2020-2021中考数学复习相似专项综合练附答案解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021中考数学复习相似专项综合练附答案解析
一、相似
1.如图,抛物线y= x2+bx+c 与x轴交于点A和点B,与y轴交于点C,点B坐标为(6,0),点C坐标为(0,6),点D是抛物线的顶点.
(1)求抛物线的解析式及点D的坐标;
(2)如图1,抛物线的对称轴与x轴交于点E,连接BD,点F是抛物线上的动点,当∠FBA=∠BDE时,求点F的坐标;
(3)如图2,若点M是抛物线上的动点,过点M作MN∥x轴与抛物线交于点N,点P在x轴上,点Q在坐标平面内,以线段MN为对角线作正方形MPNQ,求点Q的坐标.
【答案】(1)解:把B(6,0),C(0,6)代入y= x2+bx+c,得
解得 ,抛物线的解析式是y= x2+2x+6, 顶点D的坐标是(2,8)
(2)解:如图1,过F作FG⊥x轴于点G,
设F(x, x2+2x+6),则FG= ,
∵∠FBA=∠BDE,∠FGB=∠BED=90°,∴△FBG∽△BDE,∴,
∵B(6,0),D(2,8),∴E(2,0),BE=4,DE=8,OB=6,∴BG=6-x,

当点F在x轴上方时,有,∴x=-1或x=6(舍去),此时F1的坐标为(-1,),
当点F在x轴下方时,有,∴x=-3或x=6(舍去),此时F2的坐标为(-3,),
综上可知F点的坐标为(-1,)或(-3,)
(3)解:如图2,
不妨M在对称轴的左侧,N在对称轴的左侧,MN和PQ交于点K,由题意得点M,N关于抛物线的对称轴对称,四边形MPNQ为正方形,且点P在x轴上
∴点P为抛物线的对称轴与x轴的交点,点Q在抛物线的对称轴上 ,
∴KP=KM=k,则Q(2,2k),M坐标为(2-k,k),
∵点M在抛物线y= x2+2x+6的图象上,∴k= (2-k)2+2(2-k)+6
解得k1= 或k2=
∴满足条件的点Q有两个,Q1(2,)或Q2(2,).
【解析】【分析】(1)根据点B、C的坐标,利用待定系数法建立关于b、c的方程组,求解就可得出函数解析式,再求出顶点坐标。

(2)过F作FG⊥x轴于点G,设出点F的坐标,表示出FG的长,再证明△FBG∽△BDE,利用相似三角形的性质建立关于x的方程,当点F在x轴上方时和当点F在x轴下方时,求出符合题意的x的值,求出点F的坐标。

(3)由点M,N关于抛物线的对称轴对称,可得出点P为抛物线的对称轴与x轴的交点,
点Q在抛物线的对称轴上,设Q(2,2k),M坐标为(2-k,k),再由点M在抛物线上,列出关于k的方程,求解即可得出点Q的坐标。

2.如图,BD是□ABCD的对角线,AB⊥BD,BD=8cm,AD=10cm,动点P从点D出发,以5cm/s的速度沿DA运动到终点A,同时动点Q从点B出发,沿折线BD—DC运动到终点C,在BD、DC上分别以8cm/s、6cm/s的速度运动.过点Q作QM⊥AB,交射线AB于点M,连接PQ,以PQ与QM为边作□PQMN.设点P的运动时间为t(s)(t>0),□PQMN与□ABCD重叠部分图形的面积为S(cm2).
(1)AP=________cm(同含t的代数式表示).
(2)当点N落在边AB上时,求t的值.
(3)求S与t之间的函数关系式.
(4)连结NQ,当NQ与△ABD的一边平行时,直接写出t的值.
【答案】(1)(10-5t)
(2)解:如图①,
当点N落在边AB上时,四边形PNBQ为矩形.∵PN∥DB,∴△APN∽△ADB,∴AP:
AD=PN:DB,∴(10-5t):10=8t:8,120t=80,∴.
(3)解:分三种情况讨论:
a)如图②,过点P作PE⊥BD于点E,则PE=3t.
当时,.
b)如图③,过点P作PE⊥BD于点E,则PE=3t,设PN交AB于点F,则

