九年级上册数学 期末试卷达标检测卷(Word版 含解析)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级上册数学 期末试卷达标检测卷(Word 版 含解析)
一、选择题
1.有9名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前4名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这9名同学成绩的( )
A .平均数
B .方差
C .中位数
D .极差 2.有一组数据5,3,5,6,7,这组数据的众数为( )
A .3
B .6
C .5
D .7 3.如图,在Rt ABC ∆中,AC BC =,52AB =,以AB 为斜边向上作Rt ABD ∆,90ADB ∠=︒.连接CD ,若7CD =,则AD 的长度为( )
A .3242
B .3或4
C .2242
D .2或4 4.一组数据0、-1、3、2、1的极差是( )
A .4
B .3
C .2
D .1 5.一个不透明的袋子中装有20个红球,2个黑球,1个白球,它们除颜色外都相同,若从中任意摸出1个球,则( )
A .摸出黑球的可能性最小
B .不可能摸出白球
C .一定能摸出红球
D .摸出红球的可能性最大 6.用配方法解方程2890x x ++=,变形后的结果正确的是( ) A .()249x +=- B .()247x +=- C .()2425x +=
D .()247x += 7.设()12,A y -,()21,B y ,()32,C y 是抛物线2(1)y x k =-++上的三点,则1y ,
2y ,3y 的大小关系为( )
A .123y y y >>
B .132y y y >>
C .231y y y >>
D .312y y y >>
8.cos60︒的值等于( )
A .12
B 2
C 3
D 3 9.如图所示的网格是正方形网格,则sin A 的值为( )
A.1
2
B.
2
2
C.
3
5
D.
4
5
10.如图,△ABC中,∠C=90°,∠B=30°,AC=7,D、E分别在边AC、BC上,CD =1,DE∥AB,将△CDE绕点C旋转,旋转后点D、E对应的点分别为D′、E′,当点E′落在线段AD′上时,连接BE′,此时BE′的长为()
A.23B.33C.27D.37
11.受益于电子商务发展和法治环境改普等多重因素,“快递业”成为我国经济发展的一匹“黑马”,2018年我国快递业务量为600亿件,预计2020年快递量将达到950亿件,若设快递平均每年增长率为x,则下列方程中,正确的是()
A.600(1+x)=950 B.600(1+2x)=950
C.600(1+x)2=950 D.950(1﹣x)2=600
12.下列方程中,有两个不相等的实数根的是()
A.x2﹣x﹣1=0 B.x2+x+1=0 C.x2+1=0 D.x2+2x+1=0
二、填空题
13.如图,点A、B、C是⊙O上的点,且∠ACB=40°,阴影部分的面积为2π,则此扇形的半径为______.
14.如图,为了测量某棵树的高度,小明用长为2m的竹竿做测量工具,移动竹竿,使竹竿、树的顶端的影子恰好落在地面的同一点.此时,竹竿与这一点距离相距6m,与树相距
15m ,则树的高度为_________m. 15.如图,若抛物线2
y ax h =+与直线y kx b =+交于()3,A m ,()2,B n -两点,则不等式2ax b kx h -<-的解集是______.
16.若记[]
x 表示任意实数的整数部分,例如:[]4.24=,21⎡⎤=⎣⎦,…,则
123420192020⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤-+-+⋅⋅⋅⋅⋅⋅+-⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦
(其中“+”“-”依次相间)的值为______.
17.若一三角形的三边长分别为5、12、13,则此三角形的内切圆半径为______.
18.数据2,3,5,5,4的众数是____.
19.若点C 是线段AB 的黄金分割点且AC >BC ,则AC =_____AB (用含无理数式子表示).
20.长度等于2的弦所对的圆心角是90°,则该圆半径为_____.
21.已知线段a 、b 、c ,其中c 是a 、b 的比例中项,若a =2cm ,b =8cm ,则线段c =_____cm .
22.关于x 的方程220kx x --=的一个根为2,则k =______.
23.当21x -≤≤时,二次函数22
()1y x m m =--++有最大值4,则实数m 的值为________.
24.如图,123////l l l ,直线a 、b 与1l 、2l 、3l 分别相交于点A 、B 、C 和点D 、E 、F .若
AB=3,BC=5,DE=4,则EF的长为______.
三、解答题
25.如图,四边形ABCD内接于⊙O,AC为⊙O的直径,D为AC的中点,过点D作DE∥AC,交BC的延长线于点E.
(1)判断DE与⊙O的位置关系,并说明理由;
(2)若CE=16
3
,AB=6,求⊙O的半径.
26.如图,AB是⊙O的直径,弦CD⊥AB于点H,点F是AD上一点,连接AF交CD的延长线于点E.
(1)求证:△AFC∽△ACE;
(2)若AC=5,DC=6,当点F为AD的中点时,求AF的值.
27.(1)问题提出:苏科版《数学》九年级(上册)习题2.1有这样一道练习题:如图①,BD、CE是△ABC的高,M是BC的中点,点B、C、D、E是否在以点M为圆心的同一个圆
上?为什么?
在解决此题时,若想要说明“点B 、C 、D 、E 在以点M 为圆心的同一个圆上”,在连接MD 、ME 的基础上,只需证明 .
(2)初步思考:如图②,BD 、CE 是锐角△ABC 的高,连接DE .求证:∠ADE =∠ABC ,小敏在解答此题时,利用了“圆的内接四边形的对角互补”进行证明.(请你根据小敏的思路完成证明过程.)
(3)推广运用:如图③,BD 、CE 、AF 是锐角△ABC 的高,三条高的交点G 叫做△ABC 的垂心,连接DE 、EF 、FD ,求证:点G 是△DEF 的内心.
28.如图,AB 是⊙O 的直径,弦DE 垂直平分半径OA ,C 为垂足,弦DF 与半径OB 相交于点P ,连结EF 、EO ,若DE=23,∠DPA=45°.
(1)求⊙O 的半径;
(2)求图中阴影部分的面积.
29.如图,在平面直角坐标系中,ABC ∆的顶点坐标分别为A (6,4),B (4,0),C (2,0).
(1)在y 轴左侧,以O 为位似中心,画出111A B C ∆,使它与ABC ∆的相似比为1:2; (2)根据(1)的作图,111tan A B C ∠= .
30.阅读理解:
如图,在纸面上画出了直线l与⊙O,直线l与⊙O相离,P为直线l上一动点,过点P作⊙O的切线PM,切点为M,连接OM、OP,当△OPM的面积最小时,称△OPM为直线l与⊙O的“最美三角形”.
解决问题:
(1)如图1,⊙A的半径为1,A(0,2) ,分别过x轴上B、O、C三点作⊙A的切线BM、OP、CQ,切点分别是M、P、Q,下列三角形中,是x轴与⊙A的“最美三角形”的是.(填序号)
①ABM;②AOP;③ACQ
(2)如图2,⊙A的半径为1,A(0,2),直线y=kx(k≠0)与⊙A的“最美三角形”的面积
为1
2
,求k的值.
(3)点B在x轴上,以B3为半径画⊙B,若直线3与⊙B的“最美三3
B的横坐标
B
x的取值范围.
31.解方程:3x 2﹣4x +1=0.(用配方法解)
32.如图示,AB 是O 的直径,点F 是半圆上的一动点(F 不与A ,B 重合),弦AD 平分BAF ∠,过点D 作DE AF ⊥交射线AF 于点AF .
(1)求证:DE 与O 相切:
(2)若8AE =,10AB =,求DE 长;
(3)若10AB =,AF 长记为x ,EF 长记为y ,求y 与x 之间的函数关系式,并求出AF EF ⋅的最大值.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.C
解析:C
【解析】
【分析】
9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前4名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.
【详解】
由于总共有9个人,且他们的分数互不相同,
第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.
故选:C .
【点睛】
此题主要考查统计的有关知识,主要包括平均数、中位数、极差、方差的意义,掌握相关知识点是解答此题的关键.
2.C
解析:C
【解析】
【分析】
根据众数的概念求解.
【详解】
这组数据中5出现的次数最多,出现了2次,
则众数为5.
故选:C .
【点睛】
本题考查了众数的概念:一组数据中出现次数最多的数据叫做众数.
3.A
解析:A
【解析】
【分析】
利用A 、B 、C 、D 四点共圆,根据同弧所对的圆周角相等,得出ADC ABC ∠∠=,再作AE CD ⊥,设AE=DE=x ,最后利用勾股定理求解即可.
【详解】
解:如图所示,
∵△ABC 、△ABD 都是直角三角形,
∴A,B,C,D 四点共圆,
∵AC=BC ,
∴BAC ABC 45∠∠==︒,
∴ADC ABC 45∠∠==︒,
作AE CD ⊥于点E,
∴△AED 是等腰直角三角形,设AE=DE=x,则AD 2x =

