实验5-图的存贮与遍历

合集下载

数据结构实验五---图的遍历及其应用实现

数据结构实验五---图的遍历及其应用实现

数据结构实验五---图的遍历及其应用实现实验五图的遍历及其应用实现一、实验目的1.熟悉图常用的存储结构。

2.掌握在图的邻接矩阵和邻接表两种结构上实现图的两种遍历方法实现。

3.会用图的遍历解决简单的实际问题。

二、实验内容[题目] :从键盘上输入图的顶点和边的信息,建立图的邻接表存储结构,然后以深度优先搜索和广度优先搜索遍历该图,并输出起对应的遍历序列. 试设计程序实现上述图的类型定义和基本操作,完成上述功能。

该程序包括图类型以及每一种操作的具体的函数定义和主函数。

三、实验步骤(一)、数据结构与核心算法的设计描述:本实验主要在于图的基本操作,关键是图的两种遍历,仔细分析图的遍历的特点,不难发现,其符合递归的特点,因此可以采用递归的方法遍历。

本实验图的存储结构主要采用邻接表,总共分为四个模块:图的创建、位置的查找、深度优先遍历、广度优先遍历。

以下是头文件中数据结构的设计和相关函数的声明:#include#include#include#nclude#define OVERFLOW -2#define MAX_VERTEX_NUM 50 //最大顶点数#define MAXQSIZE 100# define OK 1typedef int VRType;typedef int InfoType;typedef int QElemType;typedef enum{DG,DN,UDG,UDN}GraphKind;typedef struct ArcNode // 弧结点{int adjvex; //邻接点域,存放与Vi邻接的点在表头数组中的位置struct ArcNode *nextarc; //链域指向vi的下一条边或弧的结点,InfoType *info; //定义与弧相关的权值,无权则为0 }ArcNode;typedef struct VNode //表头结点{char vexdata; //存放顶点信息struct ArcNode *firstarc; //指示第一个邻接点}VNode,AdjList[MAX_VERTEX_NUM];typedef struct{ //图的结构定义AdjList vertices; //顶点向量int vexnum, arcnum; //vexnum为顶点数arcnum为弧或边的个数GraphKind kind; // 图的种类标志}MGraph;typedef struct Queue //构建循环队列{QElemType *base;int front;int rear;}Queue;void CreateGraph(MGraph &G); //图的创建void DFSTraverse(MGraph &G) ; //深度优先遍历void BFSTraverse(MGraph &G); //广度优先遍历int LocateVex(MGraph &G, char &v);//查找顶点v的位置(二)、函数调用及主函数设计void main(){int x;MGraph G;CreateGraph(G);cout<<"创建图成功!"<<endl;< p="">cout<<"1 深度优先搜索"<<endl<<"2 p="" 广度优先搜索"<<endl;<="">cin>>x;if(x==1){DFSTraverse(G);cout<<"深度优先搜索结束!"<<endl;< p="">}else if(x==2){BFSTraverse(G);cout<<"广度优先搜索结束!"<<endl;< p="">}elsecout<<"输入有误!"<<endl<<"再见!"<<endl;< p="">}(三)、实验总结由于图的基本操作在图这一章节中起着很主要的作用,所以在实验前就对实验做了充分的准备,实验的成功核心在于两种遍历的实现,因此只有充分理解遍历算法的精髓,才能更好的做好实验。

数据结构实验报告图的遍历讲解

数据结构实验报告图的遍历讲解

数据结构实验报告图的遍历讲解一、引言在数据结构实验中,图的遍历是一个重要的主题。

图是由顶点集合和边集合组成的一种数据结构,常用于描述网络、社交关系等复杂关系。

图的遍历是指按照一定的规则,挨次访问图中的所有顶点,以及与之相关联的边的过程。

本文将详细讲解图的遍历算法及其应用。

二、图的遍历算法1. 深度优先搜索(DFS)深度优先搜索是一种常用的图遍历算法,其基本思想是从一个顶点出发,沿着一条路径向来向下访问,直到无法继续为止,然后回溯到前一个顶点,再选择此外一条路径继续访问。

具体步骤如下:(1)选择一个起始顶点v,将其标记为已访问。

(2)从v出发,选择一个未被访问的邻接顶点w,将w标记为已访问,并将w入栈。

(3)如果不存在未被访问的邻接顶点,则出栈一个顶点,继续访问其它未被访问的邻接顶点。

(4)重复步骤(2)和(3),直到栈为空。

2. 广度优先搜索(BFS)广度优先搜索是另一种常用的图遍历算法,其基本思想是从一个顶点出发,挨次访问其所有邻接顶点,然后再挨次访问邻接顶点的邻接顶点,以此类推,直到访问完所有顶点。

具体步骤如下:(1)选择一个起始顶点v,将其标记为已访问,并将v入队。

(2)从队首取出一个顶点w,访问w的所有未被访问的邻接顶点,并将这些顶点标记为已访问,并将它们入队。

(3)重复步骤(2),直到队列为空。

三、图的遍历应用图的遍历算法在实际应用中有广泛的应用,下面介绍两个典型的应用场景。

1. 连通分量连通分量是指图中的一个子图,其中的任意两个顶点都是连通的,即存在一条路径可以从一个顶点到达另一个顶点。

图的遍历算法可以用来求解连通分量的个数及其具体的顶点集合。

具体步骤如下:(1)对图中的每一个顶点进行遍历,如果该顶点未被访问,则从该顶点开始进行深度优先搜索或者广度优先搜索,将访问到的顶点标记为已访问。

(2)重复步骤(1),直到所有顶点都被访问。

2. 最短路径最短路径是指图中两个顶点之间的最短路径,可以用图的遍历算法来求解。

图的遍历 实验报告

图的遍历  实验报告

图的遍历实验报告一、引言图是一种非线性的数据结构,由一组节点(顶点)和节点之间的连线(边)组成。

图的遍历是指按照某种规则依次访问图中的每个节点,以便获取或处理节点中的信息。

图的遍历在计算机科学领域中有着广泛的应用,例如在社交网络中寻找关系紧密的人员,或者在地图中搜索最短路径等。

本实验旨在通过实际操作,掌握图的遍历算法。

在本实验中,我们将实现两种常见的图的遍历算法:深度优先搜索(DFS)和广度优先搜索(BFS),并比较它们的差异和适用场景。

二、实验目的1. 理解和掌握图的遍历算法的原理与实现;2. 比较深度优先搜索和广度优先搜索的差异;3. 掌握图的遍历算法在实际问题中的应用。

三、实验步骤实验材料1. 计算机;2. 编程环境(例如Python、Java等);3. 支持图操作的相关库(如NetworkX)。

实验流程1. 初始化图数据结构,创建节点和边;2. 实现深度优先搜索算法;3. 实现广度优先搜索算法;4. 比较两种算法的时间复杂度和空间复杂度;5. 比较两种算法的遍历顺序和适用场景;6. 在一个具体问题中应用图的遍历算法。

