大学物理答案第四章

合集下载

大学物理第四章习题解

大学物理第四章习题解

第四章 刚体的定轴转动4–1 半径为20cm 的主动轮,通过皮带拖动半径为50cm 的被动轮转动,皮带与轮之间无相对滑动,主动轮从静止开始作匀角加速度转动,在4s 内被动轮的角速度达到π/s 8,则主动轮在这段时间内转过了 圈。

解:被动轮边缘上一点的线速度为πm/s 45.0π8222=⨯==r ωv在4s 内主动轮的角速度为πrad/s 202.0π412111====r r v v ω主动轮的角速度为2011πrad/s 540π2==∆-=tωωα在4s 内主动轮转过圈数为20π520ππ2(π212π212121=⨯==αωN (圈)4–2绕定轴转动的飞轮均匀地减速,t =0时角速度为0ω=5rad/s ,t =20s 时角速度为08.0ωω=,则飞轮的角加速度α= ,t =0到t =100s 时间内飞轮所转过的角度θ= 。

解:由于飞轮作匀变速转动,故飞轮的角加速度为20s /rad 05.020558.0-=-⨯=-=tωωα t =0到t =100s 时间内飞轮所转过的角度为rad 250100)05.0(21100521220=⨯-⨯+⨯=+=t t αωθ4–3 转动惯量是物体 量度,决定刚体的转动惯量的因素有 。

解:转动惯性大小,刚体的形状、质量分布及转轴的位置。

4–4 如图4-1,在轻杆的b 处与3b 处各系质量为2m 和m 的质点,可绕O 轴转动,则质点系的转动惯量为 。

解:由分离质点的转动惯量的定义得221i i i r m J ∆=∑=22)3(2b m mb +=211mb =4–5 一飞轮以600r/min 的转速旋转,转动惯量为·m 2,现加一恒定的制动力矩使飞轮在1s 内停止转动,则该恒定制动力矩的大小M =_________。

解:飞轮的角加速度为20s /rad 20160/π26000-=⨯-=-=tωωα制动力矩的大小为m N π50π)20(5.2⋅-=-⨯==αJ M负号表示力矩为阻力矩。

大学物理学课后习题4第四章答案

大学物理学课后习题4第四章答案

k
m1g x1
1.0 103 9.8 4.9 102
0.2
N m1
而 t 0 时, x0 1.0 102 m,v0 5.0 102 m s-1 ( 设向上为正)

k m
0.2 8 103
5,即T
2
1.26s
A
x02
(
v0
)2
(1.0 102 )2 (5.0 102 )2 5
(7)两列波叠加产生干涉现象必须满足的条件




[答案:频率相同,振动方向相同,在相遇点的位相差恒定。]
4.3 质量为10 103 kg 的小球与轻弹簧组成的系统,按
x 0.1cos(8t 2 ) (SI) 的规律作谐振动,求: 3
(1)振动的周期、振幅和初位相及速度与加速度的最大值; (2)最大的回复力、振动能量、平均动能和平均势能,在哪些位置上动能与 势能相等?
习题 4.2(2) 图 [答案:b、f; a、e]
(3)一质点沿 x 轴作简谐振动,振动范围的中心点为 x 轴的原点,已知周 期为 T,振幅为 A。
( a ) 若 t=0 时 质 点 过 x=0 处 且 朝 x 轴 正 方 向 运 动 , 则 振 动 方 程 为 x=___________________。
[答案: 2 s ] 3
(2)一水平弹簧简谐振子的振动曲线如题 4.2(2)图所示。振子在位移为零, 速度为-A、加速度为零和弹性力为零的状态,对应于曲线上的____________ 点。振子处在位移的绝对值为 A、速度为零、加速度为-2A 和弹性力为-KA 的 状态,则对应曲线上的____________点。
103
(
)2

大学物理教程第4章习题答案

大学物理教程第4章习题答案

思 考 题4.1 阿伏伽德罗定律指出:在温度和压强相同的条件下,相同体积中含有的分子数是相等的,与气体的种类无关。

试用气体动理论予以说明。

答: 据压强公式 p nkT = ,当压强和温度相同时,n 也相同,与气体种类无关; 4.2 对一定量的气体来说,当温度不变时,气体的压强随体积的减小而增大。

当体积不变时,压强随温度的升高而增大。

从微观角度看,两种情况有何区别。

答:气体压强是器壁单位面积上受到大量气体分子频繁地碰撞而产生的平均作用力的结果。

当温度不变时,若体积减小,分子数密度增大,单位时间内碰撞器壁的分子数增加,从而压强增大;而当体积不变时,若温度升高,分子的平均平动动能增大,分子碰撞器壁的力度变大,从而压强增大;4.3 从气体动理论的观点说明:(1)当气体的温度升高时,只要适当地增大容器的容积,就可使气体的压强保持不变。

(2)一定量理想气体在平衡态(p 1,V 1,T 1)时的热动平衡状况与它在另一平衡态(p 2,V 2,T 2)时相比有那些不同?设气体总分子数为N ,p 2< p 1,V 2< V 1。

(3)气体在平衡状态下,则222213x y z v v v v ===, 0x y z v v v ===。

(式中x v 、y v 、z v ,是气体分子速度v 的三个分量)。

答:(1)由p nkT = 可知,温度升高时,n 适当地减小,可使压强不变;(2) 在平衡态(2p ,2V ,2T )时分子的平均平动动能较在平衡态(1p ,1V ,1T )时小,但分子数密度较大;(3) 因分子向各方向运动的概率相同,并且频繁的碰撞,速度的平均值为零,速度平方的平均值大小反映平均平动动能的大小,所以各分量平方平均值相等;4.4 有人说“在相同温度下,不同气体分子的平均平动动能相等,氧分子的质量比氢分子的大,所以氢分子的速率一定比氧分子大”。

这样讲对吗?答:不对,只能说氢分子的速率平方平均值比氧分子的大。

大学物理学课后习题4第四章答案

大学物理学课后习题4第四章答案
(A)它的动能转化为势能. (B)它的势能转化为动能. (C)它从相邻的一段质元获得能量其能量逐渐增大. (D)它把自己的能量传给相邻的一段质元,其能量逐渐减小.
[答案:D]
4.2 填空题 (1)一质点在 X 轴上作简谐振动,振幅 A=4cm,周期 T=2s,其平衡位置
取作坐标原点。若 t=0 时质点第一次通过 x=-2cm 处且向 x 轴负方向运动,则 质点第二次通过 x=-2cm 处的时刻为__ __s。
(3) t2 5s 与 t1 1s 两个时刻的位相差;
解:(1)设谐振动的标准方程为 x Acos(t 0 ) ,相比较厚则有:
A 0.1m,
8 ,T
2
1 4
s,
0
2
/3

vm A 0.8 m s1 2.51 m s1
am 2 A 63.2 m s2
(2)
Fm mam 0.63N
(1) x0 A ;
(2)过平衡位置向正向运动; (3)过 x A 处向负向运动;
2
(4)过 x A 处向正向运动. 2
试求出相应的初位相,并写出振动方程.
解:因为
v
x0 A cos0 0 Asin
0
将以上初值条件代入上式,使两式同时成立之值即为该条件下的初位相.故有
1
x Acos( 2 t ) T
103
(
)2
0.17
4.2
103
N
2
方向指向坐标原点,即沿 x 轴负向.
(2)由题知, t 0 时,0 0 ,
t t时
x0
A ,且v 2
0, 故 t
3

t
3
/
2
2s 3

大学物理课后答案第四章

大学物理课后答案第四章

第四章 气体动理论一、基本要求1.理解平衡态的概念。

2.了解气体分子热运动图像和理想气体分子的微观模型,能从宏观和统计意义上理解压强、温度、内能等概念。

3.初步掌握气体动理论的研究方法,了解系统的宏观性质是微观运动的统计表现。

4.理解麦克斯韦速率分布律、速率分布函数和速率分布曲线的物理意义,理解气体分子运动的最概然速率、平均速率、方均根速率的意义,了解玻尔兹曼能量分布律。

5.理解能量按自由度均分定理及内能的概念,会用能量均分定理计算理想气体的内能。

6.了解气体分子平均碰撞频率及平均自由程的意义及其简单的计算。

二、基本内容1. 平衡态在不受外界影响的条件下,一个系统的宏观性质不随时间改变的状态。

2. 理想气体状态方程在平衡态下,理想气体各参量之间满足关系式pV vRT =或 n k T p =式中v 为气体摩尔数,R 为摩尔气体常量 118.31R J mol K --=⋅⋅,k 为玻尔兹曼常量 2311.3810k J K --=⨯⋅3. 理想气体压强的微观公式21233t p nm n ε==v4. 温度及其微观统计意义温度是决定一个系统能否与其它系统处于热平衡的宏观性质,在微观统计上32t kT ε=5. 能量均分定理在平衡态下,分子热运动的每个自由度的平均动能都相等,且等于2kT 。

以i 表示分子热运动的总自由度,则一个分子的总平均动能为2t i kT ε=6. 速率分布函数()dNf Nd =v v麦克斯韦速率分布函数232/22()4()2m kT m f e kTππ-=v v v7. 三种速率最概然速率p =≈v 平均速率==≈v 方均根速率==≈8. 玻尔兹曼分布律平衡态下某状态区间(粒子能量为ε)的粒子数正比于kT e /ε-。

重力场中粒子数密度按高度的分布(温度均匀):kT m gh e n n /0-=9. 范德瓦尔斯方程采用相互作用的刚性球分子模型,对于1mol 气体RT b V V ap m m=-+))((2 10. 气体分子的平均自由程λ==11. 输运过程 内摩擦dS dz du df z 0)(η-=, 1133mn ηλρλ==v v 热传导dSdt dz dT dQ z 0)(κ-= 13v c κρλ=v 扩散dSdt dz d D dM z 0)(ρ-= 13D λ=v三、习题选解4-1 一根铜棒的两端分别与冰水混合物和沸水接触,经过足够长的时间后,系统也可以达到一个宏观性质不随时间变化的状态。

大学物理课后习题(第四章)

大学物理课后习题(第四章)

