北师大版2018-2019学年山东省济南市市中区七年级(下)期末数学试卷含解析
2019-2020学年山东省济南市七年级下期末考试数学试题(Word无答案)
![2019-2020学年山东省济南市七年级下期末考试数学试题(Word无答案)](https://img.taocdn.com/s3/m/8147f3c49f3143323968011ca300a6c30c22f138.png)
济南市市中区2019-2020学年度七年级下学期期末考试数学试题2020.07一、选择题(共12小题,每小题4分,满分48分,每小题只有一个选项符合题意) 1.在下列长度中的三条线段中,能组成三角形的是( )A.2cm,3cm ,4 cmB.2cm,3cm ,5cmC.3 cm ,5cm ,9cmD.8cm ,4cm,4cm 2.疟原虫早期滋养体的直径约为0.00000122米,用科学记数法表示为( )米.A.1.22×10-6B. 0.122×10-6C.12.2×10-6D.1.22×10-5 3.下列事件为必然事件的是( )A.打开电视机,它正在播广告B.投掷一枚普通的正方体骰子,掷得的点数小于7C.某彩票的中奖机会是1%,买1张一定不会中奖D.抛掷枚硬币,一定正面朝上 4.下面四大手机品牌图标中,轴对称图形的是( )A .B .C .D . 5.下列计算正确的是(A.3a 2-a 2=3B.a 2 a 3=a 6C.(a 2)3=a 6D.a 6÷a 2=a 3 6.如图,直线a 、b 被直线c 所截,下列条件不能判定直线a 与b 平行的是( ) A.∠1=∠3 B.∠2+∠4= 180° C.∠1=∠4 D.∠3=∠47.洗衣机在洗涤衣服时,每浆洗一遍都经历了注水、清洗、排水三个连续过程(工作前洗衣机内无水)。
在这三个过程中,洗衣机内的水量y (升)与浆洗一遍的时间x (分)之间函数关系的图象大致为( )A .B .C .D . 8.下列能用平方差公式计算的是()A. (-x +y ) (x -y )B.(-x +y )(x +y )C.(x +2)(2+x )D.(2x +3)(3x - 2)9.乐乐观察抖空竹时发现,可以将某一时刻的情形抽象成数学问题:如图,已知AB ∥CD ,∠BAE =92°,∠DCE =115°,则∠E 的度数是( A.32° B.28° C.26° D.23°10.尺规作图作∠AOB 的平分线方法如下:以O 为圆心、任意长为半径画弧交OA 、OB 于C 、D ,再分别以点C 、D 为圆心,以大于12CD 长为半径画弧,两弧交于点P ,作射线OP ,由作法可得△OCP ≌△ODP ,判定这两个三角形全等的根据是( ) A. SAS B. ASA C. AAS D. SSS11.如图,△ABC 中,AC =BC , ∠C =90°, AD 平分∠BAC , DE ⊥AB 于E , 则下列结论:①AD 平分∠CDE ;②∠BAC =∠BDE ;③DE 平分∠ADB ;④BE +AC =A B .其中正确的有( ) A.1个 B.2个 C.3个 D.4个12.规定log a b (a >0,a ≠1,b >0)表示a ,b 之间的一种运算.现有如下的运算法则:log a a n =n ,log N M =log n Mlog nN (a >0,a ≠1,N >0,N ≠1,M >0).例如:log 223=3,log 25=log105log102,则log 1001000=( ) A .2B .3C .23D .32二、填空题(本大题共6个小题,每题4分,共24分.把答案填在题中的横线上) . 13. 25°的余角是__________度.14.如图,一个正六边形转盘被分成 6个全等三角形,任意转动这个转盘1次, 当转盘停止时,指针指向阴影区域的概率是_________.15.已知△ABC 是等腰三角形,它的周长为20cm ,条边长 6cm,那么腰长是_________ cm. 16.如果多项式x 2+mx +9是一个完全平方式,则m 的值是_________.17.小元步行从家去火车站,走到6分钟时,以同样的速度回家取物品,然后从家乘出租车赶往火车站,结果比预计步行时间提前了3分钟.小元离家路程S (米)与时间t (分钟)之间的关系如图象所示,那么从家到火车站路程是_________米.18.如图,△ABC 中,∠ACB =90°,AC =BC ,AE 是BC 边上的中线,过C 作CF ⊥AE ,垂足为F ,过B 作BD ⊥BC交CF 的延长线于D ,则下列结论:①若BD =4,则AC =8;②AB =CD ;③∠DBA =∠ABC ;④S △ABE =S △ACE ;⑤∠D =∠AEC ;⑥连接AD ,则AD =C D .其中正确的是_______________.(填写序号)三、解答题(本大题共9个小题,共78分.解答应写出文字说明、证明过程或演算步骤.) 19. (本小题满分6分) 计算: (-3) 2+ (π-3.14)°× (-1)2020- (13)-220.(本小题满分6分)化简: 4m (m -n ) + (5m -n )(m +n )21. (本小题渊分6分)如图,已知线段AC 、BD 相交于点E ,连接AB 、DC 、BC , AE =DE ,∠A =∠D. 求证:△ABE ≌△DCE ;22. (本小题满分 8分)如图,正方形网格中每个小正方形边长都是1,并且△ABC 的三个顶点都在格点上. (1)画出△ABC 关于直线l 对称的图形△A 1B 1C 1;(2)在直线l 上找一点P ,使PB =PC ; (要求在直线l 上标出点P 的位置);(3)在直线l 上找点Q ,使点Q 到点B 与点C 的距离之和最小(保留作图痕迹) . 23. (本小题满分8分)如图,AD ∥BE ,∠1=∠2, 求证:∠A =∠E .请完成解答过程 解:∵AD ∥BE (已知),∴∠A =∠___ (_______________________________) 又∴∠1=∠2 (已知),∴AC ∥___ (_______________________________) ∴∠3=∠___ (_______________________________) ∴∠A =___ (_______________________________) 24. (本小题满分10分)在一个不透明的袋中装有红、黄、白种颜色的球共50个,且红球比黄球多5个,它们除颜色外都相同,已知从袋中随机摸出一个球,摸到的球是白球的概率为310. (1)求原来袋中白球的个数;(2)现从原来装有50个球的袋中随机摸出一个球,求摸到的球是红球的概率. 25. (本小题满分10分)(1)先化简,再求值: [(a +b )2-(a -b )(a +b )]÷(2b ),其中a =-12,b =-1.(2)爱动脑筋的小明同学在买一双新的运动鞋时,发现了一个有趣现象:即鞋子的码数y (码)与鞋子的长x (cm)之间存在着某种联系.经过收集数据,得到如表:鞋长x (cm) … 22 23 24 25 26 … 码数y (码)…3436384042…请你替小明解决下列问题:①当鞋长为28cm 时,鞋子的码数是多少? ②写出y 与x 之间的关系式;③已知姚明的鞋子穿52码时,则他穿的鞋长是多长? 26.(本小题满分12分) 问题再现:数形结合是解决数学问题的一种重要的思想方法,借助这种方法可将抽象的数学知识变得直观起来并且具有可操作性,从而可以帮助我们快速解题.初中数学里的一些代数公式,很多都可以通过表示几何图形面积的方法进行直观推导和解释.例如:利用图形的几何意义证明完全平方公式.证明:将一个边长为a 的正方形的边长增加b ,形成两个矩形和两个正方形,如图1: 这个图形的面积可以表示成: (a +b )2或 a 2+2ab +b 2 ∴(a +b )2=a 2+2ab +b 2这就验证了两数和的完全平方公式.类比解决:(1)请你类比上述方法,利用图形的几何意义证明平方差公式.(要求画出图形并写出推理过程)问题提出:如何利用图形几何意义的方法证明:13+23=32?如图2,A表示1个1×1的正方形,即:1×1×1=13B表示1个2×2的正方形,C与D恰好可以拼成1个2×2的正方形,因此:B、C、D就可以表示2个2×2的正方形,即:2×2×2=23而A、B、C、D恰好可以拼成一个(1+2)×(1+2)的大正方形.由此可得:13+23=(1+2)2=32尝试解决:(2)请你类比上述推导过程,利用图形的几何意义确定:13+23+33=.(要求写出结论并构造图形写出推证过程).(3)问题拓广:请用上面的表示几何图形面积的方法探究:13+23+33+…+n3=.(直接写出结论即可,不必写出解题过程)27. (本小题满分12分)如图,∠BAD=∠CAE=90°,AB=AD, AE=AC, AF⊥CB, 垂足为F.(1)求证:△ABC≌△ADE;(2)求∠F AE的度数;(3)求证:CD=2BF+DE.。
(北师大版)山东省济南市历下区七年级数学下册期末试卷及答案
![(北师大版)山东省济南市历下区七年级数学下册期末试卷及答案](https://img.taocdn.com/s3/m/1dee5f3559eef8c75fbfb3b2.png)
(北师大版)山东省济南市历下区七年级数学下册期末试卷及答案考试时间120分钟 满分120分(以下试卷分A 、B 卷,其中A 卷为必徽;B 卷为选徽,且不计入总分)A 卷一、选择题(本大题共12小题,每题3分,共36分,每题四个选项中,只有一个选项 符合要求.)1.20131-的相反数是( ) A. 20131- B. 20131C.2013D.-20132,有资料表明,被誉为“地球之肺”的森林正以每年15000000公顷的速度从地球上消失,每年森林的消失量用科学记数法表示应是( )A .15×106公顷 B. 1.5×107公顷 C. 150×i05公顷D 。
0.15×l08公顷 3.下列图形中为正方体的平面展开图的是( )4.下列调查中,适宜采用抽样调查方式的是( )A.调查伦敦奥运会女子铅球参赛运动员兴奋剂的使用情况 B .调查我校某班学生的身高情况C.调查一架“歼380”隐形战机各零部件的质量 D .调查我国中学生每天体育锻炼的时间5.如图,点A 位于点O 的___方向上( )A.南偏东350 B .北偏西650 C .南偏东650 D .南偏西650 6.下面合并同类项正确的是( )A.3x+2x 2=5x 3B.2a 2b -a 2b=1 c.-ab -ab=O D. -y 2x+xy 2 =0 7.下列语句正确的有( )①射线AB 与射线BA 是同一条射线 ②两点之间的所有连线中,线段最短 ③连结两点的线段叫做这两点的距离④欲将一根木条固定在墙上,至少需要2个钉子 A .1个 B .2个 C .3个 D .4个 8.下列说法不正确的是( )A.为了反映雅安市七县一区人口分布多少情况,通常选择条形统计图B .为了反映我市连续五年来中国民生产总值增长情况,通常选择折线统计图 C.为了反映本校中学生人数占全市中学学生人数的比例情况,应选择扇形统计图 D.以上三种统计图都可以直接找到所需数目9.已知有理数a,b在数轴上表示的点如图所示,则下列式子中正确的是( )10.某工厂现有工人x人,若现有人数比两年前原有人数减少35%,则该工厂原有人数为( )11.在一张挂历上,任意圈出同一列上的三个数的和不可能是( )A.4B.33C.51D.2712.小明解方程去分母时.方程右边的-3忘记乘6.因而求出的解为x=2,问原方程正确的解为( )A.x=5 B.x=7 C.x=-13 D.x=-l二、填空题(本大题共10小题,每题3分,共30分)13.如果向东运动8m记作+8m,那么向西运动5m应记作____m.14.甲、乙、丙三地的海拔高度分别是20m、-15m、-5m,那么最高的地方比最低的地方高_________m.15.多项式的次数是______.16.写出一个解为x=2的一元一次方程(只写一个即可):____17.比较数的大小:18.从一个多边形的某个顶点出发,分别连接这个点和其余各顶点,可以把这个多边形分割成十个三角形,则这个多边形的为________边形.19.把秒化成度、分、秒:3800″=______ °______′_______″.20.八年级一班共有48名学生,他们身高的频数分布直方图如图,各小长方形的高的比为1:1:3:2:l,则身高范围在165cm~170cm的学生有________人.21.已知线段AB=lOcm,点C是直线AB上一点,BC=4cm:若M是AB的中点,N是BC的中点,则线段MN的长度是_______cm。
【北师大版】七年级下册数学《期末考试题》(含答案解析)
![【北师大版】七年级下册数学《期末考试题》(含答案解析)](https://img.taocdn.com/s3/m/8c0b8581f12d2af90342e680.png)
2019-2020学年度第二学期期末测试七年级数学试题学校________ 班级________ 姓名________ 成绩________一、选择题:1.计算-12的结果为( )A. 2B. 12C. -2D. 1-22.2019年4月28日,北京世界园艺博览会正式开幕,在此之前,我国已举办过七次不同类别的世界园艺博览会.下面是北京、西安、锦州、沈阳四个城市举办的世园会的标志,其中是轴对称图形的是( )A. B. C. D. 3.小明连续抛一枚质量均匀的硬币5次,都是正面朝上,若他再抛一次,则朝上的一面( )A. 一定是正面B. 是正面的可能性较大C. 一定是反面D. 是正面或反面的可能性一样大4.如图,点,D E 分别在BAC ∠的边,AB AC 上,点F 在BAC ∠的内部,若1,250F ︒∠=∠∠=,则A ∠的度数是( )A. 50︒B. 40︒C. 45︒D. 130︒5.下列运算正确的是( )A. 66x x x ÷=B. 358x x x ÷=C. 2242x x x •=D. ()3263x y x y -=- 6.据5月23日“人民日报”微信公众号文章介绍,中国兵器工业集团豫西集团中南钻石公司推出大颗粒“首饰用钻石”,打破了国外垄断,使我国在钻石饰品主流领域领跑全球,钻石、珠宝等宝石的质量单位是克拉(ct ),1克拉为100分,已知1克拉0.2=克,则“1分”用科学计数法表示正确的是( )A. 20.210-⨯克B. 2210-⨯克C. 3210-⨯ 克D. 4210-⨯克7.如图,点A 在直线上,ABC △与''AB C V 关于直线l 对称,连接'BB 分别交,'AC AC 于点,',D D 连接'CC ,下列结论不一定正确的是( )A. ''BAC B AC ∠=∠B. '//'CC BBC. ''BD B D =D. 'AD DD =8.如图,一辆汽车在龙城大街上沿东向西方向正常行驶,从点M 处开始减速驶入路况良好的祥云桥北匝道桥,接着驶入滨河东路后沿北向南继续正常行驶.下列四个图像中能刻画该汽车这个过程中行驶速度v (千米/时)与行驶时间t (时)之间的关系是( )A. B. C. D. 9.如图,''A B C ABC ≅V V ,点'B 在边AB 上,线段''A B ,AC 交于点D ,若40,60A B ︒︒∠=∠=,则'A CB ∠的度数为( )A. 100︒B. 120︒C. 135︒D. 140︒10.有一种手持烟花,点然后每隔1.4秒发射一发花弹。
北师大版七年级下册数学《期末测试题》(附答案)
![北师大版七年级下册数学《期末测试题》(附答案)](https://img.taocdn.com/s3/m/f64df8eeddccda38376baff8.png)
6.如图,直线l是菱形ABCD和矩形EFGH的对称轴,点C在EF边上,若菱形ABCD沿直线l从左向右匀速运动直至点C落在GH边上停止运动.能反映菱形进入矩形内部的周长y与运动的时间x之间关系的图象大致是()
A. B. C. D.
【答案】B
【解析】
周长y与运动 时间x之间成正比关系,
故选B
点睛:函数图象是典型的数形结合,图象应用信息广泛,通过看图象获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题能力、解决问题能力.用图象解决问题时,要理清图象的含义即会识图.
C.连接AP,BP,则AP+BP>AB,故C符合题意;
D. Q在A的右边时,AQ=AB−BQ或AQ=AB+BQ,故D不符合题意;
故选C.
5.如图,桌面上竖直放置一等腰直角三角板ABC,若测得斜边AB在桌面上的投影DE为8cm,且点B距离桌面的高度为3cm,则点A距离桌面的高度为()
A. 6.5cmB. 5cmC. 9.5cmD. 11cm
【答案】B
【解析】
由题意可得:∠ACD+∠DAC=90°,∠BCE+∠ACD=90°,AC=BC,
则∠DAC=∠BCE,
在△ACD和△CBE中,
∠CDA=∠BEC∠DAC=∠ECBAC=BC,
∴△ACD≌△CBE(AAS),
∴AD=EC,BE=CD,
∵BC=8cm,BE=3cm,
∴AD=EC=5(cm).
【详解】设∠3=3x,则∠1=28x,∠2=5x,
∵∠1+∠2+∠3=180°,
∴28x+5x+3x=180°,解得x=5°,
∴∠1=140°,∠2=25°,∠3=15°,
北师大版七年级数学下册期末专项测试 B卷(含答案详解)
![北师大版七年级数学下册期末专项测试 B卷(含答案详解)](https://img.taocdn.com/s3/m/de9ac2214a73f242336c1eb91a37f111f1850da0.png)
北师大版七年级数学下册期末专项测试 B 卷 考试时间:90分钟;命题人:教研组 考生注意: 1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知三角形的两边长分别为4cm 和10cm ,则下列长度的四条线段中能作为第三边的是( )A .15cmB .6cmC .7cmD .5cm 2、如图,在直角三角形ABC 中,∠BAC =90°,AD ⊥BC 于点D ,则下列说法错误的是( ) A .线段AC 的长度表示点C 到AB 的距离 B .线段AD 的长度表示点A 到BC 的距离 C .线段CD 的长度表示点C 到AD 的距离 D .线段BD 的长度表示点A 到BD 的距离 3、下列事件中,是必然事件的是( ) A .掷一枚质地均匀的硬币,一定正面向上 B .车辆随机到达一个路口,遇到红灯 ·线○封○密○外C .如果22a b =,那么a b =D .如果a b =,那么22a b =4、如图,点D 是∠FAB 内的定点且AD =2,若点C 、E 分别是射线AF 、AB 上异于点A 的动点,且△CDE 周长的最小值是2时,∠FAB 的度数是( )A .30°B .45°C .60°D .90°5、如图,由4个全等的小长方形与一个小正方形密铺成一个大的正方形图案,该图案的面积为100,里面的小正方形的面积为16,若小长方形的长为a ,宽为b ,则下列关系式中:①222100a ab b ++=;②22216a ab b -+=;③2256a b +=;④2240a b -=,正确的有( )个A .1B .2C .3D .46、计算13-的结果是( )A .3-B .13-C .13 D .17、已知()()202220202021x x --=,那么()()2220222020x x -+-的值是( ). A .22021 B .4042 C .4046 D .20218、下列运算正确的是( )A .3a +2a =5a 2B .﹣8a 2÷4a =2aC.4a2•3a3=12a6D.(﹣2a2)3=﹣8a6 9、任意掷一枚质地均匀的骰子,偶数点朝上的可能性是()A.12B.13C.14D.1610、下列事件为必然事件的是A.打开电视机,正在播放新闻B.掷一枚质地均匀的硬币,正面儿朝上C.买一张电影票,座位号是奇数号D.任意画一个三角形,其内角和是180度第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、当圆的半径r由小变大时,它的面积S也越来越大,它们之间的变化关系为2πS r,在这个变化过程中,自变量为______,因变量为______,常量为______.2、如图,AC平分∠DCB,CB=CD,DA的延长线交BC于点E,若∠DAC=125°,则∠BAE的度数为______.3、用抽签的办法从A 、B 、C 、D 四人中任选一人去打扫公共场地,选中A 的概率是_____.4、从如图所示的四张扑克牌中任取一张,牌面数字是3的倍数的概率是______.·线○封○密○外5、若x -y =3,xy =2,则x 2+y 2=_____.三、解答题(5小题,每小题10分,共计50分)1、如图,现有一个均匀的转盘被平均分成六等份,分别标有2,3,4,5,6,7这六个数字,自由转动转盘,当转盘停止时,指针指向的数字即为转出的数字(若指针恰好指在分界线上,则重新转动转盘).(1)求转出的数字大于3的概率;(2)小明和小凡做游戏.自由转动转盘,转出的数字是偶数小明获胜,转出的数字是奇数小凡获胜,这个游戏对双方公平吗?请说明理由.2、如图,在长方形ABCD 中,AB =6cm ,BC =8cm .动点P 从点B 出发,沿BC 方向以2cm/s 的速度向点C 匀速运动;同时动点Q 从点C 出发,沿CD 方向以2cm/s 的速度向点D 匀速运动,当一个点停止运动时,另一个点也停止运动.设运动时间为t (s )(0<t <3).解答下列问题:(1)当点C 在线段PQ 的垂直平分线上时,求t 的值;(2)是否存在某一时刻t ,使ABP PCQ ∆∆≌若存在,求出t 的值,并判断此时AP 和PQ 的位置关系;若不存在,请说明理由.3、某商场“五一”期间为进行有奖销售活动,设立了一个可以自由转动的转盘.商场规定:顾客购物100元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是此次活动中的一组统计数据:(1)完成上述表格;(结果全部精确到0.1) (2)请估计当n 很大时,频率将会接近 ,假如你去转动该转盘一次,你获得“可乐”的概率约是 ;(结果全部精确到0.1)(3)转盘中,表示“洗衣粉”区域的扇形的圆心角约是多少度?4、根据心理学家研究发现,学生对一个新概念的接受能力y 与提出概念所用的时间x (分钟)之间有如表所示的关系:(1)上表中反映的两个变量之间的关系,哪个是自变量?哪个是因变量? (2)根据表格中的数据,提出概念所用时间是多少分钟时,学生的接受能力最强?(3)学生对一个新概念的接受能力从什么时间开始逐渐减弱?5、阅读下列材料: 利用完全平方公式,可以把多项式2x bx c ++变形为2()x m n ++的形式.例如,243x x -+=24443x x -+-+=2(2)1x --. ·线○封○密○外观察上式可以发现,当2x -取任意一对互为相反数的值时,多项式243x x -+的值是相等的.例如,当2x -=±1,即x =3或1时,243x x -+的值均为0;当2x -=±2,即x =4或0时,243x x -+的值均为3.我们给出如下定义:对于关于x 的多项式,若当x m +取任意一对互为相反数的值时,该多项式的值相等,则称该多项式关于x =m -对称,称x =m -是它的对称轴.例如,243x x -+关于x =2对称,x =2是它的对称轴.请根据上述材料解决下列问题:(1)将多项式265x x -+变形为2()x m n ++的形式,并求出它的对称轴;(2)若关于x 的多项式221+-x ax 关于x =-5对称,则a = ;(3)代数式22(21)(816)++-+x x x x 的对称轴是x = .-参考答案-一、单选题1、C【分析】根据三角形的三边关系可得104104x -<<+,再解不等式可得答案.【详解】解:设三角形的第三边为xcm ,由题意可得:104104x -<<+,即614x <<,故选:C .【点睛】本题主要考查了三角形的三边关系,解题的关键是掌握三角形两边之和大于第三边;三角形的两边差小于第三边. 2、D 【分析】 根据直线外一点,到这条直线的垂线段的长度是这点到直线的距离判断即可. 【详解】 解:A. 线段AC 的长度表示点C 到AB 的距离,说法正确,不符合题意; B. 线段AD 的长度表示点A 到BC 的距离,说法正确,不符合题意; C. 线段CD 的长度表示点C 到AD 的距离,说法正确,不符合题意; D. 线段BD 的长度表示点B 到AD 的距离,原说法错误,符合题意; 故选:D . 【点睛】 本题考查了点到直线的距离,解题关键是准确识图,正确进行判断. 3、D 【分析】 根据必然事件的概念即可得出答案. 【详解】 解:∵掷一枚质地均匀的硬币,可能正面向上,也可能反面朝上,为随机事件, ∴A 选项不合题意, ∵车辆随机到达一个路口,可能遇到红灯,也可能遇到绿灯,为随机事件, ∴B 选项不合题意, ∵若a 2=b 2,则a=b 或a=-b ,为随机事件, ∴C 选项不合题意,·线○封○密○外∵两个相等的数的平方相等,∴如果a=b,那么a2=b2为必然事件,∴D选项符合题意,故选:D.【点睛】本题主要考查必然事件的概念,关键是要牢记必然事件的概念.4、A【分析】作D点分别关于AF、AB的对称点G、H,连接GH分别交AF、AB于C′、E′,利用轴对称的性质得AG=AD=AH=2,利用两点之间线段最短判断此时△CDE周长最小为DC′+DE′+C′E′=GH=2,可得△AGH 是等边三角形,进而可得∠FAB的度数.【详解】解:如图,作D点分别关于AF、AB的对称点G、H,连接GH分别交AF、AB于C′、E′,连接DC′,DE′,此时△CDE周长最小为DC′+DE′+C′E′=GH=2,根据轴对称的性质,得AG=AD=AH=2,∠DAF=∠GAF,∠DAB=∠HAB,∴AG=AH=GH=2,∴△AGH是等边三角形,∴∠GAH =60°,∴∠FAB =12∠GAH =30°, 故选:A . 【点睛】 本题考查了轴对称-最短路线问题:熟练掌握轴对称的性质,会利用两点之间线段最短解决路径最短问题. 5、C 【分析】 能够根据大正方形和小正方形的面积分别求得正方形的边长,再根据其边长分别列方程,根据4个矩形的面积和等于两个正方形的面积差列方程. 