四、实验结果1. 深度优先搜索(DFS)深度优先搜索是一种通过探索图的深度来遍历节点的算法。

具体实现时,我们可以使用递归或栈来实现深度优先搜索。

算法的基本思想是从起始节点开始,选择一个相邻节点进行探索,直到达到最深的节点为止,然后返回上一个节点,再继续探索其他未被访问的节点。

2. 广度优先搜索(BFS)广度优先搜索是一种逐层遍历节点的算法。

具体实现时,我们可以使用队列来实现广度优先搜索。

算法的基本思想是从起始节点开始,依次遍历当前节点的所有相邻节点,并将这些相邻节点加入队列中,然后再依次遍历队列中的节点,直到队列为空。

3. 时间复杂度和空间复杂度深度优先搜索和广度优先搜索的时间复杂度和空间复杂度如下表所示:算法时间复杂度空间复杂度深度优先搜索O(V+E) O(V)广度优先搜索O(V+E) O(V)其中,V表示节点的数量,E表示边的数量。

图的存储结构与遍历 数据结构实验

图的存储结构与遍历 数据结构实验

实验报告June 11 2015姓名:陈斌学号:E11314079 专业:13计算机科学与技术数据结构第七次实验学号E11314079专业计算机科学与技术姓名陈斌实验日期2015.06.11教师签字成绩实验报告【实验名称】图的存储结构与遍历【实验目的】(1)掌握图的相关概念;(2)掌握图的存储结构;(3)掌握图的遍历算法并编程实现。

【实验内容】编写一个程序,实现图的相关运算,并在此基础上设计一个主程序,完成如下功能:(1)建立如教材图7.9所示的有向图G的邻接矩阵,并分别输出顶点表和邻接矩阵。

(2)由有向图G的邻接矩阵产生邻接表,并依次输出每一顶点和其邻接表。

(3)再由(2)的邻接表产生对应的邻接矩阵,并输出该矩阵。

(4)在图G的邻接矩阵存储表示基础上,输出从顶点V1开始的深度优先遍历序列(递归算法)。

(5)在图G的邻接表存储表示基础上,输出从顶点V1开始的广度优先遍历序列。

(6)利用非递归算法重解任务(4)(选做)。

源代码:head.h:#include<string.h>#include<ctype.h>#include<malloc.h> //malloc( )#include<limits.h> // INT ,MAX#include<stdio.h> //EOF,NULL#include<stdlib.h> //atoi( )#include<io.h> //eof( )#include<math.h> //floor( ),ceil( ),abs( )#include<process.h> //exit( )#include<iostream.h> //cout,cin//函数结果状态代码#define TRUE 1#define FALSE 0#define OK 1#define ERROR 0#define INFEASIBLE -1//OVERFLOW 在math.h中已定义为3typedefint Status;typedefint Boolean; // 布尔类型main.cpp:#include"head.h"#define MAX_NAME 5 /* 顶点字符串的最大长度+1 */#define MAX_INFO 20 /* 相关信息字符串的最大长度+1 */typedefintVRType;typedefintInfoType;typedef char VertexType[MAX_NAME];#define INFINITY INT_MAX /* 用整型最大值代替∞*/#define MAX_VERTEX_NUM 20 /* 最大顶点个数*/typedefenum{DG,DN,AG,AN}GraphKind; /* {有向图,有向网,无向图,无向网} *//*图的数组(邻接矩阵)存储表示*/typedefstruct{VRTypeadj; /* 顶点关系类型。

图的两种存储和遍历.doc

图的两种存储和遍历.doc

图的两种存储和遍历实验7图的两种存储和遍历一、实验内容:(1)键盘输入数据,分别建立有向图和无向图邻接表。

(2)输出邻接表。

(3)基于有向图的邻接表计算每个顶点的度,并输出。

(4)利用邻接表存储实现无向图的深度优先遍历。

(5)利用邻接表存储实现无向图的广度优先遍历。

(6)在主功能中设计一个简单的菜单,分别调试上述算法。

第二,源代码:#包含#包含#定义最大顶点数20 #定义确定1 #定义错误0 #定义溢出0 int访问[最大顶点数];//表节点typedef结构ArcNode { int adjvex构造ArcNode * nextarcchar * info} ArcNode//头节点typedef结构VNode {char数据;弧节点*首弧;}虚拟节点,列出[最大顶点数];//图结构typedef结构{AdjList顶点;int vexnum,arcnum} ALGraph//用于BFS遍历的附加链队列节点结构typedefstructqcode {intdata};结构QNode *下一步;}QNode,* QueuePtr//链队列typedef结构{QueuePtr前端;队列后部;}链接队列;//初始化链组intinitqueue(link queue q){ q . front=q . reason=(queue ptr)malloc(sizeof(qcode));如果(!Q.front)出口(OVERFLOW);问:前线-一、实验内容:(1)键盘输入数据,分别建立有向图和无向图邻接表。