第四章热学基础选择题4—1 有一截面均匀的封闭圆筒,中间被一光滑的活塞隔成两边,如果其中一边装有0.1kg某一温度的氢气,为了使活塞停在圆筒的正中央,则另一边应装入同一温度的氧气的质量为( C )(A)1kg16; (B) 0.8kg; (C) 1.6kg; (D) 3.2kg.4—2 根据气体动理论,理想气体的温度正比于( D )(A) 气体分子的平均速率; (B)气体分子的平均动能;(C) 气体分子的平均动量的大小; (D)气体分子的平均平动动能.4—3 在一固定的容器内,理想气体的温度提高为原来的两倍,那么( A )(A) 分子的平均平动动能和压强都提高为原来的两倍;(B) 分子的平均平动动能提高为原来的四倍,压强提高为原来的两倍;(C) 分子的平均平动动能提高为原来的两倍,压强提高为原来的四倍;(D) 分子的平均平动动能和压强都提高为原来的四倍.4—4 一瓶氦气和一瓶氮气的密度相同,分子的平均平动动能相同,且均处于平衡态,则它们( C )(A) 温度和压强都相同;(B) 温度和压强都不相同;(C) 温度相同,但氦气的压强大于氮气的压强;(D) 温度相同,但氦气的压强小于氮气的压强.4—5 下面说法中正确的是( D )(A) 在任何过程中,系统对外界做功不可能大于系统从外界吸收的热量;(B) 在任何过程中,系统内能的增量必定等于系统从外界吸收的热量;(C) 在任何过程中,系统内能的增量必定等于外界对系统所做的功;(D) 在任何过程中,系统从外界吸收的热量必定等于系统内能的增量与系统对外界做功之和.4—6 如图所示,一定量的理想气体,从状态A 沿着图中直线变到状态B ,且A AB B p V p V =,在此过程中: ( B )(A) 气体对外界做正功,向外界放出热量;(B) 气体对外界做正功,从外界吸收热量;(C) 气体对外界做负功,向外界放出热量;(D) 气体对外界做负功,从外界吸收热量.4—7 如图所示,一定量的理想气体从状态A 等压压缩到状态B ,再由状态B 等体升压到状态C .设2C B p p =、2A B V V =,则气体从状态A 到C 的过程中 ( B )(A) 气体向外界放出的热量等于气体对外界所做的功;(B) 气体向外界放出的热量等于外界对气体所做的功;(C) 气体从外界吸收的热量等于气体对外界所做的功;(D) 气体从外界吸收的热量等于外界对气体所做的功.4—8 摩尔定容热容为2.5R (R 为摩尔气体常量)的理想气体,由状态A 等压膨胀到状态B ,其对外界做的功与其从外界吸收的热量之比为 ( C )(A) 2:5; (B) 1:5; (C) 2:7; (D) 1:7.4—9 质量相同的同一种理想气体,从相同的状态出发,分别经历等压过程和绝热过程,使其体积增加一倍.气体温度的改变为 ( C )(A) 绝热过程中降低,等压过程中也降低;(B) 绝热过程中升高,等压过程中也升高;(C) 绝热过程中降低,等压过程中升高;(D) 绝热过程中升高,等压过程中降低.4—10 一理想气体的初始温度为T ,体积为V .由如下三个准静态过程构成一个循环过程.先从初始状态绝热膨胀到2V ,再经过等体过程回到温度T ,最后等温压缩到体积V .在此循环过程中,下述说法正确的是 ( A )(A) 气体向外界放出热量; (B) 气体对外界做正功;(C) 气体的内能增加; (D) 气体的内能减少.4—11 有人试图设计一台可逆卡诺热机,在一个循环中,可从400K 的高温热源吸收热量1800J ,向300K 的低温热源放出热量800J ,同时对外界作功1000J ,这样的设计是( B )(A) 可以的,符合热力学第一定律;(B) 可以的,符合热力学第二定律;(C) 不行的,卡诺循环所做的功不能大于向低温热源放出的热量;(D) 不行的,这个热机的效率超过理论最大值.4—12 对运转在1T 和2T 之间的卡诺热机,使高温热源的温度1T 升高T ∆,可使热机效率提高1η∆;使低温热源的温度2T 降低同样的值T ∆,可使循环效率提高2η∆.两者相比,有( B )(A) 12ηη∆>∆; (B) 12ηη∆<∆;(C) 12ηη∆=∆; (D) 无法确定哪个大.4—13 在o 327C 的高温热源和o27C 的低温热源间工作的热机,理论上的最大效率为( C )(A) 100%; (B) 92%; (C) 50%; (D) 25%.4—14 下述说法中正确的是 ( C )(A) 在有些情况下,热量可以自动地从低温物体传到高温物体;(B) 在任何情况下,热量都不可能从低温物体传到高温物体;(C) 热量不能自动地从低温物体传到高温物体;(D) 热量不能自动地从高温物体传到低温物体.4—15 热力学第二定律表明 ( D )(A) 热机可以不断地对外界做功而不从外界吸收热量;(B) 热机可以靠内能的不断减少而对外界做功;(C) 不可能存在这样的热机,在一个循环中,吸收的热量不等于对外界作的功;(D) 热机的效率必定小于100%.4—16 一个孤立系统,从平衡态A 经历一个不可逆过程变化到平衡态B ,孤立系统的熵增量B A S S S ∆=- 有 ( A )(A) 0S ∆>; (B) 0S ∆<; (C) 0S ∆=; (D) 0S ∆≥.计算题4—17 容器内装满质量为0.1kg 的氧气,其压强为61.01310Pa ⨯,温度为o 47C .因为漏气,经过若干时间后,压强变为原来的一半,温度降到o 27C .求:(1) 容器的容积;(2) 漏去了多少氧气.解 (1) 由状态方程m pV RT M=,可得气体的体积,即容器的容积为 333360.18.31(47273)m 8.2010m 3210 1.01310m V RT Mp -⨯⨯+===⨯⨯⨯⨯ (2) 压强变为12p p =,温度降为()227327K T =+时,由状态方程,可得剩余气体的质量为36311113210 1.013108.20102kg 0.0533kg 8.31(27273)Mp V m RT ⨯⨯⨯⨯⨯⨯===⨯+ 漏掉的气体质量为1(0.10.0533)kg 0.0467kg m m m -∆=-=-=4—18 如图所示,a 、c 间曲线是1000mol 氢气的等温线,其中压强51410Pa p =⨯, 521010Pa p =⨯.在点a ,氢气的体积31 2.5m V =,求:(1) 该等温线的温度;(2) 氢气在点b 和点d 的温度b T 和d T .解 (1) 由状态方程m pV RT M=,可得在等温线上,气体的温度为 52111010 2.5K 301K 10008.31p V M T m R ⨯⨯==⨯= (2) 气体由点c 等体增压至点b ,压强增大为原来的10 2.54=倍,由等体方程21b cp p T T =,可得气体在点b 的温度为212.5 2.5301K 753K b c c p T T T p ===⨯= 气体由点a 等体减压至点d ,压强减小为原来的410,由等体方程21a d p p T T =,可得气体在点d 的温度为1244301K 120K 1010d a a p T T T p ===⨯= 4—19 22.010kg -⨯氢气装在334.010m -⨯的容器内,求当容器的压强为53.9010Pa⨯时,氢气分子的平均平动动能.解 由状态方程m pV RT M=,可得气体的温度为 MpV T mR=气体分子的平均平动动能为 t 353222233332223210 3.9010 4.010 J 3.8910J 2210 6.02310a MpV MpV kT k mR mN ε----===⨯⨯⨯⨯⨯=⨯=⨯⨯⨯⨯4—20 在一个具有活塞的容器中盛有一定量的气体.如果压缩气体,并对它加热,使它的温度从o 27C 升到o177C ,体积减少一半.求:(1) 气体的压强是原来压强的多少倍;(2) 气体分子的平均平动动能是原来平均平动动能的多少倍.解 (1) 由状态方程m pV RT M=,可得压缩后与压缩前的压强之比为 21212132(273177)(27327)p VT p V T +===+ 即压强增加为原来的三倍.(2) 子的平均平动动能t 32kT ε=与温度成正比,因此,压缩后与压缩前的分子的平均平动动能之比为 t22t112731773 1.5273272T T εε+====+ 即增加为原来的1.5倍.4—21 容器中储有氦气,其压强为71.01310Pa ⨯,温度为o 0C .求:(1) 单位体积中分子数n ;(2) 气体的密度;(3) 分子的平均平动动能.解 (1) 由p nkT =,可得单位体积中的分子数为73273231.01310m 2.6910m 1.3810273p n kT ---⨯===⨯⨯⨯ (2) 气体的密度为2727334 1.6710 2.6910kg m 18.0kg m mn ρ---==⨯⨯⨯⨯⋅=⋅(3) 分子的平均平动动能为2321t 33 1.3810273J 5.6510J 22kT ε-==⨯⨯⨯=⨯4—22 如图所示,一系统从状态A 沿ABC 过程到达状态C ,从外界吸收了350J 的热量,同时对外界做功126J .(1) 如沿ADC 过程,对外界作功为42J ,求系统从外界吸收的热量;(2) 系统从状态C 沿图示曲线返回状态A ,外界对系统做功84J ,系统是吸热还是放热?数值是多少?解 由热力学第一定律,ΔQ E A =+,可得从状态A 到状态C ,系统内能的增量为Δ350J 126J 224J ABC ABC E Q A =-=-=(1) 沿ADC 过程从状态A 到状态C ,系统吸收的热量为Δ224J 42J 266J ADC ADC Q E A =+=+=(2) 从状态C 沿图示曲线所示过程返回状态A ,系统吸收的热量为Δ224J 84J 308J CA CA Q E A =+=--=-308J<0CA Q =-,说明系统向外界放热308J .4-23 如图所示,一定量的空气, 起始在状态A ,其压强为52.010Pa ⨯,体积为332.010m -⨯沿直线AB 变化到状态B 后,压强变为51.010Pa ⨯,体积变为333.010m -⨯.求此过程中气体对外界所做的功.解 在此过程中气体作正功,大小为图示直线AB 下的面积()()()()5533121 2.010 1.010 3.010 2.010J 150J 2A B B A A p p V V -=+-=⨯+⨯⨯-⨯= 4—24 在标准状态下,1mol 的氧气经过一等体过程,到达末状态.从外界吸收的热量为336J .求气体到达末状态的温度和压强.设氧气的摩尔定容热容,m 52V C R =. 解 初始为标准状态,50 1.01310Pa p =⨯,230 2.2410m V -=⨯,0273K T =.气体经过等体过程吸受的热量等于内能的增量,,m V Q E C T =∆=∆.由此可得1mol 氧气经过等体过程后温度变化为,m 336 K 16.1K 2.58.31V Q T C ∆===⨯ 气体到达末状态时的温度为 0273K 16.1K 289K T T T =+∆=+=由等体方程,00p pT T =,可得气体到达末状态时的压强为5500 1.01310289 Pa 1.0710Pa 273p p T T ⨯==⨯=⨯ 4—25 在标准状态下,0.032kg 的氧气经过一等温过程,到达末状态.从外界吸收的热量为336J .求气体到达末状态的压强和体积.解 0.032kg 的氧气是1mol .标准状态为50 1.01310Pa p =⨯,230 2.2410m V -=⨯, 0273K T =.气体经过等温过程,吸受的热量等于其对外界所作的功:000000lnln V p Q A p V p V V p === 由此可得 520000336ln ln 0.1481.01310 2.2410V p Q V p p V -====⨯⨯⨯ 气体到达末状态的压强和体积分别为0.14850.14840 1.01310 Pa 8.710Pa p p e e --==⨯⨯=⨯0.14820.1483230 2.2410 m 2.6010m V V e e ----==⨯⨯=⨯4—26 1mol 的氦气,从温度为o 27C 、体积为232.010m -⨯,等温膨胀到体积为234.010m -⨯后,再等体冷却到o 27C -,设氦气的摩尔定容热容,m 32V C R =,请作出P V -图,并计算这一过程中,氦气从外界吸收的热量和对外界做的功.解 过程的P V -图如图所示.在等温过程AB 中,气体吸受的热量等于对外所做的功,为()232ln 4.010 8.3127327lnJ 1.7310 J 2.010BAB AB A AV Q A RT V --==⨯=⨯+⨯=⨯⨯ 在等体过程BC 中,气体做功为零,即0BC A =,吸受的热量为(),m 38.31(2727) J 673 J 2BC V C B m Q C T T M -=-=⨯⨯+=- 在整个过程ABC 中,气体吸受的热量和所作的功分别为()31.730.67 J 1.0610 J AB BC Q Q Q =+=-=⨯31.7310 J AB A A ==⨯4—27 将1mol 理想气体等压加热,使其温度升高72K ,气体从外界吸收的热量为31.610 J ⨯.求:(1) 气体对外界所做的功;(2) 气体内能的增量;(3) 比热容比.解 (1) 在此等压过程中气体对外界所做的功为8.3172 J 598 J A R T =∆=⨯=(2) 在此等压过程中气体内能的增量为33(1.610598)J 1.0010J E Q A ∆=-=⨯-=⨯(3) 气体的摩尔定压热容和定容热容分别为31111,m 1.6010J mol K 22.2J mol K 72p Q C T ----⨯==⋅⋅=⋅⋅∆ ()1111,m ,m 22.28.31J mol K 13.9J mol K V p C C R ----=-=-⋅⋅=⋅⋅比热容比为,m,m 22.2 1.6013.9p V C C γ=== 4—28 1mol 理想气体盛于气缸中,压强为51.01310Pa ⨯,体积为231.010m -⨯.先将此气体在等压下加热,使体积增大一倍.然后在等体下加热,使压强增大一倍.最后绝热膨胀使温度降为初始温度.请将全过程在p V -图中画出,并求在全过程中内能的增量和对外所做的功.设气体的摩尔定压热容,m 52p C R =. 解 过程的P V -图如图所示.因为末状态D 与初状态A 的温度相同,所以,从状态A 到状态D 的全过程中的内能增量为零:0E ∆=由热力学第一定律,ΔQ E A =+,由于0E ∆=,因此,全过中程气体吸受的热量等于对外界所做的功:()(),m ,m p B A V C B A Q C T T C T T ==-+-而,m ,m 5322V p C C R R R R =-=-= pV RT =于是()()5322B B A AC C B B A Q p V p V p V p V ==-+- 由于2B B A A p V p V =,24C C B B A A p V p V p V ==,因此5331111 1.01310 3.010 J 1.6710 J 22A A A Q p V -===⨯⨯⨯⨯=⨯ 4—29 1mol 的氮气,温度为o 27C ,压强为51.01310Pa ⨯.将气体绝热压缩,使其体积变为原来的15.求: (1) 压缩后的压强和温度;(2) 在压缩过程中气体所做的功( 1.4)γ=.解 (1) 在绝热过程中,pV γ为常数.压缩后的压强为 5 1.4500 1.013105Pa 9.6410Pa V p p V γ⎛⎫==⨯⨯=⨯ ⎪⎝⎭在绝热过程中,1V T γ-亦为常数.压缩后的温度为1(1.41)00(27273)5K 571K V T T V γ--⎛⎫==+⨯= ⎪⎝⎭(2) 将 1.4γ=代入,m ,mV V C RC γ+=,可得,m 52V C R =.在绝热压缩过程中,气体对外界所做的功,等于内能的减少:3055()8.31[571(27273)]J 5.6310J 22A E R T T =-∆=--=-⨯⨯-+=-⨯ 负号说明,在绝热压缩过程中,是外界对气体做功.4—30 一卡诺热机低温热源温度为o 7C ,效率为40%,若要把它的效率提高到50%,高温热源的温度应提高多少开?解 在效率为40%和50%的两种情况下,低温热源温度2T 相同.由211T T η=-,两种情况下的效率分别可表为 21122140%150%1T T T T T ηη==-==-+∆由此可得,高温热源的温度应提高 22112737K 93.3K 0.500.6033T T T +⎛⎫∆=-=== ⎪⎝⎭4—31 一卡诺热机,高温热源的温度为400K ,每一个循环从高温热源吸收75 J 热量,并向低温热源放出60 J 热量.求:(1) 低温热源温度;(2) 循环效率.解 (1) 对卡诺循环,有2211Q T T Q =,由此可得低温热源的温度为 221160400 K 320 K 75Q T T Q ==⨯=(2) 热机的循环效率为21601120%75Q Q η=-=-= 4—32 一卡诺机,在温度o 127C 和o 27C 两个热源间运转. (1)若一个正循环,从o 127C 热源吸收1200 J 热量,求向o 27C 的热源放出的热量;(2)若此循环逆向工作,从o 27C 的热源吸收1200 J 热量,求向o 127C 的热源放出的热量.解 (1) 对卡诺热机,2211Q T T Q =,由此可得,一个正循环向低温热源放出的热量为 2211272731200 J 900 J 127273T Q Q T +==⨯=+ (2) 对卡诺制冷机,有2211Q T Q T '=',由此可得,一个逆循环向高温热源放出的热量为 112241200 J 1600 J 3T Q Q T ''==⨯= 4—33 理想气体做卡诺循环,高温热源的热力学温度是低温热源热力学温度的n 倍,求在一个循环中,气体从高温热源吸收的热量有多少比例传给了低温热源.解 对卡诺热机,2211Q T T Q =,将12T n T =代入,可得 211Q Q n= 气体从高温热源吸收的热量有1n传给了低温热源. 4-34 质量为m ,摩尔质量为M 的理想气体,其摩尔定容热容为,m V C .在可逆的等体过程中温度从1T 升高到2T ,试证明在这一过程中气体的熵增量为2,m 1ln V T m S C M T ∆= 证 在气体的初态和末态间作可逆的等体曲线.气体沿此曲线,在温度升高d T 的元过程中,吸热为,m d d V m Q C T M=,熵增为,m d d d V Q m T S C T M T== 温度从1T 升高到2T ,气体的熵增量为 22112,m ,m 1d d ln S T V V S T T m T m S S C C M T M T ∆===⎰⎰ 4-35 质量为m ,摩尔质量为M 的理想气体,在可逆的等压过程中,温度从1T 升高到2T ,求在这一过程中,气体的熵增量.已知气体的摩尔定压热容为,m p C .解 在气体的初态和末态间作可逆的等压曲线.气体沿此曲线,在温度升高d T 的元过程中,吸热为,m d d p m Q C T M=,熵增为 ,m d d d p Q m T S C T M T== 温度从1T 升高到2T ,气体的熵增为22112,m ,m 1d d ln S T p p S T T m T m S S C C M T M T ∆===⎰⎰。

华东理工大学大学物理第四章答案

华东理工大学大学物理第四章答案
2π = T ⇒T= 5 Δϕ′ ϕ1 − ϕ 0.5 t 1 − t 0.5 = = 2π 2π T
t(s)
5 Δϕ′ = π 12
−A
(2)
E=
1 1 1 2π 25 2 2 mv 2 m(ωA) 2 = × 1 × ( A) 2 = π A m = 2 2 2 T 72
-3
2、质量为 10×10 ㎏的小球与轻弹簧组成的系统,按 x = 0 . 1 cos ( 8 π t + 谐振动,式中t以秒计,x以米计,求: (1)振动的周期 T,振幅 A 和初位相φ; (2)t=1s 时刻的位相、速度; (3)最大的回复力; (4)振动的能量。 解:(1)与简谐振动标准运动方程 x = A cos(ωt + ϕ) 比较得
v 1 = −0.8π sin(8π + 2 π) = −2.175 m s 3
(3) Fmax = ma max = 10 × 10 −3 × Aω 2 = 10 × 10 −3 × 0.1 × (8π) 2 = 0.63N (4) E =
1 1 mA 2 ω 2 = × 10 × 10 −3 × (0.1) 2 × (8π) 2 = 3.2 × 10 −2 J 2 2
2 ∴A = x0 + 2 v0
ω
2
= A0
ω=
k m + m0
m0 k
(2)圆频率 ω′ =
k 不变 m + m0 k A0 m
m O A a
m0未落下前,m运动到O时速度为 v 0 = A 0 ω 0 =
当m0落在m上时系统速度变为 v ′ ,根据系统动量守恒 mv 0 = (m + m 0 ) v ′
(0.05) + (0.06)