【详解】 ①大正方形的边长为a+b ,面积为100 ()2100a b += 222100a ab b ++= 故①正确②小正方形的边长为a-b ,面积为16()216a b -=22216a ab b -+= 故②正确 ③()()2241001684ab a b a b =+--=-= 21ab ∴=·线○封○密·○外()222210022158a b a b ab ∴+=+-=-⨯= 故③错④()()2210016a b a b +-=⨯()()40a b a b ∴+-=2240a b ∴-=故④正确故选C【点睛】此题考察了平方差公式、完全平方公式及数形结合的应用,关键是能够结合图形和图形的面积公式正确分析,对每一项进行分析计算,进而得出结果.6、C【分析】由题意直接根据负整数指数幂的意义进行计算即可求出答案.【详解】 解:1111333-==. 故选:C.【点睛】本题考查负整数指数幂的运算,解题的关键是正确理解负整数指数幂的意义.7、C【分析】设2022,2020a x b x =-=-,则得2021ab =将()()2220222020x x -+-变形得到2()2a b ab -+,即可求解.【详解】解:设2022,2020a x b x =-=-,则2021ab =,()()2222220222020()2x x a b a b ab -+-=+=-+, 2222021=+⨯, 4046=, 故选:C . 【点睛】 本题考查了代数式的求值,解题的关键是利用整体思想结合完全平方公式的变形进行求解. 8、D 【分析】 根据合并同类项,同底数幂的除法和乘法法则,积的乘方和幂的乘方法则,逐项计算即可. 【详解】 A.325a a a +=,故该选项错误,不符合题意; B.2842a a a -÷=-,故该选项错误,不符合题意; C.2354312a a a =⋅,故该选项错误,不符合题意; D. 236(2)8a a -=-,故该选项正确,符合题意; 故选:D . 【点睛】 本题考查合并同类项,同底数幂的除法和乘法,积的乘方和幂的乘方.掌握各运算法则是解答本题的关键. ·线○封○密○外9、A【分析】如果一个事件的发生有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率(),m P A n=利用概率公式直接计算即可得到答案. 【详解】 解:抛掷一枚分别标有1,2,3,4,5,6的正方体骰子,骰子落地时朝上的数为偶数的可能性有3种,而所有的等可能的结果数有6种, 所以骰子落地时朝上的数为偶数的概率是31.62P == 故选A【点睛】本题考查了简单随机事件的概率,掌握概率公式是解本题的关键.10、D【分析】根据事件发生的可能性大小判断即可.【详解】A 、打开电视机,正在播放新闻,是随机事件,不符合题意;B 、掷一枚质地均匀的硬币,正面朝上,是随机事件,不符合题意;C 、买一张电影票,座位号是奇数号,是随机事件,不符合题意;D 、任意画一个三角形,其内角和是180°,是必然事件,符合题意;故选:D .【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件. 二、填空题 1、r S π 【解析】 【分析】 根据常量、变量的概念,通过对圆的面积公式中的各个量进行分析,即可确定答案. 【详解】 ∵圆的半径r 由小变大时,它的面积S 也越来越大, ∴自变量是圆的半径r ,因变量是圆的面积S ,常量是π. 故答案为:r ,S ,π. 【点睛】 本题考查变量与常量. 常量就是在变化过程中不变的量,变量是指在变化过程中随时可以发生变化的量. 自变量就是本身发生变化的量,因变量就是由于自变量发生变化而引起变化的量. 2、70° 【分析】 先根据角平分线的定义得到∠DCA =∠BCA ,即可利用SAS 证明△DCA ≌△BCA 得到∠BAC =∠DAC =125°,由∠CAE =180°-∠DAC =55°,则∠BAE =∠BAC -∠CAE =70°. 【详解】 解:∵AC 平分∠DCB , ∴∠DCA =∠BCA , 又∵CB =CD ,CA =CA , ∴△DCA ≌△BCA (SAS ), ·线○封○密·○外∴∠BAC=∠DAC=125°,∵∠CAE=180°-∠DAC=55°,∴∠BAE=∠BAC-∠CAE=70°,故答案为:70°.【点睛】本题主要考查了全等三角形的性质与判定,角平分线的定义,解题的关键在于能够熟练掌握全等三角形的性质与判定条件.3、1 4【分析】根据题干求出所有等可能的结果数,以及恰好选中A的情况数,再利用概率公式求解即可.【详解】解:从A 、B 、C 、D 四人中,选一人去打扫公共场地,共4种情况,其中选中A的情况有一种,∴选中A去打扫公共场地的概率为P=14,故答案为:14.【点睛】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率为:P(A)=mn.4、1 4【分析】根据概率公式直接计算即可解答.【详解】解:从中随机抽出一张牌,牌面所有可能出现的结果由4种,且它们出现的可能性相等,其中出现3的倍数的情况有1种, ∴ P (牌面是3的倍数)=14 故答案为:14【点睛】 此题考查了概率公式的运用,解题的关键是确定整个事件所有可能的结果,难度不大. 5、13 【分析】 根据x 2+y 2=(x -y )2+2xy ,整体代入解答即可. 【详解】 解:因为x -y =3,xy =2, 则x 2+y 2=(x -y )2+2xy =9+4=13, 故答案为:13. 【点睛】 本题考查了完全平方公式的应用.注意整体思想的应用是解此题的关键. 三、解答题 1、(1)23;(2)公平,理由见解析 【分析】 (1)转出的数字有6种结果,求转出的数字大于3的结果数,即可求解; (2)分别求出小明和小凡获胜的概率,即可判定. 【详解】 ·线○封○密○外解:转出的数字有6种结果,并且每种结果出现的可能性相同(1)转出的数字大于3有4种结果,4、5、6、7所以,P(转出的数字大于3)4263== (2)小明获胜有3种结果,小凡获胜有3种结果P(小明获胜)=12,P(小凡获胜)=12因为小明和小凡获胜的概率相同,所以这个游戏对双方公平【点睛】此题考查了概率的有关求解,熟练掌握概率的求解公式是解题的关键.2、(1)t 的值为2.(2)存在,t 的值为1,AP PQ ⊥.【分析】(1)当点C 在线段PQ 的垂直平分线上时,利用垂直平分线的性质,得到CP CQ =,之后列出关于t 的方程,求出t 的值即可.(2)当ABP PCQ ∆∆≌时,根据对应边AB PC =,列出关于t 的方程,求出t 的值,之后利用全等三角形的性质,得到对应角相等,最后证得AP PQ ⊥.【详解】(1)解:由题意可知:2CQ t =,82CP t =-,点C 在线段PQ 的垂直平分线上,∴CP CQ =, 故有:282t t =-,解得:2t =t ∴的值为2.(2) 解: ABP PCQ ∆∆≌,6AB PC cm ∴==,APB PQC ∠=∠,826t ∴-= 即1t =. 四边形ABCD 是长方形, 90B C ∴∠=∠=︒. 在PCQ ∆中,18090QPC PQC C ∠+∠=-∠=︒且APB PQC ∠=∠, ∴ 90QPC APB ∠+∠=︒, ∴AP PQ ⊥. 【点睛】 本题主要是考查了垂直平分线和全等三角形的性质,熟练应用相关性质找到对应边相等,求出时间t ,是解决本题的关键,另外,关于线段关系,一般以垂直关系为多. 3、(1)0.6;472;(2)0.6;0.6;(3)144° 【分析】 (1)根据频率的定义计算n =298时的频率和频率为0.59时的频数; (2)从表中频率的变化,可得到估计当n 很大时,频率将会接近0.6,然后根据利用频率估计概率得“可乐”的概率约是0.6; (3)可根据获得“洗衣粉”的概率为1−0.6=0.4,然后根据扇形统计图的意义,用360°乘以0.4即可得到表示“洗衣粉”区域的扇形的圆心角. 【详解】 解:(1)298÷500≈0.6;0.59×800=472; 补全表格如下:·线○封○密·○外(2)估计当n很大时,频率将会接近0.6,假如你去转动该转盘一次,你获得“可乐”的概率约是0.6;故答案为:0.6;0.6;(3)(1﹣0.6)×360°=144°,所以表示“洗衣粉”区域的扇形的圆心角约是144°.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.4、(1)“提出概念所用时间”是自变量,“对概念的接受能力”为因变量;(2)13分钟;(3)从第13分钟以后开始逐渐减弱【分析】(1)根据表格中提供的数量的变化关系,得出答案;(2)根据表格中两个变量变化数据得出答案;(3)提供变化情况得出结论.【详解】解:(1)表格中反映的是:提出概念所用时间与对概念的接受能力这两个变量,其中“提出概念所用时间”是自变量,“对概念的接受能力”为因变量;(2)根据表格中的数据,提出概念所用时间是13分钟时,学生的接受能力最强达到59.9;(3)学生对一个新概念的接受能力从第13分钟以后开始逐渐减弱.【点睛】本题考查用表格表示变量之间的关系,理解自变量、因变量的意义以及变化关系是解决问题的关键.·线5、(1)2(3)4x --,对称轴为x =3;(2)5;(3)32【分析】(1)加上2(3)-,同时再减去2(3)-,配方,整理,根据定义回答即可;(2)将221+-x ax 配成22(a)1x a +--,根据对称轴的定义,对称轴为x =-a , 根据对称轴的一致性,求a 即可;(3)将代数式22(21)(816)++-+x x x x 配方成222(1)(4)[(1)(4)]x x x x +-=+- =2222325(34)[()]24x x x --=--,根据定义计算即可. 【详解】(1)265x x -+=26995x x -+-+=2(3)4x --.∴该多项式的对称轴为x =3;(2)∵221+-x ax =22(a)1x a +--,∴对称轴为x =-a ,∵多项式221+-x ax 关于x =-5对称,∴-a =-5,即a =5,故答案为:5;(3)∵22(21)(816)++-+x x x x=222(1)(4)[(1)(4)]x x x x +-=+-=22(34)x x -- =22325[()]24x --, ∴对称轴为x =32, 故答案为:32. 【点睛】本题考查了配方法,熟练进行配方是解题的关键.。
北师大版七年级数学下册期末学情评估附答案 (2)
![北师大版七年级数学下册期末学情评估附答案 (2)](https://img.taocdn.com/s3/m/48eb7396fc0a79563c1ec5da50e2524de518d007.png)
北师大版七年级数学下册期末学情评估一、选择题(本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一个是符合要求的)1.下面的四个汉字可以看作是轴对称图形的是( )2.已知水星的半径约为2 440 000米,用科学记数法表示为( )米.A.0.244×107B.2.44×106C.2.44×107D.24.4×1053.下列计算正确的是( )A.x2+3x2=4x4B.x2y·2x3=2x6yC.6x2y2÷3x=2x D.(-3x)2=9x24.如图,给出下列条件:①∠1=∠2;②∠3=∠4;③∠B=∠DCE;④∠B+∠BAD=180°,其中能推出AB∥DC的是( )A.①②B.①③C.②③D.②④(第4题) (第6题)5.已知(m-n)2=10,(m+n)2=2,则mn的值为( )A.10 B.-6 C.-2 D.26.某学习小组做“用频率估计概率的试验时,统计了某一结果出现的频率,绘制了如图所示的折线统计图,则符合这一结果的试验最有可能是( )A.掷一枚质地均匀的正方体骰子,出现1点朝上B.任意写一个整数,它能被2整除C.不透明袋中装有大小和质地都相同的1个红球和2个黄球,从中随机取一个,取到红球D.从一副扑克牌中抽取1张,抽到的牌是“黑桃”7.如图,E,B,F,C四点在一条直线上,且EB=CF,∠A=∠D,增加下列条件中的一个仍不能说明△ABC≌△DEF,这个条件是( )A.DF∥AC B.AB=DEC.∠E=∠ABC D.AB∥DE(第7题) (第9题)8.若线段AM,AN分别是△ABC的BC边上的高和中线,则( ) A.AM>AN B.AM≥ANC.AM<AN D.AM≤AN9.如图,在△ABC中,D是AB上一点,DF交AC于点E,AE=EC,DE=EF,则下列结论:①∠ADE=∠EFC;②∠ADE+∠ECF+∠FEC=180°;③∠B+∠BCF =180°;④S△ABC=S四边形DBCF.其中正确的结论有( )A.4个B.3个C.2个D.1个10.如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B 时停止(不含点A和点B),则△ABP的面积S随着时间t变化的图象大致为( )二、填空题(本题共6小题,每小题4分,共24分)11.已知a m+1·a2m-1=a9,则m=________.12.小明爸爸开车带小明去福州游玩,一路上匀速前行,小明记下了如下数据,从9点开始,记汽车行驶的时间为t (h)(即9点时,t =0),汽车离福州的距离为s (km),则s 关于t 的关系式为________. 观察时刻 9:00 9:30 10:00 (注:“福州120 km ”表示该路牌所在位置离福州的距离为120 km)路牌内容福州 120 km福州 80 km福州 40 km13. 如图,在两个同心圆中,三条直径把大圆分成六等份,若在这个圆面上均匀地撒一把豆子,则豆子落在阴影部分的概率是________.(第13题) (第14题)14.如图,BD 平分∠ABC ,DE ⊥AB 于点E ,DF ⊥BC 于点F ,AB =6,BC =8.若S △ABC=21,则DE =________.15.珠江流域某江段水流方向经过B ,C ,D 三点拐弯后与原来相同,如图,若∠ABC =120°,∠BCD =80°,则∠CDE =________.(第15题) (第16题)16.如图,小虎用10块高度都是3 cm 的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC =BC ,∠ACB =90°),点C 在DE 上,点A 和B 分别与木墙的顶端重合,则两堵木墙之间的距离为________.三、解答题(本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤)17.(8分)计算: (1)(-1)2 023+⎝ ⎛⎭⎪⎫-13-2-⎝ ⎛⎭⎪⎫9200+16×2-3;(2)(2a3b2-4a4b3+6a5b4)÷(-2a3b2).18.(8分)先化简,再求值:[(x+2y)(x-2y)-(x+4y)2]÷4y,其中x=-5,y =2.19.(8分)如图,CE平分∠BCD,∠1=∠2=70°,∠3=40°,AB和CD是否平行?请说明理由.20.(12分)如图,在一条河的同岸有两个村庄A和B,两个村庄要在河上合修一座便民桥,解决两个村庄的通行问题.(利用尺规作图,请保留作图痕迹)(1)请在图①中找出桥的位置P,使得桥到两个村庄的距离之和最短;(2)请在图②中找出桥的位置Q,使得桥到两个村庄的距离相等.21.(8分)某商场举行开业酬宾活动,设立了两个可以自由转动的转盘(如图所示,两个转盘均被等分),并规定:顾客购买满188元的商品,即可任选一个转盘转动一次,转盘停止后,指针所指区域内容即为优惠方式.若指针所指区域空白,则无优惠.已知小张在该商场消费300元.(1)若他选择转动转盘1,则他能得到优惠的概率为多少?(2)选择转动转盘1和转盘2,哪种方式对小张更合算?请通过计算加以说明.22.(8分)如图,在四边形ABCD中,AB∥CD,∠1=∠2,DB=DC.(1)试说明:△ABD≌△EDC;(2)若∠A=135°,∠BDC=30°,求∠BCE的度数.23.(10分)如图,在△ABC中,AB=AC,点D,E,F分别在三边上,且BE=CD,BD=CF,G为EF的中点.(1)若∠A=40°,求∠B的度数;(2)试说明:DG垂直平分EF.24.(10分)某医药研究所研制一种新药,在做药效试验时发现,如果成人按规定剂量服用,那么服药后,每毫升血液中含药量y(μg)随时间t(h)的变化图象如图所示,根据图象回答:(1)服药后几时血液中含药量最高?此时每毫升血液中含药量是多少微克?(2)在服药几时内,每毫升血液中含药量逐渐升高?在服药几时后,每毫升血液中含药量逐渐下降?(3)服药后14 h时,每毫升血液中含药量是________μg.(4)如果每毫升血液中含药量为4 μg及以上时,治疗疾病有效,那么有效时间为几时?25.(14分)如图①,在等边三角形ABC中,点D是AB边上的动点,以CD为一边,向上作等边三角形CDE,连接AE.(1)△DBC和△EAC全等吗?请说明理由.(2)试说明:AE∥BC.(3)如图②,若动点D运动到边BA的延长线上,所作三角形CDE仍为等边三角形,请问是否仍有AE∥BC?请说明理由.答案一、1.A 2.B 3.D 4.B 5.C6.C 7.B 8.D 9.A 10.B二、11.3 12.s=120-80t13.1214.315.20°16.30 cm三、17.解:(1)原式=(-1)+9-1+2=9.(2)原式=2a3b2÷(-2a3b2)-4a4b3÷(-2a3b2)+6a5b4÷(-2a3b2)=-1+2ab-3a2b2.18.解:原式=[](x2-4y2)-(x2+8xy+16y2)÷4y=(x2-4y2-x2-8xy-16y2)÷4y=(-20y2-8xy)÷4y=-5y-2x.当x=-5,y=2时,原式=-5×2-2×(-5)=-10+10=0.19.解:AB和CD平行.理由如下:因为∠1=∠2=70°,所以∠D=180°-∠1-∠2=40°.又因为∠3=40°,所以∠D=∠3,所以AB∥CD.20.解:(1)如图①.(2)如图②.21.解:(1)因为转盘被等分成了12个扇形,其中有6个扇形能得到优惠,所以P(得到优惠)=12 .(2)选择转动转盘1能优惠[(1-0.7)×300+(1-0.8)×300×2+(1-0.9)×300×3]÷12=25(元), 选择转动转盘2能优惠40×24=20(元).因为25>20,所以选择转动转盘1对小张更合算. 22.解:(1)因为AB ∥CD ,所以∠ABD =∠BDC .在△ABD 和△EDC 中,⎩⎨⎧∠ABD =∠BDC ,DB =CD ,∠1=∠2,所以△ABD ≌△EDC (ASA). (2)由(1)得 ∠ABD =∠BDC .因为∠A =135°,∠BDC =30°,所以∠1=180°-∠A -∠ABD =∠180°-∠A -∠BDC =15°, 所以∠2=∠1=15°. 因为DB =DC ,所以∠DCB =(180°-∠BDC )÷2=75°, 所以∠BCE =∠DCB -∠2=75°-15°=60°.23.解:(1)因为AB =AC ,所以∠C =∠B .因为∠A =40°,所以∠B =180°-40°2=70°. (2)连接DE ,DF . 在△BDE 和△CFD 中,⎩⎨⎧BD =CF ,∠B =∠C ,BE =CD ,所以△BDE ≌△CFD (SAS). 所以DE =DF . 因为G 为EF 的中点,所以DG ⊥EF .所以DG 垂直平分EF .24.解:(1)服药后2 h 血液中含药量最高,此时每毫升血液中含药量是6 μg.(2)在服药2 h 内,每毫升血液中含药量逐渐升高,在服药2 h 后,每毫升血液中含药量逐渐下降.(3)2 (4)8-43=203(h),即有效时间为203h.25.解:(1)△DBC 和△EAC 全等.理由:因为△ABC 和△CDE 均为等边三角形,所以∠ACB =∠ECD =60°,BC =AC ,CD =CE . 又因为∠ACB =∠BCD +∠ACD , ∠ECD =∠ECA +∠ACD , 所以∠BCD =∠ECA . 在△DBC 和△EAC 中,⎩⎨⎧BC =AC ,∠BCD =∠ACE ,DC =EC ,所以△DBC ≌△EAC (SAS). (2)因为△DBC ≌△EAC , 所以∠EAC =∠B .又因为∠ACB =∠B =60°, 所以∠EAC =∠ACB , 所以AE ∥BC . (3)仍有AE ∥BC .理由:因为△ABC 和△CDE 均为等边三角形, 所以∠ACB =∠ECD =60°,BC =AC ,CD =CE , 所以∠BCA +∠ACD =∠ACD +∠DCE , 即∠BCD =∠ACE , 在△DBC 和△EAC 中,⎩⎨⎧BC =AC ,∠BCD =∠ACE ,DC =EC ,所以△DBC≌△EAC(SAS),所以∠EAC=∠B.又因为∠ACB=∠B=60°,所以∠EAC=∠ACB,所以AE∥BC.北师大版七年级数学下册期中学情评估一、选择题(每题3分,共30分)1.计算:(-3)-1=( )A.-3 B.3 C.13D.-132.下列各图中,∠1与∠2是对顶角的是( )3.某颗粒物的直径约为0.000 001 8米,用科学记数法表示该颗粒物的直径为( )A.0.18×10-5米B.1.8×10-5米C.1.8×10-6米D.18×10-5米4.下列运算正确的是( )A.(a2)3=a6B.a3·a4=a12C.a8÷a4=a2D.(-3a2)2=6a45.如图,点E在BC的延长线上,下列条件不能判断AB∥CD的是( )A.∠BAC=∠ACDB.∠DCE=∠BC.∠B+∠BCD=180°D.∠B+∠BAD=180°6.下列算式不能运用平方差公式计算的是( )A.(x+a)(x-a)B.(x+2a)(-2a+x)C.(a+b)(-a-b)D.(-x-b)(x-b)7.洗衣机在洗涤衣服时,每浆洗一遍都经历了注水、清洗、排水三个连续过程(工作前洗衣机内无水).在这三个过程中,洗衣机内的水量y(升)与浆洗一遍的时间x(分)之间关系的图象大致为( )8.已知在弹簧的承受范围内,弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的质量x(kg)间有下表的关系,下列说法不正确的是( )x/kg0123 4y/cm2022242628A.x与y都是变量,且x是自变量,y是因变量B.所挂物体的质量为2 kg时,弹簧的长度为24 cmC.弹簧不挂物体时的长度为0 cmD.在弹性限度内,所挂物体的质量每增加1 kg,弹簧的长度增加2 cm 9.观察如图所示的图形,下列说法正确的个数是( )①过点A有且只有一条直线与直线BD平行;②平面内,过点A有且只有一条直线AC垂直于直线BD;③线段AC的长是点A到直线BD的距离;④线段AB、AC、AD中,线段AC最短,根据是两点之间,线段最短.A.1个B.2个C.3个D.4个(第9题) (第10题)10.如图,AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=n°,则下列结论:①∠COE=90°-12n°;②OF平分∠BOD;③∠POE=∠BOF;④∠POB=2∠DOF.其中正确的有( )A.①②③B.①②④C.①③④D.①②③④二、填空题(每题3分,共15分)11.小明家离学校3千米,上学时小明骑自行车以10千米/时的速度骑了x小时,这时离学校还有y千米.写出y与x之间的关系式:__________________.12.一个角的补角与这个角的余角的差是 ______ °.13.已知2x=6,4y=7,那么2x+2y的值是______.14.若代数式x2-6x+k是完全平方式,则k=______.15.如图①,在某个底面积为20 cm2的盛水容器内,有一个实心圆柱体铁块,现在匀速持续地向容器内注水,容器内水的高度y(cm)和注水时间x(s)之间的关系满足如图中的图象,则水流速度是______cm3/s.三、解答题(一)(每题8分,共24分)16.先化简,再求值:[(ab+2)(ab-2)-2a2b2+4]÷2ab,其中a=1,b=-2.17.如图所示,点B、E分别在AC、DF上,BD、CE均与AF相交,∠1=∠2,∠C =∠D.(1)BD和CE平行吗?请说明理由;(2)∠A和∠F相等吗?请说明理由.18.作图题(保留作图痕迹,不写作图过程):(1)在如图所示的方格纸中不用量角器与三角尺,仅用直尺.①经过点P,画直线PQ平行于AB所在直线.②过点C,画直线CN垂直于CB所在直线.(2)尺规作图:已知∠ACB,求作:∠A′C′B′,使∠A′C′B′=∠ACB.四、解答题(二)(每题9分,共27分)19.亮亮计算一道整式乘法的题(3x-m)·(2x-5),由于亮亮在解题过程中,抄错了第一个多项式中m前面的符号,把“-”写成了“+”,得到的结果为6x2-5x-25.(1)求m的值;(2)计算这道整式乘法的正确结果.20.为了解某种品牌汽车的耗油量,我们对这种车在高速公路上做了耗油试验,并把试验的数据记录下来,制成下表:(1)根据上表的数据,请你写出Q与t的关系式;(2)该品牌汽车的油箱有50L油,若以100km/h的速度匀速行驶,该车最多能行驶多远?21.小明骑单车上学,当他骑了一段路后,想起要买某本书,于是又折回到刚经过的新华书店,买到书后继续去学校,以下是他本次上学所用的时间与离家距离的关系示意图.根据图中的信息回答下列问题:(1)小明家到学校的距离是______米;(2)小明在书店停留了______分钟;(3)本次上学途中,小明一共行驶了____米,一共用了______分钟;(4)若骑单车的速度超过300米/分就超过了安全限度.在整个上学途中小明的最快车速是多少米/分?速度是否在安全限度内?五、解答题(三)(每题12分,共24分)22.如图①的两个长方形可以按不同的形式拼成图②和图③两个图形.(1)在图②中的阴影部分的面积S1可表示为____________;(写成多项式乘法的形式);在图③中的阴影部分的面积S2可表示为______;(写成两数平方差的形式)(2)比较图②与图③的阴影部分面积,可以得到的等式是______;A.(a+b)2=a2+2ab+b2B.(a+b)(a-b)=a2-b2C.(a-b)2=a2-2ab+b2(3)请利用所得等式解决下面的问题:①已知4m2-n2=12,2m+n=4,则2m-n=______;②计算(2+1)(22+1)(24+1)(28+1)+…+(232+1)+1的值,并写出该值的个位数字是多少.23.【阅读理解】两条平行线间的拐点问题经常可以通过作一条直线的平行线进行转化.例如:如图①,MN∥PQ,点C、B分别在直线MN、PQ上,点A在直线MN、PQ之间.试说明:∠CAB=∠MCA+∠PBA.解:如图①,过点A作AD∥MN,因为MN∥PQ,AD∥MN,所以AD∥MN∥PQ,所以∠MCA=∠DAC,∠PBA=∠DAB,所以∠CAB=∠DAC+∠DAB=∠MCA+∠PBA,即∠CAB=∠MCA+∠PBA.