∵CD=7,CE=7-x,
∵AB =
∴AC=BC=5,
在Rt△AEC 中,222AC AE EC =+,
∴()22257x x =+-
解得,x=3或x=4,
∴AD =
=. 故答案为:A.
【点睛】
本题考查的知识点是勾股定理的综合应用,解题的关键是根据题目得出四点共圆,作出合理辅助线,在圆内利用勾股定理求解. 4.A
解析:A
【解析】
【分析】
根据极差的概念最大值减去最小值即可求解.
【详解】
解:这组数据:0、-1、3、2、1的极差是:3-(-1)=4.
故选A .
【点睛】
本题考查了极差的知识,极差是指一组数据中最大数据与最小数据的差.
5.D
解析:D
【解析】
【分析】
根据概率公式先分别求出摸出黑球、白球和红球的概率,再进行比较,即可得出答案.
【详解】
解:∵不透明的袋子中装有20个红球,2个黑球,1个白球,共有23个球, ∴摸出黑球的概率是
223, 摸出白球的概率是
123, 摸出红球的概率是
2023, ∵123<223<2023
, ∴从中任意摸出1个球,摸出红球的可能性最大;
故选:D .
【点睛】
本题考查了可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等.
6.D
解析:D
【解析】
【分析】
先将常数项移到右侧,然后两边同时加上一次项系数一半的平方,配方后进行判断即可.
【详解】
2890x x ++=,
289x x +=-,
2228494x x ++=-+,
所以()2
47x +=,
故选D.
【点睛】
本题考查了配方法解一元二次方程,熟练掌握配方法的一般步骤以及注意事项是解题的关键. 7.A
解析:A
【解析】
【分析】
根据二次函数的性质得到抛物线y =-(x +1)2+k (k 为常数)的开口向下,对称轴为直线x =﹣1,然后根据三个点离对称轴的远近判断函数值的大小.
【详解】
解:∵抛物线y =-(x +1)2+k (k 为常数)的开口向下,对称轴为直线x =﹣1,而A (2,y 1)离直线x =﹣1的距离最远,C (﹣2,y 3)点离直线x =1最近,∴123y y y >>. 故选A .
【点睛】
本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.
8.A
解析:A
【解析】
【分析】
根据特殊角的三角函数值解题即可.
【详解】
解:cos60°=
12
. 故选A.
【点睛】
本题考查了特殊角的三角函数值.
9.C
解析:C
【解析】
【分析】
设正方形网格中的小正方形的边长为1,连接格点BC,AD,过C作CE⊥AB于E,解直角三角形即可得到结论.
【详解】
解:设正方形网格中的小正方形的边长为1,
连接格点BC,AD,过C作CE⊥AB于E,
∵22
4225
AC BC=+=
=,BC=22,AD=2232
AC CD
+=,
∵S△ABC=1
2
AB•CE=
1
2
BC•AD,
∴CE=
223265
25
BC AD
AB

