连铸

合集下载

连铸生产工艺流程

连铸生产工艺流程

连铸生产工艺流程
《连铸生产工艺流程》
连铸是一种现代化的钢铁生产工艺,其工艺流程十分复杂,包括连铸机的操作、自动控制系统的运行以及连铸坯的后续加工等环节。

以下是关于连铸生产工艺流程的简要介绍:
1.原料准备:在连铸生产过程中,首先需要准备好原料,包括
炼钢炉中的液钢和连铸坯的结晶器等。

这些原料需要在生产开始前得到准备,并确保其质量符合要求。

2.倾炉和连铸:原料准备完成后,液钢会从炼钢炉中倾注到连
铸机的铸模中,经过一系列的操作,最终形成一根长长的连铸坯。

3.结晶器冷却:连铸坯在结晶器中经过一段时间的冷却,使其
表面开始凝固,形成外壳。

同时,连铸坯的内部还会继续凝固,使得整个坯料逐渐凝固成形。

4.切割和打包:当连铸坯完全凝固后,需要进行切割和打包。

这个环节涉及到切割设备和包装机器的操作,以确保最终的连铸坯符合相关的标准和规定。

5.后续加工:最后,连铸坯将会进行后续的加工,如轧制、拉
拔等,以得到符合客户要求的成品钢材。

总的来说,连铸生产工艺流程包括了原料准备、倾炉和连铸、
结晶器冷却、切割和打包以及后续加工等几个主要环节。

通过这些操作,连铸生产工艺可以实现高效、自动化的生产,为钢铁行业的发展做出了重要贡献。

使用连铸的工艺流程

使用连铸的工艺流程

使用连铸的工艺流程1. 简介连铸是一种常用的金属加工工艺,用于将熔化的金属直接连续铸造成坯料,广泛应用于钢铁、铝合金等行业。

本文将介绍使用连铸的工艺流程。

2. 工艺流程使用连铸的工艺流程主要包括以下几个步骤:2.1. 准备工作在进行连铸之前,需要进行一系列准备工作,包括准备原材料、准备设备、准备工作环境等。

确保原材料的质量符合要求,设备正常运行,工作环境清洁和安全。

2.2. 加热和熔化将原材料放入加热炉中进行加热,使其达到熔化温度。

加热温度和时间要根据具体材料而定,确保材料完全熔化且温度均匀。

2.3. 连铸过程在原材料完全熔化后,将熔融金属倒入连铸机的浇铸池中。

连铸机通过一系列的机械和液压装置,将熔融金属连续铸造成坯料。

在连铸过程中,需要注意保持合适的浇注速度和冷却速度,以获得均匀的结晶组织和良好的性能。

2.4. 冷却和固化连铸后的坯料经过冷却和固化过程,使内部结构逐渐凝固并形成所需的物理性能。

冷却的过程中可以采用冷却水或其他冷却介质进行辅助。

冷却时间的控制对坯料的质量具有重要影响。

2.5. 切割和整形冷却固化后的坯料需要进行切割和整形,以得到所需尺寸和形状的产品。

切割可以使用切割机械或其他工具进行,整形则可以通过机械加工或其他方法来完成。

2.6. 后处理切割和整形后的产品可能需要进行进一步的后处理,包括清洁、调质、表面处理等。

根据产品的具体要求,选择合适的后处理方法,以提高产品的质量和性能。

3. 结论使用连铸的工艺流程可以有效地生产出符合要求的金属坯料。

准备工作、加热和熔化、连铸过程、冷却和固化、切割和整形以及后处理是工艺流程的主要步骤。

通过合理控制每个步骤的参数和条件,可以获得高质量的金属产品。

以上是使用连铸的工艺流程的简要介绍,希望对您有所帮助。

采用连铸工艺可以提高生产效率和产品质量,是现代金属加工领域的重要工艺之一。

祝您工作顺利!。

连铸的原理

连铸的原理

连铸的原理
连铸是一种先进的铸造工艺,它通过在同一设备上连续进行浇铸和凝固,实现了铸坯的一次成型,大大提高了生产效率和产品质量。

连铸的原理主要包括连续浇铸、连续凝固和连续切割三个方面。

首先,连续浇铸是指在连铸设备上通过连续浇注熔融金属,使金属液不间断地流入结晶器中。

这样可以避免浇注过程中的温度变化和氧化,保证了金属液的纯净度和温度稳定性。

同时,连续浇铸还可以减少浇注过程中的气体夹杂和金属液的氧化,提高了产品的内部质量。

其次,连续凝固是指在结晶器中,熔融金属通过连续往复的凝固过程,逐渐形成固态铸坯。

在这个过程中,结晶器内部的冷却系统不断地将热量带走,使金属液逐渐凝固成固态金属。

通过控制结晶器的温度和冷却速度,可以实现对铸坯组织和性能的精确控制,从而获得更高质量的产品。

最后,连续切割是指在连铸设备的出口处,通过连续的切割装置将凝固成型的铸坯切割成所需长度的产品。

这样可以避免传统浇铸中的冷却等待时间,提高了生产效率。

同时,连续切割还可以减少铸坯表面的氧化和变形,保证了产品的表面质量和尺寸精度。

总的来说,连铸的原理是通过连续浇铸、连续凝固和连续切割,实现了铸坯的一次成型,大大提高了生产效率和产品质量。

这种先进的铸造工艺在现代工业生产中得到了广泛应用,为各种金属制品的生产提供了可靠的技术保障。

连铸絮流的原因

连铸絮流的原因

连铸絮流的原因
连铸絮流的原因可以归结为以下几个方面:
1. 液态金属流动不稳定:在连铸过程中,液态金属在急速凝固的条件下流动,容易受到外界因素的干扰,如震动、气泡等,导致流动不稳定,产生絮状流动。

