2011河南中考最新数学模拟试题以及答案
2011年河南省中招考试第一次模拟考试数学试卷及答案_百度文库(精)
![2011年河南省中招考试第一次模拟考试数学试卷及答案_百度文库(精)](https://img.taocdn.com/s3/m/ec718bfa5022aaea998f0fe2.png)
年河南省中招考试第一次模拟考试试卷2011 学数: 注意事项满分,三大题,页8本试卷共1. 珠笔直请用钢笔或圆 . 分钟 100考试时间,分 120 . 接答在试卷上. 答题前将密封线内的项目填写清楚2.(一、选择题分 18共,分 3每小题将正确答案的代号字母填, 其中只有一个是正确的, 下列各小题均有四个答案 . 入题后括号内 1. 1 2- 的相反数是【】A . 2B . − 2C . 12D . 12 - 】则下列不等关系正确的是【 3m =,若2.丙三人抽签确定两人乙、甲、A . 12m << B . 23m << C . 34m << D . 45m << 3. A . 】【则乙被抽中的概率为, 参加某项活动 12 B . 13 C . 23 D . 1 9 2 若代数式4. 11 】等于【 x 则 0,的值为x x -+ A .1 B . 1- C . 1, 1- D . 1, 0 其中一个三角形是由另一个三角形绕着某点,在平面直角坐标系中,如图5.旋转】则其旋转中心可能是【,一定的角度得到的1, 1 D .(− 1,2 A .(0, 1 B .(0, 2 C .(− 其主视图、俯视图、,而成 .. 一个几何体是由大小相同的小正方体焊接,如图 6.“左视图都是 .. 则焊接,字形”田每 (二、填空题 A .3 B .4 C .5 D .6 】该几何体所需小正方体的个数最少为【7 分 27共,分 3小题_________. __________. 的度数是 2则∠,1=25°若∠ CD , ⊥ DE , BC ∥ AB 直线, 如图8. 则输出的数值为2,− 的值为x 若输入.,是一个简单的运算程序如图9. ________. 交于边相BC 的平分线与BAD ∠, AD =8cm, CD =6 cm,中□ ABCD 在,如图10. _______ cm. 等于 EC 则 E ,点D ,点交半圆于 BE 延长,的中点 A C 是弦, E 为直径的半圆中 AB 在以,如图11.则 O B =2, O E =1,若 _____________. ∠的度数是 C D E 题 9第( 题 10第( B C E 题 11第( A B C O 题 14第( C F 题 15第( B 第(题5 题 6第( B 题 8第(C D E A 2y x 函数12. = n m = _________. 则A (− 2, m , 的图象交于点 3y x n =+和 13. 这那么, 假设生男生女的机会相同, 个婴儿3市中心医院妇产科某天出生了个女婴的概率是1个男婴、2出现,个婴儿中3 __________. 在边 F 点,上 AB 在边 E 限定点, AD =4, CD =3.纸片中 ABCD 在矩形,如图14. 的最小距离是 A 距点 B 则点,翻折后叠合在一起 EF 沿 BEF △将,上BC ___________. 15. 折将半圆 CB 沿直线, ABC =30°∠, 为直径的半圆弧上 AB 在以 C 点, 如图 , 叠等则图中阴影部分的面积和周长分别 AB =6, 已知 D , 交于点 BC 和弧 AB 直径_____32π, 63π+. ___________. 于本大题共 (三、解答题分 75满分, 个小题 8 :2 再求值, 先化简分16. (8 23311a -÷⎛⎫a a a a a a +- ⎝⎭+-⎪ . ︒-︒ tan 602sin 30a =其中,判试. DCE =90°∠ ACB =∠, AC =CB , CD =CE , 上 AD 在 B 点, 如图分17. (9 . 并给予证明,的大小和位置关系 BE 和 AD 断线段华对自己小,为主题的社会实践活动中”从我做起,节约用水“在一次以分18.(9中随机抽他从该小区五月份的居民用水记录, 生活的小区居民用水情况进行了调查: 户居民的用水数据统计如下20取 ; 户居民的平均月用水量 20计算这⑴ ; 户居民用水量的频数分布直方图补充完整20把这⑵用水估计该小区居民当月共,根据上面的计算结果,户居民500如果该小区有⑶ ? 多少吨题 18第(17第(m3 ( 题 A D B E 总计前期投入的研发、广告费用,某软件公司开发出一种智能学习机分19.(9 . 元 200软件公司还要给经销商返利,经销商每出售一台学习机,万元100 ; 之间的函数关系式 x 元与销售台数 y 写出软件公司的总费用⑴智那么软件公司至少要售出多少台,元700如果软件公司给经销商每台价格⑵ ? 能学习机才能确保不亏本路的距到公A 村庄B ,和A 的两侧分别有村庄l 在一条东西公路,如图分20.(9有一现10km . 相距B 且与村庄, 的方向 60°北偏东 B 位于村庄 A 村庄 3km ,离为40km/h由西向东以l 正沿公路,处C 方向的76°南偏西 A 辆长途客车从位于村庄的 D 的 l 公路向正北方向赶往, 村出发 B 的速度由 25km/h小明正以, 此时, 速度行驶 . 处搭乘这趟客车 ; 的距离 l 到公路 B 求村庄⑴⑵? 小明能否搭乘上这趟长途客车( ≈︒≈, tan 764.01︒≈, cos 760.24︒1.73, sin 760.97 题 20第( l 21思维改变命运名师教出高徒数学·金迈思教育分)如图,在直角梯10 .( AB 是线段P ,点BC=4,AB=5,AD=1,B=90°∠A=,∠BC∥AD中, ABCD 形 PE 的中点,延长 CD 是 E 上一个动点,点 PCFD 判定四边形⑴. EF=PE,使 F至的周 PCFD 求四边形⑶是矩形; PCFD 的长为何值时,四边形 AP 当⑵的形状;□ PCFD .解:⑴ 21长的最小值.x:4=1: .BCP∽△APD△,AP = x ;⑵21 (第 P E F B .当 AG=AD,使 G到 DA 延长;⑶x2=4,x1=1.解得)5−x(周长的□ PCFD .所以 GC= 5 2 最小,值为 CP+PD 共线时C 、P、 G点 C A D 题)页)9 页(共 6 第九年级数学. 10 2 最小值为分)某学生用品商10 .( 22思维改变命运名师教出高徒数学·金迈思教育元,但不 2090 购货资金不少于件进行销售, 80 两种背包共B 、 A店,计划购进售 25 28 件)/成本(元 A B 类种元,两种背包的成本和售价如下表: 2096 超过该商店对⑴假设所购两种背包可全部售出,请回答下列问题:30 35 件)/价(元这两种背包有哪几种进货方案?根据市场调⑶该商店如何进货获得利润最大?⑵ a > 元( a 提高种背包的售价将会 A 种背包的市价不会改变,每件B 查,每件.22,该商店又将如何进货获得的利润最大?)0 2090 ≤ 件,则 x 种背包 A 购;、;、种方案: 3 ⑴.有48 ≤ x ≤ 50 .解得25 x + 28(80 − x ≤ 2096 ⑵.、 B32 、 A48 当 A48 B32 A49 B31 A50 B30 .+ 7(80 − x = −2 x + 560 w = 5 x 利润(= −2 × 48 + 560 = 464 最大 w,时w = (5 + a x + 7(80 − x = (a − 2 x + ⑶;)元时,采用 0 < a < 2 均可采用;当时,a = 2 ;当B30、 A50时,采用 a > 2 .当560 页)9 页(共 7 第九年级数学.B32、A48分)如图,已知二次11 .(23思维改变命运名师教出高徒数学·金迈思教育为二次函数图象上的一P .O)和原点0,4(B、)3,3(A函数的图象经过点轴的垂线,垂足为 x 作 P 个动点,过点⑴. C交于点 OA ),并与直线0,m( D的最大 PC 的上方时,求线段 OA 在直线P 当点⑵求出二次函数的解析式;形,如果存为等腰三角PCO △,使得 P 时,探索是否存在点m > 0 当⑶值.:解. 23 的坐标;如果不存在,请说明理由. P 在,求出,y = ax( x − 4 设⑴,1 − a = 得入代标坐点A 23 (第 2 .y P A C O D B x y = − x2 + 4 x 为数函 D ( 3 2, 0 当,P C = PD − CD = − m 2 + 3m = − ( m − 3 2 + 9 4 , 0 < m < 3 ⑵题)时 m 2 + 3m = − 时,,此OC=PC 有,仅时0 < m < 3 当⑶. PCmax = 9 4 ,,解2m PC = CD − PD = m 2 − ,时m≥3 当;P (3 − 2,1 + 2 2 ,m = 3 − 2 得.OP 2 = OD 2 + DP 2 = m 2 + m 2 ( m − 42 , OC= 2m ,3m m 时,OC= PC ①当 ( 2m 2 = m 2 + 时,OC= OP ②当;P (3 + 2,1 − 2 2 , m = 3 + 2 .解得2 − 3m = 2m P (5, −5 (舍去),m2=3,m1=5,解得m 2 (m − 4 2 m 2 (m − 时,PC=OP ③当;页) 9 页(共 8 第九年级数学. P (4, 0 , m = 4 ,解得32 = m 2 + m 2 (m − 4 2年河南省中招考试第一次 2011 思维改变命运名师教出高徒数学·金迈思教育一、选择题数学参考答案模拟考试试卷.B.2.D.1 ;115°.8;2±.7二、填空题.B.6.D.5.A.4.C.3 三、解答题.15;1.14;3 8 .13;1−.12;30°.11;2. 10;89.9 = (a − 3(a + 1 1 1 a × = = =− 3−2 (a − 1(a + 1 a(a − 3 a − 1 ,原式a = 3 − 1 .解:16, AD=BE)SAS(BCE≌△ACD△.解:相等,垂直.3−217..DAC=45°∠EBC=∠ 500 = 3350 6.7 ×略;⑶;⑵)m3(x = 6.7 .解:⑴18 700 x ≥ 200 x + 1000000 ; y = 200 x + 1000000 解:⑴. 19.)m3(x ≥ ,⑵) km ( =2 )BD=10÷2−3 ⑴:解. 20 台不亏本.⑵ 2000 .售出2000 = 2 25 = 小明)h (t = 3.38 40 = 0.0845 ,t ,;t .CD= 3t an76°−5 3 ≈3.38 .能客车)h(0.08 页) 9 页(共 9 第九年级数学客车小明.>t。
2011年中考数学模拟试题及答案
![2011年中考数学模拟试题及答案](https://img.taocdn.com/s3/m/a908176dce2f0066f53322ba.png)
1 1 1数学模拟试题本试卷分第I 卷(选择题)和第U 卷(非选择题)两部分。
满分120分,考试用 时120分钟。