==,

65
3
5
5
25
CE
A
sin CAB
C
∠==
=,
故选:C.
【点睛】
本题考查了解直角三角形的问题,掌握解直角三角形的方法以及锐角三角函数的定义是解题的关键.
10.B
解析:B
【解析】
【分析】
如图,作CH⊥BE′于H,设AC交BE′于O.首先证明∠CE′B=∠D′=60°,解直角三角形求出HE′,BH即可解决问题.
【详解】
解:如图,作CH⊥BE′于H,设AC交BE′于O.
∵∠ACB=90°,∠ABC=30°,
∴∠CAB=60°,
∵DE∥AB,
∴CD
CA

CE
CB
,∠CDE=∠CAB=∠D′=60°

'
CD
CA

'
CE
CB

∵∠ACB=∠D′CE′,
∴∠ACD′=∠BCE′,
∴△ACD′∽△BCE′,
∴∠D′=∠CE′B=∠CAB,
在Rt△ACB中,∵∠ACB=90°,AC=7,∠ABC=30°,∴AB=2AC=27,BC=3AC=21,
∵DE∥AB,
∴CD
CA

CE
CB


7=
21

∴CE=3,
∵∠CHE′=90°,∠CE′H=∠CAB=60°,CE′=CE=3
∴E′H=1
2
CE′=
3
2
,CH=3HE′=
3
2

∴BH=22
BC CH
-=
9
21
4
-=53
∴BE′=HE′+BH=33,
故选:B.
【点睛】
本题考查了相似三角形的综合应用题,涉及了旋转的性质、平行线分线段成比例、相似三角形的性质与判定等知识点,解题的关键是灵活运用上述知识点进行推理求导.
11.C
解析:C
【解析】
【分析】
设快递量平均每年增长率为x,根据我国2018年及2020年的快递业务量,即可得出关于
x的一元二次方程,此题得解.
【详解】
设快递量平均每年增长率为x,
依题意,得:600(1+x)2=950.
故选:C.
【点睛】
本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.
12.A
解析:A
【解析】
【分析】
逐项计算方程的判别式,根据根的判别式进行判断即可.
【详解】
解:
在x2﹣x﹣1=0中,△=(﹣1)2﹣4×1×(﹣1)=1+4=5>0,故该方程有两个不相等的实数根,故A符合题意;
在x2+x+1=0中,△=12﹣4×1×1=1﹣4=﹣3<0,故该方程无实数根,故B不符合题意;在x2+1=0中,△=0﹣4×1×1=0﹣4=﹣4<0,故该方程无实数根,故C不符合题意;
在x2+2x+1=0中,△=22﹣4×1×1=0,故该方程有两个相等的实数根,故D不符合题意;故选:A.
【点睛】
本题考查根的判别式,解题的关键是记住判别式,△>0有两个不相等实数根,△=0有两个相等实数根,△<0没有实数根,属于中考常考题型.
二、填空题
13.3
【解析】
【分析】
根据圆周角定理可求出∠AOB的度数,设扇形半径为x,从而列出关于x的方程,求出答案.
【详解】
由题意可知:∠AOB=2∠ACB=2×40°=80°,
设扇形半径为x,
故阴
解析:3
【解析】
【分析】
根据圆周角定理可求出∠AOB 的度数,设扇形半径为x ,从而列出关于x 的方程,求出答案.
【详解】
由题意可知:∠AOB =2∠ACB =2×40°=80°,
设扇形半径为x ,
故阴影部分的面积为πx 2×80360
=29×πx 2=2π, 故解得:x 1=3,x 2=-3(不合题意,舍去),
故答案为3.
【点睛】
本题主要考查了圆周角定理以及扇形的面积求解,解本题的要点在于根据题意列出关于x 的方程,从而得到答案.
14.7
【解析】
设树的高度为m ,由相似可得,解得,所以树的高度为7m
解析:7
【解析】
设树的高度为x m ,由相似可得6157262
x +==,解得7x =,所以树的高度为7m 15.【解析】
【分析】
观察图象当时,直线在抛物线上方,此时二次函数值小于一次函数值,当或时,直线在抛物线下方,二次函数值大于一次函数值,将不等式变形,观察图象确定x 的取值范围,即为不等式的解集.

解析:23x -<<
【解析】
【分析】
观察图象当23x -<<时,直线在抛物线上方,此时二次函数值小于一次函数值,当2x <-或3x >时,直线在抛物线下方,二次函数值大于一次函数值,将不等式变形,观察图象确定x 的取值范围,即为不等式的解集.