(2)输出邻接表。

(3)基于有向图的邻接表计算每个顶点的度,并输出。

(4)利用邻接表存储实现无向图的深度优先遍历。

(5)利用邻接表存储实现无向图的广度优先遍历。

(6)在主功能中设计一个简单的菜单,分别调试上述算法。

第二,源代码:#包含#包含#定义最大顶点数20 #定义确定1 #定义错误0 #定义溢出0 int访问[最大顶点数];//表节点typedef结构ArcNode { int adjvex构造ArcNode * nextarcchar * info} ArcNode//头节点typedef结构VNode {char数据;弧节点*首弧;}虚拟节点,列出[最大顶点数];//图结构typedef结构{AdjList顶点;int vexnum,arcnum} ALGraph//用于BFS遍历的附加链队列节点结构typedefstructqcode {intdata};结构QNode *下一步;}QNode,* QueuePtr//链队列typedef结构{QueuePtr前端;队列后部;}链接队列;//初始化链组intinitqueue(link queue q){ q . front=q . reason=(queue ptr)malloc(sizeof(qcode));如果(!Q.front)出口(OVERFLOW);q . front:wordfan div;I)。

图的遍历的实验报告

图的遍历的实验报告

图的遍历的实验报告图的遍历的实验报告一、引言图是一种常见的数据结构,它由一组节点和连接这些节点的边组成。

图的遍历是指从图中的某个节点出发,按照一定的规则依次访问图中的所有节点。

图的遍历在许多实际问题中都有广泛的应用,例如社交网络分析、路线规划等。

本实验旨在通过实际操作,深入理解图的遍历算法的原理和应用。

二、实验目的1. 掌握图的遍历算法的基本原理;2. 实现图的深度优先搜索(DFS)和广度优先搜索(BFS)算法;3. 比较并分析DFS和BFS算法的时间复杂度和空间复杂度。

三、实验过程1. 实验环境本实验使用Python编程语言进行实验,使用了networkx库来构建和操作图。

2. 实验步骤(1)首先,我们使用networkx库创建一个包含10个节点的无向图,并添加边以建立节点之间的连接关系。

(2)接下来,我们实现深度优先搜索算法。

深度优先搜索从起始节点开始,依次访问与当前节点相邻的未访问过的节点,直到遍历完所有节点或无法继续访问为止。

(3)然后,我们实现广度优先搜索算法。

广度优先搜索从起始节点开始,先访问与当前节点相邻的所有未访问过的节点,然后再访问这些节点的相邻节点,依此类推,直到遍历完所有节点或无法继续访问为止。

(4)最后,我们比较并分析DFS和BFS算法的时间复杂度和空间复杂度。

四、实验结果经过实验,我们得到了如下结果:(1)DFS算法的时间复杂度为O(V+E),空间复杂度为O(V)。

(2)BFS算法的时间复杂度为O(V+E),空间复杂度为O(V)。

其中,V表示图中的节点数,E表示图中的边数。

五、实验分析通过对DFS和BFS算法的实验结果进行分析,我们可以得出以下结论:(1)DFS算法和BFS算法的时间复杂度都是线性的,与图中的节点数和边数呈正比关系。

(2)DFS算法和BFS算法的空间复杂度也都是线性的,与图中的节点数呈正比关系。

但是,DFS算法的空间复杂度比BFS算法小,因为DFS算法只需要保存当前路径上的节点,而BFS算法需要保存所有已访问过的节点。

图的存储与遍历

图的存储与遍历

void BFSTraverse(Graph G)
{ //按广度优先非递归遍历图G。类似于树的层次遍历。 for (v=0; v<G.vexnum; ++v) visited[v]=0; //访问标志初始化 InitQueue(Q); //辅助队列Q for(v=0; v<G.vexnum; ++v)
}//while
例:下图采用邻接矩阵存储结构,给出从顶点A出发的 深度优先和广度优先遍历图的序列。
A B C E
深度优先遍历序列:A B E C D
D
if( !visited[v] ) //v尚未访问,从v出发广度优先遍历
{
}//BFSTraverse 下页显示
}//if
//从v出发广度优先遍历
visited[v]=1; Visit(v); EnQueue(Q, v); //访问v,并入队 while( !QueueEmpty(Q) )
{ //队不空时
i=LocateVex(G,v1); j=LocateVex(G,v2); G.arcs[i][j].adj=w ;//弧<v1,v2> 的权值 int LocateVex(MGraph G,char u) //若弧含有相关信息,则输入 { int i; if (IncInfo) Input ; for(*G.arcs[i][j].info) (i=0;i<G.vexnum;i++) if (G.vexs[i] = =u) return i; G.arcs[j][i]=G.arcs[i][j] ; } //置<v1,v2>的对称弧<v2,v1>
(2)仔细分析实验内容,给出生成图和遍历图的算 法思想和算法流程图; (3)实现图的邻接矩阵、邻接表存储,并分别进行 深度和广度优先遍历; (4)给出测试数据,并分析其结果;

图的遍历实验报告

图的遍历实验报告

图的遍历实验报告图的遍历实验报告一、引言图是一种常见的数据结构,广泛应用于计算机科学和其他领域。

图的遍历是指按照一定规则访问图中的所有节点。

本实验通过实际操作,探索了图的遍历算法的原理和应用。

二、实验目的1. 理解图的遍历算法的原理;2. 掌握深度优先搜索(DFS)和广度优先搜索(BFS)两种常用的图遍历算法;3. 通过实验验证图的遍历算法的正确性和效率。

三、实验过程1. 实验环境准备:在计算机上安装好图的遍历算法的实现环境,如Python编程环境;2. 实验数据准备:选择合适的图数据进行实验,包括图的节点和边的信息;3. 实验步骤:a. 根据实验数据,构建图的数据结构;b. 实现深度优先搜索算法;c. 实现广度优先搜索算法;d. 分别运行深度优先搜索和广度优先搜索算法,并记录遍历的结果;e. 比较两种算法的结果,分析其异同点;f. 对比算法的时间复杂度和空间复杂度,评估其性能。

四、实验结果与分析1. 实验结果:根据实验数据和算法实现,得到了深度优先搜索和广度优先搜索的遍历结果;2. 分析结果:a. 深度优先搜索:从起始节点出发,一直沿着深度方向遍历,直到无法继续深入为止。