2. 浇注速度过快:如果浇注速度过快,液态金属在流动过程中容易形成涡流或涡旋,从而形成絮状流动。

3. 浇注过程中的气体和杂质:连铸过程中,液态金属中可能存在气体和杂质,这些气体和杂质在流动过程中容易聚集在一起,形成絮状流动。

4. 浇注温度不均匀:连铸过程中,由于温度分布不均匀,液态金属在流动过程中可能出现冷凝现象,导致絮状流动的产生。

5. 浇注模具设计不合理:连铸模具的设计不合理,如出口形状不当、流道设计不合理等,会导致液态金属流动不稳定,形成絮状流动。

连铸絮流的原因主要包括液态金属流动不稳定、浇注速度过快、存在气体和杂质、浇注温度不均匀以及浇注模具设计不合理等因素。

连铸的名词解释

连铸的名词解释

连铸的名词解释连铸是一种金属加工技术,它是工业生产中重要的工艺过程之一。

连铸技术通过将金属熔化后直接注入连续铸模中,让金属在连续的铸造过程中得以凝固和成形。

连铸技术在现代工业的发展中起到了至关重要的作用,为各种金属制品的生产提供了高效、高质、低成本的解决方案。

从字面上看,连铸可以被解释为连续铸造的缩写。

它以其高效、迅速的生产速度而闻名。

相比传统的离散铸造方法,连铸技术能够使金属的连续生产变得更加容易。

在传统的离散铸造过程中,金属液体将分次铸入铸模中,每次只能生产一块金属基板。

而使用连铸技术,可以通过一次注入连续铸模,并通过恒定速度的运动,从而实现金属连续铸造。

这不仅提高了生产效率,降低了生产成本,还能够大幅度提高制品的质量。

连铸技术的基本过程主要包括金属熔炼、金属过渡、铸模注入、凝固和成品冷却等阶段。

首先,金属将被加热至其熔点以上,从而使其成为熔化状态。

然后,熔融金属通过特定的管道系统被输送到连续铸模的顶部,开始铸造过程。

通过适当的设计和控制,金属在连续铸模中得到均匀分布,并逐渐冷却凝固。

最后,连铸产生的铸坯将经过进一步的加工和处理,成为所需的金属制品。

连铸技术的优势显而易见。

首先,连铸过程中的金属冷却速度相对较快,使得金属晶粒尺寸较细,从而提高了制品的力学性能和表面质量。

其次,连铸技术能够生产出长度可控制的金属基板,进一步提高了产品的生产效率和材料利用率。

此外,由于连铸过程中的金属熔化和凝固连续进行,使得金属流动更加稳定,减少了产生气孔和夹杂物的可能性,进一步提高了制品的质量。

然而,连铸技术也存在一些挑战和限制。

首先,连铸过程中要求金属的熔点较低,使得部分高熔点金属无法直接应用于连铸技术中。

其次,在连铸过程中对铸模的要求相对较高,需要具备良好的耐热性和耐腐蚀性。

此外,连铸过程中涉及到的冷却和凝固过程需要进行严格的温度控制和冷却处理,以保证金属制品的质量。

尽管如此,连铸技术在如今的工业生产中扮演了重要的角色。

连铸工艺流程

连铸工艺流程

连铸工艺流程连铸是一种常用的铸造工艺,适用于生产长条状或板状金属材料。

它是通过将熔化的金属直接倒入连续流动的水冷铜板中,使其冷却并形成连续的长条状或板状产品。

连铸工艺具有高效率、低能耗、高品质等优点,广泛应用于钢铁、铝合金等行业。

连铸工艺流程主要包括准备工作、连续浇铸、冷却和切割四个阶段。

首先是准备工作。

这个阶段包括准备熔炉、铜板、铸模、流动水和其他所需设备和材料。

熔炉中加入合适的金属原料,加热使其熔化。

同时,准备好冷却水,并确保其具有足够的流动性和温度适宜。

铜板和铸模是制造连铸机的主要部件,需要进行充分的清洗和检查,以确保表面平整和无缺陷。

接下来是连续浇铸。

将熔化的金属倒入连铸机的铜板中,通过喷头将金属喷向铸模,并使其连续地流动。

连铸机的喷头是一个关键部件,可以调整金属流动的速度和方向,以保证产品的质量。

同时,需要控制好浇注速度和温度,以避免金属过热或过冷,影响产品的性能。

然后是冷却。

在连铸过程中,金属材料与铜板接触,通过快速传热,使金属迅速冷却并凝固。

冷却水通过铜板流过,吸收金属的热量,并保持适宜的温度。

冷却水的流量和温度需要根据不同金属材料进行调整,以确保产品的结晶组织和力学性能。

最后是切割。

冷却后的连铸坯可以根据需要进行切割成适当的长度,以便进一步加工。

切割可以通过割断或切削进行。

割断是指使用切割设备将连铸坯切成所需长度,并去除不良部分。

切削是指使用机械切割工具将连铸坯切割成规定的尺寸和形状。

总之,连铸工艺是一种高效、高品质的铸造工艺,适用于生产长条状或板状金属材料。

其主要流程包括准备工作、连续浇铸、冷却和切割。

通过合理调整浇注速度、温度和冷却设备,可以制造出具有良好结晶组织和优异性能的产品。

连铸工艺的应用范围广泛,为钢铁、铝合金等行业的发展提供了重要的支撑。

炼钢厂连铸工艺流程

炼钢厂连铸工艺流程

炼钢厂连铸工艺流程1.钢水准备:从炼钢炉中输出得到熔化的钢水,然后通过脱氧、温度调节和脱气等工艺处理,得到适合连铸工艺的钢水。

2.连铸结晶器:将处理后的钢水通过倾转、倾倒和挤压等技术,直接浇注到连铸机结晶器中。

结晶器内部有一组多孔结晶器衬套,通过冷却水的循环,将钢水快速冷却并结晶。

3.凝固:钢水在结晶器中快速冷却,开始凝固成为连续铸坯。

凝固过程中,还会通过控制结晶器内的冷却水温度和流量,来调节钢坯的凝固速度和结晶器壁的温度。

4.伸展:连续铸坯凝固后,通过拉伸机构将钢坯从结晶器中拉出,使其变长,同时也能控制钢坯的截面形状。

这个过程中,还会进行坯底冷却,以控制坯底凝固的厚度。

5.切割:钢坯经过拉伸后,通过切割机构将其切断成合适的长度,以供后续工序使用。

6.冷却:切割成合适长度的连续铸坯通过冷却水箱,进行冷却。

冷却的目的是使钢坯的内部和外部温度均匀降低,以便后续的轧制工艺。

7.钢坯调整:冷却后的连续铸坯,根据需要可能需要进行尺寸调整。

这个过程中通常使用钢坯矫直机、切割坯边机等设备,对钢坯进行校直和修边,使其符合轧制工艺要求。

8.轧制:经过调整后的钢坯将被送入炼钢厂的轧机进行轧制。

根据需要,钢坯可能还会经过多道次的轧制和调整。

9.检测:轧制后的产品将进入质检环节,通过各种非破坏性和破坏性检测手段,对产品进行检测,以确保其质量符合要求。

10.成品:经过检测合格后,轧制后的产品成品将根据需求进行打包、标记和存储,以便销售和运输。

综上所述,炼钢厂连铸工艺流程是将熔化的钢水通过连续铸造技术直接浇注到连铸机结晶器中,经过凝固、伸展、切割、冷却、调整、轧制、检测等一系列工艺处理,最终得到质检合格的连续铸坯。

