精选最新七年级下册数学第八章综合训练
人教版七年级数学下册第八章测试题及答案精选全文完整版
可编辑修改精选全文完整版最新人教版七年级数学下册第八章测试题及答案第8章二元一次方程组班级 姓名 成绩__________一、相信你的选择(每小题3分,共30分)1、下列给出的方程中,是二元一次方程的是( )A 、5=xyB 、y x 56=C 、61=+yx D 、642=+y x 2、下列二元一次方程组中,以 21==y x 为解的是( ) A 、 531=+=-y x y x B 、 531-=+=-y x y x C 、 5332=+-=-y x y x D 、 433=+=-y x y x 3、解方程组 .328,1258=-=+y x y x 比较简便的方法是( ) A 、代入法 B 、加减法 C 、试数法 D 、无法确定4、若方程组.9.3053,1332=+=-b a b a 的解是 .2.1,3.8==b a 则方程组 .9.30)1(5)2(3,13)1(3)2(2=-++=--+y x y x 的解是( ) A 、 2.23.6==y x B 、 2.13.8==y x C 、 2.23.10==y x D 、 2.03.10==y x 5、若二元一次方程123=-y x 的解为正整数,则x 的值为( )A 、奇数B 、偶数C 、奇数或偶数D 、06、已知 .83,123=+=+y x y x 那么y x +的值是( ) A 、0 B 、5 C 、1- D 、17、如果0124323=+---m n n m y x 是二元一次方程,那么m 、n 的值分别为( )A 、2、3B 、2、1C 、1- 、2D 、3、48、一个两位数,他的个位数与十位数的和为4,那么符合条件的两位数为( )A 、3个B 、4个C 、5个D 、无数个9、在向汶川地震灾区献爱心活动中,西关小学捐给五年级一批图书,如果该年级每个同学分6本还差6本,如果 每个同学分5本则多出5本,则五年级共有同学( )名。
最新人教版七年级数学下册第八章同步测试题及答案
最新人教版七年级数学下册第八章同步测试题及答案第八章 二元一次方程组8.1 二元一次方程组一、选择题1.下列方程,是二元一次方程的是( ).A .3x -2y =4zB .6xy +9=0C .1x +4y =6 D .4x =24y -2.下列方程中,属于二元一次方程组的是( ).A .213+=,=yx y x ⎧⎪⎨⎪⎩ B .3526-=,-=x y y z ⎧⎨⎩C .15210+=,-=x xxy ⎧⎪⎨⎪⎩ D .3026-=,-=x y x ⎧⎨⎩3.方程y =1-x 与3x +2y =5的公共解是( ).A .32=,=x y ⎧⎨⎩ B .34=-,=x y ⎧⎨⎩C .32=,=-x y ⎧⎨⎩ D .32=-,=-x y ⎧⎨⎩4.方程kx +3y =5有一组解是21==x y ⎧⎨⎩,则k 的值是( ).A .1B .-1C .0D .25.已知二元一次方程组545329+=,①+=,②x y x y ⎧⎨⎩下列说法正确的是().A .同时适合方程①和②的x y ,的值是方程组的解B .适合方程①的x y ,的值是方程组的解C .适合方程②的x y ,的值是方程组的解D .同时适合①②的x y ,值不一定是方程组的解6.已知方程52411123+--=m nx y 是二元一次方程,则m ,n 的值是( ).A .414=,=m n ⎧⎪⎨⎪⎩B .414=-,=m n ⎧⎪⎨⎪⎩ C .414=,=-m n ⎧⎪⎨⎪⎩ D .414=-,=-m n ⎧⎪⎨⎪⎩ 7.二元一次方程x +3y =7中的非负整数解的个数是( ).A .1个B .2个C .3个D .4个8.方程3x +4y =16与下面哪个方程所组成的方程组的解是41=,=x y ⎧⎨⎩( ). A .1372+=x y B .357-=x y C .1784-=x y D .23(-)=x y y 二、填空题1.若33125m n x y ---=是二元一次方程,则m =________,n =________.2.已知23x y -⎧⎨⎩=,=是方程1-=x ky 的解,那么k =________. 3.已知,且,则k =________.4.二元一次方程x +y =5的正整数解有________.5.以57x y ⎧⎨⎩=,=为解的一个二元一次方程是________. 三、解答题1.如果(a -2)x +(b +1)y =13是关于x ,y 的二元一次方程,则a ,b 满足什么条件?2.根据题意列出方程组:(1)明明到邮局买0.8元与2元的邮票共13枚,共花去20元钱,问明明两种邮票各买了多少枚? (2)将若干只鸡放入若干笼中,若每个笼中放4只,则有一鸡无笼可放;若每个笼里放5只,则有一笼无鸡可放,问有多少只鸡,多少个笼?3.是否存在整数m ,使关于x 的方程2x +9=2-(m -2)x 在整数范围内有解,你能找到几个m 的值?你能求出相应的x 的解吗?21(21)0-++=x y 24=x ky -参考答案一、1.D.2.D.3.C.4.A.5.A.6.B.7.B.8.B.二、1. 2 2.-13.44.14=,=;xy⎧⎨⎩23=,=;xy⎧⎨⎩32=,=;xy⎧⎨⎩41=,=.xy⎧⎨⎩5.如x+y=12三、1.∵(a-2)x+(b+1)y=13是关于x,y的二元一次方程,∴a-2≠0,b+1≠0,∴a≠2,b≠-1.提示:此题中,若要满足含有两个未知数,需使未知数的系数不为0.若系数为0,则该项就是0.2.(1)设0.8元的邮票买了x枚,2元的邮票买了y枚,根据题意得130.8220+=,+=.x yx y⎧⎨⎩(2)设有x只鸡,y个笼,根据题意得415(1)y xy x ⎧⎨⎩+=,-=.3.存在四组.∵原方程可变形为-mx=7,∴当m=1时,x=-7;当m=-1时,x=7;当m=7时,x=-1;当m=-7时,x=1.8.2 消元解二元一次方程组一、选择题(每小题只有一个正确答案)1.已知二元一次方程组①②,如果用加减法消去n,则下列方法可行的是()A. ①×4+②×5B. ①×5+②×4C. ①×5-②×4D. ①×4-②×52.把方程2x+3y﹣1=0改写成含x的式子表示y的形式为()A. y=(2x﹣1)B. y=(1﹣2x)C. y=3(2x﹣1)D. y=3(1﹣2x)3.方程组1{25x yx y-=+=的解是()43A. 1{ 2x y =-=B. 2{ 1x y ==-C. 1{ 2x y ==D. 2{ 1x y == 4.已知方程组:的解是 ,则方程组: 的解是( ) A. B. C. D.5.用加减消元法解方程组358{ 752x y x y -=+=将两个方程相加,得() A. 3x=8 B. 7x=2 C. 10x=8 D. 10x=106.已知二元一次方程2x +3y -2=0,当x ,y 互为相反数时,x ,y 的值分别为( )A. 2,-2B. -2,2C. 3,-3D. -3,37.已知23x y --+(2x +y +11)2=0,则( )A. 2,{ 1x y ==B. 0,{ 3x y ==-C. 1,{ 5x y =-=-D. 2,{ 7x y =-=- 二、填空题8.如果方程组 ,的解是方程 的一个解,则 的值为____________. 9.若方程组 与有相同的解,则a= ________,b= ________. 10.方程组313{ 3131x y x y +=-=-的两个方程只要两边_______,就可以消去未知数_______. 11.若6{ 20x y x y -=+=,则32x y +=__________________. 12.如图,分别用火柴棍连续搭建正三角形和正六边形,公共边只用一根火柴棍.如果搭建正三角形和正六边形共用了2016根火柴棍,并且正三角形的个数比正六边形的个数多6个,那么能连续搭建正三角形的个数是__________三、解答题13.解方程组:(1);(2) .14.()() 344 {126x y x yx y x y+--=+-+=15.用合适的方法解下列方程组:(1)402{3222y xx y=-+=(2)235{421x yx y+=-=(3)6515{33x yx y+=-=-16.甲、乙两人解关于x, y的方程组,甲因看错a,解得,乙将其中一个方程的b 写成了它的相反数,解得,求a、b 的值.参考答案1.B【解析】方程组①②中如果用加减法消去n,则需要5×①+4×②.故选B.2.B【解析】把2x+3y-1=0改写成含x的式子表示y的形式:3y=-2x+1,∴.故选B.3.D【解析】1{25x yx y-=+=①②,①+②得:3x=6,解得:x=2,把x=2代入①得:y=1,∴2{1xy==.故选D.4.C【解析】在方程组()()()()中,设x+2=a,y﹣1=b,则变形为方程组,由题知:,所以x+2=8.3,y﹣1=1.2,即.故选C.5.D【解析】将两个方程相加,得:10x=10,故选D.6.B【解析】根据题意可得出方程组为:232{x yx y+=+=,解得:2{2xy=-=,故选B.7.D【解析】由题意,得230{2110x yx y--=++=,解得2{7xy=-=,故选D.8.2【解析】求出方程组的解得到x与y的值,代入方程计算即可求出m的值.详解:①②,①+②×3得:17x=34,即x=2,把x=2代入①得:y=1,把x=2,y=1代入方程7x+my=16得:14+m=16,解得:m=2.9.32【解析】 ① ②②变形为:y =2x −5,代入①,得x =2,将x =2代入②,得4−y =5,y =−1.把x =2,y =−1代入 ,得 ,把b =4a −10代入2a+3b=12,得2a +12a −30=12,a =3,代入,得b =2.∴a =3,b =2.10.相减x【解析】两式中x 的系数相等,两式相减,得4y=4,消去x.11.812.292【解析】试题解析:设连续搭建正三角形的个数为x 个,连续搭建正六边形的个数为y 个,由题意得21512016{ 6x y x y +++=-= 解得:292{ 286x y == 因此,能连续搭建正三角形292个.13.(1) ;(2)【解析】(1)由①×2+②得:11x=33,解得x=3,把x=3代入①得:3×3-y=5,解得y=4,∴原方程组的解为; (2)由①×3-②×2得:-5y=-5,解得:y=1,把y=1代入方程①得:2x-7×1=5,解得:x=6,∴原方程组的解为.14.1715{ 1115x y == 15.(1)58{ 76x y ==-; (2)1316{ 98x y ==; (3)0{ 3x y == 【解析】(1)将①代入②得,()3240222,x x +-=得:x=58,将x=58代入①,得:y=-76.故原方程组的解为58{ 76x y ==- (2)①×2得,4x+6y=10③,③-②得:8y=9,y=98,将y=98代入①,得:1316x =, 故原方程组的解为:1316{ 98x y == (3)②×5得:15x-5y=-15③,①+③,得21x=0,解得:x=0,将x=0代入②得:y=3.故原方程组的解为:0{3x y ==. 16.a =-2,b =3.【解析】将分别代入4x −by =−1得:8−3b =−1, 解得:b =3,将x =−1,y =−1代入4x +3y =−1后,左右两边不相等,故:ax −3y =5,将x =−1,y =−1代入后可得:−a +3=5,解得:a =−2,一、选择题(每小题只有一个正确答案)1.如图所示的两台天平保持平衡,已知每块巧克力的质量相等,且每个果冻的质量也相等,则每块巧克力和每个果冻的质量分别为( )A. 10g ,40gB. 15g ,35gC. 20g ,30gD. 30g ,20g2.甲、乙两人练习跑步,若乙先跑10米,则甲跑5秒就可以追上乙;如果乙先跑2秒,甲跑4秒就可以追上乙.设甲的速度为x米/秒,乙的速度为y米/秒,根据题意,下列选项中所列方程组正确的是( )A.5510{424x yx y y-==+B.5510{424x yx y-=-=C.5510{424x yx x y-=-=D.5105{424x yx y+=-=3.某公司向银行申请了甲、乙两种贷款共计68万元,每年需付出8.42万元利息,已知甲种贷款每年的利率为12%,乙种贷款每年的利率为13%,则该公司甲、乙两种贷款的数额分别为()A. 26万元,42万元B. 40万元,28万元C. 28万元,40万元D. 42万元,26万元4.已知甲、乙两种商品的原价和为200元,因市场变化,甲商品降价10%,乙商品提高10%,调价后甲、乙两种商品的单价和比原单价和提高了5%,求甲、乙两种商品的原单价分别是()A. 50元,150元B. 150元,50元C. 80元,120元D. 120元,80元5.一种饮料大小包装有3种,1个中瓶比2小瓶便宜2角,1个大瓶比1个中瓶加1个小瓶贵4角,大、中、小各买1瓶,需9元6角,若设小瓶单价为x角,大瓶为y角,可列方程为()A.398{32x yy x+=-=B.398{32x yy x+=+=C.298{34x yy x+=-=D.398{24x yx y-=+=6.扬州某中学七年级一班40名同学为灾区共捐款2 000元,捐款情况如下表:表格中捐款40元和50元的人数不小心被墨水污染已看不清楚.设捐款40元的有x名同学,捐款50元的有y名同学,根据题意,可得方程组( )A. B.C. D.7.某市举办花展,如图所示,在长为14m,宽为10m的长方形展厅划出三个形状、大小完全一样的小长方形摆放水仙花,则每个小长方形的周长为()A. 8mB. 13mC. 16mD. 20m8.我国民间流传着许多趣味算题,他们多以顺口溜的形式表达.请大家看这样的一个数学问题:一群老头去赶集,半路买了一堆梨,一人一个多一梨,一人两个少二梨,请问君子知道否,几个老头几个梨?请你猜想一下:几个老头几个梨?( ) A. 3个老头4个梨 B. 4个老头3个梨 C. 5个老头6个梨 D. 7个老头8个梨 二、填空题9.对于有理数,规定新运算:x ※y =ax +by +xy ,其中a 、b 是常数,等式右边的是通常的加法和乘法运算。
人教版七年级数学下册第八章综合检测卷含答案
人教版七年级数学下册第八章综合检测卷一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列方程组中,是二元一次方程组的是( )A .⎩⎪⎨⎪⎧x +13=1,y =x 2B .⎩⎨⎧3x -y =5,2y -z =6C .⎩⎪⎨⎪⎧x 5+y 2=1,xy =1D .⎩⎪⎨⎪⎧x 2=3,y -2x =42.【教材P 93练习T 1变式】已知2x -3y =1,用含x 的式子表示y 正确的是( )A .y =23x -1B .x =3y +12C .y =2x -13D .y =-13-23x3.已知⎩⎨⎧x =1,y =2是关于x ,y 的方程x +ky =3的一个解,则k 的值为( )A .-1B .1C .2D .34.用代入法解方程组⎩⎨⎧2y -3x =1,x =y -1,下面的变形正确的是( )A .2y -3y +3=1B .2y -3y -3=1C .2y -3y +1=1D .2y -3y -1=15.【教材P 109活动1变式】以二元一次方程组⎩⎨⎧x +3y =7,y -x =1的解为坐标的点(x ,y )在平面直角坐标系的( )A .第一象限B .第二象限C .第三象限D .第四象限6.有一个两位数和一个一位数,它们的和为39,若将两位数放在一位数的前面,得到的三位数比将一位数放在两位数的前面得到的三位数大27,求这两个数.若设两位数是x ,一位数是y ,则可列方程组为( ) A .⎩⎨⎧x +y =39,xy -yx =27 B .⎩⎨⎧x +y =39,10x +y +27=100y +xC .⎩⎨⎧x +y =39,10x +y -27=10y +xD .⎩⎨⎧x +y =39,10x +y -(+x )=277.如果方程组⎩⎨⎧3x +7y =10,ax +(a -1)y =5的解满足x 与y 的值相等,那么a 的值是( )A .1B .2C .3D .48.定义运算“*”,规定x *y =ax 2+by ,其中a ,b 为常数,且1*2=5,2*1=6,则2*3=( )A .8B .9C .10D .129.甲、乙两个工程队各有员工80人、100人,现在从外部调90人充实两队,调配后甲队人数是乙队人数的23,则甲、乙两队分别分到的人数为( ) A .50,40 B .36,54 C .28,62 D .20,7010.利用两块完全一样的长方体木块测量一张桌子的高度,首先按图①所示的方式放置,再交换两木块的位置,按图②所示的方式放置,测量的数据如图,则桌子的高度等于( )A .80 cmB .75 cmC .70 cmD .65 cm二、填空题:本大题共5小题,每小题3分,共15分.11.已知(n -1)x |n |-2y m -2 024=0是关于x ,y 的二元一次方程,则nm =________. 12.方程组⎩⎨⎧x +y =12,y =2的解为________.13.已知⎩⎨⎧x =2,y =1是二元一次方程组⎩⎨⎧mx +ny =7,nx -my =1的解,则m +3n 的立方根为________.14.在“实践与探究”的数学活动中,让一组和二组分别用8个一样大小的长方形纸片进行拼图.一组拼成一个如图①所示的大长方形;二组拼成一个如图②所示的正方形,但中间留下一个边长为4 cm 的小正方形.据此计算出每个小长方形的面积是__________cm 2.15.【教材P 102习题T 4变式】机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个.