该算法在遍历过程中可能产生较长的路径,但可以更快地找到目标节点,适用于解决一些路径搜索问题。

b. 广度优先搜索:从起始节点出发,按照层次顺序逐层遍历,直到遍历完所有节点。

该算法可以保证找到最短路径,但在遍历大规模图时可能需要较大的时间和空间开销。

五、实验总结1. 通过本次实验,我们深入理解了图的遍历算法的原理和应用;2. 掌握了深度优先搜索和广度优先搜索两种常用的图遍历算法;3. 通过实验验证了算法的正确性和效率;4. 在实际应用中,我们需要根据具体问题的需求选择合适的遍历算法,权衡时间复杂度和空间复杂度;5. 进一步研究和优化图的遍历算法,可以提高算法的性能和应用范围。

六、参考文献[1] Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). Introduction to Algorithms (3rd ed.). MIT Press.[2] Sedgewick, R., & Wayne, K. (2011). Algorithms (4th ed.). Addison-Wesley Professional.。

实验报告:图的存储结构和遍历

实验报告:图的存储结构和遍历

武汉东湖学院
实验报告
学院:计算机科学学院专业计算机科学与技术2016年11月18日
姓名付磊学号42
班级计科一班指导老师吴佳芬
课程名称数据结构成

实验名称图的存储结构和遍历
1.实验目的
(1)了解邻接矩阵存储法和邻接表存储法的实现过程。

(2)了解图的深度优先遍历和广度优先遍历的实现过程。

2.实验内容
1. 采用图的邻接矩阵存储方法,实现下图的邻接矩阵存储,并输出该矩阵.
2. 设计一个将第1小题中的邻接矩阵转换为邻接表的算法,并设计一个在屏幕上显示邻接表的算法
3. 实现基于第2小题中邻接表的深度优先遍历算法,并输出遍历序列
4. 实现基于第2小题中邻接表的广度优先遍历算法,并输出遍历序列
3.实验环境
Visual C++ 6.0
4.实验方法和步骤(含设计)
我们通过二维数组中的值来表示图中节点与节点的关系。

通过上图可知,其邻接矩阵示意图为如下:
V0 v1 v2 v3 v4 v5
V0 0 1 0 1 0 1
V1 1 0 1 1 1 0
V2 0 1 0 0 1 0
V3 1 1 0 0 1 1
V4 0 1 1 1 0 0
V5 1 0 0 1 0 0
此时的“1”表示这两个节点有关系,“0”表示这两个节点无关系。

我们通过邻接表来在计算机中存储图时,其邻接表存储图如下:
}。

数据结构课程设计报告样本(图的存储与遍历)

数据结构课程设计报告样本(图的存储与遍历)

这是最后提交的文档资料格式,必须包含几个部分完成要求不少于页。

《数据结构》课程设计题目图的存储与遍历学生姓名指导教师学院专业班级完成时间目录(要求自动生成)第一章课程设计目的 (2)第二章课程设计内容和要求 (2)第三章课程设计分析 (3)第四章算法描述 (4)第五章源代码 (8)第六章运行结果分析 (13)第七章结束语 (15)第八章参考文献 (15)第一章课程设计目的本学期我们对《数据结构》这门课程进行了学习。

这门课程是一门实践性非常强的课程,为了让大家更好地理解与运用所学知识,提高动手能力,我们进行了此次课程设计实习。

这次课程设计不但要求实习者掌握《数据结构》中的各方面知识,还要求实习者具备一定的C语言基础和编程能力。

具体说来,这次课程设计主要有两大方面目的。

一是让实习者通过实习掌握《数据结构》中的知识。

对于《图的存储与遍历》这一课题来说,所要求掌握的数据结构知识主要有:图的邻接表存贮结构、队列的基本运算实现、邻接表的算法实现、图的广度优先搜索周游算法实现、图的深度优先搜索周游算法实现。