大学物理课后习题答案第四章

大学物理课后习题答案第四章

第四章机械振动4.1一物体沿x 轴做简谐振动,振幅A = 0.12m ,周期T = 2s .当t = 0时,物体的位移x = 0.06m ,且向x 轴正向运动.求:(1)此简谐振动的表达式;(2)t = T /4时物体的位置、速度和加速度;(3)物体从x = -0.06m ,向x 轴负方向运动第一次回到平衡位置所需的时间. [解答](1)设物体的简谐振动方程为x = A cos(ωt + φ),其中A = 0.12m ,角频率ω = 2π/T = π.当t = 0时,x = 0.06m ,所以cos φ = 0.5,因此φ = ±π/3. 物体的速度为v = d x /d t = -ωA sin(ωt + φ).当t = 0时,v = -ωA sin φ,由于v > 0,所以sin φ< 0,因此:φ = -π/3.简谐振动的表达式为:x = 0.12cos(πt – π/3).(2)当t = T /4时物体的位置为;x = 0.12cos(π/2 – π/3) = 0.12cosπ/6 = 0.104(m). 速度为;v = -πA sin(π/2 – π/3) = -0.12πsinπ/6 = -0.188(m·s -1).加速度为:a = d v /d t = -ω2A cos(ωt + φ)= -π2A cos(πt - π/3)= -0.12π2cosπ/6 = -1.03(m·s -2). (3)方法一:求时间差.当x = -0.06m 时,可得cos(πt 1 - π/3) = -0.5, 因此πt 1 - π/3 = ±2π/3.由于物体向x 轴负方向运动,即v < 0,所以sin(πt 1 - π/3) > 0,因此πt 1 - π/3 = 2π/3,得t 1 = 1s .当物体从x = -0.06m 处第一次回到平衡位置时,x = 0,v > 0,因此cos(πt 2 - π/3) = 0, 可得 πt 2 - π/3 = -π/2或3π/2等.由于t 2> 0,所以πt 2 - π/3 = 3π/2, 可得t 2 = 11/6 = 1.83(s).所需要的时间为:Δt = t 2 - t 1 = 0.83(s).方法二:反向运动.物体从x = -0.06m ,向x 轴负方向运动第一次回到平衡位置所需的时间就是它从x = 0.06m ,即从起点向x 轴正方向运动第一次回到平衡位置所需的时间.在平衡位置时,x = 0,v < 0,因此cos(πt - π/3) = 0,可得 πt - π/3 = π/2,解得t = 5/6 = 0.83(s).[注意]根据振动方程x = A cos(ωt + φ),当t = 0时,可得φ = ±arccos(x 0/A ),(-π<φ<= π), 初位相的取值由速度决定.由于v = d x /d t = -ωA sin(ωt + φ),当t = 0时,v = -ωA sin φ,当v > 0时,sin φ< 0,因此 φ = -arccos(x 0/A );当v < 0时,sin φ> 0,因此φ = arccos(x 0/A )π/3.可见:当速度大于零时,初位相取负值;当速度小于零时,初位相取正值.如果速度等于零,当初位置x 0 = A 时,φ = 0;当初位置x 0 = -A 时,φ = π.4.2已知一简谐振子的振动曲线如图所示,试由图求:(1)a ,b ,c ,d ,e 各点的位相,及到达这些状态的时刻t 各是多少?已知周期为T ; (2)振动表达式; (3)画出旋转矢量图. [解答]方法一:由位相求时间.(1)设曲线方程为x = A cos Φ,其中A 表示振幅,Φ = ωt + φ表示相位. 由于x a = A ,所以cos Φa = 1,因此Φa = 0.由于x b = A /2,所以cos Φb = 0.5,因此Φb = ±π/3;由于位相Φ随时间t 增加,b 点位相就应该大于a 点的位相,因此Φb = π/3.由于x c = 0,所以cos Φc = 0,又由于c 点位相大于b 位相,因此Φc = π/2.同理可得其他两点位相为:Φd = 2π/3,Φe = π.c 点和a 点的相位之差为π/2,时间之差为T /4,而b 点和a 点的相位之差为π/3,时间之差应该为T /6.因为b 点的位移值与O 时刻的位移值相同,所以到达a 点的时刻为t a = T /6. 到达b 点的时刻为t b = 2t a = T /3.图4.2到达c 点的时刻为t c = t a + T /4 = 5T /12. 到达d 点的时刻为t d = t c + T /12 = T /2. 到达e 点的时刻为t e = t a + T /2 = 2T /3.(2)设振动表达式为:x = A cos(ωt + φ),当t = 0时,x = A /2时,所以cos φ = 0.5,因此φ =±π/3; 由于零时刻的位相小于a 点的位相,所以φ = -π/3, 因此振动表达式为. 另外,在O 时刻的曲线上作一切线,由于速度是位置对时间的变化率,所以切线代表速度的方向;由于其斜率大于零,所以速度大于零,因此初位相取负值,从而可得运动方程.(3)如图旋转矢量图所示.方法二:由时间求位相.将曲线反方向延长与t 轴 相交于f 点,由于x f = 0,根据运动方程,可得所以:.显然f 点的速度大于零,所以取负值,解得t f = -T /12.从f 点到达a 点经过的时间为T /4,所以到达a 点的时刻为:t a = T /4 + t f = T /6, 其位相为:. 由图可以确定其他点的时刻,同理可得各点的位相.4.3 有一弹簧,当其下端挂一质量为M 的物体时,伸长量为9.8×10-2m .若使物体上下振动,且规定向下为正方向.(1)t = 0时,物体在平衡位置上方8.0×10-2m 处,由静止开始向下运动,求运动方程;(2)t = 0时,物体在平衡位置并以0.60m·s -1速度向上运动,求运动方程. [解答]当物体平衡时,有:Mg – kx 0 = 0, 所以弹簧的倔强系数为:k = Mg/x 0, 物体振动的圆频率为:s -1). 设物体的运动方程为:x = A cos(ωt + φ).(1)当t = 0时,x 0 = -8.0×10-2m ,v 0 = 0,因此振幅为:=8.0×10-2(m);由于初位移为x 0 = -A ,所以cos φ = -1,初位相为:φ = π. 运动方程为:x = 8.0×10-2cos(10t + π).(2)当t = 0时,x 0 = 0,v 0 = -0.60(m·s -1),因此振幅为:v 0/ω|=6.0×10-2(m);由于cos φ = 0,所以φ = π/2;运动方程为:x = 6.0×10-2cos(10t +π/2).4.4 质量为10×10-3kg 的小球与轻弹簧组成的系统,按的规律作振动,式中t 以秒(s)计,x 以米(m)计.求: (1)振动的圆频率、周期、振幅、初位相; (2)振动的速度、加速度的最大值;(3)最大回复力、振动能量、平均动能和平均势能;cos(2)3t x A T ππ=-cos(2)03t T ππ-=232f t Tπππ-=±203a a t T πΦπ=-=ω==0||A x ==A =20.1cos(8)3x t ππ=+(4)画出这振动的旋转矢量图,并在图上指明t 为1,2,10s 等各时刻的矢量位置. [解答](1)比较简谐振动的标准方程:x = A cos(ωt + φ),可知圆频率为:ω =8π,周期T = 2π/ω = 1/4 = 0.25(s),振幅A = 0.1(m),初位相φ = 2π/3.(2)速度的最大值为:v m = ωA = 0.8π = 2.51(m·s -1); 加速度的最大值为:a m = ω2A = 6.4π2 = 63.2(m·s -2). (3)弹簧的倔强系数为:k = mω2,最大回复力为:f = kA = mω2A = 0.632(N); 振动能量为:E = kA 2/2 = mω2A 2/2 = 3.16×10-2(J), 平均动能和平均势能为:= kA 2/4 = mω2A 2/4 = 1.58×10-2(J). (4)如图所示,当t 为1,2,10s 等时刻时,旋转矢量的位置是相同的.4.5 两个质点平行于同一直线并排作同频率、同振幅的简谐振动.在振动过程中,每当它们经过振幅一半的地方时相遇,而运动方向相反.求它们的位相差,并作旋转矢量图表示.[解答]设它们的振动方程为:x = A cos(ωt + φ), 当x = A /2时,可得位相为:ωt + φ = ±π/3.由于它们在相遇时反相,可取Φ1 = (ωt + φ)1 = -π/3,Φ2 = (ωt + φ)2 = π/3,它们的相差为:ΔΦ = Φ2 – Φ1 = 2π/3,或者:ΔΦ` = 2π –ΔΦ = 4π/3.矢量图如图所示.4.6一氢原子在分子中的振动可视为简谐振动.已知氢原子质量m = 1.68×10-27kg ,振动频率v = 1.0×1014Hz ,振幅A = 1.0×10-11m .试计算:(1)此氢原子的最大速度; (2)与此振动相联系的能量.[解答](1)氢原子的圆频率为:ω = 2πv = 6.28×1014(rad·s -1), 最大速度为:v m = ωA = 6.28×103(m·s -1).(2)氢原子的能量为:= 3.32×10-20(J).4.7 如图所示,在一平板下装有弹簧,平板上放一质量为1.0kg 的重物,若使平板在竖直方向上作上下简谐振动,周期为0.50s ,振幅为2.0×10-2m ,求:(1)平板到最低点时,重物对平板的作用力;(2)若频率不变,则平板以多大的振幅振动时,重物跳离平板? (3)若振幅不变,则平板以多大的频率振动时,重物跳离平板? [解答](1)重物的圆频率为:ω = 2π/T = 4π,其最大加速度为:a m = ω2A ,合力为:F = ma m ,方向向上.重物受到板的向上支持力N 和向下的重力G ,所以F = N – G . 重物对平板的作用力方向向下,大小等于板的支持力: N = G + F = m (g +a m ) = m (g +ω2A ) = 12.96(N).(2)当物体的最大加速度向下时,板的支持为:N = m (g - ω2A ). 当重物跳离平板时,N = 0,频率不变时,振幅为:A = g/ω2 = 3.2×10-2(m).(3)振幅不变时,频率为:3.52(Hz).4.8 两轻弹簧与小球串连在一直线上,将两弹簧拉长后系在固定点A 和B 之间,整个系统放在光滑水平面上.设两弹簧的原长分别为l 1和l 2,倔强系统分别为k 1和k 2,A和B 间距为L ,小球的质量为m .(1)试确定小球的平衡位置;k pE E =212m E mv=2ωνπ==(2)使小球沿弹簧长度方向作一微小位移后放手,小球将作振动,这一振动是否为简谐振动?振动周期为多少?[解答](1)这里不计小球的大小,不妨设L > l 1 + l 2,当小球平衡时,两弹簧分别拉长x 1和x 2,因此得方程:L = l 1 + x 1 + l 2 + x 2;小球受左右两边的弹簧的弹力分别向左和向右,大小相等,即k 1x 1 = k 2x 2. 将x 2 = x 1k 1/k 2代入第一个公式解得:.小球离A 点的距离为:.(2)以平衡位置为原点,取向右的方向为x 轴正方向,当小球向右移动一个微小距离x 时,左边弹簧拉长为x 1 + x ,弹力大小为:f 1 = k 1(x 1 + x ), 方向向左;右边弹簧拉长为x 1 - x ,弹力大小为:f 2 = k 2(x 2 - x ), 方向向右.根据牛顿第二定律得:k 2(x 2 - x ) - k 1(x 1 + x ) = ma ,利用平衡条件得:,即小球做简谐振动.小球振动的圆频率为:.4.9如图所示,质量为10g 的子弹以速度v = 103m·s -1水平射入木块,并陷入木块中,使弹簧压缩而作简谐振动.设弹簧的倔强系数k = 8×103N·m -1,木块的质量为4.99kg ,不计桌面摩擦,试求:(1)振动的振幅;(2)振动方程.[解答](1)子弹射入木块时,由于时间很短,木块还来不及运动,弹簧没有被压缩,它们的动量守恒,即:mv = (m + M)v 0.解得子弹射入后的速度为:v 0 = mv/(m + M) = 2(m·s -1),这也是它们振动的初速度.子弹和木块压缩弹簧的过程机械能守恒,可得:(m + M ) v02/2 = kA 2/2, 所以振幅为:10-2(m). (2)振动的圆频率为:= 40(rad·s -1).取木块静止的位置为原点、向右的方向为位移x 的正方向,振动方程可设为:x = A cos(ωt + φ).当t = 0时,x = 0,可得:φ = ±π/2;由于速度为正,所以取负的初位相,因此振动方程为:x = 5×10-2cos(40t - π/2).4.10如图所示,在倔强系数为k 的弹簧下,挂一质量为M 的托盘.质量为m 的物体由距盘底高h 处自由下落与盘发生完全非弹性碰撞,而使其作简谐振动,设两物体碰后瞬时为t = 0时刻,求振动方程.[解答]物体落下后、碰撞前的速度为:物体与托盘做完全非弹簧碰撞后,根据动量守恒定律可得它们的共同速度为,这也是它们振动的初速度.设振动方程为:x = A cos(ωt + φ),211212()k x L l l k k =--+211111212()k L l x l L l l k k =+=+--+2122d ()0d xm kk x t++=ω=22T πω==A v =ω=v =0m v v m M ==+图4.9 图4.10其中圆频率为:物体没有落下之前,托盘平衡时弹簧伸长为x 1,则:x 1 = Mg/k .物体与托盘磁盘之后,在新的平衡位置,弹簧伸长为x 2,则:x 2= (M + m )g/k . 取新的平衡位置为原点,取向下的方向为正,则它们振动的初位移为x 0 = x 1 - x 2 = -mg/k .因此振幅为:初位相为:4.11 装置如图所示,轻弹簧一端固定,另一端与物体m 间用细绳相连,细绳跨于桌边定滑轮M 上,m 悬于细绳下端.已知弹簧的倔强系数为k = 50N·m -1,滑轮的转动惯量J = 0.02kg·m 2,半径R = 0.2m ,物体质量为m = 1.5kg ,取g = 10m·s -2.(1)试求这一系统静止时弹簧的伸长量和绳的张力;(2)将物体m 用手托起0.15m ,再突然放手,任物体m 下落而整个系统进入振动状态.设绳子长度一定,绳子与滑轮间不打滑,滑轮轴承无摩擦,试证物体m 是做简谐振动; (3)确定物体m 的振动周期;(4)取物体m 的平衡位置为原点,OX 轴竖直向下,设振物体m 相对于平衡位置的位移为x ,写出振动方程.[解答](1)在平衡时,绳子的张力等于物体的重力T = G = mg = 15(N).这也是对弹簧的拉力,所以弹簧的伸长为:x 0 = mg/k = 0.3(m).(2)以物体平衡位置为原点,取向下的方向为正,当物体下落x 时,弹簧拉长为x 0 + x ,因此水平绳子的张力为:T 1 = k (x 0+ x ).设竖直绳子的张力为T 2,对定滑轮可列转动方程:T 2R – T 1R = Jβ, 其中β是角加速度,与线加速度的关系是:β = a/R .对于物体也可列方程:mg - T 2 = ma . 转动方程化为:T 2 – k (x 0 + x ) = aJ/R 2,与物体平动方程相加并利用平衡条件得:a (m + J/R 2) = –kx ,可得微分方程:,故物体做简谐振动. (3)简谐振动的圆频率为:s -1). 周期为:T 2 = 2π/ω = 1.26(s).(4)设物体振动方程为:x = A cos(ωt + φ),其中振幅为:A = 0.15(m). 当t = 0时,x = -0.15m ,v 0 = 0,可得:cos φ = -1,因此φ = π或-π, 所以振动方程为:x = 0.15cos(5t + π),或x = 0.15cos(5t - π).4.12一匀质细圆环质量为m ,半径为R ,绕通过环上一点而与环平面垂直的水平光滑轴在铅垂面内作小幅度摆动,求摆动的周期.[解答]通过质心垂直环面有一个轴,环绕此轴的转动惯量为:I c = mR 2.根据平行轴定理,环绕过O 点的平行轴的转动惯量为I = I c + mR 2 = 2mR 2.当环偏离平衡位置时,重力的力矩为:M = mgR sin θ, 方向与角度θ增加的方向相反.ω=A ==00arctan v x ϕω-==222d 0d /x kx t m J R +=+ω=根据转动定理得:Iβ = -M ,即,由于环做小幅度摆动,所以sin θ≈θ,可得微分方程:. 摆动的圆频率为:周期为:4.13 重量为P 的物体用两根弹簧竖直悬挂,如图所示,各弹簧的倔强系数标明在图上.试求在图示两种情况下,系统沿竖直方向振动的固有频率.[解答](1)前面已经证明:当两根弹簧串联时,总倔强系数为k = k1k 2/(k 1 + k 2),因此固有频率为(2)前面还证明:当两根弹簧并联时,总倔强系数等于两个弹簧的倔强系数之和,因此固有频率为.4.14质量为0.25kg 的物体,在弹性力作用下作简谐振动,倔强系数k = 25N·m -1,如果开始振动时具有势能0.6J ,和动能0.2J ,求:(1)振幅;(2)位移多大时,动能恰等于势能?(3)经过平衡位置时的速度.[解答]物体的总能量为:E = E k + E p = 0.8(J).(1)根据能量公式E = kA2/2,得振幅为:.(2)当动能等于势能时,即E k = E p ,由于E = E k + E p ,可得:E = 2E p ,即,解得:= ±0.179(m). (3)再根据能量公式E = mv m2/2,得物体经过平衡位置的速度为: 2.53(m·s -1).4.15 两个频率和振幅都相同的简谐振动的x-t 曲线如图所示,求: (1)两个简谐振动的位相差;(2)两个简谐振动的合成振动的振动方程. [解答](1)两个简谐振动的振幅为:A = 5(cm), 周期为:T = 4(s),圆频率为:ω =2π/T = π/2,它们的振动方程分别为:x 1 = A cos ωt =5cosπt /2, x 2 = A sin ωt =5sinπt /2 =5cos(π/2 - πt /2)即x 2=5cos(πt /2 - π/2).位相差为:Δφ = φ2 - φ1 = -π/2. (2)由于x = x 1 + x 2 = 5cosπt /2 +5sinπt /2 = 5(cosπt /2·cosπ/4 +5sinπt /2·sinπ/4)/sinπ/4 合振动方程为:(cm).22d sin 0d I mgR tθθ+=22d 0d mgRt Iθθ+=ω=222T πω===2ωνπ===2ωνπ===A =2211222kA kx =⨯/2x =m v =cos()24x t ππ=- (b)图4.134.16 已知两个同方向简谐振动如下:,.(1)求它们的合成振动的振幅和初位相; (2)另有一同方向简谐振动x 3 = 0.07cos(10t +φ),问φ为何值时,x 1 + x 3的振幅为最大?φ为何值时,x 2 + x 3的振幅为最小?(3)用旋转矢量图示法表示(1)和(2)两种情况下的结果.x 以米计,t 以秒计.[解答](1)根据公式,合振动的振幅为:=8.92×10-2(m). 初位相为:= 68.22°.(2)要使x 1 + x 3的振幅最大,则:cos(φ– φ1) = 1,因此φ– φ1 = 0,所以:φ = φ1 = 0.6π. 要使x 2 + x 3的振幅最小,则 cos(φ– φ2) = -1,因此φ– φ2 = π,所以φ = π + φ2 = 1.2π.(3)如图所示.4.17质量为0.4kg 的质点同时参与互相垂直的两个振动:, .式中x 和y 以米(m)计,t 以秒(s)计.(1)求运动的轨道方程;(2)画出合成振动的轨迹;(3)求质点在任一位置所受的力.[解答](1)根据公式:,其中位相差为:Δφ = φ2 – φ1 = -π/2,130.05cos(10)5x t π=+210.06cos(10)5x t π=+A =11221122sin sin arctancos cos A A A A ϕϕϕϕϕ+=+0.08cos()36x t ππ=+0.06cos()33y t ππ=-2222212122cos sin x y xyA A A A ϕϕ+-∆=∆所以质点运动的轨道方程为:. (2)合振动的轨迹是椭圆.(3)两个振动的圆频率是相同的ω = π/3,质点在x 方向所受的力为,即F x = 0.035cos(πt /3 + π/6)(N).在y 方向所受的力为,即F y = 0.026cos(πt /3 - π/3)(N).用矢量表示就是,其大小为,与x 轴的夹角为θ = arctan(F y /F x ).4.18 将频率为384Hz 的标准音叉振动和一待测频率的音叉振动合成,测得拍频为3.0Hz ,在待测音叉的一端加上一小块物体,则拍频将减小,求待测音叉的固有频率.[解答]标准音叉的频率为v 0 = 384(Hz), 拍频为Δv = 3.0(Hz), 待测音叉的固有频率可能是v 1 = v 0 - Δv = 381(Hz), 也可能是v 2 = v 0 + Δv = 387(Hz).在待测音叉上加一小块物体时,相当于弹簧振子增加了质量,由于ω2 = k/m ,可知其频率将减小.如果待测音叉的固有频率v 1,加一小块物体后,其频率v`1将更低,与标准音叉的拍频将增加;实际上拍频是减小的,所以待测音叉的固有频率v 2,即387Hz .4.19示波器的电子束受到两个互相垂直的电场作用.电子在两个方向上的位移分别为x = A cos ωt 和y = A cos(ωt +φ).求在φ = 0,φ = 30º,及φ = 90º这三种情况下,电子在荧光屏上的轨迹方程.[解答]根据公式,其中Δφ = φ2 – φ1 = -π/2,而φ1 = 0,φ2 = φ.(1)当Δφ = φ = 0时,可得,质点运动的轨道方程为y = x ,轨迹是一条直线.(2)当Δφ = φ = 30º时,可得质点的轨道方程, 即,轨迹是倾斜的椭圆.(3)当Δφ = φ = 90º时,可得, 即x 2 + y 2 = A 2,质点运动的轨迹为圆.4.20三个同方向、同频率的简谐振动为,,.222210.080.06x y +=22d d x x x F ma m t==20.08cos()6m t πωω=-+22d d y y y F ma m t==20.06cos()3m t ωω=--πi+j x y F F F =F =2222212122cos sin x y xyA A A A ϕϕ+-∆=∆2222220x y xyA A A+-=222214x y A+=222/4x y A +=22221x y A A +=10.08cos(314)6x t π=+20.08cos(314)2x t π=+350.08cos(314)6x t π=+求:(1)合振动的圆频率、振幅、初相及振动表达式; (2)合振动由初始位置运动到所需最短时间(A 为合振动振幅). [解答]合振动的圆频率为:ω = 314 = 100π(rad·s -1). 设A 0 = 0.08,根据公式得:A x = A 1cos φ1 + A 2cos φ2 + A 3cos φ3 = 0,A y = A 1sin φ1 + A 2sin φ2 + A 3sin φ3 = 2A 0 = 0.16(m), 振幅为:,初位相为:φ = arctan(A y /A x ) = π/2.合振动的方程为:x = 0.16cos(100πt + π/2).(2)当时,可得:,解得:100πt + π/2 = π/4或7π/4.由于t > 0,所以只能取第二个解,可得所需最短时间为t = 0.0125s .x A =A =/2x =cos(100/2)2t ππ+。

