全等三角形测试卷1

合集下载

七年级全等三角形测试题(卷)八套

七年级全等三角形测试题(卷)八套

全等三角形测试题一1.下图中全等的三角形是()A.Ⅰ和ⅡB.Ⅱ和ⅣC.Ⅱ和ⅢD.Ⅰ和Ⅲ2.在△ABC和△A'B'C'中 , 要使△ABC≌△A'B'C' , 需满足条件()A.AB=A'B', AC=A'C', ∠B=∠B'B.AB =A'B', BC=B'C', ∠A=∠A'C.AC=A'C', BC=B'C', ∠C=∠C'D.AC=A'C', BC=B'C', ∠C=∠B'3.如图,AB∥CD,AC∥DB,AD与BC交于0,AE⊥BC.于E,DF⊥BC于F,那么图中全等的三角形有( )对A.5 B.6 C.7 D.84.如图,在△ABC中,AC=BC,∠ACB=90°.AD平分∠BAC,BE⊥AD交AC的延长线于F,E为垂足.则结论:①AD=BF;②CF=CD;③AC+CD=AB;④BE=CF;⑤BF=2BE,其中正确结论的个数是( )A.1 B.2 C.3 D.45.如图,△ABD≌△ACE,则AB的对应边是_________,∠BAD的对应角是______.6.已知:如图,△ABE≌△ACD,∠B=∠C,则∠AEB=_______,AE=__ ______.7.如图,0A=0B,OC=OD,∠O=60°,∠C=25°,则∠BED等于8.在△ABC中,高AD和BE交于H点,且BH=AC,则∠ABC=9.如图,已知AE平分∠BAC,BE上AE于E,ED∥AC,∠BAE=36°,那么∠BED=10.如图,把△ABC绕点C顺时针旋转35度,得到△A′B′C, A′B′交AC乎点D,已知∠A′DC=90°,求∠A的度数11.已知:如图AB=CD,AD=BC 求证:AD∥BC.12.已知:如图 , E, B, F, C四点在同一直线上, ∠A=∠D=90° , BE=FC, AB=DF.求证:∠E=∠C13.如图 , AB BC于B , AD DC于D , 且CB=CD , AC , BD相交于O.求证:∠ABD=∠ADB14.已知:如图 , AE , FC都垂直于BD , 垂足为E、F , AD=BC , BE=DF.求证:OA=OC.15.已知:如图 , AB=CD , D、B到AC的距离DE=BF.求证:AB∥CD.16.已知:如图,∠A=∠D=90°,AC,BD交于O,AC=BD.求证:OB=OC.全等三角形测试题二1.如图,已知AB=AD,要使△ABC≌△ADC,可增加条件,理由是定理。

苏科版八年级数学上册试题 第1章 全等三角形 单元测试卷(含详解)

苏科版八年级数学上册试题 第1章 全等三角形 单元测试卷(含详解)

第1章《 全等三角形》单元测试卷一、单选题(本大题共10小题,每小题3分,共30分)1.下列说法正确的是( )A .两个等边三角形一定全等B .腰对应相等的两个等腰三角形全等C .形状相同的两个三角形全等D .全等三角形的面积一定相等2.已知与全等,A 、B 、C 的对应点分别为D 、E 、F ,且E 点在AE 上,B 、F 、C 、D 四点共线,如图所示若,,则下列叙述何者正确?( )A .,B .,C .,D .,3.如图,在△ABC 中,AB =BC ,点D 为AC 上的点,连接BD ,点E 在△ABC 外,连接AE ,BE ,使得CD =BE ,∠ABE =∠C ,过点B 作BF ⊥AC 交AC 点F ,若∠BAE =21°,∠C =28°,则∠FBD =( )A .49°B .59°C .41°D .51°4.如图,有一块边长为4的正方形塑料模板,将一块足够大的直角三角板的直角顶点落在点,两条直角边分别与交于点F ,与延长线交于点E .则四边形的面积是( )ABC V DEF V .=40A ∠︒=35CED ∠︒=EF EC =AE FC=EF EC AE FC ≠EF EC ≠=AE FC EF EC ≠AE FC≠ABCD A CD CB AECFA .4B .6C .10D .165.如图,在的网格中,每一个小正方形的边长都是1,点,,,都在格点上,连接,相交于,那么的大小是( )A .B .C .D .6.△ABC 中,AB =AC ,∠ABC =72°,以B 为圆心,以任意长为半径画弧,分别交BA 、BC 于M 、N ,再分别以M 、N为圆心,以大于MN 为半径画弧,两弧交于点P ,射线BP 交AC 于点D ,则图中与BC 相等的线段有( )A .BD B .CD C .BD 和AD D .CD 和AD7.如图,在Rt △ABC 中,∠C=90°,以顶点A 为圆心,适当长为半径画弧,分别交AB 、AC 于点M 、N ,再分别以点M 、N 为圆心,大于MN 的长为半径画弧,两弧交于点P ,射线AP 交边BC 于点D .下列说法错误的是( )33⨯A B C D AC BD P APB ∠80︒60︒45︒30︒1212A .B .若,则点D 到AB 的距离为2C .若,则D .8.如图,长方形中,点为上一点,连接,将长方形沿着直线折叠,点恰好落在的中点上,点为的中点,点为线段上的动点,连接、,若、、,则的最小值是( )A .B .C .D .9.如图,点在线段上,于,于.,且,,点以的速度沿向终点运动,同时点以的速度从开始,在线段上往返运动(即沿运动),当点到达终点时,,同时停止运动.过,分别作的垂线,垂足为,.设运动时间为,当以,,为顶点的三角形与全等时,的值为( )A .1或3B .1或C .1或或 D .1或或510.如图,在中,,和的平分线、相交于点,交于点,交于点,若已知周长为,,,则长为( )CAD BAD ∠=∠2CD =30B ∠=CDA CAB ∠=∠2ABD ACDS S =V V ABCD E AD CE ABCD CE D AB F G CF P CE PF PG AE a =ED b =AF c =PF PG +a c b +-2b c +2a b c ++a b+C BD AB BD ⊥B ED BD ⊥D 90ACE ∠=︒5cm AC =6cm CE =P 2cm/s A C E →→E Q 3cm/s E EC E C E C →→→→⋅⋅⋅P P Q P Q BD M N s t P C M QCN △t 115115235115ABC V 60A ∠=︒ABC ∠ACB ∠BD CE O BD AC D CE AB E ABC V 207BC =:4:3AE AD =AEA. B . C . D .4二、填空题(本大题共8小题,每小题4分,共32分)11.如图,已知正方形中阴影部分的面积为3,则正方形的面积为 .12.数学课上,老师出示如下题目:“已知:.求作:.”如图是小宇用直尺和圆规的作法,其中的道理是作出△,根据全等三角形的性质,得到.△的依据是 .13.如图,已知,,,直线与,分别交于点,,且,,则的度数为 .14.如图,在△ABC 中,点D 是AC 的中点,分别以AB ,BC 为直角边向△ABC 外作等腰直角三角形ABM 和等腰直角三角形BCN ,其中∠ABM =NBC =∠90°,连接MN ,已知MN =4,则BD = .187247267AOB ∠A O B AOB '''∠=∠ΔC O D COD ''≅'A O B AOB '''∠=∠ΔC O D COD ''≅'AB AD =AC AE =BC DE =BC AD DE F G 65DGB ∠=︒120EAB ∠=︒CAD ∠15.如图,为的平分线,为上一点,且于点,,给出下列结论:①;②;③;④;⑤四边形的面积是面积的2倍,其中结论正确的个数有 .16.如图,把两块大小相同的含45°的三角板ACF 和三角板CFB 如图所示摆放,点D 在边AC 上,点E 在边BC 上,且∠CFE =13°,∠CFD =32°,则∠DEC 的度数为 .17.如图,在中,,,,有下列结论:①;②;③连接,;④过点作交于点,连接,则.其中正确的结论有 .18.如图,在Rt △ABC 中,∠C =90°,两锐角的角平分线交于点P ,点E 、F 分别在边BC 、AC 上,且都不与点C 重合,若∠EPF =45°,连接EF ,当AC =6,BC =8,AB =10时,则△CEF的BN MBC ∠P BN PD BC ⊥D 180APC ABC ∠+∠=︒MAP ACB ∠=∠PA PC =2BC AB CD -=BP AC =BAPC PBD △ABC V AD BC ⊥AD BD =BF AC =ADC BDF △≌△BE AC ⊥DE 135AED ∠=︒D DM AB ∥AC M FM BF AM MD =+周长为 .三、解答题(本大题共6小题,共58分)19.(8分)如图,,点E 在BC 上,且,.(1) 求证:;(2) 判断AC 和BD的位置关系,并说明理由.BD BC =BE AC =DE AB =ABC EDB V V ≌20.(8分)如图,在五边形中,,.(1) 请你添加一个条件,使得,并说明理由;(2) 在(1)的条件下,若,,求的度数.21.(10分)在复习课上,老师布置了一道思考题:如图所示,点M ,N 分别在等边的边上,且,,交于点Q .求证:.同学们利用有关知识完成了解答后,老师又提出了下列问题:(1) 若将题中“”与“”的位置交换,得到的是否仍是真命题?请你给出答案并说明理由.ABCDE AB DE =AC AD =ABC DEA △△≌66CAD ∠=︒110B ∠=︒BAE ∠ABC V ,BC CA BM CN =AM BN 60BQM ∠=︒BM CN =60BQM ∠=︒(2) 若将题中的点M ,N 分别移动到的延长线上,是否仍能得到?请你画出图形,给出答案并说明理由.22.(10分)如图1,点P 、Q 分别是边长为4cm 的等边三角形ABC 的边AB 、BC 上的动点,点P 从顶点A ,点Q 从顶点B 同时出发,且它们的速度都为1cm/s .(1)连接AQ 、CP 交于点M ,则在P ,Q 运动的过程中,证明≌;(2)会发生变化吗?若变化,则说明理由,若不变,则求出它的度数;(3)P 、Q 运动几秒时,是直角三角形?,BC CA 60BQM ∠=︒ABQ ∆CAP ∆CMQ ∠PBQ ∆(4)如图2,若点P 、Q 在运动到终点后继续在射线AB 、BC 上运动,直线AQ 、CP 交点为M ,则变化吗?若变化说明理由,若不变,则求出它的度数。

初二全等三角形单元测试

初二全等三角形单元测试

《全等三角形》单元测试卷班级姓名得分一、选择题(本大题共有10小题,每小题3分,共30分).1.下列判断不正确的是()A.形状相同的图形是全等图形B.能够完全重合的两个三角形全等C.全等图形的形状和大小都相同D.全等三角形的对应角相等2.如图,△ABD≌△CDB,下面四个结论中,不正确的是( ) A.△ABD和△CDB的面积相等B.△ABD和△CDB的周长相等C.AD∥BC D.∠ABD=∠CBD(第2题)(第3题)(第4题)3.如图,△ABC≌△ADE,若∠B=80°,∠C=30°,∠DAC=35°,则∠EAC的度数为()A.40°B.35°C.30°D.25°4.如图,点E、点F在BC上,BE=CF,∠B=∠C,添加一个条件,不能证明△ABF≌△DCE 的是()A.∠A=∠D B.∠AFB=∠DEC C.AB=DC D.AF=DE5.如图,已知OA=OB,OC=OD,AD、BC相交于点E,则图中全等三角形共有()A.2对B.3对C.4对D.5对(第5题)(第6题)(第7题)6. 如图, 小明同学在学习了全等三角形的相关知识后发现, 只用两把完全相同的长方形直尺就可以作出一个角的平分线. 如图: 一把直尺压住射线OB, 另一把直尺压住射线OA并且与第一把直尺交于点P, 小明说: “射线OP就是∠BOA的角平分线”. 他这样做的依据是() . A.角平分线上的点到这个角两边的距离相等B.角的内部到角的两边的距离相等的点在角的平分线上C.三角形三条角平分线的交点到三条边的距离相等D.以上均不正确7.如图,将正方形OABC放在平面直角坐标系中,O为坐标原点,点A的坐标为(3,4),则点B的坐标为()A.(﹣1,7)B.(﹣1,5)C.(﹣2,6)D.(﹣2,7)8.下列说法错误的有()(1)有两边和一角对应相等的两个三角形全等,(2)有两边及第三边上的中线对应相等的两个三角形全等,(3)面积相等的两个三角形全等,(4)有两边及第三边上的高对应相等的两个三角形全等.A.1个B.2个C.3个D.4个9.如图,在△ABC中,AD BC⊥于点D,CE AB⊥于点E,AD、CE交于点F,已知6EF EB==,24AEFS=△,则CF的长为()A.1 B.2 C.52D.3(第9题)(第10题)(第14题)10.如图,Rt△ABC中,∠ACB=90°,△ABC的角平分线AD、BE相交于点P,过P作PF⊥AD交BC的延长线于点F,交AC于点H,则下列结论:①∠APB=135°;②点P在∠ACB 的角平分线上;③PF=P A;④AH+BD=AB;其中正确的有()A.1个B.2个C.3个D.4个二、填空题(本大题共有8小题,第11~12题每题3分,第13~18题每题4分,合计30分).11.用直尺和圆规画一个角等于已知角,是运用了“全等三角形的对应角相等”这一性质,其运用全等的方法是.(用字母写出).12.已知△ABC≌△DEF,∠A=50°,∠E-∠F=40°,则∠B= 度.13.△ABC中,AB=4,BC=6,则AC边上中线BD的取值范围是.14.如图是5×5的正方形网格,以点D、E为两个顶点作位置不同的格点三角形,使所作的格点三角形与△ABC全等,这样的格点三角形可以最多画出个.15.如图所示的网格是正方形网格,图形的各个顶点均为格点,则∠P+∠Q=度.(第15题) (第16题)(第17题)(第18题)16.如图,在△ABC中,∠C=90°,AC=12,AB=15,AD是∠BAC的平分线.若射线AC上有一点P,且∠CPD=∠B,则AP的长为.17.如图,四边形ABCD中,AC平分∠BAD,CE⊥AB于点E,且∠B+∠D=180°,若BE=3,CE=4,S△ACE=14,则S△ACD=________.18.如图,在△ABC中,90ACB∠=︒,AC=8cm,BC=10cm.点C在直线l上,动点P从A点出发沿A→C的路径向终点C运动;动点Q从B点出发沿B→C→A路径向终点A运动.点P和点Q分别以每秒1cm和2cm的运动速度同时开始运动,其中一点到达终点时另一点也停止运动,分别过点P和Q作PM⊥直线l于M,QN⊥直线l于N.则点P运动时间为__ __秒时,△PMC与△QNC全等.三、解答题19.(6分)如图,在线段MN上求作一点P,使点P到∠AOB两边的距离相等.(尺规作图)20.(9分)如图,已知AD平分∠BAC,AB=AC.求证:△ABD≌△ACD.21.(12分)如图,点C、E、F、B在同一直线上,AB∥CD,AE=DF,∠AEB=∠DFC.(1)求证:△ABE≌△DCF;(2)若∠A=45°,∠C=30°,求∠BFD的度数.22.(12分)如图,AC⊥BC,AD⊥BD,AD=BC,AD,BC交于O.求证:OC=OD.23.(12分)在△ABC中,∠ACB=90°,AC=BC,过点C作直线l,BE⊥l于点E,AD⊥l于点D.若BE=2,AD=6,求DE长.(备用图)24.(12分)如图,在△ABC中,∠BAC=120°,AD,BE分别为△ABC的角平分线,连接DE.(1)求证:DE平分∠ADC;(2)求∠DEB的度数.CB ACBA25.(13分)如图,四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是BC,CD上一点,且∠BAD=2∠EAF,试探究EF与BE,DF之间的数量关系并证明.26.(14分)如图,在△ABC中,AD为BC边上的高,AE是∠BAD的角平分线,点F为AE上一点,连接BF,∠BFE=45°.(1)求证:BF平分∠ABE;(2)连接CF交AD于点G,若S△ABF=S△CBF,求证:∠AFC=90°;(3)在(2)的条件下,当BE=3,AG=4.5时,求线段AB的长.。

《第十二章全等三角形》单元测试卷含答案(共6套)

《第十二章全等三角形》单元测试卷含答案(共6套)