二是通过实习巩固并提高实习者的C语言知识,并初步了解Visual C++的知识,提高其编程能力与专业水平。

第二章课程设计内容和要求2.1课程设计内容该课题要求以邻接表的方式存储图,输出邻接表,并要求实现图的深度、广度两种遍历。

2.1.1图的邻接表的建立与输出对任意给定的图(顶点数和边数自定),并且对有向图与无向图都应进行讨论,根据邻接表的存储结构建立图的邻接表并输出之。

尽量用图形化的方式输出邻接表。

2.1.2 图的遍历的实现图的遍历包括图的广度优先遍历与深度优先遍历。

对于广度优先遍历应利用队列的五种基本运算(置空队列、进队、出队、取队头元素、判队空)来实现。

首先建立一空队列,从初始点出发进行访问,当被访问时入队,访问完出队。

并以队列是否为空作为循环控制条件。

对于深度优先遍历则采用递归或非递归算法来实现。

2.2 运行环境该程序的运行环境为Windows xp系统,Microsoft Visual C++6.0版本。

图的遍历算法实验报告

图的遍历算法实验报告

图的遍历算法实验报告
《图的遍历算法实验报告》
在计算机科学领域,图的遍历算法是一种重要的算法,它用于在图数据结构中
访问每个顶点和边。

图的遍历算法有两种常见的方法:深度优先搜索(DFS)
和广度优先搜索(BFS)。

在本实验中,我们将对这两种算法进行实验,并比较
它们的性能和应用场景。

首先,我们使用深度优先搜索算法对一个简单的无向图进行遍历。

通过实验结
果可以看出,DFS算法会首先访问一个顶点的所有邻居,然后再递归地访问每
个邻居的邻居,直到图中所有的顶点都被访问到。

这种算法在一些应用场景中
非常有效,比如寻找图中的连通分量或者寻找图中的环路。

接下来,我们使用广度优先搜索算法对同样的无向图进行遍历。

通过实验结果
可以看出,BFS算法会首先访问一个顶点的所有邻居,然后再按照距离递增的
顺序访问每个邻居的邻居。

这种算法在一些应用场景中也非常有效,比如寻找
图中的最短路径或者寻找图中的最小生成树。

通过对比实验结果,我们可以发现DFS和BFS算法各自的优势和劣势。

DFS算
法适合用于寻找图中的连通分量和环路,而BFS算法适合用于寻找最短路径和
最小生成树。

因此,在实际应用中,我们需要根据具体的需求来选择合适的算法。

总的来说,图的遍历算法是计算机科学中非常重要的算法之一,它在许多领域
都有着广泛的应用。

通过本次实验,我们对DFS和BFS算法有了更深入的了解,并且对它们的性能和应用场景有了更清晰的认识。

希望通过这篇实验报告,读
者们也能对图的遍历算法有更深入的理解和认识。

数据结构实验报告图的遍历

数据结构实验报告图的遍历

数据结构实验报告图的遍历数据结构实验报告:图的遍历引言在计算机科学中,图是一种重要的数据结构,它由节点和边组成,用于表示不同实体之间的关系。

图的遍历是一种重要的操作,它可以帮助我们了解图中节点之间的连接关系,以及找到特定节点的路径。

在本实验中,我们将讨论图的遍历算法,并通过实验验证其正确性和效率。

深度优先搜索(DFS)深度优先搜索是一种常用的图遍历算法,它通过递归或栈的方式来遍历图中的节点。

在实验中,我们实现了深度优先搜索算法,并对其进行了测试。

实验结果表明,深度优先搜索算法能够正确地遍历图中的所有节点,并找到指定节点的路径。

此外,我们还对算法的时间复杂度进行了分析,验证了其在不同规模图上的性能表现。

广度优先搜索(BFS)广度优先搜索是另一种常用的图遍历算法,它通过队列的方式来遍历图中的节点。

在实验中,我们也实现了广度优先搜索算法,并对其进行了测试。

实验结果显示,广度优先搜索算法同样能够正确地遍历图中的所有节点,并找到指定节点的路径。

我们还对算法的时间复杂度进行了分析,发现其在不同规模图上的性能表现与深度优先搜索算法相近。

实验结论通过本次实验,我们深入了解了图的遍历算法,并验证了其在不同规模图上的正确性和效率。

我们发现深度优先搜索和广度优先搜索算法都能够很好地应用于图的遍历操作,且在不同情况下都有良好的性能表现。

这些算法的实现和测试为我们进一步深入研究图的相关问题提供了重要的基础。

总结图的遍历是图算法中的重要操作,它为我们提供了了解图结构和节点之间关系的重要手段。

本次实验中,我们实现并测试了深度优先搜索和广度优先搜索算法,验证了它们的正确性和效率。

我们相信这些算法的研究和应用将为我们在图相关问题的研究中提供重要的帮助。

图的遍历操作实验报告

图的遍历操作实验报告

图的遍历操作实验报告一、实验目的本次实验的主要目的是深入理解图的遍历操作的基本原理和方法,并通过实际编程实现,掌握图的深度优先遍历(DepthFirst Search,DFS)和广度优先遍历(BreadthFirst Search,BFS)算法,比较它们在不同类型图中的性能和应用场景。

二、实验环境本次实验使用的编程语言为 Python,开发环境为 PyCharm。

实验中使用的数据结构为邻接表来表示图。

三、实验原理(一)深度优先遍历深度优先遍历是一种递归的图遍历算法。

它从起始节点开始,沿着一条路径尽可能深地访问节点,直到无法继续,然后回溯到上一个未完全探索的节点,继续探索其他分支。

(二)广度优先遍历广度优先遍历则是一种逐层访问的算法。

它从起始节点开始,先访问起始节点的所有相邻节点,然后再依次访问这些相邻节点的相邻节点,以此类推,逐层展开。

四、实验步骤(一)数据准备首先,定义一个图的邻接表表示。

例如,对于一个简单的有向图,可以使用以下方式创建邻接表:```pythongraph ={'A':'B','C','B':'D','E','C':'F','D':,'E':,'F':}```(二)深度优先遍历算法实现```pythondef dfs(graph, start, visited=None):if visited is None:visited = set()visitedadd(start)print(start)for next_node in graphstart:if next_node not in visited:dfs(graph, next_node, visited)```(三)广度优先遍历算法实现```pythonfrom collections import deque def bfs(graph, start):visited ={start}queue = deque(start)while queue:node = queuepopleft()print(node)for next_node in graphnode:if next_node not in visited:visitedadd(next_node)queueappend(next_node)```(四)测试与分析分别使用深度优先遍历和广度优先遍历算法对上述示例图进行遍历,并记录遍历的顺序和时间开销。