【详解】
解:设21y ax h =+,2y kx b =+,
∵2ax b kx h -<-
∴2ax h kx b +<+,
∴12y y <
即二次函数值小于一次函数值,
∵抛物线与直线交点为()3,A m ,()2,B n -,
∴由图象可得,x 的取值范围是23x -<<.
【点睛】
本题考查不等式与函数的关系及函数图象交点问题,理解图象的点坐标特征和数形结合思想是解答此题的关键.
16.-22
【解析】
【分析】
先确定的整数部分的规律,根据题意确定算式的运算规律,再进行实数运算.
【详解】
解:观察数据12=1,22=4,32=9,42=16,52=25,62=36的特征,得出数 解析:-22
【解析】
【分析】
2020的整数部分的规律,根据题意确定算式
-+-+⋅⋅⋅⋅⋅⋅+-的运算规律,再进行实数运算. 【详解】
解:观察数据12=1,22=4,32=9,42=16,52=25,62=36的特征,得出数据1,2,3,4……2020中,算术平方根是1的有3个,算术平方根是2的有5个,算数平方根是3的有7个,算
数平方根是4的有9个,…其中432=1849,442=1936,452=2025,所以在、
⋅⋅⋅⋅⋅⋅中,算术平方根依次为1,2,3……43的个数分别为3,5,7,9……个,均为奇数个,最大算数平方根为44的有85个,所以
-+-+⋅⋅⋅⋅⋅⋅+-=1-2+3-4+…+43-44= -22 【点睛】
本题考查自定义运算,通过正整数的算术平方根的整数部分出现的规律,找到算式中相同加数的个数及符号的规律,方能进行运算.
17.【解析】
【详解】
∵,
由勾股定理逆定理可知此三角形为直角三角形,
∴它的内切圆半径,
解析:【解析】
【详解】
∵22251213+=,
由勾股定理逆定理可知此三角形为直角三角形,
∴它的内切圆半径
51213
2
2
r
+-
==,
18.5
【解析】
【分析】
由于众数是一组数据中出现次数最多的数据,注意众数可以不止一个,由此即可确定这组数据的众数.
【详解】
解:∵5是这组数据中出现次数最多的数据,
∴这组数据的众数为5.
故答案
解析:5
【解析】
【分析】
由于众数是一组数据中出现次数最多的数据,注意众数可以不止一个,由此即可确定这组数据的众数.
【详解】
解:∵5是这组数据中出现次数最多的数据,
∴这组数据的众数为5.
故答案为:5.
【点睛】
本题属于基础题,考查了确定一组数据的众数的能力,解题关键是要明确定义,读懂题意.
19.【解析】
【分析】
直接利用黄金分割的定义求解.
【详解】
解:∵点C是线段AB的黄金分割点且AC>BC,
∴AC=AB.
故答案为:.
【点睛】
本题考查了黄金分割的定义,点C是线段AB的黄金分
【解析】
【分析】
直接利用黄金分割的定义求解.
【详解】
解:∵点C 是线段AB 的黄金分割点且AC >BC ,
∴AC AB .
故答案为. 【点睛】
本题考查了黄金分割的定义,点C 是线段AB 的黄金分割点且AC >BC ,则
AC BC =正确理解黄金分割的定义是解题的关键.
20.6
【解析】
【分析】
结合等腰三角形的性质,根据勾股定理求解即可.
【详解】
解:如图AB =6,∠AOB =90°,且OA =OB ,
在中,根据勾股定理得,即
∴,
故答案为:6.
【点睛】
解析:6
【解析】
【分析】
结合等腰三角形的性质,根据勾股定理求解即可.
【详解】
解:如图AB =,∠AOB =90°,且OA =OB ,
在Rt OAB 中,根据勾股定理得222OA OB AB +=,即222272OA AB === ∴236OA =,
0OA >
6OA ∴=
故答案为:6.
【点睛】
本题考查了等腰三角形的性质及勾股定理,在等腰直角三角形中灵活利用勾股定理求线段长度是解题的关键.
21.4
【解析】
【分析】
根据比例中项的定义,列出比例式即可求解.
【详解】
∵线段c是a、b的比例中项,线段a=2cm,b=8cm,
∴=,
∴c2=ab=2×8=16,
∴c1=4,c2=﹣4(舍
解析:4
【解析】
【分析】
根据比例中项的定义,列出比例式即可求解.
【详解】
∵线段c是a、b的比例中项,线段a=2cm,b=8cm,
∴a
c