这种工艺流程具有工艺连续、设备高效、产品质量稳定等优点,已被广泛应用于炼钢厂的生产中。

连铸生产工艺

连铸生产工艺

连铸生产工艺
连铸是指采用连续浇铸工艺将熔融金属连续浇铸成长条状的铸件,常用于生产铜、铝等金属材料。

连铸工艺相比传统离散铸造工艺具有高效、节能、高质量等优势,被广泛应用于现代金属材料的生产。

首先,连铸工艺的核心是焊接,由于金属的熔点通常很高,因此需要在高温环境下进行。

在连铸过程中,金属先经过一组预热炉,使其温度达到熔点以上,并保持恒定。

然后,熔融金属经过调漏口进入连铸机的浇注坑,通过直径大小不同的浇口,将金属流注到已经加热和涂有抗粘涂料的铸模中。

接下来,金属在连铸机中由于连铸速度以及冷却系统的作用,逐渐冷却凝固,在冷却过程中逐渐形成金属栅格状的微晶结构。

冷却速度的控制是连铸工艺中至关重要的一环,过快的冷却速度会导致过早的凝固,产生气孔和其他缺陷,而过慢的冷却速度则会影响生产效率。

因此,连铸工艺中通常通过调节冷却水的流量和温度以及调整浇注速度来控制冷却速度。

最后,凝固后的铸坯经过拉伸机进行拉拔,使其变为所需要的尺寸和形状。

拉拔是通过对铸坯施加轴向拉力来实现的,拉拔过程中金属的晶粒结构逐渐细化,从而提高了材料的强度和韧性。

拉拔机通常由一组连续的牵引辊和摩擦刹车组成,牵引辊以恒定的速度运转,将铸坯拉伸成所需尺寸。

在拉拔过程中,还可以通过在线热处理和表面处理,对材料进行进一步的改性和提高其耐腐蚀性。

总之,连铸生产工艺是一种高效、节能的金属材料生产工艺。

通过连续浇注和拉拔,可以大大提高生产效率,减少人工操作和能源消耗,同时还能提高材料质量和性能。

随着技术的不断进步,连铸工艺将继续发展,为金属材料的生产提供更好的解决方案。

连铸连轧工艺

连铸连轧工艺

连铸连轧工艺要说这连铸连轧工艺啊,那可真是现代工业生产中的一项神奇技术!我还记得有一次去一家钢铁厂参观,那场面,真是让我大开眼界。

刚走进厂房,就能感受到一股热浪扑面而来,机器的轰鸣声震耳欲聋。

我看到巨大的熔炉里,钢水红彤彤的,像翻滚的岩浆一样,特别壮观。

咱们先来说说连铸这部分。

连铸啊,简单来说就是把液态的钢水直接变成固态的铸坯。

这可不是一件容易的事儿!得先把钢水倒进一个特制的结晶器里,这个结晶器就像一个魔法盒子,能让钢水迅速冷却凝固,形成一个有一定形状和尺寸的铸坯。

在这个过程中,温度的控制那是相当关键。

如果温度太高,铸坯可能就会出现裂纹;要是温度太低,又会影响铸坯的质量。

所以,那些技术人员就像魔法师一样,时刻盯着各种仪表和数据,精心调整着温度和其他参数,确保铸坯完美成型。

再来说说连轧。

连轧就是把刚刚铸好的铸坯经过一系列的轧机,不断地挤压和拉伸,让它变成我们需要的各种钢材产品。

这就好比是给铸坯做“瘦身运动”,而且还是连续不断的那种。

轧机的轧辊就像巨大的擀面杖,把铸坯一点一点地擀薄、拉长。

每经过一道轧机,铸坯的形状和尺寸都会发生变化,直到最后变成符合要求的钢材。

连铸连轧工艺的好处可太多啦!首先,它大大提高了生产效率。

以前,铸和轧是分开进行的,中间要经过很多繁琐的环节,费时又费力。

现在呢,一气呵成,从钢水到钢材,速度快得惊人。

其次,它还能节省能源和原材料。