第I 卷(选择题共42分)注意事项:1.答第I 卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答 题卡上。
2. 每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动, 用橡皮擦干净后,再选涂其它答案,不能答在试卷上。
3. 考试结束,将本试卷和答题卡一并收回。
一、选择题(本大题共14小题,每小题3分,满分42分)在每小题所给的四个 选项中,只有 一项是符合题目要求的。
1. 9的算术平方根是 A . 3 B . -3C . - 3D . - 92 •今年初,惊闻海地发生地震,中国政府和人民在第一时间作出支援海地的决定:1月13日,中国红十字会向海地先期捐款 204959美元,用科学记数法表示并保留三个有效数字应为(B )3、下列运算正确的是()A . 3X 2-:X =2X B . (x 2)3=x 54. 对于数据:85,83,85,81,86.下列说法中正确的是(B )A .这组数据的中位数是 84B .这组数据的方差是 3.25A . 2.050 10B 52.05 10 C630.205 10 D . 205 103412X -X X 2 2 2D . 2x 3x =5xC •这组数据的平均数是 85D.这组数据的众数是865. 一个几何体的三视图如右图所示,这个几何体是( D )5.小明要给刚结识的朋友小林打电话,他只记住了电话号码的前5位的顺序,后3位是3,6,8三个数字的某一种排列顺序, 但具体顺序忘记了,那么小明第一次就拨通电话的概率是第5题图A. D.12111C9. 如图,三个天平的托盘中形状相同的物体质量相等.图⑴、图⑵所示的两个天平处于平衡状态,要使第三个天平也保持平衡,则需在它的右盘中放置(C ).A.3个球B.4个球C.5个球D.6个球亠 oAAAz -xcferriz X EDAZV \onAy 、 /II) (2)⑶10. 一次函数y =kx ■ k -2一定过定点( ) A.(-1,-2)B.(72)C.(1,2)D.(1,-2)13.在平面直角坐标系中,对于平面内任一点P a, b 若规定以下两种变换:① f(a,b)=(T ,七).如 f(1,2) =(-1,-2)6.已知,如图,AB 是O O 的直径,点 D,C 在O O 上,联结 ADBD DC AC,如果/ BAD=25,那么/ C 的度数是( )A. 75B. 65C. 60D. 507.如图折叠直角三角形纸片的直角,使点 C 落的点E 处.已知AB=8.3 , / B =30° ,则DE 的长A. 6B.4C. 4.3D. 2,3D在斜边AB 上 是(B )&已知一个圆锥的底面积是全面积的A. 60 oB. 90 oC.1201 ,那么这个圆锥的侧面展开图的圆心角是( 3o D.180 o11.如图,反比例函数 y = k 与O O 的一个交点为(2,1),则图中阴影部分的面积是( x3 A.-4B.二5 C.-二412.已知二次函数y =ax 2+bx+c 的图象如图所示,那么下列判断中不正确的是2B. b -4ac > 0C.2a+b> 0D.4a-2b+c<0O)A. abc > 0 (第12题图)18..小明最近的十次数学考试成绩(满分 150分)如下表所示14题图第u 卷(非选择题共78分)注意事项:1. 用钢笔或圆珠笔直接答在试卷上。
河南省2011年中招数学模拟试卷及答案
![河南省2011年中招数学模拟试卷及答案](https://img.taocdn.com/s3/m/9231570a55270722192ef757.png)
新世纪教育网 精品资料版权所有@新世纪教育网2011年中招数学模拟试题第4题图 y xO -1 2 ⑴ 1+8=?1+8+16=?⑵ ⑶1+8+16+24=?第5题图(第6题) 姓名 考号⊙┄―――――――――――――┄┄┄┄密┄┄┄封┄┄┄装┄┄┄订┄┄┄线┄┄┄内┄┄┄不┄┄┄要┄┄┄答┄┄┄题┄┄┄┄┄┄┄┄┄┄┄⊙注意事项:1.本试卷共三大题,满分120分.考试时间90分钟.一、选择题(每小题3分,共18分.)在每小题给出的四个选项中,只有一项是符合题目要求的. 1.2-(-2)的值是( )A .-4B .14-C .0D .42.图中的几何体是由7个大小相同的小正方 体组成的,该几何体的俯视图为( )3.下列各选项的运算结果正确的是( )A.(2x 2)3=8x 6. B .22523a b a b -= C .623x x x ÷=D .222()a b a b -=-4.二次函数22y x x =--的图象如图所示,则函数值y <0时x 的取值范围是( )A .x <-1B .x >2C .-1<x <2D .x <-1或x >25.观察下列图形及图形所对应的算式,根据你发现的规律计算1+8+16+24+……+8n (n 是正整数)的结果为( )A .2(21)n +B 2(21)n -C .2(2)n +D .2n6.梯形ABCD 中AB ∥CD ,∠ADC +∠BCD =90°,以AD 、AB 、BC为斜边向形外作等腰直角三角形,其面积分别是S 1、S 2、S 3 ,且S 1 +S 3 =4S 2,则CD =( )A. 2.5ABB. 3ABC. 3.5ABD. 4ABA . D AC .D . 第2A BC D 1y x =-第14题图 y x O 1二、填空题(每小题3分,共27分.). 7..不等式组6020x x -<⎧⎨->⎩的解集是 .8.□ABCD 的对角线AC 、BD 相交于点O , 点E 是CD 的中点,若AD =4cm ,则OE 的 长为 cm .9.分解因式:26_________.x x +=10. 2010年4月14日青海玉树发生的7.1级地震震源深度约为14000米,震源深度用科学记数法表示约为_____________米.11.已知一组数据2, 1,-1,0, 3,则这组数据的极差是______. 12. 已知圆锥的高是30cm ,母线长是cm 50,则圆锥的 侧面积是 . 13.如图,BAC ∠位于6×<的方格纸中,则 tan BAC ∠= .14.如图所示,点A 是双曲线1y x =-在第二象限的分支上的任意一点,点B 、C 、D 分别是点A 关于x 轴、原点、y 轴的对称点,则四边形ABCD 的面积是 .15.如图,△ABC 是一个边长为2的等边三角形,AD 0⊥BC ,垂足为点D 0.过点D 0作D 0D 1⊥AB ,垂足为点D 1;再过点D 1作D 1D 2⊥AD 0,垂足为点D 2;又过点D 2作D 2D 3⊥AB ,垂足为点D 3;……;这样一直作下去,得到一组线段:D 0D 1,D 1D 2,D 2D 3,……,则线段D n -1D n 的长为_ _ (n 为正整数)第13题图 A BCD第8题ECBA OD D 0 C D第8题ECBA O三、解答题(本大题共8个小题,共75分) 16.(8分)先化简,再求值:x x x x x x11132-⋅⎪⎭⎫ ⎝⎛+--,其中22-=x.17(本题满分9分)如图,梯形ABCD 中,AB ∥CD ,AC 平分∠BAD , CE ∥AD 交AB 于点E .求证:四边形AECD 是菱形.18.(9分)某校为了了解九年级女生的体能情况,随机抽查了部分女生,测试了1分钟仰卧起坐的次数,并绘制成如图所示的频数分布直方图和不完整的统计表(每个分组包括左端点,不包括右端点). 请你根据图中提供的信息,解答以下问题: (1) 分别把统计图与统计表补充完整;(2)被抽查的女生小敏说:“我的仰卧起坐次数是被抽查的所有同学的仰卧起坐次数的中位数”,请你写出小敏仰卧起坐次数所在的范围.(3)若年段的奋斗目标成绩是每个女生每分钟23次,问被抽查的所有女生的平均成绩是否达到奋斗目标成绩?仰卧起坐次数的范15~20 20~25 25~30 30~35ABCDE15 20 25 30 35次数(次)人数(人) 01012 53O第19题图xyAB PC D19.(9分)如图所示,菱形ABCD 的顶点A 、B 在x 轴上,点A 在点B 的左侧,点D 在y 轴的正半轴上,∠BAD =60°,点A 的坐标为(-2,0).⑴求线段AD 所在直线的函数表达式.⑵动点P 从点A 出发,以每秒1个单位长度的速度,按照A →D →C →B →A 的顺序在菱形的边上匀速运动一周,设运动时间为t 秒.求t 为何值时,以点P 为圆心、以1为半径的圆与对角线AC 相切?20.(9分)团体购买公园门票票价如下:围(单位:次) 频数 3 10 12 频率 101 31 61购票人数 1~50 51~100 100人以上 每人门票(元)13元11元9元今有甲、乙两个旅行团,已知甲团人数少于50人,乙团人数不超过100人.若分别购票,两团共计应付门票费1392元,若合在一起作为一个团体购票,总计应付门票费1080元. (1)请你判断乙团的人数是否也少于50人. (2)求甲、乙两旅行团各有多少人?21.(10分)如图所示,直线AB 与反比例函数图像相交于A ,B 两点,已知A (1,4). (1)求反比例函数的解析式;(2)连结OA ,OB ,当△AOB 的面积为152时,求直线AB 的解析式.22、(本题满分10分)探索勾股定理时,我们发现“用不同的方式表示同一图形的面积”可以解决线段和或差)的有关问题,这种方法称为面积法。
2011河南中考数学试题及答案
![2011河南中考数学试题及答案](https://img.taocdn.com/s3/m/4a4049bdb9f67c1cfad6195f312b3169a551ea50.png)
2011河南中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是正整数?A. -3B. 0C. 2D. -2答案:C2. 若a > 0且b < 0,下列哪个不等式是正确的?A. a + b > 0B. a - b < 0C. a + b < 0D. a - b > 0答案:D3. 圆的半径是5,那么它的周长是多少?A. 10πB. 15πC. 20πD. 25π答案:C4. 一个直角三角形的两条直角边分别为3和4,那么斜边的长度是多少?A. 5B. 6C. 7D. 8答案:A5. 以下哪个代数式是二次的?A. x + 2B. x^2 + 3x + 1C. x^3 - 2D. x^2 - 1答案:B6. 一个数的平方根是4,那么这个数是多少?A. 16B. -16C. 8D. -8答案:A7. 一个数的绝对值是3,那么这个数可能是?A. 3B. -3C. 3或-3D. 0答案:C8. 一个长方体的长、宽、高分别是2、3和4,那么它的体积是多少?A. 24B. 12C. 6D. 8答案:A9. 一个数列的前三项是2、5、10,那么第四项是多少?A. 15B. 17C. 20D. 21答案:C10. 一个多项式x^3 - 6x^2 + 11x - 6可以分解为多少个一次因式的乘积?A. 1B. 2C. 3D. 4答案:C二、填空题(每题2分,共20分)11. 一个数的相反数是-5,那么这个数是________。
