∠2、∠3关系是()A.∠2>∠1+∠3B.无法确定C.∠3=∠1﹣∠2D.∠2=∠1+∠3 8.如图,AB∥DE,那么∠BCD=()A.180°+∠1﹣∠2B.∠1+∠2C.∠2﹣∠1D.180°+∠2﹣2∠19.如果两个角的两边分别平行,而其中一个角比另一个角的3倍少20°,那么这两个角是()A.50°、130°B.都是10°C.50°、130°或10°、10°D.以上都不对10.如图,△ABC中,∠BAC=58°,∠C=82°,∠BAC的平分线AD交BC于点D,点E是AC上一点,且∠ADE=∠B,则∠CDE的度数是()A.29°B.39°C.42°D.52°11.在△ABC中,若∠C=50°,∠B﹣∠A=100°,则∠B的度数为.12.已知,AD是△ABC的高,∠BAD=80°,∠CAD=20°,则∠BAC=.13.已知,AD是△ABC的角平分线,MN⊥AD于点D,分别交AB、射线AC于点M、N,∠MDB=10°,则∠ACB﹣∠ABC=°.14.如图,直线a∥b,点B在直线b上,且AB⊥BC,∠1=57°,则∠2的度数是.15.在△ABC中,∠B=20°,AD为BC边上的高,∠DAC=30°,AE平分∠BAC交BC 于点E,则∠DAE等于度.16.如图,AB∥CD,CE交AB于F,∠C=55°,∠AEC=18°,则∠A=°.17.如图,在△ABC中,∠A=50°,∠B=60°,CD平分∠ACB,DE⊥BC于E,则∠CDE 的度数为.18.欢欢观察“抖空竹”时发现,可以将某一时刻的情形抽象成数学问题:如图,已知AB ∥CD,∠E=23°,∠DCE=115°,则∠BAE的度数是.19.如图,一环湖公路的AB段为东西方向,经过四次拐弯后,又变成了东西方向的FE段,则∠B+∠C+∠D+∠E的度数是.20.如图,已知AB∥CD,则∠x、∠y、∠z三者之间的等量关系是.21.如图,EF∥AD,∠1=∠2,∠AGD=105°.求∠BAC的度数.22.已知:如图,△ABC中,∠BAD=∠EBC,AD交BE于F.(1)试说明:∠BFD=∠ABC;(2)若∠ABC=40°,EG∥AD,EH⊥BE,求∠HEG的度数.(1)试判断BF与DE的位置关系,并说明理由;(2)若BF⊥AC,∠2=145°,求∠AFG的度数.24.如图,AD交BC于点D,点F在BA的延长线上,点E在线段CD上,EF与AC相交于点G,∠BDA+∠CEG=180°.(1)证明AD∥EF;(2)若点H在FE的延长线上,且∠EDH=∠C,∠F=∠H,则∠BAD和∠CAD相等吗?请说明理由;(3)在(2)的条件下,若FH⊥BC,∠C=30°,求∠F的度数.25.如图,DE平分∠ADF,DF∥BC,点E,F在线段AC上,点A,D,B在一直线上,连接BF.(1)若∠ADF=70°,∠ABF=25°,求∠CBF的度数;(2)若BF平分∠ABC时,求证:BF∥DE.(1)请你判断AD与EC的位置关系,并说明理由;(2)若CE⊥EF,且∠3=140°,求∠F AB的度数.参考答案1.解:如图:∵∠1=25°,∠3=∠1+30°,∴∠3=55°,∵直尺的对边平行,∴∠4=∠3=55°,∴∠2=180°﹣90°﹣∠4=180°﹣90°﹣55°=35°,故选:C.2.解:设∠BCE=∠ECF=∠BCF=x,∵∠DAC=3∠BCF,∴∠DAC=6x,∵∠DAC+∠ACB=180°,∴6x+x+x+20°=180°,解得x=20°,所以,∠FEC的度数为20°.故选:B.3.解:∵将一块含有30°的直角三角板的顶点放在直尺的一边上,∠1=43°,∴∠2=∠3=180°﹣43°﹣30°=107°.故选:B.4.解:A、三角形的三个内角中,最多可以有3个内角是锐角,本选项错误,不符合题意.B、锐角三角形的三条高在三角形内部,本选项错误,不符合题意.C、钝角三角形有两个锐角,本选项错误,不符合题意.D、三角形的三条角平分线都在三角形内部,本选项正确,符合题意.故选:D.5.解:∵CD∥AB,∠D=120°,∴∠AOD+∠D=180°,∴∠AOD=60°,∠DOB=120°,∵OE平分∠BOD,∴∠DOE=60°,∵OF⊥OE,∴∠FOE=90°,∴∠DOF=90°﹣60°=30°,∴∠AOF=∠AOD﹣∠DOF=60°﹣30°=30°.故选:B.6.解:∵∠A=45°,∠BDC=60°,∴∠ABD=∠BDC﹣∠A=15°.∵BD是△ABC的角平分线,∴∠ABC=2∠ABD=30°,∴∠C=180°﹣∠ABC﹣∠A=180°﹣30°﹣45°=105°.故选:B.7.解:过∠2的顶点,作如图所示的射线l,使l∥l1,∵l1∥l2,l∥l1,∴l1∥l2∥l.∴∠1=∠α,∠2=∠β.∵∠α+∠β=∠2,∴∠1+∠3=∠2.故选:D.8.解:过点C作CF∥AB,如图:∵AB∥DE,∴AB∥DE∥CF,∴∠BCF=∠1①,∠2+∠DCF=180°②,∴①+②得,∠BCF+∠DCF+∠2=∠1+180°,即∠BCD=180°+∠1﹣∠2.故选:A.9.解:∵两个角的两边分别平行,∴这两个角相等或互补.设其中一角为x°,若这两个角相等,则x=3x﹣20,解得:x=10,∴这两个角的度数是10°和10°;若这两个角互补,则180﹣x=3x﹣20,解得:x=50,∴这两个角的度数是50°和130°.∴这两个角的度数是50°、130°或10°、10°.故选:C.10.解:∵在△ABC中,∠BAC=58°,∠C=82°,∴∠B=180°﹣58°﹣82°=40°,∵AD平分∠BAC,∴∠BAD=∠BAC=29°,∴∠ADC=∠B+∠BAD=69°,∵∠ADE=∠B=40°,∴∠CDE=29°,故选:A.11.解:∵∠C=50°,∴∠A+∠B=180°﹣∠C=130°,∵∠B﹣∠A=100°,∴∠B=115°,故答案为115°.12.解:①如图1,当高AD在△ABC的内部时,∠BAC=∠BAD+∠CAD=80°+20°=100°;②如图2,当高AD在△ABC的外部时,∠BAC=∠BAD﹣∠CAD=80°﹣20°=60°,综上所述,∠BAC的度数为100°或60°.故答案为:100°或60°.13.解:∵AD是△ABC的角平分线,MN⊥AD于点D,∴AM=AN.∴∠AMN=∠AND.∵∠MDB=∠CDN=10°,∵∠ACB=∠AND+∠CDN,∠ABC=∠AMN﹣∠MDB,∴∠ACB﹣∠ABC=∠AND+∠CDN﹣∠AMN+∠MDB=∠CDN+∠MDB=20°.故答案为:20.14.解:∵AB⊥BC,∴∠ABC=90°,∴∠ABD=180°﹣∠ABC﹣∠1=33°.∵a∥b,∴∠2=∠ABD=33°,故答案为:33°.15.解:有两种情况:①当∠BAC是钝角时,如图:∵AD为BC边上的高,∴∠ADC=90°,∵∠DAC=30°,∴∠ACB=60°,∵∠ABC=20°,∴∠BAC=180°﹣∠ABC﹣∠ACB=100°,∵AE平分∠BAC,∴∠CAE=BAC=50°,∴∠DAE=∠CAE﹣∠CAD=50°﹣30°=20°;②当∠BAC是锐角时,如图:∵AD为BC边上的高,∴∠ADC=90°,∵∠DAC=30°,∴∠ACD=60°,∴∠ACB=180°﹣60°=120°,∵∠ABC=20°,∴∠BAC=180°﹣∠ABC﹣∠ACB=40°,∵AE平分∠BAC,∴∠CAE=BAC=20°,∴∠DAE=∠CAE+∠CAD=20°+30°=50°;故答案为:20或50.16.解:∵AB∥CD,∠C=55°,∴∠EFB=∠C=55°,∵∠AEC=18°,∴∠A=∠EFB﹣∠AEC=37°,故答案为:37.17.解:∵A=50°,∠B=60°,∴∠ACB=180°﹣∠A﹣∠B=70°,∵CD平分∠ACB,∴∠DCE=ACB=35°,∵DE⊥BC,∴∠CED=90°,∴∠CDE=90°﹣35°=55°,故答案为:55°.18.解:如图,延长DC交AE于F,∵∠DCE=∠E+∠CFE=115°,∴∠CFE=∠DCE﹣∠E=115°﹣23°=92°.∵AB∥CD,∴∠BAE=∠CFE=92°,故答案为:92°.19.解:如图,根据题意可知:AB∥EF,分别过点C,D作AB的平行线CG,DH,所以AB∥CG∥DH∥EF,则∠B+∠BCG=180°,∠GCD+∠HDC=180°,∠HDE+∠DEF=180°,∴∠B+∠BCG+∠GCD+∠HDC+∠HDE+∠DEF=180°×3=540°,∴∠B+∠BCD+∠CDE+∠E=540°.故答案为540°.20.解:如图,过点P作PG∥AB,∴∠EPG=∠x,∵AB∥CD,∴PG∥CD,∴∠FPG=∠z,∴∠EPF=∠EPG+∠FPG=∠x+∠z.∴∠x+∠z=∠y.故答案为:∠x+∠z=∠y.21.解:∵EF∥AD(已知),∴∠1=∠3(两直线平行,同位角相等),又∵∠1=∠2(已知),∴∠2=∠3(等量代换),∴AB∥DG(内错角相等,两直线平行),∴∠BAC+∠AGD=180°(两直线平行,同旁内角互补),又∵∠AGD=105°(已知),∴∠BAC=75°.22.解:(1)∵∠BFD是△ABF的外角,∴∠BFD=∠BAD+∠ABF,∵∠BAD=∠EBC,∴∠BAD+∠ABF=∠EBC+∠ABF,即∠BFD=∠ABC;(2)∵∠ABC=40°,∠BFD=∠ABC,∴∠BFD=40°,∵EG∥AD,∴∠BFD=∠BEG,∴∠BEG=40°,∵EH⊥BE,∴∠BEH=90°,∴∠HEG=∠BEH﹣∠BEG=50°.23.解:(1)BF∥DE.理由如下:∵∠AGF=∠ABC,∴GF∥BC,∴∠1=∠3,∵∠1+∠2=180°,∴∠3+∠2=180°,∴BF∥DE;(2)∵∠1+∠2=180°,∠2=145°,∴∠1=35°,∴∠AFG=90°﹣35°=55°.24.解:(1)证明:∵∠BDA+∠CEG=180°,∠BDA+∠ADC=180°.∴∠ADC=∠CEG,∴AD∥EF;(2)∠BAD和∠CAD相等,理由如下:∵∠EDH=∠C,∴DH∥AC,∴∠H=∠CGH,∵∠CGH=∠AGF,∴∠H=∠AGF,∵∠F=∠H,∴∠F=∠AGF,∵AD∥EF,∴∠BAD=∠F,∠CAD=∠AGF,∴∠BAD=∠CAD;(3)∵FH⊥BC,∴∠CEG=90°,∵∠C=30°,∴∠CGE=90°﹣30°=60°,∴∠F=∠AGF=∠CGE=60°.25.解:(1)∵DF∥BC,∴∠ABC=∠ADF=70°,∵∠ABF=25°,∴∠CBF=70°﹣25°=45°;(2)证明:∵DF∥BC,∴∠ABC=∠ADF,∵BF平分∠ABC,DE平分∠ADF,∴∠ADE=ADF,∠ABF=ABC,∴∠ADE=∠ABF,∴BF∥DE.26.解:(1)AD∥EC.理由:∵∠1=∠CDF,∴AB∥CD,∴∠2=∠CDA.∵∠2+∠3=180°,∴∠CDA+∠3=180°,∴AD∥EC.(2)∵CE⊥EF,∴∠CEA=90°.由(1)知AD∥EC,∴∠DAF=∠CEA=90°.∵∠3=140°,∴∠CDA=180°﹣140°=40°,∴∠2=∠CDA=40°,∴∠F AB=90°﹣40°=50°.。

部编版四年级语文下册第八单元综合训练 附答案 (2)

部编版四年级语文下册第八单元综合训练 附答案 (2)

部编版四年级语文下册第八单元综合训练时间:90分钟满分:100分一、看拼音,写词语。

(8分)jiè shào chāi chú qì qiánɡ yǔn xǔ()()()()jìn zhǐ chénɡ fá liǎn jiá zì sī()()()()二、选择题。

(12分)1.下列加点字的注音完全正确的一项是()。

(2分)A.妖.怪(yāo)矩.形(jǔ)乖.巧(ɡuāi)B.呼啸.(xiào)鲸.鱼(jīnɡ)亲昵.(ní)C.恰.好(qiá)一缕.(lǚ)撵.走(liǎn)D.硕.大(suò)宫殿.(diàn)矢.车菊(shí)2.下列各组词语中,不是近义词的一项是()。

(2分)A.覆盖遮盖B.亲昵亲密C.安慰安心D.凶狠凶恶3.下列说法有误的一项是()。

(2分)A.童话充满着奇妙的想象,里面的人物丰富多样,并且大都拥有非凡的能力B.《海的女儿》里的大公主,为了看一看人类的世界,还未满十五岁就浮出了水面C.《宝葫芦的秘密(节选)》中,王葆从小爱听奶奶讲宝葫芦的故事,并幻想着自己能得到一个无所不能的宝葫芦D.《巨人的花园》中,巨人把孩子们赶走后,花园里一派冬天的景象,但孩子们一出现,花园马上就迎来了春天4.《海的女儿》塑造了一个怎样的小人鱼形象?下列分析正确的有()。

(多选)(4分)A.美丽、安静、好奇心强B.富于深思、喜欢听人类的故事C.对人类世界充满向往5.《巨人的花园》一文告诉我们()。

(2分)A.与大家一起分享才是真正的快乐B.只要有了孩子,便可拥有一切C.无论做什么事,只要有孩子的参与,便会成功三、选词填空。

(6分)安慰慰藉1.小孙女的到来,让老人孤苦的心总算得到了一些()。

2.一不小心,小孙女摔倒了,老人赶紧把她抱起来,轻声()着。

2022年最新沪教版(上海)六年级数学第二学期第八章长方体的再认识综合训练试卷(含答案详解)