【类比应用】若直线AB∥CD,P为平面内一点,连接PA、PD.(1)如图②,若∠A=50°,∠D=150°,求∠APD的度数;(2)如图③,设∠PAB=∠α、∠CDP=∠β,则∠α、∠β、∠P之间的数量关系为__________________;【联系拓展】如图④,直线AB∥CD,P为平面内一点,连接PA、PD.AP⊥PD,DN平分∠PDC,若∠PAN+12∠PAB=∠P,运用(2)中的结论,直接写出∠N的度数.答案一、1.D 2.B 3.C 4.A 5.D 6.C 7.D 8.C 9.C 10.A二、11.y =3-10x 12.90 13.42 14. 915.403提示:由题图可知,5s 时,水面刚好到达实心圆柱体铁块顶端,5s 后水面高度不受实心圆柱体铁块影响, 则水流速度为(15-11)×2011-5=403(cm 3/s).故答案为403. 三、16.解:原式=(a 2b 2-4-2a 2b 2+4)÷2ab=(-a 2b 2)÷2ab =-12ab .当a =1,b =-2时,原式=-12×1×(-2)=1.17.解:(1)平行.理由:因为∠1=∠2,∠2=∠3,所以∠1=∠3,所以BD ∥CE .(2)相等.理由:因为BD ∥CE ,所以∠C =∠DBA , 又因为∠C =∠D ,所以∠DBA =∠D , 所以DF ∥AC ,所以∠A =∠F . 18.解:(1)如图.(2)如图.四、19.解:(1)根据题意可得,(3x+m)(2x-5)=6x2-15x+2mx-5m=6x2-(15-2m)x-5m,所以-5m=-25,解得m=5.(2)(3x-5)(2x-5)=6x2-15x-10x+25=6x2-25x+25. 20.解:(1)由题意得汽车每行驶1h,油量减少6L,则剩余油量为Q=100-6t.(2)50÷6×100=2 5003(km),答:该车最多能行驶2 5003km.21.解:(1)1 500 (2)4 (3)2 700;14(4)当时间在0~6分钟内时,速度为1 200÷6=200(米/分),当时间在6~8分钟内时,速度为(1 200-600)÷(8-6)=300(米/分),当时间在12~14分钟内时,速度为(1 500-600)÷(14-12)=450(米/分),因为450>300>200,所以在整个上学途中小明的最快车速为450米/分,速度不在安全限度内.五、22.解:(1)(a+b)(a-b);a2-b2(2)B(3)①3②原式=(2-1)(2+1)(22+1)(24+1)(28+1)+…+(232+1)+1=(22-1)(22+1)(24+1)(28+1)+…+(232+1)+1=(24-1)(24+1)(28+1)+…+(232+1)+1=…=264-1+1=264,而21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…,其个位数字2,4,8,6重复出现,而64÷4=16,于是“2,4,8,6”经过16次循环,因此264的个位数字为6.23.解:(1)如图①,过点P作PE∥AB,因为AB∥CD, PE∥AB,所以AB∥PE∥CD,所以∠APE=∠A=50°,∠DPE+∠D=180°,所以∠DPE= 180°-150°=30°.所以∠APD=∠APE+∠DPE= 50°+30°=80°.(2)∠α+∠β-∠P=180°【联系拓展】∠N的度数为45°. 提示:如图②,设PD交AN于点O,因为AP⊥PD,所以∠APO=90°,所以∠POA+∠PAN= 90°,因为∠PAN+12∠PAB=∠APD,所以∠PAN+12∠PAB= 90°,所以∠POA=12∠PAB,因为∠POA=∠NOD,所以∠NOD=12∠PAB,因为DN平分∠PDC,所以∠ODN=12∠PDC,所以∠AND= 180°-∠NOD-∠ODN= 180°-12(∠PAB+∠PDC),由(2)得∠CDP+∠PAB-∠APD= 180°,所以∠CDP+∠PAB= 180°+∠APD,所以∠AND= 180°-12(∠PAB+∠PDC)= 180°-12(180°+∠APD)= 180°-12(180°+90°)= 45°.21。
北师大版七年级下册数学《期末考试试题》(带答案解析)
![北师大版七年级下册数学《期末考试试题》(带答案解析)](https://img.taocdn.com/s3/m/74e1caa05acfa1c7ab00cc8a.png)
2020年北师大版数学七年级下册期末测试学校 _________ 班级 ____________一、选择题(每小题3分,共30分)1•下列世界博览会会徽图案中是轴对称图形的是(2•下列计算正确的是()551032A. a + a = aB. a • a = a4.下面每组数分别是三根小木棒的长度,它们能摆成三角形的是()意翻开一张是汉字“信”的概率是 ()7•下列说法:①在同一平面内过一点有且只有一条直线和已知直线垂直;行于同一条直线的两条直线也互相平行;④同位角相等•其中正确的个数有(8.通过计算几何图形的面积可表示代数恒等式,图中可表示的代数恒等式是(1 = Z 2,那么下列结论正确的是()| ----- p3•如图所示,已知/A. AB //BC B. AB // CD C. / C=ZD D. / 3=Z4A. 5 1, 3B. 2, 4, 2C. 3, 3, 7D. 2, 3, 45如图①所示,有6张写有汉字的卡片,它们的背面都相同, 现将它们背面朝上洗匀后如图 2摆放,从中任1A.- 26.利用基本作图,作出唯一三角形的是(□ □ U□ □ □ 阳2B. 13C.A.已知三边B .C.已知两角及其夹边D. 已知两边及其夹角 已知两边及其中一边1D.-6对角B. 2个C. 3个D. 4个姓名 _________成绩 ________76C. a 十 a = 3、2八 6D. ( — a ) = —②垂线段最短;③在同一平面内平C. DBro二、填空题(每小题3分,共15分)11.0.000 000 087 用科学记数法可表示为 _____ . 12.如图,已知 AB// CD, / 1 = 120 °,则/ C =13.一棵树高h (m )与生长时间n (年)之间满足一定的关系,请你根据下表中的数写出h (m )与n (年)之间的关A. (a b)(a b) a 2b 2B. (a b)2 a 22ab b 2 2C. 2a(a b) 2a 2abD. (a b)22a 2abb 29•如图,等腰△ABC 中, AB=AC=8 , BC=5 , AB 的垂直平分线DE 交AB 于点 D ,交 AC 于点 E ,贝U ABECB. 14C. 15D. 1610.如图,火车匀速通过隧道(隧道长等于火车长)时,火车进入隧道的时间x 与火车在隧道内的长度 y 之的周长为()间的关系用图像描述大致是(系式:h= _____ .h(m)2.63.2 3.84.45.014.在一个不透明的箱子里装有红色、蓝色、黄色的球共 20个,除颜色外,形状、大小、质地等完全相同,小明通过多次摸球实验后发现摸到红色、黄色球的频率分别稳定在 10%和15%,则箱子里蓝色球的个数很可能是15.如图,△ ABE^A ABC 分别沿着 AB, AC 边翻折 180 ° 形成的•若/ BAC = 145。
(北师大版)2018-2019学年七年级数学下学期期末考试试卷(含答案)
![(北师大版)2018-2019学年七年级数学下学期期末考试试卷(含答案)](https://img.taocdn.com/s3/m/9886a140f242336c1eb95ee7.png)
2018-2019学年下学期期末考试七年级数学(北师大版)注意:本试卷分试题卷和答题卡两部分,考试时间90分钟,满分100分,考生应首先阅读答题卡上的文字信息,然后在答题卡上作答,在试题卷上作答无效.交卷时只交答题卡一、选择题(每小题3分,共30)1.以下是回收、绿色包装、节水、低碳四个标志,其中是轴对称图形的是( );;;2.下列计算正确的是( )A.(2x+y)2=4x2+2xy +y2B.(2x4)3=8x7C.-2x6÷x2=-2x3D.(x-y)(y-x)2=(x-y)33.如图,下列条件中,不能判断直线a∥b的是( )A.∠1=∠3B.∠2=∠3C.∠4=∠5D.∠2+∠4=180°4.下列事件中,属于不确定事件的是()A.在△ABC中,∠A+∠B+∠C=180B.如果a、b为有理数,那么a+b =b+aC.两个负数的和是正数D.若∠α=∠β,则∠α和∠β是一对对顶角5.如图,在折纸活动中,聪聪制作了一张△ABC纸片,点D、E别在边AB、AC上,将△ABC沿着DE折叠压平,A与A'重合,若∠A=65°,则∠1+∠2=()A.120°B.130° C.105° D.75°6.小茗同学骑自行车去上学,一开始以某一速度匀速行进,途中车子发生故障,只好停下来修车,车修好后,因怕耽误上课时间,于是加快车速.如图所示的四个图象中(S表示距离,t表示时间)符合以上情况的图象是( )7.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是( )A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短8.如图,在一个等边三角形纸片中取三边的中点,以虚线为折痕折叠纸片,图中阴影部分的面积是整个图形面积的()A.14B.13C.23D.389.如图,两个正方形的面积分别为25,16,两阴影部分的面积分别为a,b(a>b),则(a-b)等于()A. 9B.8 C,7 D.610.如图,锐角△ABC中,D、E分别是AB、AC边上的点,△ADC ≌△ADC ',△AEB≌△AEB',且C ' D∥EB'∥BC,BE、CD交于点F,若∠BAC=36°,则∠BFC的大小是()A.106°B.108° C.110° D.112°二、填空题(每小题3分,共15分)11.英国两位物理学家安德烈和康斯坦丁成功地从石墨中分离出石墨烯,荣获了诺贝尔物理学奖,石墨烯目前是世界上最薄也是最坚硬的纳米材料,同时还是导电性最好的材料其理论厚度仅0.00000000034米,将0.00000000034这个数用科学记数法可表示为2.已知∠A=35°,则∠A的余角的3倍是13.一只蚂蚁在如图所示的七巧板上任意爬行,已知它停在这副七巧板上的任何一点的可能性都相同,那么它停在3号板上的概率是14.任意写下一个三位数(三位数字都不相同).重新排列各位数字,使其组成一个最大的数和一个最小的数,然后用最大的数减去最小的数,得到差.不断重复这个过程……,最后一定会得到相同的结果,这个结果是 15.若m+n=17,mn=70则m-n=三、解答题(本大题共7个小题,共55分)16.(6分)先化简,再求值[(x+2y)2-(x+y)(3x-y)-5y 2]÷(2x),其中x= -32,y=1。
2018-2019学年北师大版七年级下学期期末考试数学试卷(含答案)
![2018-2019学年北师大版七年级下学期期末考试数学试卷(含答案)](https://img.taocdn.com/s3/m/da1d196b3c1ec5da50e27051.png)
2018-2019学年北师大版七年级下学期期末考试数学试卷
一、选择题(共8小题;共40分)
1. 人的头发粗细各异,普通头发的直径是米,将数字用科学记数法表示为
A. B. C. D.
2. 已知,下列变形正确的是
A. B. C. D.
3. 下列各式计算正确的是
A. B. C. D.
4. 含角的直角三角板与直线,的位置关系如图所示,已知,.则的度
数是
A. B. C. D.
5. 下列命题属于真命题的是
A. 同旁内角相等,两直线平行
B. 相等的角是对顶角
C. 平行于同一条直线的两条直线平行
D. 同位角相等
6. 利用图中图形面积关系可以解释的公式是
A. B.
C. D.
7. 下列因式分解正确的是
A. B.
C. D.
第 1 页共 15 页。
最新北师大版七年级数学下册 期末试卷检测(提高,Word版 含解析)
![最新北师大版七年级数学下册 期末试卷检测(提高,Word版 含解析)](https://img.taocdn.com/s3/m/8b114f10974bcf84b9d528ea81c758f5f61f2934.png)
最新北师大版七年级数学下册期末试卷检测(提高,Word版含解析)一、解答题1.已知AB//CD.(1)如图1,E为AB,CD之间一点,连接BE,DE,得到∠BED.求证:∠BED=∠B+∠D;(2)如图,连接AD,BC,BF平分∠ABC,DF平分∠ADC,且BF,DF所在的直线交于点F.①如图2,当点B在点A的左侧时,若∠ABC=50°,∠ADC=60°,求∠BFD的度数.②如图3,当点B在点A的右侧时,设∠ABC=α,∠ADC=β,请你求出∠BFD的度数.(用含有α,β的式子表示)2.如图1,MN∥PQ,点C、B分别在直线MN、PQ上,点A在直线MN、PQ之间.(1)求证:∠CAB=∠MCA+∠PBA;(2)如图2,CD∥AB,点E在PQ上,∠ECN=∠CAB,求证:∠MCA=∠DCE;(3)如图3,BF平分∠ABP,CG平分∠ACN,AF∥CG.若∠CAB=60°,求∠AFB的度数.3.已知,AB∥CD.点M在AB上,点N在CD上.(1)如图1中,∠BME、∠E、∠END的数量关系为:;(不需要证明)如图2中,∠BMF、∠F、∠FND的数量关系为:;(不需要证明)(2)如图3中,NE平分∠FND,MB平分∠FME,且2∠E+∠F=180°,求∠FME的度数;(3)如图4中,∠BME=60°,EF平分∠MEN,NP平分∠END,且EQ∥NP,则∠FEQ的大小是否发生变化,若变化,请说明理由,若不变化,求出∠FEQ的度数.4.已知直线//AB CD ,点P 为直线AB 、CD 所确定的平面内的一点. (1)如图1,直接写出APC ∠、A ∠、C ∠之间的数量关系 ; (2)如图2,写出APC ∠、A ∠、C ∠之间的数量关系,并证明;(3)如图3,点E 在射线BA 上,过点E 作//EF PC ,作PEG PEF ∠∠=,点G 在直线CD 上,作BEG ∠的平分线EH 交PC 于点H ,若30APC ∠=,140PAB ∠=,求PEH ∠的度数.5.已知//AM CN ,点B 为平面内一点,AB BC ⊥于B .(1)如图1,求证:90A C ∠+∠=︒;(2)如图2,过点B 作BD MA ⊥的延长线于点D ,求证:ABD C ∠=∠;(3)如图3,在(2)问的条件下,点E 、F 在DM 上,连接BE 、BF 、CF ,且BF 平分DBC ∠,BE 平分ABD ∠,若AFC BCF ∠=∠,3BFC DBE ∠=∠,求EBC ∠的度数.二、解答题6.如图,AB ⊥AK ,点A 在直线MN 上,AB 、AK 分别与直线EF 交于点B 、C ,∠MAB+∠KCF =90°.(1)求证:EF ∥MN ;(2)如图2,∠NAB 与∠ECK 的角平分线交于点G ,求∠G 的度数;(3)如图3,在∠MAB 内作射线AQ ,使∠MAQ =2∠QAB ,以点C 为端点作射线CP ,交直.线.AQ 于点T ,当∠CTA =60°时,直接写出∠FCP 与∠ACP 的关系式.7.已知,如图①,∠BAD =50°,点C 为射线AD 上一点(不与A 重合),连接BC . (1)[问题提出]如图②,AB ∥CE ,∠BCD =73 °,则:∠B = .(2)[类比探究]在图①中,探究∠BAD 、∠B 和∠BCD 之间有怎样的数量关系?并用平行....线的性质....说明理由. (3)[拓展延伸]如图③,在射线BC 上取一点O ,过O 点作直线MN 使MN ∥AD ,BE 平分∠ABC 交AD 于E 点,OF 平分∠BON 交AD 于F 点,//OG BE 交AD 于G 点,当C 点沿着射线AD 方向运动时,∠FOG 的度数是否会变化?若变化,请说明理由;若不变,请求出这个不变的值.8.如图1,O 为直线AB 上一点,过点O 作射线,30OC AOC ︒∠=,将一直角三角板(30M ︒∠=)的直角顶点放在点O 处,一边ON 在射线OA 上,另一边OM 与OC 都在直线AB 的上方,将图1中的三角板绕点O 以每秒3°的速度沿顺时针方向旋转一周.(1)几秒后ON 与OC 重合?(2)如图2,经过t 秒后,//MN AB ,求此时t 的值.(3)若三角板在转动的同时,射线OC 也绕O 点以每秒6°的速度沿顺时针方向旋转一周,那么经过多长时间OC 与OM 重合?请画图并说明理由.(4)在(3)的条件下,求经过多长时间OC 平分MOB ∠?请画图并说明理由. 9.已知:如图1,//AB CD ,点E ,F 分别为AB ,CD 上一点.(1)在AB ,CD 之间有一点M (点M 不在线段EF 上),连接ME ,MF ,探究AEM ∠,EMF ∠,∠MFC 之间有怎样的数量关系,请补全图形,并在图形下面写出相应的数量关系,选其中一个进行证明.(2)如图2,在AB ,CD 之两点M ,N ,连接ME ,MN ,NF ,请选择一个图形写出AEM ∠,EMN ∠,MNF ∠,NFC ∠存在的数量关系(不需证明).10.如图1,D 是△ABC 延长线上的一点,CE //AB . (1)求证:∠ACD =∠A+∠B ;(2)如图2,过点A 作BC 的平行线交CE 于点H ,CF 平分∠ECD ,FA 平分∠HAD ,若∠BAD =70°,求∠F 的度数.(3)如图3,AH //BD ,G 为CD 上一点,Q 为AC 上一点,GR 平分∠QGD 交AH 于R ,QN 平分∠AQG 交AH 于N ,QM //GR ,猜想∠MQN 与∠ACB 的关系,说明理由.三、解答题11.如图所示,已知射线//,//,100CB OA AB OC C OAB ︒∠=∠=.点E 、F 在射线CB 上,且满足FOB AOB ∠=∠,OE 平分COF ∠ (1)求EOB ∠的度数;(2)若平行移动AB ,那么:OBC OFC ∠∠的值是否随之发生变化?如果变化,找出变化规律.若不变,求出这个比值;(3)在平行移动AB 的过程中,是否存在某种情况,使OEC OBA ∠=∠?若存在,求出其度数.若不存在,请说明理由.12.如图,已知直线a∥b,∠ABC=100°,BD平分∠ABC交直线a于点D,线段EF在线段AB的左侧,线段EF沿射线AD的方向平移,在平移的过程中BD所在的直线与EF所在的直线交于点P.问∠1的度数与∠EPB的度数又怎样的关系?(特殊化)(1)当∠1=40°,交点P在直线a、直线b之间,求∠EPB的度数;(2)当∠1=70°,求∠EPB的度数;(一般化)(3)当∠1=n°,求∠EPB的度数(直接用含n的代数式表示).13.(生活常识)射到平面镜上的光线(入射光线)和变向后的光线(反射光线)与平面镜所夹的角相等.如图 1,MN 是平面镜,若入射光线AO 与水平镜面夹角为∠1,反射光线OB 与水平镜面夹角为∠2,则∠1=∠2 .(现象解释)如图 2,有两块平面镜OM,ON,且OM⊥ON,入射光线AB 经过两次反射,得到反射光线CD.求证AB∥CD.(尝试探究)如图 3,有两块平面镜OM,ON,且∠MON =55︒,入射光线AB 经过两次反射,得到反射光线CD,光线AB 与CD 相交于点E,求∠BEC 的大小.(深入思考)如图 4,有两块平面镜OM,ON,且∠MON =α ,入射光线AB 经过两次反射,得到反射光线CD,光线AB 与CD 所在的直线相交于点E,∠BED=β , α 与β 之间满足的等量关系是 .(直接写出结果)14.问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC度数.小明的思路是:如图2,过P作PE∥AB,通过平行线性质,可得∠APC=50°+60°=110°.问题迁移:(1)如图3,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β.∠CPD、∠α、∠β之间有何数量关系?请说明理由;(2)在(1)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD、∠α、∠β间的数量关系.15.如图,△ABC和△ADE有公共顶点A,∠ACB=∠AED=90°,∠BAC=45°,∠DAE=30°.(1)若DE//AB,则∠EAC=;(2)如图1,过AC上一点O作OG⊥AC,分别交A B、A D、AE于点G、H、F.①若AO =2,S △AGH =4,S △AHF =1,求线段OF 的长;②如图2,∠AFO 的平分线和∠AOF 的平分线交于点M ,∠FHD 的平分线和∠OGB 的平分线交于点N ,∠N +∠M 的度数是否发生变化?若不变,求出其度数;若改变,请说明理由.【参考答案】一、解答题1.(1)见解析;(2)55°;(3) 【分析】(1)根据平行线的判定定理与性质定理解答即可;(2)①如图2,过点作,当点在点的左侧时,根据,,根据平行线的性质及角平分线的定义即可求的度数; ②如图解析:(1)见解析;(2)55°;(3)1118022αβ︒-+【分析】(1)根据平行线的判定定理与性质定理解答即可;(2)①如图2,过点F 作//FE AB ,当点B 在点A 的左侧时,根据50ABC ∠=︒,60ADC ∠=︒,根据平行线的性质及角平分线的定义即可求BFD ∠的度数;②如图3,过点F 作//EF AB ,当点B 在点A 的右侧时,ABC α∠=,ADC β∠=,根据平行线的性质及角平分线的定义即可求出BFD ∠的度数. 【详解】解:(1)如图1,过点E 作//EF AB ,则有BEF B ∠=∠,//AB CD ,//EF CD ∴,FED D ∴∠=∠,BED BEF FED B D ∴∠=∠+∠=∠+∠;(2)①如图2,过点F 作//FE AB ,有BFE FBA ∠=∠.//AB CD ,//EF CD ∴.EFD FDC ∴∠=∠.BFE EFD FBA FDC ∴∠+∠=∠+∠.即BFD FBA FDC ∠=∠+∠, BF 平分ABC ∠,DF 平分ADC ∠,1252FBA ABC ∴∠=∠=︒,1302FDC ADC ∠=∠=︒,55BFD FBA FDC ∴∠=∠+∠=︒.答:BFD ∠的度数为55︒; ②如图3,过点F 作//FE AB ,有180BFE FBA ∠+∠=︒.180BFE FBA ∴∠=︒-∠,//AB CD ,//EF CD ∴.EFD FDC ∴∠=∠.180BFE EFD FBA FDC ∴∠+∠=︒-∠+∠.即180BFD FBA FDC ∠=︒-∠+∠, BF 平分ABC ∠,DF 平分ADC ∠,1122FBA ABC α∴∠=∠=,1122FDC ADC β∠=∠=,1118018022BFD FBA FDC αβ∴∠=︒-∠+∠=︒-+.答:BFD ∠的度数为1118022αβ︒-+.【点睛】本题考查了平行线的判定与性质,解决本题的关键是熟练掌握平行线的判定与性质.2.(1)证明见解析;(2)证明见解析;(3)120°.【分析】(1)过点A作AD∥MN,根据两直线平行,内错角相等得到∠MCA=∠DAC,∠PBA=∠DAB,根据角的和差等量代换即可得解;(2)解析:(1)证明见解析;(2)证明见解析;(3)120°.【分析】(1)过点A作AD∥MN,根据两直线平行,内错角相等得到∠MCA=∠DAC,∠PBA=∠DAB,根据角的和差等量代换即可得解;(2)由两直线平行,同旁内角互补得到∴、∠CAB+∠ACD=180°,由邻补角定义得到∠ECM+∠ECN=180°,再等量代换即可得解;(3)由平行线的性质得到,∠FAB=120°﹣∠GCA,再由角平分线的定义及平行线的性质得到∠GCA﹣∠ABF=60°,最后根据三角形的内角和是180°即可求解.【详解】解:(1)证明:如图1,过点A作AD∥MN,∵MN∥PQ,AD∥MN,∴AD∥MN∥PQ,∴∠MCA=∠DAC,∠PBA=∠DAB,∴∠CAB=∠DAC+∠DAB=∠MCA+∠PBA,即:∠CAB=∠MCA+∠PBA;(2)如图2,∵CD∥AB,∴∠CAB+∠ACD=180°,∵∠ECM+∠ECN=180°,∵∠ECN=∠CAB∴∠ECM=∠ACD,即∠MCA+∠ACE=∠DCE+∠ACE,∴∠MCA=∠DCE;(3)∵AF∥CG,∴∠GCA+∠FAC=180°,∵∠CAB=60°即∠GCA+∠CAB+∠FAB=180°,∴∠FAB=180°﹣60°﹣∠GCA=120°﹣∠GCA,由(1)可知,∠CAB=∠MCA+∠ABP,∵BF平分∠ABP,CG平分∠ACN,∴∠ACN=2∠GCA,∠ABP=2∠ABF,又∵∠MCA=180°﹣∠ACN,∴∠CAB=180°﹣2∠GCA+2∠ABF=60°,∴∠GCA﹣∠ABF=60°,∵∠AFB+∠ABF+∠FAB=180°,∴∠AFB=180°﹣∠FAB﹣∠FBA=180°﹣(120°﹣∠GCA)﹣∠ABF=180°﹣120°+∠GCA﹣∠ABF=120°.【点睛】本题主要考查了平行线的性质,线段、角、相交线与平行线,准确的推导是解决本题的关键.3.(1)∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND;(2)120°;(3)不变,30°【分析】(1)过E作EH∥AB,易得EH∥AB∥CD,根据平行线的性质可求解;过F作FH∥AB解析:(1)∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND;(2)120°;(3)不变,30°【分析】(1)过E作EH∥AB,易得EH∥AB∥CD,根据平行线的性质可求解;过F作FH∥AB,易得FH∥AB∥CD,根据平行线的性质可求解;(2)根据(1)的结论及角平分线的定义可得2(∠BME+∠END)+∠BMF-∠FND=180°,可求解∠BMF=60°,进而可求解;∠BME,进而可求解.(3)根据平行线的性质及角平分线的定义可推知∠FEQ=12【详解】解:(1)过E作EH∥AB,如图1,∴∠BME=∠MEH,∵AB∥CD,∴HE∥CD,∴∠END=∠HEN,∴∠MEN=∠MEH+∠HEN=∠BME+∠END,即∠BME=∠MEN﹣∠END.如图2,过F作FH∥AB,∴∠BMF=∠MFK,∵AB∥CD,∴FH∥CD,∴∠FND=∠KFN,∴∠MFN=∠MFK﹣∠KFN=∠BMF﹣∠FND,即:∠BMF=∠MFN+∠FND.故答案为∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND.(2)由(1)得∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND.∵NE平分∠FND,MB平分∠FME,∴∠FME=∠BME+∠BMF,∠FND=∠FNE+∠END,∵2∠MEN+∠MFN=180°,∴2(∠BME+∠END)+∠BMF﹣∠FND=180°,∴2∠BME+2∠END+∠BMF﹣∠FND=180°,即2∠BMF+∠FND+∠BMF﹣∠FND=180°,解得∠BMF=60°,∴∠FME=2∠BMF=120°;(3)∠FEQ的大小没发生变化,∠FEQ=30°.由(1)知:∠MEN=∠BME+∠END,∵EF平分∠MEN,NP平分∠END,∴∠FEN=12∠MEN=12(∠BME+∠END),∠ENP=12∠END,∵EQ∥NP,∴∠NEQ=∠ENP,∴∠FEQ=∠FEN﹣∠NEQ=12(∠BME+∠END)﹣12∠END=12∠BME,∵∠BME=60°,∴∠FEQ=12×60°=30°.【点睛】本题主要考查平行线的性质及角平分线的定义,作平行线的辅助线是解题的关键.4.(1)∠A+∠C+∠APC=360°;(2)见解析;(3)55°【分析】(1)首先过点P作PQ∥AB,则易得AB∥PQ∥CD,然后由两直线平行,同旁内角互补,即可证得∠A+∠C+∠APC=360解析:(1)∠A+∠C+∠APC=360°;(2)见解析;(3)55°【分析】(1)首先过点P作PQ∥AB,则易得AB∥PQ∥CD,然后由两直线平行,同旁内角互补,即可证得∠A+∠C+∠APC=360°;(2)作PQ∥AB,易得AB∥PQ∥CD,根据两直线平行,内错角相等,即可证得∠APC=∠A+∠C;∠FEG,(3)由(2)知,∠APC=∠PAB-∠PCD,先证∠BEF=∠PQB=110°、∠PEG=12∠BEG,根据∠PEH=∠PEG-∠GEH可得答案.∠GEH=12【详解】解:(1)∠A+∠C+∠APC=360°如图1所示,过点P作PQ∥AB,∴∠A+∠APQ=180°,∵AB∥CD,∴PQ∥CD,∴∠C+∠CPQ=180°,∴∠A+∠APQ+∠C+∠CPQ=360°,即∠A+∠C+∠APC=360°;(2)∠APC=∠A+∠C,如图2,作PQ∥AB,∴∠A=∠APQ,∵AB∥CD,∴PQ∥CD,∴∠C=∠CPQ,∵∠APC=∠APQ-∠CPQ,∴∠APC=∠A-∠C;(3)由(2)知,∠APC=∠PAB-∠PCD,∵∠APC=30°,∠PAB=140°,∴∠PCD =110°,∵AB ∥CD ,∴∠PQB =∠PCD =110°,∵EF ∥BC ,∴∠BEF =∠PQB =110°,∵EF ∥BC ,∴∠BEF =∠PQB =110°,∵∠PEG =∠PEF ,∴∠PEG =12∠FEG ,∵EH 平分∠BEG ,∴∠GEH =12∠BEG ,∴∠PEH =∠PEG -∠GEH =12∠FEG -12∠BEG =12∠BEF=55°.【点睛】此题考查了平行线的性质以及角平分线的定义.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用. 5.(1)见解析;(2)见解析;(3).【分析】(1)先根据平行线的性质得到,然后结合即可证明;(2)过作,先说明,然后再说明得到,最后运用等量代换解答即可; (3)设∠DBE=a ,则∠BFC=3解析:(1)见解析;(2)见解析;(3)︒=∠105EBC .【分析】(1)先根据平行线的性质得到C BDA ∠=∠,然后结合AB BC ⊥即可证明;(2)过B 作//BH DM ,先说明ABD CBH ∠=∠,然后再说明//BH NC 得到CBH C ∠=∠,最后运用等量代换解答即可;(3)设∠DBE =a ,则∠BFC =3a ,根据角平分线的定义可得∠ABD =∠C =2a ,∠FBC =12∠DBC =a +45°,根据三角形内角和可得∠BFC +∠FBC +∠BCF =180°,可得∠AFC =∠BCF 的度数表达式,再根据平行的性质可得∠AFC +∠NCF =180°,代入即可算出a 的度数,进而完成解答.【详解】(1)证明:∵//AM CN ,∴C BDA ∠=∠,∵AB BC ⊥于B ,∴90B ∠=︒,∴90A BDA ∠+∠=︒,∴90A C ∠+∠=︒;(2)证明:过B 作//BH DM ,∵BD MA ⊥,∴90ABD ABH ∠+∠=︒,又∵AB BC ⊥,∴90ABH CBH ∠+∠=︒,∴ABD CBH ∠=∠,∵//BH DM ,//AM CN∴//BH NC ,∴CBH C ∠=∠,∴ABD C ∠=∠;(3)设∠DBE =a ,则∠BFC =3a ,∵BE 平分∠ABD ,∴∠ABD =∠C =2a ,又∵AB ⊥BC ,BF 平分∠DBC ,∴∠DBC =∠ABD +∠ABC =2a +90,即:∠FBC =12∠DBC =a +45°又∵∠BFC +∠FBC +∠BCF =180°,即:3a +a +45°+∠BCF =180°∴∠BCF =135°-4a ,∴∠AFC =∠BCF =135°-4a ,又∵AM //CN ,∴∠AFC +∠ NCF =180°,即:∠AFC +∠BCN +∠BCF =180°,∴135°-4a +135°-4a +2a =180,解得a =15°,∴∠ABE =15°,∴∠EBC =∠ABE +∠ABC =15°+90°=105°.【点睛】本题主要考查了平行线的性质、角平分线的性质及角的计算,熟练应用平行线的性质、角平分线的性质是解答本题的关键.二、解答题6.(1)见解析;(2)∠CGA=45°;(3)∠FCP=2∠ACP或∠FCP+2∠ACP=180°.【分析】(1)有垂直定义可得∠MAB+∠KCN=90°,然后根据同角的余角相等可得∠KAN=∠K解析:(1)见解析;(2)∠CGA=45°;(3)∠FCP=2∠ACP或∠FCP+2∠ACP=180°.【分析】(1)有垂直定义可得∠MAB+∠KCN=90°,然后根据同角的余角相等可得∠KAN=∠KCF,从而判断两直线平行;(2)设∠KAN=∠KCF=α,过点G作GH∥EF,结合角平分线的定义和平行线的判定及性质求解;(3)分CP交射线AQ及射线AQ的反向延长线两种情况结合角的和差关系分类讨论求解.【详解】解:(1)∵AB⊥AK∴∠BAC=90°∴∠MAB+∠KAN=90°∵∠MAB+∠KCF=90°∴∠KAN=∠KCF∴EF∥MN(2)设∠KAN=∠KCF=α则∠BAN=∠BAC+∠KAN=90°+α∠KCB=180°-∠KCF=180°-α∵AG平分∠NAB,CG平分∠ECK∴∠GAN=12∠BAN=45°+12α,∠KCG=12∠KCB=90°-12α∴∠FCG=∠KCG+∠KCF=90°+12α过点G作GH∥EF∴∠HGC=∠FCG=90°+12α又∵MN∥EF∴MN∥GH∴∠HGA=∠GAN=45°+12α∴∠CGA=∠HGC-∠HGA=(90°+12α)-(45°+12α)=45°(3)①当CP 交射线AQ 于点T∵180CTA TAC ACP ∠+∠+∠=︒∴180CTA QAB BAC ACP ∠+∠+∠+∠=︒又∵=60,90CTA BAC ∠︒∠=︒∴30QAB ACP ∠+∠=︒由(1)可得:EF ∥MN∴FCA MAC ∠=∠∵FCP FCA ACP ∠=∠+∠∴FCP MAC ACP ∠=∠+∠∵MAC MAQ QAB BAC ∠=∠+∠+∠,2MAQ QAB ∠=∠∴()390=330901803MAC QAB ACP ACP ∠=∠+︒︒-∠+︒=︒-∠∴1803FCP ACP ACP ∠=︒-∠+∠即∠FCP +2∠ACP=180°②当CP 交射线AQ 的反向延长线于点T ,延长BA 交CP 于点GFCP FCA ACP ∠=∠-∠,由EF ∥MN 得MAC FCA ∠=∠∴FCP MAC ACP ∠=∠-∠又∵TAG QAB ∠=∠,180BAC CAG ∠+∠=︒,90BAC ∠=︒∴18090CAG BAC ∠=︒-∠=︒90CAT CAG TAG QAB ∠=∠-∠=︒-∠∵180CAT CTA ACP ∠+∠+∠=︒,60CTA ∠=︒∴120CAT ACP ∠+∠=︒∴90120QAB ACP ︒-∠+∠=︒∴30QAB ACP ∠=∠-︒由①可得390MAC QAB ∠=∠+︒∴()=330903MAC ACP ACP ∠∠-︒+︒=∠∴32FCP MAC ACP ACP ACP ACP ∠=∠-∠=∠-∠=∠综上,∠FCP =2∠ACP 或∠FCP +2∠ACP=180°.【点睛】本题考查平行线的判定和性质以及角的和差关系,准确理解题意,正确推理计算是解题关键.7.(1);(2),见解析;(3)不变,【分析】(1)根据平行线的性质求出,再求出的度数,利用内错角相等可求出角的度数;(2)过点作∥,类似(1)利用平行线的性质,得出三个角的关系; (3)运用解析:(1)23︒;(2)BCD A B ∠=∠+∠,见解析;(3)不变, 25FOG ∠=︒【分析】(1)根据平行线的性质求出50A DCE ∠=∠=︒,再求出BCE ∠的度数,利用内错角相等可求出角的度数;(2)过点C 作CE ∥AB ,类似(1)利用平行线的性质,得出三个角的关系;(3)运用(2)的结论和平行线的性质、角平分线的性质,可求出FOG ∠的度数,可得结论.【详解】(1)因为CE ∥AB ,所以50A DCE ∠=∠=︒,B BCE ∠=∠因为∠BCD =73 °,所以23BCE BCD DCE ∠=∠-∠=︒,故答案为:23︒(2)BCD A B ∠=∠+∠,如图②,过点C 作CE ∥AB ,则A DCE ∠=∠,B BCE ∠=∠.因为BCD DCE BCE ∠=∠+∠,所以BCD BAD B ∠=∠+∠,(3)不变,设ABE x ∠=,因为BE 平分ABC ∠,所以CBE ABE x ∠=∠=.由(2)的结论可知BCD BAD ABC ∠=∠+∠,且50BAD ︒∠=,则:502BCD x ∠=︒+.因为MN ∥AD ,所以502BON BCD x ∠=∠=︒+,因为OF 平分BON ∠, 所以1252COF NOF BON x ∠=∠=∠=︒+. 因为OG ∥BE ,所以COG CBE x ∠=∠=,所以2525FOG COF COG x x ∠=∠-∠=+-=︒︒.【点睛】本题考查了平行线的性质和角平分线的定义,解题关键是熟练运用平行线的性质证明角相等,通过等量代换等方法得出角之间的关系.8.(1)10秒;(2)20秒;(3)20秒,画图见解析;(4)秒,画图见解析【分析】(1)用角的度数除以转动速度即可得;(2)求出∠AON=60°,结合旋转速度可得时间t ;(3)设∠AON=3解析:(1)10秒;(2)20秒;(3)20秒,画图见解析;(4)703秒,画图见解析 【分析】(1)用角的度数除以转动速度即可得;(2)求出∠AON=60°,结合旋转速度可得时间t ;(3)设∠AON=3t ,则∠AOC=30°+6t ,由题意列出方程,解方程即可;(4)根据转动速度关系和OC 平分∠MOB ,由题意列出方程,解方程即可.【详解】解:(1)∵30÷3=10,∴10秒后ON 与OC 重合;(2)∵MN ∥AB∴∠BOM=∠M=30°,∵∠AON+∠BOM=90°,∴∠AON=60°,∴t=60÷3=20∴经过t 秒后,MN ∥AB ,t=20秒.(3)如图3所示:∵∠AON+∠BOM=90°,∠BOC=∠BOM,∵三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,设∠AON=3t,则∠AOC=30°+6t,∵OC与OM重合,∵∠AOC+∠BOC=180°,可得:(30°+6t)+(90°-3t)=180°,解得:t=20秒;即经过20秒时间OC与OM重合;(4)如图4所示:∵∠AON+∠BOM=90°,∠BOC=∠COM,∵三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,设∠AON=3t,∠AOC=30°+6t,∵∠BOM+∠AON=90°,∴∠BOC=∠COM=12∠BOM=12(90°-3t),由题意得:180°-(30°+6t)=12( 90°-3t),解得:t=703秒,即经过703秒OC平分∠MOB.【点睛】此题考查了平行线的判定与性质,角的计算以及方程的应用,关键是应该认真审题并仔细观察图形,找到各个量之间的关系求出角的度数是解题的关键.9.(1)见解析;(2)见解析【分析】(1)过点M作MP∥AB.根据平行线的性质即可得到结论;(2)根据平行线的性质即可得到结论.【详解】解:(1)∠EMF=∠AEM+∠MFC.∠AEM+∠E解析:(1)见解析;(2)见解析【分析】(1)过点M作MP∥AB.根据平行线的性质即可得到结论;(2)根据平行线的性质即可得到结论.【详解】解:(1)∠EMF=∠AEM+∠MFC.∠AEM+∠EMF+∠MFC=360°.证明:过点M作MP∥AB.∵AB∥CD,∴MP∥CD.∴∠4=∠3.∵MP∥AB,∴∠1=∠2.∵∠EMF=∠2+∠3,∴∠EMF=∠1+∠4.∴∠EMF=∠AEM+∠MFC;证明:过点M作MQ∥AB.∵AB∥CD,∴MQ∥CD.∴∠CFM+∠1=180°;∵MQ∥AB,∴∠AEM+∠2=180°.∴∠CFM+∠1+∠AEM+∠2=360°.∵∠EMF=∠1+∠2,∴∠AEM+∠EMF+∠MFC=360°;(2)如图2第一个图:∠EMN+∠MNF-∠AEM-∠NFC=180°;过点M作MP∥AB,过点N作NQ∥AB,∴∠AEM=∠1,∠CFN=∠4,MP∥NQ,∴∠2+∠3=180°,∵∠EMN=∠1+∠2,∠MNF=∠3+∠4,∴∠EMN+∠MNF=∠1+∠2+∠3+∠4,∠AEM+∠CFN=∠1+∠4,∴∠EMN+∠MNF-∠AEM-∠NFC=∠1+∠2+∠3+∠4-∠1-∠4=∠2+∠3=180°;如图2第二个图:∠EMN-∠MNF+∠AEM+∠NFC=180°.过点M作MP∥AB,过点N作NQ∥AB,∴∠AEM+∠1=180°,∠CFN=∠4,MP∥NQ,∴∠2=∠3,∵∠EMN=∠1+∠2,∠MNF=∠3+∠4,∴∠EMN-∠MNF=∠1+∠2-∠3-∠4,∠AEM+∠CFN=180°-∠1+∠4,∴∠EMN-∠MNF+∠AEM+∠NFC=∠1+∠2-∠3-∠4+180°-∠1+∠4=180°.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.10.(1)证明见解析;(2)∠F=55°;(3)∠MQN=∠ACB;理由见解析.【分析】(1)首先根据平行线的性质得出∠ACE=∠A,∠ECD=∠B,然后通过等量代换即可得出答案;(2)首先根据角解析:(1)证明见解析;(2)∠F=55°;(3)∠MQN=12∠ACB;理由见解析.【分析】(1)首先根据平行线的性质得出∠ACE=∠A,∠ECD=∠B,然后通过等量代换即可得出答案;(2)首先根据角平分线的定义得出∠FCD=12∠ECD,∠HAF=12∠HAD,进而得出∠F=12(∠HAD+∠ECD),然后根据平行线的性质得出∠HAD+∠ECD的度数,进而可得出答案;(3)根据平行线的性质及角平分线的定义得出12QGR QGD∠=∠,12NQG AQG∠=∠,180MQG QGR∠+∠=︒,再通过等量代换即可得出∠MQN=12∠ACB.【详解】解:(1)∵CE//AB,∴∠ACE=∠A,∠ECD=∠B,∵∠ACD=∠ACE+∠ECD,∴∠ACD=∠A+∠B;(2)∵CF平分∠ECD,FA平分∠HAD,∴∠FCD =12∠ECD ,∠HAF =12∠HAD ,∴∠F =12∠HAD+12∠ECD =12(∠HAD+∠ECD ), ∵CH //AB , ∴∠ECD =∠B , ∵AH //BC , ∴∠B+∠HAB =180°, ∵∠BAD =70°,110B HAD ∴∠+∠=︒,∴∠F =12(∠B+∠HAD )=55°; (3)∠MQN =12∠ACB ,理由如下:GR 平分QGD ∠,12QGR QGD ∴∠=∠.GN 平分AQG ∠,12NQG AQG ∴∠=∠.//QM GR ,180MQG QGR ∴∠+∠=︒ .∴∠MQN =∠MQG ﹣∠NQG =180°﹣∠QGR ﹣∠NQG =180°﹣12(∠AQG+∠QGD )=180°﹣12(180°﹣∠CQG+180°﹣∠QGC ) =12(∠CQG+∠QGC ) =12∠ACB . 【点睛】本题主要考查平行线的性质和角平分线的定义,掌握平行线的性质和角平分线的定义是解题的关键.三、解答题11.(1)40°;(2)的值不变,比值为;(3)∠OEC=∠OBA=60°. 【分析】(1)根据OB 平分∠AOF ,OE 平分∠COF ,即可得出∠EOB=∠EOF+∠FOB=∠COA ,从而得出答案; (2解析:(1)40°;(2):OBC OFC ∠∠的值不变,比值为12;(3)∠OEC=∠OBA=60°. 【分析】(1)根据OB平分∠AOF,OE平分∠COF,即可得出∠EOB=∠EOF+∠FOB=12∠COA,从而得出答案;(2)根据平行线的性质,即可得出∠OBC=∠BOA,∠OFC=∠FOA,再根据∠FOA=∠FOB+∠AOB=2∠AOB,即可得出∠OBC:∠OFC的值为1:2.(3)设∠AOB=x,根据两直线平行,内错角相等表示出∠CBO=∠AOB=x,再根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠OEC,然后利用三角形的内角和等于180°列式表示出∠OBA,然后列出方程求解即可.【详解】(1)∵CB∥OA∴∠C+∠COA=180°∵∠C=100°∴∠COA=180°-∠C=80°∵∠FOB=∠AOB,OE平分∠COF∴∠FOB+∠EOF=12(∠AOF+∠COF)=12∠COA=40°;∴∠EOB=40°;(2)∠OBC:∠OFC的值不发生变化∵CB∥OA∴∠OBC=∠BOA,∠OFC=∠FOA∵∠FOB=∠AOB∴∠FOA=2∠BOA∴∠OFC=2∠OBC∴∠OBC:∠OFC=1:2(3)当平行移动AB至∠OBA=60°时,∠OEC=∠OBA.设∠AOB=x,∵CB∥AO,∴∠CBO=∠AOB=x,∵CB∥OA,AB∥OC,∴∠OAB+∠ABC=180°,∠C+∠ABC=180°∴∠OAB=∠C=100°.∵∠OEC=∠CBO+∠EOB=x+40°,∠OBA=180°-∠OAB-∠AOB=180°-100°-x=80°-x,∴x+40°=80°-x,∴x=20°,∴∠OEC=∠OBA=80°-20°=60°.【点睛】本题主要考查了平行线、角平分线的性质以及三角形内角和定理,熟记各性质并准确识图理清图中各角度之间的关系是解题的关键.12.(1)∠EPB=170°;(2)①当交点P在直线b的下方时:∠EPB=20°,②当交点P在直线a,b之间时:∠EPB=160°,③当交点P在直线a的上方时:∠EPB=∠1﹣50°=20°;(3)①当解析:(1)∠EPB=170°;(2)①当交点P在直线b的下方时:∠EPB=20°,②当交点P在直线a,b之间时:∠EPB=160°,③当交点P在直线a的上方时:∠EPB=∠1﹣50°=20°;(3)①当交点P在直线a,b之间时:∠EPB=180°﹣|n°﹣50°|;②当交点P在直线a上方或直线b下方时:∠EPB=|n°﹣50°|.【分析】(1)利用外角和角平分线的性质直接可求解;(2)分三种情况讨论:①当交点P在直线b的下方时;②当交点P在直线a,b之间时;③当交点P在直线a的上方时;分别画出图形求解;(3)结合(2)的探究,分两种情况得到结论:①当交点P在直线a,b之间时;②当交点P在直线a上方或直线b下方时;【详解】解:(1)∵BD平分∠ABC,∠ABC=50°,∴∠ABD=∠DBC=12∵∠EPB是△PFB的外角,∴∠EPB=∠PFB+∠PBF=∠1+(180°﹣50°)=170°;(2)①当交点P在直线b的下方时:∠EPB=∠1﹣50°=20°;②当交点P在直线a,b之间时:∠EPB=50°+(180°﹣∠1)=160°;③当交点P在直线a的上方时:∠EPB=∠1﹣50°=20°;(3)①当交点P在直线a,b之间时:∠EPB=180°﹣|n°﹣50°|;②当交点P在直线a上方或直线b下方时:∠EPB=|n°﹣50°|;【点睛】考查知识点:平行线的性质;三角形外角性质.根据动点P的位置,分类画图,结合图形求解是解决本题的关键.数形结合思想的运用是解题的突破口.13.【现象解释】见解析;【尝试探究】BEC 70;【深入思考】2.【分析】[现象解释]根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用∠2+∠3=90°得出∠1+∠2+∠解析:【现象解释】见解析;【尝试探究】∠BEC = 70︒;【深入思考】β= 2α.【分析】[现象解释]根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用∠2+∠3=90°得出∠1+∠2+∠3+∠4=180°,即可得出∠DCB+∠ABC=180°,即可证得AB∥CD;[尝试探究]根据三角形内角和定理求得∠2+∠3=125°,根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用平角的定义得出∠1+∠2+∠EBC+∠3+∠4+∠BCE=360°,即可得出∠EBC+BCE=360°-250°=110°,根据三角形内角和定理即可得出∠BEC=180°-110°=70°;[深入思考]利用平角的定义得出∠ABC=180°-2∠2,∠BCD=180°-2∠3,利用外角的性质∠BED=∠ABC-∠BCD=(180°-2∠2)-(180°-2∠3)=2(∠3-∠2)=β,而∠BOC=∠3-∠2=α,即可证得β=2α.【详解】[现象解释]如图2,∵OM⊥ON,∴∠CON=90°,∴∠2+∠3=90°∵∠1=∠2,∠3=∠4,∴∠1+∠2+∠3+∠4=180°,∴∠DCB+∠ABC=180°,∴AB∥CD;【尝试探究】如图3,在△OBC中,∵∠COB=55°,∴∠2+∠3=125°,∵∠1=∠2,∠3=∠4,∴∠1+∠2+∠3+∠4=250°,∵∠1+∠2+∠EBC+∠3+∠4+∠BCE=360°,∴∠EBC+BCE=360°-250°=110°,∴∠BEC=180°-110°=70°;【深入思考】如图4,β=2α,理由如下:∵∠1=∠2,∠3=∠4,∴∠ABC=180°-2∠2,∠BCD=180°-2∠3,∴∠BED=∠ABC-∠BCD=(180°-2∠2)-(180°-2∠3)=2(∠3-∠2)=β,∵∠BOC=∠3-∠2=α,∴β=2α.【点睛】本题考查了平行线的判定,三角形外角的性质以及三角形内角和定理,熟练掌握三角形的性质是解题的关键.14.(1),理由见解析;(2)当点P在B、O两点之间时,;当点P在射线AM上时,.【分析】(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠C∠=∠+∠,理由见解析;解析:(1)CPDαβ∠=∠-∠;(2)当点P在B、O两点之间时,CPDαβ∠=∠-∠.当点P在射线AM上时,CPDβα【分析】(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案;(2)分两种情况:①点P在A、M两点之间,②点P在B、O两点之间,分别画出图形,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出结论.【详解】解:(1)∠CPD=∠α+∠β,理由如下:如图,过P作PE∥AD交CD于E.∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE+∠CPE=∠α+∠β.(2)当点P在A、M两点之间时,∠CPD=∠β-∠α.理由:如图,过P作PE∥AD交CD于E.∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠CPE-∠DPE=∠β-∠α;当点P在B、O两点之间时,∠CPD=∠α-∠β.理由:如图,过P作PE∥AD交CD于E.∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE-∠CPE=∠α-∠β.【点睛】本题考查了平行线的性质的运用,主要考核了学生的推理能力,解决问题的关键是作平行线构造内错角,利用平行线的性质进行推导.解题时注意:问题(2)也可以运用三角形外角性质来解决.15.(1)45°;(2)①1;②是定值,∠M+∠N=142.5°【分析】(1)利用平行线的性质求解即可.(2)①利用三角形的面积求出GH,HF,再证明AO=OG=2,可得结论.②利用角平分线的定解析:(1)45°;(2)①1;②是定值,∠M+∠N=142.5°【分析】(1)利用平行线的性质求解即可.(2)①利用三角形的面积求出GH,HF,再证明AO=OG=2,可得结论.②利用角平分线的定义求出∠M,∠N(用∠FAO表示),可得结论.【详解】解:(1)如图,∵AB∥ED∴∠E=∠EAB=90°(两直线平行,内错角相等),∵∠BAC=45°,∴∠CAE=90°-45°=45°.故答案为:45°.(2)①如图1中,∵OG⊥AC,∴∠AOG=90°,∵∠OAG=45°,∴∠OAG=∠OGA=45°,∴AO=OG=2,∵S△AHG=12•GH•AO=4,S△AHF=12•FH•AO=1,∴GH=4,FH=1,∴OF=GH-HF-OG=4-1-2=1.②结论:∠N+∠M=142.5°,度数不变.理由:如图2中,∵MF,MO分别平分∠AFO,∠AOF,∴∠M=180°-12(∠AFO+∠AOF)=180°-12(180°-∠FAO)=90°+12∠FAO,∵NH,NG分别平分∠DHG,∠BGH,∴∠N=180°-12(∠DHG+∠BGH)=180°-12(∠HAG+∠AGH+∠HAG+∠AHG)=180°-12(180°+∠HAG)=90°-12∠HAG=90°-12(30°+∠FAO+45°)=52.5°-12∠FAO,∴∠M+∠N=142.5°.【点睛】本题考查平行线的性质,角平分线的定义,三角形内角和定理,三角形外角的性质等知识,最后一个问题的解题关键是用∠FAO表示出∠M,∠N.。
北师大版数学七年级下册第二学期期末 达标测试卷(含答案)