当时,.
c)如图④,当时,PF=8-4t,FB=3t,PN=DB=QM=8,∴FN=4t,DQ=6(t-1),∴BM=DQ=6(t-1).∵∠GBM=∠A,∠DBA=∠GMB,∴△BGM∽△ABD,∴GM:BM=DB:
AB,解得:GM=8t-8,∴S=S平行四边形PNMQ-S△FMN-S△BMG=8(9t-6)- ×4t×(9t-6)- ×(6t-6)(8t-8)= .
综上所述:
(4)解:分三种情况讨论.
①当NQ∥AB时,如图5,
过P作PF⊥BD于F,则PF=3t,DF=4t,PN=FQ=BQ=8t,∴BD=8t+8t+4t=8,解得:.②当AD∥NQ,且Q在BD上时,如图6.
∵PNQD和PNBQ都是平行四边形,∴PN=DQ=BQ,∴8t+8t=8,解得:.
③当AD∥NQ,且Q在DC上时,如图7,
可以证明当Q与C重合,即直线NQ与直线BC重合时,满足条件,如图8,
此时DQ=AB= =6,t= =2.
综上所述:或或.
【解析】【解答】解:(1)(10-5t);
【分析】(1)由题意可得,DP=5t,所以AP=AD-DP=10-5t;
(2)由欧勾股定理的逆定理可得∠ABD=,所以根据有一个角是直角的平行四边形是矩形可得,当点N落在边AB上时,四边形PNBQ为矩形;由平行线分线段成比例定理可得
比例式:,则可得关于t的方程,解方程即可求解;
(3)由(2)知,当□PQMN全部在□ABCD中时,运动时间是秒,由已知条件可知,点Q 在BD边上的运动速度是8cm/s,在DC边上的运动速度是6cm/s,所以当点Q运动到C点时,点P也运动到了点A,所以分3种情况:
a)如图②,过点P作PE⊥BD于点E,当0 < t ≤时, S=BQ PE;
b)如图③,过点P作PE⊥BD于点E,设PN交AB于点F,当< t ≤ 1 时,S =(PF+BQ)PE;
c)如图④,当1 < t ≤ 2 时, S =平行四边形PNMQ的面积-三角形FNM的面积-三角形BMG 的面积;
(4)由题意NQ与△ABD的一边平行可知,有3种情况:
①当NQ∥AB;
②当AD∥NQ,且Q在BD上时;
③当AD∥NQ,且Q在DC上时。