《第⼗⼆章全等三⾓形》单元测试卷含答案(共6套)《第⼗⼆章全等三⾓形》单元测试卷(⼀)时间:120分钟满分:120分⼀、选择题(本⼤题共6⼩题,每⼩题3分,共18分.每⼩题只有⼀个正确选项) 1.若△MNP≌△MNQ,且MN=8,NP=7,PM=6,则MQ的长为( )A.8 B.7 C.6 D.52.下列条件中,能判定△ABC≌△DEF的是( )A.AB=DE,BC=EF,∠A=∠DB.∠A=∠D,∠C=∠F,AC=EFC.∠B=∠E,∠A=∠D,AC=EFD.∠B=∠E,∠A=∠D,AB=DE3.如图,⼀块三⾓形玻璃碎成了4块,现在要到玻璃店去配⼀块与原来的三⾓形玻璃完全⼀样的玻璃,则最省事的办法是带( ) A.① B.② C.③ D.④第3题图第4题图4.如图,AC=CE,∠ACE=90°,AB⊥BD,ED⊥BD,AB=6cm,DE=2cm,则BD 等于( )A.6cm B.8cm C.10cm D.4cm=15,DE=3,AB=6,5.如图,在△ABC中,AD平分∠BAC,DE⊥AB于E,S△ABC则AC的长是( )A.7 B.6 C.5 D.4第5题图第6题图6.如图,OP平分∠AOB,PA⊥OA,PB⊥OB,C是射线OA上不与点A重合的⼀点,D是射线OB上不与点B重合的⼀点,且AC=BD,下列结论:①PA=PB; ②PO平分∠APB;③OC=OD; ④△PAC≌△PBD.其中成⽴的是( )A.①②③ B.②③④ C.①②④ D.①②③④⼆、填空题(本⼤题共6⼩题,每⼩题3分,共18分)7.已知图中的两个三⾓形全等,则∠1的度数是________.8.如图,在△ABC中,AB=AC,BE、CF是△ABC的中线,则由________可得△AFC≌△AEB.第7题图第8题图第9题图9.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D.若CD=4,则点D到斜边AB的距离为________.10.如图,OP平分∠MON,PE⊥OM于E,PF⊥ON于F,OA=OB,则图中共有________对全等三⾓形.第10题图第11题图11.如图,AC=BC,DC=EC,∠ACB=∠ECD=90°,且∠EBD=42°,则∠AEB =________.12.在平⾯直⾓坐标系中,点A(1,0),B(3,0),C(4,2),当△ABD和△ABC 全等时,则点D的坐标可以是________________.三、(本⼤题共5⼩题,每⼩题6分,共30分)13.如图所⽰,在△ABC中,∠A=90°,DE⊥BC,BD平分∠ABC,AD=6cm,BC =15cm,求△BDC的⾯积.14.如图,点B,D,C,F在⼀条直线上,BC=FD,AB=EF,且AB∥EF.求证:AC∥ED.15.如图,已知F是DE的中点,∠D=∠E,∠DFN=∠EFM.求证:DM=EN.16.如图,点D在BC上,∠1=∠2,AE=AC,下⾯三个条件:①AB=AD;②BC =DE;③∠E=∠C,请你从所给条件①②③中选⼀个条件,使△ABC≌△ADE,并证明.17.如图,在∠AOB的两边OA,OB上分别取OM=ON,OD=OE,请⽤⽆刻度的直尺作出∠AOB的平分线.四、(本⼤题共3⼩题,每⼩题8分,共24分)18.如图,已知△ABC,按如下步骤作图:①以A为圆⼼,AB长为半径画弧;②以C为圆⼼,CB长为半径画弧,两弧相交于点D;③连接BD,与AC交于点E,连接AD,CD.(1)求证:△ABC≌△ADC;(2)试猜想AC与BD的位置关系,并说明理由.19.如图,AD是△ABC的中线,BE⊥AD于点E,CF⊥AD交AD的延长线于点F.求证:AE+AF=2AD.20.如图,点E,F分别在OA,OB上,DE=DF,∠OED+∠OFD=180°.(1)请作出点D到OA,OB的距离,标明垂⾜;(2)求证:OD平分∠AOB.五、(本⼤题共2⼩题,每⼩题9分,共18分)21.如图,在△ABC中,BE,CF分别是边AC,AB上的⾼,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD,AG,则AG与AD有何关系?请说明理由.22.如图,在△ACB中,∠ACB=90°,AC=BC,点C的坐标为(-2,0),点A 的坐标为(-6,3),求点B的坐标.六、(本⼤题共12分)23.(1)阅读理解:如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.解决此问题可以⽤如下⽅法:延长AD到点E使DE=AD,再连接BE(或将△ACD 绕着点D逆时针旋转180°得到△EBD),把AB、AC,2AD集中在△ABE中,利⽤三⾓形三边的关系即可判断.中线AD的取值范围是____________;(2)问题解决:如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF 交AC于点F,连接EF,求证:BE+CF>EF;(3)问题拓展:如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以C 为顶点作⼀个70°⾓,⾓的两边分别交AB,AD于E、F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.参考答案与解析1.C 2.D 3.D 4.B 5.D6.C 解析:∵OP平分∠AOB,∴∠POA=∠POB.∵PA⊥OA,PB⊥OB,∴∠OAP=∠OBP=90°.在△OPA 和△OPB 中,∠OAP=∠OBP,∠POA=∠POB,OP =OP ,∴△OPA≌△OPB(AAS),∴AO =BO ,PA =PB ,∠OPA=∠OPB,∴PO 平分∠APB,故①②正确;在△PAC 和△PBD中,PA =PB ,∠A=∠PBD,AC =BD ,∴△PAC≌△PBD(SAS),故④正确,由△PAC≌△PBD 得AC =BD ,∴OC=OA -AC =OB -BD =OD -2BD ,∴OC≠OD,故③错误,故答案为C. 7.58° 8.SAS 9.4 10.311.132° 解析:∵∠ACB=∠ECD=90°,∴∠ACB-∠BCE=∠ECD-∠BCE,即∠ACE=∠BCD.在△ACE 和△BCD 中,AC =BC ,∠ACE=∠BCD,EC =DC ,∴△ACE≌△BCD,∴∠CAE=∠CBD,∴∠CAE+∠CBE=∠CBD+∠CBE=∠EBD=42°.在△ABC 中,∠EAB+∠EBA=180°-(∠ACB+∠CAE+∠C BE)=180°-(90°+42°)=48°,在△ABE 中,∠AEB=180°-(∠EAB+∠EBA)=180°-48°=132°. 12.(0,2)或(4,-2)或(0,-2)13.解:∵BD 平分∠ABC,∠A=90°,DE⊥BC,∴DE=AD =6cm ,(3分)∴△BDC 的⾯积为12BC·DE=12×15×6=45(cm 2).(6分)14.证明:∵AB∥EF,∴∠B=∠F.(1分)在△ABC 和△EFD 中,AB =EF ,∠B=∠F,BC =FD ,∴△ABC≌△EFD(SAS),(4分)∴∠ACB=∠EDF,∴AC∥DE.(6分)15.证明:∵点F 是DE 的中点,∴DF=EF.(1分)∵∠DFN=∠EFM,∴∠DFN+∠MFN=∠EFM+∠MFN,即∠DFM=∠EFN. (2分)在△DFM 和△EFN 中,∠D=∠E,DF =EF ,∠DFM=∠EFN,∴△DFM≌△EFN(ASA),(4分)∴DM=EN.(6分)16.解:选②BC=DE.证明如下:如图,∵∠1=∠2,∠3=∠4,∴∠E=∠C.(2分)在△ABC 和△ADE 中,AC =AE ,∠C=∠E,BC =DE ,∴△ABC≌△ADE(SAS).(6分)17.解:如图所⽰,OC 即为所求.(6分)18.(1)证明:在△ABC 与△ADC 中,AB =AD ,BC =DC ,AC =AC ,∴△ABC≌△ADC(SSS).(4分)(2)解:AC⊥DB.(5分)理由如下:由(1)知△ABC≌△ADC,∴∠BAE=∠DAE.∵AB =AD ,∠BAE=∠DAE,AE =AE,∴△ABE≌△ADE(SAS),∴∠AEB=∠AED.⼜∵∠AEB +∠AED=180°,∴∠AEB=∠AED=90°,∴AC⊥BD.(8分) 19.证明:∵AD 是△ABC 的中线,∴BD=CD.(2分)∵BE⊥AD,CF⊥AD,∴∠BED=∠CFD=90°.在△BDE 和△CDF 中,∠BED=∠CFD,∠BDE=∠CDF,BD =CD ,∴△BDE≌△CDF(AAS),∴DE=DF.(6分)∵AE=AD -DE ,AF =AD +DF ,∴AE+AF =AD -DE +AD +DF =2AD.(8分)20.(1)解:如图,分别过点D 作DM⊥OA,DN⊥OB,则DM ,DN 分别为点D 到OA ,OB 的距离,垂⾜分别为M ,N.(3分) (2)证明:∵∠OED+∠OFD=180°,∠OED+∠MED=180°,∴∠MED=∠NFD.∵DM⊥OA,DN⊥OB,∴∠DME=∠DNF=90°.在△DME 和△DNF 中,∠DME=∠DNF,∠MED=∠NFD,DE =DF ,∴△DME≌△DNF(AAS),(6分)∴DM=DN ,∴OD 平分∠AOB.(8分)21.解:AG =AD ,AG⊥AD.(2分)理由如下:设CG 分别交AD ,BE 于O ,P ,如图所⽰.∵在△ABC 中,BE ,CF 分别是边AC ,AB 上的⾼,∴∠BFP=∠CEP=∠AFO =90°,∴∠ABD+∠FPB=90°,∠ACG+∠EPC=90°.∵∠FPB=∠EPC,∴∠ABD=∠ACG.在△ABD 和△GCA 中,AB =GC ,∠ABD=∠GCA,BD =CA ,∴△ABD≌△GCA(SAS),∴AG=AD ,∠AGC=∠BAD.(6分)∵∠AFO=90°,∴∠BAD+∠AOF=90°,∴∠AGC+∠AOF=90°,∴∠GAD=180°-90°=90°,∴AG⊥AD.(9分)22.解:如图,过点A 和B 分别作AD⊥x 轴于D ,BE⊥x 轴于E ,(1分)∴∠ADC =∠CEB=90°,∴∠ACD+∠CAD=90°.∵∠ACB=90°,∴∠ACD+∠BCE=90°,∴∠CAD=∠BCE.在△ADC 和△CEB 中,∠ADC=∠CEB,∠CAD=∠BCE,AC =BC ,∴△ADC≌△CEB(AAS),∴CD=BE ,AD =CE.(5分)∵点C 的坐标为(-2,0),点A 的坐标为(-6,3),∴OC=2,CE =AD =3,OD =6,∴CD=OD -OC =4,OE =CE -OC =3-2=1,∴BE=4,∴点B 的坐标是(1,4).(9分)23.(1)解:2<AD <8(3分)(2)证明:延长FD ⾄点M ,使DM =DF ,连接BM 、EM ,如图②所⽰.(4分)∵D 是BC 的中点,∴CD=BD.在△BMD 和△CFD 中,BD =CD ,∠BDM=∠CDF,DM =DF ,∴△BMD≌△CFD(SAS),∴BM=CF.(5分)∵DE=DE ,∠EDF=∠EDM =90°,DF =DM ,∴△DEF≌△DEM(SAS),∴EM=EF.在△BME 中,由三⾓形的三边关系得BE +BM >EM ,∴BE+CF >EF.(7分)(3)解:BE +DF =EF.(8分)理由如下:延长AB ⾄点N ,使BN =DF ,连接CN ,如图③所⽰.∵∠ABC+∠D=180°,∠NBC+∠ABC=180°,∴∠NBC=∠D.在△NBC和△FDC 中,BN =DF ,∠NBC=∠D,BC =DC ,∴△NBC≌△FDC(SAS),∴CN=CF ,∠NCB=∠FCD.∵∠BCD=140°,∠ECF=70°,∴∠BCE+∠FCD=70°,∴∠ECN=70°=∠ECF.(10分)在△NCE 和△FCE 中,CN =CF ,∠ECN=∠ECF,CE =CE ,∴△NCE≌△FCE(SAS),∴EN=EF.∵BE+BN =EN ,∴BE+DF =EF.(12分)《第⼗⼆章全等三⾓形》单元测试卷(⼆)时间:120分钟满分:120分⼀、选择题(每⼩题3分,共30分)1.在下列每组图形中,是全等形的是( )2.如图,△AOC≌△BOD,点A 与点B 是对应点,则下列结论中错误的是( ) A .∠A=∠B B.AO =BO C .AB =CD D .AC =BD3.如图,已知AB=AC,BD=CD,则可推出( )A.△ABD≌△BCD B.△ABD≌△ACDC.△ACD≌△BCD D.△ACE≌△BDE4.在△ABC和△A′B′C′中,AB=A′B′,∠A=∠A′,若要证△ABC≌△A′B′C′,则还需从下列条件中补选⼀个,错误的选法是( ) A.∠B=∠B′ B.∠C=∠C′C.BC=B′C′ D.AC=A′C′5.已知∠AOB的平分线上⼀点P到OA的距离为5,Q是OB上任意⼀点,则( ) A.PQ>5 B.PQ≥5 C.PQ<5 D.PQ≤5 6.如图,点A、D、C、E在同⼀条直线上,AB∥EF,AB=EF,∠B=∠F,AE=12,AC=8,则CD的长为( )A.5.5 B.4 C.4.5 D.37.如图,MP⊥NP,MQ为∠PMN的平分线,MT=MP,连接TQ,则下列结论中不正确的是( )A.TQ=PQ B.∠MQT=∠MQPC.∠QTN=90° D.∠NQT=∠MQT8.如图,BE⊥AC于点D,且AD=CD,BD=ED.若∠ABC=54°,则∠E的度数为( ) A.25° B.27° C.30° D.45°9.如图,已知AB∥CD,AD∥BC,AD=BC,AC与BD交于点O,AE⊥BD于点E,CF⊥BD 于点F,则图中的全等三⾓形有( ) A.5对 B.6对 C.7对 D.8对10.如图,点P为定⾓∠AOB的平分线上的⼀个定点,且∠MPN与∠AOB互补,若∠MPN在绕点P旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结论:①PM=PN恒成⽴;②OM+ON的值不变;③四边形PMON的⾯积不变;④MN 的长不变.其中正确的个数为( )A.4 B.3 C.2 D.1⼆、填空题(每⼩题3分,共24分)11.如图,在△ABC与△ADC中,已知AD=AB,在不添加任何辅助线的前提下,要使△ABC≌△ADC,只需再添加的⼀个条件可以是__________.12.如图,在直⾓△ABC中,∠C=90°,AD平分∠BAC交BC于点D.若CD=4,则点D到斜边AB的距离为________.13.如图,若△AOB≌△A′OB′,∠B=30°,∠AOA′=52°,OB与A′B′交于点C,则∠A′CO的度数是________.14.如图,OP平分∠MON,PE⊥OM于E,P F⊥ON于F,OA=OB,则图中有________对全等三⾓形.15.如图,已知AB∥CF,E为AC的中点,若FC=6cm,DB=3cm,则AB=________cm.16.如图,已知AD=AE,BE=CD,∠1=∠2=110°,∠BAC=80°,则∠CAE的度数是________.17.我们知道:“两边及其中⼀边的对⾓分别相等的两个三⾓形不⼀定全等”.但是,⼩亮发现:当这两个三⾓形都是锐⾓三⾓形时,它们会全等,除⼩亮的发现之外,当这两个三⾓形都是__________时,它们也会全等;当这两个三⾓形中的⼀个是锐⾓三⾓形,另⼀个是__________时,它们⼀定不全等.18.如图,在平⾯直⾓坐标系中,已知点A(0,3),B(9,0),且∠ACB=90°,CA=CB,则点C的坐标为________.三、解答题(共66分)19.(8分)如图,点C是AE的中点,∠A=∠ECD,AB=CD.求证:∠B=∠D.20.(8分)如图,点D在BC上,∠1=∠2,AE=AC,下⾯有三个条件:①AB=AD;②BC=DE;③∠E=∠C.请你从所给条件①②③中选⼀个条件,使△ABC≌△ADE,并证明两三⾓形全等.21.(8分)如图,在Rt△ABC中,∠ACB=90°,CA=CB,D是AC上⼀点,E在BC的延长线上,且AE=BD,BD的延长线与AE交于点F.试通过观察、测量、猜想等⽅法来探索BF与AE有何特殊的位置关系,并证明你的猜想.22.(10分)如图,在△ABC中,点O是∠ABC、∠ACB的平分线的交点,AB+BC +AC=12,过O作OD⊥BC于D点,且OD=2,求△ABC的⾯积.23.(10分)如图,B、C、E三点在同⼀条直线上,AC∥DE,AC=CE,∠ACD=∠B.(1)求证:BC=DE;(2)若∠A=40°,求∠BCD的度数.24.(10分)如图,在△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC于F.(1)求证:BE=CF;(2)若AB=8,AC=6,求AE,BE的长.25.(12分)在解决线段数量关系的问题时,如果条件中有⾓平分线,经常采⽤下⾯构造全等三⾓形的解题思路,如:在图①中,若C是∠MON的平分线OP上⼀点,点A在OM上,此时,在ON上截取OB=OA,连接BC,根据三⾓形全等判定(SAS),容易构造出全等三⾓形△OBC和△OAC,参考上⾯的⽅法,解答下列问题:如图②,在⾮等边△ABC 中,∠B=60°,AD ,CE 分别是∠BAC,∠BCA 的平分线,且AD ,CE 交于点F.求证:AC =AE +CD.参考答案与解析1.C 2.C 3.B 4.C 5.B 6.B 7.D 8.B 9.C10.B 解析:如图,作PE⊥OA 于E ,PF⊥OB 于F ,则∠PEO=∠PFO=90°,∴∠EPF +∠AOB=180°.∵∠MPN+∠AOB =180°,∴∠EPF=∠MPN,∴∠EPM=∠FPN.∵OP 平分∠AOB,∴∠POE=∠POF.在△POE 和△POF 中,∠POE=∠POF,∠PEO=∠PFO,PO =PO ,∴△POE≌△POF,∴PE=PF ,OE =OF.在△PEM 和△PFN 中,∠MPE=∠NPF ,PE =PF ,∠PEM=∠PFN,∴△PEM≌△PFN,∴EM=NF ,PM =PN ,故①正确.∴S △PEM=S △PFN ,∴S 四边形PMON =S 四边形PEOF =定值,故③正确.∵OM+ON =OE +ME +OF -NF =2OE =定值,故②正确.MN 的长度是变化的,故④错误.故选B.11.DC =BC(或∠DAC=∠BAC) 12.4 13.82° 14.3 15.9 16.20°17.钝⾓三⾓形或直⾓三⾓形钝⾓三⾓形18.(6,6) 解析:如图,过点C 作CE⊥OA,CF⊥OB,垂⾜分别为E ,F.则∠OEC =∠OFC=90°.∵∠AOB=90°,∴∠ECF =90°.∵∠ACB=90°,∴∠ACE=∠BCF.在△ACE 和△BCF 中,∠AEC=∠BFC,∠ACE=∠BCF,AC =BC ,∴△ACE≌△BCF(AAS),∴AE=BF ,CE =CF ,∴点C 的横、纵坐标相等,∴OE=OF.∵AE=OE -OA =OE -3,BF =OB -OF =9-OF ,∴OE=OF =6,∴点C 的坐标为(6,6).19.证明:∵点C 是AE 的中点,∴AC=CE.(2分)在△ABC 和△CDE 中,AC =CE ,∠A=∠ECD,AB =CD ,∴△ABC≌△CDE(SAS),(7分)∴∠B=∠D.(8分)20.解:选②BC=DE.(1分)如图,∵∠1=∠2,∠3=∠4,∴∠E=∠C.(3分)在△ADE 和△ABC 中,AE =AC ,∠E=∠C,DE =BC ,∴△ADE≌△ABC(SAS).(8分)21.解:猜想BF⊥AE.(2分)理由如下:∵∠ACB=90°,∴∠ACE=∠BCD=90°.⼜BC =AC ,BD =AE,∴Rt△BDC≌Rt△AEC(HL).∴∠CBD=∠CAE.(5分)⼜∵∠CAE +∠E=90°,∴∠EBF+∠E=90°.∴∠BFE=90°,即BF⊥AE.(8分)22.解:如图,过点O 作OE⊥AB 于E ,OF⊥AC 于F ,连接OA.(2分)∵点O 是∠ABC,∠ACB 的平分线的交点,∴OE=OD ,OF =OD ,即OE =OF =OD =2.(5分)∴S △ABC =S △ABO +S △BCO +S △ACO =12AB·OE+12BC·OD+12AC·OF =12×2·(AB+BC +AC)=12×2×12=12.(10分)23.(1)证明:∵AC∥DE,∴∠ACB=∠E,∠ACD=∠D.∵∠ACD=∠B.∴∠D=∠B.(2分)在△ABC 和△CDE 中,∠ACB=∠E,∠B=∠D,AC =CE ,∴△ABC≌△CDE(AAS),∴BC=DE.(5分)(2)解:由(1)知△ABC≌△CDE,∴∠DCE=∠A=40°,∴∠BCD=180°-40°=140°.(10分)24.(1)证明:如图,连接DB ,DC.∵DG⊥BC 且平分BC ,∴∠DGB=∠DGC =90°,BG =CG.⼜DG =DG,∴△DGB≌△DGC,∴DB=DC.∵AD 为∠BAC 的平分线,DE⊥AB,DF⊥AC,∴DE=DF ,∠DAE=∠DAF,∠BED=∠AED=∠DFC=90°.(3分)在Rt△DBE 和Rt△DCF 中,DB =DC ,DE =DF ,∴Rt△DBE≌Rt△DCF(HL),∴BE=CF.(5分)(2)解:在△ADE 和△ADF 中,∠DAE=∠DAF,∠AED=∠AFD,AD =AD ,∴△ADE≌△ADF,∴AE=AF.(7分)∵AC+CF =AF ,AE =AB -BE ,∴AC+CF =AB -BE ,即6+BE =8-BE ,∴BE=1,∴AE=8-1=7.(10分)25.证明:如图,在AC 上截取AG =AE ,连接FG.(1分)∵AD 是∠BAC 的平分线,CE 是∠BCA 的平分线,∴∠1=∠2,∠3=∠4.(2分)在△AEF 和△AGF 中,AE =AG ,∠1=∠2,AF =AF ,∴△AEF≌△AGF(SAS),∴∠AFE=∠AFG.(6分)∵∠B=60°,∴∠BAC+∠ACB=120°,∴∠2+∠3=12(∠BAC+∠ACB)=60°.∵∠AFE=∠2+∠3,∴∠AFE=∠CFD=∠AFG=60°,∴∠CFG=180°-∠CFD-∠AFG=60°,∴∠CFD=∠CFG.(9分)在△CFG 和△CFD 中,∠CFG=∠CFD,FC =FC ,∠3=∠4,∴△CFG≌△CFD(ASA),∴CG=CD.∴AC=AG +CG =AE +CD.(12分)《第⼗⼆章全等三⾓形》单元测试卷(三)(考试时间为90分钟,满分100分)⼀.填空题:(每题3分,共30分)1.如图1,若△ABC ≌△ADE ,∠EAC=35°,则∠BAD=_________度.2.如图2,沿AM 折叠,使D 点落在BC 上的N 点处,如果AD=7cm ,DM=5cm ,∠DAM=300,则AN= cm ,NM= cm,∠NAM= .3.如图3,△ABC ≌△AED ,∠C=85°,∠B=30°,则∠EAD= .4.已知:如图4,∠ABC =∠DEF ,AB =DE ,要说明△ABC ≌△DEF ,(1)若以“SAS ”为依据,还须添加的⼀个条件为________________. (2)若以“ASA ”为依据,还须添加的⼀个条件为________________.ABCDE图1ABCDMN 图2AB CEFA BCDFEO图 5(3)若以“AAS”为依据,还须添加的⼀个条件为________________.5.如图5,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,则△______≌△_______. .8. 如图8,在中,AB=AC,BE、CF是中线,则由可得.F,若,EO=10,则∠DBC= ,FO= .10. 如图10,△DEF≌△ABC,且AC>BC>AB则在△DEF中,______< ______< _____.图 10=∠60ADBACDEF。

(常考题)人教版初中数学八年级数学上册第二单元《全等三角形》测试(有答案解析)(1)

(常考题)人教版初中数学八年级数学上册第二单元《全等三角形》测试(有答案解析)(1)