已知2个大齿轮与3个小齿轮配成一套,则安排________名工人加工大齿轮,才能使每天加工的大小齿轮刚好配套. 三、解答题(一):本大题共3小题,每小题8分,共24分. 16.【教材P 111复习题T 3变式】解方程组:(1)⎩⎨⎧x -2y =3,3x +y =2; (2)⎩⎪⎨⎪⎧x 3-y 2=6,x -y 2=9;(3)⎩⎨⎧x -y +z =0,4x +2y +z =0,25x +5y +z =60.17.【教材P 106习题T 5变式】已知y =x 2+px +q ,当x =1时,y =2;当x =-2时,y =2.求p 和q 的值.18.若关于x ,y 的二元一次方程组⎩⎨⎧x +y =3,mx +ny =8与⎩⎨⎧x -y =1,mx -ny =4有相同的解.(1)求这个相同的解; (2)求m -n 的值.四、解答题(二):本大题共3小题,每小题9分,共27分. 19.阅读材料:在解方程组⎩⎨⎧2x +5y =3①,4x +11y =5②时,萌萌采用了一种“整体代换”的解法.解:将方程②变形:4x +10y +y =5,即2(2x +5y )+y =5③. 把方程①代入③,得2×3+y =5, ∴y =-1,把y =-1代入①,得x =4, ∴原方程组的解为⎩⎨⎧x =4,y =-1.请模仿萌萌的“整体代换”法解方程组⎩⎨⎧4x -3y =6,8x -7y =18.20.某同学在解关于x ,y 的方程组⎩⎨⎧ax +by =2,cx -7y =8时,本应得出解为⎩⎨⎧x =3,y =-2,由于看错了系数c ,而得到⎩⎨⎧x =-2,y =2,求a +b -c 的值.21.某商场销售甲、乙两种品牌的智能手机,这两种手机的进价和售价如下表所示:该商场计划购进两种手机若干部,共需15.5万元,预计全部销售后可获毛利润共2.1万元,求该商场计划购进甲、乙两种手机各多少部.五、解答题(三):本大题共2小题,每小题12分,共24分.22.在平面直角坐标系中,已知点A(x,y),点B(x-my,mx-y) (其中m为常数,且m≠0),则称B是点A的“m族衍生点”.例如:点A(1,2) 的“3族衍生点”B 的坐标为(1-3×2,3×1-2),即B(-5,1).(1)点(2,0)的“2族衍生点”的坐标为__________;(2)若点A的“3族衍生点”B的坐标是(-1,5) ,求点A的坐标;(3)若点A(x,0)(其中x≠0),点A的“m族衍生点”为点B,且AB=OA,求m的值.23.已知用3辆A型车和2辆B型车载满货物一次可运货17吨;用2辆A型车和3辆B型车载满货物一次可运货18吨.某物流公司现有35吨货物,计划同时租用A型车a辆,B型车b辆,将货物一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案.(3)若A型车每辆需租金200元/次,B型车每辆需租金240元/次,请选出最省钱的租车方案,并求出最少租车费用.答案一、1.D 2.C 3.B 4.A 5.A 6.D 7.C8.C 点拨:根据题意得⎩⎨⎧a +2b =5,4a +b =6.解得⎩⎨⎧a =1,b =2.则2*3=4a +3b =4+6=10.9.C 10.B二、11.-1 12.⎩⎨⎧x =10,y =2 13.2 14.24015.25 点拨:设安排x 名工人加工大齿轮,y 名工人加工小齿轮,则依题意有⎩⎪⎨⎪⎧x +y =85,16x 2=10y 3,解得⎩⎨⎧x =25,y =60.三、16.解:(1)⎩⎨⎧x -2y =3,①3x +y =2,②由①,得x =3+2y .③将③代入②,得9+6y +y =2,即y =-1. 将y =-1代入③,得x =3-2=1. 所以原方程组的解为⎩⎨⎧x =1,y =-1.(2)⎩⎪⎨⎪⎧x 3-y 2=6,①x -y 2=9,②②-①,得23x =3,解得x =92.将x =92代入①,得32-y2=6,解得y =-9. 所以原方程组的解为⎩⎪⎨⎪⎧x =92,y =-9.(3)⎩⎨⎧x -y +z =0,①4x +2y +z =0,②25x +5y +z =60,③②-①,得3x +3y =0,④③-①,得24x +6y =60,⑤④和⑤组成方程组⎩⎨⎧3x +3y =0,24x +6y =60,解得⎩⎪⎨⎪⎧x =103,y =-103.将⎩⎪⎨⎪⎧x =103,y =-103代入①,得z =-203.所以原方程组的解为⎩⎪⎨⎪⎧x =103,y =-103,z =-203.17.解:根据题意,得⎩⎨⎧1+p +q =2,4-2p +q =2,解得⎩⎨⎧p =1,q =0,∴p 的值是1,q 的值是0.18.解:(1)根据题意可得,x ,y 满足方程组⎩⎨⎧x +y =3,x -y =1,解得⎩⎨⎧x =2,y =1.故这个相同的解为⎩⎨⎧x =2,y =1. (2)将⎩⎨⎧x =2,y =1代入方程组⎩⎨⎧mx +ny =8,mx -ny =4,可得⎩⎨⎧2m +n =8,2m -n =4,解得⎩⎨⎧m =3,n =2,所以m -n =3-2=1.四、19.解:⎩⎨⎧4x -3y =6①,8x -7y =18②,将方程②变形:8x -6y -y =18,即2(4x -3y )-y =18③, 把方程①代入③,得2×6-y =18,∴y =-6, 把y =-6代入①,得x =-3, ∴原方程组的解为⎩⎨⎧x =-3,y =-6.20.解:把⎩⎨⎧x =3,y =-2,⎩⎨⎧x =-2,y =2分别代入ax +by =2,得⎩⎨⎧3a -2b =2,-2a +2b =2,解得⎩⎨⎧a =4,b =5,将⎩⎨⎧x =3,y =-2代入cx -7y =8,得3c +14=8, 解得c =-2,则a +b -c =4+5+2=11.21.解:设该商场计划购进甲种手机x 部,乙种手机y 部.由题意得⎩⎨⎧0.4x +0.25y =15.5,(0.43-0.4)x +(0.3-0.25)y =2.1,解得⎩⎨⎧x =20,y =30.答:该商场计划购进甲种手机20部,乙种手机30部. 五、22.解:(1)(2,4)(2)设点A 的坐标为 (x ,y ),由题意可得⎩⎨⎧-1=x -3y ,5=3x -y ,解得⎩⎨⎧x =2,y =1, ∴点A 的坐标为(2,1).(3)∵点A (x ,0),∴OA =|x |,点A 的“m 族衍生点”为点B (x ,mx ), ∴AB =|mx |.∵AB =OA ,∴|x |=|mx |,∴m =±1.23.解:(1)设1辆A 型车和1辆B 型车都载满货物一次可分别运货x 吨、y 吨,依题意得⎩⎨⎧3x +2y =17,2x +3y =18,解得⎩⎨⎧x =3,y =4.答:1辆A 型车载满货物一次可运货3吨,1辆B 型车载满货物一次可运货4吨.(2)依题意得3a +4b =35,∴a =35-4b3.∵a ,b 都是正整数,∴⎩⎨⎧a =9,b =2或⎩⎨⎧a =5,b =5或⎩⎨⎧a =1,b =8.∴有3种租车方案:方案一:租用A 型车9辆,B 型车2辆; 方案二:租用A 型车5辆,B 型车5辆; 方案三:租用A 型车1辆,B 型车8辆. (3)方案一:9×200+2×240=2 280(元); 方案二:5×200+5×240=2 200(元); 方案三:1×200+8×240=2 120(元). ∵2 280>2 200>2 120,∴最省钱的租车方案是方案三:租用A 型车1辆,B 型车8辆,最少租车费用为2 120元.。
七年级数学下册第八章综合检测题
第8章二元一次方程组综合检测题(满分:120分,时间:90分钟)一、选择题1,下列方程中,属于二元一次方程的是( )A.x+y-1=0B.xy+5=-4C. 8932=+y xD.x+1y=2 2,已知方程()()026281||2=++--+mn y n xm 是二元一次方程,则m+n 的值( )A.1B. 2C.-3D.33,在等式y=kx+b 中,当x=1时,y=2;当x=2时,y=5,则k,b 的值为( ) A .⎩⎨⎧-=-=13b k B .⎩⎨⎧=-=31b k C .⎩⎨⎧-==13b k D .⎩⎨⎧-=-=31b k4,如果4(1)6x y x m y +=⎧⎨--=⎩中的解x 、y 相同,则m 的值是( )A.1B.-1C.2D.-25,若方程1-=+y x ,42=-y x 和7=-my x 有公共解,则m 的取值为( ) A.4 B.3 C.2 D.1 6,已知关于x,y 的方程组⎩⎨⎧=-=+m y x m y x 4,2的解为3x+2y=14的一个解,那么m 的值为( )A. 1B. -1C.2D.-27,足球比赛的记分为:胜一场得3分,平一场得1分,负一场得0分,一队打了14场比赛,负5场,共得19分,那么这个队胜了( )A.3场B.4场C.5场D.6场8,方程组2,3x y x y ⎧+=⎪⎨+=⎪⎩的解为2,.x y =⎧⎪⎨=⎪⎩则被遮盖的两个数分别为( )A.1,2B.1,3C.2,3D.2,49,为了改善住房条件,小亮的父母考察了某小区的A B 、两套楼房,A 套楼房在第3层楼,B 套楼房在第5层楼,B 套楼房的面积比A 套楼房的面积大24平方米,两套楼房的房价相同,第3层楼和第5层楼的房价分别是平均价的1.1倍和0.9倍.为了计算两套楼房的面积,小亮设A 套楼房的面积为x 平方米,B 套楼房的面积为y 平方米,根据以上信息列出了下列方程组.其中正确的是( )A .⎩⎨⎧=-=241.19.0x y y x B . 1.10.924x yx y =⎧⎨-=⎩C .0.9 1.124x y x y =⎧⎨-=⎩ D . 1.10.924x yy x =⎧⎨-=⎩10,要配制15%的硝酸溶液240千克,需用8%和50%的硝酸溶液的克数分别为( )A. 40,200B.80,160C.160,80D.200,40 二、填空题11,把方程2x-y-3=0化成用含x 的代数式表示y 的形式:y=________. 12,已知⎩⎨⎧=--=.5,3t y t x 则x 与y 的关系式为_________.13,已知,y x y x ⎩⎨⎧=+=+13321723则x+y = ,x -y = .14,已知2x-y-z=0,3x+4y-2z=0,则x:y:z=_______.15,已知方程3x+y+z=12有很多解,请你随意写出一组整数解是 . 16,已知23,1x y x y +=⎧⎨+=⎩的解是方程组22,1x my nx y +=⎧⎨+=⎩的解,则m=_____,n=______.17,某工厂第一季度生产甲、乙两种机器共450台,改进生产技术后,计划第二季度生产这两种机器共520台,其中甲种机器增产10%,乙种机器增产20%,该厂第一季度生产甲、乙两种机器的台数分别为___.18,已知长江比黄河长836千米,黄河长度的6倍比长江长度的5倍多1284千米,则长江和黄河的长度分别为___.三、解答题19,用适当方法解方程组:⑴231,498.s t s t +=-⎧⎨-=⎩ ⑵()()()()3144,5135.x y y x -=-⎧⎪⎨-=+⎪⎩ ⑶11,233210.x y x y +⎧-=⎪⎨⎪+=⎩ 20,已知方程组⎩⎨⎧=+=-2,4by ax by ax 的解为⎩⎨⎧==1,2y x ,求b a 32-的值.21,代数式ax 2+bx +c 中,当x =1时的值是0,在x =2时的值是3,在x =3时的值是28,试求出这个代数式.22,七年级三班在召开期末总结表彰会前,班主任安排班长李小波去商店买奖品,下面是李小波与售货员的对话:李小波:阿姨,您好!售货员:同学,你好,想买点什么?李小波:我只有100元,请帮我安排买10支钢笔和15本笔记本.售货员:好,每支钢笔比每本笔记本贵2元,退你5元,请清点好,再见. 根据这段对话,你能算出钢笔和笔记本的单价各是多少吗? 23.请你计算出小熊能赚多少钱?24,某单位职工在植树节时去植树,甲、乙、丙三个小组共植树50株,乙组植树的株数是甲、丙两组的和的14,甲组植树的株数恰好是乙组和丙组的和,问每组各植树多少株?25,(08云南省)云南省2006年至2007年茶叶种植面积与产茶面积情况如表所示,表格中的x、y分别为2006年和2007年全省茶叶种植面积:(1)请求出表格中x、y的值;(2)在2006年全省种植的产茶面积中,若平均每亩产茶52千克,为使我省2008年全省茶叶种植产茶总产量达到22万吨,求2006年至2008年全省年产茶总产量的平均增长率(精确到0.01).(说明:茶叶种植面积=产茶面积+未产茶面积)。
精品解析2022年最新人教版初中数学七年级下册第八章二元一次方程组综合训练试题(无超纲)
初中数学七年级下册第八章二元一次方程组综合训练(2021-2022学年 考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________一、单选题(10小题,每小题3分,共计30分)1、下列方程组中,不是二元一次方程组的是( ).A .23031x y y x -=⎧⎨=+⎩ B .112x y z +=⎧⎨-=⎩C .22236x x x y x y ⎧+=-⎨+=⎩D .2536y x x =+⎧⎨=-⎩ 2、下列方程组中是三元一次方程组的是( ).A .2258232a b c a b c ++=⎧⎪=⎨⎪+=⎩ B .2222225810x y y z x z ⎧+=⎪+=⎨⎪+=⎩C .1141171110x y y zz x ⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩ D .::3:4:524x y z x y z =⎧⎨++=⎩3、已知方程370x y --=,231x y +=,9y kx =-有公共解,则k 的值为( ).A .3B .4C .0D .-1 4、为奖励期中考试中成绩优异的同学,七(二)班计划用50元购买笔记本和中性笔两种奖品,已知笔记本的价格为7元,中性笔的价格为2元,若两种奖品都买,则购买的方案有几种?( )A .2B .3C .4D .55、关于x ,y 的方程258m n m n x y +-++=是二元一次方程,则m 和n 的值是( )A .11m n =⎧⎨=-⎩B .11m n =-⎧⎨=⎩C .01m n =⎧⎨=⎩D .10m n =⎧⎨=⎩ 6、一个两位数,若交换其个位数与十位数的位置,则所得新两位数比原两位数大9,则这样的两位数共有( )A .5个B .6个C .7个D .8个7、小明解方程组27x y x y +=⎧⎨-=⎩■的解为5x y =⎧⎨=⎩★,由于不小滴下了两滴墨水,刚好把两个数■和★遮住了,则这两个数和■和★的值为( )A .■=8和★=3B .■=8和★=5C .■=5和★=3D .■=3和★=88、我们在解二元一次方程组2102x y x y+=⎧⎨=⎩时,可将第二个方程代入第一个方程消去x 得410y y +=从而求解,这种解法体现的数学思想是( )A .转化思想B .分类讨论思想C .数形结合思想D .公理化思想9、如图,9个大小、形状完全相同的小长方形,组成了一个周长为46的大长方形ABCD ,若设小长方形的长为x ,宽为y ,则可列方程为( )A .()27,2746x y y x y =⎧⎨++=⎩B .27,746x y y x y =⎧⎨++=⎩C .()27,2746x y x x y =⎧⎨++=⎩D .72,746x y x x y =⎧⎨++=⎩10、某校九年级学生到礼堂开会,若每条长凳坐5人,则少8条长凳;若每条长凳坐6人,则又多余2条长凳.若设学生人数为x ,长凳数为y ,由题意列方程组为( )A .585662x y x y =-⨯⎧⎨=+⨯⎩B .585662x y x y =+⨯⎧⎨=-⨯⎩ C .5862x y x y =+⎧⎨=-⎩ D .5862x y x y =-⎧⎨=+⎩ 二、填空题(5小题,每小题4分,共计20分)1、如图所示,矩形ABCD 被分成一些正方形,已知AB =32cm ,则矩形的另一边AD =________cm .2、用加减法解方程组3634x y x y -=⎧⎨+=-⎩①②时,①+②得________,即________;②-①得________,即________,所以原方程组的解为________.3、有一片牧场,草每天都在匀速地生长(即草每天增长的量相等),如果放牧24头牛,则6天吃完牧草;如果放牧21头牛,则8天吃完牧草.设每头牛每天吃草的量是相等的,如果放牧16头牛,则__________天可以吃完牧草.4、若1x y ++()33x y -的值为______.5、如图,三个全等的小矩形沿“横一竖一横“排列在一个大的边长分别为12.34,23.45的矩形中,则图中一个小矩形的周长等于_________.三、解答题(5小题,每小题10分,共计50分)1、解方程组(1)4,42 1.x y x y -=⎧⎨+=-⎩ (2)235,3212.x y x y -=⎧⎨+=-⎩ 2、已知关于x 、y 的二元一次方程组4273ax y x by +=⎧⎨-=-⎩的解是12x y =⎧⎨=⎩.求a-b 的值. 3、解下列方程组:(1)3236x y x y +=⎧⎨-=⎩; (2)569745x y x y -=⎧⎨-=-⎩. 4、小明和小丽两人同时到一家水果店买水果.小明买了1kg 苹果和2kg 梨,共花了26元;小丽买了2kg 苹果和1kg 梨,共花了28元.苹果和梨的价格各为多少?根据题意,小明列出方程组:226,228.x y x y +=⎧⎨+=⎩ 而小丽列出的是:226,228.x y x y +=⎧⎨+=⎩ 交流后,他们发现两个方程组不同,于是展开了争论,都说自己是正确的,而对方是错误的.他们列的方程组正确吗?