分这三种情况根据已知条件即可求解。

3.如图1,等腰△ABC中,AC=BC,点O在AB边上,以O为圆心的圆与AC相切于点C,交AB边于点D,EF为⊙O的直径,EF⊥BC于点G.
(1)求证:D是弧EC的中点;
(2)如图2,延长CB交⊙O于点H,连接HD交OE于点K,连接CF,求证:CF=OK+DO;
(3)如图3,在(2)的条件下,延长DB交⊙O于点Q,连接QH,若DO=,KG=2,求QH的长
【答案】(1)证明:如图1中,连接OC.
∵AC是⊙O的切线,
∴OC⊥AC,
∴∠ACO=90°,
∴∠A+∠AOC=90°,
∵CA=CB,
∴∠A=∠B,
∵EF⊥BC,
∴∠OGB=90°,
∴∠B+∠BOG=90°,
∴∠BOG=∠AOC,
∵∠BOG=∠DOE,
∴∠DOC=∠DOE,
∴点D是的中点
(2)证明:如图2中,连接OC.
∵EF⊥HC,
∴CG=GH,
∴EF垂直平分HC,
∴FC=FH,
∵∠CFK= ∠COE,
∵∠COD=∠DOE,
∴∠CFK=∠COD,
∵∠CHK= ∠COD,
∴∠CHK= ∠CFK,
∴点K在以F为圆心FC为半径的圆上,
∴FC=FK=FH,
∵DO=OF,
∴DO+OK=OF+OK=FK=CF,
即CF=OK+DO;
(3)解:如图3中,连接OC、作HM⊥AQ于M.设OK=x,则CF= +x,OG=2﹣x,GF= ﹣(2﹣x),
∵CG2=CF2﹣FG2=CO2﹣OG2,
∴( +x)2﹣[ -(2﹣x)]2=()2﹣(2﹣x)2,
解得x= ,
∴CF=5,FG=4,CG=3,OG= ,
∵∠CFE=∠BOG,
∴CF∥OB,
∴ = = ,
可得OB= ,BG= ,BH= ,
由△BHM∽△BOG,可得 = = ,
∴BM= ,HM= ,MQ=OQ﹣OB﹣BM=
在Rt△HMQ中,
QH= = =
【解析】【分析】(1)如图1中,连接OC.根据切线的性质得出OC⊥AC,根据垂直的定义得出∠ACO=90°,根据直角三角形两锐角互余得出∠A+∠AOC=90°,根据等边对等角得出∠A=∠B,根据垂直的定义得出∠OGB=90°,根据直角三角形两锐角互余得出∠B+∠BOG=90°,根据等角的余角相等得出∠BOG=∠AOC,根据对顶角相等及等量代换得出∠DOC=∠DOE,根据相等的圆心角所对的弧相等得出结论;
(2)如图2中,连接OC.根据垂径定理得出CG=GH,进而得出EF垂直平分HC,根据线段垂直平分线上上的点到线段两个端点的距离相等得出FC=FH,根据圆周角定理及等量代
换得出∠CFK=∠COD,∠CHK=∠CFK,从而得出点K在以F为圆心FC为半径的圆上,根据同圆的半径相等得出FC=FK=FH,DO=OF,根据线段的和差及等量代换得出CF=OK+DO;
(3)如图3中,连接OC、作HM⊥AQ于M.设OK=x,则CF= +x,OG=2﹣x,GF=
﹣(2﹣x),根据勾股定理由CG2=CF2﹣FG2=CO2﹣OG2,列出关于x的方程,求解得出x
的值,从而得出CF=5,FG=4,CG=3,OG= 根据平行线的判定定理得出,内错角相等,两直线平行得出CF∥OB,根据平行线分线段成比例定理得出C F ∶O B = C G∶ G B = F G ∶G O ,进而可得OB,BG,BH的长,由△BHM∽△BOG,可得 B H ∶O B = B M ∶B G = H M ∶O G,再得出BM,HM,MQ的长,在Rt△HMQ中,根据勾股定理得出QH的长。

4.如图1,在矩形ABCD中,AB=6cm,BC=8cm,E、F分别是AB、BD的中点,连接EF,点P从点E出发,沿EF方向匀速运动,速度为1cm/s,同时,点Q从点D出发,沿DB方向匀速运动,速度为2cm/s,当点P停止运动时,点Q也停止运动.连接PQ,设运动时间为t(0<t<4)s,解答下列问题:
(1)求证:△BEF∽△DCB;
(2)当点Q在线段DF上运动时,若△PQF的面积为0.6cm2,求t的值;
(3)如图2过点Q作QG⊥AB,垂足为G,当t为何值时,四边形EPQG为矩形,请说明理由;
(4)当t为何值时,△PQF为等腰三角形?试说明理由.
【答案】(1)解:∵四边形是矩形,
在中,
分别是的中点,
(2)解:如图1,过点作于,
(舍)或秒
(3)解:四边形为矩形时,如图所示:
解得:
(4)解:当点在上时,如图2,
当点在上时,如图3,
时,如图4,
时,如图5,
综上所述,或或或秒时,是等腰三角形
【解析】【分析】(1)要证△BEF∽△DCB,根据有两对角对应相等的两个三角形相似可得证。

根据三角形中位线定理可得EF∥AD∥BC,可得一组内错角相等,由矩形的性质可得∠C=∠A=∠BEF=,所以△BEF∽△DCB;
(2)过点Q 作QM⊥EF于M,结合已知易得QM∥BE,根据相似三角形的判定可得
△QMF∽△BEF,则得比例式,QM可用含t的代数式表示,PF=4-t,所以三角形
PQF的面积=QM PF=06,解方程可得t的值;
(3)因为QG⊥AB,结合题意可得PQ AB,根据相似三角形的判定可得QPF BEF,于是可得比例式求解;
(4)因为Q在对角线BD上运动,情况不唯一。

