2019届黑龙江省哈尔滨市第三中学高三下学期二模考试数学(理)试题及答案
黑龙江省哈尔滨三中高考数学二模试卷(理科)(内考)
合用文档2019年黑龙江省哈尔滨三中高考数学二模试卷(理科)(内考)一、选择题:本大题共12 个小题,每题 5 分,共 60 分.在每题给出的四个选项中,只有一项为哪一项切合题目要求的.1 .(5 分)=()A .B.C. D .2 .(5 分)设会集A={﹣1,0,1}, B={x|2x>2},则 A ∩B=()A . ? B. {﹣ 1} C. {﹣ 1, 0} D . {0 , 1}3 .(5 分)若x,y满足不等式组,则z=2x﹣3y的最小值为()A .﹣ 2B.﹣ 3C.﹣ 4 D .﹣ 54 .(5 分)已知双曲线=1(a>0,b>0)的离心率为e,抛物线 y2=2 px( p>0)的焦点坐标为( 1 ,0 ),若e=p,则双曲线C 的渐近线方程为()A .y=x B.y=x C.y=x D .y=x5 .( 5 分)随着计算机的出现,图标被赏赐了新的含义,又有了新的用武之地.在计算机应用领域,图标成了拥有明确指代含义的计算机图形.以以以下图的图标是一种被称之为“黑白太阳”的图标,该图标共分为 3 部分.第一部分为外面的八个全等的矩形,每一个矩形的长为3、宽为 1 ;第二部分为圆环部分,大圆半径为 3 ,小圆半径为 2 ;第三部分为圆环内部的白色地域.在整个“黑白太阳”图标中随机取一点,此点取自图标第三部分的概率为()A .B .C .D .6 .( 5 分)设等差数列 {a n }的前 n 项和为 S n ,且 S 4= 3S 2,a7 = 15 ,则 {a n }的公差为 ( )A . 1B . 2C . 3D .47 .(5 分)运行如图程序,则输出的 S 的值为()A . 0B . 1C . 2018D .20178 .(5 分)已知函数f (x )= ln ( x +1 )﹣ ax ,若曲线 y =f (x )在点( 0 ,f ( 0 ))处的切线方程为 y = 2 x ,则实数 a 的值为( )A .﹣ 2B .﹣ 1C . 1D .29 .(5 分)在长方体ABCD ﹣ A 1 B 1 C 1D 1 中, BC = CC 1 =1 ,∠AB 1 D = ,则直线 AB 1 与BC 1 所成角的余弦值为()A .B .C .D .10 .( 5 分)已知函数f (x )= cos x ﹣ sin x 在( 0,α)上是单调函数,且f (α)≥﹣1 ,则α的取值范围为( ) A .( 0 ,]B .(0 ,]C .( 0,]D .(0 , ]11 .( 5 分)已知半圆 C :x 2+ y 2= 1( y ≥0),A 、B 分别为半圆 C 与 x 轴的左、右交点,直线 m 过点 B 且与 x 轴垂直,点P 在直线 m 上,纵坐标为 t ,若在半圆 C 上存在点 Q 使∠BPQ=,则 t 的取值范围是()A . [﹣, 0 )] B. [ ﹣, 0)∪( 0 ,]C. [﹣, 0 )∪( 0 ,] D .[ ﹣, 0)∪( 0 ,]12 .( 5 分)在边长为 2 的菱形ABCD中,BD= 2 ,将菱形 ABCD 沿对角线 AC 对折,使二面角 B﹣ AC﹣ D 的余弦值为,则所得三棱锥A﹣ BCD 的内切球的表面积为()A .B.πC. D .二、填空题:本大题共 4 小题,每题 5 分,共 20 分.13 .( 5 分)已知 cos α=﹣,则 cos2 α=.14 .( 5 分)在( 1+ x)(2+ x)5的张开式中,x3的系数为(用数字作答).15 .( 5 分)已知函数 f (x)是奇函数,且0≤x1< x2时,有< 1 ,f(﹣ 2 )= 1 ,则不等式x﹣3≤f( x)≤x 的解集为.16 .( 5 分)已知数列 {a n }的前n项和S n满足,S n=3 a n﹣ 2,数列 {na n }的前n项和为T n,则满足 T n>100 的最小的 n 值为.三、解答题:共 70 分.解答应写出文字说明、证明过程或演算步骤.第17 ~21 题为必考题,每个试题考生都必定作答.第22 ,23 题为选考题,考生依照要求作答.(一)必考题:共 60 分.17 .( 12 分)已知△ABC中,角A,B,C所对的边分别是a,b,c,△ABC的面积为S,且 S= bc cos A, C=.(Ⅰ)求 cos B的值;(Ⅱ)若 c=,求 S 的值.18 .( 12 分)如图,四棱锥P﹣ ABCD 中, AB ∥CD ,∠BCD=, PA⊥ BD , AB=2,PA=PD= CD= BC=1.(Ⅰ)求证:平面PAD ⊥平面 ABCD;(Ⅱ)求直线PA 与平面 PBC 所成角的正弦值.19 .( 12 分)某中学为研究学生的身体素质与体育锻炼时间的关系,对该校200 名高三学生平均每天体育锻炼时间进行检查,如表:(平均每天锻炼的时间单位:分钟)平均每天锻炼的[0 ,10 ) [10 ,20 ) [20 , 30 )[30 ,40 )[40 , 50 ) [50 , 60 )时间 / 分钟总人数20 36 44 50 40 10 将学寿辰均体育锻炼时间在[40 , 60 )的学生议论为“锻炼达标”.(Ⅰ)请依照上述表格中的统计数据填写下面 2 ×2 列联表;锻炼不达标锻炼达标合计男女20 110合计并经过计算判断,可否能在犯错误的概率不高出的前提下认为“锻炼达标”与性别有关?(Ⅱ)在“锻炼达标”的学生中,按男女用分层抽样方法抽出10 人,进行体育锻炼领悟交流,( i)求这10人中,男生、女生各有多少人?( ii )从参加领悟交流的 10 人中,随机选出 2 人作重点发言,记这2 人中女生的人数为X ,求 X 的分布列和数学希望.参照公式: K 2=,其中 n = a + b + c + d临界值表P ( K 2≥k 0 )k 020 .( 12 分)已知O 为坐标原点,椭圆 : =1 ( > b > 0)的左、右焦点分别为C aF 1 (﹣ c , 0 ), F 2( c ,0 ),过焦点且垂直于 x 轴的直线与椭圆 C 订交所得的弦长为 3 ,直线 y =﹣与椭圆 C 相切.(Ⅰ)求椭圆 C 的标准方程;(Ⅱ)可否存在直线 l :y =k ( x + c )与椭圆 C 订交于 E ,D 两点,使得()< 1 ?若存在,求 k 的取值范围;若不存在,请说明原由!21 .( 12 分)已知函数f ( x )= e x﹣ ax .(Ⅰ)若函数 ( )在x ∈( ,2 )上有 2 个零点,求实数a 的取值范围.(注e 3>19 )f x(Ⅱ)设 g ( x )= f ( x )﹣ ax 2,若函数 g ( x )恰有两个不同样样的极值点x 1, x 2 证明:.(二)选考题:共 10 分.请考生在第 22 、 23 题中任选一题作答.若是多做,则按所做的 第一题计分. [ 选修 4-4 :坐标系与参数方程 ]22 .( 10 分)已知曲线 C 1 的参数方程为 (α为参数),P 是曲线C 1上的任一点,过 P 作 y 轴的垂线,垂足为Q ,线段 PQ 的中点的轨迹为C 2.(Ⅰ)求曲线 C 2 的直角坐标方程;(Ⅱ)以原点为极点,x 轴正半轴为极轴建立极坐标系,若直线l:sinθ﹣cosθ=交曲线 C2于 M , N 两点,求|MN |.[ 选修 4-5 :不等式选讲 ] ( 10 分)23 .已知函数f( x)=|x﹣2|.(Ⅰ)解不等式 f ( x)+ f(2x+1)≥6;(Ⅱ)对 a+ b =1( a, b>0)及? x∈R,不等式 f( x﹣ m )﹣(﹣ x)≤恒建立,求实数 m 的取值范围.2019年黑龙江省哈尔滨三中高考数学二模试卷(理科)(内考)参照答案与试题剖析一、选择题:本大题共12 个小题,每题 5 分,共 60 分.在每题给出的四个选项中,只有一项为哪一项切合题目要求的.1 .(5 分)=()A .B.C. D .【考点】 A5 :复数的运算.【专题】 38 :对应思想; 4A :数学模型法;5N :数系的扩大和复数.【剖析】直接利用复数代数形式的乘除运算化简得答案.【解答】解:=.应选: B.【议论】本题观察复数代数形式的乘除运算,是基础的计算题.2 .(5 分)设会集A={﹣1,0,1}, B={x|2x>2},则 A ∩B=()A . ?B. {﹣ 1}C. {﹣ 1, 0} D . {0 , 1} 【考点】 1E :交集及其运算.【专题】 11 :计算题; 37 :会集思想; 49 :综合法; 5J:会集.【剖析】可解出会集B,今后进行交集的运算即可.【解答】解: B={x|x>1};∴A∩B=?.应选: A .【议论】观察描述法、列举法的定义,交集的运算,空集的定义.3 .(5 分)若x,y满足不等式组,则z=2x﹣3y的最小值为()A .﹣ 2B.﹣ 3C.﹣ 4 D .﹣ 5【考点】 7C :简单线性规划.【专题】 11 :计算题; 31 :数形结合;35 :转变思想;49 :综合法; 5F:空间地址关系与距离.【剖析】画出不等式组表示的平面地域,平移目标函数,找出最优解,求出z 的最小值.【解答】解:画出 x, y 满足不等式组表示的平面地域,以以以下图;平移目标函数z=2x﹣3 y 知, A(2,3), B(1,0), C(0,1)当目标函数过点 A 时, z 获取最小值,∴z 的最小值为2×2 ﹣3 ×3 =﹣ 5 .应选: D.【议论】本题观察了简单的线性规划问题,是基本知识的观察.4 .(5 分)已知双曲线= 1(a > 0 ,b >0 )的离心率为e ,抛物线 y 2=2 px ( p > 0 )的焦点坐标为( 1 ,0 ),若 e = p ,则双曲线 C 的渐近线方程为() A . y = x B . y = x C . y = x D .y =x【考点】 KI :圆锥曲线的综合.【专题】 11 :计算题; 35 :转变思想; 49 :综合法; 5D :圆锥曲线的定义、性质与方程.【剖析】 求出抛物线的焦点坐标,获取双曲线的离心率,今后求解a ,b 关系,即可获取双曲线的渐近线方程.【解答】 解:抛物线 y 2= 2px ( p > 0)的焦点坐标为( 1, 0 ),则 p = 2 ,又 e = p ,因此 e = = 2,可得c 2=4 a 2= a 2+ b 2,可得: b =a ,因此双曲线的渐近线方程为: y =±.应选: A .【议论】 本题观察双曲线的离心率以及双曲线渐近线方程的求法,抛物线的简单性质的应用.5 .( 5 分)随着计算机的出现,图标被赏赐了新的含义,又有了新的用武之地.在计算机应 用领域,图标成了拥有明确指代含义的计算机图形. 以以以下图的图标是一种被称之为 “黑白太阳”的图标,该图标共分为3 部分.第一部分为外面的八个全等的矩形,每一个矩形的长为 3、宽为 1 ;第二部分为圆环部分,大圆半径为3 ,小圆半径为 2 ;第三部分为圆环内部的白色地域.在整个“黑白太阳”图标中随机取一点,此点取自图标第三部分的概率为()A .B.C. D .【考点】 CF:几何概型.【专题】 11 :计算题; 38 :对应思想; 4R :转变法; 5I :概率与统计.【剖析】以面积为测度,依照几何概型的概率公式即可获取结论.【解答】解:图标第一部分的面积为8 ×3×1 = 24 ,图标第二部分的面积和第三部分的面积为π×32= 9 π,图标第三部分的面积为π× 2 2= 4 π,故此点取自图标第三部分的概率为,应选: B.【议论】本题观察几何概型的计算,重点是正确计算出阴影部分的面积,属于基础题.6 .( 5 分)设等差数列 {a n }的前n项和为S n,且S4= 3 S2,a7=15,则{a n}的公差为()A . 1 B. 2 C. 3 D .4【考点】 83 :等差数列的性质.【专题】 11 :计算题; 34 :方程思想; 35 :转变思想; 54 :等差数列与等比数列.【剖析】依照题意,设等差数列 {a n }的公差为 d ,剖析可得4a1+6 d =3(2 a1+ d ),a1+6 d = 15 ,解可得d 的值,即可得答案.【解答】解:依照题意,设等差数列{a n }的公差为 d ,若S4=3S2, a7=15,则4a1+6 d =3(2a1+ d ),a1+6 d=15,解可得 a1=3, d=2;应选: B.【点】本考等差数列的前n 和,关是掌握等差数列的前n 和公式的形式,属于基.7 .(5 分)运行如程序,出的S 的()A . 0B. 1C. 2018 D .2017【考点】 EF:程序框.【】 11 :算; 27 :表型; 4B :法; 5K :算法和程序框.【剖析】由已知中的程序句可知:程序的功能是利用循构算并出量S 的,模程序的运行程,剖析循中各量的化情况,可得答案.【解答】解:模程序的运行,可得程序的功能是利用循构算并出量S=2017+ (sin+sin)+(sin+sin)+⋯+(sin+sin)的,可得: S=2017+(sin+sin)+(sin+sin)+⋯+(sin+sin)=2017 .故: D.【点】本考了程序框的用,解模程序框的运行程,以便得出正确的,是基.8 .(5 分)已知函数f(x)= ln ( x+1) ax,若曲 y =f(x)在点(0,f (0))的切线方程为 y = 2 x ,则实数 a 的值为( )A .