你认为他们产生分歧的原因是什么?5、(1)用“>”“<”或“=”填空:23-+_____ 23-+;23+______23+;23-+-_____23--;03+-______03-;归纳:若a 、b 异号时,a b +______a b +,若a 、b 同号或至少有一个为0时,a b +____a b +;(2)根据上题中得出的结论,若10m n +=,4m n +=,求m 的值.---------参考答案-----------一、单选题1、B【解析】【分析】依据二元一次方程组的定义求解即可.【详解】利用二元一次方程组的定义一一进行判断,A 和D 符合二元一次方程组的定义;方程组22236x x x yx y ⎧+=-⎨+=⎩中,2223x x x y +=-可以整理为23x y=-所以C 也符合;B 中含有三个未知数不符合二元一次方程组的定义.故答案选B【点睛】本题主要考查的是二元一次方程组的定义,掌握二元一次方程组的定义是解题的关键.2、D【解析】【分析】三元一次方程组中共含有三个未知数,并且含未知数的项的次数都是1,每个方程都是整式方程,由此进行判断即可.【详解】解:A 、a 的最高次数是2,选项错误;B 、x 、y 、z 的最高次数都是2,选项错误;C 、每个方程都是分式方程,选项错误;D 、符合题意,选项正确.故选:D【点睛】本题考查三元一次方程组的识别,牢记定义是解题的切入点.3、B【解析】【分析】联立370x y --=,231x y +=,可得:2x =,1y =-,将其代入9y kx =-,得k 值.【详解】370231x y x y --=⎧⎨+=⎩ ,解得21x y =⎧⎨=-⎩, 把21x y =⎧⎨=-⎩代入9y kx =-中得:129k -=-, 解得:4k =.故选:B .【点睛】本题考查二元一次方程组,掌握公共解是三个方程都满足的解是解题的关键.4、B【解析】【分析】设可以购进笔记本x 本,中性笔y 支,利用总价=单价×数量,即可得出关于x ,y 的二元一次方程,结合x ,y 均为正整数,即可得出购买方案的个数.【详解】解:设可以购进笔记本x 本,中性笔y 支,依题意得:7250x y += , ∴7252y x =- ,∵x ,y 均为正整数,∴218x y =⎧⎨=⎩ 或411x y =⎧⎨=⎩ 或64x y =⎧⎨=⎩ , ∴共有3种购买方案,故选:B .【点睛】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.5、C【解析】【分析】根据二元一次方程组的定义,得到关于m n ,的二元一次方程组,然后求解即可.【详解】解:由题意可得:121m n m n +=⎧⎨-+=⎩,即11m n m n +=⎧⎨-=-⎩①②①+②得:20m =,解得0m =将0m=代入①得,1n=故1 mn=⎧⎨=⎩故选:C【点睛】此题考查了二元一次方程组的定义以及加减消元法求解二元一次方程组,解题的关键是理解二元一次方程组的定义以及掌握二元一次方程组的求解方法.6、D【解析】【分析】设原来的两位数为10a+b,则新两位数为10b a+,根据新两位数比原两位数大9,列出方程,找出符合题意的解即可.【详解】解:设原来的两位数为10a+b,根据题意得:10a+b+9=10b+a,解得:b=a+1,因为可取1到8个数,所以这两位数共有8个,它们分别,12,23,34,45,56,67,78,89,都是个位数字比十位数字大1的两位数.故选:D.【点睛】本题考查了二元一次方程的应用,解题的关键是弄清题意,找合适的等量关系,列出方程,再求解,弄清两位数的表示是:10⨯十位上的数+个位上的数,注意不要漏数.7、A【解析】把5x =代入27x y -=求出3y =;再把53x y =⎧⎨=⎩代入x y +=■求出数■即可. 【详解】解:把5x =代入27x y -=得,107y -=,解得,3y =;把53x y =⎧⎨=⎩代入x y +=■得,53+=■,解得,■=8; 故选A【点睛】本题考查了二元一次方程组的解法,解题关键是明确方程组解的意义,代入方程准确进行计算.8、A【解析】【分析】通过代入消元法消去未知数x ,将二元一次方程转化为一元一次方程.【详解】解:在解二元一次方程组2102x y x y+=⎧⎨=⎩时, 将第一个方程代入第二个方程消去x 得2⨯2y +y =10,即4y +y =10,从而将二元一次方程降次转化为一元一次方程求解,这种解法体现的数学思想是:转化思想,故选:A .【点睛】本题考查了解二元一次方程组,理解消元法(加减消元法和代入消元法)解二元一次方程组的方法是9、A【解析】【分析】根据图形可知,大长方形的长=7个小长方形的宽=2小长方形的长,大长方形的宽=小长方形的长+小长方形的宽,由此即可列出方程.【详解】解:设小长方形的长为x ,宽为y ,由题意得:()272746x y y x y =⎧⎨++=⎩ 或()272246x y x x y =⎧⎨++=⎩, 故选A .【点睛】本题主要考查了从实际问题中抽象出二元一次方程组,解题的关键在于能够正确理解题意和掌握长方形周长公式.10、B【解析】【分析】设学生人数为x ,长凳数为y ,然后根据若每条长凳坐5人,则少8条长凳;若每条长凳坐6人,则又多余2条长凳,列出方程即可.【详解】解:设学生人数为x ,长凳数为y ,由题意得:585626x y x y =+⨯⎧⎨=-⨯⎩, 故选B .【点睛】本题主要考查了从实际问题中抽象出二元一次方程组,解题的关键在于能够准确理解题意.二、填空题1、29【分析】可以设最小的正方形的边长为x,第二小的正方形的边长为y,根据已知AB=CD=32cm,可得到两个关于x、y的方程,求方程组即可得解,然后求矩形另一边AD的长即可,仍可用xy表示出来.【详解】解:设最小的正方形的边长为x,第二小的正方形的边长为y,将各个正方形的边长都用x和y表示出来(如图),根据AB=CD=32cm,可得()()()()22232 23332x y x yy y x y x⎧+++=⎪⎨+-+-=⎪⎩,解得:45xy=⎧⎨=⎩,矩形的另一边AD=x+2y+y+2y=x+5y=29cm.故答案为:29.【点睛】本题考查了整式乘法运算的应用,二元一次方程组的应用,解题的关键是读懂图意根据矩形的性质列出方程组并求解.2、62x=13x=210y=-5y=-135xy⎧=⎪⎨⎪=-⎩【分析】根据加减消元的方法求解即可.【详解】解:用加减法解方程组3634x yx y-=⎧⎨+=-⎩①②时,由①+②,得62x=,两边同时除以6,得13x=,由②-①,得210y=-,两边同时除以2,得5y=-,所以原方程组的解为135xy⎧=⎪⎨⎪=-⎩.故答案是:62x=,13x=,210y=-,5y=-,135xy⎧=⎪⎨⎪=-⎩.【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.3、18【分析】设每头牛每天吃草x千克,牧场的草每天生长y千克,如果放牧16头牛,则m天可以吃完牧草,根据牧草原有牧草数不变,可得出关于x,y,m的方程组,解方程组即可.【详解】解:设每头牛每天吃草x千克,牧场的草每天生长y千克,如果放牧16头牛,则m天可以吃完牧草,依题意,得:24662188 162466?x y x ymx my x y⨯-=⨯-⎧⎨-=⨯-⎩①②,由①可得出:y=12x③,将③代入②中,得:16mx﹣12mx=24×6x﹣6×12x,解得:m=18.故答案为:18.【点睛】本题考查了三元一次方程组的应用,找准等量关系,正确列出三元一次方程组是解题的关键.4、27【分析】由|x+y+1|互为相反数,可得|x+y+1|+(x-y-2)2=0,可得:x+y+1=0,x-y-2=0,据此求出x、y的值;然后代入计算即可.【详解】解:∵|x+y+1|与(x-y-2)2互为相反数,∴|x+y+1|+(x-y-2)2=0∴1020x yx y++=⎧⎨--=⎩,解得,1232xy⎧=⎪⎪⎨⎪=-⎪⎩,∴(3x-y)3=(3322+)3=27.故答案为:27.【点睛】此题主要考查了解二元一次方程组的方法,互为相反数的性质,以及非负数的性质和应用,代数式求值,要熟练掌握,注意加减法和代入法的应用.5、23.86【分析】设小矩形的长为x ,宽为y ,根据图形列出二元一次方程组,根据小矩形的周长为2()x y +结合方程组直接可得.【详解】设小矩形的长为x ,宽为y ,由题意得:223.45212.34x y x y +=⎧⎨+=⎩①②, ①+②得,11.93x y +=,则一个小矩形的周长为:11.93223.86⨯=.故答案为:23.86【点睛】本题考查了二元一次方程组的应用,根据题意列出二元一次方程组是解题的关键.三、解答题1、(1)76176x y ⎧=⎪⎪⎨⎪=-⎪⎩;(2)23x y =-⎧⎨=-⎩ 【分析】(1)利用加减消元法解二元一次方程组即可;(2)利用加减消元法解二元一次方程组即可.【详解】解:(1)4421x y x y -=⎧⎨+=-⎩①②用① ×2+②得67x =,解得76x =, 把76x =代入①得746y -=,解得176y =-, ∴方程组的解为:76176x y ⎧=⎪⎪⎨⎪=-⎪⎩; (2)2353212x y x y -=⎧⎨+=-⎩①② 用① ×2+②×3得1326x =-,解得2x =-,把2x =-代入①得2235y -⨯-=,解得3y =-,∴方程组的解为:23x y =-⎧⎨=-⎩. 【点睛】本题主要考查了解二元一次方程组,解题的关键在于能够熟练掌握解二元一次方程组的方法. 2、11-【分析】把=1=2x y ⎧⎨⎩代入方程组+4=273ax y x by ⎧⎨-=-⎩求得a 、b 的值,即可求得-a b 的值. 【详解】把=1=2x y ⎧⎨⎩代入二元一次方程组+4=273ax y x by ⎧⎨-=-⎩得:14227123a b ⨯+⨯=⎧⎨⨯-⨯=-⎩, 解得:65a b =-⎧⎨=⎩∴6511a b -=--=-.【点睛】本题考查了二元一次方程组的解:同时满足二元一次方程组的两个方程的未知数的值叫二元一次方程组的解.3、(1)30x y =⎧⎨=⎩;(2)34x y =-⎧⎨=-⎩. 【分析】利用加减法解二元一次方程组即可求解.【详解】解:(1)3236x y x y +=⎧⎨-=⎩①② ①×3得 339x y +=③,②+③得 5x =15,解得x =3,把x =3代入①得 3+y =3,解得y =0,∴二元一次方程组的解是30x y =⎧⎨=⎩; (2)569745x y x y -=⎧⎨-=-⎩①② ①×2得 10x -12y =18③,②×3得 21x -12y =-15④,④-③得 11x =-33,解得 x =-3,把x =-3代入①得 -15-6y =9,解得y =-4,∴二元一次方程组的解是34x y =-⎧⎨=-⎩. 【点睛】本题考查了二元一次方程组的解法,熟练掌握加减法解二元一次方程组的步骤是解题关键,此题也可以用代入法解二元一次方程组.4、他们列的方程组都正确,见解析【分析】根据所列方程可知小明设每千克苹果和梨的价格分别为x 元、y 元,而小丽设每千克梨和苹果的价格分别为x 元、y 元,由此进行判断即可得到答案.【详解】解:两个人所列的方程都是正确的,理由如下:由题意得:小明设每千克苹果和梨的价格分别为x 元、y 元,而小丽设每千克梨和苹果的价格分别为x 元、y 元,因此他们所列方程组中,同一个x 的意义不同,当然所列方程组也就不相同了.【点睛】本题主要考查了从实际问题抽象出二元一次方程组,解题的关键在于能够正确理解两人所列方程的含义.5、(1)>,=,=,=,>,=;(2)3,7.【分析】(1)分别计算各种情况的绝对值,再比较大小,再总结规律即可.(2)由10m n +=,4m n +=,可得,m n m n 可得,m n 异号,再分两种情况讨论即可.【详解】解:(1) 23235,-+=+=231,-+= 所以:23-+>23-+, 235,+=235,+=所以23+=23+, 23235,-+-=+=2355,--=-=所以23-+-=23--, 03=0+3=3,+-0333,-=-= 所以03+-=03-, 归纳:若a 、b 异号时,a b +>a b +, 若a 、b 同号或至少有一个为0时,a b +=a b +; (2) 10m n +=,4m n +=,,m n m n,m n ∴异号, 当0,0,m n10,m n10,n m104,m m 即2104,m2104m 或2104,m解得: 7m =或3,m =当0,0,m n <>10,n m10,n m 2104,m 2+104m 或2+104,m解得:3m =-或7,m 故m 的值为:3,7.【点睛】本题考查的是绝对值的含义与化简,绝对值方程的应用,二元一次方程组的解法,正确的理解题意,利用总结出的规律解决问题是解本题的关键.。
人教版最全七年级下册数学第八章同步练习测试题及答案
第八章 二元一次方程组 8.1 二元一次方程组复习检测(5分钟):1、下列各式中:(1)3x-y=2 ; (2) 0212=+x y ; (3) y-z=5 ; (4) xy= - 7; (5) 4x-3y ; (6)421=-y x; (7) x+y-z=5 ; (8) 5x+3=x-4y. 属于二元一次方程的个数有( )A .1个B 。
2个C 。
3个D 。
4个 2、已知方程3x+y=2,当x=2时,y=_____;当y=-1时,x=_____. 3、已知x=1,y=-3满足方程5x-ky=3,则k=_______.4、写出满足方程2x-3y=17 的三个不同解。
除了这三个解外,还有没有其它的解?一般地,一个二元一次方程通常有多少个解?5、已知有三对数值:⎩⎨⎧-==11y x ⎩⎨⎧==12y x ⎩⎨⎧==54y x ,哪一对是下列方程组的解?①⎩⎨⎧=+=-104332y x y x ②⎩⎨⎧=--=13433y x x y6、已知⎩⎨⎧==12y x 是方程组⎩⎨⎧=+=-31ny x y mx 的解,求2)(n m -的值。
7、一批零件有1500个,如果甲先做4天后,乙加入合作,再做8天正好完成;如果乙先做5天后,甲加入合作,再做7天也恰好完成。
设甲、乙两人每天分别加工零件x 、y 个,请根据题意列出方程组。
8.2二元一次方程组的解法(1)复习检测(5分钟)1、用含有x 的代数式表示y:(1)2x+y=1; (2)y-3x+1=0(3)4x -y =-1; (4)5x -10y +15=0.2、解下列二元一次方程组:(1)⎩⎨⎧=++=.83,23y x y x (2)⎩⎨⎧-==-.57,1734x y y x(3)⎩⎨⎧=+-=-.1023,5y x y x (4)⎩⎨⎧-=-=-.2.32,872x y y x(5)⎩⎨⎧=--=+894132t s t s (6)⎪⎩⎪⎨⎧=+=-923143y x yx8.2二元一次方程组的解法(2)复习检测(5分钟) 1、填空(1)二元一次方程组⎩⎨⎧=+=-31y x y x 的解是_________。
【3套打包】南昌市人教版初中数学七年级下册第8章《二元一次方程组》测试题及答案
人教版七年级数学下册 第八章 二元一次方程组 单元综合测试卷(1)一、选择题(本大题共10小题,,共30分)1.下列方程组中,是二元一次方程组的是( ) A.⎩⎨⎧=-=+53262z y y x B.⎪⎩⎪⎨⎧=-=+1221y x y x C.⎩⎨⎧==+34y y x D.⎩⎨⎧==+34xy y x2.已知方程组⎩⎨⎧-=+=-4272y x y x 的解是( )A .⎩⎨⎧=-=23y xB .⎩⎨⎧-==32y xC .⎩⎨⎧==51y xD .⎩⎨⎧-==2y x3.⎩⎨⎧==72y x 是方程ax -3y=2的一个解,则a 为( )A.8B.223 C.-223 D.-2194.若0)23(22=++-y x ,则y x )1(+的值是( ) A. ﹣1B. ﹣2C. ﹣3D.23 5.如果2x -7y=8,那么用含y 的代数式表示x 正确的是( ) A .827x y -=B .287x y +=C .872y x +=D .872yx -= 6.已知是方程组的解,则a+b+c 的值是( )A .3B .2C .1D .无法确定7.已知方程组54{58x y x y +=+=,则x ﹣y 的值为( )A. 2B. ﹣1C. 12D. ﹣48.如图,宽为50的大长方形图案由10个完全相同的小长方形拼成,其中一个小长方形的面积为( )A. 400B. 500C. 600D. 40009.成渝路内江至成都全长170千米,一辆小汽车和一辆客车同时从内江、成都两地相向开出,经过1小时10分钟相遇.相遇时,小汽车比小客车多行驶20千米.设小汽车和客车的平均速度分别为x 千米/小时和y 千米/小时,则下列方程组正确的是( )A.207717066x y x y +=+=⎧⎪⎨⎪⎩B.207717066x y x y -=+=⎧⎪⎨⎪⎩ C.207717066x y x y +=-=⎧⎪⎨⎪⎩ D.7717066772066x y x y +=-=⎧⎪⎪⎨⎪⎪⎩10.某次知识竞赛共出了25道题,评分标准如下:答对1题加4分;答错1题扣1分,不答记0分,已知李刚不答的题比答错的题多2题,他的总分为74分,则他答对了( ) A .19题B .18题C .20题D .21题二、填空题(本大题共8小题,共24分)11.二元一次方程4x +y =11的所有自然数解是______ . 12.已知,则x 与y 的关系式为______ .13.三元一次方程组的解是______ .14.如果1032162312=--+--b a b a y x是一个二元一次方程,那么数a =___, b =__。
2023-2024学年人教版数学七年级下册第八章 二元一次方程组 单元测试(含答案)
1 10
ö2024 b÷÷ø
的值. 22.下面是小莹同学解二元一次方程组的过程,请认真阅读并完成相应任务.