c
b

∴c2=ab=2×8=16,
∴c1=4,c2=﹣4(舍去),
∴线段c=4cm.
故答案为:4
【点睛】
本题考查了比例中项的概念:当两个比例内项相同时,就叫比例中项.这里注意线段不能是负数.
22.1
【解析】
【分析】
方程的根即方程的解,就是能使方程两边相等的未知数的值,利用方程解的定义就可以得到关于k的方程,从而求得k的值.
把x =2代入方程得:4k −2−2=0,解得k =1

解析:1
【解析】
【分析】
方程的根即方程的解,就是能使方程两边相等的未知数的值,利用方程解的定义就可以得到关于k 的方程,从而求得k 的值.
【详解】
把x =2代入方程得:4k−2−2=0,解得k =1
故答案为:1.
【点睛】
本题主要考查了方程的根的定义,是一个基础的题目.
23.2或
【解析】
【分析】
求出二次函数对称轴为直线x=m ,再分m <-2,-2≤m≤1,m >1三种情况,根据二次函数的增减性列方程求解即可.
【详解】
解:二次函数的对称轴为直线x=m ,且开口向下,
解析:2或
【解析】
【分析】
求出二次函数对称轴为直线x=m ,再分m <-2,-2≤m≤1,m >1三种情况,根据二次函数的增减性列方程求解即可.
【详解】
解:二次函数22()1y x m m =--++的对称轴为直线x=m ,且开口向下,
①m <-2时,x=-2取得最大值,-(-2-m )2+m 2+1=4, 解得74
m =-, 724
->-, ∴不符合题意,
②-2≤m≤1时,x=m 取得最大值,m 2+1=4,
解得m =
所以m =,
③m >1时,x=1取得最大值,-(1-m )2+m 2+1=4,
综上所述,m=2或时,二次函数有最大值.
故答案为:2或
【点睛】
本题考查了二次函数的最值,熟悉二次函数的性质及图象能分类讨论是解题的关键.
24.【解析】
【分析】
直接根据平行线分线段成比例定理即可得.
【详解】