因为整个过程是连续的,减少了中间的停顿和运输,也就降低了能源的消耗和材料的损失。

而且啊,这种工艺生产出来的钢材质量也更稳定,性能更优越。

在实际应用中,连铸连轧工艺已经广泛用于生产各种类型的钢材,比如建筑用的螺纹钢、汽车制造用的板材等等。

可以说,我们生活中的很多东西都离不开它。

不过,这连铸连轧工艺也不是没有挑战的。

比如说,设备的维护就是个大问题。

那些轧机和结晶器整天高强度工作,很容易出现故障。

一旦出了问题,就得赶紧抢修,否则会影响整个生产进度。

还有就是对操作人员的技术要求很高,他们得时刻保持警惕,应对各种突发情况。

连铸原理与工艺

连铸原理与工艺

连铸原理与工艺连铸是一种现代化的铸造技术,它是将熔融的金属直接浇注成具有一定形状和尺寸的坯料,而不需要经过传统的铸造工艺中所必须的凝固、冷却、加工等多个环节。

它具有生产效率高、质量稳定、节约能源和原材料等优点,被广泛应用于钢铁、铝合金等金属材料的生产中。

连铸工艺主要分为三个步骤:液态金属进入结晶器、坯料凝固成型和坯料切割成材。

其中,液态金属进入结晶器是整个连铸过程中最关键的一步。

液态金属进入结晶器在连铸机上,液态金属首先通过浇注口进入倾斜的导流槽,经过导流槽内壁的引导,使其流向结晶器。

然后,在结晶器内部形成一个由外向内逐渐凝固的壳层。

这个壳层可以防止外界气体和杂质污染熔融金属,并且可以保证坯料在凝固过程中保持一定的形状和尺寸。

同时,壳层也可以为坯料提供一个固定的支撑,使得坯料在凝固过程中不会变形或产生裂纹。

坯料凝固成型当液态金属在结晶器内部形成一定厚度的壳层之后,就开始进入凝固阶段。

在这个阶段,液态金属逐渐变成了固态金属,并且从外向内逐渐缩小。

同时,由于液态金属的收缩率和晶粒长大率不同,所以在凝固过程中会形成一定数量的热裂纹和气孔。

为了解决这个问题,连铸工艺中采用了多种措施来控制坯料的凝固过程。

例如,在结晶器内部设置冷却水管道来降低壳层温度、使用高效保护气体来防止氧化等。

此外,在连铸工艺中还可以通过调整浇注速度、结晶器倾角、结晶器长度等参数来控制坯料的凝固速度和形状。

坯料切割成材当坯料完全凝固之后,它会被自动切割成一定长度的材料。

在连铸工艺中,切割方式主要分为两种:火焰切割和机械切割。

火焰切割是利用氧炔火焰将坯料加热到一定温度后进行切割,适用于较大尺寸的坯料。

机械切割则是使用钢丝、钢锯等工具将坯料进行切割,适用于较小尺寸的坯料。

总之,连铸工艺是一种高效、节能、环保的现代化铸造技术。

它通过控制液态金属的流动和凝固过程,使得金属材料可以以一种更加稳定和高效的方式生产出来。

同时,在连铸工艺中还可以通过调整参数、优化设备等手段来不断提高产品质量和生产效率,为现代制造业的发展做出了重要贡献。

连铸连轧知识点

连铸连轧知识点

连铸连轧知识点一、连铸工艺的发展连铸是钢铁生产中重要的工艺环节,其发展历程与钢铁工业的整体发展密切相关。

自20世纪50年代初连铸技术诞生以来,它一直是提高钢铁生产效率和降低成本的重要手段。

随着科技的进步和环保要求的提高,连铸工艺也在不断发展和改进。

二、连铸工艺的基本原理连铸是一种连续铸造的工艺,其基本原理是将熔融的钢水通过结晶器冷却并形成凝固的铸坯,然后将铸坯连续地从结晶器中拉出,通过轧机进行轧制,最终得到所需的钢材。