大学物理知识总结习题答案(第四章)静电场

大学物理知识总结习题答案(第四章)静电场

⼤学物理知识总结习题答案(第四章)静电场第四章静电场本章提要1.电荷的基本性质两种电荷,量⼦性,电荷⾸恒,相对论不变性。

2.库仑定律两个静⽌的点电荷之间的作⽤⼒12122204kq q q q rr==F r rπε其中922910(N m /C )k =??122-1-2018.8510(C Nm )4k -==??επ3.电场强度q =F E0q 为静⽌电荷。

由10102πε得112204kq q rr==E r rπε4.场强的计算(1)场强叠加原理电场中某⼀点的电场强度等于各个点电荷单独存在时在该点产⽣的电场强度的⽮量和。

i=∑E E(2)⾼斯定理电通量:在电场强度为E 的某点附近取⼀个⾯元,规定S ?=?S n ,θ为E 与n 之间的夹⾓,通过S ?的电场强度通量定义为e cos E S ?ψ=?=??v Sθ取积分可得电场中有限⼤的曲⾯的电通量ψd e sS=E⾼斯定理:在真空中,通过任⼀封闭曲⾯的电通量等于该封闭曲⾯内的所有电荷电量的代数和除以0ε,与封闭曲⾯外的电荷⽆关。

即i 01ε5.典型静电场(1)均匀带电球⾯0=E (球⾯内)204q rπε=E r(球⾯外)(2)均匀带电球体304q R πε=E r(球体内)204q rπε=E r(球体外)(3)均匀带电⽆限长直线场强⽅向垂直于带电直线,⼤⼩为02E rλπε=(4)均匀带电⽆限⼤平⾯场强⽅向垂直于带电平⾯,⼤⼩为2E σε=6.电偶极矩电偶极⼦在电场中受到的⼒矩=?M P E思考题4-1 02两式有什么区别与联系。

答:公式q FE =是关于电场强度的定义式,适合求任何情况下的电场。

⽽公式204q rπε=E r是由库仑定理代⼊定义式推导⽽来,只适于求点电荷的电场强度。

4-2⼀均匀带电球形橡⽪⽓球,在⽓球被吹⼤的过程中,下列各场点的场强将如何变化?(1)⽓球内部(2)⽓球外部(3)⽓球表⾯答:取球⾯⾼斯⾯,由00d nii q ε=?=∑?? E S 可知(1)内部⽆电荷,⽽⾯积不为零,所以E 内= 0。

大学物理课本答案习题 第四章习题解答

大学物理课本答案习题 第四章习题解答

习题四4-1 一宇航员要到离地球为5光年的星球去旅行,如果宇航员希望把这路程缩短为3光年,则他所乘的火箭相对于地球的速度应是多少?解 5光年是在地球上测得的原长,由于此长度相对宇航员也是高速运动的,所以他测得收缩了的长度为3光年. 即3=火箭相对于地球的速度应为45u c =4-2 一飞船以0.99c 的速率平行于地面飞行,宇航员测得此飞船的长度为400 m.. (1)地面上的观察者测得飞船长度是多少?(2)为了测得飞船的长度,地面上需要有两位观察者携带着两只同步钟同时站在飞船首尾两端处.那么这两位观察者相距多远? (3)宇航员测得两位观察者相距多远?解(1)56.4(m)l l ===(2)这两位观察者需同时测量飞船首、尾的坐标,相减得到飞船长度,所以两位观察者相距是56.4 m.(3)地面上的两位观察者相距56.4 m ,这一距离在地面参考系中是原长,宇航员看地面是运动的,他测得地面上两位观察者相距为7.96(m)l l ===所以宇航员测得两位观察者相距7.96 m.4-3 已知π介子在其静止系中的半衰期为81.810s -⨯。

今有一束π介子以0.8u c =的速度离开加速器,试问,从实验室参考系看来,当π介子衰变一半时飞越了多长的距离?解:在π介子的静止系中,半衰期80 1.810s t -∆=⨯是本征时间。

由时间膨胀效应,实验室参考系中的观察者测得的同一过程所经历的时间为8310s t -∆==⨯因而飞行距离为7.2m d u t =∆=4-4 在某惯性系K 中,两事件发生在同一地点而时间相隔为4s 。

已知在另一惯性系'K 中,该两事件的时间间隔为6s,试问它们的空间间隔是多少?解:在K系中,04st∆=为本征时间,在'K系中的时间间隔为6st∆=两者的关系为t∆==所以259β=故两惯性系的相对速度为8110m su cβ-==⋅由洛伦兹变换,'K系中两事件的空间间隔为)k kx x u t'∆=∆+∆两件事在K系中发生在同一地点,因此有0kx∆=,故810mkx'∆==4-5 惯性系'K相对另一惯性系K沿x轴作匀速运动,取两坐标原点重合的时刻作为计时起点。

大学物理第4章习题解答

大学物理第4章习题解答

第四章 狭义相对论4-l 设/s 系相对S 系的速度u=0.6c ,在S 系中事件A 发生于m x A 10=,s t A 7100.5-⨯=,0==A A z y ;事件B 发生在0,100.3,507==⨯==-B B B B z y s t m x ,求在s'系中这两个事件的空间间隔与时间间隔。

解: 利用221c u tu x x --='∆∆∆ 2221cu x c u t t -∆-∆='∆ 其中⎪⎪⎩⎪⎪⎨⎧-=∆-=∆'-'='∆'-'='∆A B A B A B AB tt t x x x t t t x x x4-2北京和长沙直线相距1200km 。

在某一时刻从两地同时向对方飞出直航班机。

现有一艘飞船从北京到长沙方向在高空掠过,速率恒为u=0.999c 。

求宇航员测得:(1)两班机发出的时间间隔;(2)哪一班机先起飞? 解: x 1=0 x 2=1200 km2221cu c ux t t -⎪⎭⎫⎝⎛-='011)(2222212212<-∆-=-⎥⎦⎤⎢⎣⎡--∆='-'='∆cu cx u c u x x c u t t t t即'<'12t t ,则长沙的班机后起飞. ='t ∆ (代入数据可得)4-3一宇航员要到离地球为5光年的星球去旅行,如果宇航员希望把这段路程缩短为3光年,则他所乘的火箭相对于地球的速度是多少?解: 地球与星球的距离L 0=5光年(固有长度),宇航员测量的长度L =3光年(运动长度),由长度收缩公式得习题4.2图2201cu L L -=得火箭对地的速度c c c LLu 5453112=⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-=4-4设在S 系中边长为a 的正方形,在/s 系中观测者测得是1:2的长方形,试求/s 系相对于S 系的运动速度。

大学物理第四章-刚体的转动-习题及答案

大学物理第四章-刚体的转动-习题及答案
第 4 章 刚体的定轴转动 习题及答案
1.刚体绕一定轴作匀变速转动,刚体上任一点是否有切向加速度?是否有法向加速度?切向和法 向加速度的大小是否随时间变化?
答:当刚体作匀变速转动时,角加速度 不变。刚体上任一点都作匀变速圆周运动,因此该点速
率在均匀变化,v l ,所以一定有切向加速度 at l ,其大小不变。又因该点速度的方向变化,
ω dr
(1)圆盘上半径为r、宽度为dr的同心圆环所受的摩擦力矩

dM
m
(
R2
2 rdr)grBiblioteka 2r 2 mgdr/
R2
负号表示摩擦力矩为阻力矩。对上式沿径向积分得圆盘所受
r dF
的总摩擦力矩大小为
M dM R 2r2mgdrdr 2 mgR
0
R2
3
(2)由于摩擦力矩是一恒力矩,圆盘的转动惯量 I 1 mr2 ,由角动量定理可得圆盘停止的 2
度.
解:碰撞过程满足角动量守恒:
2 3
mv0l
1 2
mv0
2 3
l
I

I m( 2 l)2 2m(1 l)2 2 ml2
3
33
所以
mv0l
2 3
ml 2
由此得到: 3v0 2l
2m
1 3
l
O⅓l
1 2
v
0
2 3
l
m
⅓l m v0
⅓l
15. 如图所示,A和B两飞轮的轴杆在同一中心线上,设两轮的转动惯量分别为 JA=10 kg·m2 和 JB
2
2
22
2
2
1 16
( Ld14
1 2
ad24

大学物理第四章课后答案

大学物理第四章课后答案
习题四 4-1 符合什么规律的运动才是谐振动?分别分析下列运动是不是谐振动: (1)拍皮球时球的运动; (2)如题4-1图所示,一小球在一个半径很大的光滑凹球面内滚动(设小球所经过的弧线很 短).
题4-1图 解:要使一个系统作谐振动,必须同时满足以下三个条件:一 ,描述系统的各种参量,如 质量、转动惯量、摆长……等等在运动中保持为常量;二,系统 是在 自己的稳定平衡位置 附近作往复运动;三,在运动中系统只受到内部的线性回复力的作用. 或者说,若一个系 统的运动微分方程能用
(3)由于谐振动中能量守恒,故在任一位置处或任一时刻的系统的总能量均为
4-7 有一轻弹簧,下面悬挂质量为 1.0g 的物体时,伸长为 4.9cm .用这个弹簧和一个质量 为 8.0g 的小球构成弹簧振子,将小球由平衡位置向下拉开 1.0cm 后 ,给予向上的初速度
v0 = 5.0cm ⋅ s −1 ,求振动周期和振动表达式.
d2 x mg sin θ − T1 = m 2 dt

T1 R − T2 R = Iβ
d2 x = Rβ dt 2

T2 = k ( x 0 + x )

式中 x0 = mg sin θ / k ,为静平衡时弹簧之伸长量,联立以上三式,有
I d2x (mR + ) 2 = − kxR R dt
令 则有
7
∴ 故其角振幅
Байду номын сангаас
2 A = x0 +(
v0 2 v 0 0.01 ) = = = 3.2 × 10 −3 m ω ω 3.13 A = 3.2 × 10 −3 rad l
Θ=
小球的振动方程为
∆φ = ω (t 2 − t1 ) = 8π (5 − 1) = 32π

大学物理第四章课后答案

大学物理第四章课后答案

υ2 l
9. 解: m 下降到斜面瞬间满足机械能守恒: 1 则 mgh = mυ 0 2 2 M 与 m 碰撞后无机械能损失: 1 1 1 mυ 0 2 = Mυ 2 + mυ ′ 2 2 2 2 水平方向 M 与 m 组成的系统动量守恒, 总动量 为 0, Mυ = m υ ′ 解得: υ = 2m 2 gh M ( M + m)
如图所示在一铅直面内有一光滑的轨道左边是一个上升的曲线右边是足够长的水平直线两者平滑连接现有b两个质点b在水平轨道上静止a在曲线部分高h处由静止滑下与b发生完全弹性碰撞碰后a仍可返回上升到曲线轨道某处并再度滑下已知ab两质点的质量a分别为和
自治区精品课程—大学物理学
题库
第四章 动量定理
一、 填空 1. 2. 3. 4. 是表示力在空间上累积作用的物理量, 是表示力在时间上累 积作用的物理量。 质点动量定理的微分形式是 。 质点动量定理的积分形式是 。 对于质点系来说,内力 ( “改变”或“不改变” )质点系中各个质点 的动量,但 ( “改变”或“不改变” )质点系的总动量。 若质点系沿某坐标方向所受的合外力为零,则 守恒。 如果两物体碰撞过程中,动能完全没有损失,这种碰撞称为 ,否则 就称为 ;如果碰撞后两物体以相同的速度运动,这种碰撞称 为 。 , 其中 υ10 ,υ1 是某一物
-1-
自治区精品课程—大学物理学
题库
上,如图所示。求链条下落在地面的长度为 l 瞬时,地面所受链条的作用力的大 小。 4. 质量为 M 的人,手里拿着一个质量为 m 的物体,此人以与地平面成 α 角的速 度 υ0 向前方跳起,当他达到最高点时,将物体以相对速度 µ 水平向后抛出,由 于物体的抛出,人跳的距离增加多少?假设空气阻力不计。 5. 速度为 υ0 的物体甲和一个质量为甲的 2 倍的静止物体乙作对心碰撞,碰撞后 1 甲物体以 υ 0 的速度沿原路径弹回,求: 3 (1)乙物体碰撞后的速度,问这碰撞是完全弹性碰撞吗? (2) 如果碰撞是完全非弹性碰撞, 碰撞后两物体的速度为多大?动能损失多少? 6. 如图所示,质量为 m 的物体从斜面上高度为 h 的 A 点处由静止开始下滑,滑至水平段 B 点 停止,今有一质量 m 的子弹射入物体中,使物 体恰好能返回到斜面上的 A 点处。求子弹的速 度( AB 段摩擦因数为恒量) 。 7. 如图所示,劲度系数 k = 100 N m 的弹簧, 一 段固 定于 O 点, 另一端 与一 质量 为

大学物理第四章习题及答案

大学物理第四章习题及答案

大学物理第四章习题及答案大学物理第四章习题及答案第四章是大学物理课程中的重要章节,主要涉及力学和运动学的内容。

在这一章中,学生将学习到关于运动的基本概念和原理,以及如何应用这些知识解决实际问题。

为了帮助学生更好地理解和掌握这一章节的知识,以下是一些常见的习题及其答案。

习题一:一个物体以10 m/s的速度从10 m高的斜面上滑下,滑到底部时的速度是多少?解答:根据能量守恒定律,物体在滑下过程中,其机械能守恒。

由于没有外力做功,物体的机械能在滑下过程中保持不变。

因此,物体在滑到底部时的机械能等于初始机械能。

初始机械能 = 动能 + 重力势能= 1/2 mv^2 + mgh根据题目给出的条件,可得:1/2 mv^2 + mgh = 1/2 m(10)^2 + m(10)(10)= 50m + 100m= 150m因此,滑到底部时的速度为10 m/s。

习题二:一个物体以10 m/s的速度从斜面上滑下,滑到底部时的时间是多少?解答:根据运动学中的运动方程,可以求解物体滑下斜面所用的时间。

在这个问题中,物体的初速度为0,加速度为重力加速度g,位移为斜面的长度L。

根据运动方程:S = ut + 1/2 at^2L = 0 + 1/2 gt^22L = gt^2t^2 = 2L/gt = sqrt(2L/g)根据题目给出的条件,斜面的长度L为10 m,重力加速度g为10 m/s^2,代入上述公式可得:t = sqrt(2(10)/10)= sqrt(2)≈ 1.414 s因此,滑到底部时的时间约为1.414秒。

习题三:一个物体以10 m/s的速度从斜面上滑下,滑到底部时的加速度是多少?解答:根据牛顿第二定律,物体在斜面上滑动时受到的合力等于物体的质量乘以加速度。

在这个问题中,物体的质量为m,斜面的倾角为θ,重力加速度为g。

合力 = m * 加速度m * g * sinθ = m * 加速度加速度= g * sinθ根据题目给出的条件,斜面的倾角θ为30度,重力加速度g为10 m/s^2,代入上述公式可得:加速度= 10 * sin(30°)≈ 5 m/s^2因此,滑到底部时的加速度约为5 m/s^2。