2022年最新沪教版(上海)六年级数学第二学期第八章长方体的再认识综合训练试卷(含答案详解)

六年级数学第二学期第八章长方体的再认识综合训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列图形中,能折叠成正方体的是()A.B.C.D.2、如图所示的几何体,它的左视图是()A.B.C.D.3、如图所示的立体图形,其俯视图正确的是()A.B.C.D.4、下列几何体中,截面不可能是三角形的是()A.长方体B.正方体C.圆柱D.圆锥5、下图是由5个大小相同的正方体组成的立体图形,其俯视图...是()A.B.C.D.6、如图是由5个相同的小立方块搭成的几何体,则从左面看这个几何体的形状图是()A.B.C.D.7、下列图形经过折叠可以围成一个棱柱的是()A.B.C.D.8、四棱柱中,棱的条数有()A.4条B.8条C.12条D.16条9、下面图形是由4个完全相同的小立方体组成的,它的左视图是()A.B.C.D.10、如图所示的几何体的左视图是()A.B.C.D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图所示是某种型号的正六角螺母毛坯的三视图,则它的侧面积为2cm.2、建筑工地上的工人在建造楼房的时候,常用________来检验墙面是否垂直于水平面.3、正方体的表面展开图如图所示,“遇”的相对面上的字为___________.4、将一个正方体放在桌面上,且已知正方体的边长为4厘米,那么与桌面垂直的平面面积之和为________.5、如图,是一个正方体的六个面的展开图形,回答下列问题:(1)“力”所对的面是;(2)若将其折叠成正方体,如果“努”所在的面在底面,“要”所在的面在后面,则上面是;前面是;右面是;(3)若将其折叠成正方体,“学”所在的面在前面,则上面不可能是.三、解答题(5小题,每小题10分,共计50分)1、用一根长为28米的木条截开后刚好能搭成一个长方体架子,且长、宽、高的长度均为整数米,试求这个长方体的体积2、如图,是由五个相同的小正方体搭成的几何体,分别画出从正面、左面、上面看到的形状图.3、画一个长宽高分别为4厘米、3厘米、2厘米的长方体.4、十九世纪中叶,诞生了一个新的几何学分支⋯“拓扑学(又称‘位置解析’)”.它所研究的是几何图形这样一些最基本的、最深刻的性质:图形经受剧烈的变形,以致所有度量性质和射影性质都失去之后,这些性质仍然存在.数学家们找到若干个令人叹为观止的实例,例如著名的Mobius带、Klein瓶⋯⋯请看如图,你能否将正方形图中上方的小方块与下方的对应的小方块用平面内不相交的实线连起来,且要求连线只能在该正方形内部的空白处.5、有一个长方体的玻璃缸,长、宽、高分别是12厘米、10厘米和8厘米,里面装满了水,现在有一块正方体铁块,边长为6厘米,把它缓慢地浸没在水缸中后再取出,此时玻璃缸中的水面高度是多少?-参考答案-一、单选题1、C【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【详解】A折叠后不可以组成正方体;B折叠后不可以组成正方体;C折叠后可以组成正方体;D折叠后不可以组成正方体;故选C.【点睛】本题考查几何体的展开图,解题的关键是熟练掌握几何体的展开图的特征,属于中考常考题型.2、D【分析】左视图:从物体左面所看的平面图形,注意:看到的棱画实线,看不到的棱画虚线,据此进行判断即可.【详解】解:如图所示,几何体的左视图是:故选:D.【点睛】本题考查简单组合体的三视图,正确掌握观察角度是解题关键.3、C【分析】根据从上边看得到的图形是俯视图,可得答案【详解】解:从上边看是两个正方形,对应顶点间有线段的图形,看得见的棱都是实线;如图所示:故选:C.【点睛】本题考查了立体图形的三视图,从上边看得到的图形是俯视图,注意看得见的棱用实线,看不见的棱用虚线.4、C【分析】根据各个几何体截面的形状进行判断即可得.【详解】解:A、长方体的截面可能是三角形,则此项不符题意;B、正方体的截面可能是三角形,则此项不符题意;C、圆柱的截面可能是圆形、长方形、梯形、椭圆形,不可能是三角形,则此项符合题意;D、圆锥的截面可能是三角形,则此项不符题意;故选:C.【点睛】本题考查了截一个几何体,熟练掌握常见几何体的截面特征是解题关键.5、A【分析】俯视图是从上往下看到的图形,注意能看到的棱都要体现出来,根据定义可得答案.【详解】解:从上往下看上层看到一个正方形,下层四个个正方形,所以看到的四个正方形,故选A.【点睛】本题考查的是简单组合体的三视图,掌握三视图的含义是解题的关键.6、D【分析】观察图形可知,从左面看到的图形是2列,分别有2,1个正方形,据此即可判断.【详解】解:从左面看这个几何体的形状图如图所示:故选D.【点睛】此题考查了从不同方向观察物体和几何体和画简单图形的三视图的方法,是基础题型.7、B【分析】根据棱柱展开图的特点进行分析即可.【详解】解:A、不能围成棱柱,底面应该在两侧,故此选项不符合题意;B、能围成三棱柱,侧面有3个,底面是三角形,故此选项符合题意;C、不能围成棱柱,侧面有4个,底面是三角形,应该是四边形才行,故此选项不符合题意;D、不能围成棱柱,底面应该在两侧,故此选项不符合题意;故选:B.【点睛】此题主要考查了展开图折叠成几何体,关键是通过结合立体图形与平面图形的相互转化,去理解和掌握几何体的展开.8、C【分析】根据棱柱的概念和特性即可解.【详解】解:四棱柱有4×3=12条棱.故选C.【点睛】本题主要考查四棱柱的棱的条数,解题的关键是熟知n棱柱共有3n条棱.9、A【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【详解】解:从左面看得到的图形是:.故选:A.【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图,解题关键是明确左视图的意义,树立空间观念,准确识图.10、A【分析】找到从几何体的左面看所得到的图形即可作答,注意所有的看到的棱都应表现在左视图中.【详解】解:从几何体的左面看,是一行两个矩形.故选:A.【点睛】此题主要考查三视图的判断,解题的关键是熟知三视图的定义.二、填空题1、36【分析】正六角螺母侧面为6个相同的长方形,求出每个长方形的面积,即可得出它的侧面积.【详解】2×3=6cm2,6×6=36cm2.故答案为:36.【点睛】本题主要考查正六棱柱的三视图,将三视图上边的长度转化为正六棱柱对应边的长度是解题关键.2、铅垂线【分析】根据铅垂线的定义理解填空解答.【详解】建筑工地上的工人在建造楼房的时候,常用铅垂线来检验墙面是否垂直于水平面.故答案为:铅垂线.【点睛】本题考查铅垂线的定义,正确理解相关概念是解题关键.3、中【分析】根据正方体表面展开图的特征进行判断即可.【详解】解:由正方体表面展开图的“相间、Z端是对面”可知,“遇”与“中”是对面,“见”与“纷”是对面,“缤”与“附”是对面,故答案为:中.【点睛】本题考查正方体的展开与折叠,掌握正方体表面展开图的特征是正确判断的前提.4、64平方厘米【分析】根据正方体的边长为4厘米,可得到正方形的每个面的面积,而与桌面垂直的平面有4个,即可求解.【详解】解:∵正方体的边长为4厘米=⨯=(平方厘米)∴该正方形的每个面:S4416⨯=(平方厘米)∴与桌面垂直的平面面积之和为:16464故答案为:64平方厘米.【点睛】此题主要考查正方形的面积,正确理解与桌面垂直的平面有4个是解题关键.5、(1)我;(2)学,习,力;(3)努.【分析】(1)正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答;(2)根据折叠成正方体相对面解答即可;(3)根据“学”和“努”是相对面,即可得出答案.【详解】解:(1)“力”所对的面是我;故答案为:我;(2)如果“努”所在的面在底面,“要”所在的面在后面,则上面是学;前面是习;右面是力;故答案为:学,习,力;(3)将其折叠成正方体,“学”所在的面在前面,则上面不可能是“努”;故答案为:努.【点睛】此题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.三、解答题1、8立方米或12立方米或5立方米或9立方米;见详解.【分析】根据题意易得把长为28米的木条截开后搭成一个长方体的架子有四种情况,然后根据长方体的体积公式求解即可.【详解】⨯⨯时,体积为5立方米;解:情况一:当长方体为115情况二:当长方体为124⨯⨯时,体积为8立方米;⨯⨯时,体积为9立方米;情况三:当长方体为133⨯⨯时,体积为12立方米.情况四:当长方体为223答:这个长方体的体积为8立方米或12立方米或5立方米或9立方米.【点睛】本题主要考查长方体的体积,关键是根据题意得到搭成长方体的四种情况,然后根据公式计算即可.2、见解析【分析】根据三视图的定义及其分布情况作图可得.【详解】从正面看:从左面看:从上面看:【点睛】本题主要考查作图-三视图,解题的关键是熟练掌握三视图的定义.3、见解析【分析】根据题意直接作图即可.【详解】作图如下:【点睛】本题主要考查长方体的概念,根据定义作图是解题的关键.4、见解析【分析】根据题意用平面内不相交的实线连起来,且要求连线只能在该正方形内部的空白处即可求解.【详解】解:如图所示:或【点睛】本题考查了数学常识,关键是根据题意要求连线.5、6.2厘米【分析】根据长方体的体积计算即可;【详解】()()-⨯⨯÷⨯=(厘米);86661210 6.2答:此时玻璃缸中的水面高度是6.2厘米.【点睛】本题主要考查了长方体的再认识,准确计算是解题的关键.。