﹣ 2B .﹣ 1C . 1D .2【考点】 6H :利用导数研究曲线上某点切线方程.【专题】 11 :计算题; 35 :转变思想; 49 :综合法; 53 :导数的综合应用.【剖析】 求出函数的导数,利用切线方程经过f ′(0 ),求解即可;【解答】 解: f ( x )的定义域为(﹣ 1, + ∞),由于 ′()=﹣ ,曲线 y = ( )在点( 0 , ( 0))处的切线方程为 y = 2 x ,f x a f x f可得 1 ﹣ a = 2 ,解得 a =﹣ 1 ,应选: B .【议论】 本题观察函数的导数的应用,切线方程的求法,观察计算能力.9 .(5 分)在长方体 ABCD ﹣ A 1 B 1 C 1D 1 中, BC = CC 1 =1 ,∠AB 1 D = ,则直线 AB 1 与BC 1 所成角的余弦值为()A .B .C .D .【考点】 LM :异面直线及其所成的角.【专题】 11 :计算题; 31 :数形结合; 41 :向量法; 5G :空间角.【剖析】 以 D 为原点, DA 为 x 轴, DC 为 y 轴, DD 1 为 z 轴,建立空间直角坐标系, 利用向量法能求出直线AB 1 与 BC 1 所成角的余弦值.【解答】 解:以 D 为原点, DA 为 x 轴, DC 为 y 轴, DD 1 为 z 轴,建立空间直角坐标 系,设 AB = a ,则 A (1 , 0 ,0 ),D ( 0 , 0 , 0), B 1(1 ,a , 1 ),=(﹣ 1,﹣ a ,﹣ 1),=( 0,﹣ a ,﹣ 1 ),∵∠AB 1D=,∴cos==,解得 a=, B1(1,, 1 ),B( 1 ,0 ),C1( 0,, 1 ),=( 0 ,),=(﹣ 1 ,0 ,1 ),设直线 AB 1与 BC1所成角为θ,则 cos θ===.∴直线 AB 1与 BC1所成角的余弦值为.应选: D.【议论】本题观察异面直线所成角的余弦值的求法,观察空间中线线、线面、面面间的地址关系等基础知识,观察运算求解能力,是中档题.10 .( 5 分)已知函数 f (x)=cos x﹣ sin x在( 0,α)上是单调函数,且f(α)≥﹣1,则α的取值范围为()A .( 0 ,]B.(0 ,]C.( 0,] D .(0 ,]【考点】 H5 :正弦函数的单调性.【专题】 35 :转变思想; 49 :综合法; 56 :三角函数的求值.【剖析】利用两角和的余弦公式化简函数的剖析式,利用余弦函数的单调性以及余弦函数的图象,可得cos (α+ )≥﹣ ,则 α+ ∈( , ] ,由此可得α的取值范围.【解答】 解:函数 f ( x )=cos x ﹣ sin x = 2cos (x +) 在( 0,α)上是单调函数,∴+ α≤π,∴0<α≤ .又 f (α)≥﹣1 ,即 cos (α+)≥﹣ ,则 α+∈(,],∴α∈(0 ,],应选: C .【议论】 本题主要观察两角和的余弦公式,余弦函数的单调性以及余弦函数的图象,属于基础题.11 .( 5 分)已知半圆 C :x 2+ y 2= 1( y ≥0),A 、B 分别为半圆 C 与 x 轴的左、右交点,直线 m 过点 B 且与 x 轴垂直,点P 在直线 m 上,纵坐标为t ,若在半圆 C 上存在点 Q 使∠BPQ =,则 t 的取值范围是( )A . [﹣ , 0 )]B . [ ﹣ , 0)∪( 0 ,] C . [﹣, 0 )∪( 0 , ]D .[ ﹣, 0)∪( 0 ,]【考点】 JE :直线和圆的方程的应用.【专题】 11 :计算题; 34 :方程思想; 35 :转变思想; 5B :直线与圆.【剖析】依照题意,设 PQ 与 x 轴交于点 T ,剖析可得在 Rt △PBT 中,|BT |= |PB |=|t |,分 p 在 x 轴上方、 下方和 x 轴上三种情况议论, 剖析 |BT |的最值, 即可得 t 的范围, 综合可得答案.【解答】 解:依照题意,设 PQ 与 x 轴交于点 T ,则 |PB |=|t |,由于 BP 与 x 轴垂直,且∠ BPQ =,则在 Rt △PBT 中,|BT |= |PB |= |t |,当 P 在 x 轴上方时, PT 与半圆有公共点 Q , PT 与半圆相切时, |BT |有最大值 3,此时 t有最大值,当 P 在 x 轴下方时,当Q 与 A 重合时,|BT|有最大值2,|t|有最大值﹣,则t获取最小值﹣,t=0时, P 与 B 重合,不切合题意,则 t 的取值范围为[﹣,0)];应选: A .【议论】本题观察直线与圆方程的应用,涉及直线与圆的地址关系,属于基础题.12 .( 5 分)在边长为 2 的菱形ABCD中,BD= 2 ,将菱形ABCD 沿对角线 AC 对折,使二面角﹣﹣D 的余弦值为,则所得三棱锥A﹣BCD的内切球的表面积为()B ACA .B.πC. D .【考点】 LR :球内接多面体.【专题】 11 :计算题; 21 :阅读型; 35 :转变思想;4A :数学模型法;5U :球.【剖析】作出图形,利用菱形对角线相互垂直的性质得出DN ⊥ AC, BN ⊥AC ,可得出二面角 B﹣ AC﹣ D 的平面角为∠ BND ,再利用余弦定理求出BD,可知三棱锥B﹣ACD 为正周围体,依照内切球的半径为其棱长的倍得出内切球的半径R,再利用球体的表面积公式可得出答案.易知△ABC 和△ACD 都是等边三角形,取AC 的中点 N ,则 DN ⊥ AC,BN ⊥ AC.因此,∠ BND 是二面角 B﹣ AC﹣ D 的平面角,过点 B 作 BO ⊥ DN 交 DN 于点 O,可得BO⊥平面 ACD .由于在△BDN 中,,因此,BD2 =BN2 +DN2﹣ 2BN?DN?cos ∠=BND ,则 BD =2.故三棱锥 A﹣ BCD 为正周围体,则其内切球半径.因此,三棱锥A﹣ BCD 的内切球的表面积为.应选: C.【议论】本题观察几何体的内切球问题,解决本题的重点在于计算几何体的棱长确定几何体的形状,观察了二面角的定义与余弦定理,观察计算能力,属于中等题.二、填空题:本大题共 4 小题,每题 5 分,共 20 分.13 .( 5 分)已知 cos α=﹣,则cos2α=.【考点】 GS:二倍角的三角函数.【专题】 11 :计算题; 35 :转变思想; 56 :三角函数的求值.【剖析】由已知利用二倍角的余弦函数公式即可计算得解.【解答】解:∵ cos α=﹣,∴cos2 α=2cos 2α﹣1 = 2×(﹣ ) 2﹣1 =.故答案为:.【议论】 本题主要观察了二倍角公式在三角函数化简求值中的应用,属于基础题.14 .( 5 分)在( 1+ x )(2+ x ) 5 的张开式中, x 3的系数为120 (用数字作答) .【考点】 DA :二项式定理.【专题】 11 :计算题; 5P :二项式定理.【剖析】 依照( 2+ x ) 5的张开式的通项公式,计算在(1+ x )( 2+ x )5 的张开式中含 x3的项是什么,从而求出x 3的系数.【解答】 解:(2+ x ) 5的张开式的通项是,因此在( 1+ x )( 2+ x )5 =( 2+ x ) 5+ x ( 2+ x ) 5的张开式中,含 x 3的项为,因此 x 3的系数为 120 .故答案为: 120 .【议论】 本题观察了二项式张开式的通项公式的应用问题,也观察了逻辑推理与计算能力,是基础题目.15 .( 5 分)已知函数 f (x )是奇函数,且 0 ≤x 1< x 2 时,有< 1 , f (﹣ 2 )= 1 ,则不等式 x ﹣3 ≤f ( x )≤x 的解集为 [0 , 2] .【考点】 3N :奇偶性与单调性的综合.【专题】 35 :转变思想; 4M :构造法; 51 :函数的性质及应用.【剖析】 依照条件构造函数g ( x )= f ( x )﹣ x ,判断函数 g (x )的奇偶性和单调性,【解答】解:由 x﹣3≤f( x)≤x 等价为﹣3≤f ( x)﹣ x≤1设 g ( x)= f( x)﹣ x,又由函数 f(x)是定义在R 上的奇函数,则有 f (﹣ x)=﹣ f (x),则有 g (﹣ x)= f(﹣ x)﹣(﹣ x)=﹣ f( x)+ x=﹣[ f(x)﹣ x]=﹣ g (x ),即函数 g ( x)为 R 上的奇函数,则有 g (0)=0;又由对任意0≤x1<x2时,有<1,则==﹣1,∵<1 ,∴=﹣1<0,即g ( x)在[0,+∞)上为减函数,∵g( x)是奇函数,∴g( x)在(﹣∞,+∞)上为减函数,∵f(﹣2)=1,∴g (﹣2)= f(﹣2)﹣(﹣2)=1+2=3;g (2)=﹣3, g(0)= f(0)﹣0=0,则﹣ 3 ≤f(x)﹣x≤0 等价为g( 2 )≤g(x)≤g( 0 ),∵g( x)是减函数,∴0 ≤x≤2,即不等式 x﹣3≤f( x)≤x 的解集为[0,2];故答案为: [0 , 2] .【点】本考函数的奇偶性与性的合用,关是构造函数g ( x),利用特殊化剖析不等式,利用函数奇偶性和性行化是解决本的关.16 .( 5 分)已知数列{a n }的前n和S n足,S n=3 a n2,数列 {na n }的前n和T n,足 T n>100的最小的 n7.【考点】 8H :数列推式.【】 11 :算; 34 :方程思想; 35 :化思想; 54 :等差数列与等比数列.【剖析】依照意,将S n=3a n 2 形可得S n﹣1= 3 a n﹣12,两式相减形可得 2 a n = 3 a n﹣1,令n= 1 求出a1的,即可得数列 {a n }是以a1= 1 首,公比的等比数列,即可得数列 {a n}的通公式,而可得T n=1+2×+3 ×()2+ ⋯⋯+ n×()n﹣1,由位相减法剖析求出T n的,若T n>100,即4+ ( 2 n 4 )×()n>100 ,剖析可得n 的最小,即可得答案.【解答】解:依照意,数列{a n }足S n= 3 a n 2 ,①当 n ≥2,有 S n﹣1=3 a n﹣12,②,① ②可得: a n=3 a n 3 a n﹣1,形可得 2 a n= 3 a n﹣1,当 n =1 ,有 S1= a1=3 a12,解可得a1=1,数列 {a n }是以a1= 1 首,公比的等比数列,a n=() n ﹣1,数列 { n }的前n 和Tn , n =1+2 × +3 ×()2+ ⋯⋯+n×() n﹣1 ,③na T有T n=+2 ×()2+3×()3+⋯⋯+n×()n,④③ ④可得:T n=1+()+()2+⋯⋯×()n﹣1n×()n=2(1)n ×()n,形可得: T n=4+(2n 4 )×()n ,若 T n > 100 ,即 4+ ( 2 n ﹣ 4 )×( )n>100 ,剖析可得: n ≥7 ,故满足 T n > 100 的最小的 n 值为 7 ;故答案为: 7.【议论】 本题观察数列的递推公式,重点是剖析数列{a n }的通项公式,属于基础题.三、解答题:共 70 分.解答应写出文字说明、证明过程或演算步骤.第17 ~21 题为必考题,每个试题考生都必定作答.第22 ,23 题为选考题,考生依照要求作答.(一)必考题:共 60 分.17 .( 12 分)已知△ ABC 中,角 A ,B , C 所对的边分别是 a , b , c ,△ABC 的面积为S ,且 S = bc cos A , C =.(Ⅰ)求 cos B 的值;(Ⅱ)若 c =,求 S 的值.【考点】 HP :正弦定理.【专题】 11 :计算题; 35 :转变思想; 49 :综合法; 58 :解三角形.【剖析】(Ⅰ)由已知利用三角形面积公式可得tan A = 2 ,利用同角三角函数基本关系式可求 sin A , cos A ,由三角形内角和定理,两角和的余弦函数公式可求cos B 的值.(Ⅱ)利用同角三角函数基本关系式可求sin B ,利用正弦定理可得 b 的值,即可得解 S的值.【解答】 解:(Ⅰ)∵ S = bc sin A = bc cos A ,∴sin A = 2cos A ,可得: tan A = 2,∵△ABC 中, A 为锐角,又∵sin 2 A +cos 2A = 1,∴可得: sin A =, cos A = ,又∵C=,∴cos B=﹣ cos (A+ C)=﹣ cos A cos C+sin A sin C=.(Ⅱ)在△ ABC 中,sin B==,由正弦定理,可得: b ==3,∴S= bc cos A=3.【议论】本题主要观察了三角形面积公式,同角三角函数基本关系式,三角形内角和定理,两角和的余弦函数公式,正弦定理在解三角形中的综合应用,观察了计算能力和转化思想,属于中档题.18 .( 12 分)如图,四棱锥P﹣ ABCD 中, AB ∥CD ,∠BCD=,PA⊥ BD,AB=2,PA=PD= CD= BC=1.(Ⅰ)求证:平面 PAD ⊥平面 ABCD;(Ⅱ)求直线 PA 与平面 PBC 所成角的正弦值.【考点】 LY:平面与平面垂直;MI :直线与平面所成的角.【专题】 14 :证明题; 31 :数形结合; 49 :综合法; 5G :空间角.【剖析】(Ⅰ)推导出AD ⊥ BD,PA⊥ BD,从而 BD ⊥平面 PAD,由此能证明平面PAD ⊥平面 ABCD .