数据结构图的遍历实验报告doc

数据结构图的遍历实验报告doc

数据结构图的遍历实验报告篇一:【数据结构】图的存储和遍历实验报告《数据结构B》实验报告系计算机与电子专业级班姓名学号XX年1 0月 9日1. 上机题目:图的存储和遍历2. 详细设计#include#define GRAPHMAX 10#define FALSE 0#define TRUE 1#define error printf#define QueueSize 30typedef struct{char vexs[GRAPHMAX];int edges[GRAPHMAX][GRAPHMAX];int n,e;}MGraph;int visited[10];typedef struct{int front,rear,count;int data[QueueSize];}CirQueue;void InitQueue(CirQueue *Q) {Q->front=Q->rear=0;Q->count=0;}int QueueEmpty(CirQueue *Q) {return Q->count=QueueSize;}int QueueFull(CirQueue *Q){return Q->count==QueueSize;}void EnQueue(CirQueue *Q,int x) {if(QueueFull(Q))error("Queue overflow");else{ Q->count++;Q->data[Q->rear]=x;Q->rear=(Q->rear+1)%QueueSize;}}int DeQueue(CirQueue *Q){int temp;if(QueueEmpty(Q)){ error("Queue underflow");return NULL;}else{ temp=Q->data[Q->front]; Q->count--; Q->front=(Q->front+1)%QueueSize; return temp;}}void CreateMGraph(MGraph *G){int i,j,k;char ch1,ch2;printf("\n\t\t请输入定点数,边数并按回车(格式如:3,4):");scanf("%d,%d",&(G->n),&(G->e));for(i=0;in;i++){ getchar();printf("\n\t\t请输入第%d个定点数并按回车:",i+1);scanf("%c",&(G->vexs[i]));}for(i=0;in;i++)for(j=0;jn;j++)G->edges[i][j]=0;for(k=0;ke;k++){ getchar();printf("\n\t\t请输入第%d条边的顶点序号(格式如:i,j):",k+1);scanf("%c,%c",&ch1,&ch2);for(i=0;ch1!=G->vexs[i];i++);for(j=0;ch2!=G->vexs[j];j++);G->edges[i][j]=1;}}void DFSM(MGraph *G,int i){int j;printf("\n\t\t深度优先遍历序列: %c\n",G->vexs[i]);visited[i]=TRUE;for(j=0;jn;j++)if(G->edges[i][j]==1 && visited[j]!=1) ////////////////DFSM(G,j);}void BFSM(MGraph *G,int k){ int i,j;CirQueue Q;InitQueue(&Q);printf("\n\t\t广度优先遍历序列:%c\n",G->vexs[k]);visited[k]=TRUE;EnQueue(&Q,k);while(!QueueEmpty(&Q)){ i=DeQueue(&Q);for(j=0;jn;j++)if(G->edges[i][j]==1 && visited[j]!=1) { visited[j]=TRUE;EnQueue(&Q,j);}}}void DFSTraverseM(MGraph *G){int i;for(i=0;in;i++)visited[i]=FALSE;for(i=0;in;i++)if(!visited[i]) DFSM(G,i);}void BFSTraverseM(MGraph *G){int i;for(i=0;in;i++)visited[i]=FALSE;for(i=0;in;i++)if(!visited[i]) BFSM(G,i);}void main(){MGraph *G,a;char ch1;int i,j,ch2;G=&a;printf("\n\t\t建立一个有向图的邻接矩阵表示\n");CreateMGraph(G);printf("\n\t\t已建立一个有向图的邻接矩阵存储\n");for(i=0;in;i++){ printf("\n\t\t");for(j=0;jn;j++)printf("%5d",G->edges[i][j]);}getchar();ch1='y';while(ch1=='y'||ch1=='Y'){ printf("\n");printf("\n\t\t图的存储与遍历 ");printf("\n\t\t********************************");printf("\n\t\t*1-----更新邻接矩阵*");printf("\n\t\t*2-----深度优先遍历*");printf("\n\t\t*3-----广度优先遍历*");printf("\n\t\t*0-----退出*");printf("\n\t\t********************************");}} printf("\n\t\t请选择菜单号(0----3)"); scanf("%d",&ch2); getchar(); switch(ch2) { case 1:CreateMGraph(G); printf("\n\t\t图的邻接矩阵存储建立完成\n");break; case 2:DFSTraverseM(G);break; case 3:BFSTraverseM(G);break; case 0:ch1='n';break; default:printf("\n\t\t输出错误!清重新输入!"); }3. 调试分析(1)调试过程中主要遇到哪些问题?是如何解决的?由于实习之初对邻接表的存储结构了解不是很清楚,所以在运行出了一个小错误,即在输出邻接表时,每个结点都少了一个邻接点。

【结构】数据结构课程设计图的存储与遍历

【结构】数据结构课程设计图的存储与遍历

【关键字】结构中南大学《数据结构》课程设计题目图的保存和遍历学生姓名指导教师学院信息科学与工程专业班级完成时间第一章课程设计目的1.1掌握图的邻接表存贮结构。

1.2掌握队列的基本运算实现。

1.3掌握图的邻接表的算法实现。

1.4掌握图的广度优先搜索周游算法实现。

1.5掌握图的深度优先搜索周游算法实现第二章设计内容和要求对任意给定的图(顶点数和边数自定),建立它的邻接表并输出,然后利用队列的五种基本运算(置空队列、进队、出队、取队头元素、判队空)实现图的广度、深度优先搜索周游。

第三章运行环境Turber c/c++集成实验与学习环境第四章课程设计分析我的设计思路是,先通过给定的顶点和边的信息构造出图,用邻接表保存该图,然后用DFS或BFS进行遍历.下面是我设计过程的结构图:图4.1 设计过程的结构图通过自己对图的保存与遍历的算法了解和实践,进一步加深了图的邻接表保存,其特点有:1.保存表示,不惟一,各边表结点的链接次序取决于建立邻接表的算法和边的输入次序;空间复杂度S(n,e) ,S(n,e)=O(n+e)。

稀疏图用邻接表表示比用邻接矩阵表示节省保存空间;2.求顶点的度,无向图:顶点vi的度则是第i个边表中的结点个数;3.判定(Vi,Vj)或<Vi,Vj>是否是图的一条边;在邻接表表示中,需扫描第i个边表最坏情况下要耗费O(n)时间;4.求边的数目,与e的大小无关只要对每个边表的结点个数计数即可求得e,所耗费的时间,是O(e+n)。

当e≤n2时,采用邻接表表示更节省空间。

至于两种遍历,在计算机科学中,经常会遇到图的遍历问题。

解决这一问题的经典算法就是所谓深度优先搜索和广度优先搜索,理论证明两套算法的性能是等效的。

遍历图的过程实质是通过边或弧找邻接点的过程,因此广度优先搜索遍历图的时间复杂度和深度优先搜索遍历相同,两者不同之处在于对顶点访问的顺序不同而已.第五章算法(数据结构)描述实现图的保存和遍历其思路总体分二个大步骤:1.1图的保存采用邻接表对图进行保存,并输出保存结果,为实现邻接表的建立附设连个指向图相关边的指针*p,*q.再用for(k=1;k<=e;k++)同时*p,*q移动,给每条边分配内存,再利用函数print(g,n)将建立好的邻接表输出。

实验报告:图的存储结构和遍历

实验报告:图的存储结构和遍历

武汉东湖学院
实验报告
学院:计算机科学学院专业计算机科学与技术2016年11月18日
姓名付磊学号2015040131042
班级计科一班指导老师吴佳芬
课程名称数据结构成

实验名称图的存储结构和遍历
1.实验目的
(1)了解邻接矩阵存储法和邻接表存储法的实现过程。

(2)了解图的深度优先遍历和广度优先遍历的实现过程。

2.实验内容
1. 采用图的邻接矩阵存储方法,实现下图的邻接矩阵存储,并输出该矩阵.
2. 设计一个将第1小题中的邻接矩阵转换为邻接表的算法,并设计一个在屏幕上显示邻接表的算法
3. 实现基于第2小题中邻接表的深度优先遍历算法,并输出遍历序列
4. 实现基于第2小题中邻接表的广度优先遍历算法,并输出遍历序列
3.实验环境
Visual C++ 6.0
4.实验方法和步骤(含设计)
我们通过二维数组中的值来表示图中节点与节点的关系。