《第8章二元一次方程组》期末复习综合提升训练1(附答案)人教版七年级数学下册

《第8章二元一次方程组》期末复习综合提升训练1(附答案)人教版七年级数学下册

人教版七年级数学下册《第8章二元一次方程组》期末复习综合提升训练1(附答案)1.已知是二元一次方程mx+3y=7的一组解,则m的值为()A.﹣2B.2C.﹣D.2.方程x+2y=5的非负整数解有()A.4个B.3个C.2个D.1个3.若关于x、y的二元一次方程组的解与方程x+y=6的解相同,则k的值是()A.5B.6C.7D.84.已知方程组:的解是:,则方程组:的解是()A.B.C.D.5.为了奖励进步较大的学生,某班决定购买甲、乙、丙三种钢笔作为奖品,其单价分别为4元、5元、6元,购买这些钢笔需要花60元;经过协商,每种钢笔单价下降1元,结果只花了48元,那么甲种钢笔可能购买()A.11支B.9支C.7支D.4支6.8个一样大小的长方形恰好拼成一个大的长方形(如图),若大长方形的宽为8cm,则每一个小长方形的面积为()A.8cm2B.15cm2C.16cm2D.20cm27.甲、乙两个药品仓库共存药品45吨,为共同抗击“非典”,现从甲仓库调出库存药品的60%,从乙仓库调出40%支援疫区.结果,乙仓库所余药品比甲仓库所余药品多3吨,那么甲,乙仓库原来所存药品分别为()A.21吨,24吨B.24吨,21吨C.25吨,20吨D.20吨,25吨8.若关于x,y的二元一次方程组的解也是二元一次方程2x+3y=12的解,则k 的值为()A.B.C.D.9.方程组的解是.10.已知方程组,则x+y的值为.11.关于x、y的方程3x+2y=7的正整数解为.12.某车间有60名工人,每人平均每天可加工螺栓14个或螺母20个,要使每天加工的螺栓和螺母配套(1个螺栓配2个螺母),设应分配x人生产螺母,y人生产螺栓,依题意列方程组得.13.一个两位数,个位数字和十位数字的和是13,如果将个位数字和十位数字对调后得到的新数比原数大27,则原来的两位数是.14.若是二元一次方程mx+ny=﹣2的一个解,则2m﹣n﹣6的值是.15.若方程组的解是,则方程组的解是a =,b=.16.二元一次方程组的解是.17.已知x,y互为相反数且满足二元一次方程组,则k的值是.18.普通火车从绵阳至成都历时大约2小时,成绵城际快车开通后,时间大大缩短至几十分钟,现假定普通火车与城际快车两列对开的火车于同一时刻发车,其中普通火车由成都至绵阳,城际快车由绵阳至成都,这两车在途中相遇之后,各自用了80分钟和20分钟到达自己的终点绵阳、成都,则城际快车的平均速度是普通火车平均速度的倍.19.如图,在长方形ABCD中,放入6个形状、大小都相同的长方形,所标尺寸如图所示,则图中阴影部分面积是,若平移这六个长方形,则图中剩余的阴影部分面积是否改变?(填“变”或“不变”).20.某校七年级的数学竞赛中共有30道题,答对一题得5分,不答得0分,答错扣4分,学生小王有5题未答,最后得71分,那么他答对了题.21.解方程组:(1);(2).22.甲、乙两位同学在解方程组时,甲把字母a看错了得到了方程组的解为;乙把字母b看错了得到方程组的解为.(1)求3a﹣b2的值;(2)求原方程组的解.23.已知方程组和有相同的解,求a和b的值.24.已知关于x、y的方程组的解满足x+y=5,求:m2021+2的值.25.现有A,B两种商品,买2件A商品和1件B商品用了90元,买3件A商品和2件B 商品用了160元.(1)求A,B两种商品每件各是多少元?(2)如果小亮准备用400元购买A,B两种商品(400元恰好用完,两种商品都有),请问有几种购买方案?26.某文具店用13600元购进了一批篮球和排球,共计500个,它们的成本价和销售价如表所示:单价(元/个)成本价销售价篮球3248排球2436(1)购进的这批篮球和排球各多少个?(2)该店销售完这批篮球和排球后可获利多少元?27.在鞍山外环公路改建工程中,某路段长5280米,现准备由甲乙两个工程队拟在20天内(含20天)合作完成,已知两个工程队各有20名工人(设甲乙两个工程队的工人全部参与生产,甲工程队每人每天工作量相同,乙工程队每人每天工作量相同),甲工程队1天、乙工程队2天共修路400米;甲工程队2天、乙工程队3天共修路700米.(1)试问甲乙两个工程队每天分别修路多少米?(2)甲乙两个工程队施工8天后,由于工作需要需从甲队调离m人去其他工程工作,总部要求在规定时间内完成,请问甲队最多可以调离多少人?28.某市生产的洋葱品质好、干物质含量高且耐储存,因而受到国内外客商青睐.现欲将一批洋葱运往外地销售,若用2辆A型车和1辆B型车载满洋葱一次可运走10吨;用1辆A型车和2辆B型车载满洋葱一次可运走11吨.现有洋葱31吨,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满洋葱.根据以上信息,解答问题:(1)1辆A型车和1辆B型车都载满洋葱一次可分别运送多少吨?(2)请你帮该物流公司设计租车方案;(3)若1辆A型车需租金100元/次,1辆B型车需租金120元/次.请选出费用最少的租车方案,并求出最少租车费.参考答案1.解:把代入方程得:﹣m+9=7,解得:m=2.故选:B.2.解:方程x+2y=5,解得:x=﹣2y+5,当y=0时,x=5;y=1时,x=3;y=2时,x=1,则方程的非负整数解有3个,故选:B.3.解:,①+②,得4(x+y)=3k+3,把x+y=6代入,得24=3k+3,解得k=7.故选:C.4.解:在方程组中,设x+2=a,y﹣1=b,则变形为方程组,由题知,所以x+2=8.3,y﹣1=1.2,即.故选:C.5.解:设甲种钢笔有x支、乙种钢笔有y支、丙种钢笔有z支,则,其中x=11,x=9,x=7时都不符合题意;x=4时,y=4,z=4符合题意.故选:D.6.解:设每个小长方形的长为xcm,宽为ycm,根据题意得:,解得:,则每一个小长方形的面积为5×3=15(cm2);故选:B.7.解:设甲,乙仓库原来所存药品分别为x吨,y吨.根据题意得:,解得:,因此甲,乙仓库原来所存药品分别为24吨,21吨.故选:B.8.解:解方程组得:.将代入2x+3y=12中得:2×7k+3×(﹣2k)=12.解得:k=.故选:D.9.解:①+②得:3x=6,解得:x=2,把x=2代入①得:2+y=5,解得:y=3,即原方程组的解为:,故答案为:.10.解:①+②得,3x+3y=6∴x+y=2.故答案为:2.11.解:∵3x+2y=7,∴y=,∵要求的是正整数解,∴x=1,或x=2,∴当x=1时,y=2;当x=2时,y=,此时y不是正整数,故不符合题意.故答案为:.12.解:设应分配x人生产螺母,y人生产螺栓,依题意,得.故答案是:.13.解:设原来的两位数的十位数字为x,个位数字为y,依题意得:,解得:,∴10x+y=58.故答案为:58.14.解:把代入二元一次方程mx+ny=﹣2,得2m﹣n=﹣2,∴2m﹣n﹣6=﹣2﹣6=﹣8.故答案为:﹣8.15.解:∵若方程组的解是,方程组,可得:.解这个方程组得:.故答案为:﹣,.16.解:,①+②,得4x=20,解得x=5,把x=5代入②,得5﹣2y=5,解得y=0,故方程组的解为.故答案为:.17.解:解方程组:,得:,∵x和y互为相反数,则有2k+3+(﹣k﹣2)=0,解得k=﹣1.故答案为:﹣1.18.解:设普通火车的平均速度为x千米/小时,城际快车的平均速度为y千米/小时,则两地间的距离为2x千米,依题意得:x+y=2x,解得:y=2x,∴=2.故答案为:2.19.解:设小长方形的长为xcm,宽为ycm,依题意得:,解得:,∴图中阴影部分面积为14×(6+2y)﹣6xy=44(cm2).无论怎么平移这六个长方形,阴影部分的面积均为14×(6+2y)﹣6xy=44(cm2).故答案为:44cm2;不变.20.解:设小王答对了x道题,答错了y道题,依题意得:,解得:.故答案为:19道.21.解:(1),①×2﹣②得,x=10,把x=10代入①中,得y=10,∴原方程组的解为:.(2)原方程组可变形为:,①×2+②得,y=,把y=代入①中,得x=,∴原方程组的解为:.22.解:(1)根据题意可知:将x=2,y=﹣代入方程②,得2b+7=1,解得b=﹣3,将x=2,y=﹣1代入方程①,得2a﹣3=1,解得a=2,∴3a﹣b2=3×2﹣(﹣3)2=6﹣9=﹣3;(2)由(1)知方程组为:,①×3+②×2,得y=5,把y=5代入①得,x=﹣7,∴原方程组的解为.23.解:方程组得:,把代入得:,解得:.24.解:,①﹣②,得x+y=4﹣m,∵关于x、y的方程组的解满足x+y=5,∴4﹣m=5,解得m=﹣1.∴m2021+2=(﹣1)2021+2=﹣1+2=1.25.解:(1)设A种商品每件x元,B种商品每件y元,由题意,得,解得:.答:A种商品每件20元,B种商品每件50元;(2)设A种商品购买m件,B种商品购买n件,由题意得:20m+50n=400,正整数解:,,,答:有三种购买方案:①A种商品购买5件,B种商品购买6件;②A种商品购买10件,B种商品购买4件;③A种商品购买15件,B种商品购买2件.26.解:(1)设购进篮球x个,排球y个,依题意得:,解得:.答:购进篮球200个,排球300个.(2)(48﹣32)×200+(36﹣24)×300=6800(元).答:该店销售完这批篮球和排球后可获利6800元.27.解:(1)设甲工程队每天修路x米,乙队每天修y米,由题意列方程组,解这个方程组得.答:甲、乙每天分别修路200米和100米.(2)设甲队最多可以调走m人,根据题意得:5280=8×(200+100)+12×100+12×10×(20﹣m),解得m=6.答:甲队最多可以调走6人.28.解:(1)设1辆A型车载满洋葱一次可运送x吨,1辆B型车载满洋葱一次可运送y吨,依题意得:,解得:.答:1辆A型车载满洋葱一次可运送3吨,1辆B型车载满洋葱一次可运送4吨.(2)依题意得:3a+4b=31,∴a=.又∵a,b均为非负整数,∴或或,∴该物流公司共有3种租车方案,方案1:租用9辆A型车,1辆B型车;方案2:租用5辆A型车,4辆B型车;方案3:租用1辆A型车,7辆B型车.(3)方案1所需租车费为100×9+120×1=1020(元);方案2所需租车费为100×5+120×4=980(元);方案3所需租车费为100×1+120×7=940(元).∵1020>980>940,∴费用最少的租车方案为:租用1辆A型车,7辆B型车,最少租车费为940元人教版七年级数学下册《第8章二元一次方程组》期末复习综合提升训练2(附答案)1.已知二元一次方程组,用加减消元法解方程组正确的是()A.①×5﹣②×7B.①×2+②×3C.①×3﹣②×2D.①×7﹣②×5 2.已知是二元一次方程组的解,则5a﹣3b的值为()A.﹣1B.1C.2D.33.程大位《直指算法统宗》:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁,意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,试问大、小和尚各多少人?设大和尚有x人,小和尚有y人,依题意列方程组正确的是()A.B.C.D.4.方程组的解是()A.B.C.D.5.小明到文具店购买文具,他发现若购买4支钢笔、2支铅笔、1支水彩笔需要50元,若购买1支钢笔、3支铅笔、4支水彩笔也正好需要50元,则购买1支钢笔、1支铅笔、1支水彩笔需要()A.10元B.20元C.30元D.不能确定6.已知方程组,则x﹣y的值是()A.1B.2C.4D.57.已知,则用含x的式子表示y为()A.y=﹣2x+9B.y=2x﹣9C.y=﹣x+6D.y=﹣x+98.若方程组与方程组有相同的解,则a,b的值分别为()A.1,2B.1,0C.,﹣D.﹣,9.某工厂有工人35人,生产某种由一个螺栓套两个螺母的配套产品,每人每天生产螺栓16个或螺母24个,应分配多少人生产螺栓,多少人生产螺母,才能使生产出的螺栓和螺母刚好配套?设生产螺栓的有x人,生产螺母的有y人,则可以列方程组()A.B.C.D.10.方程3x+2y=18的正整数解的个数是()A.1B.2C.3D.411.设M=2x﹣3y,N=3x﹣2y,P=xy.若M=5,N=0,则P=.12.已知x,y互为相反数且满足二元一次方程组,则k的值是.13.已知方程组,那么3x﹣4y的值是.14.已知x、y满足,则x2﹣y2的值为.15.如图,10块相同的小长方形墙砖拼成一个大长方形,设小长方形墙砖的长和宽分别为x 厘米和y厘米,则列出的方程组为.16.若方程x﹣y=﹣1的一个解与方程组的解相同,则k的值为.17.在长为20m、宽为16m的长方形空地上,沿平行于长方形各边的方向割出三个完全相同的小长方形花圃,其示意图如图所示,则每个小长方形花圃的面积是m2.18.已知方程组的解是,则方程组的解是.19.长方形ABCD中放置了6个形状、大小都相同的小长方形,所标尺寸如图所示,则图中阴影部分的面积是cm2.20.若方程2x+y=3,2x﹣my=﹣1,3x﹣y=2有公共解,则m的值为.21.解方程组:(1);(2).22.若方程组与有相同的解,则a、b的值为多少?23.已知关于x,y的方程组(1)请写出方程x+2y=5的所有正整数解;(2)若方程组的解满足x+y=0,求m的值;(3)无论实数m取何值,方程x﹣2y+mx+9=0总有一个公共解,你能求出这个方程的公共解吗?(4)如果方程组有整数解,求整数m的值.24.2月8日,新世纪超市举办大型年货节.此次年货节活动特别准备了A、B两种商品进行特价促销,已知购进了A、B两种商品,其中A种商品每件的进价比B种商品每件的进价多40元.购进A种商品2件与购进B种商品3件的进价相同.(1)求A、B两种商品每件的进价分别是多少元?(2)该超市从厂家购进了A、B两种商品共60件,所用资金为5800元.出售时,A种商品在进价的基础上加价30%进行标价;B商品按标价出售每件可获利20元.若按标价出售A、B两种商品,则全部售完共可获利多少元?(3)在(2)的条件下,年货节期间,A商品按标价出售,B商品按标价先销售一部分商品后,余下的再按标价降价6元出售,A、B两种商品全部售出,总获利比全部按标价售出获利少了120元,则B商品按标价售出多少件?25.在手工制作课上,老师组织班级同学用硬纸制作圆柱形茶叶筒.全班共有学生50人,其中男生x人,女生y人,男生人数比女生人数少2人.已知每名同学每小时剪筒身40个或剪筒底120个.(1)求这个班男生、女生各有多少人?(2)原计划男生负责剪筒底,女生负责剪筒身,若要求一个筒身配两个筒底,请说明每小时剪出的筒身与筒底能否配套?如果不配套,请说明如何调配人员,才能使每小时剪出的筒身与筒底刚好配套?26.疫情期间,为保护学生和教师的健康,某学校用33000元购进甲、乙两种医用口罩共计1000盒,甲,乙两种口罩的售价分别是30元/盒,35元/盒.(1)求甲、乙两种口罩各购进了多少盒?(2)现已知甲,乙两种口罩的数量分别是20个/盒,25个/盒,按照教育局要求,学校必须储备足够使用十天的口罩,该校师生共计800人,每人每天2个口罩,问购买的口罩数量是否能满足教育局的要求?参考答案1.解:二元一次方程组,用加减消元法解方程组①×3﹣②×2或①×7+②×5.故选:C.2.解:将代入方程组,得,解得,所以5a﹣3b=10﹣9=1.故选:B.3.解:依题意得:.故选:D.4.解:,①+②×2得:7x=21,解得:x=3,把x=3代入②得:6﹣y=1,解得:y=5,则方程组的解为.故选:A.5.解:设购买1支钢笔、1支铅笔、1支水彩笔分别需要x、y、z元,根据题意得:,①+②得:5x+5y+5z=100,所以x+y+z=20,故选:B.6.解:∵2x+3y﹣(x+4y)=x﹣y=14﹣12=2,故选:B.7.解:,①×2+②得:2x+y=9,即y=﹣2x+9,故选:A.8.解:由题意可知:解得:将代入2ax+by=4与ax+by=3∴解得:故选:A.9.解:设生产螺栓的有x人,生产螺母的有y人.由题意,得,故选:D.10.解:由已知,得y==9﹣.要使x,y都是正整数,必须满足18﹣3x是2的倍数且18﹣3x是正数.根据以上两个条件可知,合适的x值只能是x=2,x=4,相应的y=6,y=3所以有2组,分别为,.故选:B.11.解:由题意得,①+②得5x﹣5y=5,即x﹣y=1③,①﹣③×2得﹣y=3,解得y=﹣3,把y=﹣3代入③得,x=﹣2,∴P=xy=﹣2×(﹣3)=6,12.解:解方程组:,得:,∵x和y互为相反数,则有2k+3+(﹣k﹣2)=0,解得k=﹣1.故答案为:﹣1.13.解:,①﹣②,得3x﹣4y=3.故答案为:3.14.解:,由①+②得到:x+y=2,由①﹣②得到:x﹣y=126,所以x2﹣y2=(x+y)(x﹣y)=2×126=252.故答案是:252.15.解:根据图示可得,故答案是:.16.解:联立得:,解得:,代入方程得:2﹣6=k,解得:k=﹣4,故答案为:﹣417.解:设小矩形的长为xm,宽为ym,由题意得:,解得:,即小矩形的长为8m,宽为4m.答:一个小矩形花圃的面积32m2,18.解:方程组转化为;∴由恒等式意义,得∴x=3,y=9∴方程组的解为故答案为19.解:设小长方形的长为xcm,宽为ycm,依题意,得:,解得:,∴图中阴影部分的面积=19×(7+2×3)﹣6×10×3=67(cm2).故答案为:67.20.解:∵方程2x+y=3,2x﹣my=﹣1,3x﹣y=2有公共解,∴,①+②得:x=1,故y=1,故方程组的解为:,故2﹣m=﹣1,解得:m=3.故答案为:3.21.解:(1),①×2+②得:﹣5y=﹣9,解得:y=1.8,把y=1.8代入②得:﹣4x+1.8=﹣3,解得:x=1.2,则方程组的解为;(2)方程组整理得:,①×2+②得:11x=22,解得:x=2,把x=2代入①得:8﹣y=5,解得:y=3,则方程组的解为.22.解:联立得:,①+②×4得:11x=22,即x=2,将x=2代入②得:4﹣y=5,即y=﹣1,∴方程组的解为,代入得:,解得:a=,b=﹣.23.解:(1)方程x+2y=5,解得:x=﹣2y+5,当y=1时,x=3;y=2,x=1;(2)联立得:,解得:,代入得:﹣5﹣10﹣5m+9=0,解得:m=﹣;(3)和m无关,所以m的系数为0,即x=0,代入方程得:﹣2y+9=0,即y=4.5,则其公共解为;(4),①+②得:(m+2)x=﹣4,解得:x=﹣,把x=﹣代入①得:y=,当m+2=2,1,﹣2,﹣1,4,﹣4时,x为整数,此时m=0.﹣1,﹣3,﹣4,2,﹣6,当m=﹣1时,y=,不符合题意;当m=﹣3时,y=,不符合题意;当m=2时,y=3,符合题意;当m=﹣6时,y=2,符合题意,当m=0时,y=,不符合题意;当m=﹣4时,y=,不符合题意,综上,整数m的值为﹣6或2.24.解:(1)设A种商品每件的进价是x元,则B种商品每件的进价是(x﹣40)元,由题意得2x=3(x﹣40),解得:x=120,120﹣40=80(元).答:A种商品每件的进价是120元,B种商品每件的进价是80元;(2)设购买A种商品a件,则购买B商品(60﹣a)件,由题意得120a+80(60﹣a)=5800,解得a=25,60﹣a=35.120×30%×25+20×35=1600(元).答:全部售完共可获利1600元;(3)设销售B商品按标价售出m件,由题意得:120×30%×25+20m+(20﹣6)(35﹣m)=1600﹣120,解得m=15.答:销售B商品按标价售出15件.25.解:(1)由题意得:,解得:,答:这个班有男生有24人,女生有26人;(2)男生剪筒底的数量:24×120=2880(个),女生剪筒身的数量:26×40=1040(个),因为一个筒身配两个筒底,2880:1040≠2:1,所以原计划男生负责剪筒底,女生负责剪筒身,每小时剪出的筒身与筒底不能配套,设男生应向女生支援a人,由题意得:120(24﹣a)=(26+a)×40×2,解得:a=4,答:原计划男生负责剪筒底,女生负责剪筒身,每小时剪出的筒身与筒底不能配套;男生应向女生支援4人时,才能使每小时剪出的筒身与筒底配套.26.解:(1)设学校购进甲种口罩x盒,购进乙种口罩y盒,依题意,得:,解得:.答:学校购进甲种口罩400盒,购进乙种口罩600盒.(2)购买的口罩总数为:400×20+600×25=23000(个),全校师生两周需要的用量为:800×2×10=16000(个).∵23000>16000,∴购买的口罩数量能满足教育局的要求.。