![北师大版数学七年级下册第二学期期末 达标测试卷(含答案)](https://img.taocdn.com/s3/m/2b38206cce84b9d528ea81c758f5f61fb7362819.png)
第二学期期末达标测试卷一、选择题(共8小题,每小题3分,计24分,每小题只有一个选项是符合题意的)1.下列四个汉字中,可以看作是轴对称图形的是()2.某种芯片每个探针单元的面积为0.000 001 68 cm2,则0.000 001 68用科学记数法可表示为()A.1.68×10-5B.1.68×10-6C.0.168×10-7D.0.168×10-5 3.小华同学喜欢锻炼,周六他先从家跑步到新华公园,在那里与同学打一会儿羽毛球后又步行回家,下面能反映小华离家距离y与所用时间x之间关系的图象是()4.已知十个数据如下:63,65,67,69,66,64,66,64,65,68,将这些数据绘制成频率分布表,其中64.5~66.5这组的频率是()A.0.4 B.0.5 C.4 D.55.下面的说法中,不正确的是()A.两直线平行,同位角相等B.若∠α=∠β,则∠α和∠β是一对对顶角C.若∠α与∠β互为补角,则∠α+∠β=180°D.如果一个角的补角是130°,那么这个角的余角等于40°6.如图,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,若AB=9 cm,则△DEB的周长是()A.6 cm B.7 cm C.8 cm D.9 cm(第6题)(第7题)7.如图,在△ABC和△DEF中,点B,F,C,D在同一条直线上,已知∠A=∠D,AB=DE,添加以下条件,不能判定△ABC≌△DEF的是()A.∠B=∠E B.AC=DFC.∠ACD=∠BFE D.BF=CD8.如图,在Rt△ABC中,∠ACB=90°,点M为BA延长线上一点,∠ABC的平分线BE和∠CAM的平分线AD相交于点P,分别交AC和BC的延长线于E,D两点.过P作PF⊥AD交AC的延长线于点H,交BC的延长线于点F,连接AF,并延长交DH于点G,则下列结论:①∠APB=45°;②PF=P A;③BD-AH=AB,其中正确的是()A.①B.①②C.①②③D.②③(第8题)(第9题)(第13题)二、填空题(共5小题,每小题3分,计15分)9.如图是小明同学的健康码示意图,用黑白打印机打印在边长为2 cm的正方形区域内,图中黑色部分的总面积为2 cm2,现在向正方形区域内随机掷点,点落入黑色部分的概率为_________________________.10.规定a*b=2a×2b,如2*3=22×23=25=32.若2*(x+1)=16,则x的值为________.11.一个三角形的三条边的长分别是5,7,10,另一个三角形的三条边的长分别是5,3x-2,2y+1,若这两个三角形全等,则x+y的值是__________.12.为了加强公民的节水意识,某市制定了如下用水收费标准:①每户每月的用水不超过10立方米时,水价为每立方米2.2元;②超过10立方米时,超出部3 分按每立方米3.8元收费,该市每户居民6月份用水x 立方米(x >10),应交水费y 元,则y 与x 的关系式为________________.13.如图,在△ABC 中,AB =AC ,D 是BC 边的中点,EF 垂直平分AB 边,动点P 在直线EF 上,若BC =12,S △ABC =84,则线段PB +PD 的最小值为____________.三、解答题(共13小题,计81分,解答应写出过程) 14.(5分)计算:(π-3)0+⎝ ⎛⎭⎪⎫-12-2+⎝ ⎛⎭⎪⎫142 023×(-4)2 024.15.(5分)化简:[(a +2b )(a -2b )-(a -2b )2]÷(-2b ).16.(5分)先化简,再求值:[(3x -2y )2-(x -y )(9x +2y )]÷⎝ ⎛⎭⎪⎫-12y ,其中x =1,y =-2.17.(5分)已知:如图,DG ⊥BC ,AC ⊥BC ,∠1=∠2.试说明EF ∥CD . 小明给出了如下不完整的解题过程,请你帮助小明完成.(第17题)解:∵DG ⊥BC ,AC ⊥BC (已知),∴∠DGB =∠ACB =90°( ), ∴DG ∥AC ( ), ∴∠2=________( ), ∵∠1=∠2(已知),∴∠1=________(等量代换),∴EF ∥CD ( ). 18.(5分)尺规作图(不写作法,请保留作图痕迹).已知:如图,△ABC ,求作:在BC 边上求作点D ,使得S △ABD =S △ACD .(第18题)19.(5分)如图,AC 平分∠BAD ,CB ⊥AB ,CD ⊥AD ,垂足分别为B ,D .(第19题)(1)试说明△ABC≌△ADC;(2)若AB=4,CD=3,求四边形ABCD的面积.20.(5分)一个不透明的袋子中装有9个红球和2个白球,这些球除颜色外都相同,从中任意摸出一个球.(1)“摸到红球”是________事件,“摸到黑球”是________事件;(填“不可能”或“必然”或“随机”)(2)如果要使摸到红球的概率为35,需要往袋子里再放入多少个白球?21.(6分)在高铁站广场前有一块长为(2a+b)m,宽为(a+b)m的长方形空地(如图).计划在中间留两个长方形喷泉(图中阴影部分),两喷泉及周边留有宽度为b m的人行通道.(第21题)(1)请用代数式表示广场面积并化简;(2)请用代数式表示两个长方形喷泉(图中阴影部分)的面积并化简.522.(7分)如图,点O在直线AB上,OC⊥OD,∠D与∠1互余,F是DE上一点,连接OF.(第22题)(1)试说明:ED∥AB;(2)若OF平分∠COD,∠OFD=70°,求∠1的度数.23.(7分)如图,点P关于OA,OB轴对称的对称点分别为C,D,连接CD,交OA于M,交OB于N.(第23题)(1)若CD的长为18 cm,求△PMN的周长;(2)若∠CPD=131°,∠C=21°,∠D=28°,求∠MPN.24.(8分)小明家、新华书店、学校在一条笔直的公路旁,某天小明骑车上学,当他骑了一段后,想起要买某本书,于是又返回到刚经过的新华书店,买到书后继续骑车去学校,他本次骑车上学的过程中离家距离与所用的时间的关系如图所示,请根据图象提供的信息回答下列问题:(1)小明家到学校的距离是________米;小明在书店停留了________分;(2)如果骑车的速度超过了300米/分就超越了安全限度,小明买到书后继续骑车到学校的这段时间的骑车速度在安全限度内吗?请说明理由;(第24题)(3)小明出发后多长时间离家的距离为900米?725.(8分)如图,AB=AC=16 cm,BC=10 cm,点D为AB的中点,点P在边BC上以每秒2 cm的速度由点B向点C运动,同时,点M在边CA上由点C 向点A匀速运动.(1)若点M的运动速度与点P的运动速度相同,经过1 s后,△BPD与△CMP是否全等?请说明理由;(2)若点M的运动速度与点P的运动速度不相等,当点M的运动速度为多少时,能够使△BPD与△CMP全等?(第25题)26.(10分)【问题发现】(1)如图①,在△ABC与△CDE中,∠B=∠E=∠ACD =90°,AC=CD,B,C,E三点在同一直线上,AB=3,ED=4,则BE=________;【问题提出】(2)如图②,在Rt△ABC中,∠ABC=90°,BC=4,过点C作CD⊥AC,且CD=AC,求△BCD的面积;【问题解决】(3)如图③,在四边形ABCD中,∠ABC=∠CAB=∠ADC=45°,△ACD的面积为12且CD的长为6,求△BCD的面积.(第26题)9答案一、1.A 2.B 3.B 4.A 5.B6.D 点拨:因为AD 平分∠CAB ,∠C =90°,DE ⊥AB ,所以∠CAD =∠BAD ,∠C =∠AED =90°.在△CAD 和△EAD 中,⎩⎨⎧∠C =∠DEA ,∠CAD =∠EAD ,AD =AD ,所以△CAD ≌△EAD ,所以AC =AE ,CD =DE . 因为AC =BC ,所以BC =AE .所以△DEB 的周长为DB +DE +BE =DB +CD +BE =CB +BE =AE +BE =AB =9 cm. 故选D. 7.D8.C 点拨:由题意可设∠MAP =∠P AC =x ,∠ABP =∠PBD =y ,则有⎩⎨⎧x =y +∠APB ,2x =2y +∠ACB , 可得∠APB =12∠ACB =45°,故①正确; 因为PF ⊥AD ,所以∠APF =90°, 所以∠APB =∠FPB =45°.在△PBA 和△PBF 中,⎩⎨⎧∠APB =∠FPB ,PB =PB ,∠ABP =∠FBP ,所以△PBA ≌△PBF ,所以P A =PF ,BA =BF ,故②正确;因为∠DPF =∠HCF =90°,∠DFP =∠HFC , 所以∠PDF =∠PHA .在△DPF 和△HP A 中,⎩⎨⎧∠DPF =∠HP A =90°,∠PDF =∠PHA ,PF =P A ,所以△DPF ≌△HP A ,所以DF =AH .11所以BD -AH =BD -DF =BF ,又因为BF =AB ,所以BD -AH =AB ,故③正确.所以其中正确的是①②③.故选C.二、9.0.5 10.1 11.152或712.y =3.8x -1613.14 点拨:连接AD ,AP .因为AB =AC ,D 是BC 边的中点,所以AD ⊥BC ,又因为BC =12,S △ABC =84,所以12×12×AD =84, 所以AD =14.因为EF 垂直平分AB ,所以P A =PB ,所以PB +PD =P A +PD ,所以当点A ,P ,D 在同一直线上时,PB +PD =P A +PD =AD ,即AD 的长度=PB +PD 的最小值,所以PB +PD 的最小值为14.三、14.解:原式=1+4+⎝ ⎛⎭⎪⎫-14×42 023×(-4) =1+4+(-1)×(-4)=1+4+4=9.15.解:原式=(a 2-4b 2-a 2+4ab -4b 2)÷(-2b )=(4ab -8b 2)÷(-2b )=-2a +4b .16.解:[(3x -2y )2-(x -y )(9x +2y )]÷⎝ ⎛⎭⎪⎫-12y =(9x 2-12xy +4y 2-9x 2-2xy +9xy +2y 2)÷⎝ ⎛⎭⎪⎫-12y =(-5xy +6y 2)÷⎝ ⎛⎭⎪⎫-12y =10x -12y .当x =1,y =-2时,原式=10×1-12×(-2)=34.17.垂直的性质;同位角相等,两直线平行;∠ACD ;两直线平行,内错角相等;∠ACD ;同位角相等,两直线平行18.解:如图,点D 即为所求.(第18题)19.解:(1)因为AC 平分∠BAD ,所以∠BAC =∠DAC .因为CB ⊥AB ,CD ⊥AD ,所以∠B =∠D =90°.在△ABC 和△ADC 中,⎩⎨⎧∠B =∠D ,∠BAC =∠DAC ,AC =AC ,所以△ABC ≌△ADC .(2)由(1)知:△ABC ≌△ADC ,所以BC =CD =3,S △ABC =S △ADC ,所以S △ABC =12AB ·BC =12×4×3=6,所以S △ADC =6,所以S 四边形ABCD =S △ABC +S △ADC =12.20.解:(1)随机;不可能(2)设需要往袋子里再放入x 个白球,根据题意,得35×(9+2+x )=9,解得x =4, 则需要往袋子里再放入4个白球.21.解:(1)广场面积为(a +b )(2a +b )=(2a 2+3ab +b 2)(m 2).(2)两个长方形喷泉(图中阴影部分)的面积为(a +b -2b )(2a +b -3b )=(a -b )(2a -2b )=(2a 2-4ab +2b 2)(m 2).22.解:(1)因为OC ⊥OD ,所以∠COD =90°,因为∠1+∠COD +∠BOD =180°,所以∠1+∠BOD =90°,因为∠D与∠1互余,所以∠1+∠D=90°,所以∠D=∠BOD,所以ED∥AB.(2)因为OF平分∠COD,∠COD=90°,所以∠FOD=45°,因为∠OFD=70°,所以∠D=180°-∠OFD-∠FOD=65°,因为∠1+∠D=90°,所以∠1=25°.23.解:(1)由题意知PM=CM,ND=NP.所以PN+PM+MN=CM+MN+ND=CD=18 cm,所以△PMN的周长为18 cm.(2)因为PM=CM,PN=ND,所以∠C=∠CPM=21°,∠D=∠DPN=28°,所以∠MPN=∠CPD-∠CPM-∠DPN=131°-21°-28°=82°.24.解:(1)1 500;4(2)由图象可知:12~14分时,平均速度=1 500-60014-12=450(米/分),因为450>300,所以小明买到书后继续骑车到学校的这段时间的骑车速度不在安全限度内.(3)从图象上看,小明出发后离家距离为900米时,一共有三个时间:①在0~6分时,平均速度为1 2006=200(米/分),设距家900米的时间为t1,则t1=900÷200=4.5(分);②在6~8分内,平均速度为1 200-6008-6=300(米/分),设距家900米的时间为t2,则1 200-300(t2-6)=900,解得t2=7;13③在12~14分内,平均速度为450米/分,设距家900米的时间为t 3,则600+450(t 3-12)=900,解得t 3=1223.综上,小明出发后4.5分或7分或1223分离家的距离为900米.25.解:(1)△BPD 与△CMP 全等.理由如下:经过1 s 后,BP =2 cm ,CM =2 cm ,BD =12AB =8 cm ,CP =10-2=8(cm),所以BP =CM ,BD =CP .因为AB =AC ,所以∠B =∠C ,在△BDP 和△CPM 中,⎩⎨⎧BD =CP ,∠B =∠C ,BP =CM ,所以△BDP ≌△CPM .(2)由题意知△BPD 与△CMP 全等,因为CM ≠PB ,所以CM =BD =8 cm ,PC =PB =5 cm ,所以点M 的运动速度为8÷52=165(cm/s).26.解:(1)7(2)过点D 作DE ⊥BC 交BC 的延长线于E ,如图①.因为DE ⊥BC ,CD ⊥AC ,所以∠E =∠ACD =90°,所以∠ACB =90°-∠DCE =∠CDE .在△ABC 和△CED 中,⎩⎨⎧∠ABC =∠E =90°,∠ACB =∠CDE ,AC =CD ,所以△ABC ≌△CED ,所以BC =ED =4,15所以S △BCD =12BC ·DE =8.(第26题) (3)过点A 作AE ⊥CD 于点E ,过点B 作BF ⊥CD 交DC 的延长线于点F ,如图②.因为△ACD 的面积为12且CD 的长为6,所以12×6×AE =12,所以AE =4.因为∠ADC =45°,AE ⊥CD ,所以△ADE 是等腰直角三角形,所以DE =AE =4,所以CE =CD -DE =2,因为∠ABC =∠CAB =45°,所以∠ACB =90°,AC =BC ,所以∠ACE =90°-∠BCF =∠CBF .在△ACE 和△CBF 中,⎩⎨⎧∠AEC =∠F =90°,∠ACE =∠CBF ,AC =BC ,所以△ACE ≌△CBF ,所以BF =CE =2,所以S △BCD =12CD ·BF =6.。
北师大版2018-2019学年七年级数学下册期中测试题及答案答案
![北师大版2018-2019学年七年级数学下册期中测试题及答案答案](https://img.taocdn.com/s3/m/7492e03a581b6bd97f19eaae.png)
2018-2019学年七年级(下)期中数学试卷一、选择题(每题3分,共30分)1.如图,直线a、b被直线c所截,若a∥b,∠1=50°,∠2=65°,则∠3的度数为()A.110°B.115°C.120°D.130°2.已知P点坐标为(2﹣a,3a+6),且点P在x轴上,则点P的坐标是()A.P(0,12)B.P(0,2)C.P(2,0)D.P(4,0)3.下列各数中3.141,,π,﹣,0.,0.1010010001…无理数有()A.2个B.3个C.4个D.5个4.二元一次方程组的是()A.B.C.D.5.已知点P位于y轴右侧,距y轴3个单位长度,位于x轴上方,距离x轴4个单位长度,则点P 坐标是()A.(﹣3,4)B.(3,4)C.(﹣4,3)D.(4,3)6.已知﹣1<x<0,那么在x、2x、、﹣x2中最小的数是()A.﹣x2B.2x C.D.x7.若满足方程组的x与y互为相反数,则m的值为()A.1B.﹣1C.11D.﹣118.方程3x+2y=20的非负整数解的个数为()A.1个B.2个C.3个D.4个9.某校初三(2)班40名同学为“希望工程”捐款,共捐款100元,捐款情况如表:捐款(元)1234人数(人)6●●7表格中捐款2元和3元的人数不小心被墨水污染已经看不清楚.若设捐款2元的有x名同学,捐款3元的有y名同学,根据题意,可得方程组()A.B.C.D.10.方程组的解是,则方程组的解为()A.B.C.D.二、填空题(每题3分,共24分)11.点N(x,y)的坐标满足xy<0,则点N在第象限.12.如果2x2a﹣b﹣1﹣3y3a+2b﹣16=10是一个二元一次方程,那么数a=,b=.13.已知直线AB∥x轴,A点的坐标为(1,2),并且线段AB=3,则点B的坐标为.14.已知+|3x+2y﹣15|=0,则的算术平方根为.15.如图,四边形ABCD中,点M、N分别在AB、BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠B=°.16.数轴上有A、B、C三个点,B点表示的数是1,C点表示的数是,且AB=BC,则A点表示的数是.17.∠A的两边与∠B的两边互相平行,且∠A比∠B的2倍少15°,则∠A的度数为.18.对有序数对(m,n)定义“f运算”:f(m,n)=(m+a,n﹣b),其中a、b为常数.f 运算的结果也是一个有序数对,在此基础上,可对平面直角坐标系中的任意一点A(x,y)规定“F变换”:点A(x,y)在F变换下的对应点即为坐标为f(x,y)的点A′(1)当a=0,b=0时,f(﹣2,4)=;(2)若点P(4,﹣4)在F变换下的对应点是它本身,则a=,b=.三、解答题(共66分19.解二元一次方程组:.20.21.25(x﹣1)2﹣9=0.22.(7分)如图,∠1+∠2=180°,∠DAE=∠BCF,DA平分∠BDF.(1)AD与BC的位置关系如何?为什么?(2)证明BC平分∠DBE.23.(8分)如图,已知A(﹣2,3)、B(4,3)、C(﹣1,﹣3)(1)求△ABC的面积;(2)点P在y轴上,当△ABP的面积为6时,求点P的坐标.24.(6分)已知2+的小数部分为m,2﹣的小数部分为n,求(m+n)2018.25.(8分)在矩形ABCD中,放入六个形状、大小相同的长方形,所标尺寸如图所示.试求图中阴影部分的总面积.(写出分步求解的简明过程)26.(8分)河大附中初一年级有350名同学去春游,已知2辆A 型车和1辆B 型车可以载学生100人;1辆A 型车和2辆B 型车可以载学生110人. (1)A 、B 型车每辆可分别载学生多少人?(2)若租一辆A 需要100元,一辆B 需120元,请你设计租车方案,使得恰好运送完学生并且租车费用最少.27.(8分)某旅行社拟在暑假期间面向学生推出“林州红旗渠一日游”活动,收费标准如下:人数m 0<m ≤100100<m ≤200m >200 收费标准(元/人)908575甲、乙两所学校计划组织本校学生自愿参加此项活动.已知甲校报名参加的学生人数多于100人,乙校报名参加的学生人数少于100人.经核算,若两校分别组团共需花费20 800元,若两校联合组团只需花费18 000元.(1)两所学校报名参加旅游的学生人数之和超过200人吗?为什么? (2)两所学校报名参加旅游的学生各有多少人?28.(12分)如图,在平面直角坐标系中,点A ,B 的坐标分别为A (a ,0),B (b ,0),且a 、b 满足a =.现同时将点A ,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A ,B 的对应点C ,D ,连接AC ,BD .得AC ∥BD . (1)直接写出点C ,D 的坐标和四边形ABDC 的面积;(2)若在坐标轴上存在点M ,使S △MAC =S 四边形ABDC ,求出点M 的坐标,(3)若点P 在直线BD 上运动,连接PC ,PO .请画出图形,写出∠CPO 、∠DCP 、∠BOP 的数量关系并证明.2018-2019学年七年级(下)期中数学试卷参考答案与试题解析一、选择题(每题3分,共30分)1.如图,直线a、b被直线c所截,若a∥b,∠1=50°,∠2=65°,则∠3的度数为()A.110°B.115°C.120°D.130°【分析】先根据平行线的性质求出∠4的度数,故可得出∠4+∠2的度数.由对顶角相等即可得出结论.【解答】解:∵a∥b,∠1=50°,∠2=65°,∴∠4=∠1=50°,∴∠2+∠4=65°+50°=115°,∴∠3=∠2+∠4=115°.故选:B.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.2.已知P点坐标为(2﹣a,3a+6),且点P在x轴上,则点P的坐标是()A.P(0,12)B.P(0,2)C.P(2,0)D.P(4,0)【分析】根据x轴上点的纵坐标为0列方程求出a,再求解即可.【解答】解:∵P点坐标为(2﹣a,3a+6),且点P在x轴上,∴3a+6=0,解得a=﹣2,2﹣a=2﹣(﹣2)=4,故点P的坐标为(4,0).故选:D.【点评】本题考查了点的坐标,熟记x轴上点的纵坐标为0是解题的关键.3.下列各数中3.141,,π,﹣,0.,0.1010010001…无理数有()A.2个B.3个C.4个D.5个【分析】根据无理数的定义逐个判断即可.【解答】解:无理数有π,﹣,0.1010010001…,共3个,故选:B.【点评】本题考查了算术平方根、立方根、无理数等知识点,能熟记无理数的定义是解此题的关键.4.二元一次方程组的是()A.B.C.D.【分析】二元一次方程组满足三个条件:①方程组中的两个方程都是整式方程.②方程组中共含有两个未知数.③每个方程都是一次方程.依此即可求解.【解答】解:A、有3个未知数,不是二元一次方程组,故选项错误;B、是二次方程组,故选项错误;C、是二次方程组,故选项错误;D、是二元一次方程组,故选项正确.故选:D.【点评】考查了二元一次方程组的定义:把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组.5.已知点P位于y轴右侧,距y轴3个单位长度,位于x轴上方,距离x轴4个单位长度,则点P 坐标是()A.(﹣3,4)B.(3,4)C.(﹣4,3)D.(4,3)【分析】根据题意,P点应在第一象限,横、纵坐标为正,再根据P点到坐标轴的距离确定点的坐标.【解答】解:∵P点位于y轴右侧,x轴上方,∴P点在第一象限,又∵P点距y轴3个单位长度,距x轴4个单位长度,∴P点横坐标为3,纵坐标为4,即点P的坐标为(3,4).故选B.【点评】本题考查了点的位置判断方法及点的坐标几何意义.6.已知﹣1<x<0,那么在x、2x、、﹣x2中最小的数是()A.﹣x2B.2x C.D.x【分析】直接利用x的取值范围,进而比较各数大小.【解答】解:∵﹣1<x<0,∴>﹣x2>x>2x,∴在x、2x、、﹣x2中最小的数是:2x.故选:B.【点评】此题主要考查了实数比较大小,正确掌握实数的比较大小的方法是解题关键.7.若满足方程组的x与y互为相反数,则m的值为()A.1B.﹣1C.11D.﹣11【分析】由x与y互为相反数,得到y=﹣x,代入方程组计算即可求出m的值.【解答】解:由题意得:y=﹣x,代入方程组得:,消去x得:=,即3m+9=4m﹣2,解得:m=11,故选:C.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.8.方程3x+2y=20的非负整数解的个数为()A.1个B.2个C.3个D.4个【分析】根据非负整数的定义分别代入求出答案.【解答】解:当x=0时,y=10;当x=1时,y=8.5(不合题意);当x=2时,y=7;当x=3时,y=5.5(不合题意);当x=4时,y=4;当x=5时,y=2.5(不合题意);当x=6时,y=1;当x=7时,y=﹣0.5(不合题意);故方程3x+2y=20的非负整数解的个数为4个.故选:D.【点评】此题主要考查了二元一次方程的解,正确把握非负整数的定义是解题关键.9.某校初三(2)班40名同学为“希望工程”捐款,共捐款100元,捐款情况如表:捐款(元)1234人数(人)6●●7表格中捐款2元和3元的人数不小心被墨水污染已经看不清楚.若设捐款2元的有x名同学,捐款3元的有y名同学,根据题意,可得方程组()A.B.C.D.【分析】根据题意和表格可以列出相应的方程组,从而可以的打哪个选项是正确的.【解答】解:由题意可得,,化简,得,故选:A.【点评】本题考查由实际问题抽象出二元一次方程组,解题的关键是明确题意,列出相应的方程组.10.方程组的解是,则方程组的解为()A.B.C.D.【分析】将方程组变形为,根据已知方程组的解得出,解之可得.【解答】解:由方程组,得:,由题意可得,解得:,故选:D.【点评】本题主要考察二元一次方程组的解,解题的关键是掌握整体思想的运用.二、填空题(每题3分,共24分)11.点N(x,y)的坐标满足xy<0,则点N在第二、四象限.【分析】根据有理数的乘法,可得横坐标与纵坐标异号,根据点的坐标特征,可得答案.【解答】解:由题意,得横坐标与纵坐标异号,点N在第二、四象限,故答案为:二、四.【点评】本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).12.如果2x2a﹣b﹣1﹣3y3a+2b﹣16=10是一个二元一次方程,那么数a=3,b=4.【分析】根据一元二次方程的定义,令未知数的次数为1,即可列方程解答.【解答】解:∵2x2a﹣b﹣1﹣3y3a+2b﹣16=10是一个二元一次方程,∴,解得,,故答案为3,4.【点评】本题考查了二元一次方程的定义,根据题意列出方程是解题的关键.13.已知直线AB∥x轴,A点的坐标为(1,2),并且线段AB=3,则点B的坐标为(4,2)或(﹣2,2).【分析】AB∥x轴,说明A,B的纵坐标相等为2,再根据两点之间的距离公式求解即可.【解答】解:∵AB∥x轴,点A坐标为(1,2),∴A,B的纵坐标相等为2,设点B的横坐标为x,则有AB=|x﹣1|=3,解得:x=4或﹣2,∴点B的坐标为(4,2)或(﹣2,2).