一、选择题1.如图,AB ∥CD ,BE 和CE 分别平分∠ABC 和∠BCD ,AD 过点E ,且AD ⊥AB ,点P 为线段BC 上一动点,连接PE .若AD =14,则PE 的最小值为( )A .7B .10C .6D .52.如图,在△ABC 中,∠B =∠C =50°,BD =CF ,BE =CD ,则∠EDF 的度数是( )A .40°B .50°C .60°D .30°3.下列说法正确的( )个.①0.09的算术平方根是0.03;②1的立方根是±1;③3.1<10<3.2;④两边及一角分别相等的两个三角形全等.A .0B .1C .2D .34.如图,在ABC 中,B C ∠=∠,BD CE =,BF CD =,则EDF ∠等于( )A .90A ︒-∠B .1802A ︒-∠C .1902A ︒-∠D .11802A ︒-∠ 5.如图所示,下面甲、乙、丙三个三角形和ABC 全等的图形是( )A .甲和乙B .乙和丙C .只有丙D .只有乙 6.如图所示的正方形ABCD 中,点E 在边CD 上,把ADE 绕点A 顺时针旋转得到ABF ,20FAB ∠=︒.旋转角的度数是( )A .110°B .90°C .70°D .20°7.如图,AB =AC ,点D 、E 分别是AB 、AC 上一点,AD =AE ,BE 、CD 相交于点M .若∠BAC =70°,∠C =30°,则∠BMD 的大小为( )A .50°B .65°C .70°D .80°8.如图,在△ABC 中,点E 和F 分别是AC ,BC 上一点,EF ∥AB ,∠BCA 的平分线交AB 于点D ,∠MAC 是△ABC 的外角,若∠MAC =α,∠EFC =β,∠ADC =γ,则α、β、γ三者间的数量关系是( )A .β=α+γB .β=2γ﹣αC .β=α+2γD .β=2α﹣2γ 9.下列命题,真命题是( )A .全等三角形的面积相等B .面积相等的两个三角形全等C .两个角对应相等的两个三角形全等D .两边和其中一边的对角对应相等的两个三角形全等10.根据下列条件,能画出唯一ABC 的是( )A .3AB =,4BC =,7CA =B .4AC =,6BC =,60A ∠=︒ C .45A ∠=︒,60B ∠=︒,75C ∠=︒D .5AB =,4BC =,90C ∠=︒ 11.如图,在Rt ABC 和Rt ADE △中,90,,ACB AED AB AD AC AE ∠=∠===,则下列说法不正确的是( )A .BC DE =B .BAE DAC ∠=∠ C .OC OE =D .EAC ABC ∠=∠ 12.如图,AD 是ABC 的中线,E ,F 分别是AD 和AD 延长线上的点,且DE DF =,连结BF ,CE .下列说法:①CE BF =;②ACE △和CDE △面积相;③//BF CE ;④BDF CDE ≌.其中正确的有( )A .1个B .2个C .3个D .4个二、填空题13.如图,D ,E 分别是AB ,AC 上的点,AD=AE ,请添加一个条件,使得ABE ≌ACD .这个条件可以为_____(只填一个条件即可).14.如图,在△ABC 中,∠C =90°,AD 是∠BAC 的角平分线,若BC =8cm ,BD =5cm ,AB=10cm,则S △ABD =______.15.如图所示,ABC ≅△AB C '',20CAC ∠'=︒,BAB ∠'=___度.16.如图所示,AB AC =,AD AE =,BAC DAE ∠=∠,点D 在线段BE 上.若125∠=︒,230∠=︒,则3∠=______.17.如图,△ABC 中,∠C=90°,AC=40cm ,BD 平分∠ABC ,DE ⊥AB 于E ,AD :DC=5:3,则D 到AB 的距离为__________cm .18.如图,△ABC 的外角∠MBC 和∠NCB 的平分线BP 、CP 相交于点P ,PE ⊥BC 于E 且PE =3cm ,若△ABC 的周长为14cm ,S △BPC =7.5,则△ABC 的面积为______cm 2.19.如图,OM 平分∠POQ ,MA ⊥OP ,MB ⊥OQ ,垂足为A ,B ,S △AOM =8cm 2,OA=4cm ,则MB=___.20.如图,在△ABC 和△DBC 中,∠ACB=∠DBC=90°,E 是BC 的中点,DE ⊥AB ,垂足为F ,AB=DE .若BD=8cm ,则AC 的长为_________.三、解答题21.如图1是一个平分角的仪器,其中OD=OE ,FD=FE .(1)如图2,将仪器放置在△ABC 上,使点O 与顶点A 重合,D 、E 分别在边AB 、AC 上,沿AF 画一条射线AP ,交BC 于点P .则AP 就是∠BAC 的平分线吗?请给出判断并说明理由.(2)如图3,在(1)的前提下,过点P 作PQ ⊥AB 于点Q ,已知PQ=4,AC=7,△ABC 的面积是32,求AB 的长.22.如图,在五边形ABCDE 中,AB DE =,AC AD =.(1)请你添加一个与角有关的条件,使得ABC DEA ≌,并说明理由;(2)在(1)的条件下,若65CAD ∠=︒,110B ∠=︒,求BAE ∠的度数.23.如图,点A 、D 、B 、E 在一条直线上,BC 与DF 交于点G ,AD BE =,//BC EF ,BC EF =.求证:ABC DEF △≌△.24.如图所示,A ,C ,E 三点在同一直线上,且ABC DAE △△≌.(1)求证:BC DE CE =+;(2)当ABC 满足什么条件时,//BC DE ?25.已知:AB BD ⊥,ED BD ⊥,AC CE =,BC DE =.(1)试猜想线段AC 与CE 的位置关系,并证明你的结论.(2)若将CD 沿CB 方向平移至图2情形,其余条件不变,结论12AC C E ⊥还成立吗?请说明理由.(3)若将CD 沿CB 方向平移至图3情形,其余条件不变,结论12AC C E ⊥还成立吗?请说明理由.26.如图,在△ABC 中,AD 是∠BAC 的角平分线,DE ⊥AB ,DF ⊥AC ,D 是BC 的中点,证明:∠B =∠C .【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】当EP ⊥BC 时,EP 最短,根据角平分线的性质,可知EP=EA=ED=12AD ,由AD =14,求出即可.【详解】解:当EP ⊥BC 时,EP 最短,∵AB ∥CD ,AD ⊥AB ,∴AD ⊥CD ,∵BE 平分∠ABC ,AE ⊥AB ,EP ⊥BC ,∴EP=EA ,同理,EP=ED ,此时,EP=12AD=12×14=7, 故选A .【点睛】本题考查了角平分线的性质和垂线段最短,熟练找到P 点位置并应用角平分线性质求EP 是解题关键. 2.B解析:B【分析】由SAS 证明△BDE ≌△CFD ,得出∠BDE=∠CFD ,∠EDF 可由180°与∠BDE 、∠CDF 的差表示,进而求解即可.【详解】解:在△BDE 与△CFD 中,BD CF B C BE CD ⎧⎪∠∠⎨⎪⎩===,∴△BDE ≌△CFD (SAS );∴∠BDE=∠CFD ,∴∠EDF=180°-(∠BDE+∠CDF )=180°-(∠CFD+∠CDF )=180°-(180°-∠C )=50°; 故选:B .【点睛】本题主要考查了全等三角形的判定及性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件. 3.B解析:B【分析】根据平方根、立方根、无理数的估算和三角形全等判定定理进行判断即可.【详解】解:①0.09的算术平方根是0.3,不是0.03,因此①不正确;②1的立方根是1,不是±1,因此②不正确;③因为3.12=9.91,3.22=10.24,而9.91<10<10.24,所以3.1<3.2,因此③正确;④只有两边夹角对应相等的两个三角形全等,而两边及一角分别相等的两个三角形不一定全等.因此④不正确;所以正确的只有③,【点睛】本题考查平方根、立方根、无理数的估算以及三角形全等判定定理,掌握平方根、立方根的意义、掌握无理数的估算方法和三角形全等的判断方法是正确判断的前提.4.C解析:C【分析】根据∠B=∠C,BD=CE,BF=CD,可证出△BFD≌△CDE,继而得出∠BFD=∠EDC,再根据三角形内角和定理及平角等于180︒,即可得出∠B=∠EDF,进而得到答案.【详解】解:∵∠B=∠C,BD=CE,BF=CD,∴△BFD≌△CDE,∴∠BFD=∠EDC,∴∠B+∠BFD+∠BDF=∠BDF+∠EDF+∠EDC,∴∠B=∠EDF,又∵∠B=∠C=18019022AA ︒-∠=︒-∠,∴∠EDF=1902A︒-∠,故选:C.【点睛】本题考查全等三角形的判定与性质、等腰三角形的性质以及三角形内角和定理,根据全等三角形的性质找出∠BFD=∠EDC是解题的关键.5.B解析:B【分析】甲只有2个已知条件,缺少判定依据;乙可根据SAS判定与△ABC全等;丙可根据AAS判定与△ABC全等,可得答案.【详解】解:甲三角形只知道两条边长无法判断是否与△ABC全等;乙三角形夹50°内角的两边分别与已知三角形对应相等,故乙与△ABC全等;丙三角形72°内角及所对边与△ABC对应相等且均有50°内角,可根据AAS判定乙与△ABC 全等;则与△ABC全等的有乙和丙,故选:B.【点睛】本题主要考查全等三角形的判定定理,熟练掌握并充分理解三角形全等的判定定理,注意对应二字的理解很重要.6.B【分析】根据正方形的性质得到AB=AD ,∠BAD=90︒,由旋转的性质推出ADE ≌ABF ,求出∠FAE=∠BAD=90︒,即可得到答案.【详解】∵四边形ABCD 是正方形,∴AB=AD ,∠BAD=90︒,由旋转得ADE ≌ABF , ∴∠FAB=∠EAD ,∴∠FAB+∠∠BAE=∠EAD+∠BAE ,∴∠FAE=∠BAD=90︒,∴旋转角的度数是90︒,故选:B .【点睛】此题考查旋转的性质,全等三角形的性质,熟记全等三角形的性质是解题的关键. 7.A解析:A【分析】根据题意可证明ABE ACD ≅,即得到B C ∠=∠.再利用三角形外角的性质,可求出DME ∠,继而求出BMD ∠.【详解】根据题意ABE ACD ≅(SAS ),∴30B C ∠=∠=︒∵DME B BDC ∠=∠+∠,BDC C A ∠=∠+∠∴307030130DME B A C ∠=∠+∠+∠=︒+︒+︒=︒∴180********BMD DME ∠=︒-∠=︒-︒=︒故选A .【点睛】本题考查三角形全等的判定和性质,三角形外角的性质.利用三角形外角的性质求出DME B A C ∠=∠+∠+∠是解答本题的关键.8.B解析:B【分析】根据平行线的性质得到∠B=∠EFC=β,由角平分线的定义得到∠ACB=2∠BCD ,根据∠ADC 是△BDC 的外角,得到∠ADC=∠B+∠BCD ,由三角形外角的性质得到∠MAC=∠B+∠ACB ,于是得到结果.【详解】解:∵EF ∥AB ,∠EFC=β,∴∠B=∠EFC=β,∵CD平分∠BCA,∴∠ACB=2∠BCD,∵∠ADC是△BDC的外角,∴∠ADC=∠B+∠BCD,∵∠ADC=γ,∴∠BCD=γ-β,∵∠MAC是△ABC的外角,∴∠MAC=∠B+∠ACB,∵∠MAC=α,∴α=β+2(γ-β),∴β=2γ-α,故选:B.【点睛】本题考查了三角形外角的性质,角平分线的定义,平行线的性质,正确的识别图形是解题的关键.9.A解析:A【分析】根据全等三角形的性质、全等三角形的判定定理判断即可.【详解】解:A、全等三角形的面积相等,本选项说法是真命题;B、面积相等的两个三角形不一定全等,本选项说法是假命题;C、两个角对应相等的两个三角形相似,但不一定全等,本选项说法是假命题;D、两边和其中一边的对角对应相等的两个三角形不一定全等,本选项说法是假命题;故选:A.【点睛】本题考查全等三角形的应用,熟练掌握三角形全等的定义、性质及判定是解题关键.10.D解析:D【分析】利用构成三角形的条件,以及全等三角形的判定得解.【详解】+=,不满足三边关系,不能画出三角形,故选项错误;解:A,AB BC CAB,不满足三角形全等的判定,不能画出唯一的三角形,故选项错误;C,不满足三角形全等的判定,不能画出唯一的三角形,故选项错误;D,可以利用直角三角形全等判定定理HL证明三角形全等,故选项正确.故选:D【点睛】本题考查三角形全等的判定以及构成三角形的条件,解题的关键是熟练掌握全等三角形的判定方法.11.D解析:D【分析】根据HL 定理分别证明Rt △ABC ≌Rt △ADE 和Rt △AEO ≌Rt △ACO ,根据全等三角形的性质可判断各选项.【详解】解:解:∵90,,ACB AED AB AD AC AE ∠=∠===,∴Rt △ABC ≌Rt △ADE (HL )∴BC DE =,∠BAC=∠DAE ,故A 选项正确;∴∠BAC-∠EAC=∠DAE-∠EAC ,即BAE DAC ∠=∠,故B 选项正确;连接AO ,∵AE=AC ,AO=AO ,∴Rt △AEO ≌Rt △ACO (HL ),∴OC OE =,故C 选项正确;无法得出EAC ABC ∠=∠,故D 选项错误;故选:D .【点睛】本题全等三角形的性质与判断.掌握证明直角三角形全等的HL 定理是解题关键. 12.C解析:C【分析】根据“SAS”可证明△CDE ≌△BDF ,则可对④进行判断;利用全等三角形的性质可对①进行判断;由于AE 和DE 不能确定相等,则根据三角形面积公式可对②进行判断;根据全等三角形的性质得到∠ECD=∠FBD ,则利用平行线的判定方法可对③进行判断;【详解】∵ AD 是△ABC 的中线,∴ CD=BD ,∵ DE=DF ,∠CDE=∠BDF ,∴ △CDE ≌△BDF(SAS),所以④正确;∴ CE=BF ,所以①正确;∵ AE 与DE 不能确定相等,∴△ACE和△CDE面积不一定相等,所以②错误;∵△CDE≌△BDF,∴∠ECD=∠FBD,∴BF∥CE,所以③正确;故选:C.【点睛】本题考查了全等三角形的判定与性质,三角形的面积,熟练掌握三角形全等的判定方法并准确识图是解题的关键.二、填空题13.∠B=∠C(或∠ADC=∠AEB或AB=AC)【分析】根据已知条件知两个三角形已经具有∠A=∠AAD=AE两个条件对应相等故再添加一组对应角相等或是AB=AC即可得到ABE≌ACD【详解】∵∠A=∠解析:∠B=∠C(或∠ADC=∠AEB或AB=AC)【分析】根据已知条件知两个三角形已经具有∠A=∠A,AD=AE两个条件对应相等,故再添加一组对应角相等或是AB=AC即可得到ABE≌ACD.【详解】∵∠A=∠A,AD=AE,∴当∠B=∠C时,可利用AAS证明ABE≌ACD;当∠ADC=∠AEB时,可利用ASA证明ABE≌ACD;当AB=AC时,可利用SAS证明ABE≌ACD;故答案为:∠B=∠C(或∠ADC=∠AEB或AB=AC).【点睛】此题考查添加一个条件证明三角形全等,熟记三角形全等的判定定理是解题的关键.14.15cm2【分析】过点D作DE⊥AB于E根据角平分线的性质可得DE=CD根据三角形的面积公式即可求得△ABD的面积【详解】解:过点D作DE⊥AB于E∵AD是∠BAC的角平分线∠C=90°DE⊥AB∴解析:15cm2【分析】过点D作DE⊥AB于E,根据角平分线的性质可得DE=CD,根据三角形的面积公式即可求得△ABD的面积.【详解】解:过点D作DE⊥AB于E,∵AD是∠BAC的角平分线,∠C=90°,DE⊥AB∴DE=DC,∵BC=8cm,BD=5cm,∴DE=DC=3cm,∴S △ABD =12·AB·DE=12×10×3=15(cm 2), 故答案为:15cm 2.【点睛】本题考查角平分线的性质、三角形的面积公式,熟练掌握角平分线的性质是解答的关键. 15.20【分析】根据△得到由此推出得到答案【详解】解:△∴;∵∴故答案为:20【点睛】此题考查全等三角形的性质:全等三角形的对应角相等熟记性质定理是解题的关键解析:20【分析】根据ABC ≅△AB C ''得到CAB C AB ∠=∠'',由此推出CAC C AB BAB C AB ''∠'+∠=∠'+∠得到答案.【详解】解:ABC ∆≅△AB C '',∴CAB C AB ∠=∠'';∵CAC C AB CAB '∠'+∠=∠,BAB C AB C AB '∠'+∠=∠'',∴CAC C AB BAB C AB ''∠'+∠=∠'+∠,20CAC BAB ∴∠'=∠'=︒.故答案为:20.【点睛】此题考查全等三角形的性质:全等三角形的对应角相等,熟记性质定理是解题的关键. 16.55°【分析】先证明△ABD ≌△ACE (SAS );再利用全等三角形的性质:对应角相等求得∠2=∠ABE ;最后根据三角形内角与外角的性质即可求出答案【详解】∵∴∠1+∠CAD=∠CAE+∠CAD ∴∠1解析:55°【分析】先证明△ABD ≌△ACE (SAS );再利用全等三角形的性质:对应角相等,求得∠2=∠ABE ;最后根据三角形内角与外角的性质即可求出答案.【详解】∵BAC DAE ∠=∠,∴∠1+∠CAD=∠CAE+∠CAD ,∴∠1=∠CAE ;在△ABD 与△ACE 中,1AD AE CAE AB AC =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ACE (SAS );∴∠2=∠ABE ;∵∠3=∠ABE+∠1=∠1+∠2,∠1=25°,∠2=30°,∴∠3=55°.故答案为:55°.【点睛】本题考查了全等三角形的判定及性质,三角形的外角性质;将所求的角与已知角通过全等及内角、外角之间的关系联系起来是解答此题的关键.17.15【分析】根据角平分线的性质可得DE=DC 然后求出DC 即得答案【详解】解:∵AC=40cmAD :DC=5:3∴DC=15cm ∵BD 平分∠ABCDE ⊥AB ∠C=90°∴DE=DC=15cm 即D 到AB解析:15【分析】根据角平分线的性质可得DE=DC ,然后求出DC 即得答案.【详解】解:∵AC=40cm ,AD :DC=5:3,∴DC=15cm ,∵BD 平分∠ABC ,DE ⊥AB ,∠C=90°,∴DE=DC=15cm ,即D 到AB 的距离为15cm .故答案为:15.【点睛】本题考查了角平分线的性质,属于基础题目,熟练掌握角平分线的性质定理是解题关键. 18.6【分析】过点P 作PH ⊥AMPQ ⊥AN 连接AP 根据角平分线上的点到角两边的距离相等可得PH=PE=PQ 再根据三角形的面积求出BC 然后求出AC+AB 再根据S △ABC=S △ACP+S △ABP-S △BPC解析:6【分析】过点P 作PH ⊥AM ,PQ ⊥AN,连接AP ,根据角平分线上的点到角两边的距离相等可得PH=PE=PQ ,再根据三角形的面积求出BC ,然后求出AC+AB ,再根据S △ABC= S △ACP+ S △ABP -S △BPC 即可得解.【详解】解:如图,过点P 作PH ⊥AM ,PQ ⊥AN ,连接AP∵BP和CP为∠MBC和∠NCB角平分线∴PH=PE,PE=PQ∴PH=PE=PQ=3∵S△BPC=12×BC×PE=7.5∴BC=5∵S△ABC= S△ACP+ S△ABP-S△BPC=12×AC×PQ+12×AB×PH-7.5=12×3(AC+AB)-7.5∵AC+AB+BC=14,BC=5∴AC+AB=9∴S△ABC=12×3×9-7.5=6 cm2【点睛】本题考查了角平分线上点到角的两边距离相等的性质,三角形的面积,熟记性质是解题的关键,难点在于S△ABC的面积的表示.19.4cm【分析】根据求得AM的长度利用角平分线上的点到角两边的距离相等即可求解【详解】解:解得∵OM平分∠POQ∴故答案为:4cm【点睛】本题考查角平分线的性质掌握角平分线上的点到角两边的距离相等是解解析:4cm【分析】根据12AOMS OA AM=⋅求得AM的长度,利用角平分线上的点到角两边的距离相等即可求解.【详解】解:114822AOMS OA AM AM=⋅=⨯=,解得4cmAM=,∵OM平分∠POQ,∴4cm MB AM ==,故答案为:4cm .【点睛】本题考查角平分线的性质,掌握角平分线上的点到角两边的距离相等是解题的关键. 20.4cm 【分析】由DE ⊥AB 可得∠BFE=90°由直角三角形两锐角互余可得∠ABC+∠DEB=90°由∠ACB=90°由直角三角形两锐角互余可得∠ABC+∠A=90°根据同角的余角相等可得∠A=∠DE解析:4cm .【分析】由DE ⊥AB ,可得∠BFE=90°,由直角三角形两锐角互余,可得∠ABC+∠DEB=90°,由∠ACB=90°,由直角三角形两锐角互余,可得∠ABC+∠A=90°,根据同角的余角相等,可得∠A=∠DEB ,然后根据AAS 判断△ABC ≌△EDB ,根据全等三角形的对应边相等即可得到BD=BC ,AC=BE ,由E 是BC 的中点,得到BE=12BC=12BD=4. 【详解】解:∵DE ⊥AB ,可得∠BFE=90°,∴∠ABC+∠DEB=90°,∵∠ACB=90°,∴∠ABC+∠A=90°,∴∠A=∠DEB ,在△ABC 和△EDB 中, ACB DBC A DEBAB DE ∠∠⎧⎪∠∠⎨⎪⎩===, ∴△ABC ≌△EDB (AAS ),∴BD=BC ,AC=BE ,∵E 是BC 的中点,BD=8cm ,∴BE=12BC=12BD=4cm , ∴AC=4cm .故答案为:4cm .【点睛】此题考查了全等三角形的判定与性质,普通两个三角形全等共有四个定理,即AAS 、ASA 、SAS 、SSS ,直角三角形可用HL 定理,但AAA 、SSA ,无法证明三角形全等,本题是一道较为简单的题目,找准全等的三角形是解决本题的关键.三、解答题21.(1)AP 是∠BAC 的平分线,理由见解析;(2)AB=9【分析】(1)利用“SSS”证明△ADF ≌△AEF 即可证明AP 是∠BAC 的平分线;(2)利用角平分线的性质得到PG=PQ=4,再根据三角形的面积公式即可求解.【详解】解:(1)AP 是∠BAC 的平分线,理由如下:在△ADF 和△AEF 中,AD AE AF AF DF EF =⎧⎪=⎨⎪=⎩,∴△ADF ≌△AEF (SSS ),∴∠DAF=∠EAF ,即AP 平分∠BAC ;(2)过点P 作PG ⊥AC 于点G ,∵AP 平分∠BAC ,PQ ⊥AB ,PG ⊥AC ,∴PG=PQ=4, ∵11 22ABC ABP APC SS S AB PQ AC PG =+=⋅+⋅ ∴114743222AB ⨯+⨯⨯=, ∴AB=9.【点睛】本题考查了全等三角形的判定及性质,角平分线的判定和性质.熟练掌握确定三角形的判定方法,正确的识别图形是解题的关键.22.(1)添加一个角有关的条件为BAC EDA ∠=∠,使得ABC DEA ≌,理由见解析;(2)BAE ∠的度数为135︒.【分析】(1)根据已知条件,选择SAS 原理,可确定添加的角;(2)利用三角形全等,∠B 的度数,可求∠BAC+∠DAE ,问题可解.【详解】(1)添加一个角方面的条件为BAC EDA ∠=∠,使得ABC DEA ≌.在ABC 和DEA △中∵AB DE =,BAC EDA ∠=∠,AC DA =,∴()SAS ABC DEA ≌△△; (2)在(1)的条件下∵ABC DEA ≌,∴ACB DAE ∠=∠,若65CAD ∠=︒,110B ∠=︒,则18070ACB BAC B ∠+∠=︒-∠=︒,∴70DAE BAC ACB BAC ∠+∠=∠+∠=︒,∴7065135BAE DAE BAC CAD ∠=∠+∠+∠=︒+︒=︒,即BAE ∠的度数为135︒.【点睛】本题考查了三角形全等,熟练掌握全等三角形判定原理和性质是解题的关键.23.见解析【分析】由AD BE =,得AB=DE ,由//BC EF ,得ABC E ∠=∠,根据SAS 可证.【详解】证明:∵AD BE =,∴AD BD BE BD +=+,∴AB DE =,∵//BC EF ,∴ABC E ∠=∠,在ABC 和DEF 中, AB DE ABC E BC EF =⎧⎪∠=∠⎨⎪=⎩,∴()ABC DEF SAS ≌.【点睛】本题考查了用“边角边”定理判断两个三角形全等,解题关键是挖掘题目隐含的全等条件,根据判定定理证明.24.(1)证明见解析;(2)ACB ∠为直角时,//BC DE【分析】(1)根据全等三角形的性质求出BD=AE ,AD=CE ,代入求出即可;2)根据全等三角形的性质求出∠E=∠BDA= 90︒,推出∠BDE=90︒ ,根据平行线的判定求出即可.【详解】(1)证明:∵ABC DAE △△≌,∴AE=BC ,AC=DE ,又∵AE AC CE =+,∴BC DE CE =+.(2)若//BC DE ,则BCE E ∠=∠,又∵ABC DAE △△≌,∴ACB E ∠=∠,∴ACB BCE ∠=∠,又∵180ACB BCE ∠+∠=︒,∴90ACB ∠=︒,即当ABC 满足ACB ∠为直角时,//BC DE .【点睛】本题考查全等三角形的性质和平行线的判定的应用,关键是通过三角形全等得出正确的结论.25.(1)AC CE ⊥,见解析;(2)成立,理由见解析;(3)成立,理由见解析【分析】(1)先用HL 判断出Rt Rt ABC CDE ≌△△,得出A DCE ∠=∠,进而判断出90DCE ACB ∠+∠=︒,即可得出结论;(2)同(1)的方法,即可得出结论;(3)同(1)的方法,即可得出结论.【详解】解:(1)AC CE ⊥理由如下:∵AB BD ⊥,ED BD ⊥,∴90B D ∠=∠=︒在Rt ABC △和Rt CDE △中AC CE BC DE =⎧⎨=⎩∴()Rt Rt HL ABC CDE △△≌, ∴A DCE ∠=∠∵90B ∠=︒,∴90A ACB ∠+∠=︒,∴()18090ACE DCE ACB ∠=︒-∠+∠=︒,∴AC CE ⊥;(2)成立,理由如下:∵AB BD ⊥,ED BD ⊥,∴90B D ∠=∠=︒,在1Rt ABC 和2Rt C DE △中121AC C E BC DE =⎧⎨=⎩, ∴()12Rt Rt HL ABC C DE ≌△△,∴2A C E D ∠=∠,∵90B ∠=︒,∴190B A AC ∠+∠=︒,∴2190DC E AC B ∠+∠=︒,在12C FC 中,()122118090C FC DC E AC B ∠=︒-∠+∠=︒,∴12AC C E ⊥;(3)成立,理由如下:∵AB BD ⊥,ED BD ⊥,∴190ABC D ∠=∠=︒在1Rt ABC 和2Rt C DE △中121AC C E BC DE =⎧⎨=⎩, ∴()12Rt Rt HL ABC C DE ≌△△,∴2A C E D ∠=∠,∵190ABC ∠=︒,∴190B A AC ∠+∠=︒,在12C FC 中,()2112180=90C FC DC E AC B ∠=︒-∠+∠︒,∴12AC C E ⊥.【点睛】此题是几何变换综合题,主要考查了全等三角形的判定和性质,直角三角形的性质,判断出12Rt Rt ABC C DE ≌△△是解本题的关键.26.见解析【分析】通过角平分线上点的性质、D 为BC 中点、DE ⊥AB 、DF ⊥AC 证明出BDE CDF ≌,从而证明∠B =∠C .【详解】∵AD 是AD 是∠BAC 的角平分线,DE ⊥AB ,DF ⊥AC ,∴DE =DF ,∵D 是BC 的中点,∴BD =CD∵△BDE 与△CDF 是直角三角形∴BDE CDF ≌∴∠B =∠C .【点睛】 本题考查了全等三角形的判定和性质以及角平分线上点的性质,正确证明全等三角形并得出各角之间的关系是本题的关键.。