2x 4 y 3① 解方程组 4……第一步
② ③,得 3y 6 .
…………………………第二步
解得 y 2 .
是
.
15.若关于
x,y
的方程组
x y 3x 5y
c1
c2
的解为
x
y
5 6
,则方程组
x 3
1 y 1 c1 x 1 5 y 1
c2
的解
为. 16.A,B 两地相距 80 千米,一船从 A 出发顺水行驶 4 小时到达 B,而从 B 出发逆水行驶 5 小时才能到达 A,则船在静水中的航行速度是 千米/时. 17.甲对乙说:“我像你这样大岁数的那年,你的岁数等于我今年的岁数的一半;当你到我 这样大岁数的时候,我的岁数是你今年岁数的二倍少 7 岁.”则今年甲的年龄为 岁, 乙 的年龄为 岁.
(1)1 辆 A 型车和 1 辆 B 型车都载满荔枝一次可分别运送多少吨? (2)请你帮该物流公司设计租车方案. 26.春节前夕,某商场用 14900 元购进矿泉水和无糖茶共 500 箱,它们的成本价与销售价如 下表所示:
类别 成本价/(元/箱) 销售价/(元/箱)
矿泉水
25
36
无糖茶
35
50
(1)商场这次购进矿泉水和无糖茶各多少箱? (2)该商场售完这 500 箱矿泉水和无糖茶,可获利多少元? 27.长江是我们的母亲河,金港新区为了打造沿江风景,吸引游客搞活经济,将一段长为 180 米的沿江河道整治任务交由 A、B 两工程队先后接力完成.A 工作队每天整治 12 米,B 工程 队每天整治 8 米,共用时 20 天.求 A、B 两工程队分别整治河道多少米? ⑴根据题意,七⑴班甲同学列出尚不完整的方程组如下.根据甲同学所列的方程组,请你分 别指出未知数 x、y 表示的意义,然后在方框中补全甲同学所列的方程组; x y 12x 8y ,x 表示________________________,y 表示_________________________;
人教版数学七年级下册-第八章测试题
人教版数学七年级下册-第八章测试题第八章测试题一、填空题:1.对于方程31x+43y=2,用含x 的代数式表示y 应是_________;用含y 的代数式表示x 应是______,2.已知x m-2—4y n-2=2是二元一次方程,则m=_______,n=______, 3.若|x —2y|+| 21x+2y —6|=0,则x=______,y=________, 4.若x=1,y=—1满足方程组?12642-=-=+a y x by a ,则a=_______,b=_________,5.已知方程y=mx+n 的两组解是 ?21==y x ,??-==5y x ,则m=_____,n=_______,6.已知方程ax+by=10的两个解是?100-==y x , ?84-==y x ,则这个方程是____ __________,7.方程5x+y=18的所有正整数解是________, 8.已知方程组??123+=+=+m y x my x 的x 、y 相等,m=______,9.若方程组?11871365-=+=+y x y x 的解也是方程2x —ay=18的解,则a=____,10.甲数比乙数的2倍少4,如果乙数是x ,用含x 的代数式表示甲数应是_____,果甲数是x ,用含x 的代数式表示乙数应是 _____,11.甲.乙两地相距x 千米,某人从甲地到乙地每小时行8千米,比预计时间早0.5小时到达,用含x 的代数式表示预计时间为_______。
二、选择题:12.方程x+2y=7在自然数范围内的解()A.只有一对B.只有两对C.只有四对D.有无数对 13.若x.y 为非负数,方程3x=—0.5y 的解为()A.无数个解B.唯一一个解C.无解D.不能确定14.已知x=3m+1,y=2m—1,用含x的式子表示y的式子是()A.m=31-x B.m=21+y C.y=312--x D.y=352-x 15.方程组?48938-=+=-y x y x 消去x得到的方程是()A.y=4B.—7y=14C.7y=14D.y=14 16.已知四个方程组①435325=+-=-y x y x ②1223-=--=y x x y ③2165132-=-=+y x y x④=-=+3651723y x yx 选择合理简便的消元方法是()A.①②用加减消元法,③④用代入消元法,B.③④用加减消元法,①②用代入消元法,C.①③④用加减消元法,②用代入消元法,D.②用加减消元法,①③④用代入消元法, 17.解方程 ??=+=-11782143y x y x ①② 下列解法中比较简捷的方法是()A.利用①,用含x的式子表示y,代入② B.利用②,用含y的式子表示x,代入①,C.用加减法,先消去x,D.用加减法,先消去y, 18.方程组??=+=-24by ax by ax 与 ?-=-=+654432y x y x 具有相同的解,那么a,b的值是()A.a=-33,b=1411 B.a=33,b= 1411C.a=33,b=-1411 D.a=-33,b=-141119.已知满足2x-3y=11-4m和3x+2y=21-5m的x、y也满足x+3y=20-7m,则m的值是()A.1B.2C.3D.420.一个两位数,数字之和为11,若原数加45,则此两位数字交换位置,求原数是多少,若设原数十位数字为x,个位数字为y,根据题意列出的下列方程组正确的是()A.??+=++=+x y y x y x 1045101110 B.+=++=+xy y x y x 451110C.?+=++=+x y y x y x 10451011 D.以上各式均不对三、解答题:用适当方法解下列二元一次方程组:21.??==+2112.03.0y y x 22.--=-=+y x x y x 68.115.35423.??=--+=-+51761562354153y x y x y x 24.=-=+93112y x y x25.??=-=+21259.243y x y x 26.+=+=+395242137x x y x27.??=--=-212576565y x y x 28.=+=+%922800%64%962800y x y x29.??++=+=+++5.27)23(62)32(3311523232y x y x y x y x 30.=+=+423x y y x31.甲.乙两工厂计划一年共生产机床360台,实际上甲厂完成了计划的112%,乙厂完成了计划的110%,实际两厂共生产机床400台,求甲.乙两厂计划生产机床多少台?32.两个缸内一共有48桶水,若用甲缸的水给乙缸加水一倍,然后又用乙缸的水给甲缸加入甲缸剩余水的一倍,则甲.乙两缸的水量相等,求最初甲.乙两缸内各有多少水?33.一个三位数是一个两位数的5倍,如果把这三位数放在两位数的左边,比放在右边所得的五位数小18648,求这个两位数和这个三位数。
2020-2021学年人教版 七年级数学下册 第八章 二元一次方程组 综合训练
人教版七年级数学下册第八章二元一次方程组综合训练一、选择题1. (2020·嘉兴)用加减消元法解二元一次方程组3421x yx y+=⎧⎨-=⎩,①,②时,下列方法中无法消元....的是()A.①×2–②B.②×(﹣3)–①C.①×(﹣2)+②D.①–②×32. 如果是关于x,y的二元一次方程mx-10=3y的一个解,那么m的值为()A.B.C.-3D.-23. 已知方程组则x+y+z的值是()A.3B.4C.5D.64. 某市某九年一贯制学校现共有学生3000人,计划一年后初中在校生增加8%,小学在校生增加11%,这样全校在校生将增加10%,则这所学校现初中在校生,小学在校生分别有()A.1000人,2000人B.2000人,1000人C.1500人,1500人D.1200人,1800人5. (2020·绥化)“十·一”国庆期间,学校组织466名八年级学生参加社会实践活动,现已准备了49座和37座两种客车共10辆,刚好坐满,设49座客车x辆,37座客车y辆,根据题意,得( )A.10,4937466.x yx y=⎧⎨+=⎩+B.10,3749466.x yx y=⎧⎨+=⎩+C.466,493710.x yx y=⎧⎨+=⎩+D.466, 374910. x yx y=⎧⎨+=⎩+6. (2020·随州)我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何”.设鸡有x只,兔有y只,则根据题意,下列方程组中正确的是( ) A.⎩⎨⎧94=4y +2x 35=y +x B.⎩⎨⎧94=2y +4x 35=y +x C.⎩⎨⎧94=4y +x 35=y +2x D.⎩⎨⎧94=y +2x 35=4y +x7. (2020·绍兴)同型号的甲、乙两辆车加满气体燃料后均可行驶210km .它们各自单独行驶并返回的最远距离是105km .现在它们都从A 地出发,行驶途中停下来从甲车的气体燃料桶抽一些气体燃料注入乙车的气体燃料桶,然后甲车再行驶返回A 地,而乙车继续行驶,到B 地后再行驶返回A 地.则B 地最远可距离A 地( ) A .120km B .140km C .160km D .180km8. (2020·绵阳)《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三.问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出五钱,还差45钱;若每人出七钱,还差3钱.问合伙人数、羊价各是多少?此问题中羊价为( ) A .160钱 B .155钱 C .150钱 D .145钱9. (2020·恩施)我国古代数学著作《九章算术》“盈不足”一章中记载:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何”.意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛.问1个大桶、1个小桶分别可以盛酒多少斛?设1个大桶盛酒x 斛,1个小桶盛酒y 斛,下列方程组正确的是( ).A. 5352x y x y +=⎧⎨+=⎩B. 5253x y x y +=⎧⎨+=⎩C. 53125x y x y +=⎧⎨+=⎩D. 35251x y x y +=⎧⎨+=⎩10. 若关于x ,y 的二元一次方程组5,9x y k x y k +=⎧⎨-=⎩的解也是二元一次方程2x +3y =6的解,则k 的值为( )A .-34 B.34 C.43 D .-43二、填空题11. 方程组2,21x y x y -=⎧⎨+=⎩的解是__________.12. (2020·泰安)方程组⎩⎪⎨⎪⎧x +y ﹦16,5x +3y ﹦72的解是___________.13. (2019·上海)《九章算术》中有一道题的条件是:“今有大器五小器一容三斛,大器一小器五容二斛.”大致意思是:有大小两种盛米的桶,5大桶加1小桶共盛3斛米,1大桶加5小桶共盛2斛米,依据该条件,1大桶加1小桶共盛 斛米.(注:斛是古代一种容量单位).14. 某药店用3000元购进甲、乙两种体温计,体温计卖出后,甲种体温计的利润率是25%,乙种体温计的利润率是20%,两种体温计共获利675元,若甲种体温计的进价为每支2元,乙种体温计的进价为每支5元,则甲、乙两种体温计共购进 支.15. 秋天到了,花溪区高坡乡美景如画,其中露营基地吸引了不少露营爱好者,露营基地为了接待30名露营爱好者,需要搭建可容纳3人或2人的帐篷若干,若所搭建的帐篷恰好能容纳这30名露营爱好者,则不同的搭建方案有 种.16. 若关于x ,y 的二元一次方程组的解是其中y 的值被墨渍盖住了,则b 的值是 .17. 若方程x 2m-1+5y 3n-2=7是关于x ,y 的二元一次方程,则(m-n )2021= .18. 已知⎩⎨⎧x =3y =-2是方程组⎩⎨⎧ax +by =3bx +ay =-7的解,则代数式(a +b )(a -b )的值为________.19. 已知关于x ,y 的二元一次方程组的解互为相反数,则k 的值是.20. (2020·重庆B 卷)为刺激顾客到实体店消费,某商场决定再星期六开展促销活动.活动方案如下:在商场收银台旁放置一个不透明的箱子,箱子里有红、黄、绿三种颜色的球各一个(除颜色大小、形状、质地等完全相同),顾客购买的商品达到一定金额可获得一次摸球机会,摸中红、黄、绿三种颜色的球可分别返还现金50元、30元、10元.商场分三个时段统计摸球次数和返现金额,汇总统计结果为:第二时段摸到红球次数为第一时段的3倍,摸到黄球次数为第一时段的2倍,摸到绿球次数为第一时段的4倍;第三时段摸到红球次数与第一时段相同,摸到黄球次数为第一时段的4倍,摸到绿球次数为第一时段的2倍,三个时段返现总金额为2510元,第三时段返现金额比第一时段多420元,则第二时段返现金额为__________元.三、解答题21. 2020·江苏徐州)本地某快递公司规定:寄件不超过1千克的部分按起步价计费;寄件超过1千克部分的按千克计费.小丽分别寄快递到上海和北京,收费标准及实际收费如下表:收费标准实际收费求a、b的值.22. 放学后,小贤和小艺来到学校附近的地摊上购买一种特殊型号的笔芯和卡通笔记本,这种笔芯每盒10支,如果整盒买比单支买每支可优惠0.5元,小贤要买3支笔芯,2本笔记本需花19元,小艺要买7支笔芯,1本笔记本需花费26元.(1)求笔记本的单价和单独购买一支笔芯的价格;(2)小贤和小艺都还想再买一件单价为3元的小工艺品,但如果他们各自为要买的文具付款后,只有小贤还剩2元钱,他们要怎样做才能既买到各自的文具,又都买到小工艺品,请通过运算说明.23. (12分)某校计划为教师购买甲、乙两种词典.已知购买1本甲种词典和2本乙种词典共需170元,购买2本甲种词典和3本乙种词典共需290元.(1)求每本甲种词典和每本乙种词典的价格分别为多少元?(2)学校计划购买甲种词典和乙种词典共30本,总费用不超过1600元,那么最多可购买甲种词典多少本?24. (2020·扬州)阅读感悟:有些关于方程组的问题,欲求的结果不是每一个未知数的值,而是关于未知数的代数式的值,如以下问题:已知实数x、y满足3x-y=5①,2x+3y=7②,求x-4y和7x+5y的值.本题常规思路是将①②两式联立组成方程组,解得工y的值再代入欲求值的代数式得到答案,常规思路运算量比较大.其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式的值,如由①-②可得x-4y=-2,由①+②X2可得7x+5y=19.这样的解題思想就是通常所说的“整体思想”。
七年级下册数学第八章 列二元一次方程组解应用题专项训练(含答案)
第八章列二元一次方程组解应用题专项训练1、一名学生问老师:“您今年多大?”老师风趣地说:“我像您这样大时,您才出生;您到我这么大时,我已经37岁了。
”请问老师、学生今年多大年龄了呢?2、某长方形的周长是44cm,若宽的3倍比长多6cm,则该长方形的长和宽各是多少?3、已知梯形的高是7,面积是56cm2,又它的上底比下底的三分之一还多4cm,求该梯形的上底和下底的长度是多少?4、某校初一年级一班、二班共104人到博物馆参观,一班人数不足50人,二班人数超过50人,已知博物馆门票规定如下:1~50人购票,票价为每人13元;51~100人购票为每人11元,100人以上购票为每人9元(1)若分班购票,则共应付1240元,求两班各有多少名学生?(2)请您计算一下,若两班合起来购票,能节省多少元钱?(3)若两班人数均等,您认为是分班购票合算还是集体购票合算?5、某中学组织初一学生春游,原计划租用45座汽车若干辆,但有15人没有座位:若租用同样数量的60座汽车,则多出一辆,且其余客车恰好坐满。
已知45座客车每日租金每辆220元,60座客车每日租金为每辆300元。