大学物理学(课后答案)第4章

大学物理学(课后答案)第4章

第4章 刚体的定轴转动习 题一 选择题4-1 有两个力作用在一个有固定转轴的刚体下,对此有以下几种说法:(1)这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2)这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3)当这两个力的合力为零时,它们对轴的合力矩也一定是零;(4)当这两个力对轴的合力矩为零时,它们的合力也一定是零.对L 述说法下述判断正确的是[ ](A )只有(l )是正确的 (B )(1)、(2)正确,(3)、(4)错误 (C )(1)、(2)、(3)都正确 (D )(1)、(2)、(3)、(4)都正确 解析:力矩是描述力对刚体转动的作用,=⨯M r F 。

因此合力为零时,合力矩不一定为零;合力矩为零时,合力也不一定为零。

两者并没有一一对应的关系。

答案选B 。

4-2 有A 、B 两半径相同,质量相同的细圆环。

A 环的质量均匀分布,B 环的质量不均匀分布,设它们对过环心的中心轴的转动惯量分别为A I 和B I ,则有[ ](A )A B I I > (B )A B I I < (C )无法确定哪个大 (D )A B I I = 解析:转动惯量2i i iI m r =∆∑,由于A 、B 两细圆环半径相同,质量相同,所以转动惯量相同2A B I I mR ==,而与质量分布均匀与否无关。

选D 。

4-3 均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图4-3所示.今使棒从水平位置由静止开始自由下落,在棒摆到竖直位置的过程中,下述说法正确的是[ ](A )角速度从小到大,角加速度不变 (B )角速度从小到大,角加速度从小到大(C )角速度从小到大,角加速度从大到小 (D )角速度不变,角加速度为零解析:在棒摆到竖直位置的过程中,重力势能和转动动能相互转化,因此转速越来越大,即角速度从小到大。

整个过程中棒只受到重力矩的作用,211cos 23M mg l J ml θαα===,所以3cos 2gl αθ=,随着转角θ逐渐增大,角加速度α由大变小。

大学物理思考题答案第四章

大学物理思考题答案第四章

第四章 动量守恒定律与能量守恒定律4-1 用锤压钉,很难把钉子压入木块,如果用锤击钉,钉子就很容易进入木块。

这是为什么?答:要将钉子压入木块中,受到木块的阻力是很大的,仅靠锤压钉子上面的重量远远不够,只有挥动锤子,使锤子在极短的时间内速度从很大突然变为零,在这过程中可获得较大的冲量,即:0F t mv =-又因为t 很短,所以可获得很大的冲力,这样才足以克服木块的阻力,将钉子打进木块中去。

4-2 一人躺在地上,身上压一块重石板,另一人用重锤猛击石板,但见石板碎裂,而下面的人毫无损伤。

何故?答:石板受击所受到的冲量很大,亦即)(v m d p d dt F ==很大。

但是,由于石板的质量m 很大,所以,石板的速度变化并不大。

又因为用重锤猛击石板时,冲击力F 很大,此力作用于石板,易击碎石板;但是,由于石板的面积很大,故作用于人体单位面积上的力并不大,所以下面的人毫无损伤。

4-3 两个质量相同的物体从同一高度自由下落,与水平地面相碰,一个反弹回去,另一个却贴在地上,问哪一个物体给地面的冲击较大?答:贴地:00)(0mv mv t F =--=∆反弹:)()(00v v m mv mv t F +=--=∆'F F >'∴,则反弹回去的物体对地面冲击大。

4-4 两个物体分别系在跨过一个定滑轮的轻绳两端。

若把两物体和绳视为一个系统,哪些力是外力?哪些力是内力?答:取系统21,m m 和绳,内力:2211,;,T T T T ''外力:g m g m 21,,绳与滑轮摩擦力f ,滑轮对绳支持力N 。

4-5 在系统的动量变化中内力起什么作用?有人说:因为内力不改变系统的动量,所以不论系统内各质点有无内力作用,只要外力相同,则各质点的运动情况就相同。

这话对吗?答:这话是错的。

由质点系动量定理21t ex t F dt p =⎰可知,在系统动量变化中,外力改变系统的动量,内力不改变系统的动量;但内力改变各质点的动量,所以各质点的运动情况就不相同。