人教版七年级数学下册《第八章综合训练》(含答案)

人教版七年级数学下册《第八章综合训练》(含答案)

12(第6题)第八章综合训练班级:_______ 姓名:________ 坐号:_______ 成绩:_______一、选择题(每小题3分,共24分)1、下列各组数是二元一次方程⎩⎨⎧=-=+173x y y x 的解是 ( ) A 、⎩⎨⎧==21y x B 、⎩⎨⎧==10y x C 、⎩⎨⎧==07y x D 、⎩⎨⎧-==21y x 2、方程⎩⎨⎧=+=+10by x y ax 的解是 ⎩⎨⎧-==11y x ,则a ,b 为 ( ) A 、⎩⎨⎧==10b a B 、⎩⎨⎧==01b a C 、⎩⎨⎧==11b a D 、⎩⎨⎧==00b a 3、|3a +b +5|+|2a -2b -2|=0,则2a 2-3ab 的值是 ( )A 、14B 、2C 、-2D 、-44、解方程组⎩⎨⎧=-=+534734y x y x 时,较为简单的方法是 ( ) A 、代入法 B 、加减法 C 、试值法 D 、无法确定5、某商店有两进价不同的耳机都卖64元,其中一个盈利60%,另一个亏本20%,在这次买卖中,这家商店( )A 、赔8元B 、赚32元C 、不赔不赚D 、赚8元6、一副三角板按如图摆放,且∠1的度数比∠2的度数大50°,若设∠1=x °,∠2=y °,则可得到的方程组为( )A 、⎩⎨⎧=+-=18050y x y xB 、⎩⎨⎧=++=18050y x y xC 、⎩⎨⎧=+-=9050y x y xD 、⎩⎨⎧=++=9050y x y x 7、李勇购买80分与100分的邮票共16枚,花了14元6角,购买80分与100分的邮票的枚数分别是( )A 、6,10B 、7,9C 、8,8D 、9,78、两位同学在解方程组时,甲同学由⎩⎨⎧=-=+872y cx by ax 正确地解出⎩⎨⎧-==23y x ,乙同学因把C 写错了解得 ⎩⎨⎧=-=22y x ,那么a 、b 、c 的正确的值应为( )A 、a =4,b =5,c =-1B 、a =4,b =5,c =-2C 、a =-4,b =-5,c =0D 、a =-4,b =-5,c =2二、填空(每小题3分,共18分)9、如果⎩⎨⎧-==13y x 是方程3x -ay =8的一个解,那么a =_________。