(Ⅱ)取AD 中点 O,连结 PO,则 PO⊥ AD ,以 O 为坐标原点,以过点O 且平行于BC 的直线为 x 轴,过点 O 且平行于 AB 的直线为 y 轴,直线 PO 为 z 轴,建立空间直角坐标系,利用职权向量法能求出直线PA 与平面 PBC 所成角的正弦值.【解答】证明:(Ⅰ)∵ AB∥CD ,∠BCD=,PA=PD=CD=BC=1,∴BD=,∠ABC=,,∴,∵AB=2,∴AD =,∴AB2=AD2+BD2,∴AD⊥ BD,∵PA⊥BD , PA∩AD = A,∴BD⊥平面 PAD,∵BD?平面 ABCD ,∴平面 PAD⊥平面 ABCD .解:(Ⅱ)取 AD 中点 O,连结 PO,则 PO⊥ AD ,且 PO =,由平面 PAD ⊥平面 ABCD,知 PO⊥平面 ABCD,以 O 为坐标原点,以过点 O 且平行于 BC 的直线为 x 轴,过点 O 且平行于 AB 的直线为y轴,直线 PO 为 z 轴,建立以以以下图的空间直角坐标系,则 A(, 0 ),B(, 0 ),C(﹣, 0),P( 0 , 0 ,),=(﹣ 1, 0, 0 ),=(﹣,),设平面 PBC 的法向量=(x,y,z),则,取 z=,得=(0,,),∵=(,﹣),∴cos <>==﹣,∴直线 PA 与平面 PBC 所成角的正弦值为.【议论】本题观察面面垂直的证明,观察满足线面角的正弦值的求法,观察空间中线线、线面、面面间的地址关系等基础知识,观察运算求解能力,观察数形结合思想,是中档题.19 .( 12 分)某中学为研究学生的身体素质与体育锻炼时间的关系,对该校200 名高三学生平均每天体育锻炼时间进行检查,如表:(平均每天锻炼的时间单位:分钟)平均每天锻炼的[0 ,10 )[10 ,20 ) [20 , 30 )[30 ,40 ) [40 , 50 ) [50 , 60 )时间 / 分钟总人数20 36 44 50 40 10 将学寿辰均体育锻炼时间在[40 , 60 )的学生议论为“锻炼达标”.(Ⅰ)请依照上述表格中的统计数据填写下面 2 ×2 列联表;锻炼不达标锻炼达标合计男女20 110合计并经过计算判断,可否能在犯错误的概率不高出的前提下认为“锻炼达标”与性别有关?(Ⅱ)在“锻炼达标”的学生中,按男女用分层抽样方法抽出10 人,进行体育锻炼领悟交流,(i)求这10人中,男生、女生各有多少人?(ii )从参加领悟交流的10人中,随机选出2人作重点发言,记这2人中女生的人数为X,求 X 的分布列和数学希望.参照公式: K 2=,其中n=a+b+c+d临界值表P( K2≥k0)k 0【考点】 BL :独立性检验; CG:失散型随机变量及其分布列;CH :失散型随机变量的希望与方差.【专题】 49 :综合法; 5I :概率与统计;5O :排列组合.【剖析】( I)列出列联表,利用独立性检验计算公式及其判判断理即可得出结论.(Ⅱ)( i)在“锻炼达标”的学生50 中,男女生人数比为3: 2,用分层抽样方法抽出10 人,男生有 6 人,女生有 4 人.【解答】解:( I)列出列联表,课外体育不达标课外体育达标合计男60 30 90女90 20 110合计150 50 200K2==≈6.061 > 5.021 .因此在犯错误的概率不高出的前提下不能够判断“课外体育达标”与性别有关.(6 分)(Ⅱ)( i)在“锻炼达标”的学生50 中,男女生人数比为 3 : 2 ,用分层抽样方法抽出10 人,男生有 6 人,女生有 4 人.( ii )从参加领悟交流的10 人中,随机选出 2 人作重点发言, 2 人中女生的人数为X,则 X 的可能值为0 , 1 , 2 .则 P(( X=0)==,P((X=1)==,P((X=2)==,可得 X 的分布列为:X 0 1 2P可得数学希望E( X)=0×+1 ×+2 ×=.【议论】本题观察了独立性检验计算公式及其原理、超几何分布列的应用,观察了推理能力与计算能力,属于中档题.20 .( 12 分)已知O 为坐标原点,椭圆:=1 (>b> 0)的左、右焦点分别为C aF1(﹣ c,0), F2( c,0),过焦点且垂直于x 轴的直线与椭圆 C 订交所得的弦长为 3 ,直线 y=﹣与椭圆 C 相切.(Ⅰ)求椭圆 C 的标准方程;(Ⅱ)可否存在直线l:y =k( x+ c)与椭圆 C 订交于 E,D 两点,使得()< 1 ?若存在,求k 的取值范围;若不存在,请说明原由!【考点】 KL :直线与椭圆的综合.【专题】 15 :综合题; 38 :对应思想; 4R:转变法; 5E:圆锥曲线中的最值与范围问题.【剖析】(Ⅰ)由题意可得= 3,以及直线y =﹣与椭圆C相切,可得b =,解之即得 a, b ,从而写出椭圆 C 的方程;(Ⅱ)联立方程组,依照韦达定理和向量的运算,即可求出k 的取值范围.【解答】解:(Ⅰ)∵在=1(a>b>0)中,令x=c,可得 y =±,∵过焦点且垂直于x 轴的直线与椭圆 C 订交所得的弦长为3,∴= 3 ,∵直线 y=﹣与椭圆C相切,∴b=,∴a=2∴a 2=4, b2=3.故椭圆 C 的方程为+=1;(Ⅱ)由(Ⅰ)可知c=1,则直线 l 的方程为 y= k( x+1),联立,可得( 4 k 2+3 )x2+8 k2x+4 k2﹣ 12 = 0 ,则△=64 k 4﹣ 4 ( 4 k2+3 )( 4 k2﹣ 12 )= 144 (k2+1 )> 0 ,∴x1+ x2=﹣,x1x2=,∴y1 y2= k 2( x1+1)( x2+1)=﹣,∵()<1,∴?<1,∴(x2﹣1, y2)( x1﹣1,y1)= x1x2﹣( x1+ x2)+1+ y 1y 2<1,即++1 ﹣<1,整理可得 k 2<4,解得﹣ 2 <k< 2 ,∴直线 l 存在,且 k 的取值范围为(﹣2, 2).【议论】本题观察了直线方程,椭圆的简单性质、向量的运算等基础知识与基本技术方法,观察了运算求解能力,转变与化归能力,属于中档题.21 .( 12 分)已知函数 f ( x )= e x﹣ ax .(Ⅰ)若函数 f ( x )在 x ∈(,2 )上有 2 个零点,求实数 a 的取值范围.(注 e 3>19 )(Ⅱ)设 g ( x )= f ( x )﹣ ax 2,若函数 g ( x )恰有两个不同样样的极值点 x 1, x 2 证明:.【考点】 6D :利用导数研究函数的极值.【专题】 33 :函数思想; 4R :转变法; 53 :导数的综合应用.【剖析】(Ⅰ)问题转变成 a =,令 h ( x )= ,x ∈(, 2 ),依照函数的单调性求出 a 的范围即可;(Ⅱ)求出 2 a =,问题转变成证( x 1 ﹣x 2)﹣+1 > 0 ,令 x 1﹣ x 2= t ( t <0 ),即证不等式t﹣ e t+1 >0 ,当t < 0 时恒建立, 设 h ( t )=t﹣ e t+1 ,则 h ′(t )=﹣[ ﹣( +1 )] ,依照函数的单调性证明即可.【解答】 解:(Ⅰ)由 f ( x )= 0 ,得 a =,令 h (x )=, x ∈(, 2 ),h ′(x )= ,故 h (x )在( , 1 )递减,在( 1 , 2)递加,又 h ( )= 2, h ( 2)= , h ( 1)= e ,故 h (2 )> h (),故 a ∈( e , 2);(Ⅱ) g ( x )= f ( x )﹣ ax 2= e x﹣ ax ﹣ ax 2,故 g ′(x )= e x﹣ 2ax ﹣ a ,大全易知 a > 0 (若 a ≤0 ,则函数 f ( x )没有或只有 1 个极值点,与已知矛盾) ,且 g ′(x 1 )= 0, g ′(x 2 )= 0 ,故 ﹣2 ax 1 ﹣ a = 0,﹣ 2 ax 2﹣ a = 0 ,两式相减得 2a =,于是要证明< ln (2a ),即证明 < ,两边同除以,即证( x 1﹣ x 2 ) >﹣ 1 ,即证( x 1﹣ x 2 )﹣ +1 > 0,令 x 1﹣ x 2 =t ( t < 0 ),即证不等式 t﹣ e t+1 > 0,当 t <0 时恒建立,设 h (t )= t﹣ e t+1 ,则 h ′(t )=﹣[ ﹣( +1 ) ] ,设 k ( )=﹣( +1 ),则 k ′()= (﹣ 1 ),tt当 t <0 时, k ′(t )< 0 , k ( t )递减,故 k ( t )> k ( 0)= 0 ,即﹣( +1 )> 0 ,故 h ′(t )< 0 ,故 h (t )在 t < 0 时递减, h ( t )在 t = 0 处取最小值 h ( 0 )= 0 ,故 h (t )> 0 得证,故.【议论】 本题观察了函数的单调性,最值问题,观察导数的应用以及转变思想,换元思想,是一道综合题.(二)选考题:共 10 分.请考生在第22 、 23 题中任选一题作答.若是多做,则按所做的第一题计分. [ 选修 4-4 :坐标系与参数方程]22 .( 10 分)已知曲线C1的参数方程为(α为参数),P是曲线C1上的任一点,过 P 作 y 轴的垂线,垂足为Q,线段 PQ 的中点的轨迹为C2.(Ⅰ)求曲线C2的直角坐标方程;(Ⅱ)以原点为极点,x 轴正半轴为极轴建立极坐标系,若直线l:sinθ﹣cosθ=交曲线 C2于 M , N 两点,求|MN |.【考点】 Q4 :简单曲线的极坐标方程.【专题】 11 :计算题; 5S :坐标系和参数方程.【剖析】(Ⅰ)利用 cos 2α+sin2α=1 消去α可得圆C1的一般方程,设PQ的中点坐标为( x, y),则 P 点坐标为(2 x, y),将 P 的坐标代入C1的方程即可得;(Ⅱ)先把 l 的极坐标方程化为直角坐标方程,再代入C2的直角坐标方程可得M ,N 的横坐标,再依照弦长公式可得弦长|MN |.【解答】解:(Ⅰ)利用cos 2α+sin 2α=1 消去α可得(x﹣ 3 )2 + (y﹣ 1 )2= 4,设 PQ 的中点坐标为(x, y),则 P 点坐标为(2x, y),则 PQ 中点的轨迹方程为( 2 x﹣ 3 )2+ (y﹣1 )2= 4 .(Ⅱ)∵直线的直角坐标方程为y﹣ x=1,2 2得 x=,∴|MN |=∴联立 y﹣ x=1与(2 x﹣3)+(y﹣ 1 )=4=.【议论】本题观察了简单曲线的极坐标方程,属中档题.[ 选修 4-5 :不等式选讲 ] ( 10 分)23 .已知函数f( x)=|x﹣2|.(Ⅰ)解不等式 f ( x)+ f(2x+1)≥6;(Ⅱ)对 a+ b =1( a, b>0)及? x∈R,不等式 f( x﹣ m )﹣(﹣ x)≤恒建立,求实数 m 的取值范围.【考点】 3R :函数恒建立问题;R6 :不等式的证明.【专题】 15 :综合题; 35 :转变思想; 4R :转变法; 5T:不等式.【剖析】(Ⅰ)依照绝对值不等式的解法,利用分类议论进行求解即可.(Ⅱ)利用 1 的代换,结合基本不等式先求出+的最小值是9 ,今后利用绝对值不等式的性质进行转变求解即可.【解答】解:(Ⅰ) f(x)+ f(2 x+1)=|x﹣2|+|2 x﹣1|=当x<时,由3﹣3 x≥6,解得 x≤﹣1;当≤x≤2时, x+1≥6不能够立;当x>2时,由3x﹣3≥6,解得 x≥3.因此不等式f( x)≥6的解集为(﹣∞,﹣1] ∪ [3 , + ∞).(Ⅱ)∵ a+ b=1( a, b >0),∴(a+ b )(+ )= 5++ ≥5+2 = 9 ,∴对于? x∈ R,恒建立等价于:对? x∈ R,|x﹣2 ﹣m |﹣ |﹣x﹣ 2| ≤9 ,即[| x﹣ 2 ﹣m |﹣ |﹣x﹣ 2|] max≤9∵|x﹣ 2﹣m |﹣ |﹣x﹣ 2| ≤|(x﹣ 2 ﹣m)﹣(x+2 )|= | ﹣4﹣m |∴﹣9≤m +4 ≤9,∴﹣13 ≤m≤5 .【议论】本题主要观察绝对值不等式的解法,以及不等式恒建立问题,利用 1 的代换结合基本不等式,将不等式恒建立进行转变求解是解决本题的重点.。
黑龙江省哈三中2019届高三下学期第二次高考模拟数学(理)
24.(本题满分 10 分)选修 4— 5 不等式选讲
已知函数 f (x) | x a |.
( I )若 f ( x) ≤m的解集为 {x| — 1≤ x≤)5,求实数 a, m 的值; ( II )当 a=2 且 0≤t<2 时,解关于 x 的不等式 f( x)+t≥f( x+2 ).
A . {1}
B. {1 ,2}
C. {2}
1 D . { ,2 }
2
7.已知二项式 (2 x
1 )n 展开式中的第 5 项为常数项,则展开式中各项的二项式系数之和为 x
A.1
B. 32
C. 64
D . 128
8.一只蚂蚁从正方体 ABCD — A 1B2C1D 1 的顶点 A 处出发,经正方体的表面,按最短路线爬行到顶
已知 ( I )求 f ( x)的最大值及取到最大值时相应的
x 的集合; -
( II )若函数 y f ( x) m在区间 [0, ] 上恰好有两个零点,求实数 2
m 的取值范围.
18.(本小题满分 12 分) 如图,四边形 ABCD 是边长为 2 的正方形, △ ABE 为等腰三角形, AE=BE ,平面 ABCD ⊥平面
8
1
A.
2
1
B.
3
1
C.
4
1
D.