答案:512. 如果一个角的补角是120°,那么这个角是________。
答案:60°13. 一个分数的分子是7,分母是14,化简后是________。
答案:1/214. 一个三角形的内角和是________。
答案:180°15. 一个正方体的表面积是96,那么它的边长是________。
答案:416. 一个数的立方根是2,那么这个数是________。
河南省2011年中考数学模拟试题
![河南省2011年中考数学模拟试题](https://img.taocdn.com/s3/m/be3724feaeaad1f346933ff1.png)
2011年河南省中招生考试模拟试卷数 学一、选择题(每小题3分,共18分)下列各小题均有四个答案,其中只有一个正确答案,请把正确答案写在题后的括号内。
1.计算:=-0)5(( ).A .1B .0C .-1D .-5 2.下图中不是中心对称图形的是( )A .B .C .D . 3.下列方程中,有两个不相等实数根的是( ).A .0122=--x x B .0322=+-x x C .3322-=x x D .0442=+-x x4.如图,将边长为8㎝的正方形ABCD 折叠,使点D 落在BC 边的中点E 处,点A 落在F 处,折痕为MN ,则线段CN 的长是( )A .3cmB .4cmC .5cmD .6cm5.如图,把抛物线2y x =与直线1y =围成的图形OABC 绕原点O 顺时针旋转90°后,再沿x 轴向右平移1个单位得到图形1111O A B C ,则下列结论错误..的是( ) A .点1O 的坐标是(10), B .点1C 的坐标是(21)-,C .四边形OBA 1B 1是矩形D .若连接OC ,则梯形11OCA B 的面积是3(第4题) (第5题)Oyx 1O B1B 1C1A11A -(,) 11C (,)NM FEDC BA6.古希腊著名的毕达哥拉斯学派把1、3、6、10 … 这样的数称为“三角形数”,而把1、4、9、16 … 这样的数称为“正方形数”. 从图7中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是( )A .13 = 3+10B .25 = 9+16C .36 = 15+21D .49 = 18+31二填空题(每空3分,共27分) 7.4的算术平方根是 。
8.当x 时,11+x 有意义. 9.若2320a a --=,则2526a a +-= .10.记者从2009年5月7日上午四川省举行的“5.12”抗震救灾周年新闻发布会上了解到,经过多方不懈努力,四川已帮助近1300000名受灾群众实现就业。
2011河南中考数学试题及答案
![2011河南中考数学试题及答案](https://img.taocdn.com/s3/m/39745eb8541810a6f524ccbff121dd36a32dc49d.png)
2011河南中考数学试题及答案一、选择题(每题3分,共36分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 22. 已知一个长方体的长、宽、高分别为10cm、8cm、6cm,其体积是多少立方厘米?A. 480B. 240C. 360D. 6003. 一个数的75%是60,那么这个数是多少?A. 80B. 72C. 60D. 1004. 一个数的1/3加上它的1/4等于2,这个数是多少?A. 3B. 4C. 6D. 125. 下列哪个选项不是质数?A. 2B. 3C. 4D. 56. 一个班级有48名学生,其中2/3是男生,那么女生有多少人?A. 16B. 24C. 32D. 407. 一个数的2倍加上3等于这个数的5倍减去5,这个数是多少?A. 5B. 6C. 7D. 88. 一个正方形的面积是64平方厘米,它的周长是多少厘米?A. 32B. 48C. 64D. 169. 一个数除以3的商是8,余数是1,这个数是多少?A. 25B. 26C. 27D. 2810. 一个数的3/4加上它的1/2等于9,这个数是多少?A. 6B. 4C. 8D. 1211. 一个长方体的长、宽、高分别是12cm、10cm、8cm,它的表面积是多少平方厘米?A. 832B. 760C. 680D. 60012. 一个数的2/5加上它的3/4等于21,这个数是多少?A. 20B. 30C. 40D. 50二、填空题(每题3分,共36分)13. 一个数的1/2与它的1/3的和是10,这个数是_________。
14. 一个数的3/4加上12等于这个数本身,这个数是_________。
15. 一个长方体的长是15cm,宽是10cm,高是8cm,它的体积是_________立方厘米。
16. 一个数的75%是24,那么这个数的40%是_________。
17. 一个班级有36名学生,其中3/4是女生,那么男生有_________人。
2011河南中考数学模拟试题及答案
![2011河南中考数学模拟试题及答案](https://img.taocdn.com/s3/m/7643b4dace2f0066f5332246.png)
2011年河南省中招考试第二次模拟考试试卷数 学注意事项:1.本试卷共8页,三大题,满分120分,考试时间100分钟. 请用钢笔或圆珠笔直接答在试卷上.2.答题前将密封线内的项目填写清楚.一、选择题(每小题3分,共18分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内. 1.(2的平方根是【 】(A )2± (B ) (C (D ) 1.414±2.为支援青海地震灾区,中央电视台于2010年4月19日晚举办了《情系玉树,大爱无疆》赈灾募捐晚会,晚会现场募得善款达2175000000元.2175000000用科学计数法表示正确的是【 】(A )6217510⨯ (B )821.7510⨯ (C )92.17510⨯ (D )102.17510⨯ 3.如图,是关于x 的不等式21x a --≤的解集,则a 的取值是【 】 (A )1a -≤ (B )2a -≤ (C )1a =- (D )2a =-4.如图,正方体的展开图不可能...是【 】 (A ) (B ) (C )(D )5.已知点A (m ,2m )和点B (3,23m -),直线AB 平行于x 轴,则m 等于【 】(A )−1 (B )1 (C )−1,或3 (D )3(第3题)6题)6.如图,已知A (4,0),点1A 、2A 、…、1n A -将线段OA n 等分,点1B 、2B 、…、1n B -、B 在直线0.5y x =上,且11A B ∥22A B ∥…∥11n n A B --∥AB ∥y 轴.记△11OA B 、△122A A B 、…、△211n n n A A B ---、△1n A AB -的面积分别为1S 、2S 、…1n S -、n S .当n 越来越大时,猜想12n S S S +++ 最近的常数是【 】(A )1 (B )2 (C )4 (D )8 二、填空题(每小题3分,共27分)7__________. 8.函数y =中,自变量x 的取值范围是______________. 9.如果a >b >c >0,且满足211b a c=+,则称a 、b 、c 为一组调和数.现有一组调和数为x 、5、3(x > 5),则x 的值是__________.10.如图,直线AB ∥DC ,BE 平分∠ABC ,∠CDE =150°,则∠C 的度数是 __________.11.如图,是某班赈灾捐款统计图,该班人人拿出自己的零花钱,有捐5元、10元、20元的,还有捐50元和100元的.统计图反应了不同捐款数的人数占班级总人数的比例,那么该班同学平均每人捐款 __________ 元.12.如图,在梯形ABCD 中,AD ∥BC ,∠C =∠D =90°,AB =1,∠ABC 是锐角.点E 在CD 上,且AE ⊥EB ,设∠ABE =x ,∠EBC =y .则sin()x y +=___________________________.(用x 、y 的三角函数表示)13.如图,坐标系的原点为O ,点P 是第一象限内抛物线2114y x =-上的任意一点,P A (第12题)ABCDEx y1(第10题)ABCDE(第11题)100 5 10元20元 50元 44% 20%16% 12% 8%⊥x 轴于点A .则OP PA -=__________.14.如图,分别过点P i (i ,0)(i =1、2、…、n )作x 轴的垂线,交212y x =的图象于点A i ,交直线12y x =-于点B i .则1122111n n A B A B A B +++= _________. 15.如图,在△ABC 中,∠C =90°,AB =10,3tan 4A =,经过点C 且与边AB 相切的动圆与CA 、CB 分别交于点D 、E ,则线段DE 长度的最小值是__________.三、解答题(本大题共8个小题, 满分75分) 16.(8分)先化简2228224a a a a a a +-⎛⎫+÷⎪--⎝⎭,然后从33a -<<的范围内选取一个你认为合适的整数作为a 的值代入求值.(第14题)(第13题)(第15题)17.(9分)如图,等腰梯形ABCD 中,AD ∥BC ,延长BC 到E ,使CE =AD .⑴ 用尺规作图法,过点D 作DM ⊥BE ,垂足为M (不写作法,保留作图痕迹); ⑵判断BM 、ME 的大小关系,并说明理由.18.(9分)某超市有A 、B 、C 三种型号的甲种品牌饮水机和D 、E 两种型号的乙种品牌饮水机,某中学准备从甲、乙两种品牌的饮水机中各选购一种型号的饮水机安装到教室.⑴ 写出所有的选购方案,如果各种选购方案被选中的可能性相同,那么A 型号饮水机被选中的概率是多少?⑵ 如果该学校计划用1万元人民币购买甲、乙两种品牌的饮水机共24台(价格如表格所示),其中甲种品牌饮水机选为A 型号的,请你算算该中学购买到A 型号饮水机共多少台?(第17题)AECBD19.(9分)某高级中学要印制宣传册,联系了甲、乙两家印刷厂.甲厂的优惠条件是:按每份定价1.5元的8折收费,另收900元的制版费;乙厂的优惠条件是:每份定价1.5元的价格不变,而制版费900元则按4折优惠,且甲、乙两厂都规定:一次印刷数量不低于1000份.⑴分别求出两家印刷厂收费y(元)与印刷数量x(份)的函数关系式,并指出自变量x 的取值范围;⑵如何根据印刷数量选择比较合算的方案?如果该中学要印制3000份宣传册,那么应当选择哪家印刷厂?需要多少费用?20.(9分)如图,气象部门预报:在海面上生成了一股较强台风,在距台风中心60千米的圆形区域内将会受严重破坏.台风中心正从海岸M点登陆,并以72千米/时的速度沿北偏西60°的方向移动.已知M点位于A城的南偏东15°方向,距A城千米;M点位于B城的正东方向,距B城假设台风在移动过程中,其风力和方向保持不变,请回答下列问题:⑴A城和B城是否会受到此次台风的侵袭?并说明理由;⑵若受到此次台风侵袭,该城受到台风侵袭的持续时间有多少小时?(第20题)B M21.