高中数学8.6第八章 立体几何初步综合测试卷2021高中数学新教材配套提升训练人教A版必修第二册

高中数学8.6第八章 立体几何初步综合测试卷2021高中数学新教材配套提升训练人教A版必修第二册

第八章 《立体几何初步》 综合测试卷一、单选题1.(2021·安徽省肥东县第二中学高二期末(文))棱长为4的正方体的内切球的表面积为( ) A .4π B .12πC .16πD .20π【答案】C 【解析】由正方体的内切球直径为正方体棱长,直接求解. 【详解】由球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径, 得24r =,2r ,故表面积为2416S r ππ==,故选:C. 【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径. 2.(2021·安徽蚌埠市·高二期末(文))阿基米德(Archimedes ,公元前287年—公元前212年)是古希腊伟大的数学家、物理学家和天文学家.他推导出的结论“圆柱内切球体的体积是圆柱体积的三分之二,并且球的表面积也是圆柱表面积的三分之二”是其毕生最满意的数学发现,后人按照他生前的要求,在他的墓碑上刻着一个圆柱容器里放了一个球(如图所示),该球与圆柱的两个底面及侧面均相切,圆柱的底面直径与高都等于球的直径,若球的体积为36π,则圆柱的体积为 ( )A .36πB .45πC .54πD .63π【答案】C 【解析】根据球的体积公式求出半径,根据圆柱的体积公式可求得结果. 【详解】设球的半径为R ,则343R π=36π,所以3R =, 所以圆柱的底面半径为3R =,圆柱的高为26R =, 所以圆柱的体积为232254R R R πππ⨯==. 故选:C3.(2021·湖北武汉市·高二期末)过圆柱的上,下底面圆圆心的平面截圆柱所得的截面是面积为8的正方形,则圆柱的侧面积是( )A .B .12πC .8πD .10π【答案】C 【解析】结合立体图,先由面积计算底面半径和侧棱,再利用侧面积公式计算即可. 【详解】如图所示,过圆柱的上,下底面圆圆心的平面截圆柱所得的截面是正方形ABCD ,面积为8,故边长AB AC ==12R AB ==AC =则圆柱的侧面积是228S R AC πππ=⋅==. 故选:C.4.(2021·广西钦州市·高二期末(理))直三棱柱111ABC A B C -中,1AB AC AA ==,60BAC ∠=︒,则1AC 与面11BCC B 成角的正弦值为( )ABCD【答案】A 【解析】过A 作AM BC ⊥,可证AM ⊥平面11BB C C ,连接1C M ,可知1AC M ∠即为所求线面角,计算即可求解. 【详解】如图,过A 作AM BC ⊥,连接1C M ,在直三棱柱111ABC A B C -中,因为11,B B AM BC BB B⊥=所以AM ⊥平面11BB C C ,故1AC 在平面11BB C C 上的射影为1MC ,所以1AC M ∠为直线1AC 与平面11BB C C 所成的角, 设1AB AC AA a ===,又60BAC ∠=︒所以1,2AM a AC ==故1sin AC M ∠== 故选:A5.(2021·宁夏银川市·银川一中高一期末)如图,正方体1111ABCD A B C D -的棱长为2,下面结论错误的是( )A .//BD 平面11CB D B .1AC ⊥平面11CB DC .异面直线1CB 与BD 所成角为60 D .三棱锥11D CB D -体积为23【答案】D 【解析】根据线面平行的判定定理,证明A 正确;根据线面垂直的判定定理,证明B 正确;在正方体中,作出异面直线1CB 与BD 所成角,结合题中条件,可判断C 正确;根据三棱锥的体积公式,可判断D 错. 【详解】A 选项,在正方体1111ABCD ABCD -中,11//BD B D ,又11B D ⊂平面11CB D ,BD ⊄平面11CB D ,所以//BD 平面11CB D ,即A 正确;B 选项,连接11AC ,1CD ,在正方体1111ABCD A B C D -中,1111B D A C ⊥,11DC CD ⊥,AD ⊥平面11C D DC ,1AA ⊥平面1111D C B A ,因为1CD ⊂平面11C D DC ,11B D ⊂平面1111D C B A , 所以1CD AD ⊥,111AA B D ⊥,又1DC AD D ⋂=,1DC ⊂平面1AC D ,AD ⊂平面1AC D ,所以1CD ⊥平面1AC D , 因此11CD AC ⊥; 同理111B D AC ⊥, 又1111CD B D D =,1CD ⊂平面11CB D ,11B D ⊂平面11CB D ,所以1AC ⊥平面11CB D ;即B 正确;C 选项,因为11//BD BD ,所以11CB D ∠即等于异面直线1CB 与BD 所成角,又1111CB B D CD ====11CB D 为等边三角形,即异面直线1CB 与BD 所成角为60,故C 正确;D 选项,三棱锥11D CB D -的体积为111111111142223323D CB D B CDD CDD V V S B C --==⋅=⨯⨯⨯⨯=.故D 错; 故选:D.6.(2021·安徽池州市·高三期末(文))三棱锥P ABC -中,PA PB PC ==,4ABC π∠=,AC =,则三棱锥P ABC -外接球表面积的最小值是( ) A .8π B .4πC .2πD .π【答案】B 【解析】根据正弦定理求出ABC 外接圆半径,设三棱锥P ABC -高为h ,球的半径为R ,从而可得222()R h R r -+=,再利用基本不等式求出R 的最小值即可.【详解】设底面ABC 外接圆圆心为1O ,半径为r , 则22sin ACr ABC==∠,即1r =.设三棱锥P ABC -高为h ,球的半径为R .由PA PB PC ==,得球心O 在1PO 上,且222()R h R r -+=,则111122R h h ⎛⎫=+≥⋅= ⎪⎝⎭,当且仅当1h =时等号成立,此时外接球表面积最小,则min 4S π=.故选:B7.(2021·安徽合肥市·高二期末(文))三棱锥D ABC -及其三视图中的正视图和侧视图如图所示,CD ⊥平面ABC ,则棱BD 的长为( )A .B .4C .D .2【答案】A 【解析】由已知中的三视图可得DC ⊥平面ABC ,且底面△ABC 为等腰三角形,解三角形即可求解. 【详解】由三棱锥D ABC -及其三视图中的正视图和侧视图可知, DC ⊥平面ABC ,且底面△ABC 为等腰三角形,在△ABC 中AC =4,AC 边上的高为故4BC ==,在Rt △DBC 中,由DC =4,4BC =,可得DB 22442.故选:A8.(2021·河北唐山市·高二期末)在四棱锥P -ABCD 中,//AD BC ,2AD BC =,E 为PD 中点,平面ABE 交PC 于F ,则PFFC=( ) A .1 B .32C .2D .3【答案】C 【解析】首先通过延长直线,DC AB ,交于点G ,平面BAE 变为GAE ,连结PG ,EG 交于点F ,再根据三角形中线的性质,求PFFC的值. 【详解】延长,DC AB ,交于点G ,连结PG ,EG 交PC 于点F ,//AD BC ,且2AD BC =,可得点,B C 分别是,AG DG 的中点,又点E 是PD 的中点,PC ∴和GE 是△PGD 的中线,∴点F 是重心,得2PFFC=故选:C9.(2021·安徽合肥市·高二期末(文))设有直线m ,n ,l 和平面α,β,下列四个命题中,正确的是( ) A .若//,//m n αα,则//m n B .若//,//,//l m αβαβ,则//l m C .若,m αβα⊥⊂,则m β⊥ D .若,,m m αββα⊥⊥⊄,则//m α【答案】D 【解析】在A 中,m 与n 相交、平行或异面; 在B 中,l 与m 不一定平行,有可能相交;在C 中,m ⊥β或m ∥β或m 与β相交;在D 中,由直线与平面垂直的性质与判定定理可得m ∥α. 【详解】由直线m 、n ,和平面α、β,知:对于A ,若m ∥α,n ∥α,则m 与n 相交、平行或异面,故A 错误; 对于B ,若//,//,//l m αβαβ,l 与m 不一定平行,有可能相交,故B 错误;对于C ,若α⊥β,m ⊂α,则m ⊥β或m ∥β或m 与β相交,故C 错误;对于D ,若α⊥β,m ⊥β,m ⊄α,则由直线与平面垂直的性质与判定定理得m ∥α,故D 正确. 故选:D .10.(2021·江苏淮安市·高二期末)蹴鞠,又名蹴球,筑球等,蹴有用脚踢、踏的含义,鞠最早系外包皮革、内实含米糠的球.因而蹴鞠就是指古人以脚踢、踏皮球的活动,类似现在的足球运动.2006年5月20日,蹴鞠已作为非物质文化遗产经国务院批准列入第一批国家非物质文化遗产名录.3D 打印属于快速成形技术的一种,它是一种以数字模型为基础,运用粉末状金属或塑料等可粘合材料,通过逐层堆叠积累的方式来构造物体的技术.过去常在模具制造、工业设计等领域被用于制造模型,现正用于一些产品的直接制造,特别是一些高价值应用(比如人体的髋关节、牙齿或飞机零部件等).已知某蹴鞠的表面上有四个点A .B .C .D ,满足任意两点间的直线距离为6cm ,现在利用3D 打印技术制作模型,该模型是由蹴鞠的内部挖去由ABCD 组成的几何体后剩下的部分,打印所用原材料的密度为31g/cm ,不考虑打印损耗,制作该模型所需原材料的质量约为( )(参考数据)π 3.14≈ 1.41≈ 1.73≈ 2.45≈. A .101g B .182gC .519gD .731g【答案】B【解析】由题意可知所需要材料的体积即为正四面体外接球体积与正四面体体积之差,求出正四面体体积、外接球体积,然后作差可得所需要材料的体积,再乘以原料密度可得结果. 【详解】由题意可知,几何体ABCD 是棱长为6cm 的正四面体,所需要材料的体积即为正四面体外接球体积与正四面体体积之差,设正四面体的棱长为a =,设正四面体外接球半径为R ,则2222()()332R R a =-+⨯,解得R =,所以3D 打印的体积为:3233411343223812V a a a a ππ⎛⎫=-⋅⋅⋅=- ⎪ ⎪⎝⎭, 又336216a ==,所以207.71125.38182.331182V =-≈-=≈, 故选:B 二、多选题11.(2020·沙坪坝区·重庆一中高三月考)设m 、n 是两条不同的直线,α、β是两个不同的平面,下列命题中错误..的是( ) A .若,,//m n m n αβ⊂⊂,则//αβ B .若,m n m α⊂⊥,则n α⊥ C .若,mn αα,则m n ⊥D .若//,,m n αβαβ⊂⊂,则//m n【答案】ABD 【解析】根据空间线、面关系,结合空间关系相关图例以及线线、线面、面面间的平行、垂直判定与性质,即可知选项的正误. 【详解】A :,,//m n m n αβ⊂⊂,α、β不一定平行,错误.B :,m n m α⊂⊥,n 不一定垂直于α,错误.C :由线面垂直的性质:,m n αα,则必有m n ⊥,正确.D ://,,m n αβαβ⊂⊂,m 、n 不一定平行,错误.故选:ABD12.(2020·全国高三月考)在直三棱柱111ABC A B C -中,90ABC ∠=︒,2AB BC ==,12AA =,M 是BC 的中点,N 是11A C 的中点,点P 在线段1B N 上,点Q 在线段AM 上,且23AQ AM =,S 是1AC 与1A C 的交点,若//PS 面1B AM ,则( )A .1//PSB Q B .P 为1B N 的中点C .AC PS ⊥D .三棱锥1P B AM -的体积为23【答案】ACD 【解析】连接交NS 交AC 于G 点,连接BG ,利用线面平行的性质定理判断A ;根据三角形相似判断B ;由线面垂直的判定定理及性质定理判断C ;由11P AB M B ABM V V --=计算可得,从而判断D ;【详解】解:对于选项A :连接交NS 交AC 于G 点,连接BG ,则由AB BC =,23AQ AM =,可得BG 必过点Q ,且23BQ BG =,因为PS ⊂面1BB NG ,//PS 面1AMB ,面1AMB 面11BB NG B Q =,所以1//PS B Q ,故A 正确;对于选项B :1//PS B Q ,1NPS NBQ B QB ∴∠=∠=∠,1Rt Rt PNS QBB ∴∽△△,112PN NS BQ BB ∴==,即111212233PN BQ BG B N ==⋅=, P ∴为靠近N 的三等分点,故B 错误;对于选项C :AC NG ⊥,AC BG ⊥,,NG BG ⊂面1BB NG ,NG BG G =AC ∴⊥面1BB NG ,PS ⊂面1BB NG ,AC PS ∴⊥,故C 正确;对于选项D :1//B P BQ ,且1B P BQ =,1BB PQ ∴是矩形,111112221323P AB M B AB M B ABM V V V ---∴===⋅⋅⋅⋅=,故D 正确. 故选:ACD13.(2020·全国高三专题练习)如图所示,矩形ABCD 中,E 为边AB 的中点,将ADE 沿直线DE 翻转成1A DE △,若M 为线段1A C 的中点,则在ADE 翻转过程中,则下列命题正确的是( )A .||BM 是定值B .点M 在球面上运动C .一定存在某个位置,使1DE A C ⊥D .一定存在某个位置,使//MB 平面1A DE【答案】ABD【解析】取CD 中点N ,连接MN 、NB ,则1//MN A D 、//NB DE ,由平行线性质得1A DE MNB ∠=∠,可判断A ,这时可得出平面//MNB 平面1A DE ,从而判断D ,利用BM 长为定值可判断B ,结合1A C 在平面ABCD 内的射影可判断C .A 对,取CD 中点N ,连接MN 、NB ,则1//MN A D 、//NB DE ,1A DE MNB ∠=∠,112MN A D ==定值,NB DE ==定值,根据余弦定理得,2222cos MB MN NB MN NB MNB =+-⋅⋅∠,∴||BM 是定值,B 对,B 是定点,∴M 是在以B 为球心,MB 为半径的球面上,C 错,当矩形ABCD 满足AC DE ⊥时存在,其他情况不存在,否则若AC DE ⊥不成立,作CF DE ⊥于F ,连接1A F ,可得DE ⊥平面1A CE ,从而有1DE A F ⊥,因此有原图形中,,A F C 共线,AC DE ⊥,矛盾.D 对,取CD 中点N ,连接MN 、NB ,则1//MN A D 、//NB DE ,∴平面//MNB 平面1A DE ,∵MB ⊂平面MNB ,∴//MB 平面1A DE .故选ABD.14.(2021·湖北黄石市·黄石二中高二期末)在矩形ABCD 中,4AB =,3BC =,沿矩形对角线BD 将BCD △折起形成四面体ABCD ,在这个过程中,现在下面四个结论其中所有正确结论为( )A .在四面体ABCD 中,当DA BC ⊥时,BC AC ⊥B .四面体ABCD 的体积的最大值为245C .在四面体ABCD 中,BC 与平面ABD 所成角可能为3π D .四面体ABCD 的外接球的体积为定值.【答案】ABD【解析】 A.根据线面垂直判定定理证明BC ⊥平面ACD 进而有BC AC ⊥;B.当平面ABD ⊥平面BCD 时,四面体ABCD 的体积最大,根据体积公式计算即可;C.当平面ABD ⊥平面BCD 时BC 与平面ABD 所成的角CBD ∠最大,计算得3CBD π∠<; D.斜边BD 中点到,,,A B C D 距离相等,所以四面体ABCD 的外接球的半径为定值52,其题意奕为定值.解:对于A.当DA BC ⊥时,又因为,,,BC CD CD DA D CD DA ⊥=⊂平面ACD ,所有BC ⊥平面ACD ,所以BC AC ⊥,故A 正确;对于B.当平面ABD ⊥平面BCD 时,四面体ABCD 的体积最大在BCD △中根据等面积法可得C 到平面ABD 的距离满足125345h h =⨯⇒=所以11112243433255A BCD ABD V S h -⎛⎫=⋅=⨯⨯⨯⨯= ⎪⎝⎭,故B 正确; 对于C. 当平面ABD ⊥平面BCD 时BC 与平面ABD 所成的角CBD ∠最大,此时4tan 3CBD ∠=<3CBD π∠<,故C 错误; 对于D.因为BAD 和BCD △都是直角三角形且共斜边,所以斜边BD 中点到,,,A B C D 距离相等,所以四面体ABCD 的外接球的半径1522R BD ==,所以四面体ABCD 的外接球的体积为定值34532π⎛⎫⨯ ⎪⎝⎭故选:ABD三、填空题15.(2021·周至县第二中学高一期末)如图所示,一个圆锥形的空杯子上面放着一个半球形的冰淇淋,如果冰淇淋融化后正好盛满杯子,则杯子高h =_______cm .【答案】8【解析】根据题意半球的体积等于圆锥的体积,根据等体积法化简即可.解:由题意得半球的半径和圆锥底面圆的半径4r =,如果冰淇淋融化后正好盛满杯子,则半球的体积等于圆锥的体积 所以()32141448233h h ππ⨯⨯=⨯⨯⇒= 故答案为:816.(2021·安徽蚌埠市·高二期末(理))正方体1111ABCD A B C D -中,点P 是1CC 的中点,则异面直线AP 与1BC 所成角的大小为_________. 【答案】4π 【解析】设正方体1111ABCD A B C D -的棱长为2,连接11,AD D P ,在正方体1111ABCD A B C D -中,11//AD BC ,所以1D AP ∠(或其补角)为异面直线AP 与1BC 所成角,即可求解.【详解】设正方体1111ABCD A B C D -的棱长为2,连接11,AD D P在正方体1111ABCD A B C D -中,11//AD BC所以1D AP ∠(或其补角)为异面直线AP 与1BC 所成角113,AD AP D P ====所以2221111cos 22AP AD D PD AP AP AD +-∠===⨯⨯ 所以14D AP π∠=故答案为:4π17.(2021·海南高三二模)如图,位于山西省朔州市应县佛宫寺内的释迦塔,俗称应县木塔,是我国现存最高最古老的木结构塔式建筑,木塔顶部可以近似地看成一个正八棱锥,其侧面和底面的夹角大小为30︒,则该正八棱锥的高和底面边长之比为________.(参考数据:tan 22.51︒=)【解析】 设底面边长为a ,根据正八棱锥底边所对的圆心角为45,求得圆心到底边的距离,再由侧面与底面成30︒求解.【详解】如图所示:点P 是正八棱锥的顶点,点O 是底面的中心,AB 是底面的一条边,M 是AB 的中点,根据题意知22.5BOM ︒∠=,因为tan 22.51︒=,设AB a ,则1tan 22.52BM OM a ︒+==, 又因为二面角P AB O --的大小为30︒,即30PMO ︒∠=,所以tan306OP OM ︒+==,故答案为:6四、双空题 18.(2020·浙江杭州市·高一期末)一圆台的母线长为20cm ,母线与轴的夹角为30,上底面半径为15cm ,则下底面半径为____,圆台的高为_______.【答案】25【解析】根据题意画出图形,结合图形求出圆台的高和下底面圆的半径和高.【详解】解:如图所示,圆台的母线长为20l cm =,母线与轴的夹角为30,上底面的半径为15r cm =,所以圆台的高为cos3020)h l cm =︒==, 则1sin3020102R r l -=︒=⨯=, 所以底面圆的半径为151025()R cm =+=,故答案为:25;19.(2020·浙江省杭州第二中学高二期中)如图,在四面体ABCD 中, AB CD =,M 、N 、P 、Q 分别是BC 、AD 、AC 、BD 的中点,则MN 和PQ 所成角为_________,若AB 与CD 所成角为30︒,则MN 和CD 所成角为_________.【答案】90 15或75.【解析】(1)连接,,,MP PN NQ MQ ,可证明四边形MPNQ 是菱形,即可得出;(2)可得PMQ ∠即为AB 与CD 所成角(或其补角),且30PMQ 或150,继而得出MN 和CD 所成角为15NMQ ∠=或75.【详解】(1)连接,,,MP PN NQ MQ ,M 、N 、P 、Q 分别是BC 、AD 、AC 、BD 的中点,11,22MQ CD PN CD ∴,MQ PN ∴, ∴四边形MPNQ 是平行四边形, 12MP AB =,AB CD =,12MP CD ∴=,MP MQ ∴=,故四边形MPNQ 是菱形,MN PQ ∴⊥,故MN 和PQ 所成角为90;//,//MP AB MQ CD ,PMQ ∴∠即为AB 与CD 所成角(或其补角),30PMQ ∴∠=或150,而NMQ ∠为MN 和CD 所成角,且15NMQ ∠=或75,即MN 和CD 所成角为15或75.故答案为:90;15或75.20.(2020·全国高二单元测试)设P A ⊥Rt △ABC 所在的平面α,∠BAC=90°,PB 、PC 分别与α成45°和30°角,P A=2,则P A 与BC 的距离是___________;点P 到BC 的距离是___________.【解析】作AD ⊥BC 于点D ,连接PD ,根据P A ⊥面ABC ,易得AD 是P A 与BC 的公垂线,BC ⊥平面P AD 求解.【详解】如图所示:作AD ⊥BC 于点D ,因为P A ⊥面ABC ,所以P A ⊥AD ,所以AD 是P A 与BC 的公垂线.因为PB 、PC 分别与α成45°和30°角,P A=2,所以AB=2,AC=BC=4,,连接PD ,由,,BC AD BC PA PA AD A ⊥⊥⋂=则BC ⊥平面P AD ,则PD ⊥BC ,所以点P 到BC 的距离.21.(2021·浙江杭州市·高二期末)在正方体1111ABCD A B C D -中,棱1AA 与面对角线1BC 所成角的大小是____;面对角线1BC 与体对角面11ACC A 所成角的大小是_____.【答案】45︒ 30︒【解析】连接1BC ,11A C ,AC ,BD ,记AC 与BD 交点为O ,连接1C O ,根据异面直线所成角,以及线面角的概念,得到11B BC ∠等于棱1AA 与面对角线1BC 所成的角,1BC O ∠即为面对角线1BC 与体对角面11ACC A 所成角,再根据正方体的结构特征,即可得出结果.【详解】连接1BC ,11A C ,AC ,BD ,记AC 与BD 交点为O ,连接1C O , 在正方体1111ABCD A B C D -中,侧棱相互平行,即11//AA BB , 所以11B BC ∠等于棱1AA 与面对角线1BC 所成的角(或所成角的补角), 因为在正方形11BCC B 中,1145B BC ∠=︒,异面直线所成角大于0︒且小于等于90︒, 所以棱1AA 与面对角线1BC 所成角的大小是45︒; 又在正方体1111ABCD A B C D -中,侧棱垂直于底面,所以1AA ⊥平面ABCD , 因为BD ⊂平面ABCD ,所以1AA BD ⊥,又底面ABCD 为正方形,所以AC BD ⊥,因为1AC AA A =∩,1AA ⊂平面11AAC C ,AC ⊂平面11AAC C ,所以BD ⊥平面11AAC C ,因此1BC O ∠即为面对角线1BC 与体对角面11ACC A 所成角, 所以111112sin 2BD BO BC O BC BC ∠===, 因为1BC O ∠显然为锐角,所以130BC O ∠=︒.故答案为:45︒;30︒.五、解答题22.(2020·陕西西安市·高一期末)如图,在三棱锥P ABC -中,,PA PC AB BC ==,O 是AC 的中点,PO BO ⊥,2,3PO AC BO ===.(1)证明:AC PB ⊥;(2)求三棱锥A PBC -的体积.【答案】(1)证明见解析;(2)2【解析】(1)通过,PO AC BO AC ⊥⊥得出AC ⊥平面POB ,即可证明;(2)先证明PO 是三棱锥的高,再直接求出三棱锥体积.【详解】(1),PA PC AB BC ==,O 是AC 的中点,,PO AC BO AC ∴⊥⊥,PO BO O =,AC ∴⊥平面POB ,∴AC PB ⊥;(2),PO AC PO BO ⊥⊥,AC BO O ⋂=,PO ∴⊥平面ABC ,即PO 是三棱锥的高,1112322332A PBC ABC V S PO -∴=⋅=⨯⨯⨯⨯=. 23(2020·陕西西安市·西安一中高一月考)一个透明的球形装饰品内放置了两个具有公共底面的圆锥,且这两个圆锥的顶点和底面圆周都在这个球面上,如图,已知圆锥底面面积是这个球的表面积的316,设球的半径为R ,圆锥底面半径为r .(1)试确定R 与r 的关系,并求出大圆锥与小圆锥的侧面积的比值.(2)求出两个圆锥的总体积(即体积之和)与球的体积之比.【答案】(1)2r R =;(2)3:8. 【解析】(1)求出球的表面积和圆锥底面积,即可得出r R =,根据几何特征表示出圆锥的高和母线长,即可求出侧面积之比;(2)根据体积公式计算出,即可得出比值.【详解】解:(1)球的表面积为24R π,∴圆锥的底面积为223416r R ππ=⨯,解得2r R =, 由几何体的特征知球心到圆锥底面的距离,球的半径以及圆锥底面的半径三者可以构成一个直角三角形;由此可以求得球心到圆锥底面的距离是:112OO R ==,所以小圆锥的高为:1122R R R -=R =;同理可得大圆锥的高为:1322R R R +==; 又由这两个圆锥的底面半径相同,:R =.(2)由(1)可得两个圆锥的体积和为:321232R r R ππ⋅⋅⋅=, 球的体积为:343R π, 故两个圆锥的体积之和与球的体积之比为:334:3:823R R ππ=.24.(2021·浙江嘉兴市·高二期末)如图,在直三棱柱111ABC A B C -中,底面ABC 为正三角形,1AB 与1A B 交于点O ,E ,F 是棱1CC 上的两点,且满足112EF CC =.(1)证明://OF 平面ABE ;(2)当1CE C F =,且12AA AB =,求直线OF 与平面ABC 所成角的余弦值.【答案】(1)证明见解析;(2 【解析】 (1)取AB 中点G ,连结OG 、EG ,可证明四边形OGEF 为平行四边形,则 OF EG ∥,由线面平行的判定定理即可求证;(2)由(1)可知,OF EG ∥,则直线OF 与平面ABC 所成角即为直线EG 与平面ABC 所成角,EC ⊥平面ABC ,则EGC ∠即为直线EG 与平面ABC 所成的角,在EGC 中即可求EGC ∠的余弦值.【详解】(1)取AB 中点G ,连结OG 、EG ,在直三棱柱111ABC A B C -中,1OG BB ∥,则OG EF ∥, 又112EF CC =,则OG EF =, 所以四边形OGEF 为平行四边形,则 OF EG ∥,又EG ⊂平面ABE ,OF ⊄平面ABE , 故//OF 平面ABE .(2)由(1)可知,OF EG ∥,则直线OF 与平面ABC 所成角即为直线EG 与平面ABC 所成角, 连接CG ,由直三棱柱111ABC A B C -可得EC ⊥平面ABC ,则EGC ∠即为直线EG 与平面ABC 所成的角,设2AB =,则114AA CC ==,又1CE C F =,则1CE =,CG =2EG =,所以,直线EG 与平面ABC故直线OF 与平面ABC 方法点睛:证明直线与平面平行的常用方法(1)定义法:证明直线与平面没有公共点,通常要借助于反证法来证明;(2)判定定理:在利用判断定理时,关键找到平面内与已知直线平行的直线,常考虑利用三角形中位线、平行四边形的对边平行或过已知直线作一平面,找其交线进行证明;(3)利用面面平行的性质定理:直线在一平面内,由两平面平行,推得线面平行;直线在两平行平面外,且与其中一平面平行,这这条直线与另一个平行.25.(2021·六盘山高级中学高一期末)如图,AB是O的直径,P A垂直于O所在的平面,C是圆周上不同于A,B的一动点.(1)证明:BC⊥面P AC;(2)若P A=AC=1,AB=2,求直线PB与平面P AC所成角的正切值.【答案】(1)证明见解析;(2)2【解析】(1)证明AC⊥BC和P A⊥BC,BC⊥面P AC即得证;BC PC即得解.(2)先证明∠BPC为PB与平面P AC所成的角,再通过解三角形求出,【详解】证明:(1)AB为圆O直径∴∠ACB=90°即AC⊥BCP A⊥面ABC,∴P A⊥BCAC P A=A∴BC⊥面P AC.(2)BC⊥面P AC,∴∠BPC为PB与平面P AC所成的角,在直角三角形ABC 中,BC在直角三角形PAC 中,PC ==,在直角三角形PBC 中,tan ∠BPC2=.故直线PB 与平面P AC 方法点睛:求线面角常用几何法求解,其步骤为:找→作→证(定义)→指→求(解三角形). 26.(2021·安徽宿州市·高二期末(文))如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥底面ABCD ,E 为PD 的中点.(1)证明://PB 平面AEC ;(2)设1AP =,AD =P ABCD -的体积为1,求证:平面PAC ⊥平面PBD .【答案】(1)证明见解析;(2)证明见解析.【解析】( 1)设BD 与AC 的交点为O ,连接EO ,通过直线与平面平行的判定定理证明//PB 平面AEC ; ( 2)通过体积得到底面为正方形,再由线面垂直得到面面垂直即可.【详解】(1)连接BD 交AC 于点O ,连结EO ,因为ABCD 为矩形,所以O 为BD 的中点,又E 为PD 的中点,所以//EO PB ,EO ⊂平面AEC ,PB ⊄平面AEC ,所以//PB 平面AEC .(2)因为113P ABCD V AB AD AP -=⨯⨯⨯=,所以AB =ABCD 为正方形,所以BD AC ⊥,因为PA ABCD ⊥,所以BD PA ⊥,且AC PA A ⋂=,所以BD ⊥平面PAC ,又BD ⊂平面PBD ,所以平面PAC ⊥平面PBD .27.(2021·陕西西安市·高三一模(文))如图在四棱锥P ABCD -中,底面ABCD 为菱形,PAD △为正三角形,平面PAD ⊥平面ABCD E F ,、分别是AD CD 、的中点.(1)证明:BD PF ⊥;(2)若M 是棱PB 上一点,三棱锥M PAD -与三棱锥P DEF -的体积相等,求M 点的位置.【答案】(1)证明见解析;(2)M 点在PB 上靠近P 点的四等分点处.【解析】(1)连接AC ,由//AC EF ,可证明BD EF ⊥,BD PE ⊥,从而得BD ⊥平面PEF ,得证线线垂直; (2)设设PM MB λ=,则1PM PB λλ=+,根据棱锥的体积公式,利用体积法得出结论,由11M PAD B PAD P ABD V V V λλλλ---==++,1144P DEF P ACD P ABD V V V ---==,可得λ值. 【详解】(1)连接AC PA PD =,且E 是AD 的中点,PE AD ⊥∴.又平面PAD ⊥平面ABCD ,平面PAD 平面ABCD AD PE =⊂,平面PAD .PE ∴⊥平面ABCD BD ⊂,平面ABCD BD PE ∴⊥,.又ABCD 为菱形,且E F 、分别为棱AD CD 、的中点,//EF AC ∴. BD AC BD EF ⊥∴⊥,,又BD PE PE EF E BD ⊥⋂=∴⊥,,平面PEF ;PF ∴⊂平面PEF BD PF ∴⊥,. (2)如图,连接MA MD 、, 设PM MB λ=,则1PM PB λλ=+, 11M PAD B PAD P ABD V V V λλλλ---∴==++, 14DEF DAC S S =△△,则1144P DEF P ACD P ABD V V V ---==,又M PAD P DEF V V --=. 114λλ∴=+. 解得13λ=,即M 点在PB 上靠近P 点的四等分点处.。