三、连铸工艺的特点1、高效性:连铸工艺可以实现连续生产,提高生产效率,降低能耗。

2、节能性:相比传统的模铸工艺,连铸工艺可以节约能源,降低生产成本。

3、灵活性:连铸工艺可以根据市场需求生产不同规格、不同种类的钢材。

4、环保性:连铸工艺可以减少废弃物的产生,降低环境污染。

四、连铸工艺的应用范围连铸工艺广泛应用于各种钢铁产品的生产,包括板材、带材、型材、管材等。

随着技术的发展,连铸工艺也逐渐应用于有色金属、稀有金属等领域。

五、连铸工艺的未来发展方向随着科技的不断发展,连铸工艺的未来发展方向主要集中在以下几个方面:1、智能化:利用先进的自动化技术和智能化设备,提高生产过程的自动化水平和生产效率。

2、绿色化:进一步降低能耗和废弃物排放,实现生产过程的环保和可持续发展。

3、高效化:研发更高效的连铸技术,提高生产速度和产品质量。

薄板坯连铸连轧轧制区组织模拟薄板坯连铸连轧是一种高效、节能的钢材生产工艺,具有较高的生产效率和产品质量。

在轧制过程中,钢材的组织形态和性能特点对产品的质量和使用性能具有重要影响。

因此,薄板坯连铸连轧轧制区组织模拟成为了一个备受的研究领域。

通过组织模拟,可以深入了解轧制过程中材料的组织变化和性能特点,为工艺优化和产品性能提升提供理论支持和实践指导。

薄板坯连铸连轧轧制区背景及基础概念薄板坯连铸连轧是指将液态钢水倒入薄板坯连铸机中进行连续铸造,然后将连铸坯送入轧机进行连续轧制。

连铸工艺流程

连铸工艺流程

连铸工艺流程
《连铸工艺流程》
连铸工艺是一种现代金属材料生产工艺,它利用连续铸造设备,将熔化的金属直接连续铸造成坯料或板材,省去了传统铸造工艺中的铸型、浇注、凝固和脱模等环节,大大提高了生产效率和质量。

具体来说,连铸工艺流程包括以下几个关键步骤:
1. 熔炼:将原料金属经过熔炼炉的高温熔化,形成熔融金属。

2. 连铸机:熔融金属通过连铸机器,经过喷水冷却,以得到坯料或板材。

连铸机在正常情况下可连续工作数周甚至数月。

3. 切割:将冷却后的坯料或板材进行切割成所需长度。

4. 表面处理:对坯料或板材进行表面处理,以去除氧化层、锈蚀和杂质,得到光洁的表面。

5. 加工:对坯料或板材进行进一步的热处理、冷加工等工艺,以获得所需的最终产品。

连铸工艺流程的优点在于,它能够大幅提高金属材料的生产效率,减少人工干预,降低能源消耗,减少生产废料,提高产品质量和一致性。

因此,在诸如钢铁、铝合金等金属材料的生产中,连铸工艺已成为重要的生产方式。

总的来说,《连铸工艺流程》的不断改进和创新,将为金属材料生产带来更高效、更绿色、更经济的生产方式,对于促进工业制造业的可持续发展具有重要的意义。

连铸连轧知识点

连铸连轧知识点

连铸连轧知识点连铸和连轧是金属工业中常见的两个工艺过程。

连铸是指将液态金属连续铸造成坯料的过程,而连轧是指将坯料经过一系列压制和变形操作,连续地轧制成所需尺寸的金属板、带材或线材的过程。

本文将介绍连铸和连轧的基本概念、工艺流程和主要应用。

一、连铸连铸是一种高效的金属铸造技术,具有生产速度快、坯料质量好等优点。

连铸主要应用于钢铁、铜、铝等金属的生产中。

1. 连铸的基本原理连铸的基本原理是将熔融的金属通过连续浇注的方式,直接铸造成连续的坯料。

具体原理如下:首先,将金属熔融至液态,并通过加热设备保持在一定温度范围内;然后,通过连续浇注系统,将熔融金属均匀地注入到连铸结晶器中;在连铸结晶器中,通过冷却剂的作用,使金属迅速凝固,并形成坯料;最后,通过一系列传动装置,将连续产生的坯料送往下游的轧制设备或其他后续处理过程中。

2. 连铸的工艺流程连铸的工艺流程一般包括以下几个关键步骤:(1)冶炼:将矿石等原料经过熔炼处理,得到液态的金属合金;(2)调温:通过加热设备将金属保持在一定的液态温度;(3)连续浇注:通过连续浇注系统,将熔融金属注入到连铸结晶器中;(4)结晶与凝固:在连铸结晶器中,通过冷却剂的作用,使金属迅速凝固,并形成坯料;(5)切割和输送:将连续产生的坯料切割成合适的长度,并送往下游的加工设备。