(10分)如图,在Rt△ABC中,∠ACB=90°,∠BAC=30°,AB=4,点P是斜边AB 上一个动点,点D是CP的中点,延长BD至E,使DE=BD,连结AE.⑴求四边形PCEA的面积;⑵当AP的长为何值时,四边形PCEA是平行四边形;⑶当AP的长为何值时,四边形PCEA是直角梯形.(第21题)22.(10分)某超市计划上两个新项目:项目一:销售A 种商品,所获得利润y (万元)与投资金额x (万元)之间存在正比例函数关系:y kx =.当投资5万元时,可获得利润2万元;项目二:销售B 种商品,所获得利润y (万元)与投资金额x (万元)之间存在二次函数关系:2y ax bx =+.当投资4万元时,可获得利润3.2万元;当投资2万元时,可获得利润2.4万元.⑴ 请分别求出上述的正比例函数表达式和二次函数表达式;⑵ 如果超市同时对A 、B 两种商品共投资12万元,请你设计一个能获得最大利润的投资方案,并求出按此方案获得的最大利润是多少?23.(11分)如图,已知二次函数215442y x x =-+-的图象与x 轴相交于点A 、B ,与y 轴相交于点C ,连结AC 、CB .⑴ 求证:AOC COB △∽△;⑵ 过点C 作CD ∥x 轴,交二次函数图象于点D ,若点M 在线段AB 上以每秒1个单位的速度由点A 向点B 运动,同时点N 在线段CD 上也以每秒1个单位的速度由点D 向点C 运动,连结线段MN ,设运动时间为t 秒(0<6t ≤).① 是否存在时刻t ,使MN AC =?若存在,求出t 的值;若不存在,请说明理由; ② 是否存在时刻t ,使MN BC ⊥?若存在,求出t 的值;若不存在,请说明理由.(第23题)2011年河南省中招考试第二次模拟考试试卷数学参考答案一、选择题:1.B ;2.C ;3.C ;4.C ;5.A ;6.B (2(1+1/n )).二、填空题:7.2;8.x ≥−2,x ≠0;9.15;10.120°;11.31.2元;12.sin cos cos sin x y x y ⋅+⋅; 13.2;14.2n /(n +1).15.4.8(ED =CO +OP ≥CH 垂线段).三、解答题:16.原式2228(2)81(2)(2)(2)2(2)(2)2a a a a a a a a a a a a ⎛⎫+-+-=+⨯== ⎪--+--++⎝⎭. 在33a -<<范围的整数中,只有±1可取,若令1a =-,则原式=1.17.⑴略;⑵BM =ME .证明△ABD ≌△CDE (SAS ),得等腰△BDE .三线合一,可知BM =ME .18.⑴ 选购方案:(AD )、(AE )、(BD )、(BE )、(CD )、(CE );P =2/6=1/3;⑵ 设购买A 型号饮水机x 台,方案1:(A 、D ),则600500(24)10000x x +-=;解得20x =-,不合题意舍去;方案2:(A 、E ),则600200(24)10000x x +-=,解得13x =.答:能买到A 型号饮水机13台.19.⑴ y 甲=1.2900x +,x ≥1000,且x 是整数;y 乙=1.5360x +,x ≥1000,且x 是整数;⑵ 若y 甲> y 乙,即1.2900 1.5360x x +>+,1800x <;若y 甲= y 乙,则1800x =;若y 甲< y 乙,则1800x >.所以,当10001800x <≤时,选择乙厂合算;当1800x =时,两厂收费相同;当1800x >时,选择甲厂合算.当3000x =时,选择甲厂,费用是y 甲=4500元.20.⑴ A 到MN 的距离为61>60,不受台风影响;B 到MN 的距离为,受台风影响; ⑵ 以B 为圆心,以60为半径的圆截MN 得线段长为60,受到台风影响时间为60/72=5/6小时.21.作CH ⊥AB ,垂足为H ,则CH 连结EP ,因为CD =DP ,BD =DE ,得□PBCE .则CE =PB ,EP =CB =2.⑴ ()22APCE S CE AP CH AB CH =+÷=⋅÷=;⑵当AP=2时,得□PCEA,∵AP=2=PC=EC,且EC∥AP;⑶当AP= 3时,P、H重合,EC∥AP,∠CPA=90°,AP=3≠1= PB =EC,得直角梯形PCEA;当AP= 1时,△APE是直角三角形,∠EAP=90°,EC∥AP,AP=1≠3=PB=EC,得直角梯形PCEA.22.⑴y A=0.4x;y B=−0.2x2+1.6x;⑵设投资B种商品x万元,则投资A种商品(12−x)万元.W=−0.2x2+1.6x+0.4(12−x)=−0.2(x−3)2+6.6.投资A、B两种商品分别为9、3万元可获得最大利润6.6万元23.⑴A(2,0),B(8,0),C(0,−4).∵OC/OA=OB/OC=2,∠AOC=∠COB=90°,∴△∽△;AOC COB⑵D(10,−4),CD=10.BM=6−t,CN=10−t.①当四边形ACNM是平行四边形时,AM=CN.此时,t=10−t,得t=5;当四边形ACNM是等腰梯形时,MB=ND.6−t=t,得t=3;②∵BC2=80,BD2=AC2=20,CD2=100,∴BC2+BD2=AC2,∴BC⊥BD.只需MN∥BD.此时,四边形MNDB是平行四边形,6−t=t,得t=3.。
2011年河南省中考数学试卷标准答案与解析
![2011年河南省中考数学试卷标准答案与解析](https://img.taocdn.com/s3/m/966da675d15abe23492f4d9f.png)
2011年河南省中考数学试卷参考答案与试题解析一、选择题(每小题3分,共18分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内.1.(3分)(2013?宁德)﹣5的绝对值是()5 A.B.﹣5 C.D.﹣考点:绝对值.分析:根据绝对值的性质求解.解答:解:根据负数的绝对值等于它的相反数,得|﹣5|=5.故选A.点评:此题主要考查的是绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(3分)(2011?河南)如图,直线a,b被c所截,a∥b,若∠1=35°,则∠2的大小为()35°145°55°125°A.B.C.D.考点:平行线的性质.分析:由a∥b,根据两直线平行,同位角相等,即可求得∠3的度数,又由邻补角的定义,即可求得∠2的度数.解答:解:∵a∥b,∴∠3=∠1=35°,∴∠2=180°﹣∠3=180°﹣35°=145°.故选B.点评:此题考查了平行线的性质.注意两直线平行,同位角相等与数形结合思想的应用.3.(3分)(2011?河南)下列各式计算正确的是()236224A.B.C.D.a)=a (2a+4a=6a考点:二次根式的加减法;合并同类项;幂的乘方与积的乘方;零指数幂;负整数指数幂.分析:根据各选项进行分析得出计算正确的答案,注意利用幂的乘方的运算以及二次根式的加减,负整数指数幂等知识分别判断即可.解答: 1 0﹣解:A、(﹣1)﹣()=1﹣2=﹣1,故此选项错误;B、与不是同类项无法计算,故此选项错误;222C、2a+4a=6a,故此选项错误;236D、(a)=a,故此选项正确.故选D.点评:此题主要考查了二次根式的混合运算以及幂的乘方的运算和负整数指数幂等知识,此题难度不大注意计算要认真,保证计算的正确性.1河南)不等式的解集在数轴上表示正确的是(?)4.(3分)(2011 C..D.B A.考点:在数轴上表示不等式的解集;解一元一次不等式组.专题:计算题.分析:分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.解答:解:,由①得,x>﹣2,由②得,x≤3,故此不等式组的解集为:﹣2<x≤3.在数轴上表示为:故选B.点评:本题考查的是在数轴上表示一元一次不等式组的解集,解答此类题目时一定要注意实心圆点与空心圆点的区别.5.(3分)(2011?河南)某农科所对甲、乙两种小麦各选用10块面积相同的试验田进行种植试验,它们的平均亩产22=2.7SS.则关于两种小麦推广种植的合=29.6,千克,量分别是=610=608千克,亩产量的方差分别是乙甲理决策是()A.甲的平均亩产量较高,应推广甲甲、乙的平均亩产量相差不多,均可推广B.甲的平均亩产量较高,且亩产量比较稳定,应推广甲C.D.甲、乙的平均亩产量相差不多,但乙的亩产量比较稳定,应推广乙考方差;算术平均数专压轴题分析本题需先根据甲、乙亩产量的平均数得出甲、乙的平均亩产量相差不多,再根据甲、乙的平均亩产量的差即可得出乙的亩产量比较稳定,从而求出正确答案解答解:=61千克=60千克∴甲、乙的平均亩产量相差不多22 S=2.7.,∵亩产量的方差分别是S=29.6乙甲∴乙的亩产量比较稳定.D.故选本题主要考查了方差和平均数的有关知识,在解题时要能根据方差和平均数代表的含义得出正确答案是本点评:题的关键.°旋转180先将它绕原点?分)(2011河南)如图,将一朵小花放置在平面直角坐标系中第三象限内的甲位置,O3.6(的坐标为(AA2到乙位置,再将它向下平移个单位长到丙位置,则小花顶点在丙位置中的对应点′)2)1,1 D.(3)C.(3,﹣1)1 A.(3,1)B.(,平移.-旋转;坐标与图形变化-考点:坐标与图形变化压轴题;网格型;数形结合.:专题上加下“),根据平移°后得到的坐标为(3,1A点坐标为(﹣3,﹣1),它绕原点O旋转180分析:根据图示可知.1)原则,向下平移2个单位得到的坐标为(3,﹣减”,1)A点坐标为(﹣3,﹣解答:解:根据图示可知横纵坐标互为相反数180°根据绕原点O旋转,1)∴旋转后得到的坐标为(3,”原则,根据平移“上加下减),个单位得到的坐标为(3,﹣1∴向下平移2 C.故选°特点以及平移的特点,比较综合,难度适中.点评:本题主要考查了根据图示判断坐标、图形旋转180 27分)二、填空题(每小题3分,共.的立方根为33分)(2011?河南)277.(立方根.考点:计算题.专题:的数即可.找到立方等于分析:273解答:3,=27解:∵,27的立方根是3∴.故答案为:3 考查了求一个数的立方根,用到的知识点为:开方与乘方互为逆运算.点评:BD的度数7,则AB中AB=AC平分AC,A=3分201河南)如图,△等腰三角形的性质考,并能求出其角度等于AC18可求得C平分AC,A=3,根据三角形内角分析AB=AC DBC求得所求角度.在△,,∠ACBA=36°解:∵AB=AC,CD平分∠解答:.DCB=36°°°)÷2=72,∠180∴∠B=(°﹣36 .BDC=72°∴∠.72°故答案为:BDC的角度.度,在△CDB中从而求得∠点评:本题考查了等腰三角形的性质,本题根据三角形内角和等于180轴对称的点在反比例函数yP关于b(a,)在反比例函数的图象上,若点P(.9(3分)2011?河南)已知点.的值为﹣2k的图象上,则轴对称的点的坐标.轴、yx考点:反比例函数图象上点的坐标特征;关于轴对称的点在反比例函数yPyPab 分析:本题需先根据已知条件,求出的值,再根据点关于轴对称并且点关于3K的值.