5
4.如果执行右面的程序框图,那么输出的
S为
A . 96
B. 768
C. 1 536
D. 768
D.9 D .第四象限
· 1·
5.已知 a, b, l ,表示三条不同的直线, , , 表示三个不同的平面,有下列四个命题:
2019年黑龙江省哈尔滨三中高考数学二模试卷(理科)-解析版
2019年黑龙江省哈尔滨三中高考数学二模试卷(理科)一、选择题(本大题共12小题,共60.0分)1.=()A. B. C. D.2.设集合A={-1,0,1},B={x|2x>2},则A∩B=()A. B. C. D.3.若x,y满足不等式组,则z=2x-3y的最小值为()A. B. C. D.4.已知双曲线=1(a>0,b>0)的离心率为e,抛物线y2=2px(p>0)的焦点坐标为(1,0),若e=p,则双曲线C的渐近线方程为()A. B. C. D.5.随着计算机的出现,图标被赋予了新的含义,又有了新的用武之地.在计算机应用领域,图标成了具有明确指代含义的计算机图形.如图所示的图标是一种被称之为“黑白太阳”的图标,该图标共分为3部分.第一部分为外部的八个全等的矩形,每一个矩形的长为3、宽为1;第二部分为圆环部分,大圆半径为3,小圆半径为2;第三部分为圆环内部的白色区域.在整个“黑白太阳”图标中随机取一点,此点取自图标第三部分的概率为()A. B. C. D.6.设等差数列{a n}的前n项和为S n,且S4=3S2,a7=15,则{a n}的公差为()A. 1B. 2C. 3D. 47.运行如图程序,则输出的S的值为()A. 0B. 1C. 2018D. 20178.已知函数f(x)=ln(x+1)-ax,若曲线y=f(x)在点(0,f(0))处的切线方程为y=2x,则实数a的值为()A. B. C. 1 D. 29.在长方体ABCD-A1B1C1D1中,BC=CC1=1,∠AB1D=,则直线AB1与BC1所成角的余弦值为()A. B. C. D.10.已知函数f(x)=cos x-sin x在(0,α)上是单调函数,且f(α)≥-1,则α的取值范围为()A. B. C. D.11.已知半圆C:x2+y2=1(y≥0),A、B分别为半圆C与x轴的左、右交点,直线m过点B且与x轴垂直,点P在直线m上,纵坐标为t,若在半圆C上存在点Q使∠BPQ=,则t的取值范围是()A. B.C. D.12.在边长为2的菱形ABCD中,BD=2,将菱形ABCD沿对角线AC对折,使二面角B-AC-D的余弦值为,则所得三棱锥A-BCD的内切球的表面积为()A. B. C. D.二、填空题(本大题共4小题,共20.0分)13.已知cosα=-,则cos2α=______.14.在(1+x)(2+x)5的展开式中,x3的系数为______(用数字作答).15.已知函数f(x)是奇函数,且0≤x1<x2时,有<1,f(-2)=1,则不等式x-3≤f(x)≤x的解集为______.16.已知数列{a n}的前n项和S n满足,S n=3a n-2,数列{na n}的前n项和为T n,则满足T n>100的最小的n值为______.三、解答题(本大题共7小题,共82.0分)17.已知△ABC中,角A,B,C所对的边分别是a,b,c,△ABC的面积为S,且S=bc cos A,C=.(Ⅰ)求cos B的值;(Ⅱ)若c=,求S的值.18.如图,四棱锥P-ABCD中,AB∥CD,∠BCD=,PA⊥BD,AB=2,PA=PD=CD=BC=1.(Ⅰ)求证:平面PAD⊥平面ABCD;(Ⅱ)求直线PA与平面PBC所成角的正弦值.19. 某中学为研究学生的身体素质与体育锻炼时间的关系,对该校200名高三学生平均每天体育锻炼时间2×2并通过计算判断,是否能在犯错误的概率不超过的前提下认为“锻炼达标”与性别有关?(Ⅱ)在“锻炼达标”的学生中,按男女用分层抽样方法抽出10人,进行体育锻炼体会交流,(i )求这10人中,男生、女生各有多少人?(ii )从参加体会交流的10人中,随机选出2人作重点发言,记这2人中女生的人数为X ,求X 的分布列和数学期望.参考公式:K 2=,其中n =a +b +c +d临界值表20. 已知O 为坐标原点,椭圆C :=1(a >b >0)的左、右焦点分别为F 1(-c ,0),F 2(c ,0),过焦点且垂直于x 轴的直线与椭圆C 相交所得的弦长为3,直线y =- 与椭圆C 相切. (Ⅰ)求椭圆C 的标准方程;(Ⅱ)是否存在直线l :y =k (x +c )与椭圆C 相交于E ,D 两点,使得( )<1?若存在,求k 的取值范围;若不存在,请说明理由!21. 已知函数f (x )=e x-ax .(Ⅰ)若函数f (x )在x ∈(,2)上有2个零点,求实数a 的取值范围.(注e 3>19) (Ⅱ)设g (x )=f (x )-ax 2,若函数g (x )恰有两个不同的极值点x 1,x 2证明:< .22. 已知曲线C 1的参数方程为(α为参数),P 是曲线C 1上的任一点,过P 作y 轴的垂线,垂足为Q ,线段PQ 的中点的轨迹为C 2.(Ⅰ)求曲线C 2的直角坐标方程;(Ⅱ)以原点为极点,x 轴正半轴为极轴建立极坐标系,若直线l :sinθ-cosθ=交曲线C 2于M ,N 两点,求|MN |.23. 已知函数f (x )=|x -2|.(Ⅰ)解不等式f (x )+f (2x +1)≥6;(Ⅱ)对a +b =1(a ,b >0)及∀x ∈R ,不等式f (x -m )-(-x )≤恒成立,求实数m 的取值范围.答案和解析1.【答案】B【解析】解:=.故选:B.直接利用复数代数形式的乘除运算化简得答案.本题考查复数代数形式的乘除运算,是基础的计算题.2.【答案】A【解析】解:B={x|x>1};∴A∩B=∅.故选:A.可解出集合B,然后进行交集的运算即可.考查描述法、列举法的定义,交集的运算,空集的定义.3.【答案】D【解析】解:画出x,y满足不等式组表示的平面区域,如图所示;平移目标函数z=2x-3y知,A(2,3),B(1,0),C(0,1)当目标函数过点A时,z取得最小值,∴z的最小值为2×2-3×3=-5.故选:D.画出不等式组表示的平面区域,平移目标函数,找出最优解,求出z的最小值.本题考查了简单的线性规划问题,是基本知识的考查.4.【答案】A【解析】解:抛物线y2=2px(p>0)的焦点坐标为(1,0),则p=2,又e=p,所以e==2,可得c2=4a2=a2+b2,可得:b=a,所以双曲线的渐近线方程为:y=±.故选:A.求出抛物线的焦点坐标,得到双曲线的离心率,然后求解a,b关系,即可得到双曲线的渐近线方程.本题考查双曲线的离心率以及双曲线渐近线方程的求法,抛物线的简单性质的应用.5.【答案】B【解析】解:图标第一部分的面积为8×3×1=24,图标第二部分的面积和第三部分的面积为π×32=9π,图标第三部分的面积为π×22=4π,故此点取自图标第三部分的概率为,故选:B.以面积为测度,根据几何概型的概率公式即可得到结论.本题考查几何概型的计算,关键是正确计算出阴影部分的面积,属于基础题.6.【答案】B【解析】解:根据题意,设等差数列{a n}的公差为d,若S4=3S2,a7=15,则4a1+6d=3(2a1+d),a1+6d=15,解可得a1=3,d=2;故选:B.根据题意,设等差数列{a n}的公差为d,分析可得4a1+6d=3(2a1+d),a1+6d=15,解可得d的值,即可得答案.本题考查等差数列的前n项和,关键是掌握等差数列的前n项和公式的形式,属于基础题.7.【答案】D【解析】解:模拟程序的运行,可得程序的功能是利用循环结构计算并输出变量S=2017+(sin +sin)+(sin +sin)+…+(sin +sin)的值,可得:S=2017+(sin +sin)+(sin +sin)+…+(sin +sin)=2017.故选:D.由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.8.【答案】B【解析】解:f (x)的定义域为(-1,+∞),因为f′(x)=-a,曲线y=f(x)在点(0,f(0))处的切线方程为y=2x,可得1-a=2,解得a=-1,故选:B.求出函数的导数,利用切线方程通过f′(0),求解即可;本题考查函数的导数的应用,切线方程的求法,考查计算能力.9.【答案】D【解析】解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,设AB=a,则A(1,0,0),D(0,0,0),B1(1,a,1),=(-1,-a,-1),=(0,-a,-1),∵∠AB1D=,∴cos==,解得a=,B1(1,,1),B(1,0),C1(0,,1),=(0,),=(-1,0,1),设直线AB1与BC1所成角为θ,则cosθ===.∴直线AB1与BC1所成角的余弦值为.故选:D.以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出直线AB1与BC1所成角的余弦值.本题考查异面直线所成角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.10.【答案】C【解析】解:函数f(x)=cosx-sinx=2cos(x+)在(0,α)上是单调函数,∴+α≤π,∴0<α≤.又f(α)≥-1,即 cos(α+)≥-,则α+∈(,],∴α∈(0,],故选:C.利用两角和的余弦公式化简函数的解析式,利用余弦函数的单调性以及余弦函数的图象,可得 cos(α+)≥-,则α+∈(,],由此可得α的取值范围.本题主要考查两角和的余弦公式,余弦函数的单调性以及余弦函数的图象,属于基础题.11.【答案】A【解析】解:根据题意,设PQ与x轴交于点T,则|PB|=|t|,由于BP与x轴垂直,且∠BPQ=,则在Rt△PBT中,|BT|=|PB|=|t|,当P在x轴上方时,PT与半圆有公共点Q,PT与半圆相切时,|BT|有最大值3,此时t有最大值,当P在x轴下方时,当Q与A重合时,|BT|有最大值2,|t|有最大值-,则t取得最小值-,t=0时,P与B重合,不符合题意,则t的取值范围为[-,0)];故选:A.根据题意,设PQ与x轴交于点T,分析可得在Rt△PBT中,|BT|=|PB|=|t|,分p在x轴上方、下方和x轴上三种情况讨论,分析|BT|的最值,即可得t的范围,综合可得答案.本题考查直线与圆方程的应用,涉及直线与圆的位置关系,属于基础题.12.【答案】C【解析】解:如下图所示,易知△ABC和△ACD都是等边三角形,取AC的中点N,则DN⊥AC,BN⊥AC.所以,∠BND是二面角B-AC-D的平面角,过点B作BO⊥DN交DN于点O,可得BO⊥平面ACD.因为在△BDN中,,所以,BD2=BN2+DN2-2BN•DN•cos∠BND=,则BD=2.故三棱锥A-BCD为正四面体,则其内切球半径.因此,三棱锥A-BCD的内切球的表面积为.故选:C.作出图形,利用菱形对角线相互垂直的性质得出DN⊥AC,BN⊥AC,可得出二面角B-AC-D的平面角为∠BND,再利用余弦定理求出BD,可知三棱锥B-ACD为正四面体,根据内切球的半径为其棱长的倍得出内切球的半径R,再利用球体的表面积公式可得出答案.本题考查几何体的内切球问题,解决本题的关键在于计算几何体的棱长确定几何体的形状,考查了二面角的定义与余弦定理,考查计算能力,属于中等题.13.【答案】【解析】解:∵cosα=-,∴cos2α=2cos2α-1=2×(-)2-1=.故答案为:.由已知利用二倍角的余弦函数公式即可计算得解.本题主要考查了二倍角公式在三角函数化简求值中的应用,属于基础题.14.【答案】120【解析】解:(2+x)5的展开式的通项是,所以在(1+x)(2+x)5=(2+x)5+x(2+x)5的展开式中,含x3的项为,所以x3的系数为120.故答案为:120.根据(2+x)5的展开式的通项公式,计算在(1+x)(2+x)5的展开式中含x3的项是什么,从而求出x3的系数.本题考查了二项式展开式的通项公式的应用问题,也考查了逻辑推理与计算能力,是基础题目.15.【答案】[0,2]【解析】解:由x-3≤f(x)≤x等价为-3≤f(x)-x≤1设g(x)=f(x)-x,又由函数f(x)是定义在R上的奇函数,则有f(-x)=-f(x),则有g(-x)=f(-x)-(-x)=-f(x)+x=-[f(x)-x]=-g(x),即函数g(x)为R上的奇函数,则有g(0)=0;又由对任意0≤x1<x2时,有<1,则==-1,∵<1,∴=-1<0,即g(x)在[0,+∞)上为减函数,∵g(x)是奇函数,∴g(x)在(-∞,+∞)上为减函数,∵f(-2)=1,∴g(-2)=f(-2)-(-2)=1+2=3;g(2)=-3,g(0)=f(0)-0=0,则-3≤f(x)-x≤0等价为g(2)≤g(x)≤g(0),∵g(x)是减函数,∴0≤x≤2,即不等式x-3≤f(x)≤x的解集为[0,2];故答案为:[0,2].根据条件构造函数g(x)=f(x)-x,判断函数g(x)的奇偶性和单调性,结合函数奇偶性和单调性的性质进行转化求解即可.本题考查函数的奇偶性与单调性的综合应用,关键是构造函数g(x),利用特殊值转化分析不等式,利用函数奇偶性和单调性进行转化是解决本题的关键.16.【答案】7【解析】解:根据题意,数列{a n}满足S n=3a n-2,①当n≥2时,有S n-1=3a n-1-2,②,①-②可得:a n=3a n-3a n-1,变形可得2a n=3a n-1,当n=1时,有S1=a1=3a1-2,解可得a1=1,则数列{a n}是以a1=1为首项,公比为的等比数列,则a n=()n-1,数列{na n}的前n项和为T n,则T n =1+2×+3×()2+……+n×()n-1,③则有T n =+2×()2+3×()3+……+n×()n,④③-④可得:-T n=1+()+()2+……×()n-1-n×()n=-2(1-)-n×()n,变形可得:T n=4+(2n-4)×()n,若T n>100,即4+(2n-4)×()n>100,分析可得:n≥7,故满足T n>100的最小的n值为7;故答案为:7.根据题意,将S n=3a n-2变形可得S n-1=3a n-1-2,两式相减变形可得2a n=3a n-1,令n=1求出a1的值,即可得数列{a n}是以a1=1为首项,公比为的等比数列,即可得数列{a n}的通项公式,进而可得T n =1+2×+3×()2+……+n×()n-1,由错位相减法分析求出T n的值,若T n>100,即4+(2n-4)×()n>100,验证分析可得n的最小值,即可得答案.本题考查数列的递推公式,关键是分析数列{a n}的通项公式,属于基础题.17.【答案】解:(Ⅰ)∵S=bc sin A=bc cos A,∴sin A=2cos A,可得:tan A=2,∵△ABC中,A为锐角,又∵sin2A+cos2A=1,∴可得:sin A=,cos A=,又∵C=,∴cos B=-cos(A+C)=-cos A cos C+sin A sin C=.(Ⅱ)在△ABC中,sin B==,由正弦定理,可得:b==3,∴S=bc cos A=3.【解析】(Ⅰ)由已知利用三角形面积公式可得tanA=2,利用同角三角函数基本关系式可求sinA,cosA,由三角形内角和定理,两角和的余弦函数公式可求cosB的值.(Ⅱ)利用同角三角函数基本关系式可求sinB,利用正弦定理可得b的值,即可得解S的值.本题主要考查了三角形面积公式,同角三角函数基本关系式,三角形内角和定理,两角和的余弦函数公式,正弦定理在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.18.【答案】证明:(Ⅰ)∵AB∥CD,∠BCD=,PA=PD=CD=BC=1,∴BD=,∠ABC=,,∴,∵AB=2,∴AD=,∴AB2=AD2+BD2,∴AD⊥BD,∵PA⊥BD,PA∩AD=A,∴BD⊥平面PAD,∵BD⊂平面ABCD,∴平面PAD⊥平面ABCD.解:(Ⅱ)取AD中点O,连结PO,则PO⊥AD,且PO=,由平面PAD⊥平面ABCD,知PO⊥平面ABCD,以O为坐标原点,以过点O且平行于BC的直线为x轴,过点O且平行于AB的直线为y轴,直线PO为z轴,建立如图所示的空间直角坐标系,则A(,,0),B(,,0),C(-,,0),P(0,0,),=(-1,0,0),=(-,,),设平面PBC的法向量=(x,y,z),则,取z=,得=(0,,),∵=(,,-),∴cos<,>==-,∴直线PA与平面PBC所成角的正弦值为.【解析】(Ⅰ)推导出AD⊥BD,PA⊥BD,从而BD⊥平面PAD,由此能证明平面PAD⊥平面ABCD.(Ⅱ)取AD中点O,连结PO,则PO⊥AD,以O为坐标原点,以过点O且平行于BC的直线为x 轴,过点O且平行于AB的直线为y轴,直线PO为z轴,建立空间直角坐标系,利用职权向量法能求出直线PA与平面PBC所成角的正弦值.