故本题答案为:(4,2)或(﹣2,2).【点评】本题主要考查了平行于x轴的直线上的点的纵坐标都相等.注意所求的点的位置的两种情况,不要漏解.14.已知+|3x+2y﹣15|=0,则的算术平方根为.【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算,再根据算术平方根的定义解答.【解答】解:由题意得,x+3=0,3x+2y﹣15=0,解得x=﹣3,y=12,所以,==3,所以,的算术平方根为.故答案为:.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.15.如图,四边形ABCD中,点M、N分别在AB、BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠B=95°.【分析】根据两直线平行,同位角相等求出∠BMF、∠BNF,再根据翻折的性质求出∠BMN和∠BNM,然后利用三角形的内角和定理列式计算即可得解.【解答】解:∵MF∥AD,FN∥DC,∴∠BMF=∠A=100°,∠BNF=∠C=70°,∵△BMN沿MN翻折得△FMN,∴∠BMN=∠BMF=×100°=50°,∠BNM=∠BNF=×70°=35°,在△BMN中,∠B=180°﹣(∠BMN+∠BNM)=180°﹣(50°+35°)=180°﹣85°=95°.故答案为:95.【点评】本题考查了两直线平行,同位角相等的性质,翻折变换的性质,三角形的内角和定理,熟记性质并准确识图是解题的关键.16.数轴上有A、B、C三个点,B点表示的数是1,C点表示的数是,且AB=BC,则A点表示的数是2﹣.【分析】设A点表示x,再根据数轴上两点间距离的定义即可得出结论.【解答】解:设A点表示x,∵B点表示的数是1,C点表示的数是,且AB=BC,∴1﹣x=﹣1.解得:x=2﹣故答案为:2﹣.【点评】本题考查的是数轴,熟知数轴上两点间距离公式是解答此题的关键.17.∠A的两边与∠B的两边互相平行,且∠A比∠B的2倍少15°,则∠A的度数为15°或115°.【分析】如果两个角的两边互相平行,那么这两个角相等或互补,由∠A比∠B的3倍小20°和∠A与∠B相等或互补,可列方程组求解.【解答】解:根据题意,得或解方程组得∠A=∠B=15°或∠A=115°,∠B=65°.故答案为:15°或115°.【点评】本题主要考查了平行线的性质,此类问题结合方程的思想解决更简单.注意结论:如果两个角的两边互相平行,那么这两个角相等或互补.18.对有序数对(m,n)定义“f运算”:f(m,n)=(m+a,n﹣b),其中a、b为常数.f 运算的结果也是一个有序数对,在此基础上,可对平面直角坐标系中的任意一点A(x,y)规定“F变换”:点A(x,y)在F变换下的对应点即为坐标为f(x,y)的点A′(1)当a=0,b=0时,f(﹣2,4)=(﹣1,2);(2)若点P(4,﹣4)在F变换下的对应点是它本身,则a=2,b=﹣2.【分析】(1)根据新定义运算法则解得;(2)根据新定义运算法则得到关于a、b的方程,通过解方程求得它们的值即可.【解答】解:(1)依题意得:f(﹣2,4)=(×(﹣2)+0,×4﹣0)=(﹣1,2).故答案是:(﹣1,2);(2)依题意得:f(4,﹣4)=(×4+a,×(﹣4)+b)=(4,﹣4).所以×4+a=4,×(﹣4)﹣b=﹣4所以a=2,b=2.故答案是:2;2.【点评】考查了坐标与图形性质.关键是掌握对有序数对(m,n)定义“f运算”法则.三、解答题(共66分19.解二元一次方程组:.【分析】直接利用加减消元法解方程得出答案.【解答】解:由①×6得:3x﹣2y=8,③由②+③得:x=3,将x=3代入到②得:y=,故原方程组的解为:.【点评】此题主要考查了二元一次方程组的解法,正确掌握解方程的是解题关键.20.【分析】根据二元一次方程组的解法即可求出答案.【解答】解:原方程组化为∴3x+4y=4x+3y即x=y∴3x+4y=3x+4x=7x=84解得:x=12∴y=12∴方程组的解为【点评】本题考查二元一次方程组的解法,解题的关键是熟练运用二元一次方程组的解法,本题属于基础题型.21.25(x﹣1)2﹣9=0.【分析】25(x﹣1)2﹣9=0中每个数同时除以25,得到(x﹣1)2﹣=0,利用平方差公式求出x的值.【解答】解:∵25(x﹣1)2﹣9=0∴(x﹣1)2﹣=0(x﹣1﹣)(x﹣1+)=0解得x1=x2=【点评】本题主要考查了利用平方差公式解一元二次方程,熟练掌握平方差公式是解题的关键.22.(7分)如图,∠1+∠2=180°,∠DAE=∠BCF,DA平分∠BDF.(1)AD与BC的位置关系如何?为什么?(2)证明BC平分∠DBE.【分析】(1)平行,根据平行线的性质可以证得∠A=∠CBE,然后利用平行线的判定方法即可证得;(2)∠EBC=∠CBD,根据平行线的性质即可证得.【解答】解:(1)平行.理由如下:∵AE∥CF,∴∠C=∠CBE(两直线平行,内错角相等)又∵∠A=∠C∴∠A=∠CBE∴AD∥BC(同位角相等,两直线平行)(2)平分.理由如下:∵DA平分∠BDF,∴∠FDA=∠ADB∵AE∥CF,AD∥BC∴∠FDA=∠A=∠CBE,∠ADB=∠CBD∴∠EBC=∠CBD.∴BC平分∠DBE.【点评】本题考查了平行线的判定与性质,解答此题的关键是注意平行线的性质和判定定理的综合运用.23.(8分)如图,已知A(﹣2,3)、B(4,3)、C(﹣1,﹣3)(1)求△ABC的面积;(2)点P在y轴上,当△ABP的面积为6时,求点P的坐标.【分析】(1)先根据点的坐标求出AB长和点C到AB的距离,根据三角形的面积公式求出即可;(2)设P点到直线AB的距离为h,根据三角形的面积公式求出h,即可得出P点的坐标.【解答】解:(1)∵A(﹣2,3)、B(4,3)、C(﹣1,﹣3),∴AB∥x轴,AB=4﹣(﹣2)=6,C到AB的距离是3﹣(﹣3)=6,∴△ABC的面积为:=18;(2)设P点到直线AB的距离为h,∵△ABP的面积为6,AB=6,∴=6,解得:h=2,∵3+2=5,3﹣2=1,∴P点的坐标为(0,5)或(0,﹣1).【点评】本题考查了三角形的面积、坐标与图形性质等知识点,能求出AB的长和分别求出点C、P到直线AB的距离是解此题的关键.24.(6分)已知2+的小数部分为m,2﹣的小数部分为n,求(m+n)2018.【分析】首先估算出的范围,然后可求得m、n的值,最后即可求得(m+n)2018的值.【解答】解:∵1<3<4,∴1<<2.∴m=2+﹣3=﹣1,n=2﹣﹣0=2﹣,∴(m+n)2018=12018=1.【点评】本题主要考查的是估算无理数的大小、求得m、n的值是解题的关键.25.(8分)在矩形ABCD中,放入六个形状、大小相同的长方形,所标尺寸如图所示.试求图中阴影部分的总面积.(写出分步求解的简明过程)【分析】设小长方形的长为x厘米,宽为y厘米,根据题意和图示,列出关于x和y的二元一次方程组,解出x和y的值,即可求出矩形的AD的长度,从而求出矩形ABCD的面积,根据阴影部分的面积=矩形ABCD的面积﹣六个小长方形的面积,即可求得答案.【解答】解:设小长方形的长为x厘米,宽为y厘米,根据题意得:,解得:,即小长方形的长为8厘米,宽为2厘米,矩形ABCD的宽AD=6+2×2=10(厘米),矩形ABCD的面积为:14×10=140(平方厘米),阴影部分的面积为:140﹣6×8×2=44(平方厘米),答:图中阴影部分的总面积为44平方厘米.【点评】本题考查二元一次方程组的应用,正确找出等量关系,列出二元一次方程组是解题的关键.26.(8分)河大附中初一年级有350名同学去春游,已知2辆A型车和1辆B型车可以载学生100人;1辆A型车和2辆B型车可以载学生110人.(1)A、B型车每辆可分别载学生多少人?(2)若租一辆A需要100元,一辆B需120元,请你设计租车方案,使得恰好运送完学生并且租车费用最少.【分析】(1)根据载客量,可得方程组,根据解方程组,可得答案;(2)根据题意列出方程,可得答案.【解答】解:(1)设A、B型车每辆可分别载学生x,y人,可得:,解得:,答:A、B型车每辆可分别载学生30人,40人;(2)设租用A型a辆,B型b辆,可得:30a+40b=350,因为a,b为正整数,所以方程的解为:,方案一:A型1辆,B型8辆,费用:100×1+120×8=1060元;方案二:A型5辆,B型5辆,费用:100×5+120×5=1100元;方案三:A型9辆,B型2辆,费用:100×9+120×2=1140元;所以租用1辆A型8辆B型车花费最少为1060元.【点评】本题考查了二元一次方程组的应用,解(1)的关键是解方程组;解(2)的关键是解方程.27.(8分)某旅行社拟在暑假期间面向学生推出“林州红旗渠一日游”活动,收费标准如下:人数m0<m≤100100<m≤200m>200收费标准(元/人)908575甲、乙两所学校计划组织本校学生自愿参加此项活动.已知甲校报名参加的学生人数多于100人,乙校报名参加的学生人数少于100人.经核算,若两校分别组团共需花费20 800元,若两校联合组团只需花费18 000元.(1)两所学校报名参加旅游的学生人数之和超过200人吗?为什么?(2)两所学校报名参加旅游的学生各有多少人?【分析】(1)由已知分两种情况讨论,即a>200和100<a≤200,得出结论;(2)根据两种情况的费用,即x>200和100<x≤200分别设未知数列方程组求解,讨论得出答案.【解答】解:(1)这两所学校报名参加旅游的学生人数之和超过200人,理由为:设两校人数之和为a,若a>200,则a=18000÷75=240;若100<a≤200,则a=18000÷85=211>200,不合题意,则这两所学校报名参加旅游的学生人数之和等于240人,超过200人.(2)设甲学校报名参加旅游的学生有x 人,乙学校报名参加旅游的学生有y 人,则①当100<x ≤200时,得解得(6分)②当x >200时,得解得不合题意,舍去.答:甲学校报名参加旅游的学生有160人,乙学校报名参加旅游的学生有80人.【点评】此题考查的是二元一次方程组的应用,关键是把不符合题意的结论舍去.28.(12分)如图,在平面直角坐标系中,点A ,B 的坐标分别为A (a ,0),B (b ,0),且a 、b满足a =.现同时将点A ,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A ,B 的对应点C ,D ,连接AC ,BD .得AC ∥BD .(1)直接写出点C ,D 的坐标和四边形ABDC 的面积;(2)若在坐标轴上存在点M ,使S △MAC =S 四边形ABDC ,求出点M 的坐标,(3)若点P 在直线BD 上运动,连接PC ,PO .请画出图形,写出∠CPO 、∠DCP 、∠BOP 的数量关系并证明.【分析】(1)根据非负数的性质求出a 、b 的值得出点A 、B 的坐标,再由平移可得点C 、D 的坐标,即可知答案;(2)分点M 在x 轴和y 轴上两种情况,设出坐标,根据S △ACM =S 四边形ABDC 列出方程求解可得;(3)作PE ∥AB ,则PE ∥CD ,可得∠DCP =∠CPE 、∠BOP =∠OPE ,继而知∠CPO =∠CPE +∠OPE =∠DCP +∠BOP ,即可得答案.【解答】解:(1)由a =.得:a =﹣1,b =3.所以A (﹣1,0),B (3,0),C (0,2),D (4,2),∵AB =4,CO =2,∴S=AB•CO=4×2=8;四边形ABDC(2)①M在y轴上,设M坐标为(0,m),∴,∴CM=16,∴m=2+16=18或m=2﹣16=﹣14,∴M点的坐标为(0,18)或(0,﹣14);②M在x轴上,设点m的坐标为(m,0),∴,∴AM=8,∴m=﹣1+8=7或m=﹣1﹣8=﹣9,所以点M的坐标为(7,0)或(﹣9,0).综上所述M点的坐标为(0,18)或(0,﹣14)或(7,0)或(﹣9,0);(3)当点P在BD上,如图1,∠DCP+∠BOP=∠CPO;当点P在线段BD的延长线上时,如图2,∠BOP﹣∠DCP=∠CPO,同理可得当点P在线段DB的延长线上时,如图3:∠DCP﹣∠BOP=∠CPO,【点评】本题主要考查非负数的性质、平行四边形的性质及平行线的判定与性质,根据非负数性质求得四点的坐标是解题的根本,熟练掌握平行线的判定与性质是解题的关键.。
北师大版数学七年级下册《期末检测卷》(附答案)
![北师大版数学七年级下册《期末检测卷》(附答案)](https://img.taocdn.com/s3/m/3268040784868762caaed5a5.png)
北师大版数学七年级下学期期末测试卷时间:120分钟总分:120分一.选择题1.将0.00006用科学记数法表示为6×10n,则n的值是()A. ﹣4B. ﹣5C. ﹣6D. 52.下列是随机事件的是( )A. 口袋里共有5个球,都是红球,从口袋里摸出1个球是黄球B. 平行于同一条直线的两条直线平行C. 掷一枚图钉,落地后图钉针尖朝上D. 掷一枚质地均匀的骰子,掷出的点数是73.下列图形中,不是轴对称图形的是()A. B. C. D. 4. 下列运算正确的是()A. 23326()()2x x x+=B. 233212()()2x x x⋅=C. 426(2)2x x x⋅=D. 325(2)()8x x x-=-5.如图,已知点B、E、C、F在一条直线上,∠A=∠D,∠B=∠DFE,添加以下条件,不能判定△ABC≌△DFE 的是()A. BE=CFB. AB=DFC. ∠ACB=∠DEFD. AC=DE6.下列乘法运算中,能用平方差公式的是()A. (b +a )(a +b )B. (﹣x +y )(x +y )C. (1﹣x )(x ﹣1)D. (m +n )(﹣m ﹣n )7.在等腰三角形ABC 中,如果两边长分别为6cm ,10cm ,则这个等腰三角形的周长为( )A. 22cmB. 26cmC. 22cm 或26cmD. 24cm8.如图,用直尺和圆规作一个角等于已知角,能得出A O B AOB '''∠=∠的依据是( )A. SASB. SSSC. ASAD. AAS9.如图所示,△ABC 是等边三角形,且BD =CE ,∠1=15°,则∠2的度数为( )A. 15°B. 30°C. 45°D. 60°10.如图,AB ⊥AC ,CD 、BE 分别是△ABC 的角平分线,AG ∥BC ,AG ⊥BG ,下列结论:①∠BAG =2∠ABF ;②BA 平分∠CBG ;③∠ABG =∠ACB ;④∠CFB =135°,其中正确的结论有( )个A. 1B. 2C. 3D. 4二. 填空题11.计算:4a 2b ÷2ab =_____.12.已知,x +y =﹣5,xy =6,则(x ﹣y )2=_____;x ﹣y =_____.13.已知2m =4,2n =16,则m +n =_____.14.如图,点D 、E 分别在AB 、BC 上,DE ∥AC ,AF ∥BC ,∠1=70°,则∠2=_____°.15.如图,AB ∥CD ,∠BAC 与∠ACD 的平分线交于点P ,过P 作PE ⊥AB 于E ,交CD 于F ,EF =10,则点P 到AC 的距离为_____.16.一个水库的水位在最近5h 内持续上涨.下表记录了这5h 内6个时间点的水位高度,其中x 表示时间,y 表示水位高度.x/h0 1 2 3 4 5 y/m33.3 3.6 3.94.2 4.5 根据表格中水位的变化规律,则y 与x 的函数表达式为_____.17.计算:(a +b )(a ﹣2b )﹣a (a ﹣b )+(3b )218.如图,在△ABC 中,已知∠CDB =110°,∠ABD =30°.(1)请用直尺和圆规在图中直接作出∠A 的平分线AE 交BD 于E ;(不写作法,保留作图痕迹) (2)在(1)的条件下,求出∠AED 的度数.19.用10个除颜色外均相同的球设计一个摸球游戏:(1)使摸到红球概率为15; (2)使摸到红球和白球的概率都是25. 20.先化简,再求值:[(2x ﹣y )2﹣(2x +y )(2x ﹣y )]÷y ,其中x =1,y =2. 21.已知:如图,A 、F 、C 、D 四点在一直线上,AF =CD ,AB ∥DE ,且AB =DE .求证:(1)△ABC≌△DEF;(2)BC∥EF.22.观察下列等式:(a﹣b)(a+b)=a2﹣b2(a﹣b)(a2+ab+b2)=a3﹣b3(a﹣b)(a3+a2b+ab2+b3)=a4﹣b4…利用你的发现的规律解决下列问题(1)(a﹣b)(a4+a3b+a2b2+ab3+b4)=(直接填空);(2)(a﹣b)(a n﹣1+a n﹣2b+a n﹣3b2…+ab n﹣2+b n﹣1)=(直接填空);(3)利用(2)中得出的结论求62019+62018+…+62+6+1的值.23.如图所示,A、B两地相距50千米,甲于某日下午1时骑自行车从A地出发驶往B地,乙也于同日下午骑摩托车按相同路线从A地出发驶往B地,如图所示,图中的折线PQR和线段MN分别表示甲、乙所行驶的路程S和时间t的关系.象回答下列问题:(1)甲和乙哪一个出发的更早?早出发多长时间?(2)甲和乙哪一个早到达B城?早多长时间?(3)乙骑摩托车的速度和甲骑自行车在全程的平均速度分别是多少?(4)请你根据图象上的数据,求出乙出发后多长时间追上甲?24.已知,如图AD为△ABC的中线,分别以AB和AC为一边在△ABC的外部作等腰三角形ABE和等腰三角形ACF,且AE=AB,AF=AC,连接EF,∠EAF+∠BAC=180°(1)如图1,若∠ABE=63°,∠BAC=45°,求∠F AC 的度数;(2)如图1请探究线段EF和线段AD有何数量关系?并证明你的结论;(3)如图2,设EF交AB于点G,交AC于点R,延长FC,EB交于点M,若点G为线段EF的中点,且∠BAE=70°,请探究∠ACB和∠CAF的数量关系,并证明你的结论.答案与解析一.选择题1.将0.00006用科学记数法表示为6×10n,则n 的值是()A. ﹣4 B. ﹣5 C. ﹣6 D. 5 【答案】B【解析】【分析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.00006=6×10﹣5=6×10n.∴n=﹣5.故选B.【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.2.下列是随机事件的是( )A. 口袋里共有5个球,都是红球,从口袋里摸出1个球是黄球B. 平行于同一条直线的两条直线平行C. 掷一枚图钉,落地后图钉针尖朝上D. 掷一枚质地均匀的骰子,掷出的点数是7【答案】C【解析】【分析】根据必然事件、不可能事件、随机事件的概念可区别各类事件.【详解】A. 口袋里共有5个球,都是红球,从口袋里摸出1个球是黄球,是不可能事件,故不符合题意;B. 平行于同一条直线的两条直线平行,是必然事件,故不符合题意;C. 掷一枚图钉,落地后图钉针尖朝上,是随机事件,故符合题意;D. 掷一枚质地均匀的骰子,掷出的点数是7,是不可能事件,故不符合题意,故选C.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.下列图形中,不是轴对称图形的是( ) A. B. C. D.【答案】A【解析】【分析】观察四个选项图形,根据轴对称图形的概念即可得出结论.【详解】根据轴对称图形的概念,可知:选项A 中的图形不是轴对称图形.故选A .【点睛】此题主要考查了轴对称图形,轴对称图形的关键是寻找对称轴,对称轴可使图形两部分折叠后重合.4. 下列运算正确的是( )A. 23326()()2x x x +=B. 233212()()2x x x ⋅=C. 426(2)2x x x ⋅=D. 325(2)()8x x x -=-【答案】A【解析】试题分析:A .2332666()()2x x x x x +=+=,故A 正确;B .23326612()()x x x x x ⋅=⋅=,故B 错误;C .42426(2)44x x x x x ⋅=⋅=,故C 错误;D .32325(2)()88x x x x x -=⋅=,故D 错误;故选A .考点:1.单项式乘单项式;2.幂的乘方与积的乘方.5.如图,已知点B 、E 、C 、F 在一条直线上,∠A =∠D ,∠B =∠DFE ,添加以下条件,不能判定△ABC ≌△DFE 的是( )A. BE=CFB. AB=DFC. ∠ACB=∠DEFD. AC=DE【答案】C【解析】【分析】根据全等三角形的判定方法对各选项进行判断.【详解】∵∠A=∠D,∠B=∠DFE,∴当BE=CF时,即BC=EF,△ABC≌△DFE(AAS);当AB=DF时,即BC=EF,△ABC≌△DFE(ASA);当AC=DE时,即BC=EF,△ABC≌△DFE(AAS).故选C.【点睛】本题考查了全等三角形的判定:灵活运用全等三角形的5种判定方法.若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.6.下列乘法运算中,能用平方差公式的是()A. (b+a)(a+b)B. (﹣x+y)(x+y)C. (1﹣x)(x﹣1)D. (m+n)(﹣m﹣n)【答案】B【解析】【分析】根据平方差公式(a+b)(a-b)=a2-b2判断即可.【详解】A、不能用平方差公式,故本选项错误;B、能用平方差公式,(﹣x+y)(x+y)=(y+x)(y﹣x)=y2﹣x2,故本选项正确;C、不能用平方差公式,故本选项错误;D、不能用平方差公式,故本选项错误;故选B.【点睛】本题考查了平方差公式的应用,注意:平方差公式:(a+b)(a-b)=a2-b2.7.在等腰三角形ABC中,如果两边长分别为6cm,10cm,则这个等腰三角形的周长为()A. 22cmB. 26cmC. 22cm 或26cmD. 24cm【答案】C【解析】【分析】 根据等腰三角形的性质,分两种情况:①当腰长为6cm 时,②当腰长为10cm 时,解答出即可.【详解】根据题意,①当腰长为6cm 时,周长=6+6+10=22(cm);②当腰长为10cm 时,周长=10+10+6=26(cm),即周长为22cm 或26cm ,故选C.【点睛】本题考查等腰三角形的性质及三角形三边关系的运用;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.8.如图,用直尺和圆规作一个角等于已知角,能得出A O B AOB '''∠=∠的依据是( )A. SASB. SSSC. ASAD. AAS【答案】B【解析】【分析】 我们可以通过其作图的步骤来进行分析,作图时满足了三条边对应相等,于是我们可以判定是运用SSS ,答案可得.【详解】解:作图的步骤:①以O 为圆心,任意长为半径画弧,分别交OA 、OB 于点C 、D ;②任意作一点O ',作射线O A '',以O '为圆心,OC 长为半径画弧,交O A ''于点C ';③以C '为圆心,CD 长为半径画弧,交前弧于点D ';④过点D '作射线O B ''.所以AOB ∠'''就是与AOB ∠相等的角; 在OCD ∆与△OCD ''',O C OC ''=,O D OD ''=,C D CD ''=,OCD ∴∆≅△()O C D SSS ''',AO B AOB ∴∠'''=∠,显然运用的判定方法是SSS .故选:B .【点睛】本题考查了全等三角形的判定与性质;由全等得到角相等是用的全等三角形的性质,熟练掌握三角形全等的性质是正确解答本题的关键.9.如图所示,△ABC 是等边三角形,且BD =CE ,∠1=15°,则∠2的度数为( )A. 15°B. 30°C. 45°D. 60° 【答案】D【解析】因为△ABC 是等边三角形,所以∠ABD=∠BCE=60°,AB=BC. 因为BD =CE ,所以△ABD≌△BCE,所以∠1=∠CBE.因为∠CBE+∠ABE=60°,所以∠1+∠ABE=60°.因为∠2=∠1+∠ABE ,所以∠2=60°.故选D . 10.如图,AB ⊥AC ,CD 、BE 分别是△ABC 的角平分线,AG ∥BC ,AG ⊥BG ,下列结论:①∠BAG =2∠ABF ;②BA 平分∠CBG ;③∠ABG =∠ACB ;④∠CFB =135°,其中正确的结论有( )个A. 1B. 2C. 3D. 4【答案】C【解析】【分析】 由已知条件可知∠ABC+∠ACB=90°,又因为CD 、BE 分别是△ABC 的角平分线,所以得到∠FBC+∠FCB=45°,所以求出∠CFB=135°;有平行线的性质可得到:∠ABG=∠ACB ,∠BAG=2∠ABF .所以可知选项①③④正确.【详解】∵AB⊥AC.∴∠BAC=90°,∵∠BAC+∠ABC+∠ACB=180°,∴∠ABC+∠ACB=90°∵CD、BE分别是△ABC的角平分线,∴2∠FBC+2∠FCB=90°∴∠FBC+∠FCB=45°∴∠BFC=135°故④正确.∵AG∥BC,∴∠BAG=∠ABC∵∠ABC=2∠ABF∴∠BAG=2∠ABF 故①正确.∵AB⊥AC,∴∠ABC+∠ACB=90°,∵AG⊥BG,∴∠ABG+∠GAB=90°∵∠BAG=∠ABC,∴∠ABG=∠ACB 故③正确.故选C.【点睛】本题考查了等腰三角形的判定与性质,平行线的性质.掌握相关的判定定理和性质定理是解题的关键.二. 填空题11.计算:4a2b÷2ab=_____.【答案】2a【解析】【分析】利用整式除法的运算法则,即可得出结论.【详解】4a2b÷2ab=(4÷2)a2﹣1b1﹣1=2a.故答案为2a .【点睛】本题考查了整式的除法,解题的关键是牢记整式除法的法则. 12.已知,x +y =﹣5,xy =6,则(x ﹣y )2=_____;x ﹣y =_____. 【答案】 (1). 1; (2). ±1. 【解析】 【分析】先根据完全平方公式进行变形,再代入求出即可,最后开平方计算即可. 【详解】∵x+y =5,xy =6,∴(x ﹣y )2=(x+y )2﹣4xy =52﹣4×6=1, ∴x ﹣y =±1, 故答案为1,±1. 【点睛】本题考查了完全平方公式和平方根的定义的运用,能灵活运用公式进行变形是解此题的关键. 13.已知2m =4,2n =16,则m +n =_____. 【答案】6 【解析】 【分析】根据2m =4,2n =16,求出2m+n 的值是多少,即可求出m+n 的值是多少. 【详解】∵2m =4,2n =16, ∴2m+n =4×16=64, ∴m+n =6. 故答案为6.【点睛】此题主要考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确:①底数必须相同;②按照运算性质,只有相乘时才是底数不变,指数相加. 14.