的图象上即可求出点解答:,b)在反比例函数的图象上,a解:∵点P(∴ab=2,,b),∵点P关于y轴对称的点的坐标是(﹣a ab=﹣2.∴k=﹣故答案为:﹣2.本题主要考查了反比例函数图象上点的坐标的特征,在解题时要能灵活应用反比例函数图象上点的坐标的点评:特征求出k的值是本题的关键.、上异于点A为⊙O的直径,点E是且如图,CB切⊙O 于点B,CA交⊙O于点DAB(10.(3分)2011?河南).40°D的一点.若∠C=40°,则∠E的度数为切线的性质;圆周角定理.考点:常规题型;压轴题.专题:的度数,然后用同弧所对的圆周角ABD分析:连接BD,根据直径所对的圆周角是直角,利用切线的性质得到∠的度数.相等,求出∠E ,解答:解:如图:连接BD 是直径,∵AB ,∴∠ADB=90°O于点B,BC∵切∴ABC=9∵C=4BAC=5∴ABD=4∴ABD=4∴E故答案为40E的度数.点评:本题考查的是切线的性质,利用切线的性质和圆周角定理求出∠2的大小关系与y﹣3,y)是二次函数y=x2x+1的图象上两点,则yByA(.11(3分)2011?河南)点(2,)、(2112).”””(填<y“>、“<、“=y为21二次函数图象上点的坐标特征.考点:分析:y与yBA本题需先根据已知条件求出二次函数的图象的对称轴,再根据点、的横坐标的大小即可判断出21的大小关系.42解答:x=1,y=x2x+1﹣的图象的对称轴是解:∵二次函数x的增大而增大,在对称轴的右面y随2 2x+1的图象上两点,y)是二次函数y=x﹣y)、B(3,,∵点A(221 3,2<y.∴y<21故答案为:<.本题主要考查了二次函数图象上点的坐标特征,在解题时要能灵活应用二次函数的图象和性质以及点的坐点评:标特征是本题的关键.的两个小球,另一个装有标号分2河南)现有两个不透明的袋子,其中一个装有标号分别为1、2011.(3分)(?12个小球,两球标号恰好相同的概1、4的三个小球,小球除标号外其它均相同,从两个袋子中各随机摸出别为2、3.率是列表法与树状图法.考点:首先根据题意画树状图,然后由树状图求得所有等可能的结果与两球标号恰好相同的情况,即可根据概率分析:公式求解.解:画树状图得:解答:种等可能的结果,∴一共有6 种情况,两球标号恰好相同的有1.∴两球标号恰好相同的概率是此题考查了树状图法与列表法求概率.树状图法与列表法适合两步完成的事件,可以不重不漏的表示出所点评:所求情况数与总情况数之比.有等可能的情况.用到的知识点为:概率=PC.若CD,∠ADB=∠°,AD=4,连接BD,BD⊥?13.(3分)(2011河南)如图,在四边形ABCD中,∠A=90 .长的最小值为4是BC边上一动点,则DP角平分线的性质;垂线段最短考压轴题专的长度最小,则结合已知条件,利用三角形的内角和定D垂直B的时候分析根据垂线段最短,D的长的长可DCB,由角平分线性质即可AD=D,A推出ABDD的长度最小DB的时候解答解:根据垂线段最短,当,,又∠°A=90°∵BD⊥CD,即∠BDC=90 ,∠CBDC∴∠A=∠,又∠ADB= ,BD,⊥DCDAABD=∴∠∠CBD,又⊥BA AD=4,又,∴AD=DP .DP=4∴4故答案为:.本题主要考查了直线外一点到直线的距离垂线段最短、全等三角形的判定和性质、角平分线的性质,解题点评:5.垂直于BC的关键在于确定好DP .π2011?河南)如图是一个几何体的三视图,根据图示的数据可计算出该几何体的表面积为9014.(3分)(圆锥的计算;由三视图判断几何体.:考点压轴题.:专题根据圆锥侧面积公式首先求出圆锥的侧面积,再求出底面圆的面积为,即可得出表面积.分析:,,底面圆的直径为10解答:解:∵如图所示可知,圆锥的高为12 ,∴圆锥的母线为:13 π,π×5×13=65∴根据圆锥的侧面积公式:πrl=2,πr=25π底面圆的面积为:.∴该几何体的表面积为90π.故答案为:90π此题主要考查了圆锥侧面积公式,根据已知得母线长,再利用圆锥侧面积公式求出是解决问题的关键.点评:是E,BC=2AD=2,点BC,∠ABC=90°,∠C=60°15.(3分)(2011?河南)如图,在直角梯形ABCD中,AD∥3+.G,则△BFG的周长为交BC边的中点,△DEF是等边三角形,DFAB于点直角梯形;等边三角形的性质;解直角三角形.考点:几何综合题;压轴题专是矩形,所以得到直角三角ABEB边的中点,推出四边ABC=9分析首先由已AB,ADD,由直角三角AG可求CE,所以能求CD,又DE是等边三角形,得BF的周长,得BF=A,从而求进而求F,再AG≌BGF解答:AD=BE=CE=,是BC边的中点,即∥BC,∠ABC=90°,点E解:已知AD 为矩形,∴四边形ABED ,,∠A=90°∴∠DEC=90°,又∠C=60°,×=3DE=CE?tan60°=∴是等边三角形,又∵△DEF ADG=30°∠EDF=60°,∠∴DF=DE=AB=3,∠AGD=,=×=1°∴AG=AD?tan30 ,﹣DG=1,∴DG=2FG=DF 1=2﹣,BG=3 ,FGB ∠,BG=DG=2AG=FG=1∴,∠AGD= BGF≌△,∴△AGD,BF=AD=∴,2+1+BFG ∴△的周长为=3+63+.故答案为:此题考查的知识点是直角梯形、等边三角形的性质及解直角三角形,解题的关键是先由已知推出直角三角点评:DEF是等边三角形,解直角三角形证明三角形全等求解.形CED,再通过△分)三、解答题(本大题共8个小题,满分75的范围内选取一个合适的整数作为22≤x≤(8分)(2011?河南)先化简,然后从﹣16.的值代入求值.x 分式的化简求值.考点:开放型.专题:的整数x分析:首先对分式进行化简、把除法转化为乘法、在进行混合运算,把分式转化为最简分式,然后确定的值不可使分式的分母为零.值,把合适的值代入求值,x 解答:=原式.= ,﹣2.≤2且为整数,若使分式有意义,x只能取0xx满足﹣2≤=).=(或:当x=﹣2时,原式∴当x=0时,原式的取值不可是分式的分x的合适的整数值,x点评:本题主要考查分式的化简、分式的性质,解题的关键在于找到母为零..ABDE交于点M延长CB到点E,使BE=AD,连接中,分)17.(9(2011?河南)如图,在梯形ABCDAD∥BC,;△AMD≌△BME(1)求证:的长.BE=2,求BC)若N是CD的中点,且MN=5,2(梯形;全等三角形的判定与性质考计算题;证明题专AD,即可证明AB,E,分析)找出全等的条件BE=AA=,即可求得.BE+BC),又BE=2((2)首先证得MN是三角形的中位线,根据MN= ,AD∥BC 解答:(1)证明:∵∠E,∴∠A=∠MBE,∠ADM= 中,BME在△AMD和△,ASA);BME∴△AMD≌△(BME)解:∵△AMD≌△,2(ND=NCMD=ME∴,,7,∴MN=EC ,EC=2MN=2×5=10∴2=8EB=10﹣.∴BC=EC﹣的长是8.答:BC 点评:本题考查了全等三角形的判断及三角形中位线定理的应用,熟记其性质、定理是证明、解答的基础.的驾车理念,某市一家报社设计了如右的调查问“开车不喝酒,喝酒不开车”分)(2011?河南)为更好地宣传18.(9 .在随机调查了某市全部5 000名司机中的部分司机后,统计整理并制作了如下的统计图:卷(单选)根据以上信息解答下列问题:;1)补全条形统计图,并计算扇形统计图中m=20(B的司机大约有多少人?(2)该市支持选项的提醒标志,则支持该选项的司机请勿酒驾”的司机中随机选择100名,给他们发放“(3)若要从该市支持选项B 小李被选中的概率是多少?条形统计图;用样本估计总体;扇形统计图;概率公式.考点:压轴题专所占的百分比求出总人数,然后减去其的人数,和扇形分析)先算组里的人数,根据条形的人数组的人数,求支持选的人数的百分比可求出结果)全市所以司机的人的提醒标志,则可请勿酒)算出的支的人数,以及随机选10名,给他们发)根据出支持该选项的司机小李被选中的概率是多少345=9(人66236解解答=20m%=66239选项的频数分所m=2分的人数大约为)支持选50023%=115人)∵总人=50023%=115(9.∴小李被选中的概率是:=(分)8本题考查认知条形统计图和扇形统计图的能力,条形统计图告诉每组里面的具体数据,扇形统计图告诉部点评:分占整体的百分比以及概率等概念从而可求出解.河南)如图所示,中原福塔(河南广播电视塔)是世界第﹣高钢塔.小明所在的课外活动小组在?9分)(201119.(米;从地的距离DG为10α为45°,点D到AO处,测得地面上点距地面268米高的室外观光层的点DB的俯角并求出请你根据以上数据计算塔高AO,60测得塔尖A的仰角β为°.面上的点B沿BO方向走50米到达点C处,.结果精确到0.1米)米之间的误差.(参考数据:≈1.732,≈1.414计算结果与实际塔高388解直角三角形的应用-仰角俯角问题.考点:探究型.:专题的值,再是等腰直角三角形,进而可得出BF=45°可判断出△DBF,先作DF⊥BO于点F,根据DE∥BOα分析:中利用锐角三角函数的定义及特殊角的三角ACO的值,在FO与CORt△根据四边形DFOG是矩形可求出的长,进而可得出其误差.函数值可求出ADB 于解答解:=4DB=4DBF∴分RDB中BF=DF=26BC=550=21CF=BBC=26由题意知四边DFO是矩形FO=DG=1分CO=CF+FO=218+10=22=6AC中R分1.732=394.89°AO=Ctan6226.(米∴误差394.89388=6.89分即计算结果与实际高度的误差约6.米本题考查的是解直角三角形的应用﹣仰角俯角问题,涉及到的知识点为:等腰直角三角形的判定与性质点评矩形的性质、锐角三角函数的定义及特殊角的三角函数值,熟知以上知识是解答此题的关键.,(﹣)和,(的图象交于点A4mB与反比例函数x+2=k河南)如图,一次函数2011分)(20.9(?y811 y,与2﹣).轴交于点C9,k=16;(1)k= 21(2)根据函数图象可知,当y>y时,x的取值范围是﹣8<x<0或x>4;21(3)过点A作AD⊥x轴于点D,点P是反比例函数在第一象限的图象上一点.设直线OP与线段AD交于点E,当S:S=3:1时,求点P的坐标.ODE△ODAC四边形考点:反比例函数综合题.专题:代数几何综合题;数形结合.分析:(1)本题须把B点的坐标分别代入一次函数y=kx+2与反比例函数的解析式即可求出K、k的值.1112(2)本题须先求出一次函数y=kx+2与反比例函数的图象的交点坐标,即可求出当y>y时,x2111的取值范围.(3)本题须先求出四边形OCAD的面积,从而求出DE的长,然后得出点E的坐标,最后求出直线OP的解析式即可得出点P的坐标.解答:解:(1)∵一次函数y=kx+2与反比例函数的图象交于点A(4,m)和B(﹣8,﹣2),11(﹣2)=16,)∴K=(﹣8×2+2 8k﹣2=﹣1=∴k1=)∵一次函x+与反比例函)(,的图象交于1时,x的取值范围是y∴当y>21或<﹣8x<0x>4;.)由(1)知,3(∴m=4,点C的坐标是(0,2)点A的坐标是(4,4).∴CO=2,AD=OD=4.∴.∵S:S=3:1,∴S=S=×12=4,ODEODE△△ODACODAC梯形梯形即OD?DE=4,∴DE=2.