3. 连铸的应用连铸广泛应用于钢铁、铜、铝等金属的生产中。

在钢铁工业中,连铸可以直接将炼钢铁水铸造成连续坯料,用于后续轧制成钢板和钢材。

在有色金属工业中,连铸可以将液态金属铸造成连续的板材、带材和线材,用于制造电线电缆、汽车零部件等产品。

二、连轧连轧是一种将金属坯料经过多道次的压制和变形操作,连续地轧制成所需尺寸的金属板、带材或线材的工艺过程。

连轧具有高效快速、坯料成形完整等特点,广泛应用于钢铁、有色金属等工业领域。

1. 连轧的基本原理连轧的基本原理是通过一系列的压制和变形操作,使金属坯料逐渐减小厚度、增大长度,并达到所需的尺寸要求。

连铸设备及工艺

连铸设备及工艺

连铸设备及工艺随着现代工业的发展,连铸技术在金属材料加工领域得到了广泛应用。

连铸技术是一种高效、节能、环保的铸造工艺,能够实现连续生产,减少生产过程中的中间环节,提高生产效率,同时还能够减少废料和二次加工,降低生产成本。

连铸技术适用于各种金属材料的铸造,包括钢、铝、铜等金属材料。

连铸设备是实现连铸工艺的关键设备,其结构复杂、功能强大。

连铸设备通常由结晶器、铸模、水冷器、拉伸机构、卷取机构等部分组成,每个部分都起着重要的作用。

最常见的连铸设备包括直孔连续铸造机、弯道连铸机、单丝连铸机等。

直孔连续铸造机是一种常用的连铸设备,主要用于铸造钢和其他金属材料。

其工作原理是通过结晶器将熔化的金属注入铸模中,随着金属的凝固,在结晶器内形成一根长条形的铸坯。

铸坯经过水冷器冷却后,经过拉伸机构拉伸,最终形成一根连续的铸材,可以直接进行轧制、拉拔等下道工艺,省去了二次加工的步骤。

弯道连铸机是一种特殊结构的连铸设备,主要用于铸造大直径的金属材料,如大直径的钢管、铜管等。

其结构类似于直卧连续铸造机,但在铸模设置和水冷器设计上有所不同。

弯道连铸机的工作原理是通过一系列特殊设计的转弯部件将熔化的金属从水平方向转向垂直方向,形成一根弯曲的铸材。

该设备通常用于生产大直径的金属管材,产品质量稳定,生产效率高。

单丝连铸机是一种用于生产金属线材的连铸设备,主要用于铸造铜线、铝线等金属线材。

其结构简单、功能单一,适用于生产直径较小的金属线材。

单丝连铸机的工作原理是通过结晶器将熔化的金属注入细小的铸模中,形成一根直径较小的连续铸丝。

通过水冷器冷却后,可以直接卷取,用于电气线缆、电子元器件等行业。

除了以上几种常见的连铸设备外,还有其他类型的连铸设备,如多线连铸机、宽带连铸机等,适用于各种金属材料和产品类型的生产。

各种连铸设备都有其特点和优势,可以根据具体的生产需求选择适合的设备。

连铸工艺是一种高效的生产工艺,能够实现金属材料的连续生产,提高生产效率,降低生产成本。

连铸工艺流程

连铸工艺流程

连铸工艺流程连铸工艺流程是指将熔化状态的钢水通过连铸机连续铸造成连续铸坯的工艺流程。

该工艺流程主要包括加热与保温、定量浇注、连续铸造、凝固与定形、剪断与冷却等几个过程。

首先,加热与保温是连铸工艺的第一步。

钢水从炉中出来后,需要进行加热,使其达到适宜的铸造温度,一般为1500-1600℃。

然后,需要将加热后的钢水保温一段时间,以保持其熔化状态,一般保温时间为30-60分钟。

接下来是定量浇注过程。

在钢水进行保温的同时,需要将一定的钢水通过浇口定量地注入连铸机的浇注口。

这一过程需要控制好浇注速度和浇注时间,以确保钢水均匀地注入连铸机,避免铸坯出现缺陷。

随后是连续铸造过程。

连铸机将钢水从浇注口引入连铸机的结晶器中,结晶器内壁上涂有一层绝缘材料,以减小结晶器和铸坯之间的传热和冷却速度,使钢水逐渐凝固。

在结晶器中,钢水经过冷却后,开始凝固。

结晶器内还设有冷却水管,以维持适宜的结晶器温度,提高凝固质量。

凝固与定形是连铸工艺的关键过程。

当钢水进入结晶器后,在冷却的作用下,钢水开始凝固形成铸坯。

这一过程需要控制好结晶器的冷却温度和冷却速度,以确保钢水凝固成坯的过程中,铸坯的组织结构和尺寸能达到设计要求。

最后是剪断与冷却过程。

在连铸机的结晶器中,通过剪切装置将凝固成型的连续铸坯切断为定长的铸坯,同时进行冷却,使铸坯温度降低到适宜的水平。

然后,铸坯通过输送设备运输到下一道工序,如轧机进行轧制或其他后续加工工序。

总之,连铸工艺流程是一套将熔化状态的钢水连续铸造成连续铸坯的工艺流程。

该工艺流程主要包括加热与保温、定量浇注、连续铸造、凝固与定形、剪断与冷却等几个过程。

在每个步骤中,需要严格控制各个参数,以确保连铸坯的质量和成型效果。

同时,连铸工艺也具有高效、节能等优点,被广泛应用于钢铁工业。