当点Q在DF上运动时,PF=QF;
当点Q在BF上运动时,分三种情况:
第一种情况;PF =QF ;第二种情况:PQ=PF;第三种情况:PQ=FQ。

5.在正方形中,,点在边上,,点是在射线上的一个动点,过点作的平行线交射线于点,点在射线上,使始终与直线垂直.
(1)如图1,当点与点重合时,求的长;
(2)如图2,试探索:的比值是否随点的运动而发生变化?若有变化,请说明你的理由;若没有变化,请求出它的比值;
(3)如图3,若点在线段上,设,,求关于的函数关系式,并写出它的定义域.
【答案】(1)解:由题意,得 ,
在Rt△中,


∴∴





∴△∽△



(2)解:答:的比值随点的运动没有变化
理由:如图,
∵∥
∴ ,





∴△∽△

∵,

∴的比值随点的运动没有变化,比值为(3)解:延长交的延长线于点
∵∥





∵∥ , ∥
∴∥

∵ ,

又 ,


它的定义域是
【解析】【分析】(1)根据正方形的性质得出 A B = B C = C D = A D = 8 , ∠ C = ∠ A = 90 °,在Rt△ B C P 中,根据正切函数的定义得出tan ∠ P B C = P C ∶B C,又 tan ∠ P B C
=,从而得出PC的长,进而得出RP的长,根据勾股定理得出PB的长,然后判断出△P B C ∽△ P R Q,根据相似三角形对应边成比例得出PB∶RP=PC∶PQ,从而得出PQ的长;(2)RM∶MQ的比值随点 Q 的运动没有变化,根据二直线平行同位角相等得出∠ 1 = ∠ A B P , ∠ Q M R = ∠ A,根据等量代换得出∠ Q M R = ∠ C = 90 °,根据根据等角的余角相等得出∠ R Q M = ∠ P B C ,从而判断出△ R M Q ∽△ P C B,根据相似三角形对应边成比例,得出PM∶MQ=PC∶BC,从而得出答案;
(3)延长 B P 交 A D 的延长线于点N,根据平行线分线段成比例定理得出PD∶AB=ND∶NA,又N A = N D + A D = 8 + N D ,从而得出关于ND的方程,求解即可得出ND,根据勾股定理得出PN,根据平行线的判定定理得出PD∥MQ,再根据平行线分线段成
比例定理得出PD∶MQ=NP∶NQ,又RM∶MQ=3∶4,RM=y,从而得出MQ=y,又 P D = 2 , N Q = P Q + P N = x +,根据比例式,即可得出y与x之间的函数关系式。