∴点E的坐标为(4,2).又点E在直线OP上,10.∴直线OP的解析式是的坐标为(的图象在第一象限内的交点与P ).∴直线OP 4>8<x<0或x故答案为:,16,﹣本题主要考查了反比例函数的综合问题,在解题时要综合应用反比例函数的图象和性质以及求一次函数与点评:反比例函数交点坐标是本题的关键.”活动,收费标准如下:河南)某旅行社拟在暑假期间面向学生推出“林州红旗渠一日游分)21.(10(2011?200>≤200 m100 人数m 0<m≤100<m75 85 90 人)收费标准(元/人,乙校报名参加的甲、乙两所学校计划组织本校学生自愿参加此项活动.已知甲校报名参加的学生人数多于100 元,若两校联合组团只需花费18 000元.学生人数少于100人.经核算,若两校分别组团共需花费20 800 )两所学校报名参加旅游的学生人数之和超过200人吗?为什么?(1 2)两所学校报名参加旅游的学生各有多少人?(二元一次方程组的应用.考点:压轴题;方程思想.专题:a200和100<≤200,得出结论;1分析:()由已知分两种情况讨论,即a>100<x≤200分别设未知数列方程组求解,讨论得出答案.x(2)根据两种情况的费用,即>200和人,理由为:)这两所学校报名参加旅游的学生人数之和超过(1200解答:解设两校人数之和75=2420,a=18000,不合题意,,则a≤200a=18000÷85=211>200<若100 则这两所学校报名参加旅游的学生人数之和等于240人,超过200人.人,则y)设甲学校报名参加旅游的学生有x人,乙学校报名参加旅游的学生有2(200时,得≤当①100<x(解得6分)时,得②当>200x解得不合题意,舍去.80160答:甲学校报名参加旅游的学生有人,乙学校报名参加旅游的学生有人.点评:此题考查的是二元一次方程组的应用,关键是把不符合题意的结论舍去.11BC=5,∠C=30°.点D从点C出发沿CA2011?河南)如图,在Rt△ABC中,∠B=90°,方向以22.(10分)(每秒2个单位长的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(t>0).过点D作DF⊥BC于点F,连接DE、EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.(3)当t为何值时,△DEF为直角三角形?请说明理由.考点:菱形的性质;含30度角的直角三角形;矩形的性质;解直角三角形.专题:几何图形问题;动点型.分析:(1)在△DFC中,∠DFC=90°,∠C=30°,由已知条件求证;(2)求得四边形AEFD为平行四边形,若使?AEFD为菱形则需要满足的条件及求得;(3)①∠EDF=90°时,四边形EBFD为矩形.在直角三角形AED中求得AD=2AE即求得.②∠DEF=90°时,由(2)知EF∥AD,则得∠ADE=∠DEF=90°,求得AD=AE?cos60°列式得.③∠EFD=90°时,此种情况不存在.解答:(1)证明:在△DFC中,∠DFC=90°,∠C=30°,DC=2t,∴DF=t.又∵AE=t,∴AE=DF.(2)解:能.理由如下:∵AB⊥BC,DF⊥BC,∴AE∥DF.AE=D∴四边AEF为平行四边形∵AB=BC?tan30°=5=5,∴AC=2AB=10.∴AD=AC﹣DC=10﹣2t.若使?AEFD为菱形,则需AE=AD,即t=10﹣2t,t=.时,四边形AEFD为菱形.即当t=(3)解:①∠EDF=90°时,四边形EBFD为矩形.在Rt△AED中,∠ADE=∠C=30°,∴AD=2AE.即10﹣2t=2t,t=.②∠DEF=90°时,由(2)四边形AEFD为平行四边形知EF∥AD,∴∠ADE=∠DEF=90°.∵∠A=90°﹣∠C=60°,12.cos60°∴AD=AE?.2t=﹣t,t=4即10 时,此种情况不存在.③∠EFD=90°秒时,△DEF为直角三角形.综上所述,当t=秒或4难以及菱形与矩形之间的联系.考查了菱形是平行四边形,考查了菱形的判定定理,点评:本题考查了菱形的性质,度适宜,计算繁琐.两、B(2011?河南)如图,在平面直角坐标系中,直线与抛物线交于A23.(11分)8.A在x轴上,点B的横坐标为﹣点,点1)求该抛物线的解析式;(AB,交直线,过点P作x轴的垂线,垂足为C2()点P是直线AB上方的抛物线上一动点(不与点A、B重合).PE⊥AB于点E于点D,作关于x的函数关系式,并求出l的最大值;的周长为设△PDEl,点P的横坐标为x,求l①FAPFG.随着点P的运动,正方形的大小、位置也随之改变.当顶点PA②连接,以PA为边作图示一侧的正方形y轴上时,直接写出对应的点P的坐标.或G恰好落在二次函数综合题考代数几何综合题;压轴题;数形结合;待定系数法专即可分析)利用待定系数法求,再求PD=求出二函数最值即可PEAO∽,得DPPD=根P,解得,即,轴上时,由落在y△ACP≌△GOA得PC=AO=2当点②GP点坐标.x+﹣﹣落在所以得出P点坐标,当点Fy轴上时,x=,解得x=,可得解答:﹣时,.当y=0,x=2)对于(解:1x= .﹣8y=,当∴A点坐标为(2 .,0),B点坐标为13两点,经过A、B由抛物线得.解得∴.轴交于点)①设直线与yM,(2.时,y=.∴OM=当x=0.∴AM=.,∵点A的坐标为(20),∴OA=2 5.4∵OM:OA:AM=3::.∽△由题意得,∠PDE=∠OMA,∠AOM=∠PED=90°,∴△AOMPED ∴DE:PE:PD=3:4:5.∵点上方的抛物线上一动点,P是直线AB 轴,PD⊥x∵两点横坐标相同,∴PD)x+PD=y∴﹣y=﹣﹣﹣(x﹣DP2 x+4x=﹣,﹣∴..∴﹣∴x=3时,l=15.最大PC=AO=2,得△y ②当点G落在轴上时,如图2,由ACP≌△GOA,即,解得所以,SPSPNPN作⊥y轴于点,过点作⊥x轴于点,P3如图,过点,≌△△由PNFPSA P,可得点横纵坐标相等,PN=PS F故得当点落在轴上时,y x=,解得x+﹣x=﹣,(舍去)可得.,14综上所述:满足题意的点P有三个,分别是.此题主要考查了二次函数的综合应用以及相似三角形的判定以及待定系数法求二次函数解析式,利用数形点评:结合进行分析以及灵活应用相似三角形的判定是解决问题的关键.15。
2011河南中考数学试题及答案
![2011河南中考数学试题及答案](https://img.taocdn.com/s3/m/7d8404ccbb4cf7ec4afed0c5.png)
2011年河南省初中学业水平暨高级中等学校招生考试试卷数 学注意事项:1. 本试卷共8页,三大题,满分120分,考试时间100分钟请用蓝、黑色钢笔或圆珠 笔直接答在试卷上.2. 答卷前将密封线内的项目填写清楚.参考公式:二次函数2(0)y ax bx c a =++≠图象的顶点坐标为24(,)24b ac b aa--.一、选择题(每小题3分,共18分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内.1. -5的绝对值 【 】(A )5 (B )-5 (C )15 (D )15-2. 如图,直线a ,b 被c 所截,a ∥b ,若∠1=35°,则∠2的大小为 【 】 (A )35° (B )145° (C )55° (D )125°3. 下列各式计算正确的是 【 】(A )011(1)()32---=- (B )235+=(C )224246a a a += (D )236()a a =4.不等式5. 某农科所对甲、乙两种小麦各选用10块面积相同的试验田进行种植试验,它们的平均亩产量分别是x 甲=610千克,x 乙=608千克,亩产量的方差分别是2S甲=29. 6, 2S 乙=2. 7.则关于两种小麦推广种植的合理决策是 【 】x +2>0,x -1≤2的解集在数轴上表示正确的是 【 】(A )甲的平均亩产量较高,应推广甲(B )甲、乙的平均亩产量相差不多,均可推广(C )甲的平均亩产量较高,且亩产量比较稳定,应推广甲(D )甲、乙的平均亩产量相差不多,但乙的亩产量比较稳定,应推广乙6. 如图,将一朵小花放置在平面直角坐标系中第三象限内的甲位置,先将它绕原点O 旋转180°到乙位置,再将它向下平移2个单位长到丙位置,则小花顶点A 在丙位置中的对应点A ′的坐标为 【 】(A )(3,1) (B )(1,3) (C )(3,-1) (D )(1,1)二、填空题 (每小题3分,共27分)7. 27的立方根是 。
河南省2011年中考数学模拟试卷
![河南省2011年中考数学模拟试卷](https://img.taocdn.com/s3/m/310ff184168884868662d611.png)
2011年某某省中招模拟试卷(原创)一 选择题 1.-5的绝对值是(A )5 (B )51(C )-5 (D ) 2.下列多项式中,能用公式法分解因式的是(A )xy x -2(B )xy x +2(C )22y x + (D )22y x - 3.据统计,2010年某某市参加初中毕业生学业考试的人数约为51000人,将数据51000用科学记数法表示为(A ×105 (B ×105 (C ×104 (D )51×104 4.在下面的四个几何体中,左视图与主视图不相同的几何体是5.小明准备参加校运会的跳远比赛,下面是他近期六次跳远的成绩(单位:m ):3.6,3.8,4.2,4.0,3.8,4.0.那么,下列结论正确的是 (A )众数是3 .9 m (B )中位数是3.8 mm (D )极差是m6.如图,直线l是经过点(1,0)且与y 轴平行的直线.Rt △ABC 中直角边AC=4,BC=3.将BC 边在直线l上滑动,使A ,B 在函数xky =的图象上. 那么k 的值是A .3B .6 C.12 D .415二 填空题7.分解因式 x(x-1)-3x+4= .(A ) 正方体 长方体 (B )球 (C ) 圆锥(D )8.如图,在平行四边形ABCD 中,∠A=130°,在AD 上取DE=DC , 则∠ECB 的度数是.9.用围棋子按下面的规律摆图形,则摆第n 个图形需要围棋子的枚数是.的8X 纸条,用每4X 拼成一个正方形图案,拼成的正方形的每一行和每一列中,同色的小正方形仅为2个,且使每个正方形图案都是轴对称图形,在网格中画出你拼出的图案.(画出的两个图案不能全等)11.如图,在△ABC 中,∠B=45°,cos ∠C=53,AC=5a , 则△ABC 的面积用含a的式子表示是 .12.小明家为响应节能减排号召,计划利用两年时间,将家庭每年人均碳排放量由目前的3125kg 降至2000㎏﹙全球人均目标碳排放量﹚,则小明家未来两年人均碳排放量平均每年须降低的百分率是.13.如图4,河岸AD 、BC 互相平行,桥AB 垂直于两岸, 从C 处看桥的两端A 、B ,夹角∠BCA =60 ,测得BC =7m , 则桥长AB =▲m (结果精确到1m ) 14.若点(-2,1)在反比例函数xky的图象上,则该函数的图象位于第▲象限. 15.某校生物教师李老师在生物实验室做试验时,将水稻种子分组进行发芽试验;第1组取3粒,第2组取5粒,第3组取7粒,第4组取9粒,……按此规律,那么请你推测第n 组应该有种子数是 ▲ 粒。