(1)初一年级人数是多少?原计划租用45座汽车多少辆?(2)若租用同一种车,要使每个学生都有座位,怎样租用更合算?6、某酒店的客房有三人间和两人间两种,三人间每人每天25元,两人间每人每天 35元,一个50人的旅游团到了该酒店住宿,租了若干间客房,且每间客房恰好住满,一天共花去1510元,求两种客房各租了多少间?7、某中学新建了一栋4层的教学大楼,每层楼有8间教室,进出这栋大楼共有4道门,其中两道正门大小相同,两道侧门大小相同,安全检查中,对4道门进行了测试:当同时开启正门和两道侧门时,2分钟可以通过560名学生,当同时开启一道正门和一道侧门时,4分钟可以通过800名学生。
(1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?(2)检查中发现,紧急情况下时因学生拥挤,出门的效率将降低20%,安全检查规定,在紧急情况下全大楼的学生应在5分钟内通过这4道门安全撤离,假设这栋教学大楼每间教室最多有45名学生,问通过的这4道门是否符合安全规定?请说明理由。
2020-2021学年七年级数学青岛版下册《第8章 角》单元综合能力提升训练(附答案)
2020-2021年度青岛版七年级数学下册《第8章角》单元综合能力提升训练(附答案)1.以下四个语句中,正确的有()①如果线段AB=BC,则B是线段AC的中点;②两点之间直线最短;③大于直角的角是钝角;④如图,∠ABD也可用∠B表示.A.0个B.1个C.2个D.3个2.上午8点整时,钟表表面的时针与分针的夹角是()A.30°B.45°C.90°D.120°3.钟表上2时25分时,时针与分针所成的角是()A.77.5°B.77°5′C.75°D.以上答案都不对4.如图,某边防战士驾驶摩托艇外出巡逻,先从港口A点沿北偏东60°的方向行驶30海里到达B点,再从B点沿北偏西30°方向行驶30海里到C点,要想从C点直接回到港口A,行驶的方向应是()A.南偏西15°方向B.南偏西60°方向C.南偏西30°方向D.南偏西45°方向5.如图∠AOB=60°,射线OC平分∠AOB,以OC为一边作∠COP=15°,则∠BOP=()A.15°B.45°C.15°或30°D.15°或45°6.如图,点O在直线AB上,过O作射线OC,∠BOC=100°,一直角三角板的直角顶点与点O重合,边OM与OB重合,边ON在直线AB的下方.若三角板绕点O按每秒10°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为()A.5B.4C.5或23D.4或227.将两个完全相同的直角三角板按如图所示的方式放置,若∠BCD=28°30',则下列结论错误的是()A.∠ACD=118°30'B.∠ACD=∠BCEC.∠ACE=151°30'D.∠ACE﹣∠BCD=120°8.如图,∠AOB=120°,OC是∠AOB内部任意一条射线,OD,OE分别是∠AOC,∠BOC 的角平分线,下列叙述正确的是()A.∠AOD+∠BOE=60°B.∠AOD=∠EOCC.∠BOE=2∠COD D.∠DOE的度数不能确定9.如图,∠AOB=∠COD=90°,∠COB=58°,则∠DOA的度数是()A.102°B.112°C.122°D.142°10.在∠AOB的内部任取一点C,作射线OC,则一定存在()A.∠AOB>∠AOC B.∠AOB<∠BOC C.∠BOC>∠AOC D.∠AOC>∠BOC 11.现在的时间是9时20分,此时钟面上时针与分针夹角的度数是度.12.计算:48°39′+67°31′=.13.如图,点A、O、B在一条直线上,∠AOC=130°,OD是∠BOC的平分线,则∠COD =度.14.如图,在∠AOB的内部有3条射线OC、OD、OE,若∠AOC=50°,∠BOE=∠BOC,∠BOD=∠AOB,则∠DOE=°(用含n的代数式表示).15.已知∠α=32°,则∠α的补角为度.16.比较大小:52°52′52.52°.(填“>”、“<”或“=”)17.观察图形,并阅读相关的文字,回答:10条直线相交,最多有交点.18.如图,∠AOC为平角,已知OE平分∠AOB,OF平分∠BOC,AC与DF相交于点O,∠AOD=25°,则∠BOE的度数为.19.如图,直线AB,CD相交于点O,EO⊥AB于点O,若∠AOD=132°,则∠EOC =°.20.如图,计划把水从河中引到水池A中,先过点A作AB⊥CD,垂足为点B,然后沿AB 开渠,能使所开的渠道最短,这样设计的依据是.21.点O是直线AB上一点,以O为端点画射线OC,OD,使∠AOC=60°,∠COD=90°,画出符合题意的两个图形,再求∠BOD的度数.22.填空,完成下列说理过程如图,点A,O,B在同一条直线上,OD,OE分别平分∠AOC和∠BOC.(1)求∠DOE的度数;(2)如果∠COD=65°,求∠AOE的度数.23.在∠AOB和∠COD中,(1)如图1,已知∠AOB=∠COD=90°,当∠BOD=40°时,求∠AOC的度数;(2)如图2,已知∠AOB=82°,∠COD=110°,且∠AOC=2∠BOD时,请直接写出∠BOD的度数;(3)如图3,当∠AOB=α,∠COD=β,且∠AOC=n∠BOD(n>1)时,请直接用含有α,β,n的代数式表示∠BOD的值.24.如图,已知∠AOD和∠BOE都是直角,它们有公共顶点O(1)若∠DOE=60°,求∠AOB的度数.(2)判断∠AOE和∠BOD的大小关系,并说明理由.(3)猜想:∠AOB和∠DOE有怎样的数量关系,并说明理由.25.如图,直线AB与CD相交于点O,∠AOM=90°.(1)如图1,若OC平分∠AOM,求∠AOD的度数;(2)如图2,若∠BOC=4∠NOB,且OM平分∠NOC,求∠MON的度数.26.如图,直线AB与CD相交于点O,OE是∠COB的平分线,OE⊥OF.(1)图中∠BOE的补角是;(2)若∠COF=2∠COE,求∠BOE的度数;(3)试判断OF是否平分∠AOC,并说明理由;请说明理由.27.如图所示,码头、火车站分别位于A,B两点,直线a和b分别表示铁路与河流.(1)从火车站到码头怎样走最近,画图并说明理由;(2)从码头到铁路怎样走最近,画图并说明理由;(3)从火车站到河流怎样走最近,画图并说明理由.参考答案1.解:①如果线段AB=BC,则B是线段AC的中点,说法错误,必须说明A、B、C三点共线时;②两点之间直线最短,说法错误,应是两点之间线段最短;③大于直角的角是钝角说法错误,应该是大于直角小于平角的角是钝角;④如图,∠ABD也可用∠B表示,说法错误,以B为顶点的角不是一个,故不能用∠B表示,故选:A.2.解:如图,上午8点整时,钟表表面的时针与分针的夹角是4×30°=120°故选:D.3.解:我们把时针指向2,分针指向12作为起始位置,当分针指向25时,他转了25×6°=150°,此时时针转动了150°×=12.5°,则时针和3之间还有30°﹣12.5°=17.5°,故时针和分针之间夹角为30°×2+17.5°=77.5°.故选:A.4.解:如图,由题可得,∠BAF=60°,∠CBE=30°,AF∥BE,∴∠ABC=90°,又∵AB=BC,∴△ABC是等腰直角三角形,∴∠BCA=45°,又∵∠BCD=∠CBE=30°,∴∠ACD=15°,∴从C点直接回到港口A,行驶的方向应是南偏西15°方向,故选:A.5.解:∵∠AOB=60°,射线OC平分∠AOB,∴∠AOC=∠BOC=AOB=30°,又∠COP=15°①当OP在∠BOC内,∠BOP=∠BOC﹣∠COP=30°﹣15°=15°,②当OP在∠AOC内,∠BOP=∠BOC+∠COP=30°+15°=45°,综上所述:∠BOP=15°或45°.故选:D.6.解:∵∠BOC=100°,∴∠AOC=80°,当直线ON恰好平分锐角∠AOC时,如下图:∠BON=∠AOC=40°,此时,三角板旋转的角度为90°﹣40°=50°,∴t=50°÷10°=5;当ON在∠AOC的内部时,如下图:三角板旋转的角度为360°﹣90°﹣40°=230°,∴t=230°÷10°=23;∴t的值为:5或23.故选:C.7.解:A.因为∠ACD=∠ACB+∠BCD=90°+28°30′=118°30′,所以选项A不符合题意;B.因为∠ACD=∠ACB+∠BCD=90°+28°30′=118°30′,∠BCE=∠DCE+∠BCD=90°+28°30′=118°30′,所以∠ACD=∠BCE,所以B选项不符合题意;C.因为∠ACE=360°﹣90°﹣90°﹣28°30′=151°30',所以C选项不符合题意;D.因为∠ACE﹣∠BCD=151°30′﹣28°30′=122°,所以D选项错误,符合题意.故选:D.8.解:如图所示:∵OD,OE分别是∠AOC,∠BOC的角平分线,∴∠AOD=∠DOC=,∠COE=∠BOE=,又∵∠AOB=∠AOC+∠BOC=120°,∴∠AOD+∠BOE=60°,故选:A.9.解:∵∠AOB=∠COD=90°,∠COB=58°,∴∠BOD=∠COA=90°﹣58°=32°,∴∠DOA=∠AOB+∠DOB=90°+32°=122°.故选:C.10.解:射线OC在∠AOB的内部,那么∠AOC在∠AOB的内部,且有一公共边;则一定存在∠AOB>∠AOC.故选:A.11.解:∵“4”至“9”的夹角为30°×5=150°,时针偏离“9”的度数为30°×=10°,∴时针与分针的夹角应为150°+10°=160°.12.解:39′+31′=70′=1°10′,故48°39′+67°31′=116°10'.故答案为:116°10'.13.解:∵点A、O、B在一条直线上,∠AOC=130°,∴∠COB=180°﹣130°=50°,∵OD是∠BOC的平分线,∴∠COD=∠BOC=25°.故答案为:25.14.解:∵∠BOE=∠BOC,∴∠BOC=n∠BOE,∴∠AOB=∠AOC+∠BOC=50°+n∠BOE,∴∠BOD=∠AOB=+∠BOE,∴∠DOE=∠BOD﹣∠BOE=,故答案为:.15.解:∵∠α=32°,∴∠α的补角为:180°﹣32°=148°.故答案为:148.16.解:∵0.52×60=31.2,0.2×60=12,∴52.52°=52°31′12″,52°52′>52°31′12″,故答案为:>.17.解:∵10条直线两两相交:3条直线相交最多有3个交点,4条直线相交最多有6个交点,5条直线相交最多有10个交点,而3=×2×3,6=×3×4,10=1+2+3+4=×4×5,∴十条直线相交最多有交点的个数是:n(n﹣1)=×10×9=45.故答案为:45.18.解:∵OE平分∠AOB,OF平分∠BOC,∴∠AOE=∠EOB=∠AOB,∠COF=∠BOF=∠BOC,∵∠AOC为平角,∴∠AOB+∠BOC=180°∴∠EOB+∠BOF=∠EOF=90°∵∠AOD=25°=∠COF,∴∠BOE=90°﹣25°=65°,故答案为:65°.19.解:∵∠AOD=132°,∴∠COB=132°,∵EO⊥AB,∴∠EOB=90°,∴∠COE=132°﹣90°=42°,故答案为:42.20.解:先过点A作AB⊥CD,垂足为点B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是垂线段最短;故答案为:垂线段最短.21.解:满足题意的情况有两种:①当OC,OD在AB的同侧时,如图,∠BOD=180°﹣∠AOC﹣∠COD=30°;②当OC,OD在AB的异侧时,如图,∠BOD=180°﹣(∠COD﹣∠AOC)=150°;22.解:(1)如图,∵OD是∠AOC的平分线,∴∠COD=∠AOC.∵OE是∠BOC的平分线,∴∠COE=∠BOC.所以∠DOE=∠COD+∠COE=(∠AOC+∠BOC)=∠AOB=90°.(2)由(1)可知:∠BOE=∠COE=90°﹣∠COD=25°.所以∠AOE=180°﹣∠BOE=155°.23.解:(1)如图1,∵∠AOB=∠COD=90°,∠BOD=40°,∴∠AOC=∠AOB+∠COD﹣∠BOD=90°+90°﹣40°=140°,答:∠AOC的度数为140°;(2)如图2,∵∠AOB=82°,∠COD=110°,∴∠AOC=∠AOB+∠COD﹣∠BOD=82°+110°﹣∠BOD,又∵∠AOC=2∠BOD,∴2∠BOD=82°+110°﹣∠BOD,∴∠BOD==64°,答:∠BOD的度数为64°;(3)如图3,∵∠AOB=α,∠COD=β,∴∠AOC=∠AOB+∠COD﹣∠BOD=α+β﹣∠BOD,又∵∠AOC=n∠BOD,∴n∠BOD=α+β﹣∠BOD,∴∠BOD=,答:∠BOD=.24.解:(1)因为∠AOD和∠BOE都是直角∠DOE=60°,所以∠AOE=∠AOD﹣∠DOE=90°﹣60°=30°所以∠AOB=∠AOE+∠BOE=30°+90°=120°答:∠AOB的度数为120°.(2)∠AOE和∠BOD的大小关系是相等,理由如下:因为∠AOD和∠BOE都是直角所以∠AOE=∠AOD﹣∠DOE=90°﹣∠DOE∠BOD=∠BOE﹣∠DOE=90°﹣∠DOE所以∠AOE=∠BOD.(3)∠AOB+∠DOE=180°.理由如下:因为∠AOB=∠AOD+∠DOB=90°+∠DOB所以∠DOB=∠AOB﹣90°因为∠DOE=∠BOE﹣∠DOB=90°﹣∠DOB所以∠DOB=90°﹣∠DOE所以∠AOB﹣90°=90°﹣∠DOE所以∠AOB+∠DOE=180°.25.解(1)∵∠AOM=90°,OC平分∠AOM,∴∠AOC=∠AOM=×90°=45°,∵∠AOC+∠AOD=180°,∴∠AOD=180°﹣∠AOC=180°﹣45°=135°,即∠AOD的度数为135°;(2)∵∠BOC=4∠NOB∴设∠NOB=x°,∠BOC=4x°,∴∠CON=∠COB﹣∠BON=4x°﹣x°=3x°,∵OM平分∠CON,∴∠COM=∠MON=∠CON=x°,∵∠BOM=x+x=90°,∴x=36°,∴∠MON=x°=×36°=54°,即∠MON的度数为54°.26.解:(1)∵∠AOE+∠BOE=∠AOB=180°,∠COE+∠DOE=∠COD=180°,∠COE =∠BOE∴∠BOE的补角是∠AOE,∠DOE故答案为:∠AOE或∠DOE;(2)∵OE⊥OF.∠COF=2∠COE,∴∠COF=×90°=60°,∠COE=×90°=30°,∵OE是∠COB的平分线,∴∠BOE=∠COE=30°;(3)OF平分∠AOC,∵OE是∠COB的平分线,OE⊥OF.∴∠BOE=∠COE,∠COE+∠COF=90°,∵∠BOE+∠EOC+∠COF+∠FOA=180°,∴∠COE+∠FOA=90°,∴∠FOA=∠COF,即,OF平分∠AOC.27.解:如图所示(1)沿AB走,两点之间线段最短;(2)沿AC走,垂线段最短;(3)沿BD走,垂线段最短.。
人教版七年级下册数学第八章测试卷附答案