6.在平面直角坐标系中,抛物线与轴的两个交点分别为A (-3,0)、B(1,0),与y轴交于点D(0,3),过顶点C作CH⊥x轴于点H.
(1)求抛物线的解析式和顶点C的坐标;
(2)连结AD、CD,若点E为抛物线上一动点(点E与顶点C不重合),当△ADE与△ACD面积相等时,求点E的坐标;
(3)若点P为抛物线上一动点(点P与顶点C不重合),过点P向CD所在的直线作垂线,垂足为点Q,以P、C、Q为顶点的三角形与△ACH相似时,求点P的坐标.
【答案】(1)解:设抛物线的解析式为,
∵抛物线过点A(-3,0),B(1,0),D(0,3),
∴,解得,a=-1,b=-2,c=3,
∴抛物线解析式为,顶点C(-1,4);
(2)解:如图1,∵A(-3,0),D(0,3),
∴直线AD的解析式为y=x+3,
设直线AD与CH交点为F,则点F的坐标为(-1,2)
∴CF=FH,
分别过点C、H作AD的平行线,与抛物线交于点E,
由平行间距离处处相等,平行线分线段成比例可知,△ADE与△ACD面积相等,
∴直线EC的解析式为y=x+5,
直线EH的解析式为y=x+1,
分别与抛物线解析式联立,得,,
解得点E坐标为(-2,3),,;(3)解:①若点P在对称轴左侧(如图2),只能是△CPQ∽△ACH,得∠PCQ=∠CAH,
∴,
分别过点C、P作x轴的平行线,过点Q作y轴的平行线,交点为M和N,
由△CQM∽△QPN,
得 =2,
∵∠MCQ=45°,
设CM=m,则MQ=m,PN=QN=2m,MN=3m,
∴P点坐标为(-m-1,4-3m),
将点P坐标代入抛物线解析式,得,
解得m=3,或m=0(与点C重合,舍去)
∴P点坐标为(-4,-5);
②若点P在对称轴右侧(如图①),只能是△PCQ∽△ACH,得∠PCQ=∠ACH,
∴,
延长CD交x轴于M,∴M(3,0)
过点M作CM垂线,交CP延长线于点F,作FN x轴于点N,
∴,
∵∠MCH=45°,CH=MH=4
∴MN=FN=2,
∴F点坐标为(5,2),
∴直线CF的解析式为y= ,
联立抛物线解析式,得,解得点P坐标为( , ),
综上所得,符合条件的P点坐标为(-4,-5),( , ).
【解析】【分析】(1)将A(-3,0)、B(1,0)、D(0,3),代入y=ax2+bx+3求出即可;(2)求出直线AD的解析式,分别过点C、H作AD的平行线,与抛物线交于点E,利用△ADE与△ACD面积相等,得出直线EC和直线EH的解析式,联立出方程组求解即可;(3) (3)分两种情况讨论:①点P在对称轴左侧;②点P在对称轴右侧.
7.在平面直角坐标系中,O为坐标原点,抛物线y=ax2+(a+3)x+3(a<0)从左到右依次交x轴于A、B两点,交y轴于点C.
(1)求点A、C的坐标;
(2)如图1,点D在第一象限抛物线上,AD交y轴于点E,当DE=3AE,OB=4CE时,求a
的值;
(3)如图2,在(2)的条件下,点P在C、D之间的抛物线上,连接PC、PD,点Q在点B、D之间的抛物线上,QF∥PC,交x轴于点F,连接CF、CB,当PC=PD,∠CFQ=2∠ABC,求BQ的长.
【答案】(1)解:当x=0时,y=3,∴C(0,3).
当y=0时,ax2+(a+3)x+3=0,
(ax+3)(x+1)=0,解得x1=- ,x2=-1.
∵a<0,
∴- >0,
∴A(-1,0)
(2)解:如图1,过点D作DM⊥AB于M.
∵OE∥DM,
∴,
∴OM=3,
∴D点纵坐标为12a+12.
∵tan∠EAO= =3a+3,
∴OE=3a+3,
∴CE=OC-OE=3-(3a+3)=-3a.
∵OB=4CE,
∴- =-12a,
∵a<0,
∴a=-
(3)解:如图2,过点D作DT⊥y轴于点T,过点P作PG⊥y轴于点G,连接TP.
∵a=- ,
∴抛物线的解析式为y=- x2+ x+3,D(3,6),DT=3,OT=6,CT=3=DT,
又∵PC=PD,PT=PT,
∴△TCP≌△TDP,
∴∠CTP=∠DTP=45°,TG=PG.
设P(t,- t2+ t+3),
∴OG=- t2+ t+3,PG=t,
∴TG=OT-OG=6-(- t2+ t+3)= t2- t+3,
∴ t2- t+3=t,解得t=1或6,
∵点P在C、D之间,
∴t=1.
过点F作FK∥y轴交BC于点K,过点Q作QN⊥x轴于点N,则∠KFC=∠OCF,∠KFB=∠CON=90°.
∵FQ∥PC,
∴∠PCF+∠CFQ=180°,∠PCF+∠PCG+∠OCF=180°,
∴∠CFQ=∠PCG+∠OCF,
∴∠CFK+∠KFQ=∠PCG+∠OCF,
∴∠KFQ=∠PCG.
∵P(1,5),∴PG=1,CG=OG-OC=5-3=2,
∴tan∠PCG= ,
∵tan∠ABC= ,
∴∠PCG=∠ABC,
∴∠KFQ=∠ABC.
∵∠CFQ=2∠ABC,
∴∠CFQ=2∠KFQ,