如图,点D 、E 分别在AB 、BC 上,DE ∥AC ,AF ∥BC ,∠1=70°,则∠2=_____°.【答案】70 【解析】 【分析】根据两直线平行,同位角相等可得∠C=∠1,再根据两直线平行,内错角相等可得∠2=∠C.【详解】∵DE∥AC,∴∠C=∠1=70°,∵AF∥BC,∴∠2=∠C=70°.故答案为70.【点睛】本题考查了平行线的性质,熟记性质并准确识图是解题的关键.15.如图,AB∥CD,∠BAC与∠ACD的平分线交于点P,过P作PE⊥AB于E,交CD于F,EF=10,则点P到AC的距离为_____.【答案】5【解析】【分析】作PH⊥AC于H,根据角平分线的性质得到PE=PH,PF=PH,根据题意计算即可.【详解】作PH⊥AC于H,∵AP平分∠BAC,PE⊥AB,PH⊥AC,∴PE=PH,∵AB∥CD,PE⊥AB,∴PF⊥CD,∵CP平分∠ACD,PF⊥CD,PH⊥AC,∴PF=PH,∴PH=PE=PF=12EF=5,即点P到AC的距离为5,故答案为5.【点睛】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键. 16.一个水库的水位在最近5h 内持续上涨.下表记录了这5h 内6个时间点的水位高度,其中x 表示时间,y 表示水位高度.根据表格中水位的变化规律,则y 与x 的函数表达式为_____. 【答案】y=0.3x+3 【解析】 【分析】根据记录表由待定系数法就可以求出y 与x 的函数表达式. 【详解】设y 与x 的函数表达式为y =kx +b , 把x =0,y =3和x =1,y =3.3代入得,33.3b k b =⎧⎨+=⎩ , 解得:0.33k b =⎧⎨=⎩. 故y 与x 的函数表达式为y =0.3x +3. 故答案为y =0.3x +3.【点睛】本题考查了待定系数法求一次函数解析式,利用待定系数法求函数解析式的一般步骤:(1)先设出函数解析式的一般形式,如求一次函数的解析式时,先设y =kx +b (k ≠0);(2)将已知点的坐标代入所设的解析式,得到关于待定系数的方程或方程组;(3)解方程或方程组,求出待定系数的值,进而写出函数解析式. 17.计算:(a +b )(a ﹣2b )﹣a (a ﹣b )+(3b )2 【答案】7b 2 【解析】 【分析】直接利用多项式的乘法运算法则以及积的乘方运算法则分别计算得出答案. 【详解】原式=a 2﹣ab ﹣2b 2﹣a 2+ab+9b 2 =7b 2.【点睛】此题主要考查了整式的乘法运算及整式的加减运算,正确掌握相关运算法则是解题关键.18.如图,在△ABC中,已知∠CDB=110°,∠ABD=30°.(1)请用直尺和圆规在图中直接作出∠A的平分线AE交BD于E;(不写作法,保留作图痕迹)(2)在(1)的条件下,求出∠AED的度数.【答案】(1)见解析;(2)70°【解析】【分析】(1)首先以A为圆心,小于AC长为半径画弧,交AB、AC两点,再分别以两点为圆心,大于两点之间的距离的一半长为半径画弧,两弧交于一点M,然后作射线AM交BD于E;(2)利用三角形内角与外角的关系可得∠BAC的度数,再根据角平分线的定义计算出∠EAD的度数,再次利用外角的性质可得答案.【详解】解:(1)如图所示:(2)∵∠CDB=110°,∠ABD=30°.∴∠CAB=110°﹣30°=80°,∵AE平分∠CAB,∴∠DAE=40°,∴∠DEA=110°﹣40°=70°.【点睛】此题主要考查了基本作图,以及角的计算,关键是掌握角平分线的作法,以及三角形的外角等于与它不相邻的两个内角的和.19.用10个除颜色外均相同的球设计一个摸球游戏:(1)使摸到红球的概率为15;(2)使摸到红球和白球的概率都是25.【答案】(1)2个红球,8个黄球;(2)4个红球,4个白球,2个其他颜色球. 【解析】【分析】(1)利用概率公式,要使摸到红球的概率为15,则红球有2个,然后设计摸球游戏;(2)利用概率公式,要使摸到红球和白球的概率都是25.则红球有4个,白球有4个,然后设计摸球游戏.【详解】(1)10个除颜色外均相同的球,其中2个红球,8个黄球;(2)10个除颜色外均相同的球,其中4个红球,4个白球,2个其他颜色球.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了概率公式.20.先化简,再求值:[(2x﹣y)2﹣(2x+y)(2x﹣y)]÷y,其中x=1,y=2.【答案】﹣4x+2y,当x=1,y=2时,原式=0.【解析】【分析】先算括号内的乘法,再合并同类项,算除法,最后代入求出即可.【详解】[(2x﹣y)2﹣(2x+y)(2x﹣y)]÷y=[4x2﹣4xy+y2﹣4x2+y2]÷y=[﹣4xy+2y2]÷y=﹣4x+2y,当x=1,y=2时,原式=﹣4+4=0.【点睛】本题考查了整式的混合运算和求值,能正确根据整式的运算法则进行化简是解此题的关键.21.已知:如图,A、F、C、D四点在一直线上,AF=CD,AB∥DE,且AB=DE.求证:(1)△ABC≌△DEF;(2)BC∥EF.【答案】(1)见解析;(2)见解析.【解析】(1)要证明△ABC ≌△DEF ,可以通过已知利用SAS 来进行判定,(2)由(1)可以得到对应角相等,然后利用内错角相等即可证明两直线平行. 【详解】证明:(1)∵AF =CD , ∴AF+FC =CD+FC 即AC =DF . ∵AB ∥DE , ∴∠A =∠D . ∵AB =DE ,∴在△ABC 和△DEF 中AB DE A D AC DF =⎧⎪∠=∠⎨⎪=⎩. ∴△ABC ≌△DEF (SAS ). (2)∵△ABC ≌△DEF (已证), ∴∠ACB =∠DFE . ∴EF ∥BC .【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角. 22.观察下列等式: (a ﹣b )(a +b )=a 2﹣b 2 (a ﹣b )(a 2+ab +b 2)=a 3﹣b 3(a ﹣b )(a 3+a 2b +ab 2+b 3)=a 4﹣b 4… 利用你的发现的规律解决下列问题(1)(a ﹣b )(a 4+a 3b +a 2b 2+ab 3+b 4)= (直接填空);(2)(a ﹣b )(a n ﹣1+a n ﹣2b +a n ﹣3b 2…+ab n ﹣2+b n ﹣1)= (直接填空); (3)利用(2)中得出的结论求62019+62018+…+62+6+1的值. 【答案】(1)a 5﹣b 5;(2)a n﹣b n;(3)62019+62018+…+62+6+1=2020615-.【解析】(1)(2)直接根据规律解答即可;(3)利用(2)的结论,把所求式子写成(6-1)(62019+62018+…+62+6)×15即可解答. 【详解】(1)(a ﹣b )(a 4+a 3b+a 2b 2+ab 3+b 4)=a 5﹣b 5 故答案为a 5﹣b 5;(2)(a ﹣b )(a n ﹣1+a n ﹣2b+a n ﹣3b 2…+ab n ﹣2+b n ﹣1)=a n ﹣b n 故答案为a n ﹣b n ; (3)62019+62018+…+62+6+1=(6﹣1)(62019+62018+…+62+6)×15=2020615.【点睛】此题主要考查了整式的混合运算,要熟练掌握,注意根据所给的算式总结出规律,并能利用总结出的规律解决实际问题.23.如图所示,A 、B 两地相距50千米,甲于某日下午1时骑自行车从A 地出发驶往B 地,乙也于同日下午骑摩托车按相同路线从A 地出发驶往B 地,如图所示,图中的折线PQR 和线段MN 分别表示甲、乙所行驶的路程S 和时间t 的关系.象回答下列问题: (1)甲和乙哪一个出发的更早?早出发多长时间? (2)甲和乙哪一个早到达B 城?早多长时间?(3)乙骑摩托车的速度和甲骑自行车在全程的平均速度分别是多少? (4)请你根据图象上的数据,求出乙出发后多长时间追上甲?【答案】(1)甲更早,早出发1 h;(2)乙更早,早到2 h;(3)甲的平均速度12.5km/h, 乙的平均速度是50km/h;(4) 乙出发0.5 h 就追上甲 【解析】分析:(1)(2)读图可知;(3)从图中得:甲和乙所走的路程都是50千米,甲一共用了4小时,乙一共用了1小时,根据速度=路程时间,代入计算得出; (4)从图中得:甲在走完全程时,前1小时速度为20千米/小时,从第2小时开始,速度为502052--=10千米/小时,因此设乙出发x 小时就追上甲,则从图中看,是在甲速度为10千米/小时时与乙相遇,所以甲的路程为20+10x ,乙的路程为50x ,列方程解出即可. 详解:(1)甲下午1时出发,乙下午2时出发,所以甲更早,早出发1小时; (2)甲5时到达,乙3时到达,所以乙更早,早到2小时; (3)乙的速度=5032-=50(千米/时),甲的平均速度=5051-=12.5(千米/时); (4)设乙出发x 小时就追上甲,根据题意得:50x =20+10x ,x =0.5. 答:乙出发0.5小时就追上甲.点睛:本题是函数的图象,根据图象信息解决实际问题,存在两个变量:路程和时间;通过此类题目的练习,可以培养学生分析问题和运用所学知识解决问题的能力,同时还能使学生体会到函数知识的实用性.24.已知,如图AD 为△ABC 的中线,分别以AB 和AC 为一边在△ABC 的外部作等腰三角形ABE 和等腰三角形ACF ,且AE =AB ,AF =AC ,连接EF ,∠EAF +∠BAC =180° (1)如图1,若∠ABE =63°,∠BAC =45°,求∠F AC 的度数;(2)如图1请探究线段EF 和线段AD 有何数量关系?并证明你的结论;(3)如图2,设EF 交AB 于点G ,交AC 于点R ,延长FC ,EB 交于点M ,若点G 为线段EF 的中点,且∠BAE =70°,请探究∠ACB 和∠CAF 的数量关系,并证明你的结论.【答案】(1)36°;(2)EF =2AD,见解析;(3)1ACB CAF 552︒∠-∠=,见解析. 【解析】 分析】(1)由等腰三角形的性质得出∠AEB=∠ABE=63°,由三角形内角和定理得出∠EAB=54°,推出∠EAB+2∠BAC+∠FAC=180°,即可得出结果;(2)延长AD至H,使DH=AD,连接BH,由中线的性质得出BD=CD,由SAS证得△BDH≌△CDA得出HB=AC=AF,∠BHD=∠CAD,得出AC∥BH,由平行线的性质得出∠ABH+∠BAC=180°,证得∠EAF=∠ABH,由SAS证得△ABH≌△EAF,即可得出结论;(3)由(2)得,AD=12EF,又点G为EF中点,得出EG=AD,由(2)△ABH≌△EAF得出∠AEG=∠BAD,由SAS证得△EAG≌△ABD得出∠EAG=∠ABC=70°,由已知得出∠EAB+2∠BAC+∠CAF=180°,推出∠BAC=55°-12∠CAF,由三角形内角和定理得出∠BAC=180°-∠ABC-∠ACB=110°-∠ACB,即可得出结果.【详解】(1)∵AE=AB,∴∠AEB=∠ABE=63°,∴∠EAB=54°,∵∠BAC=45°,∠EAF+∠BAC=180°,∴∠EAB+2∠BAC+∠FAC=180°,∴54°+2×45°+∠FAC=180°,∴∠FAC=36°;(2)EF=2AD;理由如下:延长AD至H,使DH=AD,连接BH,如图1所示:∵AD为△ABC的中线,∴BD=CD,在△BDH和△CDA中,BD CDBDH CDA DH AD=⎧⎪∠=∠⎨⎪=⎩,∴△BDH≌△CDA(SAS),∴HB=AC=AF,∠BHD=∠CAD,∴AC∥BH,∴∠ABH+∠BAC=180°,∵∠EAF+∠BAC=180°,∴∠EAF=∠ABH,在△ABH和△EAF中,AE ABEAF ABH AF BH=⎧⎪∠=∠⎨⎪=⎩,∴△ABH≌△EAF(SAS),∴EF=AH=2AD;(3)1ACB CAF552︒∠-∠=;理由如下:由(2)得,AD=12EF,又点G为EF中点,∴EG=AD,由(2)△ABH≌△EAF,∴∠AEG=∠BAD,在△EAG和△ABD中,AE ABABG BAD EG AD=⎧⎪∠=∠⎨⎪=⎩,∴△EAG≌△ABD(SAS),∴∠EAG=∠ABC=70°,∵∠EAF+∠BAC=180°,∴∠EAB+2∠BAC+∠CAF=180°,即:70°+2∠BAC+∠CAF=180°,∴∠BAC+12∠CAF=55°,∴∠BAC=55°﹣12∠CAF,∵∠ABC+∠ACB+∠BAC=180°,∴∠BAC=180°﹣∠ABC﹣∠ACB=180°﹣70°﹣∠ACB=110°﹣∠ACB,∴55°﹣12∠CAF=110°﹣∠ACB,∴∠ACB﹣12∠CAF=55°.【点睛】本题是三角形综合题,主要考查了全等三角形的判定与性质、三角形内角和定理、等腰三角形的性质、平行线的判定与性质等知识,熟练掌握三角形内角和定理,证明三角形全等是解题的关键.。
【精编】北师大版山东省济南市市中区七年级下期末考试数学试卷含答案
![【精编】北师大版山东省济南市市中区七年级下期末考试数学试卷含答案](https://img.taocdn.com/s3/m/7158960fad02de80d4d84074.png)
济南市市中区2019-2020学年第二学期期末考试七年级数学试卷一、选择题(本大题共15小题,每小题3分,共45分)1.骆驼被称为“沙漠之舟”,它的体温随时间的变化而变化,在这一问题中因变量是( ) A.沙漠 B.体温 C.时间 D.骆驼2.两根长度分别为3cm 、7cm 的钢条,下面为第三根的长,则可组成一个三角形框架的是( ) A.3cm B.4cm C.7cm D.10cm3.计算2x 2·(-3x 3)的结果是( )A.-6x 3B.6x 5C.-2x 6D.2x 64.如图,已知∠1=70°,如果CD //BE ,那么∠B 的度数为( ) A.100° B.70° C.120° D.110°E5.下列事件中是必然事件的是( )A.明天太阳从西边升起B.篮球队员在罚球线上投篮一次,未投中C.实心铁球投入水中会沉入水底D.抛出一枚硬币,落地后正面朝上6.将数据0.0000025用科学记数法表示为( )A.25×10-7B.0.25×10-8C.2.5×10-7D.2.5×10-87.下列世界博览会会徽图案中是轴对称图形的是()A. B C. D.8.一列火车匀速通过隧道(隧道长大于火车的长),火车在隧道内的长度y与火车进入隧道的时间x 之间的关系用图象描述正确的是( )9.下列计算正确的是( )A.(ab )2=a 2b 2B.2(a +1)=2a +1C.a 2+a 3=a 6D.a 6÷a 2=a 310.如图,已知∠1=∠2,要说明△ABD ≌△ACD ,还需从下列条件中选一个,错误的选法是( ) A.∠ADB =∠ADC B.∠B =∠C C.DB =DC D.AB =ACC11.如图,在锐角△ABC 中,CD 、BE 分别是AB 、AC 边上的高,CD 、BE 交于点P ,∠A =50°,则∠BPC 是( )A.150°B.130°C.120°D.100°B12.若x 2+(m -3)x +16是完全平方式,则m 的值是( ) A.-5 B.11 C.-5或11 D.-11或5 13.如果等腰三角形两边长是6和3,那么它的周长是( ) A.15或12 B.9 C.12 D.1514.规定:log a b (a >0,a ≠1,b >0)表示a ,b 之间的一种运算,现有如下的运算法则:log a a n =n , log N M=log n M log n N (a >0,a ≠1,N >0,N ≠1,M >0).例如:log 223=3,log 25=log 105log 102,则log 1001000=( ) A.32 B.23C.2D.3 15.如图,四边形ABCD 是边长为2cm 的正方形,动点P 在ABCD 的边上沿A →B →C →D 的路径以1cm/s 的速度运动(点P 不与A ,D 重合)。
2018-2019学年北师大版山东省济南市槐荫区七年级第二学期期中数学试卷 含解析
![2018-2019学年北师大版山东省济南市槐荫区七年级第二学期期中数学试卷 含解析](https://img.taocdn.com/s3/m/646b28674b35eefdc8d333f9.png)
2018-2019学年七年级第二学期期中数学试卷一、选择题1.计算33x x g 的结果是( ) A .32xB .62xC .6xD .9x2.医学研究发现一种新病毒的直径约为0.000043毫米,则这个数用科学记数法表示为( )A .40.4310-⨯B .40.4310⨯C .44.310-⨯D .54.310-⨯3.下列运算正确的是( ) A .22a a a =gB .33()ab ab =C .236()a a =D .1025a a a ÷=4.如图,12∠=∠,则下列结论一定成立的是( )A .//AB CDB .//AD BCC .BD ∠=∠D .34∠=∠5.已知两个变量之间的关系满足2y x =-+,则当1x =-时,对应的y 的值为( ) A .1B .3C .1-D .3-6.下列整式乘法中,能运用平方差公式进行运算的是( ) A .(2)(2)a b b a +- B .()()x b x b --+C .()()a b b a --D .()()m b m b +-7.若2(3)()15x x n x mx ++=+-,则m 的值为( ) A .5-B .5C .2-D .28.如图,已知AD BC ⊥于D ,//DE AB ,若48B ∠=︒,则ADE ∠的度数为( )A .32︒B .42︒C .48︒D .52︒9.如图,把矩形ABCD 沿EF 对折,若150∠=︒,则AEF ∠等于( )A .150︒B .80︒C .100︒D .115︒10.一蓄水池有水340m ,按一定的速度放水,水池里的水量3()y m 与放水时间t (分)有如下关系:放水时间(分) 1 2 3 4 ⋯ 水池中水量()m38363432⋯下列结论中正确的是( ) A .y 随t 的增加而增大B .放水时间为15分钟时,水池中水量为38mC .每分钟的放水量是32mD .y 与t 之间的关系式为382y t =-11.如图,一条公路修到湖边时,需拐弯绕道而过,如果第一次拐的角120A ∠=︒,第二次拐的角150B ∠=︒,第三次拐的角是C ∠,这时的道路恰好和第一次拐弯之前的道路平行,则C ∠是( )A .120︒B .130︒C .140︒D .150︒12.如图,两个正方形的边长分别为a ,b ,如果9a b ab +==,则阴影部分的面积为( )A .9B .18C .27D .36二、填空题(本大题共6个小题.每小题4分,共24分,把答案填在答题卡的横线上)13.计算:0220193-+= .14.如图,给出了过直线外一点作已知直线的平行线的方法,其依据是 .15.当225x kx ++是一个完全平方式,则k 的值是 .16.如图//AB CD ,72B ∠=︒,EF 平分BEC ∠,EG EF ⊥,则DEG ∠= ︒.17.已知5a b -=,4ab =-,则221a b --= .18.如图,一个装有进水管和出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,接着关闭进水管直到容器内的水放完.假设每分钟的进水量和出水量是两个常数,容器内的水量y (单位:升)与时间x (单位:分)之间的部分关系.那么,从关闭进水管起 分钟该容器内的水恰好放完.三、解答题(本大题共9个小题,共78分,解答应写出文字说明,证明过程或演算步骤,) 19.计算 (1)233(2)ab a b -g (2)2(462)2a ab a a -+÷ 20.用乘法公式计算(1)2201820172019-⨯ (2)(23)(23)x y z x y z -+--21.先化简,再求值:2(3)()(4)x y x y x y ----.其中2x =-,3y =. 22.尺规作图,不写作法,但要保留作图痕迹.王师傅开车在一条公路上经过点B 和点C 处两次拐弯后继续前行,且前行方向CD 和原来的方向AB 相同,已知第一次的拐角为ABC ∠,请借助圆规和直尺作出//CD AB .23.如图,已知12180∠+∠=︒,请说明//a b .24.父亲告诉小明:“距离地面越高,温度越低”,并给小明出示了下面的表格: 距离地面高度(千米)h 01 2 3 4 5 温度(C)t ︒2014824-10-根据表中,父亲还给小明出了下面几个问题,你和小明一起回答.(1)表中自变量是 ;因变量是 ;当地面上(即0h =时)时,温度是C ︒.(2)如果用h 表示距离地面的高度,用t 表示温度,请写出满足h 与t 关系的式子. (3)计算出距离地面6千米的高空温度是多少?25.小明想把一长为60cm ,宽为40cm 的长方形硬纸片做成一个无盖的长方体盒子,于是在长方形纸片的四个角各剪去一个相同的小正方形. (1)若设小正方形的边长为xcm ,求图中阴影部分的面积; (2)当5x =时,求这个盒子的体积.26.如图,AD BC ⊥于点D ,EF BC ⊥于点E ,12∠=∠. (1)试说明//DG AC .(2)若70BAC ∠=︒,求AGD ∠的度数.27.(1)阅读并回答:科学实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的角相等.如图1,一束平行光线AB 与DE 射向一个水平镜面后被反射,此时12∠=∠,34∠=∠.①由条件可知:1∠与3∠的大小关系是 ,理由是 ;2∠与4∠的大小关系是 ; ②反射光线BC 与EF 的位置关系是 ,理由是 ;(2)解决问题:①如图2,一束光线m 射到平面镜a 上,被a 反射到平面镜b 上,又被b 镜反射,若b 反射出的光线n 平行于m ,且135∠=︒,则2∠= ,3∠= ; ②在①中,若140∠=︒,则3∠= ,③由①②请你猜想:当3∠= 时,任何射到平面镜a 上的光线m 经过平面镜a 和b 的两次反射后,入射光线m 与反射光线n 总是平行的?请说明理由.28.已知动点P 以2/cm s 的速度沿图1所示的边框从B C D E F A -----的路径运动,记ABP ∆的面积为2()S cm ,S 与运动时间()t s 的关系如图2所示,若6AB cm =,请回答下列问题:(1)图1中BC=cm,CD=cm,DE=cm(2)求出图1中边框所围成图形的面积;(3)求图2中m、n的值;(4)分别求出当点P在线段BC和DE上运动时S与t的关系式,并写出t的取值范围.参考答案一、选择题1.计算33x x g 的结果是( ) A .32xB .62xC .6xD .9x【分析】根据同底数幂的乘法,可得答案. 解:336x x x =g , 故选:C .2.医学研究发现一种新病毒的直径约为0.000043毫米,则这个数用科学记数法表示为( )A .40.4310-⨯B .40.4310⨯C .44.310-⨯D .54.310-⨯【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:0.000043毫米,则这个数用科学记数法表示为54.310-⨯毫米, 故选:D .3.下列运算正确的是( ) A .22a a a =gB .33()ab ab =C .236()a a =D .1025a a a ÷=【分析】根据同底数幂乘法、积的乘方、幂的乘方、同底数幂的除法计算后利用排除法求解.解:A 、应为23a a a =g ,故A 选项错误; B 、应为333()ab a b =,故B 选项错误; C 、236()a a =,故C 选项正确;D 、应为1028a a a ÷=,故D 选项错误.故选:C .4.如图,12∠=∠,则下列结论一定成立的是( )A .//AB CDB .//AD BCC .BD ∠=∠D .34∠=∠【分析】因为1∠与2∠是AD 、BC 被AC 所截构成的内错角,所以结合已知,由内错角相等,两直线平行求解. 解:12∠=∠Q ,//AD BC ∴(内错角相等,两直线平行). 故选:B .5.已知两个变量之间的关系满足2y x =-+,则当1x =-时,对应的y 的值为( ) A .1B .3C .1-D .3-【分析】将自变量x 的值代入函数解析式求解即可. 解:1x =-时,(1)2123y =--+=+=. 故选:B .6.下列整式乘法中,能运用平方差公式进行运算的是( ) A .(2)(2)a b b a +- B .()()x b x b --+ C .()()a b b a --D .()()m b m b +-【分析】利用平方差公式特征判断即可. 解:能用平方差公式运算的是()()m b m b +-, 故选:D .7.若2(3)()15x x n x mx ++=+-,则m 的值为( ) A .5-B .5C .2-D .2【分析】利用多项式乘以多项式法则展开,再根据对应项的系数相等列式求解即可. 解:22(3)()(3)315x x n x n x n x mx ++=+++=+-Q , 3n m ∴+=,315n =-,解得5n =-,532m =-+=-. 故选:C .8.如图,已知AD BC ⊥于D ,//DE AB ,若48B ∠=︒,则ADE ∠的度数为( )A .32︒B .42︒C .48︒D .52︒【分析】根据平行线的性质和互余解答即可. 解://DE AB Q , 48EDC B ∴∠=∠=︒, AD BC ⊥Q ,904842ADE ∴∠=︒-︒=︒,故选:B .9.如图,把矩形ABCD 沿EF 对折,若150∠=︒,则AEF ∠等于( )A .150︒B .80︒C .100︒D .115︒【分析】先利用折叠的性质得到2BFE ∠=∠,再利用平角的定义计算出65BFE ∠=︒,然后根据两直线平行,同旁内角互补求解. 解:Q 矩形ABCD 沿EF 对折, 2BFE ∴∠=∠, 11(1801)(18050)6522BFE ∴∠=︒-∠=⨯︒-︒=︒, //AD BC Q ,180AEF BFE ∴∠+∠=︒, 18065115AEF ∴∠=︒-︒=︒.故选:D .10.一蓄水池有水340m ,按一定的速度放水,水池里的水量3()y m 与放水时间t (分)有如下关系:放水时间(分) 1 2 3 4 ⋯ 水池中水量()m38363432⋯下列结论中正确的是( ) A .y 随t 的增加而增大B .放水时间为15分钟时,水池中水量为38mC .