统编版五年级语文下册第八单元综合训练(含答案)

统编版五年级语文下册第八单元综合训练(含答案)

统编版五年级语文下册第八单元综合训练(含答案)时间:90分钟满分:100分一、看拼音,写词语。

(8分)mǔ zhǐ jiā qín shǒu yǎnɡ huì qì()()()()cānɡ kù pínɡ yōnɡ luó sī niǔ kòu()()()()二、给加点字选择正确的解释。

(填序号)(4分)处:①居住。

②存在,置身。

③跟别人一起生活,交往。

④办理,决定,引申为“处罚”。

相处.融洽()设身处.地()处.以重罚()养尊处.优()三、根据语境,用含有“尊”字的词语填空。

(不能重复)(3分)1.多少前辈为我们树立了()师长的典范。

2.这次教训警示我们一定要()客观事实,不能想当然。

3.无论什么时候,我们都要捍卫祖国的()。

四、选择题。

(10分)1.下列字音、字形完全正确的一项是()A.琴弦.(xuán)祸.患(huò)拧开渺小B.爱憎.(zènɡ)轧.伤(yà)接触粱国C.天赋.(fù)造诣.(yì)亨乐团结D.窈窕.(tiǎo)困窘.(jiǒnɡ)痴迷胚胎2.将下列词语依次填入句中的括号里,最恰当的一项是()①形态②形状③复杂④繁杂⑤堂堂⑥堂皇⑦持续⑧继续(1)大拇指在五指中,()实在算不上美。

(2)食指的工作虽不如大拇指吃力,却比大拇指()。

(3)五指中地位最优、相貌最()的,无如中指。

(4)高年级,离我们是那样遥远,而飞行却仍在()。

A.①④⑥⑧B.②④⑥⑧C.②③⑥⑧D.②③⑥⑦3.下列句子中,加点词语运用不正确的一项是()A.我绞尽脑汁....思考这个问题的答案。

B.他的姿态可不如其他三指窈窕,都是直直落落....的强硬的线条。

C.我的身体是那样轻盈,可以为所欲为....,运转自如。

D.年轻的女教师板着面孔一本正经....讲人的起源。

4.“我明白了——世界上的重大发现,有时还会给人带来被驱逐和被迫害的风险。

综合解析青岛版九年级数学下册第8章投影与识图专项训练试题(名师精选)

综合解析青岛版九年级数学下册第8章投影与识图专项训练试题(名师精选)