连铸工艺要点

连铸工艺要点

连铸工艺要点介绍如下:
1.设备:连铸工艺需要使用到连铸机、结晶器、拉拔机、气切割
机等各种设备。

这些设备需要保养、维修和更换,以确保工艺能够正常运行。

2.浇注:浇注是连铸工艺的核心步骤,需要控制浇注速度、浇注
角度和浇注位置等参数,以确保铸坯具有良好的表面质量和内部组织结构。

3.结晶器:结晶器是冷却钢水的设备,它的设计和使用对铸坯质
量有着重要的影响。

合理的结晶器设计可以提高铸坯的结晶质量,避免产生缺陷。

4.拉拔:拉拔是连铸工艺的最后一个步骤,它可以使铸坯逐渐变
形成为规定的形状和尺寸。

拉拔时需要控制速度和拉拔力度,以避免产生裂纹和变形等缺陷。

5.自动化:连铸工艺需要高度自动化的控制系统,以保证工艺的
稳定性和可靠性。

自动控制系统可以实现对浇注速度、温度、拉拔力等参数的实时监控和调整,提高工艺的自动化程度和生产效率。

以上是连铸工艺的要点,它们对于保证生产质量和提高生产效率都有着重要的影响。

立式连铸工艺流程

立式连铸工艺流程

立式连铸工艺流程
立式连铸是一种常见的金属连铸工艺,用于生产连续铸造的金属坯料,通常用于生产铜、铝、钢等金属材料。

以下是立式连铸的典型工艺流程:
1. 熔炼金属:首先将金属原料(如铜、铝、钢等)加热熔化成液态金属。

2. 准备结晶器:准备一个立式结晶器,结晶器内部有水冷却系统,用于快速冷却金属。

3. 连续铸造:
将熔融金属通过喷嘴或浇口注入结晶器顶部,金属在结晶器内迅速凝固。

金属凝固后,通过拉坯机械将凝固的金属坯拉出,形成连续的坯料。

4. 切割成型:连续铸造的金属坯料经过冷却后,可以进行切割成所需长度的坯料。

5. 热处理:部分金属材料需要进行热处理,以改变其晶体结构和力学性能。

6. 质量检测:对连铸的金属坯料进行质量检测,确保其符合规定的标准和要求。

立式连铸工艺通过连续铸造的方式,可以高效地生产金属坯料,广泛应用于金属加工和制造领域。

这种工艺能够提高生产效率、降低生产成本,并且能够生产出质量稳定、形状规整的金属坯料,满足不同行业的需求。

连铸常用计算公式

连铸常用计算公式

连铸常用计算公式连铸是一种常用的金属加工工艺,用于制造各种形状的金属产品。

在连铸过程中,需要进行一系列的计算来确保产品的质量和效率。

下面将介绍一些常用的连铸计算公式,帮助读者更好地理解这一工艺。

1. 凝固时间计算公式:凝固时间是指金属在连铸过程中从液态到固态所需的时间。

它可以用以下公式计算:凝固时间 = 凝固长度 / 凝固速度其中,凝固长度是指金属在连铸过程中从液态到固态的距离;凝固速度是指金属凝固的速度。

2. 结晶器冷却计算公式:结晶器冷却是指通过冷却介质对结晶器进行冷却以提高连铸质量。

结晶器冷却率可以用以下公式计算:结晶器冷却率 = 冷却介质的冷却能力 / 结晶器的热量传导能力其中,冷却介质的冷却能力是指冷却介质对结晶器的冷却效果;结晶器的热量传导能力是指结晶器传导热量的能力。

3. 连铸速度计算公式:连铸速度是指金属在连铸过程中的运动速度。

连铸速度可以用以下公式计算:连铸速度 = 连铸机的运行速度 / 连铸机的拉伸系数其中,连铸机的运行速度是指连铸机的实际运行速度;连铸机的拉伸系数是指连铸机拉伸连铸坯料的能力。

4. 结晶器长度计算公式:结晶器长度是指结晶器在连铸过程中的长度。

结晶器长度可以用以下公式计算:结晶器长度 = 连铸坯料的凝固长度 + 连铸机的拉伸长度其中,连铸坯料的凝固长度是指连铸坯料在凝固过程中的长度;连铸机的拉伸长度是指连铸机拉伸连铸坯料的长度。

5. 连铸效率计算公式:连铸效率是指连铸过程中金属的利用率。

连铸效率可以用以下公式计算:连铸效率 = 连铸坯料的重量 / 连铸机的出口速度其中,连铸坯料的重量是指连铸机连铸坯料的重量;连铸机的出口速度是指连铸机连铸坯料的出口速度。

以上是一些常用的连铸计算公式,它们帮助工程师和操作人员在连铸过程中进行准确的计算和判断,以确保产品的质量和效率。

希望这些公式对读者有所帮助,更好地理解连铸工艺的重要性和复杂性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

钢液中的氮元素来自炉料,同时,在冶炼、浇铸时钢液也会从炉气和大气中吸收氮。

钢中的氮主要是钢水裸露过程中吸入并溶解的。

电炉炼钢,包括二次精炼的电弧加热,加速了气体的解离,故[N]含量偏高;平炉治炼时间长增加了氮含量;转炉复吹控制不当,氮氩切换不及时也会增加氮的含量;铁合金、废钢铁和渣料中的氮也会随炉料带入钢水。