2011数学河南中考模拟试题二中考
![2011数学河南中考模拟试题二中考](https://img.taocdn.com/s3/m/cd86e3b0cc1755270622082b.png)
河南省2010年数学中考模拟试题(二)、选择题.(下列各小题均有四个选项,其中只有一个正确的,请把它选出来填在题后的每小题3分,满分18分)1. —(—6 )的相反数是(6 62. 2008北京奥运会主体育场“鸟巢”不但极具创意,而且建筑面积也很大,达到万平方米,这一数字用科学计数法保留两个有效数字可表示为(售中,该服装店(则点C所表示的数是(二.填空题.(请把答案填在题中横线上,每小题3分,满分27分)括号内,A. —6B. 6C.D.25.83.2A. 260000米B. 2.6 x 105米2 4 , 2C. 2.5 X10 米6 2D. 2.6 X 10 米服装店同时销售两种商品销售价都是100元,结果一种赔了20%,另一种赚了20%那么在这次销4.A.总体上是赚了C.总体上不赔不赚B.D.如图,数轴上表示1、.2两数的对应点分别为总体上是赔了没法判断是赚了还是赔了A、B,点B关于点A的对称点为C,5.A. ,2 —1B. 1 C .2 —-丿2 D. 、匕—2将一盛有部分水的圆柱形小水杯放入事先没有水的大圆柱形容器内, 现用一注水管沿大容器内壁匀速A.15 0B.20 0C.3 0 0D.4 5 0注水(如图所示)t(min)的函数图像大致为()如图,AB是OO的直径, 弦CD垂直平分OE,则ZBDC的度数为(6.,则小水杯内水面的高度h(cm)与注水时间7.分解因式:x3- x = O8.与直线y = —2x+1平行且经过点(—1, 2)的直线解析式为9.国家实行一系列“三农”优惠政策后,农民收入大幅度增加,某乡所辖村庄去年年人均收入(单位:元)情况如下表,该乡去年年人均收入的中位数是年人均收入(元)35003700380039004500村庄个数21331Ox —a10.不等式组'的解集为一1< x v 1,那么(a+1)(b —1)= .x -2b 311.乐乐玩具商店今年3月份售出某种玩具3600个,5月份售出该玩具4900个,设每个月平均增长率为x ,根据题意,列出关于x的方程为.12. 如图,DE是"ABC的中位线,DE=2cm,AB+AC=12cm,则梯形DBCE的为cm.13. 如左图,左侧是一个小正方体的展开图,小正方体从右图所示的位次翻到第1格、第2格、第3格,这时体朝上面的字是 __________ 。
2011年九年级中招模拟卷数学(一)参考答案
![2011年九年级中招模拟卷数学(一)参考答案](https://img.taocdn.com/s3/m/e0e9619a51e79b89680226a6.png)
九年级数学 第 1 页 共 5 页2011年九年级中招模拟试卷数学(一)参考答案一、选择题(每小题3分,共18分)二、填空题(每小题3分,共27分)三、解答题(本大题共8个大题,满分75分)16.解:原式21242(4)(4)2 4.2424x x x x x x xx x x+--+--===------ ……………(6分) 当4x =-时,原式44=+-= ……………………………(8分)17. 解:(1)④;……………………………………………………………………(2分)(2)75;……………………………………………………………………(4分) (3)754530300++×360万=180万;……………………………………(7分)(4)由于全市有360万人,而样本只选取了300人,样本容量太小,不能准确的反映真实情况,因此可加大样本容量.…………………………………(9分)18.解:(1)△EOF ,△AOM ,△DON ;…………………………………………(3分) (2)∵AB ⊥EF 于点B ,DC ⊥EF 于点C ,∴∠ABC =∠DCB =90°,……… (4分) ∵ CF = BE ,∴CF +BC =BE +BC ,即BF =CE ………………………………………………………………………(6分)九年级数学 第 2 页 共 5 页E BCAD FOON M FD ACBE在△ABF 和△DCE 中, AB D C ABC D C B BF C E =⎧⎪∠=∠⎨⎪=⎩∴ △ABF ≌△DCE . ………………………………………………………………(9分)19. 解:过点A 作AF //BD 交l 2于点F . l 1 // l 2,AF //BD ,∴ 四边形AFDB 是平行四边形. ∴ DF =AB =60,∠AFC =30°,∴ CF =CD -DF =140-60=80.…(3分)又 ∠ACE 是△ACF 的一个外角,∴∠CAF =∠ACE -∠AFC = 60°-30°=30°,∴∠CAF =∠AFC .∴AC =CF =80.…………………………………………………………………(6分) 在Rt △AEC 中,∠ACE =60° ∴ AE =AC ·sin60°= 80⨯2≈69.28≈69.3(米) ………………………(8分)答:河流的宽度AE 约为69.3米. ……………………………………………(9分)20.解:(1)当BC =1时,四边形AECF 是菱形.理由如下:…………………(1分) ∵四边形ABCD 是平行四边形,∴OA=OC ,OB=OD ,……………………(2分) ∵BE =DF ,∴OB -BE =OD -DF ,即OE =OF ,……………………………(3分) ∴四边形AECF 是平行四边形,……(4分)当BC = AB =1时,平行四边形ABCD 是菱形,∴AC ⊥BD ,即AC ⊥EF ,∴平行四边形AECF 是菱形. ………………………………………(6分) (2)由于正方形是特殊的菱形,由(1)知,此时四边形ABCD 和AECF 均为菱形.CDE1l 2F九年级数学 第 3 页 共 5 页∵∠ABC =60°,AB =1, AC ⊥BD ,∴△ADC 和△ABC 均为等边三角形,且AO =CO =12,BO =DO=2.…………(8分)当四边形AECF 是正方形时,EO =FO = AO =CO =12,∴1222D F D O FO =-== …………………………………………(9分)21.解:(1)设A 车间每天生产x 件甲种产品,B 车间每天生产x+3件乙种产品,2(3)31x x +=- ……………………………………………(2分)解得 7x =故 310x +=答:A 车间每天生产7件甲种产品,B 车间每天生产10件乙种产品.………(4分) (注:也可以列一元一次方程解决)(2)设该客户购买甲种产品m 件,则购买乙种产品(100)m -件,由题意得185********(100)18650m m +-<≤ ……………………………………(6分) 解得:4750m <≤ ……………………………………………………(7分)m 为正整数∴m 为48、49、50, ……………………………………………………(8分) 又 A 车间7天生产49件甲产品,B 车间7天生产乙产品70件∴ m 为48、49,此时对应的(100)m - 的值为52、51,………………………(9分) ∴有两种购买方案:购买甲种产品48件,乙种产品52件;购买甲种产品49件,乙种产品51件. …………………………………………………………………………(10分)22.(1)证明:分别过点C 、D 作CG ⊥AB 、DH ⊥AB ,垂足为G 、H ,则∠CGA =∠DHB =90°.∴ CG ∥DH .∵ △ABC 与△ABD 的面积相等, ∴ CG =DH . ……………………(2分) ∴ 四边形CGHD 为平行四边形.∴ AB ∥CD . …………………… (3分) (2)①证明:连结MF ,NE .AB DC 图①G H九年级数学 第 4 页 共 5 页图③设点M 的坐标为(x 1,y 1),点N 的坐标为(x 2,y 2). ∵ 点M ,N 在反比例函数xk y =(k >0)的图象上,∴ k y x =11,k y x =22. ∵ ME ⊥y 轴,NF ⊥x 轴, ∴ OE =y 1,OF =x 2. ∴ S △EFM =ky x 212111=⋅,S △EFN =k y x 212122=⋅.∴S △EFM =S △EF N .由(1)中的结论可知:MN ∥EF .…………………………………………(6分)②设点M 的坐标为(x 1,y 1),点N 的坐标为(x 2,y 2) ∵ S △EFM =11522E M E O k ⋅==,S △EFN =11522F N F O k ⋅==.∴ S △EFM =S △EF N .由(1)中的结论可知:MN ∥EF .设MN 和x 轴的交点为G (如图③),则,易知四边形 EFGM 为平行四边形,EM =2. S 四边形EFNM =S □EFGM + S △FNG =1122EM EO FG FN EM EO EM FN +=+=10+FN 当S 四边形EFNM =12时,FN =2,∴点N 的坐标为(-5,-2). ……………………………………………………(10分)23.解:(1)(1,0)A -和(0,4)C 代入2y x bx c =-++,得10,4.b c c --+=⎧⎨=⎩ 解得34b c =⎧⎨=⎩∴此抛物线解析式为: 234y x x =-++.……………………………………(3分)九年级数学 第 5 页 共 5 页(2)由题意得:2134y x y x x =+⎧⎨=-++⎩ 解得1110x y =-⎧⎨=⎩ 2234x y =⎧⎨=⎩∴点D 的坐标为(34),…………………(4分) 过点P 作PQ ∥y 轴,交直线AD 与点Q , ∵点P 的横坐标是m ,又点P 在抛物线234y x x =-++上,∴P 的纵坐标是234m m -++,点Q 的横坐标也是m , ∵点Q 在直线1y x =+上, ∴Q 的纵坐标是1m +,∴22(34)(1)23PQ m m m m m =-++-+=-++ ……………………………(7分) S △ADP = S △APQ + S △DPQ =2211(23)[(1)](23)(3)22m m m m m m -++--+-++-=21(23)42m m -++⨯2246m m =-++ 22(1)8m =--+.当1m =,△ADP 的面积S 的最大值为8. ………………………………………(9分) (3)11,22M -,2(1,22M ---,3(4,5)M ,4717(,)1010M .(11分)。
2011河南中考数学试题及答案
![2011河南中考数学试题及答案](https://img.taocdn.com/s3/m/efeb316e590216fc700abb68a98271fe910eafee.png)