人教版八年级数学上册试题 第12章 全等三角形 单元测试卷 (含解析)

人教版八年级数学上册试题 第12章 全等三角形 单元测试卷 (含解析)

第12章《全等三角形》单元测试卷一、单选题(本大题共10小题,每小题3分,共30分)1.老师布置了一份家庭作业:用三根小木棍首尾相连拼出一个三角形,三根小木棍的长度分别为5、9、10.5,并且只能对10.5的小木棍进行裁切(裁切后,参与拼图的小木棍的长度为整数),则同学们最多能拼出不同的三角形的个数为( )A .4B .5C .6D .72.如图,点B ,F ,C ,E 在同一条直线上,点A ,D 在直线BE 的两侧,AB ∥DE ,BF =CE ,添加一个适当的条件后,仍不能使得△ABC ≌△DEF ( )A .AC =DFB .AC ∥DF C .∠A =∠D D .AB =DE3.如图,的两条中线AD 、BE 交于点F ,若四边形CDFE 的面积为17,则的面积是( )A .54B .51C .42D .414.已知中,是边上的高,平分.若,,,则的度数等于( )A.B .C .D .5.如图,在四边形中,平分,,,,则面积的最大值为( )cm cm cm cm ABC ABC ABC CD AB CE ACB ∠A m ∠=︒B n ∠=︒m n ≠DCE ∠12m ︒12n ︒()12m n ︒-︒12m n ︒-︒ABDC AD BAC ∠AD DC ⊥2AC AB -=8BC =BDCA .B .C .D .6.如图,,,则下列结论错误的是( )A .≌B .≌C .D .7.如图,在正方形中,对角线相交于点O .E 、F 分别为上一点,且,连接.若,则的度数为( )A .B .C .D .8.如图,在△ABC 中,AB=BC ,,点D 是BC 的中点,BF ⊥AD ,垂足为E ,BF 交AC 于点F ,连接DF.下列结论正确的是()A .∠1=∠3B .∠2=∠3C .∠3=∠4D .∠4=∠59.如图,在四边形ABCD 中,AB =AD ,∠B +∠ADC =180°,E 、F 分别是边BC 、CD 延长线上的点,∠EAF=∠BAD ,若DF =1,BE =5,则线段EF 的长为( )6834BE CD =B D ∠=∠∆BEF DCF∆ABC ∆ADE ∆AB AD =DF AC=ABCD AC BD 、AC BD 、OE OF =AF BE EF ,,25AFE ∠=︒CBE ∠55︒65︒45︒70︒90ABC ∠=︒12A .3B .4C .5D .610.如图,∠DAC 与∠ACE 的平分线相交于点P ,且PC =AB +AC ,若,则∠B 的度数是( )A .100°B .105°C .110°D .120°二、填空题(本大题共8小题,每小题4分,共32分)11.已知三角形的两边的长分别为2cm 和8cm ,设第三边中线的长为cm ,则的取值范围是12.如图,在中,的平分线与的外角平分线交于点.(1)当与满足 的关系时,;(2)当时, .13.我们把两个不全等但面积相等的三角形叫做一对偏等积三角形.已知与是一对面积都等于的偏等积三角形,且,,那么的长等于 (结果用含和的代数式表示).14.如图,在中,,以为斜边作,,E 为上一点,连接、,且满足,若,,则 的长为.60PAD ∠=︒x x ABC ABC ∠ACB ∠P A ∠ABC ∠PC AB ∥72A ∠=︒P ∠=ABC DEF S AB AC DE DF ===BC a =EF a S ABC AB AC =AB Rt ADB 90ADB ∠=︒BD AE CE 2BAC DAE ∠=∠17CE =10BE =DE15.如图,和都为等腰直角三角形,,五边形面积为,求 .16.如图,已知等边△ABC ,AB=6,点D 在AB 上,点F 在AC 的延长线上,BD=CF ,DF 交BC 于点P ,作DE ⊥BC 与点E ,则EP 的长是 .17.如图,等腰中,,,为内一点,且,,则 .18.如图,在,中,,,,C ,D ,E 三点在同一直线上,连接,以下四个结论ABC AED △90ABC AED ∠=∠=︒ABCDE S 2BE S =ABC AB AC =70BAC ∠=︒O ABC 5OCB ∠=︒25ABO ∠=︒OAC ∠=ABC ADE V 90BAC DAE ∠=∠=︒AB AC =AD AE =BD BE ,①;②; ③; ④.其中结论正确的是 .(把正确结论的序号填在横线上).三、解答题(本大题共6小题,共58分)19.(8分)已知:,求作一个,使,且.20.(8分)如图,在Rt ∆ABC 中,∠BAC =90°,∠ABC =60°,AD ,CE 分别平分∠BAC ,∠ACB .(1) 求∠AOE 得度数; (2) 求证:AC=AE +CD .BD CE =90ACE DBC ∠+∠=︒BD CE ⊥180BAE DAC ∠+∠=︒ABC BCD △BCD ABC S S =V V AD AB =21.(10分)在四边形中,,,是上一点,是延长线上一点,且.(1)试说明:;(2)在图中,若,,在上且,试猜想、、之间的数量关系并证明所归纳结论;(3)若,,G 在上,满足什么条件时,(2)中结论仍然成立?(只写结果不要证明).22.(10分)已知线段直线于点,点在直线上,分别以,为边作等边和△ADE ,直线交直线于点.(1)当点F 在线段上时,如图1,试说明:(ⅰ).ABDC DC DB =180C ABD ∠+∠=︒E AC F AB CE BF =DE DF =60CAB ∠=︒120CDB ∠=︒G AB 60EDG ∠=︒CE EG BG CAB α∠=180CDB α∠=︒-AB EDG ∠AB ⊥l B D l AB AD ABC CE l F BD BD CE =(ⅱ).(2)当点F 在线段延长线上时,如图2,请写出线段,,之间的关系,并说明理由.23.(10分)在中,,分别过点A 、B 两点作过点C 的直线m 的垂线,垂足分别为点D 、E .(1)如图1,当,点A 、B 在直线m 的同侧时,求证:;(2)如图2,当,点A 、B 在直线m 的异侧时,请问(1)中有关于线段、和三条线段的数量关系的结论还成立吗?若成立,请你给出证明;若不成立,请给出正确结论,并说明理由;(3)如图3,当,,点A 、B 在直线m 的同侧时,一动点M 以每秒的速度从A 点出发沿A →C →B 路径向终点B 运动,同时另一动点N 以每秒的速度从B点出发DF CE CF =-BD DF CE CF ABC 90ACB ∠=︒AC CB =DE AD BE =+AC CB =DE AD BE 16cm AC =30cm CB =2cm 3cm沿B →C →A 路径向终点A 运动,两点都要到达相应的终点时才能停止运动.在运动过程中,分别过点M 和点N 作于P ,于Q .设运动时间为t 秒,当t 为何值时,与全等?24.(12分)在等边的顶点,处各有一只蜗牛,它们同时出发,分别以相同的速度由向和由向爬行,经过分钟后,它们分别爬行到,处,请问:MP m ⊥NQ m ⊥MPC NQC ABC A C A B C A t D E(1)如图1,爬行过程中,和的数量关系是________;(2)如图2,当蜗牛们分别爬行到线段,的延长线上的,处时,若的延长线与交于点,其他条件不变,蜗牛爬行过程中的大小将会保持不变,请你证明:;(3)如图3,如果将原题中“由向爬行”改为“沿着线段的延长线爬行,连接交于”,其他条件不变,求证:.CD BE AB CA D E EB CD Q CQE ∠60CQE ∠=︒C A BC DE AC F DF EF =答案:一、单选题1.C【分析】根据三角形的三边关系列出不等式组求解即可.【详解】解:设从10.5的小木棍上裁剪的线段长度为x ,则,即,∴整数x 的值为5、6 、7 、8、9、10,∴同学们最多能做出6个不同的三角形木架.故选:C .2.A【分析】根据AB ∥DE 证得∠B =∠E ,又已知BF =CE 证得BC =EF ,即已具备两个条件:一边一角,再依次添加选项中的条件即可判断.【详解】∵AB ∥DE ,∴∠B =∠E ,∵BF =CE ,∴BF +FC =CE +FC ,∴BC =EF ,若添加AC =DF ,则不能判定△ABC ≌△DEF ,故选项A 符合题意;若添加AC ∥DF ,则∠ACB =∠DFE ,可以判断△ABC ≌△DEF (ASA ),故选项B 不符合题意;若添加∠A =∠D ,可以判断△ABC ≌△DEF (AAS ),故选项C 不符合题意;若添加AB =DE ,可以判断△ABC ≌△DEF (SAS ),故选项D 不符合题意;故选:A .3.B【分析】连接CF ,依据中线的性质,推理可得 ,进而得出 ,据此可得结论.cm cm 9595x -<<+414x <<cm cm cm cm cm cm BCF BAF ACF S S S == 3ABC BAF S S =【详解】解:如图所示,连接CF ,∵△ABC 的两条中线AD 、BE 交于点F ,∴,∴,∵BE 是△ABC 的中线,FE 是△ACF 的中线,∴,,∴,同理可得,,∴,∴,故选:B .4.D【分析】题目由于在三角形中未确定大小,所以需要进行分类讨论:(1),作出符合题意的相应图形,由图可得:,根据角平分线的性质得:,在中,,故可得;(2)时,由图可得:,,在中,,故可得;综上可得:.【详解】解:(1)如图1所示:时,图1BCE ABD S S = 17ABF CDFE S S == 四边形BCE ABE S S = FCE FAE S S = 17BCF BAF S S == 17ACF BAF S S == 17BCF BAF ACF S S S === 331751ABC BAF S S ==⨯= A B ∠∠、A B ∠<∠DCE BCE BCD ∠=∠-∠()18022m n ACB BCE ︒-︒+︒∠∠==Rt BCD ∆9090BCD B n ∠=︒-∠=︒-︒()12DCE n m ∠=︒-︒A B ∠>∠DCE ACE ACD ∠=∠-∠()18022m n ACB ACE ︒-︒+︒∠∠==Rt ACD ∆9090ACD A m ∠=︒-∠=︒-︒()12DCE m n ∠=︒-︒12DCE m n ∠=︒-︒A B ∠<∠∵CD 是AB 边上的高,∴,,∵,,∴,∵CE 平分,∴,在中,,∴;(2)如图2所示:时,图2∵CD 是AB 边上的高,∴,,∵,,∴,∵CE 平分,∴,在中,,CD AB ⊥90CDB ∠=︒A m ∠=︒B n ∠=︒()180ACB m n ∠=︒-︒+︒ACB ∠()18022m n ACB ACE BCE ︒-︒+︒∠∠=∠==Rt BCD ∆9090BCD B n ∠=︒-∠=︒-︒()()()18019022m n DCE BCE BCD n n m ︒-︒+︒∠=∠-∠=-︒-︒=︒-︒A B ∠>∠CD AB ⊥90CDB ∠=︒A m ∠=︒B n ∠=︒()180ACB m n ∠=︒-︒+︒ACB ∠()18022m n ACB ACE BCE ︒-︒+︒∠∠=∠==Rt ACD ∆9090ACD A m ∠=︒-∠=︒-︒∴;综合(1)(2)两种情况可得:.故选:D .5.D【分析】本题考查了全等三角形的判定和性质,垂线段最短,分别延长与交于点,作交延长线于点,可证明,得到,求面积最大值转化成求线段的最大值即可,解题的关键是作出辅助线,构造出全等三角形.【详解】分别延长与 交于点, 作交 延长线于点 ,∵平分, ,∴,,又∵,∴,∴,,∵,∴,∴,∵,∴当点重合时,最大,最大值为,∴,故选:.6.D【分析】利用全等三角形的判定和性质逐一选项判断即可.【详解】解:在和中,()()()18019022m n DCE ACE ACD m m n ︒-︒+︒∠=∠-∠=-︒-︒=︒-︒12DCE m n ∠=︒-︒CD AB G GH CB ⊥CB H ()ASA ADG ADC ≌2BG =GH CD AB G GH CB ⊥CB H AD BAC ∠AD DC ⊥GAD CAD ∠=∠90ADG ADC ∠==︒AD AD =()ASA ADG ADC ≌AC AG =CD GD =2AC AB -=2BG =111·2222BDC BCG S S BC GH GH ==⨯= GH BC ⊥B H 、GH 224BDC S GH == D ∆BEF DCF ∆,∴≌(),故选项A 正确,不合题意;连接,∵≌(),∴,∴,∵,∴,∴,故选项C 正确,不合题意;∵,证不出,∴选项D 错误,符合题意;在和中,∴≌(),故选项B 正确,不合题意;故选:D7.B【分析】利用正方形的对角线互相垂直平分且相等,等腰直角三角形的性质,三角形的内角和定理和全等三角形的判定与性质解答即可.【详解】解:∵四边形是正方形,∴.∵,B D BFE DFC BE CD ∠=∠⎧⎪∠=∠⎨⎪=⎩∆BEF DCF ∆AAS BD ∆BEF DCF ∆AAS BF DF =FBD FDB ∠=∠ABC ADE ∠=∠ABD ADB ∠=∠AB AD =BF DF =DF AC =ABC ∆ADE ∆ABC ADE AB ADA A ∠=∠⎧⎪=⎨⎪∠=∠⎩ABC ∆ADE ∆ASA ABCD 90AOB AOD OA OB OD OC ∠=∠=︒===,OE OF =∴为等腰直角三角形,∴,∵,∴,∴.在和中,∴(SAS ).∴,∵,∴是等腰直角三角形,∴,∴.故选:B .8.A【分析】如图,过点C 作BC 的垂线,交BF 的延长线于点G ,则,先根据直角三角形两锐角互余可得,再根据三角形全等的判定定理与性质推出,又根据三角形全等的判定定理与性质推出,由此即可得出答案.【详解】如图,过点C 作BC 的垂线,交BF 的延长线于点G ,则,即在和中,OEF 45OEF OFE ∠=∠=︒25AFE ∠=︒70AFO AFE OFE ∠=∠+∠=︒20FAO ∠=︒AOF BOE △90OA OB AOF BOE OF OE =⎧⎪∠=∠=︒⎨⎪=⎩AOF BOE ≌△△20FAO EBO ∠=∠=︒OB OC =OBC △45OBC OCB ∠=∠=︒65CBE EBO OBC ∠=∠+∠=︒CG BC ⊥BAD CBG ∠=∠1G ∠=∠3G ∠=∠CG BC ⊥90BCG ∠=︒,90AB BC ABC =∠=︒45BAC ACB ∠∴∠==︒904545GCF BCG ACB ∴∠=∠-∠=︒-︒=︒BF AD⊥ 1190BAD CBG ∴∠+∠=∠+∠=︒BAD CBG∴∠=∠BAD ∆CBG ∆90BAD CBG AB BCABD BCG ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩点D 是BC 的中点在和中,故选:A .9.B【分析】在BE 上截取BG =DF ,先证△ADF ≌△ABG ,再证△AEG ≌△AEF 即可解答.【详解】在BE 上截取BG =DF ,∵∠B +∠ADC =180°,∠ADC +∠ADF =180°,∴∠B =∠ADF ,在△ADF 与△ABG 中,()BAD CBG ASA ∴∆≅∆,1BD CG G∴=∠=∠ CD BD CG∴==CDF ∆CGF ∆45CD CG DCF GCF CF CF =⎧⎪∠=∠=︒⎨⎪=⎩()CDF CGF SAS ∴∆≅∆3G∴∠=∠13∠∠∴=AB AD B ADF BG DF =⎧⎪∠=∠⎨⎪=⎩∴△ADF ≌△ABG (SAS ),∴AG =AF ,∠FAD =∠GAB ,∵∠EAF =∠BAD ,∴∠FAE =∠GAE ,在△AEG 与△AEF 中,∴△AEG ≌△AEF (SAS )∴EF =EG =BE ﹣BG =BE ﹣DF =4.故选:B .10.A【分析】在射线AD 上截取,连接PM ,证明,可得,,然后证明,利用相似三角形的性质进行求解可得到结论.【详解】解:如下图,在射线A D 上截取,连接PM ,∵PA 平分,∴ ,在和中,,∴,∴,.∵,∴,∴.∵PC 平分,∴.12AG AF FAE GAE AE AE =⎧⎪∠=∠⎨⎪=⎩AM AC =PAM PAC ≌PM PC =PMA PCA ∠=∠BC PM AM AC =DAC ∠60PAM PAC ∠=∠=︒PAM △PAC △PA PA PAM PAC AM AC =⎧⎪∠=∠⎨⎪=⎩PAM PAC SAS ≌()PM PC =PMA PCA ∠=∠PC AB AC =+PC AB MA MB =+=PC PM BM ==ACE ∠PCA PCE ∠=∠如下图,延长MB ,PC 交于点G ,∵,∴.∵,∴,∴,∴,∴,∴,∴,∴,∴.∵,,,∴,∴,∴,∴,∴,∴,∴,∴.GCB PCE ∠=∠PMA GCB ∠=∠BGC PGM ∠=∠BGC PGM ∽GB GC GP GM=··GB GM GC GP =GB GB BM GC GC CP ⋅+=⋅+()()22GB GB BM GC GC CP +⋅=+⋅220GB GC GB BM GC CP -+⋅-⋅=()()()0GB GC GB GC PC GB GC +-+-=()()0GB GC GB GC PC -++=)0GB >0GC >0PC >0GB GC PC ++>0GB GC -=GB GC =∠=∠GBC GCB GBC BMP ∠=∠BC PM 180BMP B ∠+∠=︒180180ABC BMP PCA ∠=︒-∠=︒-∠∵,∴.∵,∴180°-∠PCA=2∠PCA-60°,∴,∴.故选:A .二、填空题11.3<x <5【分析】延长AD 至M 使DM=AD ,连接CM ,先说明△ABD ≌△CDM ,得到CM=AB=8,再求出2AD 的范围,最后求出AD 的范围.【详解】解:如图:AB=8,AC=2,延长AD 至M 使DM=AD ,连接CM在△ABD 和△CDM 中,∴△ABD ≌△MCD (SAS ),∴CM=AB=8.在△ACM 中:8-2<2x <8+2,解得:3<x <5.故答案为3<x <5.12.60PAM PAC ∠=∠=︒60BAC ∠=︒260ABC ACE BAC PCA ∠=∠-∠=∠-︒80PCA ∠=︒180********ABC PAC ∠=︒-∠=︒-︒=∠︒AD MD ADB MDCBD CD =⎧⎪∠=∠⎨⎪=⎩A ABC ∠=∠36︒【分析】(1)根据角平分线的性质平分,可得,再由两直线平行线同位角相等,内错角相等可得即可解答;(2)利用角平分线的性质和三角形的外角定理即可求解【详解】(1)解:平分,,,当时,,故答案为:;(2)解:平分,平分,,又,当时,,故答案为:13.【分析】本题考查全等三角形的判定和性质、等腰三角形的性质、三角形的面积等知识,由面积相等可得相应等式,作出三角形的高,作出辅助线构造三角形全等,证明三角形全等是是解题的关键.【详解】解:如图:,过作于,过作 交延长线于,延长到使,PC ACM ∠ACP PCM ∠=∠ABC PCM A ACP ∠=∠∠=∠,PC ACM ∠ACP PCM ∴∠=∠ PC AB ∥ABC PCM A ACP∴∠=∠∠=∠,ABC A∠=∠∴∴ABC A ∠=∠PC AB ∥ABC A ∠=∠ BP ABC ∠PC ACM ∠12ABP PBC ABC ∴∠=∠=∠,12ACP PCM ACM ∠=∠=∠ACM ABC A ∠=∠+∠ ,22PCM PBC A∴∠=∠+∠ PCM PBC P ∠=∠+∠222PBC P PBC A∴∠+∠=∠+∠2P A ∴∠=∠72A ∠=︒36P ∴∠=︒36︒4saAB AC DE DF ===C C M A B ⊥M F FN ED ⊥ED N BA K AK AB=12ABC S AB CM S == 12DEF S DE FN S ==,,,.故答案为:.14.【分析】延长至O 点,使得,连接,先证明,再证明CM FN∴=AC DF= Rt Rt (HL)AMC DNF ∴≌ MAC NDF∴∠=∠180CAK MAC ︒∠=-∠ 180EDF NDF︒∠=-∠CAK EDF∴∠=∠AK AC DE DF=== (SAS)ACK DFE ∴≌ EF CK ∴=2KBC S S= AK AC DE DF=== ABC ACB ∴∠=∠K ACK∠=∠1180902ACB ACK ABC K ︒︒∴∠+∠=∠+∠=⨯=90BCK ︒∴∠=122KBC S BC CK S ∴== BC a= 4S CK a ∴=4S EF a∴=4S a72ED OD DE =AO ≌ADO ADE V V,问题随之得解.【详解】延长至O 点,使得,连接,如图,∵,∴,∵,,∴△ADO ≌△ADE ,∴,,∴,∵,∴,∴,∵,,∴,∴,∵,,∴,∴,∵,∴,故答案为:.15.【分析】过点作,且,连接、,交于点,则是等腰直角三角形,证明,则,,则,根据EAC OAB ≌△△ED OD DE =AO 90ADB ∠=︒18090ADO ADB ∠=︒-∠=︒AD AD =OD DE =OAD EAD ∠=∠OA AE =2OAE EAD ∠=∠2BAC DAE ∠=∠BAC OAE ∠=∠EAC OAB ∠=∠OA AE =AB AC =EAC OAB ≌△△OB EC =17CE =10BE =17OB EC ==7OE OB EB =-=OD DE =1722DE OE ==722B BF BE ⊥BF BE =CF EF ,EF CD G BFE △ABE CBF △≌△ABE CBF S S =△△CGF DGE ≌CGF DGE S S =,即可求解.【详解】解:如图所示,过点作,且,连接、,交于点,则是等腰直角三角形,∵和都为等腰直角三角形,,∴∵,∴∴∴∴,则∴,∴,∵∴又∴∴∴五边形面积∴故答案为:2.212BEF S S BE == B BF BE ⊥BF BE =CF EF ,EF CD G BFE △ABC AED △90ABC AED ∠=∠=︒,BA BC AE AD==BF BE ⊥90FBE ∠=︒ABE EBC FBC EBC∠+∠=∠+∠ABE CBF∠=∠ABE CBF △≌△ABE CBFS S =△△AE CF =AEB CFB∠=∠DE CF =45,45AEB GED CFB CFG∠=︒-∠∠=︒-∠CFG DEG∠=∠CGF DGE∠=∠CGF DGE≌CGF DGES S = ABCDE 212BEF S S BE == 2BE S =216.3【详解】如图,过点D 作DH ∥AC 交BC 于H ,∵△ABC 是等边三角形,∴△BDH 也是等边三角形,∴BD=HD ,∵BD=CF ,∴HD=CF ,∵DH ∥AC ,∴∠PCF=∠PHD ,在△PCF 和△PHD 中,∴△PCF ≌△PHD (AAS ),∴PC=PH ,∵△BDH 是等边三角形,DE ⊥BC ,∴BE=EH ,∴EP=EH+HP= BC ,∵等边△ABC ,AB=6,∴EP=╳6=3.故答案是:3.17.【分析】此题考查了全等三角形的判定与性质、等腰三角形的性质,延长交 的角平PCF PHD CPF HPD HD CF ∠∠⎧⎪∠∠⎨⎪⎩===121265︒BO BAC ∠分线于点,连结,根据等腰三角形的性质及角平分线定义求出,,进而得出,利用证明,根据全等三角形的性质求出,,根据角的和差及三角形内角和定理求出,结合平角定义求出,利用证明,根据全等三角形的性质得出,再根据等腰三角形的性质及角的和差求解即可.【详解】如图,延长交 的角平分线于点,连接.平分,,,,,,,,在和中,,,,,,,,,,,在和中,P CP 55ABC ACB ∠=∠=︒35BAP CAP ∠=∠=︒30OBC ∠=︒SAS APB ACP ≌△△25ABP ACP ∠=∠=︒APB APC ∠=∠120BPC ∠=︒120APC BPC ∠=︒=∠ASA APC OPC ≌△△AP OP =BO BAC ∠P CP AP BAC ∠70BAC ∠=︒35BAP CAP ∴∠=∠=︒AB AC = 70BAC ∠=︒55ABC ACB ∴∠=∠=︒25ABO ∠=︒ 30OBC ABC ABO ∴∠=∠-∠=︒APB △ACP △AB AC BAP CAP AP AP =⎧⎪∠=∠⎨⎪=⎩(SAS)APB ACP ∴ ≌25ABP ACP ∴∠=∠=︒APB APC ∠=∠30BCP ACB ACP ∴∠=∠-∠=︒180120BPC PBC BCP ∴∠=︒-∠-∠=︒360120240APB APC ∴∠+∠=︒-︒=︒120APB APC BPC ∴∠=∠=︒=∠5OCB ∠=︒ 25OCP BCP OCB ACP ∴∠=∠-∠=︒=∠APC △OPC,,,,,故答案为:.18.①③④【分析】由 ,利用等式的性质得到夹角相等,从而得出三角形 与三角形全等,由全等三角形的对应边相等得到,本选项正确;由三角形与三角形全等,得到一对角相等,由等腰直角三角形的性质得到,进而得到 ,本选项不正确;再利用等腰直角三角形的性质及等量代换得到,本选项正确;利用周角减去两个直角可得答案;【详解】解: ,即:在 和 中,本选项正确;为等腰直角三角形,,本选项不正确;ACP OCP CP CPAPC OPC ∠=∠⎧⎪=⎨⎪∠=∠⎩(ASA)APC OPC ∴ ≌AP OP ∴=1(180)302OAP AOP APO ∴∠=∠=⨯︒-∠=︒65OAC OAP CAP ∴∠=∠+∠=︒65︒①AB AC =AD AE =ABD ACE BD CE =②ABD ACE 45ABD DBC ∠+∠=︒45ACE DBC ∠+∠=︒③BD CE ⊥④90BAC DAE ∠=∠=︒① BAC CAD DAE CAD∴∠+∠=∠+∠BAD CAE∠=∠BAD CAE V AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩()SAS BAD CAE ∴≌ BD CE ∴=ABC ②45ABC ACB ∴∠=∠=︒45ABD DBC ∴∠+∠=︒BAD CAE ≌ ABD ACE ∴∠=∠45ACE DBC ∴∠+∠=︒即,∴,本选项正确;,本此选项正确;故答案为:①③④.三、解答题19.解:如图过点A 作BC 的平行线AE ,再在AE 上截取,交AE 于点D ,连接BD ,CD 即可得到△BCD .20.(1)解:∵,∴,∵平分,平分,∴,,∵是的外角,∴;(2)证明:在上截取,连接,45ABD DBC ∠+∠=︒③ 45ACE DBC ∴∠+∠=︒90DBC DCB DBC ACE ACB ∴∠+∠=∠+∠+∠=︒90BDC ∠=︒BD CE ⊥90BAC DAE ∠=∠=︒④ 3609090180BAE DAC ∴∠+∠=︒-︒-︒=︒AD AB =9060BAC ABC ∠=︒∠=︒,30ACB ∠=︒AD BAC ∠CE BAC ∠CAD ∠=1245BAC ∠=︒ACE ∠=1215ACB ∠=︒AOE ∠AOC 60AOE CAD ACE ∠=∠+∠=︒AC CF CD =OF∵平分,∴,在和中,,∴ ,∴,∵,∴,∴,∴,∵平分,∴,在和中, ∴ ,∴,∵,∴.21.(1),,(2)猜想:CE ACB ∠DCO FCO ∠=∠DCO FCO CD CF DCO FCO OC OC =⎧⎪∠=∠⎨⎪=⎩()DCO FCO SAS ≌COD COF ∠=∠60AOE =︒∠60COD COF ∠=∠=︒18060AOF AOE COF ∠=︒-∠-∠==︒AOE AOF ∠=∠AD BAC ∠EAO FAO ∠=∠EAO FAO EAO FAO AO AOAOE AOF ∠=∠⎧⎪=⎨⎪∠=∠⎩()EAO FAO ASA ≌AE AF =AC AF CF =+=+AC AE CD 180ABD DBF ∠+∠= 180C ABD ∠+∠= C DBF∴∠=∠CE BF = DC DB=CED BFD∴ ≌DE DF∴=CE BG EG+=由(1)可知,,,,得证;(3)当成立由(1)可知,,,,得证.22.(1)(ⅰ)证明:和都是等边三角形,,,,CED BFD≌CDE BDF ∴∠=∠ED FD =CE BF=120CDB ∠= 60EDG ∠=1206060CED BDG CDB EDG ∴∠+∠=∠-∠=-=60BDG BDF ∴∠+∠=60GDF EDG∴∠==∠ DG DG= EDG FDG∴ ≌EG GF∴=GF BG BF=+ EG BG CE∴=+1902EDG α∠=- CED BFD≌CDE BDF ∴∠=∠ED FD =CE BF=180CDB α∠=- 90EDG α∠=-o 11(180)(90)9022CED BDG CDB EDG ααα∴∠+∠=∠-∠=---=- 1902BDG BDF α∴∠+∠=- 1902GDF EDG α∴∠=-=∠ DG DG= EDG FDG∴ ≌EG GF∴=GF BG BF=+ EG BG CE∴=+ABC ADE V AB AC ∴=AD AE =60BAC DAE ACB ABC ∠=∠=∠=∠=︒.在和中,,.(ⅱ),,.直线,,,.点,,在一条线上,,,,.,,即;(2)解:同理证明,,,,,,,即.23.(1)证明:∵,∴,∵于D ,于E ,∴,,∴,在和中,BAD CAE ∴∠=∠ABD △ACE △,,,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩ABD ACE ∴ ≌BD CE ∴=ABD ACE ≌BD CE ∴=ABD ACE ∠=∠AB ⊥Q l 90ABD ∴∠=︒90ACE ∠=︒30CBF ∠=︒ E C F 60ACB ∠=︒30BCF ∴∠=︒CBF BCF ∴∠=∠BF CF ∴=BD DF BF =+ BD DF CF CE ∴=+=DF CE CF=-ABD ACE ≌△△90ABD ACE ∴∠=∠=︒30FBC FCB ∠=∠=︒BD CE =BF CF ∴=BF BD DF ∴=+CF BD DF ∴=+DF CF CE =-90ACB ∠=︒90ACD BCE ∠∠+=︒AD m ⊥BE m ⊥90ADC CEB ∠∠==︒90BCE CBE ∠∠+=︒ACD CBE ∠∠=ADC CEB,∴,∴,,∴;(2)解:结论:;理由:∵,,∴,∵,∴,∴,在和中,,∴,∴,,∴;(3)解:①当时,点M 在上,点N 在上,如图,∵,∴,解得:,不合题意;②当时,点M 在上,点N 也在上,如图,ADC CEB ACD CBE AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS ADC CEB ≌AD CE =DC BE =DE DC CE BE AD =+=+DE AD BE =-AD m ⊥BE m ⊥90ADC CEB ∠∠==︒90ACB ∠=︒90ACD CAD ACD BCE ∠∠∠∠+=+=︒CAD BCE ∠∠=ACD CBE ADC CEB CAD BCE AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS ACD CBE ≌AD CE =CD BE =DE CE CD AD BE =-=-08t ≤<AC BC MC NC =162303t t -=-14t =810t ≤<BC BC∵,∴点M 与点N 重合,∴,解得:;③当时,点M 在上,点N 在上,如图,∵,∴,解得:;④当时,点N 停在点A 处,点M 在上,如图,∵,∴,解得:;综上所述:当或14或16秒时,与全等.24.(1)解:,理由如下:为等边三角形,MC NC =216303t t =﹣﹣9.2t =46103t ≤<BC AC MC NC =216330t t -=-14t =46233t ≤<BC MC NC =21616t -=16t =9.2t =MPC NQC CD BE = ABC,,由题意得:,在和中,,,;(2)证明如下:由(1)可知,,,,;(3)证明:过点作交于,,为等边三角形,为等边三角形,,,,在和中,,,.∴60A ACB ∠=∠=︒AC BC =AD CE =ADC △CEB AD CE A ACB AC CB =⎧⎪∠=∠⎨⎪=⎩∴()SAS ADC CEB ≌∴CD BE =()SAS ADC CEB ≌∴ADC E ∠=∠ 60E ABE BAC ∠+∠=∠=︒DBQ ABE ∠=∠∴60CQE ADC DBQ ∠=∠+∠=︒D DH BC ∥AC H ∴HDF CEF ∠=∠ ABC ∴ADH ∴HD AD = AD CE =∴DH CE =DFH EFC HDF CEF DFH EFC DH CE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AAS DFH EFC ≌∴DF EF =。

《第十二章 全等三角形》单元测试卷及答案(共六套)

《第十二章 全等三角形》单元测试卷及答案(共六套)

《第十二章 全等三角形》单元测试卷(一)答题时间:120 满分:150分一、选择题 (每题3分,共30分。

每题只有一个正确答案,请将正确答案的代号填在下面的表格中)题号 1 2 3 4 5 6 7 8 9 10 答案1.下列判断中错误..的是( ) A .有两角和一边对应相等的两个三角形全等 B .有两边和一角对应相等的两个三角形全等C .有两边和其中一边上的中线对应相等的两个三角形全等D .有一边对应相等的两个等边三角形全等2.如图,和均是等边三角形,分别与交于点,有如下结论:①;②;③. 其中,正确结论的个数是( ) A .3个B .2个C .1个D .0个3.某同学把一块三角形的玻璃打碎了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是( ) A .带①去 B .带②去 C .带③去 D .带①②③去4.△ABC ≌△DEF ,AB=2,AC =4,若△DEF 的周长为偶数, 则EF 的取值为( )A .3B .4C .5D .3或4或55.如图,已知,△ABC 的三个元素,则甲、乙、丙三个三角形中,和△ABC 全等的图形是( ) A .甲和乙 B .乙和丙DAC △EBC △AE BD ,CD CE ,M N ,ACE DCB △≌△CM CN =AC DN =(第3题)BECD ANM (第2题)(第5题)C .只有乙D .只有丙6.三角形ABC 的三条内角平分线为AE 、BF 、CG 、下面的说法中正确的个数有( ) ①△ABC 的内角平分线上的点到三边距离相等 ②三角形的三条内角平分线交于一点 ③三角形的内角平分线位于三角形的内部④三角形的任一内角平分线将三角形分成面积相等的两部分 A .1个 B .2个 C .3个 D .4个7.如图,长方形ABCD 沿AE 折叠,使D 点落在BC 边上的F 点处,∠BAF =600,那么∠DAE 等于( ) A .150 B .300 C .450 D .6008.如图所示,△ABE 和△ADC 是△ABC 分别沿着AB ,AC 边翻折180°形成的,若∠1∶∠2∶∠3=28∶5∶3,则∠α的度数为( ) A .80° B .100° C .60° D .45°9.在△ABC 和△A B C '''中,已知A A '∠=∠,AB A B ''=,在下面判断中错误的是( )A.若添加条件AC A C ''=,则△ABC ≌△A B C '''B.若添加条件BC B C ''=,则△ABC ≌△A B C '''C.若添加条件B B '∠=∠,则△ABC ≌△A B C '''D.若添加条件C C '∠=∠,则△ABC ≌△A B C '''10.如图,在△ABC 中,∠C =90,AD 平分∠BAC ,DE ⊥AB 于E , 则下列结论:①AD 平分∠CDE ;②∠BAC =∠BDE ; ③DE 平分∠ADB ;④BE +AC =AB .其中正确的有( ) A.1个 B.2个C.3个D.4个二、填空题(每题3分,共30)11.如图,AB ,CD 相交于点O ,AD =CB ,请你补充一个条件,使得△AOD ≌△COB .你补充的条件是______________________________.(第7题)(第8题) 第10题12.如图,AC ,BD 相交于点O ,AC =BD ,AB =CD ,写出图中两对相等的角______. 13.如图,△ABC 中,∠C =90°,AD 平分∠BAC ,AB =5,CD =2,则△ABD 的面积是______.14.如图,直线AE ∥BD ,点C 在BD 上,若AE =4,BD =8,△ABD 的面积为16,则 的面积为______.15.在△ABC 中,∠C =90°,BC =4CM ,∠BAC 的平分线交BC 于D ,且BD :DC =5:3,则D 到AB 的距离为_____________.16.如图,△ABC 是不等边三角形,DE =BC ,以D ,E 为两个顶点作位置不同的三角形,使所作的三角形与△ABC 全等,这样的三角形最多可以画出_____个.17.如图,分别是锐角三角形和锐角三角形中边上的高,且.若使,请你补充条件___________.(填写一个你认为适当的条件即可)18.如图,如果两个三角形的两条边和其中一条边上的高对应相等,那么这两个三角形的第三边所对的角的关系是__________.ACE △AD A D '',ABC A B C ''',BC B C ''AB A B AD A D ''''==,ABC A B C '''△≌△(第11题)AD OC B (第12题)ADOC B(第13题)ADCBAD CBE(第14题)(第16题)BDEABC D'A 'B'D'C (第17、18题) (第19题)19.如图,已知在中,平分,于,若,则的周长为 .20.在数学活动课上,小明提出这样一个问题:∠B =∠C =90,E 是BC 的中点,DE 平分∠ADC ,∠CED =35,如图16,则∠EAB 是多少度?大家一起热烈地讨论交流,小英第一个得出正确答案,是______.三、解答题(每题9分,共36分)21.如图,O 为码头,A ,B 两个灯塔与码头的距离相等,OA ,OB 为海岸线,一轮船从码头开出,计划沿∠AOB 的平分线航行,航行途中,测得轮船与灯塔A ,B 的距离相等,此时轮船有没有偏离航线?画出图形并说明你的理由.22.如图,在△ABC 中,BD =DC ,∠1=∠2,求证:AD ⊥BC .23.如图,OM 平分∠POQ ,MA ⊥OP ,MB ⊥OQ ,A 、B 为垂足,AB 交OM 于点N . 求证:∠OAB =∠OBAABC ∆90,,A AB AC CD ∠=︒=ACB ∠DE BC ⊥E 15cm BC =DEB △cm 00 ABO24.如图,已知AD ∥BC ,∠PAB 的平分线与∠CBA 的平分线相交于E ,CE 的连线交AP 于D .求证:AD +BC =AB .四、解答题(每题10分,共30分)25.如图,△ABC 中,AD 是∠CAB 的平分线,且AB =AC +CD ,求证:∠C =2∠B26.如图①,E 、F 分别为线段AC 上的两个动点,且DE ⊥AC 于E ,BF ⊥AC 于F ,若AB =CD ,AF =CE ,BD 交AC 于点M . (1)求证:MB =MD ,ME =MF(2)当E 、F 两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.27.已知:如图,DC ∥AB ,且DC =AE ,E 为AB 的中点, (1)求证:△AED ≌△EBC .PEDCBA DCBA(2)观看图前,在不添辅助线的情况下,除△EBC 外,请再写出两个与△AED 的面积相等的三角形.(直接写出结果,不要求证明):五、(每题12分,共24分)28.如图,△ABC 中,∠BAC =90度,AB =AC ,BD 是∠ABC 的平分线,BD 的延长线垂直于过C 点的直线于E ,直线CE 交BA 的延长线于F . 求证:BD =2CE .29.已知:在△ABC 中,∠BAC =90,AB =AC ,AE 是过点A 的一条直线,且BD ⊥AE 于D ,CE ⊥AE 于E .(1)当直线AE 处于如图①的位置时,有BD =DE +CE ,请说明理由;(2)当直线AE 处于如图②的位置时,则BD 、DE 、CE 的关系如何?请说明理由; (3)归纳(1)、(2),请用简洁的语言表达BD 、DE 、CE 之间的关系.OEDCBAFE D CBA参考答案一、选择题1.B 2.B 3.C 4.B 5.B 6.B 7.A 8.A 9.B 10. C二、填空题11.∠A=∠C或∠ADO=∠CBO等(答案不唯一) 1 2.∠A=∠D或∠ABC=∠DCB 等(答案不唯一) 13.5 14.8 1 5.1.5cm 16.4 17.BD=B’D’或∠B=∠B’等(答案不唯一) 18.互补或相等 19.15 20.35三、解答题21.此时轮船没有偏离航线.画图及说理略22.证明:延长AD至H交BC于H;BD=DC;所以:∠DBC=∠角DCB;∠1=∠2;∠DBC+∠1=∠角DCB+∠2;∠ABC=∠ACB;所以:AB=AC;三角形ABD全等于三角形ACD;∠BAD=∠CAD;AD是等腰三角形的顶角平分线所以:AD垂直BC23.证明:因为AOM与MOB都为直角三角形、共用OM,且∠MOA=∠MOB所以MA=MB所以∠MAB=∠MBA因为∠OAM=∠OBM=90度所以∠OAB=90-∠MAB ∠OBA=90-∠MBA所以∠OAB=∠OBA24.证明:做BE的延长线,与AP相交于F点,∵PA//BC∴∠PAB+∠CBA=180°,又∵,AE,BE均为∠PAB和∠CBA的角平分线∴∠EAB+∠EBA=90°∴∠AEB=90°,EAB为直角三角形在三角形ABF中,AE⊥BF,且AE为∠FAB的角平分线∴三角形FAB为等腰三角形,AB=AF,BE=EF在三角形DEF与三角形BEC中,∠EBC=∠DFE,且BE=EF,∠DEF=∠CEB,∴三角形DEF与三角形BEC为全等三角形,∴DF=BC∴AB=AF=AD+DF=AD+BC四、25.证明:延长AC至E,使CE=CD,连接ED∵AB=AC+CD∴AE=AB∵AD平分∠CAB∴∠EAD=∠BAD∴AE=AB∠EAD=∠BADAD=AD∴△ADE≌△ADB∴∠E=∠B且∠ACD=∠E+∠CDE,CE=CD∴∠ACD=∠E+∠CDE=2∠E=2∠B即∠C=2∠B26.分析:通过证明两个直角三角形全等,即Rt△DEC≌Rt△BFA以及垂线的性质得出四边形BEDF是平行四边形.再根据平行四边形的性质得出结论.解答:解:(1)连接BE,DF.∵DE⊥AC于E,BF⊥AC于F,,∴∠DEC=∠BFA=90°,DE∥BF,在Rt△DEC和Rt△BFA中,∵AF=CE,AB=CD,∴Rt△DEC≌Rt△BFA,∴DE=BF.∴四边形BEDF是平行四边形.∴MB=MD,ME=MF;(2)连接BE,DF.∵DE⊥AC于E,BF⊥AC于F,,∴∠DEC=∠BFA=90°,DE∥BF,在Rt△DEC和Rt△BFA中,∵AF=CE,AB=CD,∴Rt△DEC≌Rt△BFA,∴DE=BF.∴四边形BEDF是平行四边形.∴MB=MD,ME=MF.(2)成立27.(1)证明:∵DC=1/2 AB,E为AB的中点,∴CD=BE=AE.又∵DC∥AB,∴四边形ADCE是平行四边形.∴CE=AD,CE∥AD.∴∠BEC=∠BAD.∴△BEC≌△EAD(2)△AEC,△CDA,△CDE五、 28.证明:因为∠CEB=∠CAB=90°所以:ABCE四点共元又因为:∠AB E=∠CB E所以:AE=CE所以:∠ECA=∠EAC取线段BD的中点G,连接AG,则:AG=BG=DG所以:∠GAB=∠ABG而:∠ECA=∠GBA (同弧上的圆周角相等)所以:∠ECA=∠EAC=∠GBA=∠GAB而:AC=AB所以:△AEC≌△AGB所以:EC=BG=DG所以:BD=2CE29解:(1)在△ABC中,∠BAC=90°,∴∠BAD=90°-∠EAC。