氮引起碳钢的淬火时效和形变时效,从而对碳钢的性能发生显著的影响。

由于氮的时效作用,钢的硬度、强度固然提高,但是塑性和韧性降低,特别是在形变时效的情况下,塑性和韧性的降低比较显著。

因此,对于普通低合金钢来说,时效现象是有害的,因而氮是有害元素。

但对于一些细晶粒钢以及含钒、铌钢,由于氮化物的强化细化晶粒作用,氮成为有益元素。

另外,作为合金元素,氮在不锈耐酸钢中得到应用,此外,氮化处理方法能使机器零件获得极好的综合力学性能,从而使零件的使用寿命延长。

含氮耐蚀塑料模具钢的组织与性能
马氏体不锈钢经常作为耐腐蚀塑料模具钢来使用,尤其是4Cr16Mo钢,其热处理后具有高的硬度、强度和良好的耐蚀性。

研究人员在4Cr16Mo钢基础上降低镍的含量,添加不同含量的氮和进行不同的热处理,并与4Cr16Mo钢的组织和性能进行了对比,以确定合适的热处理工艺。

通过光学显微镜、扫描电镜、硬度计和冲击试验机等仪器分析,研究人员对比了4Cr16Mo塑料模具钢在不同热处理后的显微组织、硬度和冲击性能。

结果显示:添加氮后试验钢的淬火峰值硬度比4Cr16Mo 钢的高出2HRC,其最佳淬火温度为1040~1050℃;添加氮提高了4Cr16Mo钢在不同温度回火后的硬度,且在450℃出现二次硬化峰,其值比4Cr16Mo钢二次硬化峰的硬度高6HRC;4Cr16Mo钢中析出的碳化物呈链状、棒状分布,加入氮后钢中碳化物呈球状分布。

氮对超细晶奥氏体不锈钢组织和性能的影响
据研究在304不锈钢粉末中添加不同含量的氮化物,通过机械合金化和放电等离子烧结技术制备出不同N含量的超细晶奥氏体不锈钢,并分析了其组织和性能的变化。

XRD图谱显示未添加N的烧结样由马氏体和奥氏体共同组成,而添加了N 的烧结样由单一的奥氏体组成,TEM形貌观察发现烧结试样的晶粒尺寸都在纳米级别,而添加N的烧结试样比未添加N的烧结试样晶粒尺寸更加细小。

力学性能测试结果显示烧结试样的硬度、耐磨性都随N含量的增加而增加,抗拉强度随N 含量的增加先增后减。

极化曲线的测量结果显示烧结试样的耐腐蚀性能随着N 含量的增加而增加。

在研究钢的脆性时发现,锰可降低钢的脆性敏感性,而氮却增加钢的脆性敏感性。

采用不同方法所冶炼的钢的脆化敏感性增加的顺序为:用硅和铝镇静的平炉钢、用铝镇静的平炉钢和半镇静钢、吹氧的沸腾钢或半镇静钢。

这表明了在钢中游离氮的重要性。

有关资料介绍,LD转炉钢的氮含量为0.003% ~0.006%,电炉钢的氮含量为0.008%~0.0016%。

氮在α-Fe中最高溶解度590℃时约为0.1%,室
温下降到0.001%以下。

当游离氮含量高的钢,从高温下较快冷却时,铁素体将会被饱和。

若将此钢在室温下静置,随时间增加,氮将以Fe4N的形式析出,使钢的强度、硬度上升,塑性、韧性下降,即产生时效。

要降低钢的脆性转变温度,就要减小钢中氮含量和硅含量。

要采用稳定氮化物元素的晶粒细化剂(Al、V、Ti),尤其是在非晶粒细化钢中,总的氮含量应以最低为佳。

而在晶粒细化钢中氮含量应最大,以利于充分形成氮化物,使游离氮含量降下来。

对于高碳钢,钒是能够使钢晶粒细化和弥散强化的元素。

通过控制轧制,当游离氮含量为0.008%时,其脆性转变温度FA TT为-5℃。

而通过常化处理,自由氮含量为0.002%,其脆性转变温度为-45℃。

有关资料介绍,LD转炉钢的氮含量为0.003% ~0.006%,电炉钢的氮含量为0.008%~0.0016%。

氮在α-Fe中最高溶解度590℃时约为0.1%,室温下降到0.001%以下。

当游离氮含量高的钢,从高温下较快冷却时,铁素体将会被饱和。

若将此钢在室温下静置,随时间增加,氮将以Fe4N的形式析出,使钢的强度、硬度上升,塑性、韧性下降,即产生时效。

要降低钢的脆性转变温度,就要减小钢中氮含量和硅含量。

要采用稳定氮化物元素的晶粒细化剂(Al、V、Ti),尤其是在非晶粒细化钢中,总的氮含量应以最低为佳。

而在晶粒细化钢中氮含量应最大,以利于充分形成氮化物,使游离氮含量降下来。

对于高碳钢,钒是能够使钢晶粒细化和弥散强化的元素。

通过控制轧制,当游离氮含量为0.008%时,其脆性转变温度FATT为-5℃。

而通过常化处理,自由氮含量为0.002%,其脆性转变温度为-45℃。

相关文档
最新文档