2011河南中考数学试题及答案2011年河南省中考数学试题一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 2.5B. πC. 根号3D. 0.33333(无限循环)2. 一个数的平方根等于它本身,这个数是:A. 0B. 1C. -1D. 23. 若a > 0,b < 0,且|a| < |b|,则a + b 一定:A. 大于0B. 小于0C. 等于0D. 不确定4. 一个三角形的内角和为:A. 180°B. 360°C. 90°D. 120°5. 直线y = 2x + 3与x轴的交点坐标是:A. (0, 3)B. (3/2, 0)C. (-3/2, 0)D. (1, 2)6. 一个圆的半径是5,那么它的直径是:A. 10B. 15C. 20D. 257. 一个长方体的长、宽、高分别是a、b、c,那么它的体积是:A. abcB. a + b + cC. ab + bc + caD. a² + b² + c²8. 一个正数的倒数是:A. 1/xB. x²C. √xD. -x9. 一个数的相反数是它自己,这个数是:A. 0B. 1C. -1D. 任意数10. 若a、b互为相反数,c、d互为倒数,m是绝对值最小的有理数,求|a+b|+cd+2m的值是:A. 2B. 1C. 0D. 无法确定二、填空题(每题2分,共20分)11. 一个数的绝对值是其本身的数是______。
12. 一个数的相反数是-5,这个数是______。
13. 若a、b互为相反数,a+b=______。
14. 一个数的平方根是4,这个数是______。
15. 一个数的立方根是2,这个数是______。
16. 一个直角三角形,两直角边分别为3和4,斜边长为______。
17. 若一个长方体的长、宽、高分别是2、3、4,则其表面积为______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河南省2011年高级中等学校招生统一考试最新数学模拟试卷一、选择题(每小题3分,共18分)1.2(2)-的平方根是【 】A .2±B . 1.414±C .2±D .2-2.甲型H1N1流感病毒的直径约为0.08微米至0.12微米,普通纱布或棉布口罩不能阻挡甲型H1N1流感病毒的侵袭,只有配戴阻隔直径低于0.075微米的标准口罩才能有效.0.075微米用科学记数法表示正确的是【 】A .37.510⨯微米B .37.510-⨯微米C .27.510⨯微米D .27.510-⨯微米3.如图,由四个相同的直角三角板拼成的图形,设三角板的直角边分别为a 、b (a b >),则这两个图形能验证的式子是【 】A .22()()4a b a b ab +--=B .222()()2a b a b ab +--=C .222()2a bab a b +-=+ D .22()()a b a b a b +-=-4.如图,一个由若干个相同的小正方体堆积成的几何体,它的主视图、左视图和俯视图都是田字形,则小正方体的个数是【 】A .6、7或8B .6C .7D .85.如图,以原点为圆心的圆与反比例函数3y x=的图象交于A 、B 、C 、D 四点,已知点A 的横坐标为1,则点C 的横坐标【 】A .1-B .2-C .3-D .4-6.如图,圆锥的轴截面ABC △是一个以圆锥的底面直径为底边,圆锥的母线为腰的等腰三角形,若圆锥的底面直径BC = 4 cm ,母线AB = 6 cm ,则由点B 出发,经过圆锥的侧面(第3题)(第4题)ACxyO (第5题) BDABCO(第6题)·到达母线AC 的最短路程是【 】A .833cm B .6cm C .33cm D .4cm 二、填空题(每小题3分,共27分)7.在数轴上,与表示3的点的距离最近的整数点所表示的数是_________. 8.图象经过点(cos60,sin30)P ︒-︒的正比例函数的表达式为____________.9.如图,直线12l l ∥,则三个角的度数x 、y 、z 之间的等量关系是____________.10.分解因式:3228x xy -=_____________________________.11.如图,在平面直角坐标系中,矩形ABCD 的边与坐标轴平行或垂直,顶点A 、C 分别在函数2y x=的图象的两支上,则图中两块阴影部分的面积的乘积等于__________. 12.如图,点C 、D 在以AB 为直径的半圆上,120BCD ∠=︒,若AB =2,则弦BD 的长为________________.13.某著名篮球运动员在一次比赛中20投16中得28分(罚球命中一次得1分),其中3分球2个,则他投中2分球的频率是__________.14.如图,若开始输入的x 的值为正整数,最后输出的结果为144,则满足条件的x 的值为_____________________.15.如图,两个半径相等的直角扇形的圆心分别在对方的圆弧上,半径AE 、CF 交于点G ,半径BE 、CD 交于点H ,且点C 是AB 的中点,若扇形的半径为2,则图中阴影部分的面积等于____________________.三、解答题(本大题共8个小题, 满分75分)l 1 x(第9题) l 2zyACxyO(第11题)BDAB CO (第12题)· D 输入x计算5x – 1的值>100(第14题)是否输出结果ABC(第15题)D EFGH H16.(8分)解方程:32322xx x-=+-.17.(9分)国务院办公厅下发《关于限制生产销售使用塑料购物袋的通知》,从2008年6月1日起,在全国范围内禁止生产销售使用超薄塑料袋,并实行塑料袋有偿使用制度,“禁塑令”有效的减少了“白色污染”的来源。
某校“环保小组”在“禁塑令”颁布实施前期,到居民小区随机调查了20户居民一天丢弃废塑料袋的情况,统计结果如下表:每户一天丢弃废塑料袋的个数 2 3 4 5户数8 6 4 2请根据表中信息回答:⑴这20户居民一天丢弃废塑料袋的众数和中位数分别是多少个?⑵若该小区有居民500户,如果严格执行“禁塑令”不再丢弃塑料袋,你估计该小区一年来(按365天计算)共减少丢弃的废塑料袋多少个?18.(9分)如图,正方形ABCD中,E点在边BC上,F点在边CD上,AF ED⊥.⑴线段AF和DE相等吗?说明理由;⑵求证:222EF BE FD=+.DAB CEF新世纪教育网 精品资料 版权所有@新世纪教育网19.(9分)如图,是一台名为帕斯卡三角的仪器,当实心小球从入口落下,它依次碰到每层菱形挡块时,会等可能的向左或向右落下.⑴ 分别求出小球通过第2层的A 位置、第3层的B 位置、第4层的C 位置、第5层的D 位置的概率;⑵ 设菱形挡块的层数为n ,则小球通过第n 层的从左边算起第2个位置的概率是多少?20.(9分)如图,Rt ABC △的斜边AB =10,3sin 5A .⑴ 用尺规作图作线段AB 的垂直平分线l (保留作图痕迹,不要写作法、证明); ⑵ 求直线l 被Rt ABC △截得的线段长.A BC (第19题)D (第20题)ABC21.(9分)小明同学周日帮妈妈到超市采购食品,要购买的A、B、C三种食品的价格分别是2元、4元和10元,每种食品至少要买一件,共买了16件,恰好用了50元,若A种食品购买m 件.⑴用含有m的代数式表示另外两种食品的件数;⑵请你帮助设计购买方案,并说明理由.22.(10分)如图,在平面直角坐标系中,直线483y x =-+分别与x 轴交于点A ,与y 轴交于点B ,OAB ∠的平分线交y 轴于点E ,点C 在线段AB 上,以CA 为直径的⊙D 经过点E .⑴ 判断⊙D 与y 轴的位置关系,并说明理由; ⑵ 求点C 的坐标.(第22题)OxyB CA·D E23.(12分)如图,已知关于x 的一元二次函数2y x bx c =-++(0c >)的图象与x 轴相交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,且3OB OC ==,顶点为M .⑴ 求出一元二次函数的关系式;⑵ 点P 为线段MB 上的一个动点,过点P 作x 轴的垂线PD ,垂足为D .若O D m =,PCD △的面积为S ,求S 关于m 的函数关系式,并写出m 的取值范围;⑶ 探索线段MB 上是否存在点P ,使得PCD △为直角三角形,如果存在,求出P 的坐标;如果不存在,请说明理由.(第23题)O xy B M·CA P D本资料来自于资源最齐全的21世纪教育网参考答案一、选择题:⑴C ⑵D ⑶B ⑷A ⑸C ⑹C . 二、填空题:⑺2.⑻y x =-.⑼180y x z -+=︒.⑽2(2)(2)x x y x y +-.⑾4.⑿3.⒀0.4.⒁6,29.⒂24π-.三、解答题:16.略解:同乘(2)(2)x x +-,得1x =,检验(12)(12)0+-≠, 17.略解:⑴众数和中位数分别是2和3;⑵ 8263442538642x ⨯+⨯+⨯+⨯==+++,3653500547500n =⨯⨯=.答.18.略证:⑴ AF DE =,ADF DCE △≌△(AAS ); ⑵222EF FC EC =+22BE FD =+19.略解:⑴ A 、B 、C 、D 位置的概率分别为:12、38、14、516;⑵ 2n n20.⑴ 略;⑵ 求出6BC =,8AC =,3tan 4A =.截线长为 1535tan 344A ⨯==.21.略解:⑴ 设B 、C 两种食品的件数分别为x 、y ,则16,241050m x y m x y ++=⎧⎨++=⎩.解得5543m x -=,73m y -=; ⑵联立55413m -≥、713m -≥、1m ≥.解得1013m ≤≤.则正整数10,11,12,13m =.只有当10m =时,5x =,1y =;当13m =时,1x =,2y =这两种方案符合题意.答.22.⑴相切,连结ED ,DEA DAE EAO ∠=∠=∠,所以ED OA ∥,所以ED OB ⊥;⑵ 易得10AB =.设(,)C m n ,ED R =,则解直角三角形得53B D R =.因为5103R R +=,则154R =.cos m R R CAF =-⨯∠15331452⎛⎫=-= ⎪⎝⎭.2sin n R CAF =⨯∠1542645=⨯⨯=.所以3,62C ⎛⎫⎪⎝⎭. 23.⑴(3,0)B 、(0,3)C .3,930.c b c =⎧⎨-++=⎩得2,3.b c =⎧⎨=⎩,所以223y x x =-++;⑵ 易得(1,4)M .设MB :y kx d =+,则30,4.k d k d +=⎧⎨+=⎩得2,6.k d =-⎧⎨=⎩所以26y x =-+.所以(,26)P m m -+,21(26)32S m m m m =-+=-+(13m ≤<).⑶ 存在.在PCD △中,PDC ∠是锐角,当90DPC ∠=︒时,CDO DCP ∠=∠,得矩形CODP .由263m -+=,解得32m =,所以3,32P ⎛⎫⎪⎝⎭;当90PCD ∠=︒时,COD DCP △∽△,此时2CD CO PD =⋅,即293(26)m m +=-+.2690m m +-=.解得332m =-±,因为13m ≤<,所以3(21)m =-,所以()323,6(22)P --.。