黑龙江省七台河市九年级上学期数学期末考试试卷

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

黑龙江省七台河市九年级上学期数学期末考试试卷
姓名:________ 班级:________ 成绩:________
一、单选题 (共10题;共20分)
1. (2分)方程的解是
A .
B .
C . 或
D .
2. (2分)用配方法解方程2x2﹣4x+1=0时,配方后所得的方程为()
A . (x﹣2)2=3
B . 2(x﹣2)2=3
C . 2(x﹣1)2=1
D . =
3. (2分)(2017·河北模拟) 如图,在矩形ABCD中,E、F分别是CD、BC上的点.若∠AEF=90°,则一定有()
A . △ADE∽△ECF
B . △BCF∽△AEF
C . △ADE∽△AEF
D . △AEF∽△ABF
4. (2分) (2018九上·吴兴期末) 若,则()
A .
B .
C .
D .
5. (2分)(2017·市北区模拟) 如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB、CD交于点E、F,连接BF交AC于点M,连接DE、BO.若∠COB=60°,FO=FC,则下列结论:①FB垂直平分OC;②△EOB≌△CMB;
③DE=EF;④S△AOE:S四边形DGOF=2:7.其中正确结论的个数是()
A . 4个
B . 3个
C . 2个
D . 1个
6. (2分)如图,斜面AC的坡度(CD与AD的比)为1:2,AC=3米,坡顶有一旗杆BC,旗杆顶端B点与A点有一条彩带相连,若AB=10米,则旗杆BC的高为()
A . (3+)米
B . 8米
C . 6米
D . 5米
7. (2分)三角函数、、之间的大小关系是()
A .
B .
C .
D .
8. (2分)已知实数a、b、c满足2|a+3|+4﹣b=0,c2+4b﹣4c﹣12=0,则a+b+c的值为()
A . 0
B . 3
C . 6
D . 9
9. (2分) (2018九上·江苏期中) 抛物线的顶点坐标是()
A . (﹣1,2)
B . (﹣1,﹣2)
C . (1,﹣2)
D . (1,2)
10. (2分) (2020九上·北仑期末) 已知二次函数y=ax2+bx+3自变量x的部分取值和对应函数值y如表:x…-2-10123…
y…-503430…
则在实数范围内能使得y+5>0成立的x取值范围是()
A . x>-2
B . x<-2
C . -2<x<4
D . x>-2或x<4
二、填空题 (共8题;共8分)
11. (1分)(2017·枣庄) 已知关于x的一元二次方程ax2﹣2x﹣1=0有两个不相等的实数根,则a的取值范围是________.
12. (1分)已知:(x、y、z均不为零),则=________.
13. (1分)(2017·花都模拟) 如图,在边长为1的小正反形组成的网格中,△ABC的三个顶点均在格点上,则tanB的值为________.
14. (1分) (2019八下·乌兰浩特期中) 如图,若菱形ABCD的顶点A,B的坐标分别为(3,0),(﹣2,0),点D在y轴上,则点C的坐标是________.
15. (1分)一个足球被从地面向上踢出,它距地面的高度h(m)与足球被踢出后经过的时间t(s)之间具
有函数关系h=at2+19.6t,已知足球被踢出后经过4s落地,则足球距地面的最大高度是________m.
16. (1分)某地区有36所中学,其中九年级学生共7000名.为了了解该地区九年级学生的体重情况,请你运用所学的统计知识,将解决上述问题所要经历的几个主要步骤进行排序.①抽样调查;②设计调查问卷;③用样本估计总体;④整理数据;⑤分析数据.排序:________ (只写序号)
17. (1分)(2017·东河模拟) 如图,正方形ABCD的边长为1,以AB为直径作半圆,点P是CD中点,BP
与半圆交于点Q,连结DQ,给出如下结论:①DQ=1;② = ;③S△PDQ= ;④cos∠ADQ= ,其中正确结论是________(填写序号)
18. (1分) (2019九上·南关期末) 如果关于x的方程x2-x+k=0(k为常数)有两个相等的实数根,那么k=________.
三、解答题 (共8题;共82分)
19. (10分)解方程:
(1) x2﹣4x+1=0;
(2) x(x﹣3)=10.