解得,
故答案为:.
【点睛】
本题考查了平行线分线段成比例定理,熟记平行线分线段成比例定理是解题关键. 解析:203
【解析】
【分析】
直接根据平行线分线段成比例定理即可得.
【详解】
123////l l l ,
AB DE BC EF
∴=, 3,5,4AB BC DE ===,
345EF
∴=, 解得203
EF =
, 故答案为:203
. 【点睛】 本题考查了平行线分线段成比例定理,熟记平行线分线段成比例定理是解题关键.
三、解答题
25.(1)DE与⊙O相切;理由见解析;(2)4.
【解析】
【分析】
(1)连接OD,由D为AC的中点,得到AD CD
=,进而得到AD=CD,根据平行线的性质得到∠DOA=∠ODE=90°,求得OD⊥DE,于是得到结论;
(2)连接BD,根据四边形对角互补得到∠DAB=∠DCE,由AD CD
=得到∠DAC=∠DCA =45°,求得△ABD∽△CDE,根据相似三角形的性质即可得到结论.
【详解】
(1)解:DE与⊙O相切
证:连接OD,在⊙O中
∵D为AC的中点
∴AD CD
=
∴AD=DC
∵AD=DC,点O是AC的中点
∴OD⊥AC
∴∠DOA=∠DOC=90°
∵DE∥AC
∴∠DOA=∠ODE=90°
∵∠ODE=90°
∴OD⊥DE
∵OD⊥DE,DE经过半径OD的外端点D
∴DE与⊙O相切.
(2)解:连接BD
∵四边形ABCD是⊙O的内接四边形
∴∠DAB+∠DCB=180°
又∵∠DCE+∠DCB=180°
∴∠DAB=∠DCE
∵AC为⊙O的直径,点
D、B在⊙O上,
∴∠ADC=∠ABC=90°
∵AD CD
=,
∴∠ABD=∠CBD=45°
∵AD=DC,∠ADC=90°
∴∠DAC=∠DCA=45°
∵DE∥AC
∴∠DCA=∠CDE=45°
在△ABD和△CDE中
∵∠DAB=∠DCE,∠ABD=∠CDE=45°∴△ABD∽△CDE
∴AB
CD

AD
CE

6
CD
=16
3
AD
∴AD=DC=42, CE=16
3
,AB=6,
在Rt△ADC中,∠ADC=90°,AD=DC=42,
∴AC=22
AD DC
+=8
∴⊙O的半径为4.
【点睛】
本题考查了直线与圆的位置关系,等腰直角三角形的性质,圆周角定理,相似三角形的判定和性质,正确的识别图形是解题的关键.
26.(1)见解析;(2)
5 4
【解析】
【分析】
(1)根据条件得出AD=AC,推出∠AFC=∠ACD,结合公共角得出三角形相似;(2)根据已知条件证明△ACF≌△DEF,得出AC=DE,利用勾股定理计算出AE的长度,
再根据(1)中△AFC∽△ACE,得出AF
AC

AC
AE
,从而计算出AF的长度.
【详解】
(1)∵CD⊥AB,AB是⊙O的直径
∴AD=AC
∴∠AFC=∠ACD.
∵在△ACF和△AEC中,∠AFC=∠ACD,∠CAF=∠EAC
∴△AFC ∽△ACE
(2)∵四边形ACDF内接于⊙O
∴∠AFD+∠ACD=180°
∵∠AFD+∠DFE=180°
∴∠DFE=∠ACD
∵∠AFC=∠ACD
∴∠AFC=∠DFE.
∵△AFC∽△ACE
∴∠ACF=∠DEF.
∵F为AC的中点
∴AF=DF.
∵在△ACF和△DEF中,∠ACF=∠DEF,∠AFC=∠DFE,AF=DF ∴△ACF≌△DEF.
∴AC=DE=5.
∵CD⊥AB,AB是⊙O的直径
∴CH=DH=3.
∴EH=8
在Rt△AHC中,AH2=AC2-CH2=16,
在Rt△AHE中,AE2=AH2+EH2=80,∴AE=
∵△AFC∽△ACE
∴AF
AC