大学物理习题答案解析第四章

大学物理习题答案解析第四章

第四章刚体的转动4-1有两个力作用在一个有固定转轴的刚体上:(1) 这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2) 这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3) 当这两个力的合力为零时,它们对轴的合力矩也一定是零;(4) 当这两个力对轴的合力矩为零时,它们的合力也一定是零.对上述说法下述判断正确的是( )(A) 只有(1)是正确的(B)(1)、(2)正确,(3)、(4)错误(C) (1)、(2)、(3)都正确,(4)错误 (D)(1)、(2)、(3)、(4)都正确分析与解力对轴之力矩通常有三种情况:其中两种情况下力矩为零:一是力的作用线通过转轴,二是力平行于转轴(例如门的重力并不能使门转).不满足上述情况下的作用力(含题述作用力垂直于转轴的情况)对轴之矩不为零,但同时有两个力作用时,只要满足两力矩大小相等,方向相反,两力矩对同一轴的合外力矩也可以为零,由以上规则可知(1)(2)说法是正确.对于(3)(4)两种说法,如作用于刚体上的两个力为共点力,当合力为零时,它们对同一轴的合外力矩也一定为零,反之亦然.但如这两个力为非共点力,则以上结论不成立,故(3)(4)说法不完全正确.综上所述,应选(B).4-2关于力矩有以下几种说法:(1) 对某个定轴转动刚体而言,内力矩不会改变刚体的角加速度;(2) 一对作用力和反作用力对同一轴的力矩之和必为零;(3) 质量相等,形状和大小不同的两个刚体,在相同力矩的作用下,它们的运动状态一定相同.对上述说法下述判断正确的是( )(A) 只有(2)是正确的 (B) (1)、(2)是正确的(C)(2)、(3)是正确的 (D) (1)、(2)、(3)都是正确的分析与解刚体中相邻质元之间的一对内力属于作用力与反作用力,且作用点相同,故对同一轴的力矩之和必为零,因此可推知刚体中所有内力矩之和为零,因而不会影响刚体的角加速度或角动量等,故(1)(2)说法正确.对说法(3)来说,题述情况中两个刚体对同一轴的转动惯量因形状、大小不同有可能不同,因而在相同力矩作用下,产生的角加速度不一定相同,因而运动状态未必相同,由此可见应选(B).4-3均匀细棒OA可绕通过其一端O而与棒垂直的水平固定光滑轴转动,如图所示,今使棒从水平位置由静止开始自由下落,在棒摆到竖直位置的过程中,下述说法正确的是( )(A) 角速度从小到大,角加速度不变(B) 角速度从小到大,角加速度从小到大(C) 角速度从小到大,角加速度从大到小(D) 角速度不变,角加速度为零分析与解 如图所示,在棒下落过程中,重力对轴之矩是变化的,其大小与棒和水平面的夹角有关.当棒处于水平位置,重力矩最大,当棒处于竖直位置时,重力矩为零.因此在棒在下落过程中重力矩由大到小,由转动定律知,棒的角加速亦由大到小,而棒的角速度却由小到大(由机械能守恒亦可判断角速度变化情况),应选(C ). 4 -4 一圆盘绕通过盘心且垂直于盘面的水平轴转动,轴间摩擦不计.如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,它们同时射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘和子弹系统的角动量L 以及圆盘的角速度ω的变化情况为( ) (A ) L 不变,ω增大 (B ) 两者均不变 (C ) L 不变,ω减小 (D ) 两者均不确定分析与解 对于圆盘一子弹系统来说,并无外力矩作用,故系统对轴O 的角动量守恒,故L 不变,此时应有下式成立,即式中m v D 为子弹对点O 的角动量ω0 为圆盘初始角速度,J 为子弹留在盘中后系统对轴O 的转动惯量,J 0为子弹射入前盘对轴O 的转动惯量.由于J >J 0 ,则ω<ω0 .故选(C ).4 -5 假设卫星环绕地球中心作椭圆运动,则在运动过程中,卫星对地球中心的( ) (A ) 角动量守恒,动能守恒 (B ) 角动量守恒,机械能守恒 (C ) 角动量不守恒,机械能守恒 (D ) 角动量不守恒,动量也不守恒 (E) 角动量守恒,动量也守恒分析与解 由于卫星一直受到万有引力作用,故其动量不可能守恒,但由于万有引力一直指向地球中心,则万有引力对地球中心的力矩为零,故卫星对地球中心的角动星守恒,即r ×m v =恒量,式中r 为地球中心指向卫星的位矢.当卫星处于椭圆轨道上不同位置时,由于|r |不同,由角动量守恒知卫星速率不同,其中当卫星处于近地点时速率最大,处于远地点时速率最小,故卫星动能并不守恒,但由万有引力为保守力,则卫星的机械能守恒,即卫星动能与万有引力势能之和维持不变,由此可见,应选(B ).4 -6 一汽车发动机曲轴的转速在12 s 内由1.2×103 r·min -1均匀的增加到2.7×103 r·min -1.(1) 求曲轴转动的角加速度;(2) 在此时间内,曲轴转了多少转?分析这是刚体的运动学问题.刚体定轴转动的运动学规律与质点的运动学规律有类似的关系,本题为匀变速转ωJ ωJ d m d m =+-00vv动.解 (1) 由于角速度ω=2π n (n 为单位时间内的转数),根据角加速度的定义,在匀变速转动中角加速度为(2) 发动机曲轴转过的角度为在12 s 内曲轴转过的圈数为圈 4 -7 某种电动机启动后转速随时间变化的关系为,式中ω0=9.0 s -1 ,τ=2 s .求:(1) t =6.0 s 时的转速;(2) 角加速度随时间变化的规律;(3) 启动后6.0 s 内转过的圈数.分析 与质点运动学相似,刚体定轴转动的运动学问题也可分为两类:(1) 由转动的运动方程,通过求导得到角速度、角加速度;(2) 在确定的初始条件下,由角速度、角加速度通过积分得到转动的运动方程.本题由ω=ω(t )出发,分别通过求导和积分得到电动机的角加速度和6.0 s 内转过的圈数. 解 (1) 根据题意中转速随时间的变化关系,将t =6.0 s 代入,即得(2) 角速度随时间变化的规律为(3) t =6.0 s 时转过的角度为则t =6.0 s 时电动机转过的圈数圈4 -8 水分子的形状如图所示,从光谱分析知水分子对AA ′ 轴的转动惯量J AA′=1.93 ×10-47 kg·m 2 ,对BB ′ 轴转动惯量J BB′=1.14 ×10-47 kg·m 2,试由此数据和各原子质量求出氢和氧原子的距离D 和夹角θ.假设各原子都可当质点处理.tωαd d =()200s rad 1.13π2-⋅=-=-=tn n t ωωα()0020π221n n t ωωt αt ωθ-=-=+=3902π20=+==t n n θN ()τt e ωω/01--=()10/0s 6.895.01--==-=ωe ωωτt ()22//0s rad e 5.4e d d ---⋅===t τt τωt ωα()rad 9.36d 1d /6060=-==-⎰⎰t e ωt ωθτt 87.5π2/==θN分析 如将原子视为质点,则水分子中的氧原子对AA ′轴和BB ′ 轴的转动惯量均为零,因此计算水分子对两个轴的转动惯量时,只需考虑氢原子即可. 解 由图可得此二式相加,可得 则由二式相比,可得 则 4 -9 一飞轮由一直径为30㎝,厚度为2.0㎝的圆盘和两个直径为10㎝,长为8.0㎝的共轴圆柱体组成,设飞轮的密度为7.8×103 kg·m -3,求飞轮对轴的转动惯量.分析 根据转动惯量的可叠加性,飞轮对轴的转动惯量可视为圆盘与两圆柱体对同轴的转动惯量之和;而匀质圆盘、圆柱体对轴的转动惯量的计算可查书中公式,或根据转动惯量的定义,用简单的积分计算得到. 解 根据转动惯量的叠加性,由匀质圆盘、圆柱体对轴的转动惯量公式可得θd m J H A A 22sin 2='θd m J H B B 22cos 2='22d m J J H B B A A =+''m 1059.9211-''⨯=+=HB B A A m J J d θJ J B B A A 2tan /=''o 3.521.141.93arctan arctan===''B B A A J Jθ4 -10 如图(a )所示,圆盘的质量为m ,半径为R .求:(1) 以O 为中心,将半径为R /2 的部分挖去,剩余部分对OO 轴的转动惯量;(2) 剩余部分对O ′O ′轴(即通过圆盘边缘且平行于盘中心轴)的转动惯量.分析 由于转动惯量的可加性,求解第一问可有两种方法:一是由定义式计算,式中d m 可取半径为r 、宽度为d r 窄圆环;二是用补偿法可将剩余部分的转动惯量看成是原大圆盘和挖去的小圆盘对同一轴的转动惯量的差值.至于第二问需用到平行轴定理. 解 挖去后的圆盘如图(b )所示. (1) 解1 由分析知解2 整个圆盘对OO 轴转动惯量为,挖去的小圆盘对OO 轴转动惯量,由分析知,剩余部分对OO 轴的转动惯量为(2) 由平行轴定理,剩余部分对O ′O ′轴的转动惯量为4 -11 用落体观察法测定飞轮的转动惯量,是将半径为R 的飞轮支承在O 点上,然后在绕过飞轮的绳子的一端挂一质量为m 的重物,令重物以初速度为零下落,带动飞轮转动(如图).记下重物下落的距离和时间,就可算出飞轮的转动惯量.试写出它的计算式.(假设轴承间无摩擦).2424122221121m kg 136.021π161 2212212⋅=⎪⎭⎫⎝⎛+=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛⨯=+=ad ld ρd m d m J JJ m r J d 2⎰=22/3222/2203215d 2 d π2πd mR r r R m rr R mr m r J R R RR ====⎰⎰⎰2121mR J =2222232122ππ21mR R R Rm J =⎪⎭⎫ ⎝⎛⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫⎝⎛=22103215mR J J J =-=22222032392ππ3215mR R R R m m mR J =⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛⋅-+='分析 在运动过程中,飞轮和重物的运动形式是不同的.飞轮作定轴转动,而重物是作落体运动,它们之间有着内在的联系.由于绳子不可伸长,并且质量可以忽略.这样,飞轮的转动惯量,就可根据转动定律和牛顿定律联合来确定,其中重物的加速度,可通过它下落时的匀加速运动规律来确定.该题也可用功能关系来处理.将飞轮、重物和地球视为系统,绳子张力作用于飞轮、重物的功之和为零,系统的机械能守恒.利用匀加速运动的路程、速度和加速度关系,以及线速度和角速度的关系,代入机械能守恒方程中即可解得.解1 设绳子的拉力为F T,对飞轮而言,根据转动定律,有(1)而对重物而言,由牛顿定律,有(2)由于绳子不可伸长,因此,有(3)重物作匀加速下落,则有(4) 由上述各式可解得飞轮的转动惯量为解2 根据系统的机械能守恒定律,有(1′)而线速度和角速度的关系为(2′)又根据重物作匀加速运动时,有(3′)(4′)由上述各式可得αJ R F T =ma F mg T =-αR a =221at h =⎪⎪⎭⎫⎝⎛-=1222h gt mR J 0212122=++-ωJ m mgh v ωR =v at =v ah 22=v ⎪⎪⎭⎫⎝⎛-=1222h gt mR J若轴承处存在摩擦,上述测量转动惯量的方法仍可采用.这时,只需通过用两个不同质量的重物做两次测量即可消除摩擦力矩带来的影响.4 -12 一燃气轮机在试车时,燃气作用在涡轮上的力矩为2.03×03N·m ,涡轮的转动惯量为25.0kg·m 2 .当轮的转速由2.80×103 r·min -1 增大到1.12×104 r·min -1时,所经历的时间t 为多少?分析 由于作用在飞轮上的力矩是恒力矩,因此,根据转动定律可知,飞轮的角加速度是一恒量;又由匀变速转动中角加速度与时间的关系,可解出飞轮所经历的时间.该题还可应用角动量定理直接求解. 解1 在匀变速转动中,角加速度,由转动定律,可得飞轮所经历的时间 解2 飞轮在恒外力矩作用下,根据角动量定理,有则 4 -13 如图(a ) 所示,质量m 1 =16 kg 的实心圆柱体A ,其半径为r =15 cm ,可以绕其固定水平轴转动,阻力忽略不计.一条轻的柔绳绕在圆柱体上,其另一端系一个质量m 2 =8.0 kg 的物体B .求:(1) 物体B 由静止开始下降1.0 s 后的距离;(2) 绳的张力F T .分析 该系统的运动包含圆柱体的转动和悬挂物的下落运动(平动).两种不同的运动形式应依据不同的动力学方程去求解,但是,两物体的运动由柔绳相联系,它们运动量之间的联系可由角量与线量的关系得到. 解 (1) 分别作两物体的受力分析,如图(b ).对实心圆柱体而言,由转动定律得t ωωα0-=αJ M =()s 8.10200=-=-=n n MJπJ M ωωt ()0d ωωJ t M t-=⎰()s 8.10π200=-=-=n n MJJ M ωωt对悬挂物体而言,依据牛顿定律,有且F T =F T′ .又由角量与线量之间的关系,得解上述方程组,可得物体下落的加速度在t =1.0 s 时,B 下落的距离为(2) 由式(2)可得绳中的张力为4 -14 质量为m 1 和m 2 的两物体A 、B 分别悬挂在图(a )所示的组合轮两端.设两轮的半径分别为R 和r ,两轮的转动惯量分别为J 1 和J 2 ,轮与轴承间、绳索与轮间的摩擦力均略去不计,绳的质量也略去不计.试求两物体的加速度和绳的张力.分析 由于组合轮是一整体,它的转动惯量是两轮转动惯量之和,它所受的力矩是两绳索张力矩的矢量和(注意两αr m αJ r F T 2121==a m F g m F P T T 222='-='-αr a =21222m m gm a +=m 45.222121222=+==m m gt m at s ()N 2.3922121=+=-=g m m m m a g m FT力矩的方向不同).对平动的物体和转动的组合轮分别列出动力学方程,结合角加速度和线加速度之间的关系即可解得.解 分别对两物体及组合轮作受力分析,如图(b ).根据质点的牛顿定律和刚体的转动定律,有(1) (2)(3) , (4)由角加速度和线加速度之间的关系,有(5) (6)解上述方程组,可得4 -15 如图所示装置,定滑轮的半径为r ,绕转轴的转动惯量为J ,滑轮两边分别悬挂质量为m 1 和m 2 的物体A 、B .A 置于倾角为θ 的斜面上,它和斜面间的摩擦因数为μ,若B 向下作加速运动时,求:(1) 其下落加速度的大小;(2) 滑轮两边绳子的张力.(设绳的质量及伸长均不计,绳与滑轮间无滑动,滑轮轴光滑.)分析 这是连接体的动力学问题,对于这类问题仍采用隔离体的方法,从受力分析着手,然后列出各物体在不同运动形式下的动力学方程.物体A 和B 可视为质点,则运用牛顿定律.由于绳与滑轮间无滑动,滑轮两边绳中的张力是不同的,滑轮在力矩作用下产生定轴转动,因此,对滑轮必须运用刚体的定轴转动定律.列出动力学方程,并考虑到角量与线量之间的关系,即能解出结果来.解 作A 、B 和滑轮的受力分析,如图(b ).其中A 是在张力F T1 、重力P 1 ,支持力F N 和摩擦力F f 的作用下运动,根据牛顿定律,沿斜面方向有(1)111111a m F g m F P T T =-='-222222a m g m F P F T T =-=-'()αJ J r F R F T T 2121+=-11T T F F ='22T T F F ='αR a =1αr a =2gR r m R m J J rm R m a 222121211+++-=gr rm R m J J rm R m a 222121212+++-=g m r m R m J J Rr m r m J J F T 1222121221211++++++=g m r m R m J J Rr m R m J J F T 2222121121212++++++=11111cos sin a m θg m μθg m F T =--而B 则是在张力F T2 和重力P 2 的作用下运动,有(2)由于绳子不能伸长、绳与轮之间无滑动,则有(3)对滑轮而言,根据定轴转动定律有(4) , (5)解上述各方程可得4 -16 如图(a )所示,飞轮的质量为60 kg ,直径为0.50 m ,转速为1.0 ×103 r·min -1 .现用闸瓦制动使其在5.0 s 内停止转动,求制动力F .设闸瓦与飞轮之间的摩擦因数 μ=0.40,飞轮的质量全部分布在轮缘上.2222a m F g m T =-αr a a ==21αJ r F r F T T ='-'1211T T F F ='22T T F F ='22111221cos sin rJm m θg m μθg m g m a a ++--==()()22121211//cos sin cos sin 1rJ m m r gJ m θμθθμθg m m F T ++++++=()22122212//cos sin 1rJ m m r gJ m θμθg m m F T +++++=分析 飞轮的制动是闸瓦对它的摩擦力矩作用的结果,因此,由飞轮的转动规律可确定制动时所需的摩擦力矩.但是,摩擦力矩的产生与大小,是由闸瓦与飞轮之间的正压力F N 决定的,而此力又是由制动力F 通过杠杆作用来实现的.所以,制动力可以通过杠杆的力矩平衡来求出.解 飞轮和闸杆的受力分析,如图(b )所示.根据闸杆的力矩平衡,有而,则闸瓦作用于轮的摩擦力矩为 (1) 摩擦力矩是恒力矩,飞轮作匀角加速转动,由转动的运动规律,有(2) 因飞轮的质量集中于轮缘,它绕轴的转动惯量,根据转动定律,由式(1)、(2)可得制动力()0121='-+l F l l F NNN F F '=d μF l ll d μF d F M N 121f2212+===tnt ωt ωωαπ200==-=4/2md J =αJ M =4 -17 一半径为R 、质量为m 的匀质圆盘,以角速度ω绕其中心轴转动,现将它平放在一水平板上,盘与板表面的摩擦因数为μ.(1) 求圆盘所受的摩擦力矩.(2) 问经多少时间后,圆盘转动才能停止?分析 转动圆盘在平板上能逐渐停止下来是由于平板对其摩擦力矩作用的结果.由于圆盘各部分所受的摩擦力的力臂不同,总的摩擦力矩应是各部分摩擦力矩的积分.为此,可考虑将圆盘分割成许多同心圆环,取半径为r 、宽为d r 的圆环为面元,环所受摩擦力d F f =2πr μmg d r /πR 2 ,其方向均与环的半径垂直,因此,该圆环的摩擦力矩d M =r ×d F f ,其方向沿转动轴,则圆盘所受的总摩擦力矩M =∫ d M .这样,总的摩擦力矩的计算就可通过积分来完成.由于摩擦力矩是恒力矩,则由角动量定理M Δt =Δ(Jω),可求得圆盘停止前所经历的时间Δt .当然也可由转动定律求解得.解 (1) 由分析可知,圆盘上半径为r 、宽度为d r 的同心圆环所受的摩擦力矩为式中k 为轴向的单位矢量.圆盘所受的总摩擦力矩大小为(2) 由于摩擦力矩是一恒力矩,圆盘的转动惯量J =mR 2/2 .由角动量定理M Δt =Δ(Jω),可得圆盘停止的时间为4 -18 如图所示,一通风机的转动部分以初角速度ω0 绕其轴转动,空气的阻力矩与角速度成正比,比例系数C 为一常量.若转动部分对其轴的转动惯量为J ,问:(1) 经过多少时间后其转动角速度减少为初角速度的一半?(2) 在此时间内共转过多少转?分析 由于空气的阻力矩与角速度成正比,由转动定律可知,在变力矩作用下,通风机叶片的转动是变角加速转动,因此,在讨论转动的运动学关系时,必须从角加速度和角速度的定义出发,通过积分的方法去解. 解 (1) 通风机叶片所受的阻力矩为M =-Cω,由转动定律M =Jα,可得叶片的角加速度为(1) 根据初始条件对式(1)积分,有()N 1014.32211⨯=+=tl l μnmdl πF ()k F r M 22f /d 2d R r mg μr d -=⨯=mgR μr R mg μr M M R32d 2d 022===⎰⎰gμR ωM ωJ t 43Δ==JωC t ωα-==d d t J C ωωt ωωd d 00⎰⎰-=由于C 和J 均为常量,得(2)当角速度由ω0 → 12 ω0 时,转动所需的时间为(2) 根据初始条件对式(2)积分,有即 在时间t 内所转过的圈数为4 -19 如图所示,一长为2l 的细棒AB ,其质量不计,它的两端牢固地联结着质量各为m 的小球,棒的中点O 焊接在竖直轴z 上,并且棒与z 轴夹角成α角.若棒在外力作用下绕z 轴(正向为竖直向上)以角直速度ω=ω0(1 -e -t) 转动,其中ω0 为常量.求(1)棒与两球构成的系统在时刻t 对z 轴的角动量;(2) 在t =0时系统所受外力对z 轴的合外力矩.分析 由于棒的质量不计,该系统对z 轴的角动量即为两小球对z 轴的角动量之和,首先可求出系统对z 轴的转动惯量(若考虑棒的质量,其转动惯量为多少,读者可自己想一想),系统所受合外力矩既可以运用角动量定理,也可用转动定律来求解.相比之下,前者对本题更直接.解 (1) 两小球对z 轴的转动惯量为,则系统对z 轴的角动量为此处也可先求出每个小球对z 轴的角动量后再求和. (2) 由角动量定理得J Ct e ωω/0-=2ln CJt =t e ωθJ Ct tθd d /000-⎰⎰=CωJ θ20=CωJ θN π4π20==()()222sin 2sin 22αl m αl m mr J ===()αe ωml mr ωJ L t 2022sin 122--===t =0时,合外力矩为此处也可先求解系统绕z 轴的角加速度表达式,即,再由M =Jα求得M . 4 -20 一质量为m′、半径为R 的均匀圆盘,通过其中心且与盘面垂直的水平轴以角速度ω转动,若在某时刻,一质量为m 的小碎块从盘边缘裂开,且恰好沿垂直方向上抛,问它可能达到的高度是多少? 破裂后圆盘的角动量为多大?分析 盘边缘裂开时,小碎块以原有的切向速度作上抛运动,由质点运动学规律可求得上抛的最大高度.此外,在碎块与盘分离的过程中,满足角动量守恒条件,由角动量守恒定律可计算破裂后盘的角动量.解 (1) 碎块抛出时的初速度为由于碎块竖直上抛运动,它所能到达的高度为(2) 圆盘在裂开的过程中,其角动量守恒,故有式中为圆盘未碎时的角动量;为碎块被视为质点时,碎块对轴的角动量;L 为破裂后盘的角动量.则4 -21 在光滑的水平面上有一木杆,其质量m 1 =1.0 kg ,长l =40cm ,可绕通过其中点并与之垂直的轴转动.一质量为m 2 =10g 的子弹,以v =2.0×102 m · s -1 的速度射入杆端,其方向与杆及轴正交.若子弹陷入杆中,试求所得到的角速度.()[]αe ωml tt L M t 202sin 12d d d d --==t e αωml -=202sin 2αωml M 202sin 2=t e ωtωα-==0dd R ω=0v gR ωg h 222220==v L L L '-=0ωR m L 221'=ωmR L 2='ωR m m L 221⎪⎭⎫⎝⎛-'=分析 子弹与杆相互作用的瞬间,可将子弹视为绕轴的转动.这样,子弹射入杆前的角速度可表示为ω,子弹陷入杆后,它们将一起以角速度ω′ 转动.若将子弹和杆视为系统,因系统不受外力矩作用,故系统的角动量守恒.由角动量守恒定律可解得杆的角速度. 解 根据角动量守恒定理式中为子弹绕轴的转动惯量,J 2ω为子弹在陷入杆前的角动量,ω=2v/l 为子弹在此刻绕轴的角速度.为杆绕轴的转动惯量.可得杆的角速度为4 -22 半径分别为r 1 、r 2 的两个薄伞形轮,它们各自对通过盘心且垂直盘面转轴的转动惯量为J 1 和J 2 .开始时轮Ⅰ以角速度ω0 转动,问与轮Ⅱ成正交啮合后(如图所示),两轮的角速度分别为多大?分析 两伞型轮在啮合过程中存在着相互作用力,这对力分别作用在两轮上,并各自产生不同方向的力矩,对转动的轮Ⅰ而言是阻力矩,而对原静止的轮Ⅱ则是启动力矩.由于相互作用的时间很短,虽然作用力的位置知道,但作用力大小无法得知,因此,力矩是未知的.但是,其作用的效果可从轮的转动状态的变化来分析.对两轮分别应用角动量定理,并考虑到啮合后它们有相同的线速度,这样,啮合后它们各自的角速度就能求出. 解 设相互作用力为F ,在啮合的短时间Δt 内,根据角动量定理,对轮Ⅰ、轮Ⅱ分别有(1)(2)两轮啮合后应有相同的线速度,故有(3)()ωJ J ωJ '+=212()2222/l m J =12/211l m J =()1212212s 1.2936-=+=+='m m m J J ωJ ωv()0111ΔωωJ t F r -=-222ΔωJ t F r =2211ωr ωr =由上述各式可解得啮合后两轮的角速度分别为4 -23 一质量为20.0 kg 的小孩,站在一半径为3.00 m 、转动惯量为450 kg· m 2 的静止水平转台的边缘上,此转台可绕通过转台中心的竖直轴转动,转台与轴间的摩擦不计.如果此小孩相对转台以1.00 m· s -1 的速率沿转台边缘行走,问转台的角速率有多大?分析 小孩与转台作为一定轴转动系统,人与转台之间的相互作用力为内力,沿竖直轴方向不受外力矩作用,故系统的角动量守恒.在应用角动量守恒时,必须注意人和转台的角速度ω、ω0 都是相对于地面而言的,而人相对于转台的角速度ω1 应满足相对角速度的关系式 . 解 由相对角速度的关系,人相对地面的角速度为由于系统初始是静止的,根据系统的角动量守恒定律,有式中J 0 、J 1 =mR 2 分别为转台、人对转台中心轴的转动惯量.由式(1)、(2)可得转台的角速度为式中负号表示转台转动的方向与人对地面的转动方向相反.4 -24 一转台绕其中心的竖直轴以角速度ω0 =πs -1 转动,转台对转轴的转动惯量为J 0 =4.0 ×10-3 kg· m 2 .今有砂粒以Q =2t g· s -1 的流量竖直落至转台,并粘附于台面形成一圆环,若环的半径为r =0.10 m ,求砂粒下落t =10 s 时,转台的角速度.分析 对转动系统而言,随着砂粒的下落,系统的转动惯量发生了改变.但是,砂粒下落对转台不产生力矩的作用,因此,系统在转动过程中的角动量是守恒的.在时间t 内落至台面的砂粒的质量,可由其流量求出,从而可算出它所引起的附加的转动惯量.这样,转台在不同时刻的角速度就可由角动量守恒定律求出. 解 在时间0→10 s 内落至台面的砂粒的质量为根据系统的角动量守恒定律,有则t =10 s 时,转台的角速度4 -25 为使运行中的飞船停止绕其中心轴的转动,可在飞船的侧面对称地安装两个切向控制喷管(如图所示),利用喷管高速喷射气体来制止旋转.若飞船绕其中心轴的转动惯量J =2.0 ×103kg· m 2 ,旋转的角速度ω=0.2 rad· s -1 ,喷口与轴线之间的距离r =1.5 m ;喷气以恒定的流量Q =1.0 kg· s -1和速率u =50 m· s -1 从喷口喷出,问为使该飞船停止旋转,喷气应喷射多长时间?分析 将飞船与喷出的气体作为研究系统,在喷气过程中,系统不受外力矩作用,其角动量守恒.在列出方程时应注意:(1) 由于喷气质量远小于飞船质量,喷气前、后系统的角动量近似为飞船的角动量J ω;(2) 喷气过210222122011r ωJ r J r ωJ ω+=10ωωω+=Rωωωωv+=+=010()010100=++ωωJ ωJ 122020s 1052.9--⨯-=+-=RmR J mR ωv kg 10.0Qd s100==⎰t m ()ωmr J ωJ 2000+=112000s π80.0-=+=J mrJ ωJ ω程中气流速率u 远大于飞船侧面的线速度ωr ,因此,整个喷气过程中,气流相对于空间的速率仍可近似看作是 u ,这样,排出气体的总角动量.经上述处理后,可使问题大大简化.解 取飞船和喷出的气体为系统,根据角动量守恒定律,有(1)因喷气的流量恒定,故有(2)由式(1)、(2)可得喷气的喷射时间为4 -26 一质量为m′、半径为R 的转台,以角速度ωA 转动,转轴的摩擦略去不计.(1) 有一质量为m 的蜘蛛垂直地落在转台边缘上.此时,转台的角速度ωB 为多少? (2) 若蜘蛛随后慢慢地爬向转台中心,当它离转台中心的距离为r 时,转台的角速度ωc 为多少? 设蜘蛛下落前距离转台很近.分析 对蜘蛛和转台所组成的转动系统而言,在蜘蛛下落至转台面以及慢慢向中心爬移过程中,均未受到外力矩的作用,故系统的角动量守恒.应该注意的是,蜘蛛爬行过程中,其转动惯量是在不断改变的.由系统的角动量守恒定律即可求解.解 (1) 蜘蛛垂直下落至转台边缘时,由系统的角动量守恒定律,有式中为转台对其中心轴的转动惯量,为蜘蛛刚落至台面边缘时,它对轴的转动惯量.于是可得(2) 在蜘蛛向中心轴处慢慢爬行的过程中,其转动惯量将随半径r 而改变, 即.在此过程中,由系统角动量守恒,有4 -27 一质量为1.12 kg ,长为1.0 m 的均匀细棒,支点在棒的上端点,开始时棒自由悬挂.以100 N 的力打击它的下端点,打击时间为0.02 s .(1) 若打击前棒是静止的,求打击时其角动量的变化;(2) 棒的最大偏转角.()mur m r ωu m≈+⎰d 0=-mur ωJ Qt m 2=s 67.22==QurωJ t ()b a ωJ J ωJ 100+=2021R m J '=21mR J =a a b ωmm m ωJ J J ω2100+''=+=22mr J =()c a ωJ J ωJ 100+=。