本题考查面面垂直的证明,考查满足线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.K2==≈6.061>5.021.所以在犯错误的概率不超过0.01的前提下不能判断“课外体育达标”与性别有关.(6分)(Ⅱ)(i)在“锻炼达标”的学生50中,男女生人数比为3:2,用分层抽样方法抽出10人,男生有6人,女生有4人.(ii)从参加体会交流的10人中,随机选出2人作重点发言,2人中女生的人数为X,则X的可能值为0,1,2.则P((X=0)==,P((X=1)==,P((X=2)==,可得X的分布列为:可得数学期望E(X)=0×+1×+2×=.【解析】(I)列出列联表,利用独立性检验计算公式及其判定定理即可得出结论.(Ⅱ)(i)在“锻炼达标”的学生50中,男女生人数比为3:2,用分层抽样方法抽出10人,男生有6人,女生有4人.本题考查了独立性检验计算公式及其原理、超几何分布列的应用,考查了推理能力与计算能力,属于中档题.20.【答案】解:(Ⅰ)∵在=1(a>b>0)中,令x=c,可得y=±,∵过焦点且垂直于x轴的直线与椭圆C相交所得的弦长为3,∴=3,∵直线y=-与椭圆C相切,∴b=,∴a=2∴a2=4,b2=3.故椭圆C的方程为+=1;(Ⅱ)由(Ⅰ)可知c=1,则直线l的方程为y=k(x+1),联立,可得(4k2+3)x2+8k2x+4k2-12=0,则△=64k4-4(4k2+3)(4k2-12)=144(k2+1)>0,∴x1+x2=-,x1x2=,∴y1y2=k2(x1+1)(x2+1)=-,∵()<1,∴•<1,∴(x2-1,y2)(x1-1,y1)=x1x2-(x1+x2)+1+y1y2<1,即++1-<1,整理可得k2<4,解得-2<k<2,∴直线l存在,且k的取值范围为(-2,2).【解析】(Ⅰ)由题意可得=3,以及直线y=-与椭圆C相切,可得b=,解之即得a,b,从而写出椭圆C的方程;(Ⅱ)联立方程组,根据韦达定理和向量的运算,即可求出k的取值范围.本题考查了直线方程,椭圆的简单性质、向量的运算等基础知识与基本技能方法,考查了运算求解能力,转化与化归能力,属于中档题.21.【答案】解:(Ⅰ)由f(x)=0,得a=,令h(x)=,x∈(,2),h′(x)=,故h(x)在(,1)递减,在(1,2)递增,又h()=2,h(2)=,h(1)=e,故h(2)>h(),故a∈(e,2);(Ⅱ)g(x)=f(x)-ax2=e x-ax-ax2,故g′(x)=e x-2ax-a,∵x1,x2是函数g(x)的两个不同的极值点(不妨设x1<x2),易知a>0(若a≤0,则函数f(x)没有或只有1个极值点,与已知矛盾),且g′(x1)=0,g′(x2)=0,故-2ax1-a=0,-2ax2-a=0,两式相减得2a=,于是要证明<ln(2a),即证明<,两边同除以,即证(x1-x2)>-1,即证(x1-x2)-+1>0,令x1-x2=t(t<0),即证不等式t-e t+1>0,当t<0时恒成立,设h(t)=t-e t+1,则h′(t)=-[-(+1)],设k(t)=-(+1),则k′(t)=(-1),当t<0时,k′(t)<0,k(t)递减,故k(t)>k(0)=0,即-(+1)>0,故h′(t)<0,故h(t)在t<0时递减,h(t)在t=0处取最小值h(0)=0,故h(t)>0得证,故<.【解析】(Ⅰ)问题转化为a=,令h(x)=,x∈(,2),根据函数的单调性求出a的范围即可;(Ⅱ)求出2a=,问题转化为证(x1-x2)-+1>0,令x1-x2=t(t<0),即证不等式t -e t+1>0,当t<0时恒成立,设h(t)=t-e t+1,则h′(t)=-[-(+1)],根据函数的单调性证明即可.本题考查了函数的单调性,最值问题,考查导数的应用以及转化思想,换元思想,是一道综合题.22.【答案】解:(Ⅰ)利用cos2α+sin2α=1消去α可得(x-3)2+(y-1)2=4,设PQ的中点坐标为(x,y),则P点坐标为(2x,y),则PQ中点的轨迹方程为(2x-3)2+(y-1)2=4.(Ⅱ)∵直线的直角坐标方程为y-x=1,∴联立y-x=1与(2x-3)2+(y-1)2=4得x=,∴|MN|==.【解析】(Ⅰ)利用cos2α+sin2α=1消去α可得圆C1的普通方程,设PQ的中点坐标为(x,y),则P点坐标为(2x,y),将P的坐标代入C1的方程即可得;(Ⅱ)先把l的极坐标方程化为直角坐标方程,再代入C2的直角坐标方程可得M,N的横坐标,再根据弦长公式可得弦长|MN|.本题考查了简单曲线的极坐标方程,属中档题.23.【答案】解:(Ⅰ)f(x)+f(2x+1)=|x-2|+|2x-1|=,<,,>当x<时,由3-3x≥6,解得x≤-1;当≤x≤2时,x+1≥6不成立;当x>2时,由3x-3≥6,解得x≥3.所以不等式f(x)≥6的解集为(-∞,-1][3,+∞).(Ⅱ)∵a+b=1(a,b>0),∴(a+b)(+)=5++≥5+2=9,∴对于∀x∈R,恒成立等价于:对∀x∈R,|x-2-m|-|-x-2|≤9,即[|x-2-m|-|-x-2|]max≤9∵|x-2-m|-|-x-2|≤|(x-2-m)-(x+2)|=|-4-m|∴-9≤m+4≤9,∴-13≤m≤5.【解析】(Ⅰ)根据绝对值不等式的解法,利用分类讨论进行求解即可.(Ⅱ)利用1的代换,结合基本不等式先求出+的最小值是9,然后利用绝对值不等式的性质进行转化求解即可.本题主要考查绝对值不等式的解法,以及不等式恒成立问题,利用1的代换结合基本不等式,将不等式恒成立进行转化求解是解决本题的关键.。
黑龙江省哈尔滨市第三中学2019届高三第二次模拟数学(理)试题
2019年哈尔滨市第三中学第二次高考模拟试题1.如果复数i 2ai 1+-(a ∈R ,i 为虚数单位)的实部与虚部相等,则a 的值为 A.1 B.-1 C.3 D.-32.若A={0,1,2},B={x=a 2,a ∈A},贼A ∪B=A.{0,1,2}B.{0,1,2,3}C.{0,1,2,4}D.{1,2,4}3.向量),(t 2=,)(3,1-=,若的夹角为钝角,则t 的范围是 A.t <32 B.t >32 C.t <32且t ≠-6 D.t <-64.双曲线1422=-y x 的顶点到渐近线的距离等于 A.552 B.54 C.52 D.554 5.有5名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有A.60种B.70种C.75种D.150种6.已知某个几何体的三视图如右图所示,则该几何体的体积是 A.3560 B.200 C.3580 D.2407.下列函数中,最小正周期为π,且图像关于直线x=3π对称的图像是 A.)32sin(2π+=x y B.)62sin(2π-=x yC.)32x sin(2π+=yD.)32sin(2π-=x y 8.我国古代名著《庄子·天下篇》中有一句名言“一尺之锤,日取其半,万世不竭”,其意思为:一尺长的木棍,每天截取一段,永远都截不完。
现将该木棍依此规律截取,如图所示的程序框图的功能就是计算截取20天后所剩木棍的长度(单位:尺),则①②③处可分别填入的是A.i <20,S=S-i 1,i=2iB.i ≤20,S=S-i 1,i=2iC.i <20,S=2S ,i=i+1D.i ≤20,S=2S ,i=i+1 9.已知α为第二象限角,且53)sin(-=+απ,则tan2α的值为 A.54 B.723- C.724- D.924-10.P 为圆9221=+y x C :上任意一点,Q 为圆25222=+y x C :上任意一点,PQ 重点组成的区域为M 在2C 内部任取一点,则该点落在区域M 上的概率为 A.2513 B.53 C.π2512 D.π53 11.已知抛物线y 4x 2=焦点为F ,经过F 的直线交抛物线与),(11y x A ,),(22y x B ,点A 、B 在抛物线准线上的投影分别为11B A ,,以下四个结论:①4x x 21-=,②|AB|=1y y 21++,③211π=∠FB A ,④AB 的中点到抛物线的准线的距离的最小值为2,其中正确的个数为A.1B.2C.3D.4 12.已知函数),()(∞+∈-=0,x f x ax xe x ,当12x x >时,不等式1221)(x xf x x f <)(恒成立,贼实数a 的取值范围为A.]e (,-∞B.),e (-∞C.),2e(-∞ D.]2e(,-∞ 二、填空题:本大题共4小题,每小题5分13.在锐角三角形ABC 中,a,b,c 分别为角A 、B 、C 所对的边,且A sin c 2a 3=,7c =,且△ABC 的面积为233,a+b 的值为________. 14.在三棱锥S-ABC 中,∠SAB=∠SAC =∠ACB=90°,AC=2,BC=13,29,则异面直线SC 与AB 所成角的余弦值为_________.(1)求证3}-{a n 是等比数列,并求n a ;(2)求数列}{a n 的前n 项和n T .为了解某市高三数学复习备考情况,该市教研机构组织了一次检测考试,并随机抽取了部分高三理科学生数学成绩绘制如图所示的频率分布直方图.如图,PA ⊥矩形ABCD 所在平面,PA=AD ,M ,N 分别是AB ,PC 的中点(1)求证:平面ANB ⊥平面PCD(2)若直线PB 与平面PCD 所成角的正弦值为1010,求二面角N-MD-C 的正弦值.20.(12分)(1)求M 的轨迹并给出标准方程;值范围.21.(12分) 已知函数)ln()(m x e x f x +-=,其中m >1(1)设x=0是函数f(x)的极值点,讨论函数f(x)的单调性;(2)若y=f(x)有两个不同的零点1x 和2x ,且21x 0x <<,(i )求参数m 的取值范围(ii )求证:11x x ln e12x x 12-+---e )>(.(二)选考题:共10分,请考生在22、23两题中任选一题作答,如果多选,则按所选的第一题记分.22.[选修4-4:极坐标系与参数方程](10分)以直角坐标系原点O 为极点,x 轴的正方向为极轴,已知曲线1C 的方程为1y 1-x 22=+)(,2C 的方程为3y x =+,3C 是一条经过原点且斜率大于0的直线.(1)求1C 与2C 的极坐标方程;取值范围.23..[选修4-5:不等式选讲](10分)。
2019届黑龙江省哈尔滨市第三中学高考第二次模拟测试数学(理)试题(解析版)
2019届黑龙江省哈尔滨市第三中学高考第二次模拟测试数学(理)试题一、单选题1.2-31ii =+( ) A .15-22i B .15--22iC .15+22i D .15-+22i 【答案】B【解析】利用复数代数形式的乘除运算化简得答案. 【详解】()()()()231231515111222i i i i z i i i i -----====--++-. 故选B . 【点睛】本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题. 2.设集合{1,0,1}A =-,{|22}x B x =>,则A B =I ( ) A .∅ B .{}1-C .{1,0}-D .{0,1}【答案】A【解析】可解出集合B ,然后进行交集的运算即可. 【详解】 B {}22xx =={x |x >1};∴A ∩B =∅. 故选:A . 【点睛】考查描述法、列举法的定义,交集的运算,空集的定义,属于基础题.3.若x ,y 满足不等式组1010330x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则z 2x 3y =-的最小值为( )A .-5B .-4C .-3D .-2【答案】A【解析】画出不等式组表示的平面区域,平移目标函数,找出最优解,求出z 的最小值.【详解】画出x ,y 满足不等式组10 10330x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩表示的平面区域,如图所示平移目标函数z 2x 3y =-知,当目标函数过点A 时,z 取得最小值,由10330x y x y -+=⎧⎨--=⎩得23x y =⎧⎨=⎩,即A 点坐标为()2,3∴z 的最小值为22335⨯-⨯=-,故选A. 【点睛】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.4.已知双曲线22221(0,0)x y a b a b-=>>的离心率为e ,抛物线22(0)y px p =>的焦点坐标为(1,0),若e p =,则双曲线C 的渐近线方程为( ) A .3y x =B .22y x =±C .5y x =D .2y x = 【答案】A【解析】求出抛物线的焦点坐标,得到双曲线的离心率,然后求解a ,b 关系,即可得到双曲线的渐近线方程. 【详解】抛物线y 2=2px (p >0)的焦点坐标为(1,0),则p =2,又e =p ,所以e ca==2,可得c 2=4a 2=a 2+b 2,可得:b 3=a ,所以双曲线的渐近线方程为:y =±3x . 故选:A . 【点睛】本题考查双曲线的离心率以及双曲线渐近线方程的求法,涉及抛物线的简单性质的应用.5.随着计算机的出现,图标被赋予了新的含义,又有了新的用武之地.在计算机应用领域,图标成了具有明确指代含义的计算机图形.如图所示的图标是一种被称之为“黑白太阳”的图标,该图标共分为3部分.第一部分为外部的八个全等的矩形,每一个矩形的长为3、宽为1;第二部分为圆环部分,大圆半径为3,小圆半径为2;第三部分为圆环内部的白色区域.在整个“黑白太阳”图标中随机取一点,此点取自图标第三部分的概率为( )A .24+9ππB .424+9ππC .18+9ππD .418+9ππ【答案】B【解析】以面积为测度,根据几何概型的概率公式即可得到结论. 【详解】图标第一部分的面积为8×3×1=24, 图标第二部分的面积和第三部分的面积为π×32=9π, 图标第三部分的面积为π×22=4π, 故此点取自图标第三部分的概率为4249ππ+,故选B . 【点睛】本题考查几何概型的计算,关键是正确计算出阴影部分的面积,属于基础题. 6.设等差数列{}n a 的前n 项和为n S ,且423S S =,715a =,则{}n a 的公差为( ) A .1 B .2C .3D .4【答案】B【解析】根据题意,设等差数列{}n a 的公差为d ,由条件得111463(2),615a d a d a d +=++=,由此可得d 的值,即可得答案.【详解】根据题意,设等差数列{}n a 的公差为d ,由题意得427315S S a =⎧⎨=⎩,即111463(2)615a d a d a d +=+⎧⎨+=⎩,解得132a d =⎧⎨=⎩.故选B . 【点睛】本题考查等差数列的前n 项和,关键是掌握等差数列的前n 项和公式的形式特点,属于基础题.7.运行如图程序,则输出的S 的值为( )A .0B .1C .2018D .2017【答案】D【解析】依次运行程序框图给出的程序可得 第一次:2017sin 2018,32S i π=+==,不满足条件;第二次:32018sin 201812017,52S i π=+=-==,不满足条件;第三次:52017sin 2018,72S i π=+==,不满足条件;第四次:72018sin 201812017,92S i π=+=-==,不满足条件;第五次:92017sin 2018,112S i π=+==,不满足条件;第六次:112018sin 201812017,132Si π=+=-==,满足条件,退出循环.输出2017.选D .8.已知函数()ln(1)f x x ax =+-,若曲线()y f x =在点(0,(0))f 处的切线方程为2y x =,则实数a 的取值为( )A .-2B .-1C .1D .2【答案】B【解析】求出函数的导数,利用切线方程通过f ′(0),求解即可; 【详解】f (x )的定义域为(﹣1,+∞), 因为f ′(x )11x =-+a ,曲线y =f (x )在点(0,f (0))处的切线方程为y =2x , 可得1﹣a =2,解得a =﹣1, 故选:B . 【点睛】本题考查函数的导数的几何意义,切线方程的求法,考查计算能力. 9.在长方体1111-ABCD A B C D 中,1=1=BC CC ,16AB D π=∠,则直线1AB 与1BC 所成角的余弦值为( )A .B C D 【答案】D【解析】由异面直线所成的角的定义,先作出这个异面直线所成的角的平面角,即连接DC 1,再证明∠BC 1D 就是异面直线AB 1与1BC 所成的角,最后在△BC 1D 中计算此角的余弦值即可. 【详解】如图连接C 1D ,则C 1D ∥AB 1,∴∠BC 1D 就是异面直线AB 1与BC 1所成的角.