第八章-二元一次方程组一、单选题1.一个两位数,十位数字与个位数字和为6,这样的两位数中,是正整数的有()A. 6个B. 5个 C. 3个 D. 无数个2.下列各组数中①;②;③;④是方程的解的有( )A. 1个 B. 2 C. 3 个D. 4个3.下列方程中,是二元一次方程的是()A. -y=6B. +=1C. 3x-y2=0D. 4xy=34.二元一次方程组的解为()A. B.C. D.5.已知方程组,则x﹣y的值为()A. -1B. 0C. 2D. 36.购买铅笔7支,作业本3本,圆珠笔1支共需3元;购买铅笔10支,作业本4本,圆珠笔1支共需4元,则购买铅笔11支,作业本5本,圆珠笔2支共需()A. 4.5元B. 5元 C. 6元 D. 6.5元7.下列方程组中,是二元一次方程组的是()A. B. C.D.8.笼中有x只鸡y只兔,共有36只脚,能表示题中数量关系的方程是()A. x+y=18B. x+y=36C.4x+2y=36 D. 2x+4y=369.二元一次方程x+2y=5在实数范围内的解()A. 只有1个B. 只有2个 C. 只有3个 D. 有无数个二、填空题10.请写出一个你所喜欢的二元一次方程组________11.若+(2a+3b﹣13)2=0,则a+b= ________.12.已知,则a+b等于________.13.若关于x、y的二元一次方程组的解满足x+y=1,则a的值为________.14.请构造一个二元一次方程组,使它的解为.这个方程组是________.15.已知|x﹣y+2|+(2x+y+4)2=0.则x y=________.16.将方程5x﹣y=1变形成用含x的代数式表示y,则y=________.17.方程组的解是________.三、计算题18.解方程组:.19.解下列二元一次方程组:(1)(2)20.解下列方程组:(1)(2)四、综合题21.已知y=kx+b,当x=1时,y=﹣2;当x=﹣1时,y=4.(1)求k、b的值;(2)当x取何值时,y的值小于10?答案一、单选题1.【答案】 A【解析】【解答】解:设两位数的个位数为x,十位为y,根据题意得:x+y=6,∵xy都是整数,∴当x=0时,y=6,两位数为60;当x=1时,y=5,两位数为51;当x=2时,y=4,两位数为42;当x=3时,y=3,两位数为33;当x=4时,y=2,两位数为24;当x=5时,y=1,两位数为15;则此两位数可以为:60、51、42、33、24、15,共6个,故选:A.【分析】可以设两位数的个位数为x,十位为y,根据两数之和为6,且xy为整数,分别讨论两未知数的取值即可.注意不要漏解.2.【答案】 B【解析】【解答】解:把①代入得左边=10=右边;把②代入得左边=9≠10;把③代入得左边=6≠10;把④代入得左边=10=右边;所以方程的解有①④2个.故答案为:B【分析】能使二元一次方程的左边和右边相等的未知数的值就是二元一次方程的解,二元一次方程有无数个解,根据定义将每一对x,y的值分别代入方程的左边算出答案再与右边的10比较,若果相等,x,y的值就是该方程的解,反之就不是该方程的解。
2020-2021学年七年级数学鲁教版下册《第8章平行线的证明》单元综合训练(附答案)(五四制)
2020-2021年度鲁教版七年级数学下册《第8章平行线的证明》单元综合训练(附答案)1.小明将含30°的三角板和一把直尺如图放置,测得∠1=25°,则∠2的度数是()A.25°B.30°C.35°D.40°2.如图,∠DAC+∠ACB=180°,EF∥BC,CE平分∠BCF,∠DAC=3∠BCF,∠ACF=20°,则∠FEC的度数是()A.10°B.20°C.15°D.30°3.如图,将一块含有30°的直角三角板的顶点放在直尺的一边上,若∠1=43°,那么∠2的度数是()A.48°B.107°C.92°D.73°4.在下列结论中正确的是()A.三角形的三个内角中最多有一个锐角B.三角形的三条高都在三角形内C.钝角三角形最多有一个锐角D.三角形的三条角平分线都在三角形内部5.如图,CD∥AB,点O在AB上,OE平分∠BOD,OF⊥OE,∠D=120°,∠AOF的度数是()A.20°B.30°C.40°D.60°6.如图所示,BD是△ABC的角平分线,DE∥BC交AB于点E,∠A=45°,∠BDC=60°,则∠C的度数是()A.100°B.105°C.110°D.115°7.如图,l1∥l2,则∠1、∠2、∠3关系是()A.∠2>∠1+∠3B.无法确定C.∠3=∠1﹣∠2D.∠2=∠1+∠3 8.如图,AB∥DE,那么∠BCD=()A.180°+∠1﹣∠2B.∠1+∠2C.∠2﹣∠1D.180°+∠2﹣2∠19.如果两个角的两边分别平行,而其中一个角比另一个角的3倍少20°,那么这两个角是()A.50°、130°B.都是10°C.50°、130°或10°、10°D.以上都不对10.如图,△ABC中,∠BAC=58°,∠C=82°,∠BAC的平分线AD交BC于点D,点E是AC上一点,且∠ADE=∠B,则∠CDE的度数是()A.29°B.39°C.42°D.52°11.在△ABC中,若∠C=50°,∠B﹣∠A=100°,则∠B的度数为.12.已知,AD是△ABC的高,∠BAD=80°,∠CAD=20°,则∠BAC=.13.已知,AD是△ABC的角平分线,MN⊥AD于点D,分别交AB、射线AC于点M、N,∠MDB=10°,则∠ACB﹣∠ABC=°.14.如图,直线a∥b,点B在直线b上,且AB⊥BC,∠1=57°,则∠2的度数是.15.在△ABC中,∠B=20°,AD为BC边上的高,∠DAC=30°,AE平分∠BAC交BC 于点E,则∠DAE等于度.16.如图,AB∥CD,CE交AB于F,∠C=55°,∠AEC=18°,则∠A=°.17.如图,在△ABC中,∠A=50°,∠B=60°,CD平分∠ACB,DE⊥BC于E,则∠CDE 的度数为.18.欢欢观察“抖空竹”时发现,可以将某一时刻的情形抽象成数学问题:如图,已知AB ∥CD,∠E=23°,∠DCE=115°,则∠BAE的度数是.19.如图,一环湖公路的AB段为东西方向,经过四次拐弯后,又变成了东西方向的FE段,则∠B+∠C+∠D+∠E的度数是.20.如图,已知AB∥CD,则∠x、∠y、∠z三者之间的等量关系是.21.如图,EF∥AD,∠1=∠2,∠AGD=105°.求∠BAC的度数.22.已知:如图,△ABC中,∠BAD=∠EBC,AD交BE于F.(1)试说明:∠BFD=∠ABC;(2)若∠ABC=40°,EG∥AD,EH⊥BE,求∠HEG的度数.(1)试判断BF与DE的位置关系,并说明理由;(2)若BF⊥AC,∠2=145°,求∠AFG的度数.24.如图,AD交BC于点D,点F在BA的延长线上,点E在线段CD上,EF与AC相交于点G,∠BDA+∠CEG=180°.(1)证明AD∥EF;(2)若点H在FE的延长线上,且∠EDH=∠C,∠F=∠H,则∠BAD和∠CAD相等吗?请说明理由;(3)在(2)的条件下,若FH⊥BC,∠C=30°,求∠F的度数.25.如图,DE平分∠ADF,DF∥BC,点E,F在线段AC上,点A,D,B在一直线上,连接BF.(1)若∠ADF=70°,∠ABF=25°,求∠CBF的度数;(2)若BF平分∠ABC时,求证:BF∥DE.(1)请你判断AD与EC的位置关系,并说明理由;(2)若CE⊥EF,且∠3=140°,求∠F AB的度数.参考答案1.解:如图:∵∠1=25°,∠3=∠1+30°,∴∠3=55°,∵直尺的对边平行,∴∠4=∠3=55°,∴∠2=180°﹣90°﹣∠4=180°﹣90°﹣55°=35°,故选:C.2.解:设∠BCE=∠ECF=∠BCF=x,∵∠DAC=3∠BCF,∴∠DAC=6x,∵∠DAC+∠ACB=180°,∴6x+x+x+20°=180°,解得x=20°,所以,∠FEC的度数为20°.故选:B.3.解:∵将一块含有30°的直角三角板的顶点放在直尺的一边上,∠1=43°,∴∠2=∠3=180°﹣43°﹣30°=107°.故选:B.4.解:A、三角形的三个内角中,最多可以有3个内角是锐角,本选项错误,不符合题意.B、锐角三角形的三条高在三角形内部,本选项错误,不符合题意.C、钝角三角形有两个锐角,本选项错误,不符合题意.D、三角形的三条角平分线都在三角形内部,本选项正确,符合题意.故选:D.5.解:∵CD∥AB,∠D=120°,∴∠AOD+∠D=180°,∴∠AOD=60°,∠DOB=120°,∵OE平分∠BOD,∴∠DOE=60°,∵OF⊥OE,∴∠FOE=90°,∴∠DOF=90°﹣60°=30°,∴∠AOF=∠AOD﹣∠DOF=60°﹣30°=30°.故选:B.6.解:∵∠A=45°,∠BDC=60°,∴∠ABD=∠BDC﹣∠A=15°.∵BD是△ABC的角平分线,∴∠ABC=2∠ABD=30°,∴∠C=180°﹣∠ABC﹣∠A=180°﹣30°﹣45°=105°.故选:B.7.解:过∠2的顶点,作如图所示的射线l,使l∥l1,∵l1∥l2,l∥l1,∴l1∥l2∥l.∴∠1=∠α,∠2=∠β.∵∠α+∠β=∠2,∴∠1+∠3=∠2.故选:D.8.解:过点C作CF∥AB,如图:∵AB∥DE,∴AB∥DE∥CF,∴∠BCF=∠1①,∠2+∠DCF=180°②,∴①+②得,∠BCF+∠DCF+∠2=∠1+180°,即∠BCD=180°+∠1﹣∠2.故选:A.9.解:∵两个角的两边分别平行,∴这两个角相等或互补.设其中一角为x°,若这两个角相等,则x=3x﹣20,解得:x=10,∴这两个角的度数是10°和10°;若这两个角互补,则180﹣x=3x﹣20,解得:x=50,∴这两个角的度数是50°和130°.∴这两个角的度数是50°、130°或10°、10°.故选:C.10.解:∵在△ABC中,∠BAC=58°,∠C=82°,∴∠B=180°﹣58°﹣82°=40°,∵AD平分∠BAC,∴∠BAD=∠BAC=29°,∴∠ADC=∠B+∠BAD=69°,∵∠ADE=∠B=40°,∴∠CDE=29°,故选:A.11.解:∵∠C=50°,∴∠A+∠B=180°﹣∠C=130°,∵∠B﹣∠A=100°,∴∠B=115°,故答案为115°.12.解:①如图1,当高AD在△ABC的内部时,∠BAC=∠BAD+∠CAD=80°+20°=100°;②如图2,当高AD在△ABC的外部时,∠BAC=∠BAD﹣∠CAD=80°﹣20°=60°,综上所述,∠BAC的度数为100°或60°.故答案为:100°或60°.13.解:∵AD是△ABC的角平分线,MN⊥AD于点D,∴AM=AN.∴∠AMN=∠AND.∵∠MDB=∠CDN=10°,∵∠ACB=∠AND+∠CDN,∠ABC=∠AMN﹣∠MDB,∴∠ACB﹣∠ABC=∠AND+∠CDN﹣∠AMN+∠MDB=∠CDN+∠MDB=20°.故答案为:20.14.解:∵AB⊥BC,∴∠ABC=90°,∴∠ABD=180°﹣∠ABC﹣∠1=33°.∵a∥b,∴∠2=∠ABD=33°,故答案为:33°.15.解:有两种情况:①当∠BAC是钝角时,如图:∵AD为BC边上的高,∴∠ADC=90°,∵∠DAC=30°,∴∠ACB=60°,∵∠ABC=20°,∴∠BAC=180°﹣∠ABC﹣∠ACB=100°,∵AE平分∠BAC,∴∠CAE=BAC=50°,∴∠DAE=∠CAE﹣∠CAD=50°﹣30°=20°;②当∠BAC是锐角时,如图:∵AD为BC边上的高,∴∠ADC=90°,∵∠DAC=30°,∴∠ACD=60°,∴∠ACB=180°﹣60°=120°,∵∠ABC=20°,∴∠BAC=180°﹣∠ABC﹣∠ACB=40°,∵AE平分∠BAC,∴∠CAE=BAC=20°,∴∠DAE=∠CAE+∠CAD=20°+30°=50°;故答案为:20或50.16.解:∵AB∥CD,∠C=55°,∴∠EFB=∠C=55°,∵∠AEC=18°,∴∠A=∠EFB﹣∠AEC=37°,故答案为:37.17.解:∵A=50°,∠B=60°,∴∠ACB=180°﹣∠A﹣∠B=70°,∵CD平分∠ACB,∴∠DCE=ACB=35°,∵DE⊥BC,∴∠CED=90°,∴∠CDE=90°﹣35°=55°,故答案为:55°.18.解:如图,延长DC交AE于F,∵∠DCE=∠E+∠CFE=115°,∴∠CFE=∠DCE﹣∠E=115°﹣23°=92°.∵AB∥CD,∴∠BAE=∠CFE=92°,故答案为:92°.19.解:如图,根据题意可知:AB∥EF,分别过点C,D作AB的平行线CG,DH,所以AB∥CG∥DH∥EF,则∠B+∠BCG=180°,∠GCD+∠HDC=180°,∠HDE+∠DEF=180°,∴∠B+∠BCG+∠GCD+∠HDC+∠HDE+∠DEF=180°×3=540°,∴∠B+∠BCD+∠CDE+∠E=540°.故答案为540°.20.解:如图,过点P作PG∥AB,∴∠EPG=∠x,∵AB∥CD,∴PG∥CD,∴∠FPG=∠z,∴∠EPF=∠EPG+∠FPG=∠x+∠z.∴∠x+∠z=∠y.故答案为:∠x+∠z=∠y.21.解:∵EF∥AD(已知),∴∠1=∠3(两直线平行,同位角相等),又∵∠1=∠2(已知),∴∠2=∠3(等量代换),∴AB∥DG(内错角相等,两直线平行),∴∠BAC+∠AGD=180°(两直线平行,同旁内角互补),又∵∠AGD=105°(已知),∴∠BAC=75°.22.解:(1)∵∠BFD是△ABF的外角,∴∠BFD=∠BAD+∠ABF,∵∠BAD=∠EBC,∴∠BAD+∠ABF=∠EBC+∠ABF,即∠BFD=∠ABC;(2)∵∠ABC=40°,∠BFD=∠ABC,∴∠BFD=40°,∵EG∥AD,∴∠BFD=∠BEG,∴∠BEG=40°,∵EH⊥BE,∴∠BEH=90°,∴∠HEG=∠BEH﹣∠BEG=50°.23.解:(1)BF∥DE.理由如下:∵∠AGF=∠ABC,∴GF∥BC,∴∠1=∠3,∵∠1+∠2=180°,∴∠3+∠2=180°,∴BF∥DE;(2)∵∠1+∠2=180°,∠2=145°,∴∠1=35°,∴∠AFG=90°﹣35°=55°.24.解:(1)证明:∵∠BDA+∠CEG=180°,∠BDA+∠ADC=180°.∴∠ADC=∠CEG,∴AD∥EF;(2)∠BAD和∠CAD相等,理由如下:∵∠EDH=∠C,∴DH∥AC,∴∠H=∠CGH,∵∠CGH=∠AGF,∴∠H=∠AGF,∵∠F=∠H,∴∠F=∠AGF,∵AD∥EF,∴∠BAD=∠F,∠CAD=∠AGF,∴∠BAD=∠CAD;(3)∵FH⊥BC,∴∠CEG=90°,∵∠C=30°,∴∠CGE=90°﹣30°=60°,∴∠F=∠AGF=∠CGE=60°.25.解:(1)∵DF∥BC,∴∠ABC=∠ADF=70°,∵∠ABF=25°,∴∠CBF=70°﹣25°=45°;(2)证明:∵DF∥BC,∴∠ABC=∠ADF,∵BF平分∠ABC,DE平分∠ADF,∴∠ADE=ADF,∠ABF=ABC,∴∠ADE=∠ABF,∴BF∥DE.26.解:(1)AD∥EC.理由:∵∠1=∠CDF,∴AB∥CD,∴∠2=∠CDA.∵∠2+∠3=180°,∴∠CDA+∠3=180°,∴AD∥EC.(2)∵CE⊥EF,∴∠CEA=90°.由(1)知AD∥EC,∴∠DAF=∠CEA=90°.∵∠3=140°,∴∠CDA=180°﹣140°=40°,∴∠2=∠CDA=40°,∴∠F AB=90°﹣40°=50°.。
人教版七年级数学下册第八章测试卷 同步练习
9. 10.①不存在;②无穷多个.
二、选择题:11.C.12.B.13.C.14.D.15.C.16.A.
三、解答题:
17.解:由②得 ,
把③代入①,得
把z=-3代入③得:x=-3
原方程组的解为:
18.解:由①得: ③
把③代入②得:
把 代入③得:
原方程组的解为:
19.解:整理,得
23.(10分)上杭教育服装厂要生产一批某种型号的学生服装,已知3米长的布料可做上衣2件或裤子3条,一件上衣和一条裤子为一套,计划用600米长的这种布料生产,应分别用多少布料生产上衣和裤子才能恰好配套?共能生产多少套?
参考答案
一、填空题:
1. 2. (只要符合题意即可,答案不唯一)
3.①,④4. ,
9.某次足球比赛的记分规则如下:胜一场得3分,平一场得1分,负一场是0分.某队踢了14场,其中负5场,共得19分。若设胜了x场,平了y场,则可列出方程组:.
10.分析下列方程组解的情况.
①方程组 的解;②方程组 的解.
二、选择题:(本大题共6小题,每小题3分,共18分)
11.用代入法解方程组 时,代入正确的是( )
由①得
把③代入②,得
把x=2代入③得:
原方程组的解为:
20.解:解方程组 得
把 代入方程组 得
解此方程组得
21.解:设有x辆车,y个生,则
解得
答:有5辆车,240个学生。
22.解;设甲种贷款x万元,乙种贷款y万元,则
解得
答:甲种贷款42万元,乙种贷款26万元.
23.设用x米布料生产上衣,y米布料生产裤子才能配套,则
20.(8分)已知方程组 和 有相同的解,求 的值.