大学物理第四章 习题解答

大学物理第四章  习题解答

第四章 习题解答(仅供参考)4.3 如图所示,质量为10g 的子弹以速度v = 103m·s -1水平射入木块,并陷入木块中,使弹簧压缩而作简谐振动.设弹簧的倔强系数k = 8×103N·m -1,木块的质量为4.99kg ,不计桌面摩擦,试求:(1)振动的振幅; (2)振动方程.[解答](1)子弹射入木块时,由于时间很短,木块还来不及运动,弹簧没有被压缩,它们的动量守恒,即mv = (m + M )v 0. 解得子弹射入后的速度为v 0 = mv/(m + M ) = 2(m·s -1), 这也是它们振动的初速度.子弹和木块压缩弹簧的过程机械能守恒,可得 (m + M ) v 02/2 = kA 2/2, 所以振幅为A v =10-2(m). (2)振动的圆频率为ω=s -1).取木块静止的位置为原点、向右的方向为位移x 的正方向,振动方程可设为x = A cos(ωt + φ).当t = 0时,x = 0,可得 φ = ±π/2;由于速度为正,所以取负的初位相,因此振动方程为 x = 5×10-2cos(40t - π/2).4.4 如图所示,在倔强系数为k 的弹簧下,挂一质量为M 的托盘.质量为m 的物体由距盘底高h 处自由下落与盘发生完全非弹性碰撞,而使其作简谐振动,设两物体碰后瞬时为t = 0时刻,求振动方程.[解答]物体落下后、碰撞前的速度为v =物体与托盘做完全非弹簧碰撞后,根据动量守恒定律可得它们的共同速度为0m v v m M ==+,这也是它们振动的初速度.设振动方程为 x = A cos(ωt + φ), 其中圆频率为ω=物体没有落下之前,托盘平衡时弹簧伸长为x 1,则x 1 = Mg/k .物体与托盘磁盘之后,在新的平衡位置,弹簧伸长为x 2,则x 2 = (M + m )g/k .图4.3图4.4取新的平衡位置为原点,取向下的方向为正,则它们振动的初位移为x0 = x1 - x2 = -mg/k.因此振幅为A===初位相为arctanvx ϕω-==4.14三个同方向、同频率的简谐振动为10.08cos(314)6x t π=+,20.08cos(314)2x t π=+,350.08c o s(314)6x t π=+.求:(1)合振动的圆频率、振幅、初相及振动表达式;(2)合振动由初始位置运动到x A=所需最短时间(A为合振动振幅).[解答] 合振动的圆频率为ω = 314 = 100π(rad·s-1).设A0 = 0.08,根据公式得A x = A1cosφ1 + A2cosφ2 + A3cosφ3 = 0,A y = A1sinφ1 + A2sinφ2 + A3sinφ3 = 2A0 = 0.16(m),振幅为A=,初位相为φ = arctan(A y/A x) = π/2.合振动的方程为x = 0.16cos(100πt + π/2).(2)当/2x=时,可得cos(100/2)2tππ+,解得100πt + π/2 = π/4或7π/4.由于t > 0,所以只能取第二个解,可得所需最短时间为t = 0.0125s.。