九年级数学下册第8章投影与识图专项训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图是由一些完全相同的小立方块搭成的几何体从左面、上面看到的形状图.搭成这个几何体所用的小立方块的个数至少是()A.3个B.4个C.5个D.6个2、如图,圆柱的主视图()A.是轴对称图形但不是中心对称图形B.是中心对称图形但不是轴对称图形C.既是轴对称图形又是中心对称图形D.既不是轴对称图形又不是中心对称图形3、下列几何体中,俯视图为三角形的是()A.B.C.D.4、如图是由几个小立方体所搭成的几何体从上面看到的平面图形,小正方形中的数字表示在该位置小立方体的个数,则这个几何体从正面看到的平面图形为()A.B.C.D.5、下列四个几何体中,主视图与俯视图不同的几何体是()A.B.C.D.6、如图,几何体的左视图是()A.B.C.D.7、如图所示的立体图形,从上面看到的是()A.B.C.D.8、已知一个物体由x个相同的正方体堆成,从它的正面看到的形状图和从左面看到的形状图如图,那么x的最小值、最大值是()A.5,12 B.6,11 C.7,10 D.8,129、如图是由7个相同的小正方体搭成的几何体,则该几何体的主视图是()A.B.C.D.10、如图所示的几何体的主视图是()A.B.C.D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图所示是给出的几何体从三个方向看到的形状,则这个几何体最多由___个小正方体组成.2、如图是某几何体的三视图.已知主视图和左视图是两个全等的矩形,俯视图是直径等于2的圆,若矩形的长为3,宽为2,则这个几何体的体积为_________.3、如图,一个正方体由64块大小相同的小正方体搭成,现从中取走若干个小立方体块,得到一个新的几何体,新几何体与原几何体的三视图(从正面、从左面、从上面看到的所搭几何体的形状图)相同,最多取走___块小立方体块.4、根据三视图,这个几何体的侧面积是 ___.5、如图是一个无底帐篷的三视图,该帐篷的表面积是_______(结果保留π).三、解答题(5小题,每小题10分,共计50分)1、某食品包装盒抽象出的几何体的三视图如图所示.(俯视图为等边三角形)(1)写出这个几何体的名称;(2)若矩形的长为10cm,等边三角形的边长为4cm,求这个几何体的表面积.2、如图,这是由5个小正方体搭成的几何体,请分别画出从正面、左面、上面看所得到的平面图形.3、如图,是由5个正方体组成的图案,请在方格纸中分别画出它的从正面看、从左面看、从上面看的形状图.4、如图所示的几何体是由几个相同的小正方体排成2行组成的.(1)填空:这个几何体由_______个小正方体组成;(2)画出该几何体的三个视图.(3)若每个小正方体的边长为1cm,则这个几何体的表面积为cm25、如图,是由若干个完全相同的小正方体组成的一个几何体.从左面、上面观察如图所示的几何体,分别画出你所看到的平面图形.-参考答案-一、单选题1、C【解析】【分析】根据从左面看到的形状图,可得该几何体由2层,2行;从上面看到的形状图可得有2行,3列,从而得到上层至少1块,底层2行至少有3+1=4块,即可求解.【详解】解:根据从左面看到的形状图,可得该几何体由2层,2行;从上面看到的形状图可得有2行,3列,所以上层至少1块,底层2行至少有3+1=4块,所以搭成这个几何体所用的小立方块的个数至少是1+4=5块.故选:C【点睛】本题主要考查了几何体的三视图,熟练掌握三视图是观测者从三个不同位置观察同一个几何体,画出的平面图形;(1)从正面看:从物体前面向后面正投影得到的投影图,它反映了空间几何体的高度和长度;(2)从左面看:从物体左面向右面正投影得到的投影图,它反映了空间几何体的高度和宽度;(3)从上面看:从物体上面向下面正投影得到的投影图,它反应了空间几何体的长度和宽度是解题的关键.2、C【解析】【分析】根据圆柱可得其主视图为长方形,由轴对称(指在平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形)与中心对称图形(在平面内,把一个图形绕着某个点旋转180 ,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形)的定义即可判断.【详解】解:圆柱的主视图是长方形,∴长方形既是轴对称图形又是中心对称图形.故选:C.【点睛】题目主要考查简单几何体的三视图,轴对称及中心对称图形的定义,理解轴对称及中心对称图形的定义是解题关键.3、C【解析】【分析】依题意,对各个图形的三视图进行分析,即可;【详解】由题知,对于A选项:主视图:三角形;侧视图为:三角形;俯视图为:有圆心的圆;对于B选项:主视图:三角形;侧视图为:三角形;俯视图为:四边形;对于C选项:主视图:长方形形;侧视图为:两个长方形形;俯视图为:三角形;对于D选项:主视图:正方形;侧视图:正方形;俯视图:正方形;故选:C【点睛】本题考查几何图形的三视图,难点在于空间想象能力及画图的能力;4、B【解析】【分析】几何体从上面看到的每个数字是该位置小立方体的个数,可得从正面看共有3列,2层,从左往右的每列的小立方体的个数为1,2,1,从上往下的每层的小立方体的个数为1,3,即可求解【详解】解:几何体从上面看到的每个数字是该位置小立方体的个数,可得从正面看共有3列,2层,从左往右每列的小立方体的个数为1,2,1,从上往下每层的小立方体的个数为1,3,所以这个几何体从正面看到的平面图形为故选:B【点睛】本题主要考查了几何体的三视图,熟练掌握三视图是观测者从三个不同位置观察同一个几何体,画出的平面图形;(1)从正面看:从物体前面向后面正投影得到的投影图,它反映了空间几何体的高度和长度;(2)从侧面看:从物体左面向右面正投影得到的投影图,它反映了空间几何体的高度和宽度;(3)从上面看:从物体上面向下面正投影得到的投影图,它反应了空间几何体的长度和宽度是解题的关键.5、C【解析】【分析】正方体的主视图与俯视图都是正方形,圆柱横着放置时,主视图与俯视图都是长方形,球体的主视图与俯视图都是圆形,只有圆锥的主视图与俯视图不同.【详解】解:A、正方体的主视图与俯视图都是正方形,选项不符合题意;B、圆柱横着放置时,主视图与俯视图都是长方形,选项不符合题意;C、圆锥的主视图与俯视图分别为圆形、三角形,故符合题意;D、球体的主视图与俯视图都是圆形,故不符合题意.故选:C.【点睛】本题考查了简单的几何体的三视图,从不同方向看物体的形状所得到的图形可能不同.6、C【解析】【分析】找到从左面看所得到的图形,比较即可.【详解】解:观察可知,从物体的左边看是一个竖长横短的长方形,由于右边有一条横向棱被遮挡看不见,画为虚线,如图所示的几何体的左视图是:.故选C.【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.7、C【解析】【分析】从上往下俯看,即可得到俯视图.【详解】解:观察几何体,可知俯视图为2个正方形组成的长方形【点睛】本题考查了几何体俯视图.解题的关键在于掌握观察俯视图的方法.8、B【解析】【分析】根据主视图可知正方体堆成有2层,3列,上层有2个正方体,根据左视图可知正方体堆成有3排,2层,上层有1个正方体,可知上层只有2个正方体,且2个正方体在第三排上,下层最多有9个正方体,最少有4个正方体,即可得答案.【详解】由左视图可知正方体堆成有3列,2层,上层有2个正方体,左视图可知正方体堆成有3排,2层,上层有1个正方体,∴上层只有2个正方体,且2个正方体在第三排上,∴当第一排、第二排的正方体错位摆放时,下层正方体数量最少为2+2=4个,当下层全摆放时,正方体数量最多为3×3=9个,∴x的最小值是4+2=6个、最大值是9+2=11个,故选:B.【点睛】本题考查三视图,正确判断下层正方体的个数的最大值和最小值是解题关键.9、A【解析】【分析】根据从正面看到的图形,几何体的主视图有3列,每列小正方形数目分别为3,2,1判断即可.解:从正面看到的图形,几何体的主视图有3列,每列小正方形数目分别为3,2,1,如图所示:故选:A【点睛】此题考查了三视图,解题关键是明确主视图、左视图、俯视图是分别从物体正面、侧面和上面看所得到的图形.10、A【解析】【分析】根据从正面看得到的图形是主视图,可得答案.【详解】解:从正面看,如图:故选:A.【点睛】本题考查了简单组合体的三视图,从正面看得到的图形是主视图,从上边看得到的图形是俯视图,从左边看得到的图形是左视图.二、填空题1、11【分析】从俯视图中可以看出最底层小立方块的个数及形状,从主视图可以看出每一层小立方块的层数和个数,从左视图可看出每一行小立方块的层数和个数,从而算出总的个数.【详解】解:研究该几何体最多由多少个小正方形组成,由俯视图易得最底层小立方块的个数为5,由其他视图可知第二层有5个小立方块,第三层有1个小立方块,即如下图:那么共最多由55111++=个小立方块.故答案为:11.【点睛】本题考查了学生对三视图的掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查,解题的关键是掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.2、3π【解析】【分析】根据三视图可知这个几何题为圆柱体,进而根据圆柱体的体积等于底面积乘以高即可求得【详解】主视图和左视图是两个全等的矩形,俯视图是直径等于2的圆,∴这个几何题为圆柱体,∴这个圆柱体体积为2133ππ⨯⨯=故答案为:3π【点睛】本题考查了根据三视图还原几何体,掌握基本几何体的三视图是解题的关键.3、8【解析】【分析】由题意得,只需保留原几何的最外层和底层,最中间有8块,即可得.【详解】解:∵新几何体与原几何体的三视图相同,∴只需保留原几何的最外层和底层,⨯⨯=(块),∴最中间有2228故答案为:8.【点睛】本题考查了正方体的三视图,解题的关键是掌握正方体的三视图.4、200π【解析】【分析】根据三视图确定几何体为圆柱,侧面积为2πrh,结合主视图确定h,结合俯视图确定底面圆的直径,计算即可.【详解】∵,∴几何体为圆柱,且圆柱的高为h =20,底面圆的直径为10,∴侧面积为2πrh =10×20×π=200π.故答案为:200π.【点睛】本题考查了几何体的三视图,结合体侧面积计算,熟练掌握常见几何体的三视图及其侧面积计算公式是解题的关键.5、100π【解析】【分析】根据三视图得到每顶帐篷由圆锥的侧面和圆柱的侧面组成,且圆锥的母线长为8,底面圆的半径为5210=÷,圆锥的高为6,由于圆锥的侧面展开图为一扇形,圆柱的侧面展开图为矩形,则根据扇形的面积公式和矩形的面积公式分别进行计算,然后求它们的和积.【详解】解:根据三视图得圆锥的母线长为8,底面圆的半径为5210=÷, 所以圆锥的侧面积1258402ππ=⨯⨯⨯=,圆柱的侧面积25660ππ=⨯⨯=,所以每顶帐篷的表面积4060100πππ=+=.故答案为:100π.【点睛】本题考查了圆锥的计算,三视图,解题的关键是掌握圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.三、解答题1、 (1)这个几何体是三棱柱;(2)这个几何体的侧面面积为cm2.【解析】【分析】(1)根据三视图的知识,主视图以及左视图都是长方形,俯视图为三角形,故可判断出该几何体是三棱柱;(2)表面积为3个长方形加上两个等边三角形的面积,即可.(1)解:这个几何体是三棱柱;(2)解:三棱柱的侧面展开图形是长方形,长方形的长是等边三角形的周长即C=4×3=12(cm),根据题意可知主视图的长方形的长是三棱柱的高,所以三棱柱侧面展开图形的面积为:S=12×10=120(cm2).过点A作AD⊥BC于点D,∵△ABC是等边三角形,∴∠B =60°,∠BAD =30°,BD =DC ,∵AB =BC =4,BD =DC =2,∴AD=∴S △ABC =12BC ⨯AD =cm 2),这个几何体的表面积为cm 2),答:这个几何体的侧面面积为cm 2.【点睛】本题主要考查由三视图确定几何体和求几何体的面积等相关知识,考查学生的空间想象能力.注意:棱柱的侧面都是长方形,上下底面是几边形就是几棱柱.2、见解析【解析】【分析】从正面看到4个小正方形,上层1个,下层3个,从左面看到3个小正方形,上层1个,下层2个,从上面看4个小正方形,上层3个,下层1个,再把看到的小正方形结合其所在位置画图即可.【详解】解:如图所示,【点睛】本题考查的是由小正方体堆砌图形的三视图,掌握“三视图的含义及画堆砌图形的三视图”是解本题的关键.3、见解析.【解析】【分析】从正面看有2排,左边3层,右边2层;从左面看1排,3层;从上面看2排,每排1层,再画图即可.【详解】解:如图所示:【点睛】本题考查的是小正方体堆砌图形的三视图,掌握“三视图的含义”是画图的关键.4、(1)7;(2)见解析;(3)228cm【解析】【分析】(1)根据题意得:这个几何体有3列,从左往右第一列4个小正方体,第二列2个小正方体,第三列1个,即可求解;(2)根据几何体的三视图的画法,画出图形,即可求解;(3)根据几何体的表面积公式,即可求解.【详解】解:(1)根据题意得:这个几何体有3列,从左往右第一列4个小正方体,第二列2个小正方体,第三列1个,∴这个几何体由4+2+1=7个小正方体组成;(2)该几何体的三个视图如图所示:(3)根据题意得:这个几何体的表面积为2111611711528cm⨯⨯+⨯⨯+⨯⨯=.【点睛】本题主要考查了画几何体的三视图,求几何体的表面积,熟练掌握几何体三视图的特征是解题的关键.5、见解析【解析】【分析】根据几何体的三视图画法作图.【详解】解:如图,.【点睛】此题考查了画小正方体组成的几何体的三视图,正确掌握几何体的三视图的画图方法是解题的关键.。

2022年必考点解析沪教版(上海)六年级数学第二学期第八章长方体的再认识综合训练试题(精选)

2022年必考点解析沪教版(上海)六年级数学第二学期第八章长方体的再认识综合训练试题(精选)