八年级数学上册试题 第十二章 全等三角形章节测试卷--人教版(含详解)

八年级数学上册试题 第十二章 全等三角形章节测试卷--人教版(含详解)

第十二章《全等三角形》章节测试卷一.选择题(共12小题,每小题4分,共48分)1.下列各图形中,不是全等形的是( )A .B .C .D .2.下列说法正确的是( )A .所有的等边三角形都是全等三角形B .全等三角形是指面积相等的三角形C .周长相等的三角形是全等三角形D .全等三角形是指形状相同大小相等的三角形3.如图,AB 与CD 交于点O ,已知△AOD ≌△COB ,∠A =40°,∠COB =115°,则∠B 的度数为( )A .25°B .30°C .35°D .40°4.已知△ABC 的六个元素如图所示,则甲、乙、丙三个三角形中与△ABC 全等的是( )A .甲、乙B .乙、丙C .只有乙D .只有丙5.如图,已知MB =ND ,∠MBA =∠NDC ,下列条件中不能判定△ABM ≌△CDN 的是( )A .∠M =∠NB .AB =CDC .AM =CND .AM ∥CN6.小明不慎将一块三角形的玻璃碎成如图所示的四块(图中所标1、2、3、4),你认为将其中的哪一块带去,就能配一块与原来大小一样的三角形玻璃?应该带( )去.A .第1块B .第2块C .第3块D .第4块7.如图是一个平分角的仪器,其中AB =AD ,BC =DC ,将点A 放在角的顶点,AB 和AD沿着角第3图的两边放下,沿AC画一条射线,这条射线就是角的平分线,在这个操作过程中,运用了三角形全等的判定方法是( )A.SSS B.SAS C.ASA D.AAS8.如图,点A、D、C、E在同一条直线上,AB∥EF,AB=EF,∠B=∠F,AE=10,AC=7,则CD的长为( )A.5.5B.4C.4.5D.39.如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且∠ADC=110°,则∠MAB=( )A.30°B.35°C.45°D.60°10.如图,AB=AD,AE平分∠BAD,点C在AE上,则图中全等三角形有( )A.2对B.3对C.4对D.5对11.如图,直线l1、l2、l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( )A.一处B.二处C.三处D.四处12.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为60和35,则△EDF的面积为( )A.25B.5.5C.7.5D.12.5二.填空题(共4小题,每小题4分,共16分)13.已知△ABC≌△DEF,∠A=60°,∠F=50°,点B的对应顶点是点E,则∠B的度数是 .14.如图,BD=CF,FD⊥BC于点D,DE⊥AB于点E,BE=CD,若∠AFD=145°,则∠EDF = .15.如图,△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是 .16.如图,四边形ABCD中,AB=AD,AC=5,∠DAB=∠DCB=90°,则四边形ABCD的面积为 .三.解答题(共8小题,共86分)17.如图所示,△ABE≌△ACD,∠B=70°,∠AEB=75°,求∠CAE的度数.18.如图,已知∠1=∠2,∠3=∠4,求证:BC=BD.19.如图,AB=AD,AC=AE,∠CAE=∠BAD.求证:∠B=∠D.20.如图,点B、F、C、E在直线l上(F、C之间不能直接测量),点A、D在l异侧,测得AB =DE,AB∥DE,∠A=∠D.(1)求证:△ABC≌△DEF;(2)若BE=10m,BF=3m,求FC的长度.21.某段河流的两岸是平行的,数学兴趣小组在老师带领下不用涉水过河就测得河的宽度,他们是这样做的:①在河流的一条岸边B点,选对岸正对的一棵树A;②沿河岸直走20m有一树C,继续前行20m到达D处;③从D处沿河岸垂直的方向行走,当到达A树正好被C树遮挡住的E处停止行走;④测得DE的长为5米.求:(1)河的宽度是多少米?(2)请你证明他们做法的正确性.22.如图,AD为△ABC的高,E为AC上一点,BE交AD于F,且有BF=AC,FD=CD.求证:(1)△BFD≌△ACD;(2)BE⊥AC.23.如图①,点A,E,F,C在同一条直线上,且AE=CF,过点E,F分别作DE⊥AC,BF⊥AC,垂足分别为E,F,AB=CD.(1)若EF与BD相交于点G,则EG与FG相等吗?请说明理由;(2)若将图①中△DEC沿AC移动到如图②所示的位置,其余条件不变,则(1)中的结论是否仍成立?不必说明理由.24.【阅读理解】课外兴趣小组活动时,老师提出了如下问题:如图1,△ABC中,若AB=8,AC=6,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD到点E,使DE=AD,请根据小明的方法思考:(1)由已知和作图能得到△ADC≌△EDB的理由是 A.SSS B.SAS C.AASD.HL(2)求得AD的取值范围是 A.6<AD<8 B.6≤AD≤8 C.1<AD<7 D.1≤AD≤7【方法感悟】解题时,条件中若出现“中点”“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.【问题解决】(3)如图2,已知:CD=AB,∠BDA=∠BAD,AE是△ABD的中线,求证:∠C=∠BAE.答案一.选择题1.【解答】解:观察发现,B、C、D选项的两个图形都可以完全重合,∴是全等图形,A选项中两组图画不可能完全重合,∴不是全等形.故选:A.2.【解答】解:A、所有的等边三角形都是全等三角形,错误;B、全等三角形是指面积相等的三角形,错误;C、周长相等的三角形是全等三角形,错误;D、全等三角形是指形状相同大小相等的三角形,正确.故选:D.3.【解答】解:∵△AOD≌△COB,∴∠C=∠A=40°,由三角形内角和定理可知,∠B=180°﹣∠BOC﹣∠C=25°,故选:A.4.【解答】解:已知△ABC中,∠B=50°,∠C=58°,∠A=72°,BC=a,AB=c,AC=b,∠C=58°,图甲:只有一条边和AB相等,没有其它条件,不符合三角形全等的判定定理,即和△ABC 不全等;图乙:只有两个角对应相等,还有一条边对应相等,符合三角形全等的判定定理(AAS),即和△ABC全等;图丙:符合SAS定理,能推出两三角形全等;故选:B.5.【解答】解:A、∠M=∠N,符合ASA,能判定△ABM≌△CDN,故A选项不符合题意;B、AB=CD,符合SAS,能判定△ABM≌△CDN,故B选项不符合题意;C、根据条件AM=CN,MB=ND,∠MBA=∠NDC,不能判定△ABM≌△CDN,故C选项符合题意;D、AM∥CN,得出∠MAB=∠NCD,符合AAS,能判定△ABM≌△CDN,故D选项不符合题意.故选:C.6.【解答】解:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去,只有第2块有完整的两角及夹边,符合ASA,满足题目要求的条件,是符合题意的.故选:B.7.【解答】解:在△ADC和△ABC中,{AD=ABDC=BC,AC=AC∴△ADC≌△ABC(SSS),∴∠DAC=∠BAC,∴AC就是∠DAB的平分线.故选:A.8.【解答】解:∵AB∥EF,∴∠A=∠E,在△ABC和△EFD中,{∠A=∠EAB=EF,∠B=∠F∴△ABC≌△EFD(ASA),∴AC=ED=7,∴AD=AE﹣ED=10﹣7=3,∴CD=AC﹣AD=7﹣3=4.故选:B.9.【解答】解:作MN⊥AD于N,∵∠B =∠C =90°,∴AB ∥CD ,∴∠DAB =180°﹣∠ADC =70°,∵DM 平分∠ADC ,MN ⊥AD ,MC ⊥CD ,∴MN =MC ,∵M 是BC 的中点,∴MC =MB ,∴MN =MB ,又MN ⊥AD ,MB ⊥AB ,∴∠MAB =12∠DAB =35°,故选:B .10.【解答】解:∵AE 平分∠BAD ,∴∠BAE =∠CAE ,在△ABC 和△ADC 中{AB =AD∠BAC =∠DAC AC =AC ,∴△DAC ≌△BAC (SAS ),∴BC =CD ;在△ABE 和△ADE 中{AB =AD∠BAE =∠DAE AE =AE ,∴△DAE ≌△BAE (SAS ),∴BE =ED ;在△BEC 和△DEC 中{BC =DCEC =EC EB =ED ,∴△BEC ≌△DEC (SSS ),故选:B .11.【解答】解:∵△ABC内角平分线的交点到三角形三边的距离相等,∴△ABC内角平分线的交点满足条件;如图:点P是△ABC两条外角平分线的交点,过点P作PE⊥AB,PD⊥BC,PF⊥AC,∴PE=PF,PF=PD,∴PE=PF=PD,∴点P到△ABC的三边的距离相等,∴△ABC两条外角平分线的交点到其三边的距离也相等,满足这条件的点有3个;综上,到三条公路的距离相等的点有4个,∴可供选择的地址有4个.故选:D.12.【解答】解:如图,过点D作DH⊥AC于H,∵AD是△ABC的角平分线,DF⊥AB,∴DF=DH,在Rt△ADF和Rt△ADH中,{AD=ADDF=DH,∴Rt△ADF≌Rt△ADH(HL),∴S Rt△ADF=S Rt△ADH,在Rt△DEF和Rt△DGH中,{DE=DGDF=DH∴Rt△DEF≌Rt△DGH(HL),∴S Rt△DEF=S Rt△DGH,∵△ADG和△AED的面积分别为60和35,∴35+S Rt△DEF=60﹣S Rt△DGH,.∴S Rt△DEF=252故选:D.二.填空题13.【解答】解:∵△ABC≌△DEF,∠A=60°,∠F=50°,∴∠D=∠A=60°,∠C=∠F=50°,∴∠B=∠E=70°.故答案为:70°.14.【解答】解:∵FD⊥BC于点D,DE⊥AB于点E,∴∠BED=∠FDC=90°,∵BE=CD,BD=CF,∴Rt△BED≌Rt△CDF(HL),∴∠BDE=∠CFD,∵∠AFD=145°,∴∠DFC=35°,∴∠BDE=35°,∴∠EDF=90°﹣35°=55°,故答案为55°.15.【解答】解:∵∠C=90°,AD平分∠BAC,∴点D到AB的距离=CD=2,∴△ABD的面积是5×2÷2=5.故答案为:5.16.【解答】解:∵AD=AD,且∠DAB=90°,∴将△ACD绕点A逆时针旋转90°,AD与AB重合,得到△ABE.∴∠ABE=∠D,AC=AE.根据四边形内角和360°,可得∠D+∠ABC=180°∴∠ABE+∠ABC=180°.∴C、B、E三点共线.∴△ACE是等腰直角三角形.∵四边形ABCD面积=△ACE面积=12×AC2=12×62=18;故答案为:18.三.解答题17.解:∵△ABE≌△ACD,∴∠C=∠B=70°,∴∠CAE=∠AEB﹣∠C=5°.18.证明:∵∠ABD+∠4=180°∠ABC+∠3=180°,且∠3=∠4,∴∠ABD=∠ABC在△ADB和△ACB中,,∴△ADB≌△ACB(ASA),∴BD=BC.19.证明:∵∠CAE=∠BAD,∴∠CAE+∠EAB=∠BAD+∠EAB,∴∠BAC=∠DAE,在△ABC和△ADE中,,∴△ABC≌△ADE(SAS),∴∠B=∠D.20.(1)证明:∵AB∥DE,∴∠ABC=∠DEF,在△ABC与△DEF中∴△ABC≌△DEF;(2)∵△ABC≌△DEF,∴BC=EF,∴BF+FC=EC+FC,∴BF=EC,∵BE=10m,BF=3m,∴FC=10﹣3﹣3=4m.21.(1)解:河的宽度是5m;(2)证明:由作法知,BC=DC,∠ABC=∠EDC=90°,在Rt△ABC和Rt△EDC中,,∴Rt△ABC≌Rt△EDC(ASA),∴AB=ED,即他们的做法是正确的.22.证明:(1)∵AD为△ABC的边BC上的高,∴△BDF和△ADC为直角三角形.∴∠BDF=∠ADC=90°.在Rt△BFD和Rt△ACD中,,∴Rt△△BFD≌Rt△ACD(HL);(2)∵△BDF≌△ADC,∴∠DBF=∠DAC.∵∠AFE与∠BFD是对顶角,∴∠BDF=∠AEF=90°,∴BE⊥AC.23.解:(1)EG=FG,理由如下:∵AE=CF,∴AE+EF=CF+EF,即AF=CE,∵DE⊥AC,BF⊥AC,∴∠AFB=∠CED=90°,在Rt△ABF和Rt△CDE中,,∴Rt△ABF≌Rt△CDE(HL),∴BF=DE,在△DEG和△BFG中,,∴△DEG≌△BFG(AAS),∴EG=FG;(2)(1)中的结论仍成立,理由如下:同(1)得:Rt△ABF≌Rt△CDE(HL),∴BF=DE,在△DEG和△BFG中,,∴△DEG≌△BFG(AAS),∴EG=FG.24.(1)解:∵在△ADC和△EDB中,,∴△ADC≌△EDB(SAS),故答案为:B;(2)解:∵由(1)知:△ADC≌△EDB,∴BE=AC=6,AE=2AD,∵在△ABE中,AB=8,由三角形三边关系定理得:8﹣6<2AD<8+6,∴1<AD<7,故答案为:C.(3)证明:如图,延长AE到F,使EF=AE,连接DF,∵AE是△ABD的中线∴BE=ED,在△ABE与△FDE中,,∴△ABE≌△FDE(SAS),∴AB=DF,∠BAE=∠EFD,∵∠ADB是△ADC的外角,∴∠DAC+∠ACD=∠ADB=∠BAD,∴∠BAE+∠EAD=∠BAD,∠BAE=∠EFD,∴∠EFD+∠EAD=∠DAC+∠ACD,∴∠ADF=∠ADC,∵AB=DC,∴DF=DC,在△ADF与△ADC中,,∴△ADF≌△ADC(SAS)∴∠C=∠AFD=∠BAE.。

打印 全等三角形单元测试卷(1)

打印  全等三角形单元测试卷(1)

第十一章全等三角形单元测试卷一、选择题(每小题3分,共24分) 1. 下列说法错误的是( )A .全等三角形对应角所对的边是对应边B .全等三角形两对应边所夹的角是对应角C .如果两个三角形都与另一个三角形全等,那么这两个三角形也全等D .等边三角形都全等2. 如图,给出下列四组条件:①AB DE BC EF AC DF ===,,; ②AB DE B E BC EF =∠=∠=,,; ③B E BC EF C F ∠=∠=∠=∠,,; ④AB DE AC DF B E ==∠=∠,,.其中,能使ABC DEF △≌△的条件共有( )A .1组B .2组C .3组D .4组3. 如图,点P 是∠BAC 的平分线AD 上一点,PE ⊥AC 于点E .已知PE =3,则点P 到AB 的距离是( ) A .3 B .4 C .5 D .6 4. 有以下条件:①一锐角与一边对应相等;②两边对应相等;③两锐角对应相等。

其中能判断两直角三角形全等的是( )A .① B② C ③ D ①②5.如图5所示,已知AB=AC ,PB=PC ,下面的结论:①BE=CE ;②AP ⊥BC ;③AE 平分∠BEC ;④∠PEC=∠PCE ,其中正确结论 的个数有( )A .1个B 2个C 3个D 4个 7. 如图,已知△ABC 的六个元素,则下面甲、乙、丙三个三角形中和△ABC 全等的图形是 ( ) A .甲和乙 B .乙和丙C .只有乙D .只有丙8. 如图9所示,在△ABC 中,∠ABC=︒100,∠ACB=︒20,CE 平分∠ACB ,D 为AC 上一点,若∠CBD=︒20,BD=ED , 则∠CED 等于( )A .︒5B ︒10C ︒15D ︒20 二、填空题:(每小题3分,共24分)9. 如图,BAC ABD ∠=∠,请你添加一个条件:,使OC OD =(只添一个即可)。

10. 在△ABC 中,已知AD 是角平分线,∠B=︒50,∠C=︒70,∠BAD=___________。

全等三角形单元测试卷

全等三角形单元测试卷

全等三角形单元测试卷一、选择题(每小题3分,共30分)1.(3分)下列说法正确的是()A.完全重合的两个三角形全等B.面积相等的两个三角形全等C.所有的等边三角形全等D.形状相同的两个三角形全等2.(3分)如图,a、b、c分别表示△ABC的三边长,则下面与△ABC一定全等的三角形是()A.B.C.D.3.(3分)如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE4.(3分)如图,在△ABC和△A′B′C′中,AB=A′B′,∠B=∠B′,补充条件后仍不一定能保证△ABC≌△A′B′C′,则补充的这个条件是()A.BC=B′C′B.∠A=∠A′C.AC=A′C′D.∠C=∠C′5.(3分)如图,点B、C、E在同一条直线上,△ABC与△CDE都是等边三角形,则下列结论不一定成立的是()A.△ACE≌△BCD B.△BGC≌△AFC C.△DCG≌△ECF D.△ADB≌△CEA6.(3分)要测量河两岸相对的两点A,B的距离,先在AB的垂线BF上取两点C,D,使CD=BC,再定出BF的垂线DE,使A,C,E在一条直线上(如图所示),可以说明△EDC≌△ABC,得ED=AB,因此测得ED的长就是AB的长,判定△EDC≌△ABC最恰当的理由是()A.边角边B.角边角C.边边边D.边边角7.(3分)已知:如图,AC=CD,∠B=∠E=90°,AC⊥CD,则不正确的结论是()A.∠A与∠D互为余角B.∠A=∠2C.△ABC≌△CED D.∠1=∠28.(3分)在△ABC和△FED中,已知∠C=∠D,∠B=∠E,要判定这两个三角形全等,还需要条件()A.AB=ED B.AB=FD C.AC=FD D.∠A=∠F9.(3分)如图,在△ABC中,AB=AC,∠ABC、∠ACB的平分线BD,CE相交于O点,且BD交AC于点D,CE交AB于点E.某同学分析图形后得出以下结论:①△BCD≌△CBE;②△BAD≌△BCD;③△BDA≌△CEA;④△BOE≌△COD;⑤△ACE≌△BCE;上述结论一定正确的是()A.①②③B.②③④C.①③⑤D.①③④10.(3分)下列命题中:(1)形状相同的两个三角形是全等形;(2)在两个全等三角形中,相等的角是对应角,相等的边是对应边;(3)全等三角形对应边上的高、中线及对应角平分线分别相等,其中真命题的个数有()A.3个B.2个C.1个D.0个二、填空题(每题4分,共28分)11.(3分)如图,AC=AD,BC=BD,则△ABC≌△;应用的判定方法是(简写).12.(3分)如图,△ABD≌△BAC,若AD=BC,则∠BAD的对应角是.13.(3分)已知AD是△ABC的角平分线,DE⊥AB于E,且DE=3cm,则点D到AC的距离为.14.(3分)如图,AB与CD交于点O,OA=OC,OD=OB,∠AOD=,根据可得到△AOD≌△COB,从而可以得到AD=.15.(3分)如图,∠A=∠D=90゜,AC=DB,欲证OB=OC,可以先利用“HL”说明得到AB=DC,再利用证明△AOB≌得到OB=OC.16.(3分)如图,如果两个三角形的两条边和其中一条边上的高对应相等,那么这两个三角形的第三边所对的角的关系是.17.(3分)如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带去配,这样做的数学依据是.三、解答题(共42分)18.(9分)如图,已知△ABC中,AB=AC,AD平分∠BAC,请补充完整过程,说明△ABD≌△ACD的理由.∵AD平分∠BAC∴∠=∠(角平分线的定义)在△ABD和△ACD中∴△ABD≌△ACD.19.(10分)已知AB∥DE,BC∥EF,D,C在AF上,且AD=CF,求证:△ABC≌△DEF.20.(12分)已知:BE⊥CD,BE=DE,BC=DA,求证:①△BEC≌△DEA;②DF⊥BC.21.(11分)已知:如图,在四边形ABCD中,E是AC上一点,∠1=∠2,∠3=∠4.求证:∠5=∠6.。

全等三角形章节测试卷

全等三角形章节测试卷

全等三角形章节测试卷姓名________________ 成绩______________一。

选择题(每小题3分,共30分) 1、如图,△ABC ≌△BAD ,点A 点B ,点C 和点D 是对应点。

如果AB=6厘米,BD=5厘米,AD=4厘米,那么BC 的长是( )。

(A)4 厘米 (B)5厘米 (C) 6 厘米 (D)无法确定 2、如图,△ABN ≌△ACM ,AB=AC ,BN=CM ,∠B=50°,∠ANC=120°,则∠MAC 的度数等于( )A .120° B.70° C.60° D.50°.3.使两个直角三角形全等的条件是( )A.一锐角对应相等 B.两锐角对应相等C.一条边对应相等 D.两条边对应相等4.在△ABC 和△A ˊB ′C ′中,已知∠A=∠A ′,AB=A ′B ′,在下面判断中错误的是( )A. 若添加条件AC=A ˊC ˊ,则△ABC ≌△A ′B ′C ′B. 若添加条件BC=B ′C ′,则△ABC ≌△A ′B ′C ′C. 若添加条件∠B=∠B ′,则△ABC ≌△A ′B ′C ′D. 若添加条件 ∠C=∠C ′,则△ABC ≌△A ′B ′C ′5. 某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事方法是( )A .带①去B .带②去C .带③去D .①②③都带去6.将一张长方形纸片按如图所示的方式折叠,BC BD ,为折痕,则CBD ∠的度数为( )A .60°B .75°C .90°D .95°7. 下列说法中不正确的是( )A.全等三角形一定能重合B.全等三角形的面积相等C.全等三角形的周长相等D.周长相等的两个三角形全等8.如图,已知△ABC 的六个元素,则下面甲、乙、丙三个三角形中和△ABC 全等的图形是( ) A .甲和乙 B.乙和丙 C.只有乙 D.只有丙9.如图, AB=AC,AD=AE,BE 、CD 交于点O ,则图中全等三角形共有( )A .四对B .三对C .二对D .一对 第9题图 第10题图D CA BB C D A MB C A D E O10.如图,△ABC 中,BM 、CM 分别平分∠ABC 和∠ACB ,连接AM ,已知∠MBC=25°,∠MCA=30°,则∠MAB 的度数为( )A. 25°B. 30°C. 35°D. 40°二.填空题(每空3分,共30分)11.能够____ 的两个图形叫做全等图形.12.如图,AD =AC ,BD =BC ,O 为AB 上一点,那么,图中共有 对全等三角形.第12题图 第13题图 第16题图13.如图,△ABC ≌△ADE ,若∠BAE =120°,∠BAD =40°,则∠BAC = .14.△ABC ≌△DEF ,且△ABC 的周长为12,若AB =3,EF =4,则AC = .15.△ABC 中,∠C =90°,AD 平分∠BAC 交BC 于点D ,且CD =4cm ,则点D 到AB •的距离是________.16. 如图,要测量池塘的宽度AB ,在池塘外选取一点P ,连接AP 、BP 并各自延长,使PC=PA ,PD=PB ,连接CD ,测得CD 长为25m ,则池塘宽AB 为 m,依据是 。

八年级数学第十三章检测题(一)

八年级数学第十三章检测题(一)