大学物理第四章习题解答

大学物理第四章习题解答

l
v v
O
以杆、摆锤和地球为整体,该系统在 摆动过程中机械能守恒,选择最低点 为重力势能零点。若刚好能完成一次
m/
A
m
/
v v 2
圆周运动,则系统在最高点的角速度 为0。
/ / 11 / 2 2 m gl 3m gl / 2 = + 2m / gl m l + m l ω0 + 23 2 2
解:有心力对地心的力矩为零, 有心力对地心的力矩为零, 卫星 m 对地心 o 角动量守恒
v 2 h2 r r 1
h1 m
mv1r1 = mv2 r2
卫星与地球系统机械能守恒: 1 2 GmM 1 2 GmM mv1 − = mv2 − 2 r1 2 r2
24
v1
r1 = R + h1 , r2 = R + h2
0
6
−t / τ
d ( − )]
t
τ
= ω 0 [t
−t / τ 6 + τe ]0
= 9[6 + 2(e −6 / 2 - e 0 )] = 36.9 rad
∆θ N= = 5.87 (圈) 2π
N ≠ ∆θ
6
4 − 9:一飞轮由一直径为30cm,厚度为2cm的圆盘和两个直径都为10cm ,长为8cm的共轴圆柱体组成,设飞轮的密度为7.8 ×103 kg / m 3,求飞轮 对轴的转动惯量。
有两个力作用在一个有固定转轴的刚体上: 4-1 有两个力作用在一个有固定转轴的刚体上: 力都平行于轴作用时 (1)这两个力都平行于轴作用时, )这两个力都平行于轴作用时, 对轴的 一定是零 它们对轴 合力矩一定是 它们对轴的合力矩一定是零; 力都垂直于轴作用时 (2)这两个力都垂直于轴作用时, )这两个力都垂直于轴作用时, 它们对轴的合力矩可能是 合力矩可能 它们对轴的合力矩可能是零; 合力为零时 (3)当这两个力的合力为零时, )当这两个力的合力为零 它们对轴的合力矩也一定是零 合力矩也一定是 它们对轴的合力矩也一定是零; 4)当这两个力对轴的合力矩为 (4)当这两个力对轴的合力矩为 它们的合力也一定是零 合力也一定是 零时,它们的合力也一定是零。 对上述说法正确的是( 对上述说法正确的是( B ) (A) 只有 是正确的 只有(1)是正确的 (B) (1)(2)正确,(3)(4)错误 正确, 正确 错误 (C) (1)(2)(3)都正确,(4)错误 都正确, 错误 都正确
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章 动量和角动量4-1 假设自动步枪每秒钟射出10颗子弹,每颗子弹的质量为20 g ,出口速度为500 m/s ,求战士射击时所受到的平均冲力.分析 由于战士射击时与枪连成一体,枪受到的冲力就是作用于战士的冲力.子弹发射时是枪管中火药爆炸产生的巨大冲击力作用于子弹同时也作用于枪管,为简化问题,可以认为是枪给予的冲量使子弹的动量发生改变,而子弹给予枪的反作用使战士受到向后的冲力.解 选子弹为研究对象,发射过程中,每颗子弹与枪的相互作用时间为s1.0s 101==∆t ,发射前子弹速度00=v ,出口速度m/s 500=v ,枪给予子弹的平均冲力为F ,应用动量定理,得0v -v m m t F =∆N 100N 1.050010203=⨯⨯=∆=-tm F v按照牛顿第三定律,战士射击时所受平均冲力的大小等于枪给予子弹的平均冲力.4-2 一辆质量为1500 kg 汽车速率为18 m/s ,在4.5 s 内完成了一个︒90的向右急转弯后,撞在路边护栏上,并在0.5 s 内止动.分别计算在转弯过程和碰撞过程中作用在汽车上的平均冲力.分析 动量定理指出,物体受到的冲量使其动量发生改变.汽车转弯时,如果速率不变,由于速度方向的改变也表明其动量发生了变化,因此必定受到外部的冲力作用.当高速运动的汽车在极短的时间内突然制动时,巨大的冲力将导致汽车的损坏,而且汽车中的乘客也因瞬间内动量的改变受到强大的冲力作用而被伤害.解 汽车转弯过程中受到的平均冲力为1F ,作用时间为1t ∆,速度方向改变为︒90,应用动量定理,其矢量关系如图4-2所示.因此有vm t F =︒∆45cos 11N108.49N 707.05.418150045cos 311⨯=⨯⨯=︒∆=t m F v汽车碰撞路边护栏的过程中,设作用在汽车上的平均冲力为2F ,作用时间为2t ∆,应用动量定理,得v-m t F 022=∆m vm v图4-2N104.5N 5.0181500422⨯-=⨯-=∆-=t m F v4-3 煤粉以稳定的流量落在水平运行的传送带上,设t 时刻传送带上煤粉质量为m ( t ) = k t ,其中k 为常量,求欲保持传送带运行速度恒为v ,所需施加的作用力.分析 如果取t 时刻传送带上煤粉和t 至t t Δ+时间内将落入传送带上的煤粉组成的系统为研究对象,可以应用系统的动量定理求解;如果取t 至t t Δ+时间内将落入传送带上的煤粉为研究对象,则可以应用质点的动量定理求解.所求出的传送带作用于煤粉的作用力的大小等于煤粉作用于传送带的反作用力,因传送带运行速度恒定,煤粉对传送带的作用力与外力等大反向.所以传送带作用于煤粉的作用力的大小和方向都与外力相同.解1 t 时刻传送带上煤粉质量为m ( t ) = k t ,t 至t t Δ+时间内将落入传送带上的煤粉质量为t k m ΔΔ=,传送带上所需施加的作用力为F ,沿煤粉运动方向系统的初末动量分别为初态: v )(1t m p = 末态: v ]Δ)([2m t m p +=应用系统的动量定理,得 t k m p p t F ΔΔΔ12v v ==-=vk F =解 2 t 至t t Δ+时间内将落入传送带上的煤粉质量为t k m ΔΔ=,沿煤粉运动方向新落入煤粉的初末动量分别为01=p 和v m p Δ2=,应用质点的动量定理,得t k m p p t F ΔΔΔ12v v ==-=vk F =4-4 质量为 2.5g 的乒乓球以m/s 101=v 的速率飞来,被板推挡后,又以m/s202=v 的速率飞出,如图4-4(a )所示.设v 1、v 2在垂直于板面的同一平面内,且它们与板面法线的夹角分别为︒45和︒30.(1)求乒乓球得到的冲量;(2)若撞击时间为0.01s ,求板施于球的平均冲力的大小和方向.分析 动量定理给出的冲量与初末动量之间的关系是矢量关系式.可以利用矢量三角形或平行四边形法则构成的几何关系建立方程;也可以取直角坐标系,将三矢量分解到两个坐标方向后,再应用动量定理在两个坐标方向的表达式建立方程求解. 解 (1)应用动量定理,撞击时乒乓球动量和所受冲量的矢量关系如图4-4(b )2(a ) (b ) 图4-4所示,其中︒=︒+︒=753045α,由三矢量构成的几何关系,可得冲量的大小为sN 106.14 sN 75cos 102021020105.2 cos 22-223122122⋅⨯=⋅︒⨯⨯⨯++⨯⨯=++=-αv v v v m I设冲量的方向与法线方向夹角为θ,应用三角函数关系得1)30sin()75180sin(v m Iθ-︒=︒-︒0561014.6105sin 10105.2arcsin30 105sin arcsin 30231'︒=⨯︒⨯⨯⨯-︒=︒-︒=--I m v θ(2)板施于球的平均冲力的大小为N 6.14N 01.01014.62=⨯=∆=-tI F方向与冲量的方向相同.4-5 质量分别为m 1和 m 2的木块A 、B 并排放在光滑的水平面上,一子弹沿水平方向依次穿过A 、B ,所用的穿越时间分别为1t ∆和2t ∆,木块对子弹的阻力恒为F ,求子弹穿出后两木块的速度各为多少?分析 子弹穿越木块A 的过程中,木块A 、B 连在一起,可以作为一个物体考虑,并因子弹的冲力获得同样的速度.子弹穿越木块B 的过程中,木块A 与木块B 脱离,木块A 保持匀速直线运动,木块B 因子弹的冲力获得动量的增量,速度增加.解 子弹穿过木块A 时,木块对子弹的冲量为1t F ∆-,子弹对木块冲量为1t F ∆,使二木块获得速度A v ,应用动量定理,得211A m m t F +∆=v子弹穿过木块B 时,木块对子弹的冲量为2t F ∆-,子弹对木块冲量为2t F ∆,使木块B 速度由A v 变为B v ,应用动量定理,得2221122A B m t F m m t F m t F ∆++∆=∆+=v v4-6 搬运工人以2 m/s 的速度沿水平方向将一包50 kg 的水泥扔上平板车.平图4-5板车自身质量为200 kg ,问在下列条件下车得到的速度,不计车与地面的摩擦.(1)车原来静止;(2)车正沿水泥袋的运动方向以1 m/s 的速率运动;(3)车正以1 m/s 的速率沿水泥袋运动的反方向运动.分析 应用动量守恒定律解动力学问题相当简便,但是一定要注意定律的适用条件:系统不受外力作用或合外力为零,系统的动量守恒;合外力在某一方向的分量为零时,系统的总动量在该方向的分量守恒.当条件满足时,只涉及系统中各物体的初末状态,而不必考虑间相互作用和中间过程,由已知状态可以求出未知物理量.解 设车的质量为m ',初速度为20v ,水泥袋质量为m ,初速度为10v ,它们共同的末速度为v .对于车和水泥袋组成的系统,水平方向合外力为零,故水平方向动量守恒,得v v m mv )(2010m m '+='+(1)(1)车原来静止,020=v ,由(1)式得m/s 0.4m/s 2005025010=+⨯='+=m m mv v(2)m/s 120=v ,由(1)式得m/s 1.2m/s 2005012002502010=+⨯+⨯='+'+=m m v m mv v(3)m/s 120-=v ,由(1)式得m/s .40m/s 2005012002502010-=+⨯-⨯='+'+=m m v m mv v4-7 炮车以︒30的仰角发射一颗炮弹,已知炮车重5000 kg ,炮弹重100 kg ,炮弹对炮车的出口速度为300 m/s .(1)求炮车的反冲速度v ,不计炮车与地面的摩擦;(2)设炮车倒退后与缓冲垫的相互作用时间为2 s ,求垫子受的平均冲力. 分析 与4-1题枪发射子弹的情况类似,弹药爆炸产生的巨大冲击力对炮弹和炮车的作用,可以看成是炮车与炮弹的相互作用.动量守恒定律是从牛顿定律推导出来的,因此只适用于惯性参考系,而且系统中各物体的动量和速度都必须是在同一参考系中描述的.例如本题中炮弹的出口速度及其方向都是相对于炮车而言的,由于炮弹射出时,炮车已经具有了向后的反冲速度,为了应用动量守恒定律,就必须应用相对运动速度合成定理,将炮弹相对于炮车的速度转换为对地面的速度.解 (1)对于炮车和炮弹组成的系统,水平方向不受外力作用,动量守恒.设图4-7炮弹发射后的瞬间,炮车对地面的速度为1v ,炮弹对炮车的出口速度为v ,则炮弹对地面的速度为v ',如图4-7所示.根据相对运动速度合成定理,有1v v v +='其水平方向的分量为130cos v v v -︒=h设炮车质量为1m ,炮弹质量为m ,因初始时炮弹和炮车的速度均为零,由于水平方向动量守恒,则0)30cos (111=--︒v v v m mm/s5.09m/s 500010030cos 30010030cos 11=+︒⨯⨯=+︒=m m m v v(2)炮车倒退时,垫子受到的平均冲力的大小等于缓冲垫给予炮车的平均冲力,由动量定理得N 12725N 209.5500011=⨯=∆=tm F v4-8 一质量为50 kg 的人站在质量为100 kg 的停在静水中的小船上,船长为5 m ,问当人从船头走到船尾时,船头移动的距离.分析 人从船头走到船尾,是以船为参考系完成了船的长度的位移,在此过程中,船在水中漂移,因此船是一个运动参考系.由于应用动量守恒定律时,必须将系统中各物体的速度和动量在同一惯性参考系中描述,所以要应用相对运动速度合成定理作速度的转换.无论人在船上走动速度如何变化,由所建立的人对船的速度与船对水的速度之间的相互关系,分离变量后积分,可得人相对于船的位移与船相对于水的位移之间的相互关系.解 对船和人组成的系统,水平方向不受外力作用,动量守恒.设人对船的速度为u ,为v ,人的质量为m ,船的质量为m ’,以船的速度方向为参考方向,应用相对运动速度合成定理得人对水的速度为u -v ,因初始时人和船的速度均为零,则vv m u m '+-=)(0 (1)设人在运动过程中某时刻在船上坐标系上的位置为x ,船头在水中坐标系上的位置为x ’,可得tx u d d =tx d d '=v则(1)式可写为tx mtx m m d d d d )(=''+两边同时积分⎰⎰=''+'ll x m x m m 0d d )(因人在船上位移m 5=l ,得船头在水中的位移为m1.67m 51005050=⨯+='+='l m m m l4-9 安装有N 个炮筒的火箭炮固定在驱逐舰上,水对驱逐舰的阻力可忽略不计.设每枚火箭质量为m ,发射时火箭相对于炮筒的出口速度为u ,发射前驱逐舰的总质量为m ',静止于水面上,(1)若N 枚火箭同时向舰尾方向水平射出;(2)若N 枚火箭相继向舰尾方向水平射出,分别求出N 枚火箭发射完毕后驱逐舰的速度.分析 由N 枚火箭与驱逐舰组成的系统,如果N 枚火箭同时向舰尾方向发射,发射前系统中各物体均静止,发射后驱逐舰向前运动,火箭出口速度是相对于作为运动参考系的驱逐舰的速度,应用动量守恒定律就必须采用对同一参考系水面的速度和动量.如果N 枚火箭相继向舰尾方向发射,则每一枚火箭发射前后驱逐舰的质量和速度都不相同,应该逐一确定驱逐舰的速度和动量,并应用相对运动速度合成定理,将火箭对驱逐舰的速度转换为对水面的速度.解 (1)设火箭发射完毕后驱逐舰的速度为v ,根据相对运动速度合成定理,火箭对水面的速度为v -u .对于火箭和驱逐舰组成的系统,水平方向不受外力作用,动量守恒.因初始时火箭和驱逐舰的速度均为零,得vv )()(0Nm m u Nm -'+-=um Nm '=v(2)设在发射完第n 枚火箭后驱逐舰速度为v n ,质量为nm m -',第n +1枚火箭发射后驱逐舰速度为v n +1,质量为m n m )1(+-',根据相对运动速度合成定理,第n +1枚火箭对水面的速度为v n +1- u ,第n +1枚火箭发射前后,水平方向不受外力作用,动量守恒,得11])1([)()(+++-'+-=-'n n n m n m u m nm m v v v可得 un mm m n n -'+=+v v 1因第1枚火箭发射前v 0 = 0,上式累加后,得第N 枚火箭发射后驱逐舰速度为∑-=-'=1N n N u nm m mv4-10 一个人站在平板车上掷铅球两次,出手速度均为v ,仰角均为θ,第一次平板车位置被固定,第二次平板车可在水平面无摩擦地运动,已知人和车的总质量为m ',球的质量为m ,求:(1)两次抛掷过程中球在空中飞行时间之比;(2)对地面而言,两次射程之比.图4-10分析 当不计空气阻力时,运动抛体沿水平方向速度不变,竖直方向重力加速度恒定.如果只改变初速度的水平方向分量,则竖直方向的运动方程不变,在抛射距离不太远的情况下,抛体落到地面需要的时间相同.当人在车上掷球时,如果车能沿水平方向运动,则球对地面的速度应为球对车的速度与车对地的速度的矢量和.叠加的结果,球速的水平方向分量代数相加,竖直方向分量不变.解 由图4-10可见,由于平板车相对地面沿水平方向运动,速度为u ,在两次抛掷过程中,球对地面速度的水平分量不同,但竖直方向速度分量则相同,即竖直方向球的运动方程同为hgtt y +-=221sin θv其中h 为球的抛出点距平板车面的高度.显然,在两种情况下,球在空中飞行时间之比为1. (2)根据相对运动速度合成定理,第一次车不动,球对地面的水平速度为θcos v ,两次抛掷球在空中飞行时间相同,均设为t ,则射程为θcos 1vt =s第二次球对地面的水平速度分量为u -θcos v ,对人和车组成的系统,水平方向不受外力作用,动量守恒,得u m u '--=)cos θm(v 0m m '+=θcos mv u则射程为θcos 12vt ⎪⎭⎫⎝⎛'+-=m m m s两次射程之比为m m m s s '+-=1124-11 一运动员质量为m ',手中拿着质量为m 的篮球自地面以仰角θ和初速度v 0斜向前跳起,跳至最高点时,以相对于人的速率u 将球水平向后抛出,问运动员向前的距离与不抛球时相比,增加多少?分析 运动员跳至最高点时,只有水平方向的速度,将球水平向后抛出,由于水平方向不受外力作用,水平方向动量守恒,可以获得抛球前后各速度之间的比较简单的关系式.如果运动员跳起后,在空中任意位置抛球,或者抛球方向并非水平方向,对球和人组成的系统而言,水平方向均不受外力作用,都可以应用水平方向动量守恒建立水平方向动量和速度之间的关系式.但是竖直方向的问题就比较复杂,求解较为困难.解 对球和人组成的系统,当人跳起后,水平方向不受外力作用,动量守恒.人跳至最高点时,对地的速度为θcos 01v v =,抛出球后的瞬间人对地的速度为v 2,球对地的速度为u -2v ,则θcos )()(022v v v m m u m m +'=-+'umm m +'+=θcos 02v v在不计空气阻力的情况下,抛体运动水平方向速度θcos 0v 不变.由于球水平向后抛出,在两种情况下竖直方向动量不变,从最高点回到地面所需时间相同,同为 gt θs i n 0v =∆运动员向前增加的距离为gu mm m t t x θsin 012v v v ⋅+'=∆-∆=∆4-12 一质量为kg 31=m 的小球系在弹簧末端,静止在光滑的水平面上,弹簧的劲度系数为N/m 3000=k ,另一质量为kg 12=m 的小球以速度m/s 1020=v 向小球1m 运动,如图4-12所示,碰撞后2m 被弹回,速度v 2 = 2 m/s ,问弹簧被1m 压缩了多少?这种碰撞是完全弹性的,还是非弹性的?分析 在讨论过动能、势能、动量以及机械能守恒定律和动量守恒定律后,可以分析求解一些动力学的综合性问题.由于守恒定律都是从牛顿第二定律推导出来的,从理论上说,凡是可以用守恒定律解决的力学问题,都可以用牛顿第二定律求解,但是因为应用守恒定律解题时,只需要知道系统中各物体的初末状态,而不涉及物体之间的相互作用内力和中间过程,所以简便得多.不过关键在于分析系统内各物体运动过程中合外力是否为零,或者外力和非保守内力是否作功,即是否满足守恒定律的适用条件.解 在小球1m 和2m 碰撞的瞬间,因时间很短,1m 的位置还未发生改变,因而还不受弹簧的作用,小球1m 和2m 水平方向无外力作用,动量守恒,得1v v v 122202m m m +-=)(220121v v v +=m m两球碰完后,1m 运动压缩弹簧,当弹簧压缩到最短时,设1m 位移为x ,在此过程中1m 和弹簧组成的弹性系统机械能守恒,得图4-1221122121v m kx=m0.126m )210(1330001)(12202111=+⨯⨯⨯=+==v v v m km km x两球碰撞前后系统的动能分别为J50J 101212122202k 1=⨯⨯==v m EJ26J 2121J )102(3121 21)(2121212222222202122222211k 2=⨯⨯++⨯⨯=++=+=v v v vv m m m m m E结果表明,碰撞后系统动能减小,动能的损失转化为两球中产生的热能.这种碰撞是非弹性的.4-13 一炸弹在空中炸成A 、B 、C 三块,其中B A m m =,A 、B 以相同的速率30 m/s 沿相互垂直的方向分开,A C 3m m =.假设炸弹原来速度为零,求炸裂后第三块弹片的速度的大小和方向.分析 由于爆炸时炸弹所受重力远小于爆炸内力,炸弹分解过程中重力可以忽略,且无其它外力作用,爆炸过程中三块弹片组成的炸弹系统动量守恒.解 应用动量守恒定律,得0C C B B A A =++v v v m m m即 B B A A C C v v v m m m --=因A A v m 与B B v m 相互垂直,且B A m m =,B A v v =,上式确定了三动量构成一个等边直角三角形,C v 与-A v 之间的夹角︒=45α,如图4-13所示,则︒=cos45A A C C v v m mm/s 14.14m/s 45cos 303145cos AC AC =︒⨯=︒=v v m mm A v AB -m B v B图4-134-14 一个α粒子以m/s 102710⨯=v 的速度与一个原来静止的氧原子核碰撞后,沿着与最初运动方向成︒64角的方向被散射出来.而氧原子则在另一边沿︒51的方向反冲,问这两个粒子在碰撞后的速率v 1、v 2分别是多少?已知氧原子核的质量为α粒子质量的4倍.分析 实验表明,微观粒子组成的系统遵守动量守恒定律. 解 由于碰撞过程中重力可以忽略,且无其它外力作用,α粒子和氧原子核组成的系统在碰撞过程中动量守恒,得2211101v v v m m m +=取如图4-14所示的坐标,设α粒子质量为m 1,氧原子核质量为m 2=4m 1,上式可写为x 方向: ︒+︒=51cos 64cos 2211101v v v m m m y 方向: ︒-︒=51sin 64sin 02211v v m m 由以上各式解得m/s101.715m/s 51sin 64sin 51cos 64cos 102 51sin 64sin 51cos 64cos 77101⨯=︒︒︒+︒⨯=︒︒︒+︒=v vm/s10496.0m/s 51sin 464sin 101.715 51sin 464sin 7712⨯=︒⨯︒⨯⨯=︒︒=v v4-15 一颗水平飞行的子弹,击中一个悬挂着的砂袋,并留在里面,已知砂袋质量是子弹质量的1000倍,悬点到砂袋中心的距离为1 m ,设子弹击中砂袋后,悬线的偏角为︒10,求子弹的速度.分析 子弹击中砂袋,是一个非弹性碰撞过程,机械能不守恒.子弹留在砂袋中随砂袋一起摆动的过程中,机械能守恒,因此要将整个过程分成二段进行分析计算.解 子弹和砂袋组成的系统,在子弹击中砂袋的瞬间,水平方向无外力作用,动量守恒.设子弹质量为m 1,速度为v 10,砂袋质量为m 2=1000m 1,子弹击中砂袋后,子弹与砂袋共同的速度为v 2,得221101)(v v m m m +=图4-14子弹随砂袋一起摆动的过程中,只有重力作功,机械能守恒,取初始时砂袋位置为重力势能零点,悬线长为l ,砂袋上升的最大高度为)10cos 1(︒-l ,如图4-15所示,得)10cos 1()()(21212221︒-+=+gl m m m m v由以上二式,得m/s546m/s )10cos 1(18.921001 )10cos 1(212110=︒-⨯⨯⨯⨯=︒-+=gl m m m v4-16 测子弹速度的另一种方法是把子弹水平射入一个固定在弹簧上的木块内,由弹簧压缩的距离就可以求出子弹的速度.已知子弹的质量为20 g ,木块质量是8.98 kg ,弹簧的劲度系数是100 N/m ,子弹嵌入后弹簧压缩了10 cm ,设木块与水平面间的滑动摩擦系数为0.2.分析 由于木块与水平面间存在摩擦,子弹嵌入木块后与弹簧并不构成一个通常意义的弹簧振子,机械能不守恒,但是可以应用功能原理分析摩擦力作功与机械能的变化的关系. 解 在子弹1m 和木块2m 碰撞的瞬间,因时间很短,木块的位置还未发生改变,因而还不受弹簧的作用,子弹和木块组成的系统水平方向无外力作用,水平方向动量守恒,设子弹质量为m 1,速度为v 10,木块质量为m 2,子弹击中木块后,共同的速度为v 2,得221101)(v v m m m +=子弹随木块一起压缩弹簧的过程中,应用功能原理,摩擦力所作的功等于弹性系统机械能的增量,即gxm m m m kx)()(21212122212+-=+-μv由以上二式,得m/s319 m/s1.08.92.0)98.802.0(21.0)98.802.0(10002.01 )(2)(122221221110=⨯⨯⨯+⨯+⨯+⨯=+++=gxm m x m m k m μv4-17 如图4-17所示,质量为m 的物体从高h 的光滑斜面上由静止下滑落入水平放置的装满沙子的木箱上,并和木箱一起向前运动了一距离s 后停下来.木箱和沙子的质量为m ',已知kg 1=m ,kg 4='m ,m 5=h ,︒=60θ,m250.=s .求木箱与地面间的摩擦系数μ.分析 由于作用力与作功情况和运动状态的不同,整个过程可以分成三段来v m 1m图4-15图4-16考虑,研究对象和适用定律都不相同:物体沿斜面下滑的过程中,只有重力作功,以物体和地球组成的系统为研究对象,机械能守恒;物体落入木箱的短暂过程,发生非弹性碰撞,对于脱离斜面后的物体与木箱组成的系统,水平方向除木箱与地面的摩擦外,无其他外力作用,而地面对木箱的摩擦阻力与碰撞时相互间的内力相比可以忽略,因此水平方向动量守恒;物体和木箱一起向前运动的过程中,只有摩擦力作功,可以应用功能原理.解 设物体落入木箱前瞬间的速度为v 10,方向为沿斜面向下,其水平方向分量为θcos 10v ,物体落入木箱后瞬间与木箱的共同速度为v 2,由于水平方向动量守恒,得210)(cos v v m m m '+=θ物体在斜面上运动过程中,只有重力作功,机械能守恒,有21021v m mgh =物体和木箱一起向前运动的过程中,应用动能定理,摩擦力所作的功等于木箱动能的增量,即gsm m m m )()(21022'+-='+-μv由以上三式,得2.025.0)41(60cos 51)(cos 222222=⨯+︒⨯⨯='+=sm m h m θμ4-18 一质量为m '的三角形木块放在光滑的水平面上,另一质量为m 的立方木块由斜面最低处沿斜面向上运动,相对于斜面的初速度为v 0,如图4-18所示.如果不考虑木块接触面间的摩擦,问立方木块能沿斜面上滑多高?分析 应用动量守恒定律时,各物体的速度和动量都必须选取同一惯性参考系给出.由于只涉及初末状态的量值,在本题中,初始时三角形木块静止,立方木块相对于斜面的初速度就是对地面的速度,而立方木块达最高点时,相对于斜面的速度为零,具有与三角形木块相同的对地面的速度.因此在应用动量守恒定律时,表达式相当简单.解 三角形木块与立方木块组成的系统在水平方向不受外力作用,水平方向动量守恒.初始时,立方木块速度为v 0,其水平方向分量为θcos 0v ,三角形木块静止;当立方木块达最高点时,相对于三角形木块静止,设二者共同的速度为v ,则vmv )(cos 0m m '+=θ从例题3-7已知两木块之间相互作用的压力在运动过程中所作功之和为零,则由两木块和地球组成的系统只有重力作功,机械能守恒,得图4-17图4-18220)(2121vv m m mgh m '++=由以上两式得立方木块沿斜面上滑的高度为m m m m g m m m g h '++'=⎪⎪⎭⎫ ⎝⎛'+-=θθ220220sin 2cos 12v v 4-19 滑块由一轻绳相连放置在光滑的大圆桌面上,绳的另一端通过桌面中心的小孔下挂质量为1.0kg 的水桶,桶中盛水7.0kg .起初,滑块在桌面上以小孔为中心作半径为0.25m 的圆周运动,由于水桶底部漏水,当水漏完时滑块的转动半径等于多少?分析 当质点所受的合力对某点的力矩为零时,质点对该点的角动量守恒.滑块在桌面上运动,竖直方向合外力为零,水平方向除绳的拉力外不受其他外力作用.在水桶漏水的过程中,轻绳的拉力随时间变化,但始终指向小孔,对小孔的力矩为零,所以滑块对小孔的角动量守恒.由于问题只涉及滑块始末状态的轨道半径,无需考虑变化的过程与轨道变化的路径,因此应用角动量守恒定律能较容易地得到解答. 解 轻绳作用于滑块的拉力指向小孔,对小孔的力矩为零,因此滑块对小孔的角动量守恒.始末状态滑块均以小孔为中心作圆周运动,设滑块初始时转动半径为r 1,速度为v 1,如图4-19所示,水漏完后转动半径为r 2速度为v 2,则2211r m r m v v =设水的质量为m 1,水桶质量为m 2,始末状态水和水桶通过轻绳作用在滑块上的拉力分别为g m m )(21+和g m 2,应用牛顿第二定律,得始末状态滑块圆周运动的法向方程分别为12121)(r mg m m v =+2222r mg m v =由以上三式解得m 0.5m 0.10.70.125.03322112=+⨯=+=m m m r r4-20 光滑水平面上有一轻弹簧,长为l 0,劲度系数为k ,弹簧一端固定,另一端系着一质量为m 的物体,当弹簧处于自然长度时,物体获得了一个垂直于弹簧长度方向的初速度v 0,如图4-20所示.求当物体速度为v 0/2时的弹性力的量值.分析 在水平面上,物体和弹簧组成的系统无外力作功,只有弹簧的弹性力作功,机械能守恒.图4-19解 以物体和弹簧组成的弹性系统为研究对象,初始时动能为2021v m ,当物体速度为v 0/2时,设弹簧形变量为l ∆,则弹性势能为2)(21l k ∆,动能为20221⎪⎭⎫⎝⎛v m ,应用机械能守恒定律,得 2022021)(21221v v m l k m =∆+⎪⎭⎫ ⎝⎛ 当物体速度为v 0/2时,弹性力的量值为230v mkl k F =∆=4-21 α粒子以初速度 v 0 沿直线运动,有一重金属原子核其中心到此直线的距离为b .由于相互作用使α粒子沿如图4-21所示的轨道被散射,α粒子与重金属核中心的最小距离为min r .因为质量悬殊太大,可以认为重金属核保持静止不动.如果min r = 2 b ,求α粒子相对于重金属核中心的角动量以及二者距离最小时α粒子的速度.分析 实验表明,微观粒子组成的系统遵守角动量守恒定律.解 忽略重力作用,α粒子除受重金属原子核的指向核中心的作用力外,无其他外力作用,对核中心的角动量守恒,根据角动量定义,得v v min 0mr mb L ==因min r = 2 b ,则 01v 2v =O图4-20图4-21。

相关文档
最新文档