∴∠KFQ=∠KFC=∠OCF=∠ABC,
∴tan∠OCF= ,
∴OF= .
设FN=m,则QN=2m,Q(m+ ,2m),
∵Q在抛物线上,
∴- (m+ )2+ ×(m+ )+3=2m,
解得m= 或m=- (舍去),
∴Q(4,5),
∵B(6,0),
∴BQ= .
【解析】【分析】(1)令x=0,求出y的值,得到C点坐标;令y=0,求出x的值,根据a<0得出A点坐标;(2)如图1,过点D作DM⊥AB于M.根据平行线分线段成比例定理求出OM=3,得到D点纵坐标为12a+12.再求出OE=3a+3,那么CE=OC-OE=-3a.根据
OB=4CE,得出- =-12a,解方程求出a=- ;(3)如图2,过点D作DT⊥y轴于点T,过点P作PG⊥y轴于点G,连接TP.利用SSS证明△TCP≌△TDP,得出∠CTP=∠DTP=45°,那么
TG=PG.设P(t,- t2+ t+3),列出方程 t2- t+3=t,解方程求得t=1或6,根据点P在C、D之间,得到t=1.过点F作FK∥y轴交BC于点K,过点Q作QN⊥x轴于点N,根据平行线的性质以及已知条件得出∠KFQ=∠PCG,进而证明∠KFQ=∠KFC=∠OCF=∠ABC,由
tan∠OCF= =tan∠ABC= ,求出OF= .设FN=m,则QN=2m,Q(m+ ,2m),根据
Q在抛物线上列出方程- (m+ )2+ ×(m+ )+3=2m,解方程求出满足条件的m的值,得到Q点坐标,然后根据两点间的距离公式求出BQ.
8.已知抛物线y=ax2+bx-3的图象与x轴交于点A(-1,0)和点B(3,0),顶点为D,点C是直线l:y=x+5与x轴的交点.
(1)求该二次函数的表达式;
(2)点E是直线l在第三象限上的点,连接EA、EB,当△ECA∽△BCE时,求E点的坐标;
(3)在(2)的条件下,连接AD、BD,在直线DE上是否存在点P,使得∠APD=∠ADB?若存在,求出点P的坐标;若不存在,请说明理由.
【答案】(1)解:将A(-1,0),B(3,0)代入y=ax2+bx-3,
得:,解得:,
∴该二次函数的表达式为y=x2-2x-3
(2)解:当y=0时,x+5=0,
解得:x=-5,
∴点C的坐标为(-5,0).
∵点A的坐标为(-1,0),点B的坐标为(3,0),
∴AC=4,BC=8.
∵△ECA∽△BCE,
∴∠ECA=∠BCE, = ,即 = ,
∴EC=4 或EC=-4 (舍去),
过点E作EF⊥x轴于点F,如图1所示,
∵直线l的函数表达式为y=x+5,
∴△CEF为等腰三角形,
∴CE=EF=4,
∴OF=5+4=9,EF=4,
∴点E的坐标为(-9,-4);
(3)解:∵y=x2-2x-3=(x-1)2-4,
∴点D的坐标为(1,-4),
∴AD=BD= =2 ,
由(2)可知:点E的坐标为(-9,-4),
∴直线DE的函数表达式为y=-4,
过点A作AM⊥BD于点M,过点A作AN⊥直线DE于点N,如图2所示,
∵点D的坐标为(1,-4),点A的坐标为(-1,0),点B的坐标为(3,0),∴S△ABD= ×[3-(-1)]×4=8,
∴AM= = = ,
∴DM= = ,
∵∠APD=∠ADB,
∴tan∠APD=tan∠ADB,即 = ,
∴ = ,
∴PN=3,
又∵点N的坐标为(-1,-4),
∴点P的坐标为(-4,-4)或(2,-4).
综上所述:在直线DE上存在点P(-4,-4)或(2,-4),使得∠APD=∠ADB.
【解析】【分析】(1)根据点A,B的坐标,利用待定系数法即可求出二次函数的表达式;(2)利用一次函数图象上点的坐标特征可求出点C的坐标,结合点A,B的坐标利用相似三角形的性质可求出EC的值,过点E作EF⊥x轴于点F,则△CEF为等腰三角形,根据等腰直角三角形的性质可求出CE,EF的值,进而可得出点E的坐标;(3)利用配方法可求出点D的坐标,进而可得出BD的长度,结合点E的坐标可得出直线DE的函数表达式为y=-4,过点A作AM⊥BD于点M,过点A作AN⊥直线DE于点N,利用面积法可求出AM的值,由∠APD=∠ADB结合正切的定义可求出PN的值,再结合点N的坐标可得出点P 的坐标,此题得解.
9.已知顶点为抛物线经过点,点 .
(1)求抛物线的解析式;
(2)如图1,直线AB与x轴相交于点M,y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若∠OPM=∠MAF,求△POE的面积;
(3)如图2,点Q是折线A-B-C上一点,过点Q作QN∥y轴,过点E作EN∥x轴,直线QN与直线EN相交于点N,连接QE,将△QEN沿QE翻折得到△QEN1,若点N1落在x轴上,请直接写出Q点的坐标.
【答案】(1)解:把点代入,解得:a=1,
∴抛物线的解析式为:或 .
(2)解:设直线AB解析式为:y=kx+b,代入点A、B的坐标得:

解得:,
∴直线AB的解析式为:y=-2x-1,
∴E(0,-1),F(0,- ),M(- ,0),
∴OE=1,FE= ,
∵∠OPM=∠MAF,
∴当OP∥AF时,△OPE∽△FAE,

∴OP= FA= ,
设点P(t,-2t-1),
∴OP= ,
化简得:(15t+2)(3t+2)=0,
解得,,
∴S△OPE= ·OE· ,
当t=- 时,S△OPE= ×1× = ,
当t=- 时,S△OPE= ×1× = ,
综上,△POE的面积为或 .
(3)Q(- ,).
【解析】【解答】(3)解:由(2)知直线AB的解析式为:y=-2x-1,E(0,-1),
设Q(m,-2m-1),N1(n,0),
∴N(m,-1),
∵△QEN沿QE翻折得到△QEN1
∴NN1中点坐标为(,),EN=EN1,
∴NN1中点一定在直线AB上,
即 =-2× -1,
∴n=- -m,
∴N1(- -m,0),
∵EN2=EN12,
∴m2=(- -m)2+1,
解得:m=- ,
∴Q(- ,).
【分析】(1)用待定系数法将点B点坐标代入二次函数解析式即可得出a值.
(2)设直线AB解析式为:y=kx+b,代入点A、B的坐标得一个关于k和b的二元一次方程组,解之即可得直线AB解析式,根据题意得E(0,-1),F(0,- ),M(- ,0),根据相似三角形的判定和性质得OP= FA= ,设点P(t,-2t-
1),根据两点间的距离公式即可求得t值,再由三角形面积公式△POE的面积.
(3)由(2)知直线AB的解析式为:y=-2x-1,E(0,-1),设Q(m,-2m-1),N1(n,0),从而得N(m,-1),根据翻折的性质知NN1中点坐标为(,)且在直线AB上,将此中点坐标代入直线AB解析式可得n=- -m,即N1(- -m,0),再根据翻折的性质和两点间的距离公式得m2=(- -m)2+1,解之即可得Q点坐标.
10.已知:如图,在四边形中,,,,,垂直平分 .点从点出发,沿方向匀速运动,速度为;同时,点从点出发,沿方向匀速运动,速度为;当一个点停止运动,另一个点也停止运动.过点作,交于点,过点作,分别交,于点, .连接, .设运动时间为,解答下列问题:
(1)当为何值时,点在的平分线上?
(2)设四边形的面积为,求与的函数关系式.
(3)连接,,在运动过程中,是否存在某一时刻,使?若存在,求出的值;若不存在,请说明理由.
【答案】(1)解:在中,∵,,,
∴,
∵垂直平分线段,
∴,,
∵,
∴,
∵,
∴,
∴,
∴,
∴,,
∵,,
∴∠BPE=∠BCA=90°
又∠B=∠B
∴△BPE∽△BAC