又11BC CC ==,16AB D π∠=,∴1AB ,∴1BC =,∴1DC , 在△BC 1D 中,∴cos BC 1D 26==.∴异面直线AB 1与1BC 所成的角的余弦值为:6. 故选D .【点睛】本题考查了异面直线所成的角的定义和求法,关键是先作再证后计算,将空间角转化为平面角的思想,属于基础题.10.已知函数()3sin f x x x =-在(0,)α上是单调函数,且()1f α≥-,则α的取值范围为( ) A .(0,]65π B .(0,]32π C .(0,]2πD .(0,]3π【答案】C【解析】利用两角和的余弦公式化简函数的解析式,利用余弦函数的单调性以及余弦函数的图象,可得 cos (α6π+)12≥-,则 α6π+∈(6π,23π],由此可得α的取值范围. 【详解】函数f (x )3=x ﹣sin x =2cos (x 6π+) 在(0,α)上是单调函数,∴6π+α≤π,∴0<α56π≤. 又f (α)≥﹣1,即 cos (α6π+)12≥-,则 α6π+∈(6π,23π],∴α∈(0,2π], 故选C . 【点睛】本题主要考查两角和的余弦公式,余弦函数的单调性以及余弦函数的图象,属于基础题. 11.已知半圆C :221x y +=(0y ≥),A 、B 分别为半圆C 与x 轴的左、右交点,直线m 过点B 且与x 轴垂直,点P 在直线m 上,纵坐标为t ,若在半圆C 上存在点Q 使3BPQ π=∠,则t 的取值范围是( )A .23[3]⋃ B .23[3,0)-⋃C .33[,0)(0,]33-⋃ D .2323[,0)(0,]33-U 【答案】A【解析】根据题意,设PQ 与x 轴交于点T ,分析可得在Rt △PBT 中,|BT |3=|PB |3=|t |,分p 在x 轴上方、下方和x 轴上三种情况讨论,分析|BT |的最值,即可得t 的范围,综合可得答案. 【详解】根据题意,设PQ 与x 轴交于点T ,则|PB |=|t |, 由于BP 与x 轴垂直,且∠BPQ 3π=,则在Rt △PBT 中,|BT |33=|PB |33=|t |, 当P 在x 轴上方时,PT 与半圆有公共点Q ,PT 与半圆相切时,|BT |有最大值3,此时t 有最大值3,当P 在x 轴下方时,当Q 与A 重合时,|BT |有最大值2,|t |有最大值233,则t 取得最小值23-, t =0时,P 与B 重合,不符合题意, 则t 的取值范围为[23-,0)(03⋃,]; 故选A .【点睛】本题考查直线与圆方程的应用,涉及直线与圆的位置关系,属于中档题.12.在边长为2的菱形ABCD 中,23BD =,将菱形ABCD 沿对角线AC 对折,使二面角B AC D --的余弦值为13,则所得三棱锥A BCD -的内切球的表面积为( )A .43π B .π C .23πD .2π【答案】C【解析】作出图形,利用菱形对角线相互垂直的性质得出DN ⊥AC ,BN ⊥AC ,可得出二面角B ﹣AC ﹣D 的平面角为∠BND ,再利用余弦定理求出BD ,可知三棱锥B ﹣ACD 为正四面体,可得出内切球的半径R ,再利用球体的表面积公式可得出答案. 【详解】 如下图所示,易知△ABC 和△ACD 都是等边三角形,取AC 的中点N ,则DN ⊥AC ,BN ⊥AC . 所以,∠BND 是二面角B ﹣AC ﹣D 的平面角,过点B 作BO ⊥DN 交DN 于点O ,可得BO ⊥平面ACD .因为在△BDN 中,3BN DN ==BD 2=BN 2+DN 2﹣2BN •DN •cos ∠BND 1332343=+-⨯⨯=, 则BD =2.故三棱锥A ﹣BCD 为正四面体,则其内切球半径为正四面体高的14,又正四面体的高6,故662R == 因此,三棱锥A ﹣BCD 的内切球的表面积为226244(3R πππ=⨯=. 故选:C . 【点睛】本题考查几何体的内切球问题,解决本题的关键在于计算几何体的棱长确定几何体的形状,考查了二面角的定义与余弦定理,考查计算能力,属于中等题.二、填空题 13.已知cos 3α=-,则cos2=α______. 【答案】59-【解析】直接利用二倍角的余弦公式求得cos2a 的值. 【详解】∵cos2α=221cos a -=225199⨯-=-, 故答案为59-. 【点睛】本题主要考查二倍角的余弦公式的应用,属于基础题. 14.5(1)(2)x x ++的展开式中,3x 的系数为______. 【答案】120【解析】根据(2+x )5的展开式的通项公式可得(1+x )(2+x )5的展开式中,x 3的系数. 【详解】∵(2+x )5的展开式的通项公式为T r +15rC = 25-r •x r ,∴在(1+x )(2+x )5的展开式中,x 3的系数为32235522C C +=40+80=120,故答案为:120. 【点睛】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,属于基础题.15.已知函数()f x 是奇函数,且120x x ≤<时,有1212()()1f x f x x x -<-,(2)1f -=,则不等式3()x f x x -≤≤的解集为____. 【答案】[0,2]【解析】根据条件构造函数g (x )=f (x )﹣x ,判断函数g (x )的奇偶性和单调性,结合函数奇偶性和单调性的性质进行转化求解即可. 【详解】由x ﹣3≤f (x )≤x 等价为﹣3≤f (x )﹣x ≤0设g (x )=f (x )﹣x ,又由函数f (x )是定义在R 上的奇函数,则有f (﹣x )=﹣f (x ),则有g (﹣x )=f (﹣x )﹣(﹣x )=﹣f (x )+x =﹣[f (x )﹣x ]=﹣g (x ), 即函数g (x )为R 上的奇函数, 则有g (0)=0;又由对任意0≤x 1<x 2时,有()()1212f x f x x x <--1,则()()()()()()()12121212121212g x g x f x f x x x f x f x x x x x x x -----==----1,∵()()1212f x f x x x <--1,∴()()()()12121212g x g x f x f x x x x x --=---1<0,即g (x )在[0,+∞)上为减函数, ∵g (x )是奇函数,∴g (x )在(﹣∞,+∞)上为减函数,∵f (﹣2)=1,∴g (﹣2)=f (﹣2)﹣(﹣2)=1+2=3; g (2)=﹣3,g (0)=f (0)﹣0=0,则﹣3≤f (x )﹣x ≤0等价为g (2)≤g (x )≤g (0), ∵g (x )是减函数, ∴0≤x ≤2,即不等式x ﹣3≤f (x )≤x 的解集为[0,2]; 故答案为:[0,2]. 【点睛】本题考查函数的奇偶性与单调性的综合应用,关键是构造函数g (x ),利用特殊值转化分析不等式,利用函数奇偶性和单调性进行转化是解决本题的关键.16.已知数列{}n a 的前n 项和n S 满足,32n n S a =-.数列{}n na 的前n 项和为n T ,则满足100n T >的最小的n 值为______. 【答案】7【解析】根据题意,将S n =3a n ﹣2变形可得S n ﹣1=3a n ﹣1﹣2,两式相减变形,并令n =1求出a 1的值,即可得数列{a n }是等比数列,求得数列{a n }的通项公式,再由错位相减法求出T n 的值,利用T n >100,验证分析可得n 的最小值,即可得答案. 【详解】根据题意,数列{a n }满足S n =3a n ﹣2,① 当n ≥2时,有S n ﹣1=3a n ﹣1﹣2,②,①﹣②可得:a n =3a n ﹣3a n ﹣1,变形可得2a n =3a n ﹣1, 当n =1时,有S 1=a 1=3a 1﹣2,解可得a 1=1,则数列{a n }是以a 1=1为首项,公比为32的等比数列,则a n =(32)n ﹣1, 数列{na n }的前n 项和为T n ,则T n =1+232⨯+3×(32)2+……+n ×(32)n ﹣1,③则有32T n 32=+2×(32)2+3×(32)3+……+n ×(32)n ,④③﹣④可得:12-T n =1+(32)+(32)2+……×(32)n ﹣1﹣n ×(32)n =﹣2(132nn -)﹣n ×(32)n, 变形可得:T n =4+(2n ﹣4)×(32)n , 若T n >100,即4+(2n ﹣4)×(32)n >100,分析可得:n ≥7,故满足T n >100的最小的n 值为7; 故答案为7. 【点睛】本题考查数列的递推公式及错位相减法求和,关键是分析数列{a n }的通项公式,属于中档题.三、解答题17.已知ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,ABC ∆的面积为S ,且cos S bc A =,4C π=.(1)求cos B 的值;(2)若c =,求S 的值.【答案】(1)cos B =(2)3S = 【解析】(1)由已知利用三角形面积公式可得tan A =2,利用同角三角函数基本关系式可求sin A ,cos A ,由三角形内角和定理,两角和的余弦函数公式可求cos B 的值. (2)利用同角三角函数基本关系式可求sin B ,利用正弦定理可得b 的值,即可得S 的值. 【详解】 (1)∵S 12=bc sin A =bc cos A , ∴sin A =2cos A ,可得:tan A =2, ∵△ABC 中,A 为锐角, 又∵sin 2A +cos 2A =1, ∴可得:sin A 5=,cos A 5=, 又∵C 4π=,∴cos B =﹣cos (A +C )=﹣cos A cos C +sin A sin C 10=-, (2)在△ABC 中,sin B 23101cos B =-=, 由正弦定理,可得:b c sinBsinC⋅==3, ∴S =bc cos A =3. 【点睛】本题主要考查了三角形面积公式,同角三角函数基本关系式,两角和的余弦函数公式,正弦定理在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题. 18.如图,四棱锥P ABCD -中,AB CD ∥,2BCD π∠=,PA BD ⊥,2AB =,PA=PD=CD=BC=1.(1)求证:平面PAD ⊥平面ABCD ; (2)求直线PA 与平面PBC 所成角的正弦值. 【答案】(1)见证明;(2)22211【解析】(1)推导出AD ⊥BD ,P A ⊥BD ,从而BD ⊥平面P AD ,由此能证明平面P AD ⊥平面ABCD .(2)取AD 中点O ,连结PO ,则PO ⊥AD ,以O 为坐标原点,以过点O 且平行于BC 的直线为x 轴,过点O 且平行于AB 的直线为y 轴,直线PO 为z 轴,建立空间直角坐标系,利用空间向量法能求出直线P A 与平面PBC 所成角的正弦值. 【详解】(1)∵AB ∥CD ,∠BCD 2π=,P A =PD =CD =BC =1,∴BD =∠ABC 2π=,4DBC π∠=,∴4ABD π∠=,∵AB =2,∴AD =∴AB 2=AD 2+BD 2,∴AD ⊥BD ,∵P A ⊥BD ,P A ∩AD =A ,∴BD ⊥平面P AD , ∵BD ⊂平面ABCD ,∴平面P AD ⊥平面ABCD . (2)取AD 中点O ,连结PO ,则PO ⊥AD ,且PO 2=, 由平面P AD ⊥平面ABCD ,知PO ⊥平面ABCD ,以O 为坐标原点,以过点O 且平行于BC 的直线为x 轴,过点O 且平行于AB 的直线为y 轴,直线PO 为z 轴,建立如图所示的空间直角坐标系,则A (1122-,,0),B (1322,,0),C (1322-,,0),P (0,0, BC =u u u r (﹣1,0,0),BP =u u u r (1322,--,2), 设平面PBC 的法向量n =r(x ,y ,z ),则0130222n BC x n BP x y z ⎧⋅=-=⎪⎨⋅=--+=⎪⎩u u u r r u u u r r ,取z =n =r(0,23), ∵PA =u u u r(1122-,,2-), ∴cos 11n PA n PA n PA ⋅==-⋅u u u r r u u u r ru u u r r <,> ∴直线P A 与平面PBC所成角的正弦值为11.【点睛】本题考查面面垂直的证明,考查满足线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.19.中学为研究学生的身体素质与体育锻炼时间的关系,对该校200名高三学生平均每天体育锻炼时间进行调查,如表:(平均每天锻炼的时间单位:分钟)平均每天锻炼的时间/分钟[)0,10[)10,20[)20,30[)30,40[)40,50[)50,60总人数203644504010将学生日均体育锻炼时间在[)40,60的学生评价为“锻炼达标”.(1)请根据上述表格中的统计数据填写下面的22⨯列联表;锻炼不达标锻炼达标合计男女20110合计并通过计算判断,是否能在犯错误的概率不超过0.025的前提下认为“锻炼达标”与性别有关?(2)在“锻炼达标”的学生中,按男女用分层抽样方法抽出10人,进行体育锻炼体会交流,(i)求这10人中,男生、女生各有多少人?(ii)从参加体会交流的10人中,随机选出2人作重点发言,记这2人中女生的人数为X,求X的分布列和数学期望.参考公式:()()()()()22n ad bc k a b c d a c b d -=++++,其中n a b c d =+++.临界值表【答案】(1)见解析;(2)(i )男生有6人,女生有4人. (ii )见解析 【解析】(1)根据题意填写列联表,计算观测值,对照临界值得出结论;(2)(i )由男女生所占的比例直接求解;(ii )分别求得X 不同取值下的概率,列出分布列,根据期望公式计算结果即可. 【详解】 (1)由22⨯列联表中数据,计算得到2K 的观测值为()2200602030901505090110k ⨯-⨯=⨯⨯⨯2006.061 5.02433=≈>. 所以在犯错误的概率不超过0.025的前提下能判断“锻炼达标”与性别有关.(2)(i )“锻炼达标”的学生有50人,男、女生人数比为3:2,故用分层抽样方法从中抽出10人,男生有6人,女生有4人. (ii )X 的可能取值为0,1,2;()26210103C P X C ===,()11642108115C C P X C ===,()242102215C P X C ===,∴X 的分布列为∴X 的数学期望()1824012315155E X =⨯+⨯+⨯=. 【点睛】本题考查了列联表与独立性检验的应用问题,也考查了分层抽样及离散型随机变量的应用问题,是基础题.20.已知O 为坐标原点,椭圆C :22221x y a b +=(0a b >>)的左、右焦点分别为1(,0)F c -,2(,0)F c ,过焦点且垂直于x 轴的直线与椭圆C 相交所得的弦长为3,直线y =椭圆C 相切.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)是否存在直线l :()y k x c +=与椭圆C 相交于E ,D 两点,使得22()1F E DE F E -⋅<u u u u v u u u v u u u u v?若存在,求k 的取值范围;若不存在,请说明理由!【答案】(1)22143x y +=(2)见解析【解析】(1)由题意列出关于a,b 的关系式,解得a ,b 即可.(2)将直线与椭圆联立,将向量数量积的运算用坐标形式表示,利用根与系数之间的关系确定k 的取值范围. 【详解】(1)在22221(0)x y a b a b +=>>中,令x c =,得22221c y a b +=,解得2by a=±. 由垂径长(即过焦点且垂直于实轴的直线与椭圆C 相交所得的弦长)为3,得223b b a a ⎛⎫--= ⎪⎝⎭, 所以223b a=.①因为直线l:y =1C相切,则b ==② 将②代入①,得2a =.故椭圆C 的标准方程为22143x y +=.(2)设点()11,E x y ,()22,D x y .由(1)知1c =,则直线l 的方程为()1y k x =+.联立()221,1,43y k x x y ⎧=+⎪⎨+=⎪⎩得()22224384120k x k x k +++-=,则()()()2222284434121441440k k k k ∆=-+-=+>恒成立.所以2122843k x x k -+=+,212241243k x x k -=+, ()()2121211y y k x x =++ ()212121k x x x x =+++= 2222222412891434343k k k k k k k ⎛⎫---+= ⎪+++⎝⎭. 