AC
AE
,即
5
AF

∴AF
【点睛】
本题属于圆与相似三角形的综合,涉及了圆内接四边形的性质,勾股定理,等弧所对的圆周角相等,相似三角形的判定定理等,解题的关键是灵活运用所学知识,正确寻找全等三角形.
27.(1)ME=MD=MB=MC;(2)证明见解析;(3)证明见解析.
【解析】
【分析】
(1)要证四个点在同一圆上,即证明四个点到定点距离相等.
(2)由“直角三角形斜边上的中线等于斜边的一半”,即能证ME=MD=MB=MC,得到四边形BCDE为圆内接四边形,故有对角互补.
(3)根据内心定义,需证明DG、EG、FG分别平分∠EDF、∠DEF、∠DFE.由点B、C、D、E 四点共圆,可得同弧所对的圆周角∠CBD=∠CED.又因为∠BEG=∠BFG=90°,根据(2)易证点B、F、G、E也四点共圆,有同弧所对的圆周角∠FBG=∠FEG,等量代换有∠CED=∠FEG,同理可证其余两个内角的平分线.
【详解】
解:(1)根据圆的定义可知,当点B、C、D、E到点M距离相等时,即他们在圆M上
故答案为:ME=MD=MB=MC
(2)证明:连接MD、ME
∵BD、CE是△ABC的高
∴BD⊥AC,CE⊥AB
∴∠BDC=∠CEB=90°
∵M为BC的中点
∴ME=MD=1
2
BC=MB=MC
∴点B、C、D、E在以点M为圆心的同一个圆上∴∠ABC+CDE=180°
∵∠ADE+∠CDE=180°
∴∠ADE=∠ABC
(3)证明:取BG中点N,连接EN、FN
∵CE、AF是△ABC的高
∴∠BEG=∠BFG=90°
∴EN=FN=1
2
BG=BN=NG
∴点B、F、G、E在以点N为圆心的同一个圆上∴∠FBG=∠FEG
∵由(2)证得点B、C、D、E在同一个圆上
∴∠FBG =∠CED
∴∠FEG =∠CED
同理可证:∠EFG =∠AFD ,∠EDG =∠FDG
∴点G 是△DEF 的内心
【点睛】
本题考查了直角三角形斜边中线定理、中点的性质、三角形内心的判定、圆周角定理、角平分线的定义,综合性较强,解决本题的关键是熟练掌握三角形斜边中线定理、圆周角定理,能够根据题意熟练掌握各个角之间的内在联系.
28.(1) 2 ;(2)π-2.
【解析】
【分析】
(1)因为AB ⊥DE ,求得CE 的长,因为DE 平分AO ,求得CO 的长,根据勾股定理求得⊙O 的半径
(2)连结OF ,根据S 阴影=S 扇形– S △EOF 求得
【详解】
解:(1)∵直径AB ⊥DE
∴132
CE DE =
= ∵DE 平分AO ∴1122
CO AO OE == 又∵90OCE ︒∠=
∴30CEO ︒∠=
在Rt △COE 中,2OE =
∴⊙O 的半径为2
(2)连结OF
在Rt △DCP 中,
∵45DPC ︒∠=
∴904545D ︒︒︒∠=-=
∴290EOF D ︒∠=∠=
∵2902360
OWF S ππ=
⨯⨯=扇形 ∴S 阴影=2π-
【点睛】 本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了扇形的面积公式、圆周角定理和含30度的直角三角形三边的关系.
29.(1)见解析;(2)-2
【解析】
【分析】
(1)连接AO 并延长至1A ,使1
AO 2AO =,同理作出点B ,C 的对应点,再顺次连接即可;
(2)先根据图象找出三点的坐标,再利用正切函数的定义求解即可. 【详解】
(1)如图;
(2)根据题意可得出()13,2A --,()12,0B -,()11
,0C -, 设11A B 与x 轴的夹角为α,
∴()111tan tan 180αtan α2A BC ∠=-=-=-.
【点睛】
本题考查的知识点是在坐标系中画位似图形,掌握位似图形的关于概念是解此题的关键.
30.(1)②;(2)±1;(3)23<B x 3733
-<B x <23-【解析】
【分析】
(1)本题先利用切线的性质,结合勾股定理以及三角形面积公式将面积最值转化为线段最值,了解最美三角形的定义,根据圆心到直线距离最短原则解答本题.
(2)本题根据k的正负分类讨论,作图后根据最美三角形的定义求解EF,利用勾股定理求解AF,进一步确定∠AOF度数,最后利用勾股定理确定点F的坐标,利用待定系数法求k.
(3)本题根据⊙B在直线两侧不同位置分类讨论,利用直线与坐标轴的交点坐标确定
∠NDB的度数,继而按照最美三角形的定义,分别以△BND,△BMN为媒介计算BD长度,最后与OD相减求解点B的横坐标范围.
【详解】
(1)如下图所示:
∵PM是⊙O的切线,
∴∠PMO=90°,
当⊙O的半径OM是定值时,22
PM OP OM
=-,