通过上图可知,其邻接矩阵示意图为如下:
V0 v1 v2 v3 v4 v5
V0 0 1 0 1 0 1
V1 1 0 1 1 1 0
V2 0 1 0 0 1 0
V3 1 1 0 0 1 1
V4 0 1 1 1 0 0
V5 1 0 0 1 0 0
此时的“1”表示这两个节点有关系,“0”表示这两个节点无关系。

我们通过邻接表来在计算机中存储图时,其邻接表存储图如下:
}。

图的遍历数据结构实验报告

图的遍历数据结构实验报告

图的遍历数据结构实验报告图的遍历数据结构实验报告1. 实验目的本实验旨在通过使用图的遍历算法,深入理解图的数据结构以及相关算法的运行原理。

2. 实验背景图是一种非线性的数据结构,由顶点和边组成。

图的遍历是指按照某种规则,从图中的一个顶点出发,访问图中的所有顶点且仅访问一次的过程。

3. 实验环境本次实验使用的操作系统为Windows 10,编程语言为Python3.8,使用的图数据结构库为NetworkX。

4. 实验步骤4.1 创建图首先,我们使用NetworkX库创建一个有向图。

通过调用add_nodes_from()方法添加顶点,并调用add_edge()方法添加边,构建图的结构。

4.2 深度优先搜索(DFS)接下来,我们使用深度优先搜索算法来遍历这个图。

深度优先搜索是一种递归的遍历法,从一个顶点开始,沿着深度方向访问图中的顶点,直到不能继续深入为止。

4.3 广度优先搜索(BFS)然后,我们使用广度优先搜索算法来遍历这个图。

广度优先搜索是一种先访问离起始顶点最近的顶点的遍历法,从一个顶点开始,依次访问与之相邻的顶点,直到访问完所有的顶点为止。

5. 实验结果我们根据深度优先搜索和广度优先搜索算法,分别得到了图的遍历结果。

通过实验可以观察到每种遍历方式所访问的顶点顺序以及所需的时间复杂度。

6. 结论通过本次实验,我们了解了图的遍历数据结构及相关算法的原理和实现方式。

深度优先搜索和广度优先搜索算法适用于不同的场景,可以根据具体情况选择合适的算法进行图的遍历。

附件:无附录:本文所涉及的法律名词及注释:- 图:由结点和边组成的非线性数据结构。

- 顶点:图中的每个元素都称为顶点,也称为结点。

- 边:顶点之间的连接关系称为边。

图的建立与遍历实验报告

图的建立与遍历实验报告

图的建立与遍历实验报告------------图的建立与遍历姓名:曹庆松班级:1104学号:1111611512实验日期:2012.10.15报告撰写日期:2012.10.16一、实验目的:1、熟悉图的概念、存储结构和遍历方法。

2、以邻接表为存储结构,掌握无向图的基本操作和实现方法。

3、以邻接表为存储结构,掌握无向图的深度优先遍历的算法实现。

二、实验内容:以邻接表为存储结构,编写程序实现。

1、要求通过键盘输入图的顶点,以及每一条边的两个顶点从而建立无向。

为了简化实验,顶点用数字表示。

2、在以上实验的基础上,实现无向图的深度优先遍历算法。

要求以用户给定的顶点为起始点,显示深度优先遍历的次序。

三、程序代码及结果展示:#include "stdafx.h"#include<stdio.h>#include<stdlib.h>#include <malloc.h>#define MAX_VERTER_NUM 20typedef struct ArcNode{ //表节点int adjvex; //邻接点struct ArcNode *nextarc; //指向下一条弧的指针}ArcNode;typedef struct VNode{ //头结点int data; //定点信息ArcNode * firstarc; //指向第一个依附该顶点的弧的指针}VNode,AdjList[MAX_VERTER_NUM];typedef struct{ //图AdjList vertices; //顶int vexnum,arcnum;//图的顶点数和弧数int Kind;// 图的种类标志}ALGraph;// 对图 G 作深度优先遍历int LocateVex(ALGraph * G,int v) //寻找节点V的位置 { int k,n;for(k=0;k<G->vexnum;k++){ if(G->vertices[k].data==v){n=k;break;}}return n;}int n=1;int visited[MAX_VERTER_NUM]; void DFS(ALGraph *G,int v)//递归调用{ArcNode *p;>vertices[v].firstarc; p=G-if(n<G->vexnum+1){printf(" V%d ",G->vertices[v].data);n++;}visited[v]=1;while(p){if(!visited[p->adjvex])DFS(G,p->adjvex);p=p->nextarc;}}void DFSVisited(ALGraph * G)//深度遍历{int v;int n;printf("请输入遍历的起始的顶点:");scanf("%d",&n);n"); printf("递归深度优先遍历点顺序: \DFS(G,n-1);for(v=0;v<G->vexnum;v++)visited[v]=0;for(v=0;v<G->vexnum;v++)if(!visited[v])DFS(G,v);}void Insertadj(ALGraph * G,int i,int j) //插入邻接点的下标 { ArcNode *a1,*a2;a1=(ArcNode *)malloc(sizeof(ArcNode));a1->adjvex=j;a1->nextarc=NULL;if(G->vertices[i].firstarc==NULL){G->vertices[i].firstarc=a1;}else{a2=G->vertices[i].firstarc;while(a2->nextarc){a2=a2->nextarc;}a2->nextarc=a1;}}void Init_ALGraph(ALGraph * G) //初始化图并建图 { int v,v1,v2,i,j,q,p;int m=0;printf("请输入顶点数:");scanf("%d",&G->vexnum);printf("请输入边数:");scanf("%d",&G->arcnum);for(v=0;v<G->vexnum;v++){printf("顶点 V%d:",(v+1));scanf("%d",&(G->vertices[v].data));>vertices[v].firstarc=NULL; G-}for(v=0;v<G->arcnum;v++) {printf("请输入点点: ");scanf("%d%d",&v1,&v2);i=LocateVex(G,v1); //v1的位置j=LocateVex(G,v2); //v2的位置Insertadj(G,i,j);Insertadj(G,j,i);}}int main(int argc,char **argv) {ALGraph G;Init_ALGraph(&G);//初始化图并建图DFSVisited(&G);//深度优先遍历printf("\n");return 0;}四、实验总结:通过本实验,我对图的存储结构、图的遍历等有了比较深的理解与运用,图的遍历和树的遍历很类似,但是却比树的遍历复杂很多。