∴,,
当点在的平分线上时,
∵,,
∴,
∴,
∴ .
∴当为4秒时,点在的平分线上.(2)解:如图,连接, .
.
(3)解:存在.如图,连接 .
∵,
∴,
∵,
∴,
∴,
∴,
∴,
整理得:,
解得或10(舍)
∴当秒时, .
【解析】【分析】(1)根据勾股定理求AC,根据证,求出CD、OD的值,根据△BPE∽△BAC得到比例式,用含有t的代数式表示出PE、BE,当点E在∠BAC的平分线上时,因为EP⊥AB,EC⊥AC,可得PE=EC,由此构建方程即可解决问题.(2)根据
构建函数关
系式即可.(3)证明∠EOC=∠QOG,可得,推出,由此构建方程即可解决问题.
11.如果三角形的两个内角α与β满足2α+β=90°,那么我们称这样的三角形为“准互余三角形”.
(1)若△ABC是“准互余三角形”,∠C>90°,∠A=60°,则∠B=________°;
(2)如图①,在Rt△ABC中,∠ACB=90°,AC=4,BC=5.若AD是∠BAC的平分线,不难证明△ABD是“准互余三角形”.试问在边BC上是否存在点E(异于点D),使得△ABE也是“准互余三角形”?若存在,请求出BE的长;若不存在,请说明理由.
(3)如图②,在四边形ABCD中,AB=7,CD=12,BD⊥CD,∠ABD=2∠BCD,且△ABC是“准互余三角形”,求对角线AC的长.
【答案】(1)15
(2)解:如图①中,
在Rt△ABC中,∵∠B+∠BAC=90°,∠BAC=2∠BAD,∴∠B+2∠BAD=90°,
∴△ABD是“准互余三角形”,
∵△ABE也是“准互余三角形”,
∴只有2∠B+∠BAE=90°,
∵∠B+∠BAE+∠EAC=90°,
∴∠CAE=∠B,∵∠C=∠C=90°,
∴△CAE∽△CBA,可得CA2=CE•CB,
∴CE= ,
∴BE=5﹣ = .
(3)解:如图②中,将△BCD沿BC翻折得到△BCF.
∴CF=CD=12,∠BCF=∠BCD,∠CBF=∠CBD,
∵∠ABD=2∠BCD,∠BCD+∠CBD=90°,
∴∠ABD+∠DBC+∠CBF=180°,
∴A、B、F共线,
∴∠A+∠ACF=90°
∴2∠ACB+∠CAB≠90°,
∴只有2∠BAC+∠ACB=90°,
∴∠FCB=∠FAC,∵∠F=∠F,
∴△FCB∽△FAC,
∴CF2=FB•FA,设FB=x,
则有:x(x+7)=122,
∴x=9或﹣16(舍去),
∴AF=7+9=16,
在Rt△ACF中,AC=
【解析】【解答】(1)∵△ABC是“准互余三角形”,∠C>90°,∠A=60°,
∴2∠B+∠A=90°,
解得,∠B=15°;
【分析】(1)根据“准互余三角形”的定义构建方程即可解决问题;(2)只要证明△CAE∽△CBA,可得CA2=CE•CB,由此即可解决问题;(3)如图②中,将△BCD沿BC翻折得到△BCF.只要证明△FCB∽△FAC,可得CF2=FB•FA,设FB=x,则有:x(x+7)=122,推出x=9或﹣16(舍弃),再利用勾股定理求出AC即可;
12.如图,AB是⊙O的直径,弦CD⊥AB于H,G为⊙O上一点,连接AG交CD于K,在CD的延长线上取一点E,使EG=EK,EG的延长线交AB的延长线于F.
(1)求证:EF是⊙O的切线;
(2)连接DG,若AC∥EF时.
①求证:△KGD∽△KEG;
②若,AK= ,求BF的长.
【答案】(1)证明:如图,连接OG.∵EG=EK,
∴∠KGE=∠GKE=∠AKH,
又OA=OG,∴∠OGA=∠OAG,
∵CD⊥AB,∴∠AKH+∠OAG=90°,
∴∠KGE+∠OGA=90°,
∴EF是⊙O的切线.
(2)解:①∵AC∥EF,∴∠E=∠C,
又∠C=∠AGD,∴∠E=∠AGD,
又∠DKG=∠CKE,
∴△KGD∽△KGE.
②连接OG,如图所示.∵,AK= ,
设,∴,,则
KE=GE,AC∥EF,∴CK=AC=5k,∴HK=CK-CH=k.
在Rt△AHK中,根据勾股定理得AH2+HK2=AK2,
即,,,,则,
设⊙O半径为R,在Rt△OCH中,OC=R,OH=R-3k,CH=4k,
由勾股定理得:OH2+CH2=OC2,,∴
在Rt△OGF中,,∴,

【解析】【分析】(1)连接OG.根据切线的判定,证出∠KGE+∠OGA=90°,故EF是⊙O的切线.(2)①证∠E=∠AGD,又∠DKG=∠CKE,故△KGD∽△KGE.②连接OG. ,
设,,,则,在Rt△AHK中,根据勾股定理得AH2+HK2=AK2,即;由勾股定理得:OH2+CH2=OC2,
;在Rt△OGF中,,,。

相关文档
最新文档