《第8章二元一次方程组》期末复习综合提升训练1(附答案)人教版七年级数学下册
人教版七年级数学下册《第8章二元一次方程组》期末复习综合提升训练1(附答案)1.已知是二元一次方程mx+3y=7的一组解,则m的值为()A.﹣2B.2C.﹣D.2.方程x+2y=5的非负整数解有()A.4个B.3个C.2个D.1个3.若关于x、y的二元一次方程组的解与方程x+y=6的解相同,则k的值是()A.5B.6C.7D.84.已知方程组:的解是:,则方程组:的解是()A.B.C.D.5.为了奖励进步较大的学生,某班决定购买甲、乙、丙三种钢笔作为奖品,其单价分别为4元、5元、6元,购买这些钢笔需要花60元;经过协商,每种钢笔单价下降1元,结果只花了48元,那么甲种钢笔可能购买()A.11支B.9支C.7支D.4支6.8个一样大小的长方形恰好拼成一个大的长方形(如图),若大长方形的宽为8cm,则每一个小长方形的面积为()A.8cm2B.15cm2C.16cm2D.20cm27.甲、乙两个药品仓库共存药品45吨,为共同抗击“非典”,现从甲仓库调出库存药品的60%,从乙仓库调出40%支援疫区.结果,乙仓库所余药品比甲仓库所余药品多3吨,那么甲,乙仓库原来所存药品分别为()A.21吨,24吨B.24吨,21吨C.25吨,20吨D.20吨,25吨8.若关于x,y的二元一次方程组的解也是二元一次方程2x+3y=12的解,则k 的值为()A.B.C.D.9.方程组的解是.10.已知方程组,则x+y的值为.11.关于x、y的方程3x+2y=7的正整数解为.12.某车间有60名工人,每人平均每天可加工螺栓14个或螺母20个,要使每天加工的螺栓和螺母配套(1个螺栓配2个螺母),设应分配x人生产螺母,y人生产螺栓,依题意列方程组得.13.一个两位数,个位数字和十位数字的和是13,如果将个位数字和十位数字对调后得到的新数比原数大27,则原来的两位数是.14.若是二元一次方程mx+ny=﹣2的一个解,则2m﹣n﹣6的值是.15.若方程组的解是,则方程组的解是a =,b=.16.二元一次方程组的解是.17.已知x,y互为相反数且满足二元一次方程组,则k的值是.18.普通火车从绵阳至成都历时大约2小时,成绵城际快车开通后,时间大大缩短至几十分钟,现假定普通火车与城际快车两列对开的火车于同一时刻发车,其中普通火车由成都至绵阳,城际快车由绵阳至成都,这两车在途中相遇之后,各自用了80分钟和20分钟到达自己的终点绵阳、成都,则城际快车的平均速度是普通火车平均速度的倍.19.如图,在长方形ABCD中,放入6个形状、大小都相同的长方形,所标尺寸如图所示,则图中阴影部分面积是,若平移这六个长方形,则图中剩余的阴影部分面积是否改变?(填“变”或“不变”).20.某校七年级的数学竞赛中共有30道题,答对一题得5分,不答得0分,答错扣4分,学生小王有5题未答,最后得71分,那么他答对了题.21.解方程组:(1);(2).22.甲、乙两位同学在解方程组时,甲把字母a看错了得到了方程组的解为;乙把字母b看错了得到方程组的解为.(1)求3a﹣b2的值;(2)求原方程组的解.23.已知方程组和有相同的解,求a和b的值.24.已知关于x、y的方程组的解满足x+y=5,求:m2021+2的值.25.现有A,B两种商品,买2件A商品和1件B商品用了90元,买3件A商品和2件B 商品用了160元.(1)求A,B两种商品每件各是多少元?(2)如果小亮准备用400元购买A,B两种商品(400元恰好用完,两种商品都有),请问有几种购买方案?26.某文具店用13600元购进了一批篮球和排球,共计500个,它们的成本价和销售价如表所示:单价(元/个)成本价销售价篮球3248排球2436(1)购进的这批篮球和排球各多少个?(2)该店销售完这批篮球和排球后可获利多少元?27.在鞍山外环公路改建工程中,某路段长5280米,现准备由甲乙两个工程队拟在20天内(含20天)合作完成,已知两个工程队各有20名工人(设甲乙两个工程队的工人全部参与生产,甲工程队每人每天工作量相同,乙工程队每人每天工作量相同),甲工程队1天、乙工程队2天共修路400米;甲工程队2天、乙工程队3天共修路700米.(1)试问甲乙两个工程队每天分别修路多少米?(2)甲乙两个工程队施工8天后,由于工作需要需从甲队调离m人去其他工程工作,总部要求在规定时间内完成,请问甲队最多可以调离多少人?28.某市生产的洋葱品质好、干物质含量高且耐储存,因而受到国内外客商青睐.现欲将一批洋葱运往外地销售,若用2辆A型车和1辆B型车载满洋葱一次可运走10吨;用1辆A型车和2辆B型车载满洋葱一次可运走11吨.现有洋葱31吨,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满洋葱.根据以上信息,解答问题:(1)1辆A型车和1辆B型车都载满洋葱一次可分别运送多少吨?(2)请你帮该物流公司设计租车方案;(3)若1辆A型车需租金100元/次,1辆B型车需租金120元/次.请选出费用最少的租车方案,并求出最少租车费.参考答案1.解:把代入方程得:﹣m+9=7,解得:m=2.故选:B.2.解:方程x+2y=5,解得:x=﹣2y+5,当y=0时,x=5;y=1时,x=3;y=2时,x=1,则方程的非负整数解有3个,故选:B.3.解:,①+②,得4(x+y)=3k+3,把x+y=6代入,得24=3k+3,解得k=7.故选:C.4.解:在方程组中,设x+2=a,y﹣1=b,则变形为方程组,由题知,所以x+2=8.3,y﹣1=1.2,即.故选:C.5.解:设甲种钢笔有x支、乙种钢笔有y支、丙种钢笔有z支,则,其中x=11,x=9,x=7时都不符合题意;x=4时,y=4,z=4符合题意.故选:D.6.解:设每个小长方形的长为xcm,宽为ycm,根据题意得:,解得:,则每一个小长方形的面积为5×3=15(cm2);故选:B.7.解:设甲,乙仓库原来所存药品分别为x吨,y吨.根据题意得:,解得:,因此甲,乙仓库原来所存药品分别为24吨,21吨.故选:B.8.解:解方程组得:.将代入2x+3y=12中得:2×7k+3×(﹣2k)=12.解得:k=.故选:D.9.解:①+②得:3x=6,解得:x=2,把x=2代入①得:2+y=5,解得:y=3,即原方程组的解为:,故答案为:.10.解:①+②得,3x+3y=6∴x+y=2.故答案为:2.11.解:∵3x+2y=7,∴y=,∵要求的是正整数解,∴x=1,或x=2,∴当x=1时,y=2;当x=2时,y=,此时y不是正整数,故不符合题意.故答案为:.12.解:设应分配x人生产螺母,y人生产螺栓,依题意,得.故答案是:.13.解:设原来的两位数的十位数字为x,个位数字为y,依题意得:,解得:,∴10x+y=58.故答案为:58.14.解:把代入二元一次方程mx+ny=﹣2,得2m﹣n=﹣2,∴2m﹣n﹣6=﹣2﹣6=﹣8.故答案为:﹣8.15.解:∵若方程组的解是,方程组,可得:.解这个方程组得:.故答案为:﹣,.16.解:,①+②,得4x=20,解得x=5,把x=5代入②,得5﹣2y=5,解得y=0,故方程组的解为.故答案为:.17.解:解方程组:,得:,∵x和y互为相反数,则有2k+3+(﹣k﹣2)=0,解得k=﹣1.故答案为:﹣1.18.解:设普通火车的平均速度为x千米/小时,城际快车的平均速度为y千米/小时,则两地间的距离为2x千米,依题意得:x+y=2x,解得:y=2x,∴=2.故答案为:2.19.解:设小长方形的长为xcm,宽为ycm,依题意得:,解得:,∴图中阴影部分面积为14×(6+2y)﹣6xy=44(cm2).无论怎么平移这六个长方形,阴影部分的面积均为14×(6+2y)﹣6xy=44(cm2).故答案为:44cm2;不变.20.解:设小王答对了x道题,答错了y道题,依题意得:,解得:.故答案为:19道.21.解:(1),①×2﹣②得,x=10,把x=10代入①中,得y=10,∴原方程组的解为:.(2)原方程组可变形为:,①×2+②得,y=,把y=代入①中,得x=,∴原方程组的解为:.22.解:(1)根据题意可知:将x=2,y=﹣代入方程②,得2b+7=1,解得b=﹣3,将x=2,y=﹣1代入方程①,得2a﹣3=1,解得a=2,∴3a﹣b2=3×2﹣(﹣3)2=6﹣9=﹣3;(2)由(1)知方程组为:,①×3+②×2,得y=5,把y=5代入①得,x=﹣7,∴原方程组的解为.23.解:方程组得:,把代入得:,解得:.24.解:,①﹣②,得x+y=4﹣m,∵关于x、y的方程组的解满足x+y=5,∴4﹣m=5,解得m=﹣1.∴m2021+2=(﹣1)2021+2=﹣1+2=1.25.解:(1)设A种商品每件x元,B种商品每件y元,由题意,得,解得:.答:A种商品每件20元,B种商品每件50元;(2)设A种商品购买m件,B种商品购买n件,由题意得:20m+50n=400,正整数解:,,,答:有三种购买方案:①A种商品购买5件,B种商品购买6件;②A种商品购买10件,B种商品购买4件;③A种商品购买15件,B种商品购买2件.26.解:(1)设购进篮球x个,排球y个,依题意得:,解得:.答:购进篮球200个,排球300个.(2)(48﹣32)×200+(36﹣24)×300=6800(元).答:该店销售完这批篮球和排球后可获利6800元.27.解:(1)设甲工程队每天修路x米,乙队每天修y米,由题意列方程组,解这个方程组得.答:甲、乙每天分别修路200米和100米.(2)设甲队最多可以调走m人,根据题意得:5280=8×(200+100)+12×100+12×10×(20﹣m),解得m=6.答:甲队最多可以调走6人.28.解:(1)设1辆A型车载满洋葱一次可运送x吨,1辆B型车载满洋葱一次可运送y吨,依题意得:,解得:.答:1辆A型车载满洋葱一次可运送3吨,1辆B型车载满洋葱一次可运送4吨.(2)依题意得:3a+4b=31,∴a=.又∵a,b均为非负整数,∴或或,∴该物流公司共有3种租车方案,方案1:租用9辆A型车,1辆B型车;方案2:租用5辆A型车,4辆B型车;方案3:租用1辆A型车,7辆B型车.(3)方案1所需租车费为100×9+120×1=1020(元);方案2所需租车费为100×5+120×4=980(元);方案3所需租车费为100×1+120×7=940(元).∵1020>980>940,∴费用最少的租车方案为:租用1辆A型车,7辆B型车,最少租车费为940元人教版七年级数学下册《第8章二元一次方程组》期末复习综合提升训练2(附答案)1.已知二元一次方程组,用加减消元法解方程组正确的是()A.①×5﹣②×7B.①×2+②×3C.①×3﹣②×2D.①×7﹣②×5 2.已知是二元一次方程组的解,则5a﹣3b的值为()A.﹣1B.1C.2D.33.程大位《直指算法统宗》:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁,意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,试问大、小和尚各多少人?设大和尚有x人,小和尚有y人,依题意列方程组正确的是()A.B.C.D.4.方程组的解是()A.B.C.D.5.小明到文具店购买文具,他发现若购买4支钢笔、2支铅笔、1支水彩笔需要50元,若购买1支钢笔、3支铅笔、4支水彩笔也正好需要50元,则购买1支钢笔、1支铅笔、1支水彩笔需要()A.10元B.20元C.30元D.不能确定6.已知方程组,则x﹣y的值是()A.1B.2C.4D.57.已知,则用含x的式子表示y为()A.y=﹣2x+9B.y=2x﹣9C.y=﹣x+6D.y=﹣x+98.若方程组与方程组有相同的解,则a,b的值分别为()A.1,2B.1,0C.,﹣D.﹣,9.某工厂有工人35人,生产某种由一个螺栓套两个螺母的配套产品,每人每天生产螺栓16个或螺母24个,应分配多少人生产螺栓,多少人生产螺母,才能使生产出的螺栓和螺母刚好配套?设生产螺栓的有x人,生产螺母的有y人,则可以列方程组()A.B.C.D.10.方程3x+2y=18的正整数解的个数是()A.1B.2C.3D.411.设M=2x﹣3y,N=3x﹣2y,P=xy.若M=5,N=0,则P=.12.已知x,y互为相反数且满足二元一次方程组,则k的值是.13.已知方程组,那么3x﹣4y的值是.14.已知x、y满足,则x2﹣y2的值为.15.如图,10块相同的小长方形墙砖拼成一个大长方形,设小长方形墙砖的长和宽分别为x 厘米和y厘米,则列出的方程组为.16.若方程x﹣y=﹣1的一个解与方程组的解相同,则k的值为.17.在长为20m、宽为16m的长方形空地上,沿平行于长方形各边的方向割出三个完全相同的小长方形花圃,其示意图如图所示,则每个小长方形花圃的面积是m2.18.已知方程组的解是,则方程组的解是.19.长方形ABCD中放置了6个形状、大小都相同的小长方形,所标尺寸如图所示,则图中阴影部分的面积是cm2.20.若方程2x+y=3,2x﹣my=﹣1,3x﹣y=2有公共解,则m的值为.21.解方程组:(1);(2).22.若方程组与有相同的解,则a、b的值为多少?23.已知关于x,y的方程组(1)请写出方程x+2y=5的所有正整数解;(2)若方程组的解满足x+y=0,求m的值;(3)无论实数m取何值,方程x﹣2y+mx+9=0总有一个公共解,你能求出这个方程的公共解吗?(4)如果方程组有整数解,求整数m的值.24.2月8日,新世纪超市举办大型年货节.此次年货节活动特别准备了A、B两种商品进行特价促销,已知购进了A、B两种商品,其中A种商品每件的进价比B种商品每件的进价多40元.购进A种商品2件与购进B种商品3件的进价相同.(1)求A、B两种商品每件的进价分别是多少元?(2)该超市从厂家购进了A、B两种商品共60件,所用资金为5800元.出售时,A种商品在进价的基础上加价30%进行标价;B商品按标价出售每件可获利20元.若按标价出售A、B两种商品,则全部售完共可获利多少元?(3)在(2)的条件下,年货节期间,A商品按标价出售,B商品按标价先销售一部分商品后,余下的再按标价降价6元出售,A、B两种商品全部售出,总获利比全部按标价售出获利少了120元,则B商品按标价售出多少件?25.在手工制作课上,老师组织班级同学用硬纸制作圆柱形茶叶筒.全班共有学生50人,其中男生x人,女生y人,男生人数比女生人数少2人.已知每名同学每小时剪筒身40个或剪筒底120个.(1)求这个班男生、女生各有多少人?(2)原计划男生负责剪筒底,女生负责剪筒身,若要求一个筒身配两个筒底,请说明每小时剪出的筒身与筒底能否配套?如果不配套,请说明如何调配人员,才能使每小时剪出的筒身与筒底刚好配套?26.疫情期间,为保护学生和教师的健康,某学校用33000元购进甲、乙两种医用口罩共计1000盒,甲,乙两种口罩的售价分别是30元/盒,35元/盒.(1)求甲、乙两种口罩各购进了多少盒?(2)现已知甲,乙两种口罩的数量分别是20个/盒,25个/盒,按照教育局要求,学校必须储备足够使用十天的口罩,该校师生共计800人,每人每天2个口罩,问购买的口罩数量是否能满足教育局的要求?参考答案1.解:二元一次方程组,用加减消元法解方程组①×3﹣②×2或①×7+②×5.故选:C.2.解:将代入方程组,得,解得,所以5a﹣3b=10﹣9=1.故选:B.3.解:依题意得:.故选:D.4.解:,①+②×2得:7x=21,解得:x=3,把x=3代入②得:6﹣y=1,解得:y=5,则方程组的解为.故选:A.5.解:设购买1支钢笔、1支铅笔、1支水彩笔分别需要x、y、z元,根据题意得:,①+②得:5x+5y+5z=100,所以x+y+z=20,故选:B.6.解:∵2x+3y﹣(x+4y)=x﹣y=14﹣12=2,故选:B.7.解:,①×2+②得:2x+y=9,即y=﹣2x+9,故选:A.8.解:由题意可知:解得:将代入2ax+by=4与ax+by=3∴解得:故选:A.9.解:设生产螺栓的有x人,生产螺母的有y人.由题意,得,故选:D.10.解:由已知,得y==9﹣.要使x,y都是正整数,必须满足18﹣3x是2的倍数且18﹣3x是正数.根据以上两个条件可知,合适的x值只能是x=2,x=4,相应的y=6,y=3所以有2组,分别为,.故选:B.11.解:由题意得,①+②得5x﹣5y=5,即x﹣y=1③,①﹣③×2得﹣y=3,解得y=﹣3,把y=﹣3代入③得,x=﹣2,∴P=xy=﹣2×(﹣3)=6,12.解:解方程组:,得:,∵x和y互为相反数,则有2k+3+(﹣k﹣2)=0,解得k=﹣1.故答案为:﹣1.13.解:,①﹣②,得3x﹣4y=3.故答案为:3.14.解:,由①+②得到:x+y=2,由①﹣②得到:x﹣y=126,所以x2﹣y2=(x+y)(x﹣y)=2×126=252.故答案是:252.15.解:根据图示可得,故答案是:.16.解:联立得:,解得:,代入方程得:2﹣6=k,解得:k=﹣4,故答案为:﹣417.解:设小矩形的长为xm,宽为ym,由题意得:,解得:,即小矩形的长为8m,宽为4m.答:一个小矩形花圃的面积32m2,18.解:方程组转化为;∴由恒等式意义,得∴x=3,y=9∴方程组的解为故答案为19.解:设小长方形的长为xcm,宽为ycm,依题意,得:,解得:,∴图中阴影部分的面积=19×(7+2×3)﹣6×10×3=67(cm2).故答案为:67.20.解:∵方程2x+y=3,2x﹣my=﹣1,3x﹣y=2有公共解,∴,①+②得:x=1,故y=1,故方程组的解为:,故2﹣m=﹣1,解得:m=3.故答案为:3.21.解:(1),①×2+②得:﹣5y=﹣9,解得:y=1.8,把y=1.8代入②得:﹣4x+1.8=﹣3,解得:x=1.2,则方程组的解为;(2)方程组整理得:,①×2+②得:11x=22,解得:x=2,把x=2代入①得:8﹣y=5,解得:y=3,则方程组的解为.22.解:联立得:,①+②×4得:11x=22,即x=2,将x=2代入②得:4﹣y=5,即y=﹣1,∴方程组的解为,代入得:,解得:a=,b=﹣.23.解:(1)方程x+2y=5,解得:x=﹣2y+5,当y=1时,x=3;y=2,x=1;(2)联立得:,解得:,代入得:﹣5﹣10﹣5m+9=0,解得:m=﹣;(3)和m无关,所以m的系数为0,即x=0,代入方程得:﹣2y+9=0,即y=4.5,则其公共解为;(4),①+②得:(m+2)x=﹣4,解得:x=﹣,把x=﹣代入①得:y=,当m+2=2,1,﹣2,﹣1,4,﹣4时,x为整数,此时m=0.﹣1,﹣3,﹣4,2,﹣6,当m=﹣1时,y=,不符合题意;当m=﹣3时,y=,不符合题意;当m=2时,y=3,符合题意;当m=﹣6时,y=2,符合题意,当m=0时,y=,不符合题意;当m=﹣4时,y=,不符合题意,综上,整数m的值为﹣6或2.24.解:(1)设A种商品每件的进价是x元,则B种商品每件的进价是(x﹣40)元,由题意得2x=3(x﹣40),解得:x=120,120﹣40=80(元).答:A种商品每件的进价是120元,B种商品每件的进价是80元;(2)设购买A种商品a件,则购买B商品(60﹣a)件,由题意得120a+80(60﹣a)=5800,解得a=25,60﹣a=35.120×30%×25+20×35=1600(元).答:全部售完共可获利1600元;(3)设销售B商品按标价售出m件,由题意得:120×30%×25+20m+(20﹣6)(35﹣m)=1600﹣120,解得m=15.答:销售B商品按标价售出15件.25.解:(1)由题意得:,解得:,答:这个班有男生有24人,女生有26人;(2)男生剪筒底的数量:24×120=2880(个),女生剪筒身的数量:26×40=1040(个),因为一个筒身配两个筒底,2880:1040≠2:1,所以原计划男生负责剪筒底,女生负责剪筒身,每小时剪出的筒身与筒底不能配套,设男生应向女生支援a人,由题意得:120(24﹣a)=(26+a)×40×2,解得:a=4,答:原计划男生负责剪筒底,女生负责剪筒身,每小时剪出的筒身与筒底不能配套;男生应向女生支援4人时,才能使每小时剪出的筒身与筒底配套.26.解:(1)设学校购进甲种口罩x盒,购进乙种口罩y盒,依题意,得:,解得:.答:学校购进甲种口罩400盒,购进乙种口罩600盒.(2)购买的口罩总数为:400×20+600×25=23000(个),全校师生两周需要的用量为:800×2×10=16000(个).∵23000>16000,∴购买的口罩数量能满足教育局的要求.。