因为()221F E DE F E -⋅<u u u u v u u u v u u u u v,所以()221F E ED F E +⋅<u u u u v u u u v u u u u v .即221F D F E ⋅<u u u u v u u u u v . 即()()22111,1,x y x y -⋅-= ()12121211x x x x y y -+++<,得2222224128911434343k k k k k k ----++<+++,得2279143k k -<+, 即227943k k -<+, 解得22k -<<;∴直线l 存在,且k 的取值范围是()2,2-. 【点睛】本题综合考查椭圆的性质及其应用、直线与椭圆的位置关系,考查了向量数量积的坐标运算,同时考查了基本运算能力、逻辑推理能力,难度较大. 21.已知函数()x f x e ax =-.(1)若函数()f x 在1(,2)2x ∈上有2个零点,求实数a 的取值范围.(注319e >) (2)设2()()g x f x ax =-,若函数()g x 恰有两个不同的极值点1x ,2x ,证明:12ln(2)2x x a +<. 【答案】(1)(,a e ∈(2)见证明【解析】(1)将a 分离,构造函数()x e h x x=,利用导数研究()h x 的图像,得到a 的范围.(2)由已知()g x ,求其导函数,由x 1,x 2是g (x )的两个不同极值点,可得a >0,结合g ′(x 1)=0,g ′(x 2)=0得到1120x e ax a --=,2220xe ax a --=进一步得到12122x x e e a x x -=-,把问题转化为证明1212212x x x x e e e x x +--<,将其变形后整体换元构造函数()t ϕ.再利用导数证明()t ϕ>0得答案.【详解】(1)1,22x ⎡⎤∈⎢⎥⎣⎦时,由()0f x =得xea x=,令()()()21x xe x e h x h x x x='-=⇒ ∴112x ≤<时,()0h x '<, 12x <≤时,()0h x '>,∴()h x 在1,12⎡⎤⎢⎥⎣⎦上是减函数,在()1,2上是增函数.又12h ⎛⎫= ⎪⎝⎭,()222e h =,()1h e =()344161640444e e e e e e ---==>, ∴()122h h ⎛⎫>⎪⎝⎭,∴h (x )的大致图像:利用()y h x =与y a =的图像知(,2a e e ∈.(2)由已知()2xg x e ax ax =--,∴()2xg x e ax a =--',因为1x ,2x 是函数()g x 的两个不同极值点(不妨设12x x <),易知0a >(若0a ≤,则函数()f x 没有或只有一个极值点,与已知矛盾),且()10g x '=,()20g x '=.所以1120x e ax a --=,2220xe ax a --=.两式相减得12122x x e e a x x -=-,于是要证明()12ln 22x x a +<,即证明1212212x xx x e e e x x +-<-,两边同除以2x e ,即证12122121x x x x e ex x ---<-,即证()12122121x x x x x x e e --->-,即证()121221210x x x x x x ee ----+>,令12x x t -=,0t <.即证不等式210tt te e -+>,当0t <时恒成立. 设()21t t t te e ϕ=-+,则()2212t t tt te t e e ϕ=+⋅⋅-'= 22211]22t t tt t t e e e e ⎡⎫⎛⎫+-=--+⎪⎢ ⎪⎝⎭⎣⎭. 设()212tt h t e =--,则()221111222t th t e e ⎛⎫=-=- ⎪⎝⎭',当0t <时,()0h t '<,()h t 单调递减,所以()()00h t h >=,即2102t t e ⎛⎫-+> ⎪⎝⎭,所以()0t ϕ'<,所以()t ϕ在0t <时是减函数.故()t ϕ在0t =处取得最小值()00ϕ=. 所以()0t ϕ>得证.所以()12ln 22x x a +<. 【点睛】本题考查利用导数研究函数的零点问题,考查了导数在解决不等式证明问题中的应用,考查了数学转化思想方法和函数构造法,属于难题. 22.选修4-4:坐标系与参数方程 已知曲线1C 的参数方程为32cos ,12sin x y αα=+⎧⎨=+⎩(α为参数),P 是曲线1C 上的任一点,过P 作y 轴的垂线,垂足为Q ,线段PQ 的中点的轨迹为2C .(1)求曲线2C 的直角坐标方程;(2)以原点为极点,x 轴正半轴为极轴建立极坐标系.若直线l :1sin cos θθρ-=交曲线2C 于M ,N 两点,求||MN .【答案】(1)见解析(2)||5MN =【解析】(1)曲线C 的参数方程消去参数α求出曲线C 的普通方程,再设P ,Q 中点坐标,表示出P 坐标代入曲线1C 方程,得到2C 的直角坐标方程.(2)联立直线与曲线2C 的方程,求得交点横坐标,利用弦长公式求出弦长|MN |. 【详解】(1)消去参数α得曲线1C 的普通方程为()()22314x y -+-=,设PQ 的中点坐标为(),x y ,则P 点坐标为()2,x y ,则PQ 中点的轨迹方程为()()222314x y -+-=.(2)∵直线的直角坐标方程为1y x -=;∴联立1y x -=,()()222314x y -+-=得x =∴125MN x =-=. 【点睛】本题考查参数方程、普通方程、极坐标方程的互化等基础知识,考查了轨迹问题及弦长公式,考查运算求解能力,是中档题.23.选修4-5:不等式选讲已知函数()2f x x =-(Ⅰ)解不等式()()216f x f x ++≥;(Ⅱ)对()1,0a b a b +=>及x R ∀∈,不等式()()41f x m f x a b---≤+恒成立,求实数m 的取值范围.【答案】(Ⅰ)(][),13,-∞-+∞U .(Ⅱ)135m -≤≤.【解析】【详解】 详解:(Ⅰ)()()133,,21212211,2,233, 2.x x f x f x x x x x x x ⎧-<⎪⎪⎪++=-+-=+≤≤⎨⎪->⎪⎪⎩当12x <时,由336x -≥,解得1x ≤-; 当122x ≤≤时,16x +≥不成立; 当2x >时,由336x -≥,解得3x ≥.所以不等式()6f x ≥的解集为(][),13,-∞-+∞U .(Ⅱ)因为()1,0a b a b +=>, 所以()41414559b a a b a b a b a b ⎛⎫+=++=++≥+= ⎪⎝⎭. 由题意知对x R ∀∈,229x m x -----≤, 即()max 229x m x -----≤, 因为()()22224x m x x m x m -----≤---+=--,所以949m -≤+≤,解得135m -≤≤.【点睛】⑴ 绝对值不等式解法的基本思路是:去掉绝对值号,把它转化为一般的不等式求解,转化的方法一般有:①绝对值定义法;②平方法;③零点区域法.⑵ 不等式的恒成立可用分离变量法.若所给的不等式能通过恒等变形使参数与主元分离于不等式两端,从而问题转化为求主元函数的最值,进而求出参数范围.这种方法本质也是求最值.一般有:① ()()(f x g a a <为参数)恒成立max ()()g a f x ⇔>②()()(f x g a a >为参数)恒成立max ()()g a f x ⇔< .。
2019哈三中二模理科数学题及问题详解
2019年哈尔滨市第三中学第二次高考模拟考试理科数学本试卷分为第I 卷(选择题)和第II 卷(非选择题)两部分,共24题,满分150分,考试时间120分钟。
注意事项1.答题前,考生先将自己的姓名、准考证号码填写清楚;2.选择题必须使用2B 铅笔填涂,非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整,字迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效,在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不得折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
第I 卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1. 集合{||1|2}A x x =-<,1{|39}3x B x =<<,则A B =I A .(1,2)B .(1,2)-C .(1,3)D .(1,3)-2.设S n 是公差为(0)d d ≠的无穷等差数列{}n a 的前n 项和,则“d < 0”是“数列{}n S 有最大项”的A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件3.ΔABC 中,(cos ,sin )m A A =,(cos ,sin )n B B =-,若12m n ⋅=,则角C 为 A .3π B .23π C .6π D .56π 4.已知11ea dx x =⎰,则61()x ax-展开式中的常数项为A .20B .-20C .-15D .155.正三棱柱ABC —A 1B 1C 1的所有棱长都为2,则异面直线AB 1与BC 1所成角的余弦值为A .12B .14C .23D .646.已知函数()sin()3cos()(0,||)2f x x x πωφωφωφ=+-+><,其图象相邻的两条对称轴方程为0x =与2x π=,则A .()f x 的最小正周期为2π,且在(0,)π上为单调递增函数B .()f x 的最小正周期为2π,且在(0,)π上为单调递减函数C .()f x 的最小正周期为π,且在(0,)2π上为单调递增函数 D .()f x 的最小正周期为π,且在(0,)2π上为单调递减函数7.一个几何体的三视图及尺寸如右图所示,则该几何体的 外接球半径为A .12 B .3 C .174D .1748.过抛物线22(0)y px p =>的焦点F 的直线l 与抛物线在第一象限的交点为A ,直线l与抛物线的准线的交点为B ,点A 在抛物线的准线上的摄影为C ,若AF FB =u u u r u u u r,36BA BC ⋅=u u u r u u u r,则抛物线的方程为A .26y x =B .23y x =C .212y x =D .223y x =9.阅读右面的程序框图,输出结果s 的值为A .12 B .316C .116D .1810.在平行四边形ABCD 中,AE EB =u u u r u u u r ,2CF FB =u u ur u u u r ,连接CE 、DF 相交于点M ,若AM AB AD λμ=+u u u u r u u u r u u u r,则实数λ与μ的乘积为A .14B .38C .34D .4311.已知函数32()132x mx m n x y +++=+的两个极值点分别为x 1,x 2,且1(0,1)x ∈,2(1,)x ∈+∞,记分别以m ,n 为横、纵坐标的点(,)P m n 表示的平面区域为D ,若函数log (4)(1)a y x a =+>的图象上存在区域D 内的点,则实数a 的取值范围为A .(1,3]B .(1,3)C . (3,)+∞D .[3,)+∞12.设点P 在曲线xy e =上,点Q 在曲线11(0)y x x=->上,则||PQ 的最小值为 A.(1)2e - B1)e -C.2D第II 卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分。
2019届黑龙江省高三下三模理科数学试卷【含答案及解析】
2019届黑龙江省高三下三模理科数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________题号一二三四五总分得分一、选择题1. 已知集合 , ,则集合()A.___________ B.或___________ C.___________ D.2. 已知复数,则复数所对应的点在()A.第一象限___________ B.第二象限___________ C.第三象限___________ D.第四象限3. 对于函数,命题“ ”是“ 是奇函数”的()A.充分非必要条件___________ B.必要非充分条件C.充分必要条件_________________________ D.既非充分又非必要条件4. 已知是边长为4的等边三角形,则的斜二测直观图的面积为()A._________________ B._________________ C.___________________ D.5. 执行如下图所示的程序框图,则输出的结果是()A.1___________________ B. _________ C.______________________ D.06. 设满足约束条件:,则的最小值为()A.0______________________ B.1 ________________________ C.2 ____________________________ D.37. 已知为等差数列,则下列各式一定成立的是()A._______________________ B.C._________________________ D.8. 已知双曲线的右焦点为,若过点且倾斜角为的直线与双曲线的右支有且仅有一个交点,则此双曲线的离心率的取值范围是()A.___________________ B.________________ C._________________ D.9. 已知一个几何体的三视图如图所示,则这个几何体外接球体积与该几何体的体积比为()A. B.________ C.________D.10. 从抛物线的准线上一点引抛物线的两条切线、,,为切点,若直线的倾斜角为,则点的纵坐标为()A.________________ B. _________ C._________ D.11. 已知函数,把函数的零点从小到大的顺序排成一列,依次为,则与大小关系为()A. B. ________ C.D.无法确定二、填空题12. 哈三中高三一模理科参加数学考试学生共有1016人,分数服从,则估计分数高于105分的人数为______________________________ .三、选择题13. 已知向量,的夹角为,,,则______________________________ .四、填空题14. 已知,,现向集合所在区域内投点,则该点落在集合所在区域内的概率为______________________________ .15. 在中,角的对边分别为,若,边的中线长为1,则的最小值为______________________________ .五、解答题16. 已知各项均不为0的等差数列前项和为,满足,,数列满足, .(1)求数列,的通项公式;(2)设,求数列的前项和 .17. 某网络营销部门为了统计某市网友 2015年11月11日在某网店的网购情况,随机抽查了该市100名网友的网购金额情况,得到如下频率分布直方图.(1)估计直方图中网购金额的中位数;(2)若规定网购金额超过15千元的顾客定义为“网购达人”,网购金额不超过15千元的顾客定义为“非网购达人”;若以该网店的频率估计全市“非网购达人”和“网购达人”的概率,从全市任意选取3人,则3人中“非网购达人”与“网购达人”的人数之差的绝对值为,求的分布列与数学期望.18. 已知四边形为矩形,,,且平面,点为上的点,且平面,点为中点.(1)求证:平面;(2)求与平面所成线面角的正弦值.19. 已知椭圆:,斜率为的动直线与椭圆交于不同的两点、 .(1)设为弦的中点,求动点的轨迹方程;(2)设、为椭圆的左、右焦点,是椭圆在第一象限上一点,满足,求面积的最大值.20. 已知函数,,, .(1)当时,判断的单调性;(2)若恒成立,求实数的取值集合.21. 如图所示,为以为直径的圆的切线,为切点,为圆周上一点,,直线交的延长线于点 .(1)求证:直线是圆的切线;(2)若,,求线段的长.22. 已知曲线的参数方程为(为参数),以原点为极点,轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为 .(1)分别写出的普通方程,的直角坐标方程;(2)已知点,曲线与曲线的交点为,求 .23. 已知函数 .(1)求函数的最小值;(2)当时,求证: .参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】。
2019-2020年黑龙江省哈尔滨市二模:哈尔滨市2019届高三第二次模拟考试理科数学试题(有答案)
青霄有路终须到,金榜无名誓不还!