20. (12分)(2019·河南模拟) 2019年2月18日,“时代楷模”、伏牛山里的好教师﹣﹣张玉滚当选“感动中国”2018年度人物,在中原大地引起强烈反响.为了解学生对张玉滚事迹的知晓情况,某数学课外兴趣小组在本校学生中开展了专题调查活动,随机抽取了部分学生进行问卷调查,根据学生的答题情况,将结果分为A,B,C,D四类,将调查的数据整理后绘制成如下统计表及条形统计图(均不完整):
关注情况频数频率
A.非常了解m0.1
B.比较了解1000.5
C.基本了解30n
D.不太了解500.25
根据以上信息解答下列问题:
(1)在这次抽样调查中,一共抽查了________名学生;
(2)统计表中,m=________,n=________;
(3)请把条形统计图补充完整;
(4)该校共有学生1500名,请你估算该校学生中对张玉滚事迹“非常了解“和“比较了解”的学生共有多少名.
21. (10分)(2017·合川模拟) 某商店以每件50元的价格购进某种品牌衬衫100件,为使这批衬衫尽快出售,该商店先将进价提高到原来的2倍,共销售了10件,再降低相同的百分率作二次降价处理;第一次降价标出了“出厂价”,共销售了40件,第二次降价标出“亏本价”,结果一抢而光,以“亏本价”销售时,每件衬衫仍有14元的利润.
(1)求每次降价的百分率;
(2)在这次销售活动中商店获得多少利润?请通过计算加以说明.
22. (10分)(2017·瑶海模拟) 已知:如图,斜坡AP的坡度为1:2.4,坡长AP为26米,在坡顶A处的同一水平面上有一座古塔BC,在斜坡底P处测得该塔的塔顶B的仰角为45°,在坡顶A处测得该塔的塔顶B的仰角为76°.求:
(1)
坡顶A到地面PQ的距离;
(2)
古塔BC的高度(结果精确到1米).(参考数据:sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)
23. (10分)(2017·梁子湖模拟) 已知二次函数y=a(x﹣m)2﹣a(x﹣m)(a,m为常数,且a≠0).
(1)求证:不论a与m为何值,该函数的图象与x轴总有两个公共点;
(2)设该函数的图象与x轴的两个交点为A(x1,0),B(x2,0),且x12+x22=25,求m的值;
(3)设该函数的图象的顶点为C,与x轴交于A,B两点,且△ABC的面积为1,求a的值.
24. (5分)如图,已知△ABC的面积S△ABC=1.
在图(1)中,若, 则;
在图(2)中,若, 则;
在图(3)中,若, 则;
按此规律,若, 则
若, 则.
25. (10分) (2016九上·越秀期末) 如图1,已知矩形ABCD的宽AD=8,点E在边AB上,P为线段DE上的一动点(点P与点D,E不重合),∠MPN=90°,M,N分别在直线AB,CD上,过点P作直线HK AB,作PF⊥AB,垂足为点F,过点N作NG⊥HK,垂足为点G
(1)求证:∠MPF=∠GPN
(2)在图1中,将直角∠MPN绕点P顺时针旋转,在这一过程中,试观察、猜想:当MF=NG时,△MPN是什么特殊三角形?在图2中用直尺画出图形,并证明你的猜想;
(3)在(2)的条件下,当∠EDC=30°时,设EP=x,△MPN的面积为S,求出S关于x的解析式,并说明S 是否存在最小值?若存在,求出此时x的值和△MPN面积的最小值;若不存在,请说明理由。

26. (15分)(2018·咸宁) 如图,直线y=﹣ x+3与x轴交于点A,与y轴交于点B.抛物线y=﹣ x2+bx+c 经过A、B两点,与x轴的另一个交点为C.
(1)求抛物线的解析式;
(2)点P是第一象限抛物线上的点,连接OP交直线AB于点Q.设点P的横坐标为m,PQ与OQ的比值为y,求y与m的数关系式,并求出PQ与OQ的比值的最大值;
(3)点D是抛物线对称轴上的一动点,连接OD、CD,设△ODC外接圆的圆心为M,当sin∠ODC的值最大时,求点M的坐标.
参考答案一、单选题 (共10题;共20分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
二、填空题 (共8题;共8分)
11-1、
12-1、
13-1、
14-1、
15-1、
16-1、
17-1、
18-1、
三、解答题 (共8题;共82分)
19-1、
19-2、20-1、
20-2、
20-3、20-4、
21-1、21-2、
22-1、22-2、23-1、
23-2、23-3、24-1、25-1、
25-2、25-3、
26-1、26-2、
26-3、。

相关文档
最新文档