数学试卷 第1页,共4页数学试卷 第2页,共4页八年级数学第十三章全等三角形测试卷(一)1、本试卷共4页,总分100分,时间60分钟。

、答题前请将密封线左侧的项目填写清楚。

(4分×5=20分). 在△ABC 和△A ’B ’C ’中, AB=A ’B ’, ∠B=∠B ’, 补充条件后仍不一定能保证△ABC ≌△A ’B ’C ’, 则补充的这个条件是( )A .BC=B ’C ’ B .∠A=∠A ’ C .AC=A ’C ’D .∠C=∠C ’ . 直角三角形两锐角的角平分线所交成的角的度数是( ) A .45° B .135° C .45°或135° D .都不对. 现有两根木棒,它们的长分别是40cm 和50cm ,若要钉成一个三角形木架,则在下列四根木棒中应选取( )A .10cm 的木棒B .40cm 的木棒C .90cm 的木棒D .100cm 的木棒 .根据下列已知条件,能惟一画出三角形ABC 的是( )A . AB =3,BC =4,AC =8; B . AB =4,BC =3,∠A =30; C . ∠A =60,∠B =45,AB =4;D .∠C =90,AB =6.如图,D ,E 分别是△ABC 的边BC ,AC 上的点,若∠B =∠C , ∠ADE =∠AED ,则( ) A . 当∠B 为定值时,∠CDE 为定值 B . 当∠α为定值时,∠CDE 为定值 C . 当∠β为定值时,∠CDE 为定值 D . 当∠γ为定值时,∠CDE 为定值二、填空题:(3分×6=18分)6.三角形ABC 中,∠A 是∠B 的2倍,∠C 比∠A +∠B 还大12度,则这个三角形是 三角形.7.以三条线段3、4、x -5为这组成三角形,则x 的取值为 . 8.杜师傅在做完门框后,为防止门框变形常常需钉两根斜拉的木条,这样做的数学原理是 .9.△ABC 中,∠A +∠B =∠C ,∠A 的平分线交BC 于点D ,若CD =8cm ,则点D 到AB 的距离为 cm .10.AD 是△ABC 的边BC 上的中线,AB =12,AC =8,则边BC 的取值范围是 ;中线AD 的取值范围是 . 三、解答题:11.(10分) 已知:如图,AE=AC , AD=AB ,∠EAC=∠DAB , 求证:△EAD ≌△CAB .12.(10分) 如图13-5,△ACD 中,已知AB ⊥CD ,且BD>CB, △BCE 和△ABD都是等腰直角三角形,王刚同学说有下列全等三角形:①△ABC ≌△DBE ;②△ACB ≌△ABD ; ③△CBE ≌△BED ;④△ACE ≌△ADE . 这些三角形真的全等吗?简要说明理由.AB DCE12题图ACBED11题图5题图数学试卷 第3页,共4页 数学试卷 第4页,共4页…………………………………密………………………………封………………………………线…………………………13.(10分) 已知,如图13-6,D 是△ABC 的边AB上一点, DF 交AC 于点E, DE=FE, FC ∥AB,求证:AD=CF .14.(10分) 如图5-7,△ABC 的边BC 的中垂线DF 交△BAC 的外角平分线AD 于D, F 为垂足, DE ⊥AB 于E ,且AB>AC ,求证:BE -AC=AE .15.(10分) 阅读下题及证明过程:已知:如图8, D 是△ABC 中BC 边上一点,E 是AD 上一点,EB=EC ,∠ABE=∠ACE ,求证:∠BAE=∠CAE .证明:在△AEB 和△AEC 中,∵EB=EC ,∠ABE=∠ACE ,AE=AE , ∴△AEB ≌△AEC ……第一步∴∠BAE=∠CAE ……第二步问上面证明过程是否正确?若正确,请写出每一步推理的依 据;若不正确,请指出错在哪一步,并写出你认为正确的证明过程.16.(12分)如图9所示,△ABC 是等腰直角三角形,∠ACB =90°,AD 是BC边上的中线,过C 作AD 的垂线,交AB 于点E ,交AD 于点F ,求证:∠ADC =∠BDE .A F D 14题图E 13题图A B D F C CAB D E 15题图 A BC DE F 图9。

(常考题)人教版初中数学八年级数学上册第二单元《全等三角形》测试卷(答案解析)(1)

(常考题)人教版初中数学八年级数学上册第二单元《全等三角形》测试卷(答案解析)(1)

一、选择题1.如图O 是ABC 内的一点,且O 到三边AB 、BC 、CA 的距离==OF OD OE .若70A ∠=︒,则BOC ∠( ).A .125°B .135°C .105°D .100°2.如图,在ABC 中,AD BC ⊥于D ,CE AB ⊥于E ,AD 与CE 交于点F .请你添加一个适当的条件,使AEF ≌CEB △.下列添加的条件不正确的是( )A .EF EB =B .EA EC = C .AF CB =D .AFE B ∠=∠ 3.如图,ABC 的面积为26cm ,AP 垂直B 的平分线BP 于P ,则PBC 的面积为( )A .21cmB .22cmC .23cmD .24cm 4.如图,ABC 和DEF 中,∠A=∠D ,∠C=∠F ,要使ABC DEF ≅,还需增加的条件是( )A .AB=EFB .AC=DFC .∠B=∠ED .CB=DE 5.用三角尺画角平分线:如图,先在AOB ∠的两边分别取OM ON =,再分别过点M ,N 作OA ,OB 的垂线,交点为P .得到OP 平分AOB ∠的依据是( )A .HLB .SSSC .SASD .ASA 6.如图,在Rt △ABC 中,∠ACB =90°,BC =5cm ,在AC 上取一点E ,使EC =BC ,过点E 作EF ⊥AC ,连接CF ,使CF =AB ,若EF =12cm ,则下列结论不正确的是( )A .∠F =∠BCFB .AE =7cmC .EF 平分ABD .AB ⊥CF 7.下列各命题中,假命题是( )A .有两边及其中一边上的中线对应相等的两个三角形全等B .有两边及第三边上高对应相等的两个三角形全等C .有两角及其中一角的平分线对应相等的两三角形全等D .有两边及第三边上的中线对应相等的两三角形全等8.如图,点D 在线段BC 上,若1802ACE ABC x ∠=︒-∠-︒,且BC DE =,AC DC =,AB EC =,则下列角中,大小为x ︒的角是( )A .EFC ∠B .ABC ∠ C .FDC ∠D .DFC ∠ 9.如图,OB 平分∠MON ,A 为OB 的中点,AE ⊥ON ,EA=3,D 为OM 上的一个动点,C 是DA 延长线与BC 的交点,BC //OM ,则CD 的最小值是( )A .6B .8C .10D .1210.根据下列条件,能画出唯一ABC 的是( )A .3AB =,4BC =,7CA =B .4AC =,6BC =,60A ∠=︒ C .45A ∠=︒,60B ∠=︒,75C ∠=︒D .5AB =,4BC =,90C ∠=︒ 11.如图,在下列条件中,不能判断△ABD ≌△BAC 的条件是( )A .∠D=∠C , ∠BAD=∠ABCB .BD=AC , ∠BAD=∠ABC C .∠BAD=∠ABC , ∠BAD=∠ABCD .AD=BC ,BD=AC 12.如图,要判定△ABD ≌△ACD ,已知AB =AC ,若再增加下列条件中的一个,仍不能说明全等,则这个条件是( )A .CD ⊥AD ,BD ⊥ADB .CD =BDC .∠1=∠2D .∠CAD =∠B AD二、填空题13.如图所示,在ABC 中,D 是BC 的中点,点A 、F 、D 、E 在同一直线上.请添加一个条件,使BDE CDF ≌(不再添其他线段,不再标注或使用其他字母),并给出证明.你添加的条件是______14.如图,在Rt ABC △中,90C ∠=︒,10AC =,5BC =,线段PQ AB =,P ,Q两点分别在线段AC 和过点A 且垂直于AC 的射线AD 上运动,当AQ =______时,ABC 和PQA △全等.15.如图,AB 与CD 相交于点O ,OC =OD .若要得到△AOC ≌△BOD ,则应添加的条件是__________.(写出一种情况即可)16.如图,AC//BD ,OA ,OB 分别平分BAC ∠和ABD ∠,OE AB ⊥,垂足为E ,如果OE 5=,那么AC 与BD 的距离是________17.在ABC 中,48ABC ︒∠=,点D 在BC 边上,且满足18,BAD DC AB ︒∠==,则CAD ∠=________度. 18.如图所示,AB AC =,AD AE =,BAC DAE ∠=∠,点D 在线段BE 上.若125∠=︒,230∠=︒,则3∠=______.19.如图,△ABC 的外角∠MBC 和∠NCB 的平分线BP 、CP 相交于点P ,PE ⊥BC 于E 且PE =3cm ,若△ABC 的周长为14cm ,S △BPC =7.5,则△ABC 的面积为______cm 2.20.如图,在ABC 中,60BAC ∠=︒,BAC ∠的平分线AD 与边BC 的垂直平分线MD 相交于点D ,DE AB ⊥交AB 的延长线于点E ,DF AC ⊥于点F ,现有下列结论:①120EDF ∠=︒;②DM 平分EDF ∠;③DE DF AD +=;④2AB AC AE +>;其中正确的有________(请将正确结论的序号填写在横线上).三、解答题21.如图,点A 、D 、B 、E 在一条直线上,BC 与DF 交于点G ,AD BE =,//BC EF ,BC EF =.求证:ABC DEF △≌△.22.在Rt ABC △中,90C ∠=︒,8cm AC =,6cm BC =,点D 在AC 上,且6cm AD =,过点A 作射线AE AC ⊥(AE 与BC 在AC 同侧),若点P 从点A 出发,沿射线AE 匀速运动,运动速度为1cm/s ,设点P 运动时间为t 秒.连结PD 、BD .(1)如图①,当PD BD ⊥时,求证:PDA DBC △≌△;(2)如图②,当PD AB ⊥于点F 时,求此时t 的值.23.如图,点B 、E 、C 、F 在同一条直线上,A D ∠=∠,//AB DE ,BE CF =.求证://AC DF .24.求证:全等三角形对应边上的中线相等.(根据图形写出已知,求证并完成证明)25.已知:如图,AOB ∠.求作: A O B '''∠,使A O B AOB '''∠=∠.作法:①以点O 为圆心,任意长为半径画弧,分别交OA ,OB 于点C ,D ;②画一条射线O A '',以点O '为圆心,OC 长为半径画弧,交O A ''于点C '; ③以点C '为圆心,CD 长为半径画弧,与②中所画的弧相交于点D ;④过点D 画射线O B '',则A O B AOB '''∠=∠;A OB '''∠就是所求作的角.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明证明:连接C D ''.由作法可知OC O C ''=, ,,∴COD C O D '''≅.( )(填推理依据).∴A O B AOB '''∠=∠.∴A O B '''∠就是所求作的角.26.已知:如图,AB = AD .请添加一个条件使得△ABC ≌△ADC ,然后再加以证明.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据到角的两边距离相等的点在角的平分线上判断出点O 是三角形三条角平分线的交点,再根据三角形的内角和定理求出∠ABC+∠ACB ,然后求出∠OBC+∠OCB ,再利用三角形的内角和定理列式计算即可得解.【详解】解:∵O 到三边AB 、BC 、CA 的距离OF=OD=OE ,∴点O 是三角形三条角平分线的交点,∵∠BAC=70°,∴∠ABC+∠ACB=180°-70°=110°,∴∠OBC+∠OCB= 12(∠ABC+∠ACB )= 12×110°=55°, 在△OBC 中,∠BOC=180°-(∠OBC+∠OCB )=180°-55°=125°.故选:A .【点睛】本题考查了角平分线判定定理,三角形的内角和定理,要注意整体思想的利用. 2.D解析:D【分析】根据垂直关系,可以判断△AEF 与△CEB 有两对角相等,就只需要添加一对边相等就可以了.【详解】解:∵AD ⊥BC ,CE ⊥AB ,垂足分别为D 、E ,∴∠AEF=∠CEB=90°,∠ADB=∠ADC=90°,∴∠EAF+∠B=90°,∠BCE+∠B=90°,∴∠EAF=∠BCE .A.在Rt △AEF 和Rt △CEB 中AEF CEB EAF BCE EF EB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴AEF ≌CEB △(AAS ),故正确;B.在Rt △AEF 和Rt △CEB 中 AEF CEB EA ECEAF BCE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴AEF ≌CEB △(ASA ),故正确;C.在Rt △AEF 和Rt △CEB 中 AEF CEB EAF BCE AF CB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴AEF ≌CEB △(AAS ),故正确;D.在Rt △AEF 和Rt △CEB 中 由AEF CEB EAF BCE AFB B ∠=∠⎧⎪∠=∠⎨⎪∠=∠⎩不能证明AEF ≌CEB △,故不正确; 故选D .【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .添加时注意:AAA 、SSA 不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.3.C解析:C【分析】延长AP 交BC 于E ,根据AP 垂直∠B 的平分线BP 于P ,即可求出△ABP ≌△BEP ,又知△APC 和△CPE 等底同高,可以证明两三角形面积相等,即可证明三角形PBC 的面积.【详解】解:延长AP 交BC 于E ,∵AP 垂直∠B 的平分线BP 于P ,∴∠ABP =∠EBP ,∠APB =∠BPE =90∘,在△APB 和△EPB 中∠=∠⎧⎪=⎨⎪∠=∠⎩APB EPB BP BPABP EBP ∴△APB ≌△EPB (ASA ),∴APB EPB S S =△△,AP =PE ,∴△APC 和△CPE 等底同高,∴APC PCE S S =,∴PBC PCE PCE S S S =+△△△=12ABC S =1632⨯= 故选C .【点睛】本题考查了三角形的面积和全等三角形的性质和判定的应用,关键是求出PBC PCE PCE S S S =+△△△=12ABC S .4.B解析:B【分析】根据AAS 定理或ASA 定理即可得.【详解】在ABC 和DEF 中,,A C F D ∠∠∠=∠=,∴要使ABC DEF ≅,只需增加一组对应边相等即可,即需增加的条件是AB DE =或AC DF =或BC EF =,观察四个选项可知,只有选项B 符合,故选:B .【点睛】本题考查了三角形全等的判定定理,熟练掌握三角形全等的判定定理是解题关键. 5.A解析:A【分析】利用垂直得到90PMO PNO ∠=∠=,再由OM ON =,OP OP =即可根据HL 证明()HL ≌PMO PNO △△,由此得到答案.【详解】∵PM OA ⊥,PN OB ⊥,∴90PMO PNO ∠=∠=.∵OM ON =,OP OP =,∴()HL ≌PMO PNO △△, ∴POA POB ∠=∠,故选:A .【点睛】此题考查三角形全等的判定定理:SSS 、SAS 、ASA 、AAS 、HL ,根据题中的已知条件确定对应相等的边或角,由此利用以上五种方法中的任意一种证明两个三角形全等. 6.C解析:C证明EF ∥BC 即可得到A 正确,证明()Rt ACB Rt FEC HL ≅,得AC =EF =12cm ,CE =BC =5cm ,得到B 正确,根据∠A +∠ACD =∠F +∠ACD =90°即可证明D 正确.【详解】解:∵EF ⊥AC ,∠ACB =90°,∴∠AEF =∠ACB =90°,∴EF ∥BC ,∴∠F =∠BCF ,故A 正确;在Rt ACB 和Rt FEC 中,CB EC AB FC =⎧⎨=⎩, ∴()Rt ACB Rt FEC HL ≅,∴AC =EF =12cm ,∵CE =BC =5cm ,∴AE =AC ﹣CE =7cm .故B 正确;如图,记AB 与EF 交于点G ,如果AE =CE ,∵EF ∥BC ,∴EG 是△ABC 的中位线,∴EF 平分AB ,而AE 与CE 不一定相等,∴不能证明EF 平分AB ,故C 错误;∵Rt ACB Rt FEC ≅,∴∠A =∠F ,∴∠A +∠ACD =∠F +∠ACD =90°,∴∠ADC =90°,∴AB ⊥CF ,故D 正确.∴结论不正确的是C .故选:C .【点睛】本题考查全等三角形的性质和判定,解题的关键是掌握全等三角形的性质和判定定理. 7.B【分析】根据全等三角形的判定定理进行证明并依次判断.【详解】解:A 、有两边及其中一边上的中线对应相等的两个三角形全等,可利用证两步全等的方法求得,是真命题;B 、高有可能在内部,也有可能在外部,是不确定的,不符合全等的条件,原命题是假命题;C 、有两角及其中一角的平分线对应相等的两三角形全等,可利用证两步全等的方法求得,是真命题;D 、有两边及第三边上的中线对应相等的两三角形全等,可利用证两步全等的方法求得,是真命题;故选:B .【点睛】此题考查全等三角形的判定定理:SSS 、SAS 、ASA 、AAS 、HL ,灵活判定命题真假,熟记定理并灵活应用解决问题是解题的关键.8.C解析:C【分析】先证明()ABC CED SSS ∆≅∆得到B E ∠=∠、FCD FDC ∠=∠,再根据1802ACE ABC x ∠=︒-∠-︒可得2CFE x ∠=︒;然后根据外角的性质可得2EFC FDC FCD FDC ∠=∠+∠=∠即可解答.【详解】解:在ABC ∆和CED ∆中,AC CD AB CE BC ED =⎧⎪=⎨⎪=⎩,()ABC CED SSS ∴∆≅∆,B E ∴∠=∠,FCD FDC ∠=∠1802180ACE ABC x E CFE ∠=︒-∠-︒=︒-∠-∠,2CFE x ∴∠=︒,2EFC FDC FCD FDC ∠=∠+∠=∠=2x ︒,FDC x ∴∠=︒.故答案为C .【点睛】本题主要考查全等三角形的判定和性质、三角形的外角的性质等知识,弄清题意、理清角之间的关系是解答本题的关键.9.A【分析】根据两条平行线之间的距离可知当CD ⊥OM 时,CD 取最小值,先利用角平分线的性质得出AD =AE =3,利用全等三角形的判定和性质得出AC =AD =AE =3,进而解答即可.【详解】解:由题意得,当CD ⊥OM 时,CD 取最小值,∵OB 平分∠MON ,AE ⊥ON 于点E ,CD ⊥OM ,∴AD =AE =3,∵BC ∥OM ,∴∠DOA =∠B ,∵A 为OB 中点,∴AB =AO ,在△ADO 与△ABC 中B DOA AB AO BAC DAO ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADO ≌△ABC (SAS ),∴AC =AD =3,∴336CD AC AD =+=+=,故选A .【点睛】此题考查角平分线的性质、全等三角形的判定和性质、平行线之间的距离,关键是利用全等三角形的判定和性质得出AC =AD =AE =3.10.D解析:D【分析】利用构成三角形的条件,以及全等三角形的判定得解.【详解】解:A ,AB BC CA +=,不满足三边关系,不能画出三角形,故选项错误; B ,不满足三角形全等的判定,不能画出唯一的三角形,故选项错误;C ,不满足三角形全等的判定,不能画出唯一的三角形,故选项错误;D ,可以利用直角三角形全等判定定理HL 证明三角形全等,故选项正确.故选:D【点睛】本题考查三角形全等的判定以及构成三角形的条件,解题的关键是熟练掌握全等三角形的判定方法.11.B解析:B本题已知条件是两个三角形有一公共边,只要再加另外两边对应相等或有两角对应相等即可,如果所加条件是一边和一角对应相等,则所加角必须是所加边和公共边的夹角对应相等才能判定两个三角形全等;【详解】A、符合AAS,能判断两个三角形全等,故该选项不符合题意;B、符合SSA,∠BAD和∠ABC不是两条边的夹角,不能判断两个三角形全等,故该选项符合题意;C、符合AAS,能判断两个三角形全等,故该选项不符合题意;D、符合SSS,能判断两个三角形全等,故该选项不符合题意;故选:B.【点睛】本题考查了全等三角形的判定方法,三角形判定定理中,最容易出错的是“边角边”定理,这里强调的是夹角,不是任意角;12.C解析:C【分析】在△ACD和△ABD中,AD=AD,AB=AC,由全等三角形判定定理对选项一一分析,排除不符合题意的选项即可.【详解】解:添加A选项中条件可用HL判定两个三角形全等,故选项A不符合题意;添加B选项中的条件可用SSS判定两个三角形全等,故选项B不符合题意;添加C选项中的条件∠1=∠2可得∠CDA=∠BDA,结合已知条件不SS判定两个三角形全等,故选项C符合题意;添加D选项中的条件可用SAS判定两个三角形全等,故选项D不符合题意.故选:C.【点睛】本题考查了全等三角形的判定,判定三角形全等的方法:SSS、SAS、ASA、AAS,判断直角三角形全等的方法:“HL”.二、填空题13.ED=FD(答案不唯一∠E=∠CFD或∠DBE=∠DCF)【分析】根据三角形全等的判定方法SAS或AAS或ASA定理添加条件然后证明即可【详解】解:∵D是的中点∴BD=DC①若添加ED=FD在△BD解析:ED=FD(答案不唯一,∠E=∠CFD或∠DBE=∠DCF)【分析】根据三角形全等的判定方法SAS或AAS或ASA定理添加条件,然后证明即可.【详解】解:∵D是BC的中点,∴BD=DC①若添加ED=FD在△BDE和△CDF中,BD CDBDE CDF ED FD=⎧⎪∠=∠⎨⎪=⎩,∴△BDE≌△CDF(SAS);②若添加∠E=∠CFD在△BDE和△CDF中,BDE CDFE CFDBD CD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BDE≌△CDF(AAS);③若添加∠DBE=∠DCF在△BDE和△CDF中,BDE CDF BD CDDBE DCF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BDE≌△CDF(ASA);故答案为:ED=FD(答案不唯一,∠E=∠CFD或∠DBE=∠DCF).【点睛】本题考查了全等三角形的判定,熟练掌握三角形全等的判定方法是解题的关键.14.5或10【分析】分两种情况:当AQ=5时当AQ=10时利用全等三角形的判定及性质定理得到结论【详解】分两种情况:当AQ=5时∵∴AQ=BC∵AD⊥AC∴∠QAP=∠ACB=∵AB=PQ∴≌△PQA(解析:5或10【分析】分两种情况:当AQ=5时,当AQ=10时,利用全等三角形的判定及性质定理得到结论.【详解】分两种情况:当AQ=5时,∵5BC=,∴AQ=BC,∵AD⊥AC,∴∠QAP=∠ACB=90︒,∵AB=PQ,∴ABC≌△PQA(HL);当AQ=10时,∵10AC=,∴AQ=AC ,∵AD ⊥AC ,∴∠QAP=∠ACB=90︒,∵AB=PQ ,∴△ABC ≌△QPA ,故答案为:5或10.【点睛】此题考查全等三角形的判定及性质定理,运用分类思想,动点问题,熟记三角形的判定定理及性质定理是解题的关键.15.OA=OB (答案不唯一)【分析】全等三角形的判定方法有SASASAAASSSS 只要添加一个符合的条件即可【详解】解:OA=OB 理由是:在△AOC 和△BOD 中∴△AOC ≌△BOD (SAS )故答案为:O解析:OA=OB .(答案不唯一)【分析】全等三角形的判定方法有SAS ,ASA ,AAS ,SSS ,只要添加一个符合的条件即可.【详解】解:OA=OB ,理由是:在△AOC 和△BOD 中,OA OB AOC BOD OC OD =⎧⎪∠=∠⎨⎪=⎩,∴△AOC ≌△BOD (SAS ).故答案为:OA=OB .(答案不唯一)【点睛】本题考查了全等三角形的判定的应用,通过做此题培养了学生的发散思维能力和对全等三角形的判定方法的灵活运用能力,题目答案不唯一,是一道比较好的题目.16.【分析】过点作于作于利用平行线的性质可证得OM ⊥BD 进而可证得MN 为AC 和BD 的距离根据角平分线的性质可知OE=OM=OE 即可求得MN 的长度【详解】解:如图过点作于作于∵分别平分和∴又∥∴又∴三点共解析:10【分析】过点O 作OM AC ⊥于M ,作ON BD ⊥于N ,利用平行线的性质可证得OM ⊥BD ,进而可证得MN 为AC 和BD 的距离,根据角平分线的性质可知OE=OM=OE ,即可求得MN 的长度.【详解】解:如图,过点O 作OM AC ⊥于M ,作ON BD ⊥于N .∵OA 、OB 分别平分BAC ∠和ABD ∠,OE AB ⊥,∴OM OE ON 5===,又 AC ∥BD ,OM AC ⊥,∴OM BD ⊥,又ON BD ⊥,∴M ,O ,N 三点共线,∴ AC 与BD 之间的距离为MN=OM ON 10+=.故答案为:10.【点睛】本题考查求平行线间的距离、角平分线的性质、八个基本事实,熟练掌握角平分线的性质,作出AC 和BD 之间的距离是解答的关键.17.66【分析】在线段CD 上取点E 使CE=BD 再证明△ADB ≅△AEC 即可求出【详解】在线段DC 取点ECE=BD 连接AE ∵CE=BD ∴BE=CD ∵AB=CD ∴AB=BE ∠BAE=∠BEA=(180°-4解析:66【分析】在线段CD 上取点E 使CE =BD ,再证明△ADB ≅△AEC 即可求出. 【详解】在线段DC 取点E ,CE =BD ,连接AE ,∵CE =BD ,∴BE =CD ,∵AB =CD ,∴AB =BE ,∠BAE =∠BEA =(180°-48°)÷2=66°,∴∠DAE =48° ,∠AED =66°,∴△ADB ≅△AEC ,∴∠BAD =∠CAE =18°,∴∠CAD =∠DAE +∠CAE =66°.故答案为:66.【点睛】本题考察了全等三角形的证明和三角形内角和定理,解题的关键是做出辅助线找到全等三角形.18.55°【分析】先证明△ABD ≌△ACE (SAS );再利用全等三角形的性质:对应角相等求得∠2=∠ABE ;最后根据三角形内角与外角的性质即可求出答案【详解】∵∴∠1+∠CAD=∠CAE+∠CAD ∴∠1解析:55°【分析】先证明△ABD ≌△ACE (SAS );再利用全等三角形的性质:对应角相等,求得∠2=∠ABE ;最后根据三角形内角与外角的性质即可求出答案.【详解】∵BAC DAE ∠=∠,∴∠1+∠CAD=∠CAE+∠CAD ,∴∠1=∠CAE ;在△ABD 与△ACE 中,1AD AE CAE AB AC =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ACE (SAS );∴∠2=∠ABE ;∵∠3=∠ABE+∠1=∠1+∠2,∠1=25°,∠2=30°,∴∠3=55°.故答案为:55°.【点睛】本题考查了全等三角形的判定及性质,三角形的外角性质;将所求的角与已知角通过全等及内角、外角之间的关系联系起来是解答此题的关键.19.6【分析】过点P 作PH ⊥AMPQ ⊥AN 连接AP 根据角平分线上的点到角两边的距离相等可得PH=PE=PQ 再根据三角形的面积求出BC 然后求出AC+AB 再根据S △ABC=S △ACP+S △ABP-S △BPC解析:6【分析】过点P 作PH ⊥AM ,PQ ⊥AN,连接AP ,根据角平分线上的点到角两边的距离相等可得PH=PE=PQ ,再根据三角形的面积求出BC ,然后求出AC+AB ,再根据S △ABC= S △ACP+ S △ABP -S △BPC 即可得解.【详解】解:如图,过点P 作PH ⊥AM ,PQ ⊥AN ,连接AP∵BP 和CP 为∠MBC 和∠NCB 角平分线∴PH=PE ,PE=PQ∴PH=PE=PQ=3∵S △BPC=12×BC×PE=7.5 ∴BC=5∵S △ABC= S △ACP+ S △ABP -S △BPC =12×AC×PQ+12×AB×PH-7.5 =12×3(AC+AB )-7.5 ∵AC+AB+BC=14,BC=5∴AC+AB=9∴S △ABC=12×3×9-7.5=6 cm 2 【点睛】本题考查了角平分线上点到角的两边距离相等的性质,三角形的面积,熟记性质是解题的关键,难点在于S △ABC 的面积的表示.20.①③【分析】由四边形内角和定理可求出;若DM 平分∠EDF 则∠EDM=60°从而得到∠ABC 为等边三角形条件不足不能确定故②错误;由题意可知∠EAD=∠FAD=30°故此可知ED=ADDF=AD 从而可解析:①③【分析】由四边形内角和定理可求出120EDF ∠=︒;若DM 平分∠EDF ,则∠EDM=60°,从而得到∠ABC 为等边三角形,条件不足,不能确定,故②错误;由题意可知∠EAD=∠FAD=30°,故此可知ED=12AD ,DF=12AD ,从而可证明③正确;连接BD 、DC ,然后证明△EBD ≌△CFD ,从而得到BE=FC ,从而可得AB+AC=2AE ,故可判断④.【详解】解:如图所示:连接BD 、DC .(1)∵DE AB ⊥,DF AC ⊥,∴∠AED=∠AFD=90°,∵∠EAF=60°,∠EAF+∠AED+∠AFD+∠EDF=360°∴∠EDF=360°-∠EAF-∠AED-∠AFD=360°-60°-90°-90°=120°, 故①正确;②由题意可知:∠EDA=∠ADF=60°.假设MD 平分∠EDF ,则∠ADM=30°.则∠EDM=60°, 又∵∠E=∠BMD=90°,∴∠EBM=120°.∴∠ABC=60°.∵∠ABC 是否等于60°不知道,∴不能判定MD 平分∠EDF ,故②错误;③∵∠EAC=60°,AD 平分∠BAC ,∴∠EAD=∠FAD=30°.∵DE ⊥AB ,∴∠AED=90°.∵∠AED=90°,∠EAD=30°,∴ED=12AD . 同理:DF=12AD . ∴DE+DF=AD .故③正确.④∵DM 是BC 的垂直平分线,∴DB=DC .在Rt △BED 和Rt △CFD 中DE DF BD DC ⎧⎨⎩==, ∴Rt △BED ≌Rt △CFD .∴BE=FC .∴AB+AC=AE-BE+AF+FC又∵AE=AF ,BE=FC ,∴AB+AC=2AE .故④错误.因此正确的结论是:①③,故答案为:①③.【点睛】本题主要考查的是全等三角形的性质和判定、角平分线的性质、线段垂直平分线的性质以及四边形的内角和等知识,掌握本题的辅助线的作法是解题的关键.三、解答题21.见解析【分析】由AD BE =,得AB=DE ,由//BC EF ,得ABC E ∠=∠,根据SAS 可证.【详解】证明:∵AD BE =,∴AD BD BE BD +=+,∴AB DE =,∵//BC EF ,∴ABC E ∠=∠,在ABC 和DEF 中,AB DE ABC E BC EF =⎧⎪∠=∠⎨⎪=⎩,∴()ABC DEF SAS ≌.【点睛】本题考查了用“边角边”定理判断两个三角形全等,解题关键是挖掘题目隐含的全等条件,根据判定定理证明.22.(1)见解析;(2)8秒【分析】(1)根据垂直及角之间的关系证明出PDA CBD ∠=∠,又有90PAD C ∠=∠=︒,=6AD BC =,根据三角形全等的判定定理则可证明PDA DBC △≌△.(2)根据垂直及角之间的关系证明APF DAF ∠=∠,又因为90PAD C ∠=∠=︒,AD BC =,则可证明PAD ACB △≌△,所以8cm AP AC ==,即t=8秒.【详解】(1)证明:PD BD ⊥,90PDB ∴∠=︒,即90BDC PDA ∠+∠=︒又90C ∠=︒,90BDC CBD ∠+∠=︒ PDA CBD ∴∠=∠又AE AC ⊥,90PAD ∴∠=︒90PAD C ∴∠=∠=︒又6cm BC =,6cm AD =AD BC ∴= 在PAD △和DCB 中PAD C AD CBPDA DBC ∠=∠⎧⎪=⎨⎪∠=∠⎩()PDA DBC ASA ∴△≌△(2)PD AB ⊥,90AFD AFP ∴∠=∠=︒,即90PAF APF ∠+∠=︒又AE AC ⊥, 90PAF DAF ∴∠+∠=︒APF DAF ∴∠=∠又90PAD C ∠=∠=︒,AD BC =在APD △和CAB △中APD CAB PAD C AD BC ∠=∠⎧⎪∠=∠⎨⎪=⎩()PAD ACB AAS ∴△≌△8cm AP AC ∴==即8t =秒.【点睛】本题主要考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理,灵活运用角之间的关系是解题关键.23.见解析.【分析】根据//AB DE 可知B DEF ∠=∠,又根据∠A=∠D ,BE=CF 可以判定ABC DEF △≌△,即可求证//AC DF ;【详解】∵//AB DE ,∴B DEF ∠=∠,∵BE CF =,∴BC EF =,∴在ABC 和DEF 中,A DB DEF BC EF ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ABC DEF △≌△,∴ACB F ∠=∠,∴//AC DF .【点睛】本题考查了三角形全等的性质与判定的应用以及两直线平行的判定定理,解此题的关键是推出ABC DEF △≌△,注意全等三角形的对应边相等;24.见解析【分析】利用SAS 证明ABD ≌A B D '''△,即可证得结论.【详解】 解:已知:如图,ABC ≌A B C ''',AD 和A D ''分别是BC 和B C ''上的中线,求证:AD =A D ''.证明:∵ABC ≌A B C ''', ∴AB =A B '',∠B =∠B ',BC =B C '',∵AD 、A D ''是 BC 和B C ''上的中线,∴BD =12BC ,12B D B C ''''=, ∴BD =B D '',∴在ABD 与A B D '''△中 AB A B B B BD B D =⎧⎪∠=∠⎨⎪=''''⎩' ∴ABD ≌A B D '''△(SAS ),∴AD =A D ''.【点睛】本题考查了全等三角形的判定与性质,证明线段相等的问题,基本的思路是转化成三角形全等.25.(1)补全图形见解析;(2)OD O D ''=,CD C D ''=,SSS .【分析】(1)根据题意要求作图即可;(2)根据题意利用SSS 证明COD C O D '''≅即可.【详解】(1)作图:(2)连接C D '',∵OC O C ''=,OD O D ''= ,CD C D ''=,∴COD C O D '''≅(SSS ),∴A O B AOB '''∠=∠.∴A O B '''∠就是所求作的角故答案为:OD O D ''=,CD C D ''=,SSS ..【点睛】此题考查作图能力—作一个角等于已知角,全等三角形的判定及性质,根据题意画出图形并确定对应相等的条件证明三角形全等是解题的关键.26.BC=CD,证明见解析(答案不唯一).【分析】已知两组对应边相等,则找另一组边相等或找另一组对应角相等均可证明△ABC ≌△ADC .【详解】解:若添加条件为:BC=CD,证明如下:在△ABC 和△ADC 中AC AC BC CD AB AD =⎧⎪=⎨⎪=⎩∴△ABC ≌△ADC (SSS )(答案不唯一).【点睛】本题主要考查了全等三角形的判定,灵活运用全等三角形的判定方法是解答本题的关键.。