综合解析华东师大版七年级数学下册第8章一元一次不等式综合训练试题(含解析)
七年级数学下册第8章一元一次不等式综合训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若m >n ,则下列选项中不成立的是( )A .m +4>n +4B .m ﹣4>n ﹣4C .44m n >D .﹣4m >﹣4n2、下列各式:①1﹣x :②4x +5>0;③x <3;④x 2+x ﹣1=0,不等式有( )个.A .1B .2C .3D .43、下列各数中,是不等式12x +>的解的是( )A .﹣7B .﹣1C .0D .94、如果不等式组1x x a >-⎧⎨>⎩的解集是1x >-,那么a 的值可能是( ) A .-2 B .0 C .-0.7 D .355、关于x 的方程3﹣2x =3(k ﹣2)的解为非负整数,且关于x 的不等式组()21323x x k x x ⎧--≥⎪⎨+≤⎪⎩无解,则符合条件的整数k 的值的和为( )A .5B .2C .4D .66、不等式组31x x <⎧⎨≥⎩的解集在数轴上表示正确的是( ) A . B .C .D .7、若方程组233x y k x y +=⎧⎨-=-⎩的解满足20x y +>,则k 的值可能为( ) A .-1 B .0 C .1 D .28、如果a <b ,c <0,那么下列不等式成立的是( )A .a +c <bB .a ﹣c >b ﹣cC .ac +1<bc +1D .a (c ﹣2)<b (c ﹣2)9、在 ① 1x y +=;② x y >;③ 2x y +;④ 21x y -≥;⑤ 0x < 中,属于不等式的有 ()A .1 个B .2 个C .3 个D .4 个 10、下列变形中不正确的是( )A .由m >n 得n <mB .由﹣a <﹣b 得b <aC .由﹣4x >1得14x > D .由13x y -<得x >﹣3y 第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、不等式组250112x x -<⎧⎪⎨+≥-⎪⎩所有整数解的和是___. 2、求不等式组的解集的过程,叫做__________.3、不等式612x +>-的解集为______. 4、 “a 与b 的2倍的和大于1”用不等式可表示为________.5、如果a >b ,那么﹣2a ___﹣2b .(填“>”或“<”)三、解答题(5小题,每小题10分,共计50分)1、解不等式组523(2)4113x x x x +<+⎧⎪+⎨-≤⎪⎩,并写出它的所有非负整数解. 2、解不等式组:()511131132x x x x ⎧--+⎪⎨++-<⎪⎩,并把不等式组的解集表示在数轴上.3、求不等式组()3210143x x x x ⎧+>+⎪⎨-≥⎪⎩的整数解. 4、某市公交公司为落实“绿色出行,低碳环保”的城市发展理念,计划购买A ,B 两种型号的新型公交车,已知购买1辆A 型公交车和2辆B 型公交车需要165万元,2辆A 型公交车和3辆B 型公交车需要270万元.(1)求A 型公交车和B 型公交车每辆各多少万元?(2)公交公司计划购买A 型公交车和B 型公交车共140辆,且购买A 型公交车的总费用不高于B 型公交车的总费用,那么该公司最多购买多少辆A 型公交车?5、解下列不等式组并在数轴上表示它们的解.(1)()23319x x x -≤⎧⎨-+⎩<; (2)()3121312x x x ⎧-+⎪⎨+≥⎪⎩<.-参考答案-一、单选题1、D【解析】【分析】根据不等式的基本性质进行解答即可.【详解】解:∵m >n ,A 、m +4>n +4,成立,不符合题意;B 、m ﹣4>n ﹣4,成立,不符合题意;C 、44m n >,成立,不符合题意; D 、﹣4m <﹣4n ,原式不成立,符合题意;故选:D .【点睛】本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解本题的关键.2、B【解析】【分析】主要依据不等式的定义:用“>”、“≥”、“<”、“≤”、“≠”等不等号表示不相等关系的式子是不等式来判断.【详解】解:根据不等式的定义可知,所有式子中是不等式的是②4x +5>0; ③x <3,有2个.故选:B.【点睛】本题主要考查了不等式的定义,用“>”、“≥”、“<”、“≤”、“≠”等不等号表示不相等关系的式子叫作不等式.3、D【解析】【分析】移项、合并同类项,得到不等式的解集,再选取合适的x的值即可.【详解】解:移项得:1x>,∴9为不等式的解,故选D.【点睛】本题考查的是解一元一次不等式,熟知去分母,去括号,移项,合并同类项,化系数为1是解一元一次不等式的基本步骤是解答此题的关键.4、A【解析】【分析】根究不等式组解集的确定原则,判定a≤-1,比较大小后,确定即可.【详解】∵不等式组1xx a>-⎧⎨>⎩的解集是1x>-,∴a≤-1,只有-2满足条件,故选A.【点睛】本题考查了不等式组解集,正确理解不等式组解集的确定原则是解题的关键.5、C【解析】【分析】先求出3﹣2x=3(k﹣2)的解为x932k-=,从而推出3k≤,整理不等式组可得整理得:1xx k≤-⎧⎨≥⎩,根据不等式组无解得到k>﹣1,则﹣1<k≤3,再由整数k和932kx-=是整数进行求解即可.【详解】解:解方程3﹣2x=3(k﹣2)得x932k-=,∵方程的解为非负整数,∴932k-≥0,∴3k≤,把()213x xx k⎧--≥⎨≥⎩整理得:1xx k≤-⎧⎨≥⎩,由不等式组无解,得到k>﹣1,∴﹣1<k≤3,即整数k=0,1,2,3,∵932kx-=是整数,∴k=1,3,综上,k=1,3,则符合条件的整数k的值的和为4.故选C.【点睛】本题主要考查了解一元一次方程,根据一元一次不等式组的解集情况求参数,解题的关键在于能够熟练掌握相关知识进行求解.6、C【解析】【分析】根据不等式组的解集的表示方法即可求解.【详解】解:∵不等式组的解集为31 xx<⎧⎨≥⎩故表示如下:故选:C.【点睛】本题考查的是一元一次不等式组的解集的表示方法,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.7、D【解析】【分析】将两个方程组相加得到:233+=-x y k ,再由330->k 即可求出1k >进而求解.【详解】解:由题意可知:233x y k x y +=⎧⎨-=-⎩①②, 将①+②得到:233+=-x y k ,∵20x y +>,∴330->k ,解得1k >,故选:D .【点睛】本题考查二元一次方程组的解法及不等式的解法,解题关键是求出233+=-x y k ,进而求出k 的取值范围.8、A【解析】【分析】根据不等式的性质,逐项判断即可求解.【详解】解:A 、由a <b ,c <0得到:a +c <b +0,即a +c <b ,故本选项符合题意.B 、当a =1,b =2,c =﹣3时,不等式a ﹣c >b ﹣c 不成立,故本选项不符合题意.C 、由a <b ,c <0得到:ac +1>bc +1,故本选项不符合题意.D 、由于c ﹣2<﹣2,所以a (c ﹣2)>b (c ﹣2),故本选项不符合题意.故选:A【点睛】本题主要考查了不等式的性质,熟练掌握不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.9、C【解析】【分析】用不等号连接而成的式子叫不等式,根据不等式的定义即可完成.【详解】①是等式;③是代数式;②④⑤是不等式;即属于不等式的有3个故选:C【点睛】本题考查了不等式的概念,理解不等式的概念是关键.10、C【解析】【分析】由题意直接根据不等式的性质逐项进行分析判断即可.【详解】解:A、m>n,n<m,故A正确;B、-a<-b,b<a,故B正确;C、不等式的两边都乘以或除以同一个负数,不等号的方向改变,故C错误;D、不等式的两边都乘以或除以同一个负数,不等号的方向改变,故D正确;故选:C.【点睛】本题考查不等式的性质,注意本题考查不正确的,以防错选.二、填空题1、-3【解析】【分析】分别解不等式得到不等式组的解集,确定整数解得到答案.【详解】解:250112xx-<⎧⎪⎨+≥-⎪⎩①②,解不等式①,得52x<,解不等式②,得3x≥-,∴不等式组的解集为532x-≤<,∴整数解为:-3、-2、-1、0、1、2,-3-2-1+0+1+2=-3,故答案为:-3.【点睛】此题考查求不等式组的整数解,有理数的加减法,解不等式,熟练掌握解不等式的解法是解题的关键.2、解不等式组【解析】略【解析】【分析】按照去分母、去括号、移项、合并同类项的步骤求出不等式的解集.【详解】解:612x+>-,去分母,得6+x>-2,移项,得x>-2-6,合并同类项,得x>-8.故答案为:x>-8.【点睛】本题考查了一元一次不等式的解法,熟练掌握解一元一次不等式的步骤是解答本题的关键.4、a+2b>1【解析】【分析】a与b的2倍即为2+a b,再用不等号连接即得答案.【详解】解:由题意得:“a与b的2倍的和大于1”用不等式表示为21a b+>.故答案为:21a b+>.本题考查了根据不等关系列出不等式,属于应知应会题型,正确理解题意是关键.5、<【解析】【分析】根据不等式的性质得出即可.【详解】解:∵a>b,∴﹣2a<﹣2b,故答案为:<【点睛】本题主要考查了不等式的性质,熟练掌握不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.三、解答题1、-4≤x<2;0,1【解析】【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分求出不等式组的解集,进而求出非负整数解即可.【详解】解:() 52324113x xxx⎧+<+⎪⎨+-≤⎪⎩①②,由①得:x <2,由②得:x ≥-4,∴不等式组的解集为-4≤x <2,则不等式组的非负整数解为0,1.【点睛】此题考查了一元一次不等式组的整数解,以及解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.2、11x -<,数轴表示见解析【解析】【分析】按照解一元一次不等式组的方法和步骤解不等式组,再在数轴上表示解集即可.【详解】()511,131132x x x x ⎧--+⎪⎨++-<⋅⎪⎩①②, 由①得1x ;由②得1x >-;数轴表示为:所以,原不等式组的解集是11x -<.【点睛】本题考查了一元一次不等式组的解法,解题关键是掌握一元一次不等式组的解法和步骤,会在数轴上表示解集.3、不等式组的整数解是3,4.【解析】【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集,再确定其整数解.【详解】解:解不等式3(x+2)>x+10,得x>2;解不等式143x x-≥,得x≤4.∴不等式组的解集为2<x≤4,∴不等式组的整数解是3,4.【点睛】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.4、 (1)A型公交车每辆45万元,B型公交车每辆60万元;(2)80【解析】【分析】(1)设A型公交车每辆x万元,B型公交车每辆y万元,由题意:购买1辆A型公交车和2辆B型公交车需要165万元,2辆A型公交车和3辆B型公交车需要270万元.列出二元一次方程组,解方程组即可;(2)设该公司购买m辆A型公交车,则购买(140-m)辆B型公交车,由题意:购买A型公交车的总费用不高于B型公交车的总费用,列出一元一次不等式,解不等式即可.(1)解:设A型公交车每辆x万元,B型公交车每辆y万元,由题意得:216523270x y x y +=⎧⎨+=⎩, 解得:4560x y =⎧⎨=⎩, 答:A 型公交车每辆45万元,B 型公交车每辆60万元;(2)解:设该公司购买m 辆A 型公交车,则购买(140﹣m )辆B 型公交车,由题意得:45m ≤60(140﹣m ),解得:m ≤80,答:该公司最多购买80辆A 型公交车.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.5、 (1)﹣1≤x <6,在数轴上表示见解析(2)﹣1≤x <3,在数轴上表示见解析【解析】【分析】(1)先根据不等式的性质求出每个不等式的解集,再求出不等式组的解集,最后在数轴上表示出不等式组的解集即可;(2)先根据不等式的性质求出每个不等式的解集,再求出不等式组的解集,最后在数轴上表示出不等式组的解集即可.(1)解:()23319x x x -⎧⎪⎨-<+⎪⎩①②,解不等式①,得1x -,解不等式②,得6x <,所以不等式组的解集是16x -<,在数轴上表示为:;(2)解:()3121312x x x -<+⎧⎪⎨+⎪⎩①②, 解不等式①,得3x <,解不等式②,得1x -,所以不等式组的解集是13x -<,在数轴上表示为:.【点睛】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,解题的关键是能根据不等式的解集找出不等式组的解集.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、方程
的解是
,则 a, b 为
x by 1
y1
()
a0
A、
b1
a1
B、
b0
a1
C、
b1
a0
D、
b0
3、 |3a+ b+5|+ |2a- 2b-2|= 0,则 2a2- 3ab 的值是
A 、14
B、2
C、- 2
() D 、- 4
4x 3y 7
4、解方程组
时,较为简单的方法是
4x 3y 5
()
A 、代入法
的是通常的加法和乘法运算。
1
已知: 2※ 1= 7 ,(- 3)※ 3= 3 ,求 ※b 的值。
3
18、( 6 分)如图,在 3×3 的方格内,填写了一些代数式和数 ( 1)在图中各行、各列及对角线上三个数之和都相等,请你求出 ( 2)把满足( 1)的其它 6 个数填入图( 2)中的方格内。
x, y 的值。
2020 学年七年级下册数学 第八章综合训练
班级: _______ 姓名: ________ 坐号: _______ 成绩: _______
一、选择题(每小题 3 分,共 24 分)
1、下列各组数是二元一次方程
x 3y 7
的解是
yx1
(
)
x1
A、
y2
x0
B、
y1
x7
C、
y0
x1
D、
y2
ax y 0
x1
较少?
( 3)若装修完后 ,商店每天可盈利 200 元,你认为如何安排施工有利用商店经营?说说你
的理由。(可以直接用( 1)( 2)中的已知条件)
第 4页 共 4页
C、 8,8 D、 9, 7
8、两位同学在解方程组时,甲同学由
ax by 2
x3
正确地解出
,乙同学因ቤተ መጻሕፍቲ ባይዱ C 写
cx 7 y 8
y2
第 1页 共 4页
x2
错了解得
,那么 a、 b、c 的正确的值应为(
)
y2
A 、a= 4, b= 5, c=- 1
B 、 a= 4, b= 5, c=- 2
C、 a=- 4, b=- 5, c=0
2x 3 2 y -3
32 -3
4y
图(1)
图(2)
19、(6 分)已知
2015(x +y)2
1
与 | x+
3
y- 1|的值互为相反数。试求:
( 1)求
x、y 的值。
22
( 2)计算 x 2015 +y 2014 的值。
第 3页 共 4页
20.( 9 分)某服装厂要生产一批同样型号的运动服, 已知每 3 米长的某种布料可做 2 件上衣 或 3 条裤子,现有此种布料 600 米,请你帮助设计一下,该如何分配布料,才能使运动服 成套而不致于浪费,能生产多少套运动服 ?
B、加减法
5、某商店有两进价不同的耳机都卖
买卖中,这家商店(
)
C、试值法
D 、无法确定
64 元,其中一个盈利 60%,另一个亏本 20%,在这次
A 、赔 8 元
B、赚 32 元
C、不赔不赚
D、赚 8 元
6、一 副三角板按如图摆放,且∠ 1 的度数比∠ 2 的度数大 50°,若设∠ 1= x°,∠ 2= y°,则
y口
不过,我们可解得出 p= ___________。 14、某公司向银行申请了甲 、乙两种贷款,共计 68 万元,每年需付出 8.42 万元利息。已
知甲种贷款每年的利率为 12%,乙种贷款每年的利率为 13%,则该公司甲、乙两 种贷款 的数额分别为 _________________ 。 三、解答题 15.( 15 分)解下列方程组
x1
,这个方程组是 _________。
y2
12、 100 名学生排成一排,从左到右, 1 到 4 循环报数,然后再自右向左, 1 到 3 循环报数, 那么,既报 4 又报 3 的学生共有 ___________ 名。
13、在一本书上写着方程组
x py 2
的解是
xy1
x 0.5
,其中, y 的值被墨渍盖住了,
21.( 10 分)一家商店进行装修,若请甲、乙两个装修
组同时施工, 8 天可以完成,需付给
两组费用共 3520 元; 若先请甲组单独做 6 天, 再请乙组单独做 12 天可以完成, 需付给两
组费用共 3480 元,问:
( 1)甲、乙两组单独工作一天,商店应各付多少元?
( 2)已知甲组单独完成需要 12 天,乙组单独完成需要 24 天,单独请哪组,商店此付费用
D 、 a=- 4, b=- 5, c= 2
二、填空(每小题 3 分,共 18 分)
x3
9、如果
是方程 3x- ay= 8 的一个解,那么 a=_________。
y1
10、由 方程 3x- 2y- 6= 0 可得 到用 x 表示 y 的式子是 _________ 。
11、请你写出一个二元一次方程组,使它的解为
可得到的方程组为(
)
x y 50
A、
x y 180
x y 50
B、
x y 180
1
2
x y 50
C、
x y 90
x y 50
D、
x y 90
(第 6题)
7、李勇购买 80 分与 100 分的邮票共 16 枚,花了 14 元 6 角,购买 80 分与 100 分的邮票的
枚数分别是(
)
A 、6, 10 B、 7, 9
2x y 3
( 1)
3x 5y 11
3x 2 y 5x 2
( 2)
2(3x 2 y) 2x 8
mn2 (3) 3 6
mn2 44
第 2页 共 4页
16、( 6 分)若方程组
x 2y 7 k
的解 x 与 y 是互为相反数,求 k 的值。
5x y k
17、( 6 分)对于有理数, 规定新运算: x※y= ax+ by+xy,其中 a 、 b 是常数,等式右边