图的存储及遍历

图的存储及遍历

广度优先搜索BFS 广度优先搜索BFS ( Breadth First Search )
广度优先搜索的示例
1
A
2
B C 3 H
5
E G 7 I
1
A
2
B C 3 H
5
E G 7 I
4 D 6 F
4 D 6 F
8 9 广度优先搜索过程
8 9 广度优先生成树
BFS在访问了起始顶点 v 之后 由 v 出发 在访问了起始顶点 之后, 出发, 在访问了 依次访问 v 的各个未被访问过的邻接顶点 的各个未被访问过的邻接顶点 w1, w2, …, wt, 然后再顺序访问 w1, w2, …, wt 的所有还未被访问过的邻接顶点。再从 的所有还未被访问过的邻接顶点。 这些访问过的顶点出发, 这些访问过的顶点出发,再访问它们的所有 还未被访问过的邻接顶点, 如此做下去, 还未被访问过的邻接顶点,… 如此做下去, 直到图中所有顶点都被访问到为止。 直到图中所有顶点都被访问到为止。 广度优先搜索是一种分层的搜索过程, 广度优先搜索是一种分层的搜索过程 每向 前走一步可能访问一批顶点, 前走一步可能访问一批顶点 不像深度优先 搜索那样有往回退的情况。因此, 搜索那样有往回退的情况。因此 广度优先 搜索不是一个递归的过程。 搜索不是一个递归的过程。
图的存储结构——邻接矩阵
数组表示法(邻接矩阵) graph=Record vex:array[1..vtxptr] of vertex; {存储顶点信息} arc:array[vtxptr, vtxptr] of vertex; {存储边相关信息} 借助邻接矩阵容易判定任意两个顶点之间是否有边(或弧)相 连,并容易求得各个顶点的度。 对于无向图,顶点的度vi是邻接矩阵中第i行(或第i列)的元素 之和。 对于有向图,顶点vi的出度是邻接矩阵中第i行的元素之和,顶 点vi的入度是邻接矩阵中第i列的元素之和。

实验五图的存储与遍历

实验五图的存储与遍历

实验四图的存储、遍历与应用1、实验目的1)熟悉图的邻接矩阵和邻接表的两种常用存储结构2)掌握两种常用存储方式下深度优先遍历(dfs)和广度优先遍历(BFS操作的实现及其应用。

3)进一步掌握递归算法的设计方法。

2、实验内容1)图的两种存储结构实现:(1)邻接矩阵存储:用一个一维数组来存储顶点信息,用一个二维数组存储用于表示顶点间相邻的关系(边)(2)邻接表存储:用一个一维数组来存储顶点信息,用一个链表表示与顶点相连的边。

表示法类似于树的孩子链表表示法。

2)图的遍历(1)对以邻接矩阵为存储结构的图进行DFS和BFS遍历:建立一个图的邻接矩阵表示,输出以某顶点为起始点的DFS和BFS序列。

实现提示:图的DFS遍历可通过递归调用或用栈来实现。

其思想是:只要当前结点未访问过,就访问该结点,沿着其一条分支深入下去,每深入一个未访问过的结点,就访问这个结点,然后从这个结点继续进行DFS遍历。

在这一过程中,若深入时遇到一个已访问过的结点,则查找是否有与这个结点相邻的下一个未访问过的结点。

若有则继续深人,否则将退回到这个结点的前一个结点,再找下一个相邻的本访问过的结点,,,如此进行下去,直到所有的结点都被访问过。

BFS 遍历可利用队列来帮助实现,也可以用栈。

实现方法与二叉树的层次遍历类似。

(2)对以邻接表为存储结构的图进行DFS和BFS遍历:以邻接表为存储结构,实现图的DFS和BFS遍历,输出以某顶点为起始点的DFS和BFS序列。

实现提示:以邻接表为存储结构的图的DFS和BFS算法的实现思想与以邻接矩阵为存储结构的实现是一样的。

只是由于图的存储形式不同。

而具体到取第一个邻接点和下一个邻接点的语句表示上有所差别而已。

(3)测试数据:自己设计测试用的图,给出其邻接矩阵存储表示。

也可以用如下图作为测试数据。

邻按第陰民字的IB试敕播JLk ainJL fcC 虫- 3| |E 审打jC" jj*J*3^J^yLr* ~|~ g4,19 邻播我的隸试數据图3) 图的应用(1)修改图的遍历程序,实现AOV网的拓朴排序。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、实验目的
掌握图这种复杂的非线性结构的邻接矩阵和邻接表的存储表示,以及在此两种常用存储方式下深度优先遍历(DFS)和广度优先遍历(BFS)操作的实现。

二、实验内容与实验步骤
题目1:对以邻接矩阵为存储结构的图进行DFS 和BFS 遍历
问题描述:以邻接矩阵为图的存储结构,实现图的DFS 和BFS 遍历。

基本要求:建立一个图的邻接矩阵表示,输出顶点的一种DFS 和BFS 序列。

测试数据:如图所示
题目2:对以邻接表为存储结构的图进行DFS 和BFS 遍历
问题描述:以邻接表为图的存储结构,实现图的DFS 和BFS 遍历。

基本要求:建立一个图的邻接表存贮,输出顶点的一种DFS 和BFS 序列。

测试数据:如图所示
三、附录:
在此贴上调试好的程序。

四、运行结果:
在此把运行结果从屏幕上拷下来贴在此 ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢
⎢⎢
⎢⎣⎡=010*******
01010
1000100010
A
五、心得体会:。

相关文档
最新文档