全等三角形测试卷

全等三角形测试卷

第十二章 全等三角形检测题一、选择题(每小题3分,共30分)1.下列说法正确的是( )A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等 2. 如图所示,分别表示△ABC 的三边长,则下面与△一定全等的三角形是( )A BC D3.如图所示,已知△ABE ≌△ACD ,∠1=∠2,∠B =∠C ,下列不正确的等式是( )A .AB =AC B.∠BAE =∠CAD C.BE =DC D.AD =DE 4. 在△ABC 和△A B C '''中,AB =A B '',∠B =∠B ',补充条件后仍不一定能保证△ABC ≌△A B C ''',则补充的这个条件是( )A .BC =BC '' B .∠A =∠A ' C .AC =A C ''D .∠C =∠C '5.如图所示,点B 、C 、E 在同一条直线上,△ABC 与△CDE 都是等边三角形,则下列 结论不一定成立的是( )A.△ACE ≌△BCDB.△BGC ≌△AFCC.△DCG ≌△ECFD.△ADB ≌△CEA第3题第5题第2题第6题图6.要测量河两岸相对的两点的距离,先在的垂线上取两点,使,再作出的垂线,使在一条直线上(如图所示),可以说明△≌△,得,因此测得的长就是的长,判定△≌△最恰当的理由是( )A.边角边B.角边角C.边边边D.边边角7.已知:如图所示,AC =CD ,∠B =∠E =90°,AC ⊥CD ,则不正确的结论是( ) A .∠A 与∠D 互为余角B .∠A =∠2C .△ABC ≌△CED D .∠1=∠2 8. 在△和△FED 中,已知∠C =∠D ,∠B =∠E ,要判定这两个三角形全等,还需要条件( )A.AB =EDB.AB =FDC.AC =FDD.∠A =∠F9.如图所示,在△ABC 中,AB =AC ,∠ABC 、∠ACB 的平分线BD ,CE 相交于O 点,且BD 交AC 于点D ,CE 交AB 于点E .某同学分析图形后得出以下结论:①△BCD ≌△CBE ;②△BAD ≌ △BCD ;③△BDA ≌△CEA ;④△BOE ≌△COD ;⑤△ACE ≌△BCE ,上述结论一定正确的是( ) A.①②③ B.②③④ C.①③⑤ D.①③④二、填空题(每小题4分,共32分)10. 如果△ABC 和△DEF 这两个三角形全等,点C 和点E ,点B 和点D分别是对应点,则另一组对应点是 , 对应边是 , 对应角是 ,表示这两个三角形全等的式子是 .第9题图第7题图第10题图11. 如图,在△ABC 中,AB =8,AC =6,则BC 边上的中线AD 的取值范围是 . 12. 如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3= .13.如图所示,已知等边△ABC 中,BD =CE ,AD 与BE 相交于点P ,则∠APE 是 度. 14.如图所示,AB =AC ,AD =AE ,∠BAC =∠DAE ,∠1=25°,∠2=30°,则∠3= .15.如图所示,在△ABC 中,∠C =90°,AD 平分∠CAB ,BC =8 cm ,BD =5 cm ,那么点D 到直线AB 的距离是 cm.16.如图所示,已知△ABC 的周长是21,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD =3,则△ABC 的面积是 .17. 如图所示,已知在△ABC 中,∠A =90°,AB =AC ,CD 平分∠ACB ,DE ⊥BC 于E ,若BC = 15 cm ,则△DEB 的周长为 cm .三、解答题(共46分)18.(6分)如图,已知△≌△是对应角.(1)写出相等的线段与相等的角;(2)若EF =2.1 cm ,FH =1.1 cm ,HM =3.3 cm ,求MN 和HG 的长度.19. (8分)如图所示,△ABC ≌△ADE ,且∠CAD =10°,∠B =∠D =25°,∠EAB =120°,求∠DFB 和∠DGB 的度数.第14题图第16题图第17题图第13题图第15题图第19题图20.(8分)如图所示,已知AE ⊥AB ,AF ⊥AC ,AE =AB ,AF =AC .求证:(1)EC =BF ;(2)EC ⊥BF.21. (9分)如图所示,在△ABC 中,AB =AC ,BD ⊥AC 于D ,CE ⊥AB 于E ,BD 、CE 相交于F .求证:AF 平分∠BAC .22. (10分) 已知:在△ABC 中,AC =BC ,∠ACB =90°,点D 是AB 的中点,点E 是AB 边上一点.(1)直线BF 垂直于直线CE 于点F ,交CD 于点G (如图①),求证:AE =CG ; (2)直线AH 垂直于直线CE ,垂足为点 H ,交CD 的延长线于点M (如图②),找出图中与BE 相等的线段,并证明.第24题图第23题图 第21题图第十二章全等三角形检测题参考答案1. C 解析:能够完全重合的两个三角形全等,全等三角形的大小相等且形状相同,形状相同的两个三角形相似,但不一定全等,故A错;面积相等的两个三角形形状和大小都不一定相同,故B错;所有的等边三角形不全等,故D错.2. B 解析:A.与三角形有两边相等,而夹角不一定相等,二者不一定全等;B.与三角形有两边及其夹角相等,二者全等;C.与三角形有两边相等,但夹角不相等,二者不全等;D.与三角形有两角相等,但夹边不对应相等,二者不全等.故选B.3. D 解析:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,∴AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,故A、B、C正确;AD的对应边是AE而非DE,所以D错误.故选D.4. C 解析:选项A满足三角形全等的判定条件中的边角边,选项B满足三角形全等的判定条件中的角边角,选项D满足三角形全等的判定条件中的角角边,只有选项C 不满足三角形全等的条件.5. D 解析:∵△ABC和△CDE都是等边三角形,∴BC=AC,CE=CD,∠BCA=∠ECD=60°,∴∠BCA+∠ACD=∠ECD+∠ACD,即∠BCD=∠ACE,∴在△BCD和△ACE中,∴△BCD≌△ACE(SAS),故A成立.∵△BCD≌△ACE,∴∠DBC=∠CAE.∵∠BCA=∠ECD=60°,∴∠ACD=60°.在△BGC和△AFC中,∴△BGC≌△AFC,故B成立.∵△BCD≌△ACE,∴∠CDB=∠CEA,在△DCG和△ECF中,∴△DCG≌△ECF,故C成立.6. B 解析:∵BF⊥AB,DE⊥BD,∴∠ABC=∠BDE.又∵CD=BC,∠ACB=∠DCE,∴△EDC≌△ABC(ASA).故选B.7. D 解析:∵AC⊥CD,∴∠1+∠2=90°,∵∠B=90°,∴∠1+∠A=90°,∴∠A=∠2.在△ABC和△CED中,∴△ABC≌△CED,故B、C选项正确.∵∠2+∠D=90°,∴∠A+∠D=90°,故A选项正确.∵AC⊥CD,∴∠ACD=90°,∠1+∠2=90°,故D选项错误.故选D.8. C 解析:因为∠C=∠D,∠B=∠E,所以点C与点D,点B与点E,点A与点F是对应顶点,AB的对应边应是FE,AC的对应边应是FD,根据AAS,当AC=FD时,有△ABC≌△FED.9. D 解析:∵AB=AC,∴∠ABC=∠ACB.∵BD平分∠ABC,CE平分∠ACB,∴∠ABD=∠CBD=∠ACE=∠BCE.∴①△BCD≌△CBE(ASA);由①可得CE=BD, BE=CD,∴③△BDA≌△CEA(SAS);又∠EOB=∠DOC,所以④△BOE≌△COD(AAS).故选D.10. 点A与点F AB与FD,BC与DE,AC与FE ∠A=∠F,∠C=∠E,∠B=∠D△ABC≌△FDE解析:利用全等三角形的表示方法并结合对应点写在对应的位置上写出对应边和对应角.11.△△△12. 135° 解析:观察图形可知:△ABC ≌△BDE , ∴ ∠1=∠DBE .又∵ ∠DBE +∠3=90°,∴ ∠1+∠3=90°.∵ ∠2=45°,∴ ∠1+∠2+∠3=∠1+∠3+∠2=90°+45°=135°. 13. 60 解析:∵ △ABC 是等边三角形,∴ ∠ABD =∠C ,AB =BC .∵ BD =CE , ∴ △ABD ≌△BCE ,∴ ∠BAD =∠CBE .∵ ∠ABE +∠EBC =60°,∴ ∠ABE +∠BAD =60°, ∴ ∠APE =∠ABE +∠BAD =60°.14. 55° 解析:在△ABD 与△ACE 中,∵ ∠1+∠CAD =∠CAE +∠CAD ,∴ ∠1=∠CAE . 又∵ AB =AC ,AD =AE ,∴ △ABD ≌△ACE (SAS ).∴ ∠2=∠ABD .∵ ∠3=∠1+∠ABD =∠1+∠2,∠1=25°,∠2=30°, ∴ ∠3=55°.15. 3 解析:由∠C =90°,AD 平分∠CAB ,作DE ⊥AB 于E ,所以D 点到直线AB 的距离是DE 的长. 由角平分线的性质可知DE =DC .又BC =8 cm ,BD =5 cm ,所以DE =DC =3 cm . 所以点D 到直线AB 的距离是3 cm .16. 31.5 解析:作OE ⊥AC ,OF ⊥AB ,垂足分别为E 、F ,连接OA ,∵ OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC , ∴ OD =OE =OF .∴=×OD ×BC +×OE ×AC +×OF ×AB=×OD ×(BC +AC +AB )第16题答图第17题答图第13题答图=×3×21=31.5.17.15 解析:因为CD平分∠ACB,∠A=90°,DE⊥BC,所以∠ACD=∠ECD,CD=CD,∠DAC=∠DEC,所以△ADC≌△EDC,所以AD=DE, AC=EC,所以△DEB的周长=BD+DE+BE=BD+AD+BE.又因为AB=AC,所以△DEB的周长=AB+BE=AC+BE=EC+BE=BC=15(cm).18.分析:(1)根据△≌△是对应角可得到两个三角形中对应相等的三条边和三个角;(2)根据(1)中的相等关系即可得的长度.解:(1)因为△≌△是对应角,所以.因为GH是公共边,所以.(2)因为 2.1 cm,所以=2.1 cm.因为 3.3 cm,所以.19.分析:由△ABC≌△ADE,可得∠DAE=∠BAC=(∠EAB-∠CAD),根据三角形外角性质可得∠DFB=∠FAB+∠B.因为∠FAB=∠FAC+∠CAB,即可求得∠DFB的度数;根据三角形外角性质可得∠DGB=∠DFB -∠D,即可得∠DGB的度数.解:∵△ABC≌△ADE,∴∠DAE=∠BAC=(∠EAB-∠CAD)=.∴∠DFB=∠FAB+∠B=∠FAC+∠CAB+∠B=10°+55°+25°=90°,∠DGB=∠DFB-∠D=90°-25°=65°.20. 分析:首先根据角间的关系推出再根据边角边定理,证明△≌△.最后根据全等三角形的性质定理,得知.根据角的转换可求出.证明:(1)因为,所以.又因为在△与△中,,,,AE AB EAC BAF AC AF =⎧⎪∠=∠⎨⎪=⎩所以△≌△. 所以.(2)因为△△,所以,即21. 证明:∵ DB ⊥AC ,CE ⊥AB ,∴ ∠AEC =∠ADB =90°.∴ 在△ACE 与△ABD 中,∴ △ACE ≌△ABD (AAS ), ∴ AD =AE .∴ 在Rt △AEF 与Rt △ADF 中,⎩⎨⎧==,,AF AFAD AE∴ Rt △AEF ≌Rt △ADF (HL ),∴ ∠EAF =∠DAF ,∴ AF 平分∠BAC .22. 解:⑴因为直线BF 垂直于CE 于点F ,所以∠CFB =90°,所以∠ECB +∠CBF =90°.又因为∠ACE +∠ECB =90°,所以∠ACE =∠CBF . 因为AC =BC , ∠ACB =90°,所以∠A =∠CBA =45°.又因为点D是AB的中点,所以∠DCB=45°.因为∠ACE =∠CBF,∠DCB=∠A,AC=BC,所以△CAE≌△BCG,所以AE=CG.(2)BE=CM.证明:∵∠ACB=90°,∴∠ACH +∠BCF=90°.∵CH⊥AM,即∠CHA=90°,∴∠ACH +∠CAH=90°,∴∠BCF=∠CAH.∵CD为等腰直角三角形斜边上的中线,∴CD=AD.∴∠ACD=45°.△CAM与△BCE中,BC=CA ,∠BCF=∠CAH,∠CBE=∠ACM,∴△CAM ≌△BCE,∴BE=CM.。

人教版第12章 全等三角形 测试卷(1)

人教版第12章 全等三角形 测试卷(1)