2019-2020年高考备考
黑龙江省哈尔滨市2019届第二次模拟考试
理科数学
一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知单元素集合(){}2|210A x x a x =-++=,则a =( )
A . 0
B . -4
C . -4或1
D .-4或0
2. 某天的值日工作由4名同学负责,且其中1人负责清理讲台,另1人负责扫地,其余2人负责拖地,则不同的分工共有( )
A .6种
B . 12种
C .18种
D .24种
3. 已知函数()sin f x x x =+,若()()()23,2,l o g 6a f b f c f ===,则,,a b c 的大小关系是( )
A .a b c <<
B .c b a <<
C .b a c <<
D .b c a <<
4.在平行四边形ABCD 中,点E 为CD 的中点,BE 与AC 的交点为F ,设
,AB a AD b == ,则向量BF = ( )
A .1233a b +
B .1233a b -- C. 1233a b -+ D .1233
a b -
5.已知抛物线2:C y x =,过点(),0P a 的直线与C 相交于,A B 两点,O 为坐标
原点,若0OA OB < ,则a 的取值范围是 ( ) A .(),0-∞ B .()0,1 C. ()1,+∞ D .{}1
6.《九章算术》中对一些特殊的几何体有特定的称谓,例如:将底面为直。
黑龙江省哈三中高三下学期第二次高考模拟数学(理)试题及答案
黑龙江省哈三中20xx届高三下学期第二次高考模拟数学(理)考试说明:本试卷分第I卷(选择题)和第1I卷(非选择题)两部分,满分1 50分,考试时间120分钟.(1)答题前,考生先将自己的姓名、准考证弓‘码填。
与清楚;(2)选择题必须使用2B铅笔填涂,非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整,字迹清楚;(3)请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效,在草稿纸、试题卷上答题无效;(4)保持卡面清洁,小得折替、小要弄破、弄皱,不准使用涂改液、刮纸刀.第I卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题EI要求的.)1.设集合A={1,2,3},B={0,1,2,4},定义集合,则集合S中元素的个数是A.5 B.6 C.8 D.92.设i为虚数单位,则复数31izi=-在复平面内对应的点位于A.第一象限B.第_象限C.第三象限D.第四象限3.幂函数1()(2,),()278f x f x x--=的图象经过点则满足的的值是A.12B.13C.14D.154.如果执行右面的程序框图,那么输出的S为A.96 B.768C.1 536 D.7685.已知a ,b ,l ,表示三条不同的直线,,,αβγ表示三个不同的平面,有下列四个命题:A .①②B .①④C .②③D .③④6.已知二项等差数列{}n a ,若存在常数t ,使得2n n a ta =对一切*n N ∈成立,则t 的集合是A .{1}B .{1,2}C .{2}D .{1,22}7.已知二项式(2nx-展开式中的第5项为常数项,则展开式中各项的二项式系数之和为 A .1 B .32 C .64 D .1288.一只蚂蚁从正方体ABCD —A 1B 2C 1D 1的顶点A 处出发,经正方体的表面,按最短路线爬行到顶点C 。
处,则下列图形中可以表示正方体及蚂蚁最短爬行路线的正视图的是A.(1)(2)B.(1)(3)C.(2)(4)D.(3)(4)9.在△ABC中,内角A,B,C的对边长分别为a,b,c,且22tan2,3,tanAa c bC-==则b等于A.3 B.4 C.6 D.710.11.对实数a和b,定义运算“*”:a*b=,1,1a a bb a b-≤⎧⎨->⎩,设函数f(x)=(21x+)*(x+2),若函数y=f(x)一c的图像与x轴恰有两个公共点,则实数C的取值范围是A.(2,4](5,+∞)B.(1,2] (4,5]C.(一∞,1)(4,5] D.[1,2]第II卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分,将答案填在答题卡相应的位置上.)13.设x ,y 满足约束条件11,(2,)(1,1),//,2210x y x a y x m b a b x y ≥⎧⎪⎪≥=-=-⎨⎪+≤⎪⎩向量且则m 的最小值为 .14.有4张分别标有数字1,2,3,4的红色卡片和4张分别标有数字1,2,3,的蓝色卡片,从这8张卡片中取出4张卡片排成一行,则这一行的4张卡片所标数字之和等于10的概率为.三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.) 17.(本小题满分12分) 已知(I )求f (x )的最大值及取到最大值时相应的x 的集合;-(II )若函数()[0,]2y f x m π==-在区间上恰好有两个零点,求实数m 的取值范围.18.(本小题满分12分) 如图,四边形ABCD 是边长为2的正方形,△ABE 为等腰三角形,AE=BE ,平面ABCD ⊥平面ABE ,动点F 在校CE 上,无论点F 运动到何处时,总有BF ⊥AE . (I )试判断平面ADE 与平面BCE 是否垂直,并证明你的结论; (II )求二面角D —CE —A 的余弦值的大小。
2019哈三中二模理科数学题及问题详解
2019年哈尔滨市第三中学第二次高考模拟考试理科数学本试卷分为第I 卷(选择题)和第II 卷(非选择题)两部分,共24题,满分150分,考试时间120分钟。
注意事项1.答题前,考生先将自己的姓名、准考证号码填写清楚;2.选择题必须使用2B 铅笔填涂,非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整,字迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效,在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不得折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
第I 卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1. 集合{||1|2}A x x =-<,1{|39}3x B x =<<,则A B = A .(1,2)B .(1,2)-C .(1,3)D .(1,3)-2.设S n 是公差为(0)d d ≠的无穷等差数列{}n a 的前n 项和,则“d < 0”是“数列{}n S 有最大项”的A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件3.ΔABC 中,(cos ,sin )m A A =,(cos ,sin )n B B =-,若12m n ⋅=,则角C 为 A .3π B .23π C .6π D .56π 4.已知11ea dx x =⎰,则61()x ax-展开式中的常数项为 A .20B .-20C .-15D .155.正三棱柱ABC —A 1B 1C 1的所有棱长都为2,则异面直线AB 1与BC 1所成角的余弦值为A .12B .14C .23D6.已知函数()sin())(0,||)2f x x x πωφωφωφ=++><,其图象相邻的两条对称轴方程为0x =与2x π=,则A .()f x 的最小正周期为2π,且在(0,)π上为单调递增函数B .()f x 的最小正周期为2π,且在(0,)π上为单调递减函数C .()f x 的最小正周期为π,且在(0,)2π上为单调递增函数 D .()f x 的最小正周期为π,且在(0,)2π上为单调递减函数7.一个几何体的三视图及尺寸如右图所示,则该几何体的 外接球半径为A .12 BC .174D .48.过抛物线22(0)y px p =>的焦点F 的直线l 与抛物线在第一象限的交点为A ,直线l 与抛物线的准线的交点为B ,点A 在抛物线的准线上的摄影为C ,若AF FB =,36BA BC ⋅=,则抛物线的方程为A .26y x =B .23y x =C .212y x =D .2y =9.阅读右面的程序框图,输出结果s 的值为A .12B .16C .116D .1810.在平行四边形ABCD 中,AE EB =,2CF FB =, 连接CE 、DF 相交于点M ,若AM AB AD λμ=+,则实数 λ与μ的乘积为A .14B .38C .34D .4311.已知函数32()132x mx m n x y +++=+的两个极值点分别为x 1,x 2,且1(0,1)x ∈,2(1,)x ∈+∞,记分别以m ,n 为横、纵坐标的点(,)P m n 表示的平面区域为D ,若函数log (4)(1)a y x a =+>的图象上存在区域D 内的点,则实数a 的取值范围为A .(1,3]B .(1,3)C . (3,)+∞D .[3,)+∞12.设点P 在曲线xy e =上,点Q 在曲线11(0)y x x=->上,则||PQ 的最小值为 A.1)2e - B1)e -C.2D第II 卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分。
东北三省三校2019届高三第二次模拟数学(理)试题(解析版)
设 , ,则 , ,
.
又 到直线 的距离 ,
则 的面积 ,
当且仅当 ,即 时, 的面积取得最大值.
此时, .
故选A
【点睛】本题主要考查椭圆中的弦长问题,通常需要联立直线与椭圆方程,结合韦达定理、以及弦长公式等求解,属于常考题型.
二、填空题(本题共4小题,每小题5分,共20分)
13.函数 ,则 ______.
设平面 的法向量为 ,
则
∴取平面 的一个法向量 .
设平面 的法向量为 ,
则
∴取平面 的一个法向量 .
∴ ,得 或
∵ ,∴
∴存在点 ,此时 ,使二面角 的大小为45°.
【点睛】本题主要考查线面平行、以及已知二面角求其它量的问题,通常需要熟记线面平行的判定定理来证明平行;另外,向量法求二面角是最实用的一种做法,属于常考题型.
设 ,求出两平面的法向量,根据法向量夹角余弦值以及二面角的大小列出等式,即可求出 ,进而可得出结果.
【详解】解:(Ⅰ)证明:连接 ,交 于点 ,则 为 中点,
连接 ,又 是棱 的中点,
平面 , 平面 ,
平面 .
(Ⅱ)解:由已知, ,则 , , 两两垂直
以 为原点,如图建立空间直角坐标系
则 ,
设
则 , ,
(Ⅰ)求证: 平面 ;
(Ⅱ)若 , ,在棱 上是否存在点 ,使二面角 的大小为 ,若存在,求出 的值;若不存在,说明理由.
【答案】(Ⅰ)见解析(Ⅱ)
【解析】
【分析】
(Ⅰ)先连接 ,交 于点 ,再由线面平行的判定定理,即可证明 平面 ;
(Ⅱ)先由题意得 , , 两两垂直,以 为原点,如图建立空间直角坐标系
【详解】解:(Ⅰ)不妨设
黑龙江省哈尔滨市第三中学2019届高三第二次模拟数学(理)试题(
【题文】动点(,)M x y6=.(1)求M 点的轨迹并给出标准方程;(2)已知D ,直线l:y kx =-交M 点的轨迹于A ,B 两点,设AD DB λ=且12λ<<,求k 的取值范围.【答案】(1)2219x y +=(2)k >k <【解析】【分析】(1)由方程知轨迹为椭圆,进而得,a c 从而可得解;(2)由AD DB λ=得12y y λ=-,由直线与椭圆联立,可结合韦达定理整理得2321912k λλ+=+-,设()12f λλλ=+-,求其范围即可得解. 【详解】(1)解:M点的轨迹是以(),()-为焦点,长轴长为6的椭圆,其标准方程为2219x y +=. (2)解:设()11,A x y ,()22,B x y ,由AD DB λ=得12y y λ=-……①由12λ<<得0k ≠,由y kx =-得y x k+=代入2219x y +=整理()222190k y k ++-=……②显然②的判别式∆>0恒成立,由根与系数的关系得12219y y k+=-+……③ 212219k y y k=-+……④由①③得1119y k λ=-+2119y k λ=-+代入④整理得()22323219112k λλλλ+==-+-. 设()12f λλλ=+-,则由对勾函数性质知()f λ在()1,2上为增函数,故得()102f λ<<. 所以21964k +>,即k的取值范围是k >k <【点睛】本题主要考查了椭圆的定义及直线与椭圆的位置关系,考查了“设而不求”的思想,着重考查了学生的计算能力,属于中档题.【标题】黑龙江省哈尔滨市第三中学2019届高三第二次模拟数学(理)试题【结束】。
2019届哈尔滨市三中高三数学(理)模拟试题
1 b
1 c
9;
(2) 已知a,b,c R ,且abc 1, 证明
a
b
c 111 a b c.
-6-
题目要求的.
1.如果复数 1 ai ( a R , i 为虚数单位)的实部与虚部相等,则 a 的值为 2i
A.1
B.-1
C.3
D.-3
2.若 A 0,1, 2, B x | x 2a , a A ,则 A B
A.{0,1, 2}
B. {0,1, 2,3}
C. {0,1, 2,4}
3
A. y 2sin(2x ) 3
B. y 2sin(2x ) 6
-1-
C. y 2sin( x ) 23
D. y 2sin(2x ) 3
8. 我国古代名著《庄子•天下篇》中有一句名言“一尺之棰, 日取其半,万世不 竭”,其意思为:一尺的木棍,每天 截 取一半,永远都截 不完.现将该木棍依此规律截取,如 图
三、解答题:共 70 分,解答应写出文字说明、证明过程或演算步骤.第 17~21 题为必考题,每个试题考 生都必须作答.第 22、23 题为选考题,考生根据要求作答.
(一)必考题:(共 60 分) 17.(12 分)
设数列 {an } 满足
an1
1 3
a
n
2
,
a1
4
(1) 求证an 3 是等比数列,并求 an ;
19.(12 分) 如图,PA⊥矩形 ABCD 所在平面,PA=AD,M、N 分别 是 AB、PC 的中点. (1)求证:平面 ANB⊥平面 PCD;
(2)若直线 PB 与平面 PCD 所成角的正弦值为 10 , 10
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝密★启用前
黑龙江省哈尔滨市第三中学
2019届高三年级下学期第二次高考模拟考试
数学(理)试题
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.作答时,务必将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一
项是符合题目要求的.
1.如果复数
i ai +-21(R a ∈,i 为虚数单位)的实部与虚部相等,则a 的值为 A .1
B .-1
C .3
D .-3
2.若{}{}0,1,2,|2,a A B x x a A ===∈,则A
B = A .{0,1,2}
B. {0,1,23},
C. {0,1,24},
D. {1,24},
3. 向量(2,),(1,3)==-a t b ,若b a ,的夹角为钝角,则t 的范围是
A .t<32
B .t>32
C .t<3
2且t ≠6- D .t<6- 4.双曲线14
22
=-y x 的顶点到渐近线的距离等于 A .552 B .54 C .52 D .5
54 5.有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有
A .60种
B .70种
C .75种
D .150种
6.已知某个几何体的三视图如右图所示,则该几何体的体积是
A .3560
B .200
C .
3580 D .240
7. 下列函数中,最小正周期为π,且图象关于直线x =
3π对称的函数是 A .2sin(2)3=+
y x π B .2sin(2)6=-y x π C .2sin()23=+
x y π D .2sin(2)3=-y x π
8. 我国古代名著《庄子•天下篇》中有一句名言“一尺之棰,
日取其半,万世不竭”,其意思为:一尺的木棍,每天截
取一半,永远都截不完.现将该木棍依此规律截取,如图
所示的程序框图的功能就是计算截取20天后所剩木棍的
长度(单位:尺),则①②③处可分别填入的是
A .i i ,i S S ,i 2120=-
=< B .i i ,i S S ,i 2120=-=≤ C .1220+==<i i ,S S ,i D .12
20+==
≤i i ,S S ,i 9.已知α是第二象限角,且sin(53)-
=+απ,则tan2α的值为 A .
54 B .723- C .724- D .9
24- 10.P 为圆C 1:229x y +=上任意一点,Q 为圆C 2:2225x y +=上任意一点,PQ 中点组成的
区域为M,在C 2内部任取一点,则该点落在区域M 上的概率为
A .
2513 B .53 C .π2512 D .π53
11.已知抛物线x 2=4y 焦点为F,经过F 的直线交抛物线于A(x 1,y 1),B(x 2,y 2),点A,B 在 抛物线准线上的射影分别为A 1,B 1,以下四个结论:①x 1x 2=4-, ②AB =y 1+y 2+1 , ③11FB A ∠=2
π,④AB 的中点到抛物线的准线的距离的最小值为2 其中正确的个数为
A . 1 B. 2 C. 3 D. 4。