六年级数学第二学期第八章长方体的再认识综合训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、十八世纪瑞士数学家欧拉证明了简单多面体中顶点数()V、面数()F、棱数()E之间存在的一个有趣的关系式:2+-=,被称为欧拉公式.若某个玻璃饰品的外形是简单多面体,它的外表面是V F E由三角形和八边形两种多边形拼接而成,且有24个顶点,每个顶点处都有3条棱,设该多面体外表+的值为()三角形的个数为x个,八边形的个数为y个,求x yA.12 B.14 C.16 D.182、用一个平面去截正方体,截面的形状不可能是()A.四边形B.五边形C.六边形D.七边形3、一个正方体的平面展开图如图所示,将它折成正方体后,与汉字“文”相对的面上的汉字是()A.创B.明C.山D.西4、如图是一个由5个相同的正方体组成的立体图形,它的左视图是()A.B.C.D.5、如图,这个几何体由5个大小相同的小立方块搭成,它的主视图是()A. B.C. D.6、如图是某几何体的三视图,该几何体是()A.圆柱B.三棱锥C.三棱柱D.正方体7、下图是由5个大小相同的正方体组成的立体图形,其俯视图...是()A.B.C.D.8、一个圆锥的底面直径是圆柱底面直径的3倍,如果它们的高相等,那么圆锥体积是圆柱体积的()A.3倍B.13C.9倍D.199、下列几何体中,每个面都是由同一种图形组成的是()A.圆柱B.圆锥C.三棱柱D.正方体10、如图所示的几何体的俯视图是()A.B.C.D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如果把骰子看作是一个正方体,点数1的对面是6,点数5的对面是2,点数4的对面是3,则与点数是3的面垂直的所有的面的点数和是_______.2、直线PQ垂直于平面ABCD,记作:______________.3、如图,一个正方体截去一个角后,剩下的几何体面的个数和棱的条数分别为_____.4、把一个长方体截成两个长方体后,棱的数量增加了__________条.5、如果长方体的长、宽、高之和为12cm,则它的棱长总和为_______cm.三、解答题(5小题,每小题10分,共计50分)1、补画下列图形,使它成为长方体.(注意:遮住的线段应该用虚线表示)2、如图所示,补画长方体.3、如图是由几个小立方块所搭几何体从上面看到的图形,小正方形中的数字表示在该位置小立方块的个数,请画出相应几何体从正面、从左面看到的图形.4、(1)画出图中各物体的主视图、左视图和俯视图;(2)请找出一些类似形状的物体,并尝试画出它们的三种视图.5、如图是由9个相同的小立方体组成的一个几何体.(1)画出从正面看、左面看、上面看的形状图;(2)现量得小立方体的棱长为2cm,现要给该几何体表面涂色(不含底面),则涂上颜色部分的总面积是.-参考答案-一、单选题1、B【分析】得到多面体的棱数,求得面数即为x+y的值.【详解】解:∵有24个顶点,每个顶点处都有3条棱,两点确定一条直线;∴共有24×3÷2=36条棱,那么24+F−36=2,解得F=14,∴x+y=14.故选B.【点睛】本题考查多面体的顶点数,面数,棱数之间的关系及灵活运用.难点是熟练掌握欧拉定理.2、D【分析】正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形.因此截面的形状可能是:三角形、四边形、五边形、六边形.【详解】解:如图所示:用平面去截正方体时最多与六个面相交得六边形,因此截面的形状可能是:三角形、四边形、五边形、六边形,不可能是七边形.故选:D.【点睛】本题考查正方体的截面,正方体的截面的四种情况应熟记.3、D【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点可得答案.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,所以可得:“建”与“明”是相对面,“文”与“西”是相对面,“创”与“山”是相对面.故选:D.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体是空间图形,从相对面入手,分析及解答问题是解题的关键.4、A【分析】找到从几何体的左边看所得到的图形即可.【详解】解:从几何体的左边看有两层,底层两个正方形,上层左边一个正方形.故选:A.【点睛】此题主要考查了简单几何体的三视图,熟练掌握三视图的观察方法是解题的关键.5、A【分析】从正面看:共有3列,从左往右分别有1,2,1个小正方形,据此可画出图形.【详解】解:如图所示的几何体的主视图是,【点睛】考查简单组合体的三视图;用到的知识点为:主视图,左视图,俯视图分别是从物体的正面,左面,上面看得到的图形.6、C【分析】根据主视图和左视图都是高度相等的长方形,可判断该几何体是柱体,进而根据俯视图的形状,可判断柱体底面形状,得到答案.【详解】解:∵几何体的主视图和左视图都是高度相等的长方形,故该几何体是一个柱体,又∵俯视图是一个三角形,故该几何体是一个三棱柱,故选:C.【点睛】题考查的知识点是三视图,如果有两个视图为三角形,该几何体一定是锥,如果有两个矩形,该几何体一定柱,其底面由第三个视图的形状决定.7、A【分析】俯视图是从上往下看到的图形,注意能看到的棱都要体现出来,根据定义可得答案.【详解】解:从上往下看上层看到一个正方形,下层四个个正方形,所以看到的四个正方形,故选A.本题考查的是简单组合体的三视图,掌握三视图的含义是解题的关键.8、A【分析】设一个圆锥的底面直径为6a,则圆柱底面直径为2a,高为h,根据体积公式分别求出圆锥和圆柱的体积,故可比较求解.【详解】解:设一个圆锥的底面直径为6a,则圆柱底面直径为2a,高为h,∴圆锥的体积为13Sh=22 16332aaππ⎛⎫⨯⨯=⎪⎝⎭圆柱的体积为S’h=2222aa ππ⎛⎫⨯=⎪⎝⎭∴圆锥体积是圆柱体积的3倍故选:A.【点睛】此题主要考查等底等高的圆锥与圆柱体积之间关系的灵活运用,关键是明确:等底等高的圆锥的体积是圆柱体积的13.9、D【分析】分别找出每个图形的每个面是由什么图形组成的即可.【详解】解:A、圆柱是由长方形和圆组成的,故此选项不符合题意;B、圆锥是由扇形和圆组成,故此选项不符合题意;C、三棱柱是由三角形和长方形组成,故此选项不符合题意;D、正方体是由正方形组成,故此选项符合题意;故选:D.【点睛】此题主要考查了认识立体图形,关键是掌握各立体图形的形状.10、A【分析】根据从上边看得到的图形是俯视图,可得答案.【详解】解:从上边看,是一个三角形.故选:A.【点睛】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图是解题关键.二、填空题1、14【分析】根据正方体中面与面的位置关系知道除了点数是4的面,其他的面都与点数是3的面垂直.【详解】+++=.解:与点数是3的面垂直的所有的面的点数和是165214故答案是:14.【点睛】本题考查正方体中面与面的位置关系,解题的关键是搞清楚正方体中各个面的位置关系.2、直线PQ⊥平面ABCD【分析】根据平行与垂直的特征及性质可知:平行记做“∥”,垂直记做“⊥”,由此解答即可.【详解】解:直线PQ垂直于平面ABCD,记作:直线PQ⊥平面ABCD.故答案为:直线PQ⊥平面ABCD.【点睛】本题考查棱与平面的位置关系认识.明确平行和垂直的含义及平行和垂直的记做方法,是解答此题的关键.3、7,12【分析】正方体切一个顶点多一个面,少三条棱,又多三条棱,依此即可求解.【详解】解:如图,一个正方体截去一个角后,剩下的几何体面的个数是6+1=7,棱的条数是12﹣3+3=12故答案为:7,12【点睛】此题考查了截一个几何体,解决本题的关键是找到在原来几何体的基础上增加的面和棱数.4、12【分析】把一个长方体截成两个长方体之后,棱长个数从一个长方体的棱长个数变成两个长方体的棱长个数.【详解】一个长方体棱长个数是12,截成两个之后棱长个数变成24,所以增加了12条.故答案是:12.【点睛】本题考查长方体棱的性质,解题的关键是熟悉长方体棱的个数.5、48【分析】根据长方体的棱长计算公式计算即可;【详解】长方体的棱长和41248cm=⨯=;故答案是48.【点睛】本题主要考查了长方体的棱长计算,准确计算是解题的关键.三、解答题1、画图见详解【分析】直接根据长方体的概念进行作图即可.【详解】【点睛】本题主要考查长方体的概念,关键是根据长方体的概念进行作图即可.2、作图见解析【分析】根据长方体的形状画图即可;【详解】如图所示,长方体1111ABCD A B C D 即为所求;【点睛】本题主要考查了长方体的作图,准确画图是解题的关键.3、见解析【分析】由已知条件可知,从正面看有3列,每列小正方数形数目分别为3,2,2;从左面看有2列,每列小正方形数目分别为3,2.据此可画出图形.【详解】解:如图所示:.【点睛】本题考查了三视图,解题关键是明确从不同方向看到的小正方体个数及位置.4、(1)见解析;(2)见解析主视图、左视图、俯视图是分别从物体正面、侧面和上面看,所得到的图形.依此即可求解.【详解】(1)第1个图可以看成圆柱与球的组合体;第2个图可以看成圆锥和半球的组合体,第3个图可以看成两个圆锥的组合体.它们的三种视图分别是:(2)【点睛】本题考查了几何体的三视图,由三视图判断几何体,注意所有的看到的棱都应表现在三视图中.5、 (1) 见解析;(2) 120cm2【分析】(1) 根据三视图的概念作图可得;(2)数出每个小正方体所需要涂色的面的个数,再求和即需要涂颜色的面的总数,然后计算出总面积【详解】解:(1)该几何体的三视图如下从正面看从左面看从上面看(2) 涂上颜色部分的总面积:2×2×(6×2+6×2+5+1)=120(cm2).【点睛】此题主要考查了作图,以及求几何体的表面积,关键是在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.。

2021-2022学年度强化训练沪科版八年级物理第八章 压强综合测试试题(含解析)

2021-2022学年度强化训练沪科版八年级物理第八章 压强综合测试试题(含解析)

沪科版八年级物理第八章压强综合测试考试时间:90分钟;命题人:物理教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图是冰壶比赛时的情景,运动员穿的两只鞋的鞋底材质并不相同:蹬冰脚的鞋底为橡胶制成,滑行脚的鞋底为塑料制成()A.蹬冰脚的鞋底能减小压力B.蹬冰脚的鞋底能减小摩擦C.滑行脚的鞋底能减小摩擦D.滑行脚的鞋底能增大压强2、如图所示,将甲、乙两个底面积都为S的容器放在水平桌面上。

甲是圆台形容器,其中盛有密度为ρ1的液体,乙是圆柱形容器,其中盛有密度为ρ2的液体,此时两液体液面相平,且质量相等,液体对甲、乙容器底部的压力分别为F1和F2,压强分别为p1和p2;将完全相同的两个物A、B分别轻放入甲、乙容器的液体中,静止后,两容器中均无液体溢出,此时与物块未浸入液体时相比,甲、乙容器底部所受液体压强的增加量分别为Δp1和Δp2,甲、乙容器底部对桌面的压强增加量分别为Δp3和Δp4。

已知物块的密度为ρ3,且ρ3<ρ1,ρ3<ρ2。

下列选项正确的是()A.p1=p2,F1>F2B.p1<p2,F1=F2C.Δp1=Δp2,Δp3<Δp4D.Δp1<Δp2,Δp3=Δp43、甲、乙是重为10N和20N的两柱形物体,重叠并置于水平面上,当它们分别受到F1=5N和F2=8N的水平拉力时保持静止(如图a所示);当甲受到F3=15N的拉力时,甲乙一起以1m/s的速度匀速向右运动(如图b所示);当把乙单独放在水平面上,用推力F4水平向右推乙,乙以2m/s的速度做匀速直线运动(如图c所示)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第八章综合训练
一、单项选择题(每小题3分,共24分)
1.关于力和运动的关系,下列说法正确的是()
A.物体不受力的作用时处于静止状态
B.做匀速直线运动的物体一定不受力
C.物体运动状态改变时,一定受到力的作用
D.物体运动速度越大其惯性越大
2.滑块被固定在光滑斜面底端的压缩弹簧弹出.滑块离开弹簧后沿斜面向上运动的过程中,不考虑空气阻力,下图中关于滑块的受力示意图正确的是()
3.下列关于惯性的说法正确的是()
A.太空中的宇航员不具有惯性B.物体运动时具有惯性,静止时不具有惯性C.汽车在转弯时减速,是为了防止惯性带来的危害
D.运动员起跑时用力蹬地,是为了增大惯性提高成绩
4.自行车的结构及使用涉及到不少摩擦力的知识,其中减小摩擦的是()
A.车把套上制作了花纹
B.给车轴加润滑油
C.轮胎的表面做得凹凸不平
D.刹车时用力捏闸柄,增大闸皮对车圈的压力
5.教室的门关不紧,常被风吹开.小明在门与门框之间塞入硬纸片后,门就不易被风吹开了.下列解释合理的是()
A.门被风吹开是因为门没有受到摩擦力的作用
B.门没被吹开是因为风吹门的力小于摩擦力
C.塞入硬纸片是通过增大压力来增大摩擦
D.塞入硬纸片是通过减小接触面的粗糙程度来减小摩擦
6.如图,在盛水杯子的杯口盖上明信片,将一枚鸡蛋放在明信片上.用手指将明信片弹飞,鸡蛋掉入水中.下列分析错误的是()
A.明信片被弹飞前,鸡蛋对明信片的压力和明信片
对鸡蛋的支持力相互平衡
B.明信片被弹飞,说明力能改变物体的运动状态
C.明信片被弹飞时,鸡蛋没有随明信片一起飞出去是由于鸡蛋具有惯性
D.明信片被弹飞后,鸡蛋掉入水中是由于受到重力
7.如图所示,物体甲重30N,被50N的水平压力F甲压在竖直墙壁上保持静止.物体乙重60N,在40N的水平拉力F乙作用下,沿水平桌面匀速向右运动.则甲受到的摩擦力f甲和乙受到的摩擦力f乙分别是()A.f甲=30N,f乙=60N B.f甲=30N,f乙=40N
C.f甲=50N,f乙=60N D.f甲=50N,f乙=40N
8.如图甲所示,完全相同的木块A和B叠放在水平桌面上,在12N的水平拉力F1作用下,A、B一起做匀速直线运动;如图乙所示,将A、B紧靠着放在同一水平桌面上,用水平力F2推A使它们一起匀速运动,则推力F2()
第8题第9题
A.小于12N B.大于12N C.等于12N D.无法判断
二、填空题(每空2分,共28分)
9.公安部要求小型客车的驾驶员和前排乘客必须使用安全带,因为一旦发生
碰撞,车身停止运动,而乘客身体由于继续向前运动,此时安全带会阻碍人体向前运动,这表明力可以改变物体的 .
10.如图所示,小球从斜面某一高度滚下至P点时,假设小球不再受任何力,小球将沿轨迹(选填“a”“b”“c”或“d”)运动,理由是 .
11.用5N的水平拉力拉着重10N的长方体木块在水平桌面上做匀速直线运动,木块受到桌面的摩擦力是N.将木块的三分之一切下后叠放在一起(不考虑质量损失),并拉着木块在同一桌面上做匀速直线运动,木块受到桌面的摩擦力(选填“增大”“减小”或“不变”).
12.自行车是我们熟悉的交通工具,从自行车的结构和使用来看,它涉及到不少有关摩擦的知识.例如:轮胎上刻有花纹,是通过来增大摩擦的:刹车时用力捏闸,是通过来增大摩擦的;滚动轴承的内外圈之间装有钢球或钢柱,是通过来减小摩擦的.
13.如图所示,用手握住重5N的瓶子,手与瓶子间的摩擦是静摩擦,此时瓶子受到的静摩擦力大小为N,方向为(选填“竖直向下”
或“竖直向上”).增大手对瓶子的握力,瓶子受到的静摩擦力将(选填“增大”“减小”或“不变”).
第13题图第14题图第15题图
14.如图所示,在15N的水平拉力F作用下,木板A在水平地面匀速向右运动的过程中,物体B相对于地面静止,此时弹簧测力计的示数为3N,则B所受滑动
摩擦力方向水平向(选填“左”或“右”),A受到地面的摩擦力大小为N.
三、作图题(共12分)
15.(7分)被细绳拴着的小球在水平面绕O点做圆周运动,轨迹图如图中虚线所示,不计阻力,某时刻细绳断,小球速度为v,过一段时间小球出现在P 点,速度为v′(如图).v v′(选填“>”“=”或“<”).作图找出细绳断时小球的位置,用点在轨迹图上表示.
16.(5分)某人随小车在水平地面上做匀速直线运动,画出人的受力示意图.
四、实验探究题(每小题12分,共36分)
17.如图是探究牛顿第一定律的实验示意图.
第16题第17题
(1)本实验多次用到控制变量的方法,如:①实验中让同一小车从同一斜面的同一高度自由滑下是为了 .
②使用同一辆小车,还可以保证小车对水平面的不变,摩擦力只与平面的粗糙程度有关.
(2)本探究中,我们得出了的结论是:水平面越光滑,小车受到的摩擦力越,小车的距离越,小车速度变化越.
(3)对实验结论进行合理外推,假若平面足够光滑,小车在水平方向不受力,小车将做,在此基础上牛顿总结了前人的研究成果,概括出了牛顿第一定律.
18.小伟要探究“滑动摩擦力的大小与什么因素有关”,他猜想影响滑动摩擦力大小的因素可能有:
①接触面所受的压力大小;②接触面的粗糙程度;③接触面积的大小.
接下来小伟通过下图所示实验操作验证他的猜想:
(1)实验中小伟应该用弹簧测力计水平拉动木块在长木板上滑动,这样做是根据的知识得出拉力等于摩擦力,从而测出木块所受的摩擦力的大小.
(2)如果小伟要探究猜想②,他应该选择两幅图所示的实验步骤来操作,根据图中弹簧测力计的示数可得出结论:在其他因素相同的情况下,,滑动摩擦力越大.
(3)小伟要探究猜想③,他将木块切去一半,重复甲的操作过程,如图丁所示.他比较甲和丁的实验结果,得出结论:滑动摩擦力的大小与接触面积的大小有关.你认为他的结论可靠吗?
答: .
小伟在实验中存在的问题是 .
19.在“探究二力平衡条件的实验”中,李红与王明的实验装置分别如图甲、乙所示.
(1)实验中应让研究对象处于状态.甲图中如果木块与桌面间的摩擦力较大,请你想出改进实验的办法 .
(2)王明的实验方案与李红的相比区别为 .
A.有效地克服了研究对象与支撑面之间的摩擦力对实验的影响
B.有效地克服了研究对象与支撑面之间的支持力对实验的影响
C.有效地克服了二力不在一条直线上的弊端
D.有效地减小了研究对象的质量对实验的影响
(3)图乙所示实验中,小卡片的质量要尽可能 .在小卡片静止时,小
明将小卡片顺时针转一个角度,松手后小卡片将会转动,此现象说明二力平衡的两个力必须 .
(4)请举出匀速行驶在平直公路上的汽车所受的一对平衡力 .。

相关文档
最新文档