1
=
2
PMO
S PM OM
••,
∴要使PMO
△面积最小,则PM最小,即OP最小即可,当OP⊥l时,OP最小,符合最美三角形定义.
故在图1三个三角形中,因为AO⊥x轴,故△AOP为⊙A与x轴的最美三角形.
故选:②.
(2)①当k<0时,按题意要求作图并在此基础作FM⊥x轴,如下所示:
按题意可得:△AEF是直线y=kx与⊙A的最美三角形,故△AEF为直角三角形且AF⊥OF.
则由已知可得:
111
=1
222
AEF
S AE EF EF
••=⨯⨯=,故EF=1.
在△AEF中,根据勾股定理得:22
AF AE
==
∵A(0,2),即OA=2,
∴在直角△AFO 中,22=2OF OA AF AF -==, ∴∠AOF=45°,即∠FOM=45°,
故根据勾股定理可得:MF=MO=1,故F(-1,1),
将F 点代入y=kx 可得:1k =-.
②当k >0时,同理可得k=1.
故综上:1k =±.
(3)记直线33y x =+与x 、y 轴的交点为点D 、C ,则(3,0)D -,(0,3)C , ①当⊙B 在直线CD 右侧时,如下图所示:
在直角△COD 中,有3OC =,3OD =tan 3OC ODC OD
∠==ODC=60°. ∵△BMN 是直线33y x =+与⊙B 的最美三角形,
∴MN ⊥BM ,BN ⊥CD ,即∠BND=90°, 在直角△BDN 中,sin BN BDN BD ∠=
, 故23=sin sin 60?BN BN BD BN BDN =∠. ∵⊙B 3,
∴3BM =. 当直线CD 与⊙B 相切时,3BN BM ==
因为直线CD 与⊙B 相离,故BN 3BD >2,所以OB=BD-OD >23. 由已知得:113=322BMN S MN BM MN ••=•=3MN <1. 在直角△BMN 中,2223BN MN BM MN =+=+1+3=2,此时可利用勾股定理算得BD <33,OB BD OD =- <333-33
, 则23<B x 3 ②当⊙B 在直线CD 左侧时,同理可得:73B x <23-
故综上:2<B x <
3或3
-<B x <2- 【点睛】 本题考查圆与直线的综合问题,属于创新题目,此类型题目解题关键在于了解题干所给示例,涉及动点问题时必须分类讨论,保证不重不漏,题目若出现最值问题,需要利用转化思想将面积或周长最值转化为线段最值以降低解题难度,求解几何线段时勾股定理极为常见.
31.x 1=1,x 2=
13 【解析】
【分析】
首先把系数化为1,移项,把常数项移到等号的右侧,然后在方程的左右两边同时加上一次项系数的一半,即可使左边是完全平方公式,右边是常数项,即可求解.
【详解】
3x 2﹣4x +1=0
3(x 2﹣
43x )+1=0 (x ﹣
23)2=19 ∴x ﹣23=±13
∴x 1=1,x 2=
13 【点睛】
本题考查解一元二次方程的方法,解题的关键是熟练掌握用配方法解一元二次方程的一般步骤.
32.(1)详见解析;(2)4;(3)
252
【解析】
【分析】
(1)首先连接OD ,通过半径和角平分线的性质进行等角转换,得出OD AE ∥,进而得出OD DE ⊥,即可得证;
(2)首先连接BD ,得出AED ADB ∆∆∽,进而得出2A D A A E B =⋅,再根据勾股定理得出DE ;
(3)首先连接DF ,过点D 作DG AB ⊥,得出AED AGD ∆∆≌,再得EDF GDB ∆∆≌,进而得出2AB AF EF =+,然后构建二次函数,即可得出其最大值.
【详解】
(1)证明:连接OD
∵OD OA =
∴12∠=∠
∵AD 平分BAE ∠
∴13∠=∠
∴32∠=∠
∴OD AE ∥
∵DE AF ⊥
∴OD DE ⊥
又∵OD 是
O 的半径 ∴DE 与O 相切
(2)解:连接BD
∵AB 为直径
∴∠ADB=90°
∵13∠=∠
∴AED ADB ∆∆∽
∴2A D A A E B =⋅
∴280AD =
∴Rt ADE ∆中2228084DE AD AE =-=-=
(3)连接DF ,过点D 作DG AB ⊥于G ∵13∠=∠,DE ⊥AE ,AD=AD ∴AED AGD ∆∆≌
∴AE AG =,DE=DG
∴EDF GDB ∆∆≌
∴EF BG =
∴2AB AF EF =+
即:
210x y +=
∴152
y x =-+ ∴2152
AF EF x x ⋅=-+ 根据二次函数知识可知:当5x =时,()max 252AF EF ⋅=
【点睛】
此题主要考查直线与圆的位置关系、相似三角形的判定与性质以及全等三角形的判定与性质与二次函数的综合应用,熟练掌握,即可解题.。

相关文档
最新文档