第12章全等三角形测试卷(1)一、选择题(共9小题)1.如图,▱ABCD中,E,F是对角线BD上的两点,如果添加一个条件,使△ABE ≌△CDF,则添加的条件不能为()A.BE=DF B.BF=DE C.AE=CF D.∠1=∠22.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个 B.2个 C.3个 D.4个3.如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等三角形的对数是()A.1对 B.2对 C.3对 D.4对4.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD5.如图,在△ABC中,AB>AC,点D、E分别是边AB、AC的中点,点F在BC 边上,连接DE、DF、EF,则添加下列哪一个条件后,仍无法判断△FCE与△EDF 全等()A.∠A=∠DFE B.BF=CF C.DF∥AC D.∠C=∠EDF6.如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的()A.AB=CD B.EC=BF C.∠A=∠D D.AB=BC7.如图,下列条件中,不能证明△ABC≌△DCB的是()A.AB=DC,AC=DB B.AB=DC,∠ABC=∠DCBC.BO=CO,∠A=∠D D.AB=DC,∠DBC=∠ACB8.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC 的是()A.CB=CD B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D=90°9.如图,△ABC和△DEF中,AB=DE、∠B=∠DEF,添加下列哪一个条件无法证明△ABC≌△DEF()A.AC∥DF B.∠A=∠D C.AC=DF D.∠ACB=∠F二、填空题(共14小题)10.如图,△ABC≌△DEF,则EF=.11.如图,OP平分∠MON,PE⊥OM于E,PF⊥ON于F,OA=OB,则图中有对全等三角形.12.如图,在▱ABCD中,E、F为对角线AC上两点,且BE∥DF,请从图中找出一对全等三角形:.13.如图,点B、A、D、E在同一直线上,BD=AE,BC∥EF,要使△ABC≌△DEF,则只需添加一个适当的条件是.(只填一个即可)14.如图,在△ABC与△ADC中,已知AD=AB,在不添加任何辅助线的前提下,要使△ABC≌△ADC,只需再添加的一个条件可以是.15.如图,已知AB=BC,要使△ABD≌△CBD,还需添加一个条件,你添加的条件是.(只需写一个,不添加辅助线)16.如图,在四边形ABCD中,AB∥CD,连接BD.请添加一个适当的条件,使△ABD≌△CDB.(只需写一个)17.如图,点B、E、C、F在一条直线上,AB=DE,BE=CF,请添加一个条件,使△ABC≌△DEF.18.如图,已知△ABC中,AB=AC,点D、E在BC上,要使△ABD≌ACE,则只需添加一个适当的条件是.(只填一个即可)19.如图,AC、BD相交于点O,∠A=∠D,请补充一个条件,使△AOB≌△DOC,你补充的条件是(填出一个即可).20.如图,点B,F,C,E在同一直线上,BF=CE,AB∥DE,请添加一个条件,使△ABC≌△DEF,这个添加的条件可以是(只需写一个,不添加辅助线).21.如图,AC与BD相交于点O,且AB=CD,请添加一个条件,使得△ABO ≌△CDO.22.如图,△ABD≌△CBD,若∠A=80°,∠ABC=70°,则∠ADC的度数为.23.如图,△ABC≌△DEF,请根据图中提供的信息,写出x=.三、解答题(共7小题)24.如图,四边形ABCD中,E点在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE,求证:△ABC与△DEC全等.25.如图,∠B=∠D,请添加一个条件(不得添加辅助线),使得△ABC≌△ADC,并说明理由.26.已知:如图,点C为AB中点,CD=BE,CD∥BE.求证:△ACD≌△CBE.27.如图,点C,F在线段BE上,BF=EC,∠1=∠2,请你添加一个条件,使△ABC≌△DEF,并加以证明.(不再添加辅助线和字母)28.如图,在△ABC中,AB=AC,BD=CD,DE⊥AB,DF⊥AC,垂足分别为点E、F.求证:△BED≌△CFD.29.如图,△ABC和△DAE中,∠BAC=∠DAE,AB=AE,AC=AD,连接BD,CE,求证:△ABD≌△AEC.30.如图,四边形ABCD中,E点在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE.请完整说明为何△ABC与△DEC全等的理由.参考答案与试题解析一、选择题(共9小题)1.如图,▱ABCD中,E,F是对角线BD上的两点,如果添加一个条件,使△ABE ≌△CDF,则添加的条件不能为()A.BE=DF B.BF=DE C.AE=CF D.∠1=∠2【考点】全等三角形的判定;平行四边形的性质.【分析】利用平行四边形的性质以及全等三角形的判定分别得出三角形全等,再进行选择即可.【解答】解:A、当BE=FD,∵平行四边形ABCD中,∴AB=CD,∠ABE=∠CDF,在△ABE和△CDF中,∴△ABE≌△CDF(SAS),故此选项错误;C、当AE=CF无法得出△ABE≌△CDF,故此选项符合题意;B、当BF=ED,∴BE=DF,∵平行四边形ABCD中,∴AB=CD,∠ABE=∠CDF,在△ABE和△CDF中,∴△ABE≌△CDF(SAS),故此选项错误;D、当∠1=∠2,∵平行四边形ABCD中,∴AB=CD,∠ABE=∠CDF,在△ABE和△CDF中,∴△ABE≌△CDF(ASA),故此选项错误;故选C.【点评】本题考查了平行四边形的性质以及全等三角形的判定等知识,熟练掌握全等三角形的判定方法是解题关键.2.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个 B.2个 C.3个 D.4个【考点】全等三角形的判定.【分析】根据全等三角形的判定得出点P的位置即可.【解答】解:要使△ABP与△ABC全等,点P到AB的距离应该等于点C到AB 的距离,即3个单位长度,故点P的位置可以是P1,P3,P4三个,故选C【点评】此题考查全等三角形的判定,关键是利用全等三角形的判定进行判定点P的位置.3.如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等三角形的对数是()A.1对 B.2对 C.3对 D.4对【考点】全等三角形的判定;线段垂直平分线的性质;等腰三角形的性质.【专题】压轴题.【分析】根据已知条件“AB=AC,D为BC中点”,得出△ABD≌△ACD,然后再由AC的垂直平分线分别交AC、AD、AB于点E、O、F,推出△AOE≌△EOC,从而根据“SSS”或“SAS”找到更多的全等三角形,要由易到难,不重不漏.【解答】解:∵AB=AC,D为BC中点,∴CD=BD,∠BDO=∠CDO=90°,在△ABD和△ACD中,,∴△ABD≌△ACD;∵EF垂直平分AC,∴OA=OC,AE=CE,在△AOE和△COE中,,∴△AOE≌△COE;在△BOD和△COD中,,∴△BOD≌△COD;在△AOC和△AOB中,,∴△AOC≌△AOB;故选:D.【点评】本题考查的是全等三角形的判定方法;这是一道考试常见题,易错点是漏掉△ABO≌△ACO,此类题可以先根据直观判断得出可能全等的所有三角形,然后从已知条件入手,分析推理,对结论一个个进行论证.4.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD【考点】全等三角形的判定.【分析】本题要判定△ABC≌△DCB,已知∠ABC=∠DCB,BC是公共边,具备了一组边对应相等,一组角对应相等,故添加AB=CD、∠ACB=∠DBC、∠A=∠D后可分别根据SAS、ASA、AAS能判定△ABC≌△DCB,而添加AC=BD后则不能.【解答】解:A、可利用AAS定理判定△ABC≌△DCB,故此选项不合题意;B、可利用SAS定理判定△ABC≌△DCB,故此选项不合题意;C、利用ASA判定△ABC≌△DCB,故此选项不符合题意;D、SSA不能判定△ABC≌△DCB,故此选项符合题意;故选:D.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.5.如图,在△ABC中,AB>AC,点D、E分别是边AB、AC的中点,点F在BC 边上,连接DE、DF、EF,则添加下列哪一个条件后,仍无法判断△FCE与△EDF 全等()A.∠A=∠DFE B.BF=CF C.DF∥AC D.∠C=∠EDF【考点】全等三角形的判定;三角形中位线定理.【分析】根据三角形中位线的性质,可得∠CEF=∠DFE,∠CFE=∠DEF,根据SAS,可判断B、C;根据三角形中位线的性质,可得∠CFE=∠DEF,根据AAS,可判断D.【解答】解:A、∠A与∠CDE没关系,故A错误;B、BF=CF,F是BC中点,点D、E分别是边AB、AC的中点,∴DF∥AC,DE∥BC,∴∠CEF=∠DFE,∠CFE=∠DEF,在△CEF和△DFE中,∴△CEF≌△DFE (ASA),故B正确;C、点D、E分别是边AB、AC的中点,∴DE∥BC,∴∠CFE=∠DEF,∵DF∥AC,∴∠CEF=∠DFE在△CEF和△DFE中,∴△CEF≌△DFE (ASA),故C正确;D、点D、E分别是边AB、AC的中点,∴DE∥BC,∴∠CFE=∠DEF,,∴△CEF≌△DFE (AAS),故D正确;故选:A.【点评】本题考查了全等三角形的判定,利用了三角形中位线的性质,全等三角形的判定,利用三角形中位线的性质得出三角形全等的条件是解题关键.6.如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的()A.AB=CD B.EC=BF C.∠A=∠D D.AB=BC【考点】全等三角形的判定.【分析】添加条件AB=CD可证明AC=BD,然后再根据AE∥FD,可得∠A=∠D,再利用SAS定理证明△EAC≌△FDB即可.【解答】解:∵AE∥FD,∴∠A=∠D,∵AB=CD,∴AC=BD,在△AEC和△DFB中,,∴△EAC≌△FDB(SAS),故选:A.【点评】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.7.如图,下列条件中,不能证明△ABC≌△DCB的是()A.AB=DC,AC=DB B.AB=DC,∠ABC=∠DCBC.BO=CO,∠A=∠D D.AB=DC,∠DBC=∠ACB【考点】全等三角形的判定.【分析】本题要判定△ABC≌△DCB,已知BC是公共边,具备了一组边对应相等.所以由全等三角形的判定定理作出正确的判断即可.【解答】解:根据题意知,BC边为公共边.A、由“SSS”可以判定△ABC≌△DCB,故本选项错误;B、由“SAS”可以判定△ABC≌△DCB,故本选项错误;C、由BO=CO可以推知∠ACB=∠DBC,则由“AAS”可以判定△ABC≌△DCB,故本选项错误;D、由“SSA”不能判定△ABC≌△DCB,故本选项正确.故选:D.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.8.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC 的是()A.CB=CD B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D=90°【考点】全等三角形的判定.【分析】本题要判定△ABC≌△ADC,已知AB=AD,AC是公共边,具备了两组边对应相等,故添加CB=CD、∠BAC=∠DAC、∠B=∠D=90°后可分别根据SSS、SAS、HL能判定△ABC≌△ADC,而添加∠BCA=∠DCA后则不能.【解答】解:A、添加CB=CD,根据SSS,能判定△ABC≌△ADC,故A选项不符合题意;B、添加∠BAC=∠DAC,根据SAS,能判定△ABC≌△ADC,故B选项不符合题意;C、添加∠BCA=∠DCA时,不能判定△ABC≌△ADC,故C选项符合题意;D、添加∠B=∠D=90°,根据HL,能判定△ABC≌△ADC,故D选项不符合题意;故选:C.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.9.如图,△ABC和△DEF中,AB=DE、∠B=∠DEF,添加下列哪一个条件无法证明△ABC≌△DEF()A.AC∥DF B.∠A=∠D C.AC=DF D.∠ACB=∠F【考点】全等三角形的判定.【分析】根据全等三角形的判定定理,即可得出答.【解答】解:∵AB=DE,∠B=∠DEF,∴添加AC∥DF,得出∠ACB=∠F,即可证明△ABC≌△DEF,故A、D都正确;当添加∠A=∠D时,根据ASA,也可证明△ABC≌△DEF,故B正确;但添加AC=DF时,没有SSA定理,不能证明△ABC≌△DEF,故C不正确;故选:C.【点评】本题考查了全等三角形的判定定理,证明三角形全等的方法有:SSS,SAS,ASA,AAS,还有直角三角形的HL定理.二、填空题(共14小题)10.如图,△ABC≌△DEF,则EF=5.【考点】全等三角形的性质.【分析】利用全等三角形的性质得出BC=EF,进而求出即可.【解答】解:∵△ABC≌△DEF,∴BC=EF则EF=5.故答案为:5.【点评】此题主要考查了全等三角形的性质,得出对应边是解题关键.11.如图,OP平分∠MON,PE⊥OM于E,PF⊥ON于F,OA=OB,则图中有3对全等三角形.【考点】全等三角形的判定;角平分线的性质.【分析】由OP平分∠MON,PE⊥OM于E,PF⊥ON于F,得到PE=PF,∠1=∠2,证得△AOP≌△BOP,再根据△AOP≌△BOP,得出AP=BP,于是证得△AOP≌△BOP,和R t△AOP≌R t△BOP.【解答】解:OP平分∠MON,PE⊥OM于E,PF⊥ON于F,∴PE=PF,∠1=∠2,在△AOP与△BOP中,,∴△AOP≌△BOP,∴AP=BP,在△EOP与△FOP中,,∴△EOP≌△FOP,在R t△AEP与R t△BFP中,,∴R t△AEP≌R t△BFP,∴图中有3对全等三角形,故答案为:3.【点评】本题考查了角平分线的性质,全等三角形的判定和性质,熟练掌握全等三角形的判定定理是解题的关键.12.如图,在▱ABCD中,E、F为对角线AC上两点,且BE∥DF,请从图中找出一对全等三角形:△ADF≌△BEC.【考点】全等三角形的判定;平行四边形的性质.【专题】开放型.【分析】由平行四边形的性质,可得到等边或等角,从而判定全等的三角形.【解答】解:∵四边形ABCD是平行四边形,∴AD=BC,∠DAC=∠BCA,∵BE∥DF,∴∠DFC=∠BEA,∴∠AFD=∠BEC,在△ADF与△CEB中,,∴△ADF≌△BEC(AAS),故答案为:△ADF≌△BEC.【点评】本题考查了三角形全等的判定,平行四边形的性质,平行线的性质,根据平行四边形的性质对边平行和角相等从而得到三角形全等的条件是解题的关键.13.如图,点B、A、D、E在同一直线上,BD=AE,BC∥EF,要使△ABC≌△DEF,则只需添加一个适当的条件是BC=EF或∠BAC=∠EDF.(只填一个即可)【考点】全等三角形的判定.【专题】开放型.【分析】BC=EF或∠BAC=∠EDF,若BC=EF,根据条件利用SAS即可得证;若∠BAC=∠EDF,根据条件利用ASA即可得证.【解答】解:若添加BC=EF,∵BC∥EF,∴∠B=∠E,∵BD=AE,∴BD﹣AD=AE﹣AD,即BA=ED,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS);若添加∠BAC=∠EDF,∵BC∥EF,∴∠B=∠E,∵BD=AE,∴BD﹣AD=AE﹣AD,即BA=ED,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),故答案为:BC=EF或∠BAC=∠EDF【点评】此题考查了全等三角形的判定,熟练掌握全等三角形的判定方法是解本题的关键.14.如图,在△ABC与△ADC中,已知AD=AB,在不添加任何辅助线的前提下,要使△ABC≌△ADC,只需再添加的一个条件可以是DC=BC或∠DAC=∠BAC.【考点】全等三角形的判定.【专题】开放型.【分析】添加DC=BC,利用SSS即可得到两三角形全等;添加∠DAC=∠BAC,利用SAS即可得到两三角形全等.【解答】解:添加条件为DC=BC,在△ABC和△ADC中,,∴△ABC≌△ADC(SSS);若添加条件为∠DAC=∠BAC,在△ABC和△ADC中,,∴△ABC≌△ADC(SAS).故答案为:DC=BC或∠DAC=∠BAC【点评】此题考查了全等三角形的判定,熟练掌握全等三角形的判定方法是解本题的关键.15.如图,已知AB=BC,要使△ABD≌△CBD,还需添加一个条件,你添加的条件是∠ABD=∠CBD或AD=CD..(只需写一个,不添加辅助线)【考点】全等三角形的判定.【专题】开放型.【分析】由已知AB=BC,及公共边BD=BD,可知要使△ABD≌△CBD,已经具备了两个S了,然后根据全等三角形的判定定理,应该有两种判定方法①SAS,②SSS.所以可添∠ABD=∠CBD或AD=CD.【解答】解:答案不唯一.①∠ABD=∠CBD.在△ABD和△CBD中,∵,∴△ABD≌△CBD(SAS);②AD=CD.在△ABD和△CBD中,∵,∴△ABD≌△CBD(SSS).故答案为:∠ABD=∠CBD或AD=CD.【点评】本题主要考查了全等三角形的判定定理,能灵活运用判定进行证明是解此题的关键.熟记全等三角形的判定方法有:SSS,SAS,ASA,AAS.16.如图,在四边形ABCD中,AB∥CD,连接BD.请添加一个适当的条件AB=CD,使△ABD≌△CDB.(只需写一个)【考点】全等三角形的判定.【专题】开放型.【分析】先根据平行线的性质得∠ABD=∠CDB,加上公共边BD,所以根据“SAS”判断△ABD≌△CDB时,可添加AB=CD.【解答】解:∵AB∥CD,∴∠ABD=∠CDB,而BD=DB,∴当添加AB=CD时,可根据“SAS”判断△ABD≌△CDB.故答案为AB=CD.【点评】本题考查了全等三角形的判定:全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.17.如图,点B、E、C、F在一条直线上,AB=DE,BE=CF,请添加一个条件AC=DF (或∠B=∠DEF或AB∥DE),使△ABC≌△DEF.【考点】全等三角形的判定.【专题】开放型.【分析】可选择利用SSS或SAS进行全等的判定,答案不唯一,写出一个符合条件的即可.【解答】解:①添加AC=DF.∵BE=CF,∴BC=EF,∵在△ABC和△DEF中,,∴△ABC≌△DEF(SSS).②添加∠B=∠DEF.∵BE=CF,∴BC=EF,∵在△ABC和△DEF中,,∴△ABC≌△DEF(SAS).③添加AB∥DE.∵BE=CF,∴BC=EF,∵AB∥DE,∴∠B=∠DEF,∵在△ABC和△DEF中,,∴△ABC≌△DEF(SAS).故答案为:AC=DF(或∠B=∠DEF或AB∥DE).【点评】本题考查了全等三角形的判定,解答本题的关键是熟练掌握全等三角形的几种判定定理.18.如图,已知△ABC中,AB=AC,点D、E在BC上,要使△ABD≌ACE,则只需添加一个适当的条件是BD=CE.(只填一个即可)【考点】全等三角形的判定.【专题】开放型.【分析】此题是一道开放型的题目,答案不唯一,如BD=CE,根据SAS推出即可;也可以∠BAD=∠CAE等.【解答】解:BD=CE,理由是:∵AB=AC,∴∠B=∠C,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),故答案为:BD=CE.【点评】本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,题目比较好,难度适中.19.如图,AC、BD相交于点O,∠A=∠D,请补充一个条件,使△AOB≌△DOC,你补充的条件是AB=CD(答案不唯一)(填出一个即可).【考点】全等三角形的判定.【专题】开放型.【分析】添加条件是AB=CD,根据AAS推出两三角形全等即可.【解答】解:AB=CD,理由是:∵在△AOB和△DOC中∴△AOB≌△DOC(AAS),故答案为:AB=CD(答案不唯一).【点评】本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,题目是一道开放型的题目,答案不唯一.20.如图,点B,F,C,E在同一直线上,BF=CE,AB∥DE,请添加一个条件,使△ABC≌△DEF,这个添加的条件可以是AB=DE(只需写一个,不添加辅助线).【考点】全等三角形的判定.【专题】开放型.【分析】求出BC=EF,∠ABC=∠DEF,根据SAS推出两三角形全等即可.【解答】解:AB=DE,理由是:∵BF=CE,∴BF+FC=CE+FC,∴BC=EF,∵AB∥DE,∴∠ABC=∠DEF,在△ABC和△DEF中,∴△ABC≌△DEF(SAS),故答案为:AB=DE.【点评】本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,答案不唯一.21.如图,AC与BD相交于点O,且AB=CD,请添加一个条件∠A=∠C,使得△ABO≌△CDO.【考点】全等三角形的判定.【专题】开放型.【分析】首先根据对顶角相等,可得∠AOB=∠COD;然后根据两角及其中一个角的对边对应相等的两个三角形全等,要使得△ABO≌△CDO,则只需∠A=∠C即可.【解答】解:∵∠AOB、∠COD是对顶角,∴∠AOB=∠COD,又∵AB=CD,∴要使得△ABO≌△CDO,则只需添加条件:∠A=∠C.(答案不唯一)故答案为:∠A=∠C.(答案不唯一)【点评】此题主要考查了全等三角形的判定,要熟练掌握,解答此题的关键是要明确:(1)判定定理1:SSS﹣﹣三条边分别对应相等的两个三角形全等.(2)判定定理2:SAS﹣﹣两边及其夹角分别对应相等的两个三角形全等.(3)判定定理3:ASA﹣﹣两角及其夹边分别对应相等的两个三角形全等.(4)判定定理4:AAS﹣﹣两角及其中一个角的对边对应相等的两个三角形全等.(5)判定定理5:HL﹣﹣斜边与直角边对应相等的两个直角三角形全等.22.如图,△ABD≌△CBD,若∠A=80°,∠ABC=70°,则∠ADC的度数为130°.【考点】全等三角形的性质.【分析】根据全等三角形对应角相等可得∠C=∠A,再根据四边形的内角和定理列式计算即可得解.【解答】解:∵△ABD≌△CBD,∴∠C=∠A=80°,∴∠ADC=360°﹣∠A﹣∠ABC﹣∠C=360°﹣80°﹣70°﹣80°=130°.故答案为:130°.【点评】本题考查了全等三角形的性质,四边形的内角和定理,根据对应顶点的字母写在对应位置上确定出∠C=∠A是解题的关键.23.如图,△ABC≌△DEF,请根据图中提供的信息,写出x=20.【考点】全等三角形的性质.【专题】压轴题.【分析】先利用三角形的内角和定理求出∠A=70°,然后根据全等三角形对应边相等解答.【解答】解:如图,∠A=180°﹣50°﹣60°=70°,∵△ABC≌△DEF,∴EF=BC=20,即x=20.故答案为:20.【点评】本题考查了全等三角形的性质,根据角度确定出全等三角形的对应边是解题的关键.三、解答题(共7小题)24.如图,四边形ABCD中,E点在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE,求证:△ABC与△DEC全等.【考点】全等三角形的判定.【专题】证明题.【分析】根据同角的余角相等可得到∠3=∠5,结合条件可得到∠1=∠D,再加上BC=CE,可证得结论.【解答】解:∵∠BCE=∠ACD=90°,∴∠3+∠4=∠4+∠5,∴∠3=∠5,在△ACD中,∠ACD=90°,∴∠2+∠D=90°,∵∠BAE=∠1+∠2=90°,∴∠1=∠D,在△ABC和△DEC中,,∴△ABC≌△DEC(AAS).【点评】本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL.25.如图,∠B=∠D,请添加一个条件(不得添加辅助线),使得△ABC≌△ADC,并说明理由.【考点】全等三角形的判定.【专题】开放型.【分析】已知这两个三角形的一个边与一个角相等,所以再添加一个对应角相等即可.【解答】解:添加∠BAC=∠DAC.理由如下:在△ABC与△ADC中,,∴△ABC≌△ADC(AAS).【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.26.已知:如图,点C为AB中点,CD=BE,CD∥BE.求证:△ACD≌△CBE.【考点】全等三角形的判定.【专题】证明题.【分析】根据中点定义求出AC=CB,根据两直线平行,同位角相等,求出∠ACD=∠B,然后利用SAS即可证明△ACD≌△CBE.【解答】证明:∵C是AB的中点(已知),∴AC=CB(线段中点的定义).∵CD∥BE(已知),∴∠ACD=∠B(两直线平行,同位角相等).在△ACD和△CBE中,,∴△ACD≌△CBE(SAS).【点评】本题主要考查了全等三角形的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.27.如图,点C,F在线段BE上,BF=EC,∠1=∠2,请你添加一个条件,使△ABC≌△DEF,并加以证明.(不再添加辅助线和字母)【考点】全等三角形的判定.【专题】开放型.【分析】先求出BC=EF,添加条件AC=DF,根据SAS推出两三角形全等即可.【解答】AC=DF.证明:∵BF=EC,∴BF﹣CF=EC﹣CF,∴BC=EF,在△ABC和△DEF中∴△ABC≌△DEF(SAS).【点评】本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,题目是一道开放型的题目,答案不唯一.28.如图,在△ABC中,AB=AC,BD=CD,DE⊥AB,DF⊥AC,垂足分别为点E、F.求证:△BED≌△CFD.【考点】全等三角形的判定.【专题】证明题.【分析】首先根据AB=AC可得∠B=∠C,再由DE⊥AB,DF⊥AC,可得∠BED=∠CFD=90°,然后再利用AAS定理可判定△BED≌△CFD.【解答】证明:∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90°,∵AB=AC,∴∠B=∠C,在△BED和△CFD中,,∴△BED≌△CFD(AAS).【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.29.如图,△ABC和△DAE中,∠BAC=∠DAE,AB=AE,AC=AD,连接BD,CE,求证:△ABD≌△AEC.【考点】全等三角形的判定.【专题】证明题.【分析】根据∠BAC=∠DAE,可得∠BAD=∠CAE,再根据全等的条件可得出结论.【解答】证明:∵∠BAC=∠DAE,∴∠BAC﹣∠BAE=∠DAE﹣∠BAE,即∠BAD=∠CAE,在△ABD和△AEC中,,∴△ABD≌△AEC(SAS).【点评】本题考查了全等三角形的判定,判断三角形全等的方法有:SSS,SAS,ASA,AAS,以及判断两个直角三角形全等的方法HL.30.如图,四边形ABCD中,E点在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE.请完整说明为何△ABC与△DEC全等的理由.【考点】全等三角形的判定.【专题】证明题.【分析】根据∠BCE=∠ACD=90°,可得∠3=∠5,又根据∠BAE=∠1+∠2=90°,∠2+∠D=90°,可得∠1=∠D,继而根据AAS可判定△ABC≌△DEC.【解答】解:∵∠BCE=∠ACD=90°,∴∠3+∠4=∠4+∠5,∴∠3=∠5,在△ACD中,∠ACD=90°,∴∠2+∠D=90°,∵∠BAE=∠1+∠2=90°,∴∠1=∠D,在△ABC和△DEC中,,∴△ABC≌△DEC(AAS).【点评】本题考查了全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.。

第12章 全等三角形单元测试卷(Ⅰ)2021-2022学年八年级数学人教版上册

第12章 全等三角形单元测试卷(Ⅰ)2021-2022学年八年级数学人教版上册

第12章 全等三角形单元测试卷Ⅰ一、单选题(每小题3分,共36分)1、下列条件中,不能判断两个三角形全等的方法有( )A. 两边和一个角分别相等的两个三角形B. 两个角及其夹边分别相等的两个三角形C. 三边分别相等的两个三角形D. 斜边和一条直角边分别相等的两个直角三角形2、如图,已知△ABC 的六个元素,则下面甲、乙、丙三个三角形中和△ABC 全等的图形是( )A .甲和乙 B.乙和丙 C.只有乙 D.只有丙3、如图,OP 是∠AOB 的平分线,点P 到OA 的距离为3,点N 是OB 上的任意一点,则线段PN 的取值范围为( )A .PN <3B .PN >3C .PN ≥3D .PN ≤34、如图,Rt ABC △中,90C ∠=︒,利用尺规在BC ,BA 上分别截取BE ,BD ,使BE BD =;分别以D ,E 为圆心、以大于12DE 的长为半径作弧,两弧在CBA ∠内交于点F ;作射线BF 交AC 于点G .若BCG 的面积为4,4BC =,P 为AB 上一动点,则GP 的最小值为( )A .无法确定B .4C .3D .25、∠AOB 的平分线上一点P 到OA 的距离为5,Q 是OB 上任意一点,则( )A .PQ >5B .PQ ≥5C .PQ <5D .PQ ≤56、如图,要用“HL ”判定Rt △ABC 和Rt △A ′B ′C ′全等的条件是( )A .AC =A ′C ′,BC =B ′C ′B .∠A =∠A ′,AB =A ′B ′C .AC =A ′C ′,AB =A ′B ′D .∠B =∠B ′,BC =B ′C ′ 7、如图,点O 在AD 上,∠A =∠C ,∠AOC =∠BOD , AB =CD ,AD =6,OB =2,则OC 的长为( )A.2 B.3 C.4 D.68、如图,∠ADB=∠AEC=100°,∠BAD=50°,BD=EC,则∠C= ?()A.20︒B.50︒C.30︒D.40︒9、如图,点P是△ABC外的一点,PD⊥AB于点D,PE⊥AC于点E,PF⊥BC于点F,连接PB,PC.若PD=PE=PF,∠BAC=70°,则∠BPC的度数为()A.25°B.30° C.35° D.40°10、如下图,P是∠BAC的平分线AD上一点,PE⊥AB于E,PF⊥AC于F,下列结论中不正确的是()A.PE PF=B. AE AF=+=C. △APE≌△APF D. AP PE PF11、在测量一个小口圆形容器的壁厚时,小明用“X型转动钳”按如图方法进行测量,其中OA=OD,OB=OC,测得AB=5厘米,EF=6厘米,圆形容器的壁厚是()A.5厘米B.6厘米C.2厘米D.1厘米212、如图,点O在AD上,∠A=∠C,∠AOC=∠BOD,AB=CD,AD=6cm,OC=4cm,则OB的长为()A.2cm B.3cm C.4cm D.6cm二、填空题(每小题3分,共24分)13、四边形ABCD中,AB=CD,AD=BC.若∠B=32°,则∠A= °.14、如图所示,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带去玻璃店.15、如图,已知△C=90°,△1=△2,若BC=10,BD=6,则点D到边AB的距离为________.16、如图示,点B在AE上,△CBE=△DBE,要使△ABC△△ABD,还需添一个条件__________.17、如图,在△ABC中,△B=△C=50°,BD=CF,BE=CD,则△EDF的度数是________.18、如图,OP平分∠MON,PE⊥OM于点E,PF⊥ON于点F,OA=OB,则图中有_______对全等三角形.19、如图,△ABC和△ADE中,∠BAC=∠DAE=54°,AB=AC,AD=AE,连接BD,CE交于F,连接AF,则∠AFE的度数是.20、如图,BD是△ABC的中线,点E、F分别为BD、CE的中点,若△AEF的面积为3cm2,则△ABC的面积是_____cm2.三、解答题(共60分)21、(6分)已知:如图AC,BD相交于点O,∠A=∠D,AB=CD,求证:△AOB≌△DOC.22、(6分)已知:如图,C、D在AB上,且AC=BD,AE∥FB,DE∥FC.求证:AE=BF.23、(6分)如图,AC=AE,∠1=∠2,AB=AD.求证:BC=DE.24、(6分)我们知道:“三角形的内角和为180°”,如图所示,在ABC 中,ABC ∠,ACB ∠的角平分线交于点I ,已知56A ∠=︒,求BIC ∠的度数.25、(6分)如图,在△ABC 中,点O 是∠ABC 、∠ACB 平分线的交点,AB +BC +AC =12,过O 作OD ⊥BC 于D 点,且OD =2,求△ABC 的面积.26、(8分)如图,在△ABC 中,已知点D 在线段AB 的反向延长线上,过AC 的中点F 作线段GE 交∠DAC 的平分线于E ,交BC 于G ,且AE ∥BC .(1)求证:△ABC 是等腰三角形;(2)若AE =8,AB =10,GC =2BG ,求△ABC 的周长.27、(10分)如图,AB=AC,直线l过点A,BM⊥直线l,CN⊥直线l,垂足分别为M、N,且BM=AN.(1)求证△AMB≌△CNA;(2)求证∠BAC=90°.28、(12分)如图,已知在△ABC中,AB=AC=10 cm,BC=8 cm,D为AB中点,设点P在线段BC上以3 cm/秒的速度由B点向C点运动,点Q在线段CA上由C点向A点运动.(1)若Q点运动的速度与P点相同,且点P,Q同时出发,经过1秒钟后△BPD与△CQP 是否全等,并说明理由;(2)若点P,Q同时出发,但运动的速度不相同,当Q点的运动速度为多少时,能在运动过程中有△BPD与△CQP全等?(3)若点Q以(2)中的速度从点C出发,点P以原来的速度从点B同时出发,都是逆时针沿△ABC的三边上运动,经过多少时间点P与点Q第一次在△ABC的哪条边上相遇?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全等三角形测试卷
一、填空题(每题4分,共36分)
1. 如图1,若 △ABC ≌△DEF ,则∠E= °
2.杜师傅在做完门框后,为防止门框变形常常需钉两根
斜拉的木条,这样做的数学原理是
3.如果△ABC ≌△DEF ,△DEF 周长是32cm ,DE=9cm,EF=13cm.∠E=∠B , 则AC=____ cm. 4、如图2,ACB DFE BC EF ==∠∠,,要使
ABC DEF △≌△,则需要补充一个条件, 这个条件可以是 .(只需填写一个)
5.在△ABC 中,∠C=900,∠A 的平分线交BC 于点D ,若CD =8cm , 则点D 到AB 的距离 cm.
6.如图3,幼儿园的滑梯中有两个长度相等的梯子
(BC=EF ),左边滑梯的高度AC 等于右边滑梯水平方向的长度DF ,则∠ABC+∠DFE= °.
7.如图4,要测量河岸相对的两点A 、B 之间的距离,
先从B 处出发与AB 成90°角方向,向前走50米到C 处立一根标杆,然后方向不变继续朝前走50米到D 处,
在D 处转90°沿DE 方向再走17米,到达E 处, 使A 、C 与E 在同一直线上,那么测得A 、B 的距离为
8.如图5,若AB =DE ,证△ABF ≌△DEC 件________或 。

9. 如图6,△ABC ≌△AE AB =,︒
=∠271=∠2 .
二、选择题(每题4分,共1 、在下列条件中,能判断两个直角三角形全等的是 A.一个锐角对应等 B.两锐角对应相等 C.一条边对应相等 D.两条边对应相等
2.如图6,店去配一块完全一样的玻璃,那么最省事的办法是( A. 带①去 B. 带②去 C. 带③去 D. 带①和②去 3.如图7,将两根钢条AA ′、BB ′的中点 O 连在一起,使 AA ′、BB ′能绕着点 O 自由转动,就做成了一个测量工具, 则A ′B ′的长等于内槽宽 AB ,那么判定△OAB ≌△OA ′B ′ 的理由是( )A .SAS B .ASA C .SSS D .HL
图1 图6
图7
B A
C D
F
E 图3 A B C
D E
F
图2
C
4.如图8,已知△ABC 的六个元素,则下面甲、乙、丙三个三角形中和△ABC 全等的图形是( )
A .甲和乙
B .乙和丙
C .只有乙
D .只有丙
5、如图10,在CD 上求一点P ,使它到OA ,OB 的距离相等,则P 点是 ( )A. 线段CD 的中点 B. OA 与OB 的中
垂线的交点 C. OA 与CD 的中垂线的交点 D. CD 与∠AOB
的平分线的交点 四、解答题(1题12分,2题16分,3题16分, ) 1. 已知:如图11,点B 、E 、C 、F 在同一直线上,AB ∥DE,且AB=DE,BE=CF.求证:AC ∥DF .
2.如图12,在△ABC中,点D在AB上,点E在BC上,BD=BE。

(1) 请你再添加一个条件,使得△BEA≌△BDC,并给出证明。

你添加的条件是:___________
(2) 根据你添加的条件,再写出图中的一对全等三角形:__________只要求写出一对
全等三角形,不再添加其他线段,不再标注或使用其他字母,不必写出证明过程
21.如图,给出五个等量关系:①AD BC = ②AC BD = ③CE DE = ④D C ∠=∠ ⑤DAB CBA ∠=∠.请你以其中两个为条件,另三个中的一个为结论,推出一个正确的结论(只需写出一种情况),并加以证明.(8分) 已知: 求证:
证明:
图8 _ B _ D _ O _ C _ A
图10
图11 图
12
A B。

相关文档
最新文档