每分钟的放水量是32mD .y 与t 之间的关系式为382y t =-【分析】根据表格中的数据可以判断各个选项中的说法是否正确,本题得以解决. 解:由表格可得,y 随t 的增加而减小,故选项A 错误,放水时间为15分钟时,水池中水量为:340(4038)11510m --÷⨯=,故选项B 错误, 每分钟的放水量是340382m -=,故选项C 正确,y 与t 之间的关系式为40(4038)1402y t t =--÷÷=-,故选项D 错误,故选:C .11.如图,一条公路修到湖边时,需拐弯绕道而过,如果第一次拐的角120A ∠=︒,第二次拐的角150B ∠=︒,第三次拐的角是C ∠,这时的道路恰好和第一次拐弯之前的道路平行,则C ∠是( )A .120︒B .130︒C .140︒D .150︒【分析】首先根据题意作辅助线:过点B 作//BD AE ,即可得////AE BD CF ,则可求得:1A ∠=∠,2180C ∠+∠=︒,则可求得C ∠的值.解:过点B 作//BD AE , //AE CF Q , ////AE BD CF ∴,1A ∴∠=∠,2180C ∠+∠=︒,120A ∠=︒Q ,12150ABC ∠+∠=∠=︒, 230∴∠=︒,180218030150C ∴∠=︒-∠=︒-︒=︒.故选:D .12.如图,两个正方形的边长分别为a ,b ,如果9a b ab +==,则阴影部分的面积为( )A .9B .18C .27D .36【分析】阴影部分面积等于两个正方形面积之和减去两个直角三角形面积,求出即可. 解:9a b ab +==Q ,22222211111()()[()3](8127)2722222S a b a b a b a b ab a b ab ∴=+--+=+-=+-=⨯-=. 故选:C .二、填空题(本大题共6个小题.每小题4分,共24分,把答案填在答题卡的横线上)13.计算:0220193-+ 9 . 【分析】先分别计算零指数幂、负整数指数幂,然后算加减法.解:0211020193199-+=+=, 故答案为109. 14.如图,给出了过直线外一点作已知直线的平行线的方法,其依据是 同位角相等,两直线平行 .【分析】如图所示,过直线外一点作已知直线的平行线,只有满足同位角相等,才能得到两直线平行.解:由图形得,有两个相等的同位角,所以只能依据:同位角相等,两直线平行.15.当225x kx ++是一个完全平方式,则k 的值是 10± .【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定k 的值.解:222255x kx x kx ++=++Q ,25kx x ∴=±g g ,解得10k =±.故答案为:10±.16.如图//AB CD ,72B ∠=︒,EF 平分BEC ∠,EG EF ⊥,则DEG ∠= 36 ︒.【分析】直接利用平行线的性质得出108BEC ∠=︒,再利用角平分线的定义得出答案. 解://AB CD Q ,72B ∠=︒,108BEC ∴∠=︒,EF Q 平分BEC ∠,54BEF CEF ∴∠=∠=︒,90GEF ∠=︒Q ,9036GED FEC ∴∠=︒-∠=︒.故答案为:36.17.已知5a b -=,4ab =-,则221a b --= 16- .【分析】原式利用完全平方公式变形,把已知等式代入计算即可求出值.解:5a b -=Q ,4ab =-,∴原式21[()2]1(258)16a b ab =--+=--=-;故答案是:16-.18.如图,一个装有进水管和出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,接着关闭进水管直到容器内的水放完.假设每分钟的进水量和出水量是两个常数,容器内的水量y (单位:升)与时间x (单位:分)之间的部分关系.那么,从关闭进水管起 8 分钟该容器内的水恰好放完.【分析】先根据函数图象求出进水管的进水量和出水管的出水量,由工程问题的数量关系就可以求出结论.解:由函数图象得:进水管每分钟的进水量为:2045÷=升设出水管每分钟的出水量为a 升,由函数图象,得208(5)30a +-=,解得:154a =, 故关闭进水管后出水管放完水的时间为:153084÷=分钟. 故答案为:8.三、解答题(本大题共9个小题,共78分,解答应写出文字说明,证明过程或演算步骤,)19.计算(1)233(2)ab a b -g(2)2(462)2a ab a a -+÷【分析】(1)根据单项式的运算法则即可求出答案.(2)根据整式的运算法则即可求出答案.解:(1)原式293(8)ab a b =-g1058a b =-;(2)原式231a b =-+;20.用乘法公式计算(1)2201820172019-⨯(2)(23)(23)x y z x y z -+--【分析】(1)将原式变形为22018(20181)(20181)--+,再计算可得;(2)先利用平方差公式计算,再利用完全平方公式计算可得.解:(1)原式22018(20181)(20181)=--+22201820181=-+1=;(2)原式22(2)(3)x y z =--222449x xy y z =-+-.21.先化简,再求值:2(3)()(4)x y x y x y ----.其中2x =-,3y =.【分析】先算乘法,再合并同类项,最后代入求出即可.解:2(3)()(4)x y x y x y ----22226944x xy y x xy xy y =-+-++-25y xy =-,当2x =-,3y =时,原式253(2)351=⨯--⨯=.22.尺规作图,不写作法,但要保留作图痕迹.王师傅开车在一条公路上经过点B 和点C 处两次拐弯后继续前行,且前行方向CD 和原来的方向AB 相同,已知第一次的拐角为ABC ∠,请借助圆规和直尺作出//CD AB .【分析】作ABC BCD ∠=∠即可解决问题.解:如图射线CD 即为所求.23.如图,已知12180∠+∠=︒,请说明//a b .【分析】同位角相等,两直线平行.根据平行线的判定方法即可得出结论.【解答】证明:如图,12180∠+∠=︒Q ,13180∠+∠=︒,23∴∠=∠,//a b ∴.24.父亲告诉小明:“距离地面越高,温度越低”,并给小明出示了下面的表格: 距离地面高度(千米)h 01 2 3 4 5 温度(C)t ︒ 20 14 8 2 4- 10-根据表中,父亲还给小明出了下面几个问题,你和小明一起回答.(1)表中自变量是 h ;因变量是 ;当地面上(即0h =时)时,温度是 C ︒.(2)如果用h 表示距离地面的高度,用t 表示温度,请写出满足h 与t 关系的式子.(3)计算出距离地面6千米的高空温度是多少?【分析】(1)根据表格可以得到自变量和因变量,以及0h =时的温度;(2)根据表格可以得到t 与h 的关系式;(3)将6h =代入(2)中的关系式,即可解答本题.解:(1)由图可知,表中自变量是h ,因变量是t ,当0h =时,20t =,故答案为:h ,t ,20;(2)设h kt b =+,020114k b k b =+⎧⎨=+⎩,得16103k b⎧=-⎪⎪⎨⎪=⎪⎩即h 与t 关系是:11063h t =-+; (3)当6h =时,110663t =-+, 解得,16t =-,即距离地面6千米的高空温度是16C ︒-.25.小明想把一长为60cm ,宽为40cm 的长方形硬纸片做成一个无盖的长方体盒子,于是在长方形纸片的四个角各剪去一个相同的小正方形.(1)若设小正方形的边长为xcm ,求图中阴影部分的面积;(2)当5x =时,求这个盒子的体积.【分析】(1)剩余部分的面积即是边长为602x -,402x -的长方形的面积;(2)利用长方体的体积公式先表示出长方形的体积,再把5x =,代入即可.解:(1)2(602)(402)42002400x x x x --=-+,答:阴影部分的面积为22(42002400)x x cm -+;(2)当5x =时,22420024001500()x x cm -+=,这个盒子的体积为:3150057500()cm ⨯=,答:这个盒子的体积为37500cm .26.如图,AD BC ⊥于点D ,EF BC ⊥于点E ,12∠=∠.(1)试说明//DG AC .(2)若70BAC ∠=︒,求AGD ∠的度数.【分析】(1)求出//AD EF ,根据平行线的性质得出1DAC ∠=∠,求出2DAC ∠=∠,根据平行线的判定得出即可;(2)根据平行线的性质得出180AGD BAC ∠+∠=︒,代入求出即可.解:(1)AD BC ⊥Q ,EF BC ⊥,90ADC FEC ∴∠=∠=︒,//AD EF ∴,1DAC ∴∠=∠,12∠=∠Q ,2DAC ∴∠=∠,//DG AC ∴;(2)//DG AC Q ,180AGD BAC ∴∠+∠=︒,70BAC ∠=︒Q ,110AGD ∴∠=︒.27.(1)阅读并回答:科学实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的角相等.如图1,一束平行光线AB 与DE 射向一个水平镜面后被反射,此时12∠=∠,34∠=∠.①由条件可知:1∠与3∠的大小关系是 相等 ,理由是 ;2∠与4∠的大小关系是 ; ②反射光线BC 与EF 的位置关系是 ,理由是 ;(2)解决问题:①如图2,一束光线m 射到平面镜a 上,被a 反射到平面镜b 上,又被b 镜反射,若b 反射出的光线n 平行于m ,且135∠=︒,则2∠= ,3∠= ;②在①中,若140∠=︒,则3∠= ,③由①②请你猜想:当3∠= 时,任何射到平面镜a 上的光线m 经过平面镜a 和b 的两次反射后,入射光线m 与反射光线n 总是平行的?请说明理由.【分析】(1)根据平行线的判定与性质逐一求解可得;(2)①根据入射角等于反射角得出14∠=∠,57∠=∠,求出6∠,根据平行线性质即可求出2∠,求出5∠,根据三角形内角和求出3∠即可;②与①同理;③求出45∠+∠,求出1457∠+∠+∠+∠,即可求出26∠+∠,根据平行线的判定推出即可. 解:(1)①由条件可知:1∠与3∠的大小关系是相等,理由是两直线平行,同位角相等;2∠与4∠的大小关系是相等;②反射光线BC 与EF 的位置关系是平行,理由是同位角相等,两直线平行;故答案为:①相等、两直线平行,同位角相等、相等;②平行、同位角相等,两直线平行.(2)①如图,135∠=︒Q ,4135∴∠=∠=︒,61803535110∴∠=︒-︒-︒=︒,//m n Q ,26180∴∠+∠=︒,270∴∠=︒,5755∴∠=∠=︒,3180553590∴∠=︒-︒-︒=︒;②在①中,若140∠=︒,则4140∠=∠=︒,61804040100∴∠=︒-︒-︒=︒,//m n Q ,26180∴∠+∠=︒,280∴∠=︒,5750∴∠=∠=︒,3180504090∴∠=︒-︒-︒=︒③猜想:当390∠=︒时,m 总平行于n ,理由:Q 三角形的内角和为180︒,又390∠=︒,4590∴∠+∠=︒41∠=∠Q 、57∠=∠,1790∴∠+∠=︒,14579090180∴∠+∠+∠+∠=︒+︒=︒,146527180180360∠+∠+∠+∠+∠+∠=︒+︒=︒Q ,62180∴∠+∠=︒//m n ∴(同旁内角互补,而直线平行)故答案为:①70︒、90︒;②90︒;③90︒.28.已知动点P 以2/cm s 的速度沿图1所示的边框从B C D E F A -----的路径运动,记ABP ∆的面积为2()S cm ,S 与运动时间()t s 的关系如图2所示,若6AB cm =,请回答下列问题:(1)图1中BC = 8 cm ,CD = cm ,DE = cm(2)求出图1中边框所围成图形的面积;(3)求图2中m 、n 的值;(4)分别求出当点P 在线段BC 和DE 上运动时S 与t 的关系式,并写出t 的取值范围.【分析】(1)因为点P 速度为2,所以根据右侧的时间可以求出线段BC ,CD 和DE 的长度.(2)对多边形采取切割的方法求面积,将多边形切割为两个长方形即可.(3)m 代表的是点P 在C 时对应图形面积,n 代表的是点P 运动到A 时对应的时间,由图象都可以求出.(4)表示出点P 到AB 的水平距离作为高,以AB 为底求出面积. 解:(1)由右侧图象可知,点P 在BC 线段运动4秒,8BC =,点P 在CD 线段运动2秒,4CD =,点P 在DE 线段运动3秒,6DE =(2)6AB =Q ,4CD =2EF ∴=∴图形的面积可以看作是两个长方形面积之和2686260()cm ⨯+⨯=(3)当点P 到C 时,ABP ∆的面积为224()cm24m ∴=34BC CD DE EF AF ++++=134172n ∴=⨯= (4)当点P 在BC 上运动时04t 剟16262S t t =⨯⨯=当点P 在DE 上运动时 69t <…16(24)6122S t t =⨯⨯-=-。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
山东省济南市市中区2018-2019学年七年级(下)期末数学试卷一、选择题(共12小题,每小题4分,满分48分,每小题只有一个选项符合题意)1.(4分)下面四大手机品牌图标中,轴对称图形的是()A.B.C.D.2.(4分)将数据0.000000007米用科学记数法表示为()A.7×10﹣6米B.7×10﹣7米C.7×10﹣8米D.7×10﹣9米3.(4分)已知三角形三边长分别为5、a、9,则数a可能是()A.4B.6C.14D.154.(4分)下列计算正确的是()A.x+x2=x3B.(2x)2=2x2C.(x3)2=x6D.5x﹣x=45.(4分)如图,已知AB∥CD,AD平分∠BAE,∠D=38°,则∠AEC的度数是()A.19°B.38°C.72°D.76°6.(4分)下列事件中,随机事件是()A.经过有交通信号灯的路口,遇到红灯B.实心铁球投入水中会沉入水底C.一滴花生油滴入水中,油会浮在水面D.两负数的和为正数7.(4分)星期天,小王去朋友家借书,下图是他离家的距离y(千米)与时间x(分钟)的函数图象,根据图象信息,下列说法正确的是()A.小王去时的速度大于回家的速度B.小王在朋友家停留了10分钟C.小王去时所花的时间少于回家所花的时间D.小王去时走上坡路,回家时走下坡路8.(4分)若x2+(m﹣1)x+9是完全平方式,则m的值是()A.7B.﹣5C.±6D.7或﹣59.(4分)如图,有一池塘,要测池塘两端A,B间的距离,可先在平地上取一个不经过池塘可以直接到达点A和B的点C,连接AC并延长至D,使CD=CA,连接BC并延长至E,使CE=CB,连接ED.若量出DE=58米,则A,B间的距离即可求.依据是()A.SAS B.SSS C.AAS D.ASA10.(4分)若将一副三角板按如图所示的方式放置,则下列结论正确的是()A.∠l=∠2B.如果∠2=30°,则有AC∥DEC.如果∠2=45°,则有∠4=∠D D.如果∠2=50°,则有BC∥AE11.(4分)等腰三角形中,有一个角是40°,它的一条腰上的高与底边的夹角是()A.20°B.50°C.25°或40°D.20°或50°12.(4分)如图,∠BAC=∠ACD=90°,∠ABC=∠ADC,CE⊥AD,且BE平分∠ABC,则下列结论:①AD=CB;②∠ACE=∠ABC;③∠ECD+∠EBC=∠BEC;④∠CEF=∠CFE;其中正确的是()A.①②B.①③④C.①②④D.①②③④二、填空题(本大题共6个小题,每小题4分,共24分)13.(4分)计算:x(x﹣2)=14.(4分)如图,是小鹏自己创作的正方形飞镖盘,并在盒内画了两个小正方形,则小鹏在投掷飞镖时,飞镖扎在阴影部分的概率.15.(4分)如图,已如AB∥CD,若∠A=25°,∠E=40°,则∠C=.16.(4分)一支原长为20cm的蜡烛,点燃后,其剩余长度与燃烧时间之间的关系可从下表看出:燃烧时间•分1020304050…剩余长度•cm1918171615…则剩余长度y/cm与燃烧时间x/分的关系式为,你能估计这支蜡烛最多可燃烧分钟.17.(4分)如图,在等腰△ABC中,AB的垂直平分线MN交AC于点D,若AB=6,BC=4,则△DBC的周长为.18.(4分)如图,AD为等边△ABC的高,E、F分别为线段AD、AC上的动点,且AE=CF,当BF+CE取得最小值时,∠AFB=°.三、解等题(本大题共9个小题,共78分.解答应写出文字说明、证明过程或演算步骤.)19.(8分)(1)计算:(﹣1)2019+(﹣)﹣2+(3.14﹣π)0(2)化简:(a+2)(a﹣2)﹣a(a﹣1)20.(6分)先化简,再求值:(a﹣2b)(a+2b)﹣(a﹣2b)2+8b2,其中a=﹣6,b=21.(6分)如图,∠B=∠E,AB=EF,BD=EC.求证:AC∥DF.22.(6分)请将下列证明过程补充完整:已知:如图,AE平分∠BAC,CE平分∠ACD,且∠α+∠β=90°求证:AB∥CD.证明:∵CE平分∠ACD(已知),∴∠ACD=2∠α().∵AE平分∠BAC(已知),∴∠BAC=(角的平分线的定义).∴∠ACD+∠BAC=2∠α+2∠β().即∠ACD+∠BAC=2(∠α+∠β).∵∠α+∠β=90°(已知),∴∠ACD+∠BAC=().∴AB∥CD().23.(8分)如图,在所给的方格纸图中,完成下列各题:(1)画出△ABC关于直线DE对称的△A1B1C1;(2)直接写出∠A1=°,∠B1=°,∠C1=°;(3)求△ABC的面积.24.(10分)小明、小亮从保安中心图书馆出发,沿相同的线路跑向保安体育场,小明先跑一点路程后,小亮开始出发,当小亮超过小明150米时,小亮停在此地等候小明,两人相遇后,一起以小明原来的速度跑向宝安体育场,如图,反映了两人所跑路程y(米)与所用时间x(秒)之间的关系,请根据题意解答下列问题:(1)问题中的自变量是,因变量是;(2)小明共跑了米,小明的速度为米/秒;(3)图中a=米,小亮在途中等候小明的时间是秒;(4)小亮从A跑到B这段的速度为米/秒.25.(10分)现如今,通过“微信运动“发布自己每天行走的步数,已成为一种时尚,“健身达人”小华为了了解他的微信朋友圈里大家的“建步走运动“情况,随机抽取了20名好友一天行走的步数,记录如下:5640 6430 6520 6798 7325 8430 8215 7453 7446 67547638 6834 7325 6830 8648 8753 9450 9865 7290 7850对这20个数据按组距1000进行分组,并统计整理,绘制了如下尚不完整的统计图表:组别步数分组频数A5500≤x<65002B6500≤x<750010C7500≤x<8500mD8500≤x<95003E9500≤x<10500n请根据以上信息解答下列问题:(1)填空:m=,n=.(2)补全频数分布直方图.(3)根据以上统计结果,第二天小华随机查看一名好友行走的步数,试估计该好友的步数不低于7500步(含7500步)的概率.26.(12分)(1)我国著名的数学家赵爽,早在公元3世纪,就把一个矩形分成四个全等的直角三角形,用四个全等的直角三角形拼成了一个大的正方形(如图1),这个矩形称为赵爽弦图,验证了一个非常重要的结论:在直角三角形中两直角边a、b与斜边c满足关系式a2+b2=c2,称为勾股定理.证明:∵大正方形面积表示为S=c2,又可表示为S=4×ab+(b﹣a)2,∴4×ab+(b﹣a)2=c2.∴即直角三角形两直角边的平方和等于斜边的平方.(2)爱动脑筋的小明把这四个全等的直角三角形拼成了另一个大的正方形(如图2),也能验证这个结论,请你帮助小明完成验证的过程.(3)如图3所示,∠ABC=∠ACE=90°,请你添加适当的辅助线,证明结论a2+b2=c2.27.(12分)在△ABC中,AB=AC,∠BAC=120°,以CA为边在∠ACB的另一侧作∠ACM=∠ACB,点D为射线CM上任意一点,在射线CM上载取CE=BD,连接AD、AE.(1)如图1,当点D落在线段BC的延长线上时,求证:△ABD≌△ACE;(2)在(1)的条件下,求出∠ADE的度数;(3)如图2,当点D落在线段BC(不含端点)上时,作AH⊥BC,垂足为H,作AG⊥EC,垂足为G,连接HG,判断△GHC的形状,并说明理由.参考答案一、选择题(共12小题,每小题4分,满分48分,每小题只有一个选项符合题意)1.解:A、是轴对称图形,故此选项正确;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误;故选:A.2.解:0.000000007=7×10﹣9.故选:D.3.解:∵5+9=14,9﹣5=4,∴4<x<14.故选:B.4.解:A、x和x2不是同类项,不能合并,故原题计算错误;B、(2x)2=4x2,故原题计算错误;C、(x3)2=x6,故原题计算正确;D、5x﹣x=4x,故原题计算错误;故选:C.5.解:∵CD∥AB,∴∠CEA=∠EAB,∠D=∠BAD=38°,∵AD平分∠BAE,∴∠EAB=2∠DAB=76°,∴∠AEC=∠EAB=76°,故选:D.6.解:∵经过有交通信号灯的路口,遇到红灯是随机事件,∴选项A符合题意;∵实心铁球投入水中会沉入水底是必然事件,∴选项B不符合题意;∵一滴花生油滴入水中,油会浮在水面是必然事件,∴选项C不符合题意;∵两负数的和为正数是不可能事件,∴选项D不符合题意.故选:A.7.解:小王去时的速度为:2÷20=0.1千米/分,回家的速度为:2÷(40﹣30)=0.2千米/分,所以A、C均错.小王在朋友家呆的时间为:30﹣20=10,所以B对.故选:B.8.解:∵x2+(m﹣1)x+9=x2+(m﹣1)x+32,∴(m﹣1)x=±2•x•3,解得m=﹣5或7.故选:D.9.解:在△ABC和△DEC中,,△ABC≌△DEC(SAS),∴AB=DE=58米,故选:A.10.解:∵∠CAB=∠DAE=90°,∴∠1=∠3,故A错误.∵∠2=30°,∴∠1=∠3=60°∴∠CAE=90°+60°=150°,∴∠E+∠CAE=180°,∴AC∥DE,故B正确,∵∠2=45°,∴∠1=∠2=∠3=45°,∵∠E+∠3=∠B+∠4,∴∠4=45°,∵∠D=60°,∴∠4≠∠D,故C错误,∵∠2=50°,∴∠3=40°,∴∠B≠∠3,∴BC不平行AE,故D错误.故选:B.11.解:当40°为底角时,如图2∵∠B=∠ACB=40°,∴∠BCD=50°;当40°为顶角时,如图1∵∠A=40°,∠B=∠ACB=70°,∴∠BCD=20°.故选:D.12.解:∵∠BAC=∠ACD=90°,且∠ABC=∠ADC ∴AB∥CD且∠ACB=∠CAD∴BC∥AD∴四边形ABCD是平行四边形.∴答案①正确;∵∠ACE+∠ECD=∠D+∠ECD=90°∴∠ACE=∠D而∠D=∠ABC∴∠ACE=∠D=∠ABC∴答案②正确;又∵∠CEF+∠CBF=90°,∠AFB+∠ABF=90°且∠ABF=∠CBF,∠AFB=∠CFE∴∠CEF=∠AFB=∠CFE∴答案④正确;∵∠ECD=∠CAD,∠EBC=∠EBA∴∠ECD+∠EBC=∠CFE=∠BEC∴答案③正确.故选:D.二、填空题(本大题共6个小题,每小题4分,共24分)13.解:原式=x2﹣2x故答案为:x2﹣2x14.解:∵阴影部分的面积占总面积的,∴飞镖落在阴影部分的概率为;故答案为15.解:∵AB∥CD,∴∠C=∠EFB,∵∠A=25°,∠E=40°,∴∠EFB=∠C=65°.故答案为:65°.16.解:剩余长度与燃烧时间之间的关系为:y=20﹣,当y=0时,x=200,所以这支蜡烛最多可燃烧200分钟.17.解:∵MN是AB的垂直平分线,∴DB=DA,∴△DBC的周长=DB+CD+BC=DA+CD+BC=AC+BC=6+4=10,故答案为:10.18.解:如图1,作CH⊥BC,且CH=BC,连接BH交AD于M,连接FH,∵△ABC是等边三角形,AD⊥BC,∴AC=BC,∠DAC=30°,∴AC=CH,∵∠BCH=90°,∠ACB=60°,∴∠ACH=90°﹣60°=30°,∴∠DAC=∠ACH=30°,∵AE=CF,∴△AEC≌△CFH(SAS),∴CE=FH,BF+CE=BF+FH,∴当F为AC与BH的交点时,如图2,BF+CE的值最小,此时∠FBC=45°,∠FCB=60°,∴∠AFB=105°,故答案为:105.三、解等题(本大题共9个小题,共78分.解答应写出文字说明、证明过程或演算步骤.)19.解:(1)原式=﹣1+4+1=4;(2)原式=a2﹣4﹣a2+a=a﹣4.20.解:原式=a2﹣4b2﹣a2+4ab﹣4b2+8b2=4ab,当a=﹣6,b=时,原式=﹣8.21.证明:∵BD=EC,∴BC=ED.又∵∠B=∠E,AB=FE,∴△ABC≌△FED(SAS).∴∠ACB=∠FDE,∴AC∥DF.22.证明:∵CE平分∠ACD(已知),∴∠ACD=2∠α(角平分线的定义).∵AE平分∠BAC(已知),∴∠BAC=2∠β(角的平分线的定义).∴∠ACD+∠BAC=2∠α+2∠β(等式性质).即∠ACD+∠BAC=2(∠α+∠β).∵∠α+∠β=90°(已知),∴∠ACD+∠BAC=180°(等量代换).∴AB∥CD(同旁内角互补,两直线平行).故答案为:角平分线的定义,2∠β,等式性质,180°,等量代换,同旁内角互补,两直线平行.23.解:(1)如图所示,△A1B1C1即为所求;(2)由图可得,△A1B1C1为等腰直角三角形,∴∠A1=90°,∠B1=45°,∠C1=45°;故答案为:90,45,45;(3)△ABC的面积=××=.24.解:(1)由题意可得,问题中的自变量是x,因变量是y,故答案为:x,y;(2)由图象可得,小明共跑了900米,小明的速度为:900÷600=1.5米/秒,故答案为:900,1.5;(3)a=1.5×500=750,小亮在途中等候小明的时间是:500﹣(750﹣150)÷1.5=100秒,故答案为:750,100;(4)小亮从A跑到B这段的速度为:750÷[(750﹣150)÷1.5﹣100]=2.5米/秒,故答案为:2.5.25.解:(1)由题意知,7500≤x<8500的人数m=4,9500≤x<10500的人数n=1,故答案为:4,1;(2)补全频数分布直方图如下:(3)估计该好友的步数不低于7500步(含7530步)的概率为=.26.证明:(1)∵大正方形面积表示为S=c2,又可表示为S=4×ab+(b﹣a)2,∴4×ab+(b﹣a)2=c2.∴2ab+b2﹣2ab+a2=c2,∴a2+b2=c2,即直角三角形两直角边的平方和等于斜边的平方.故答案为:a2+b2=c2;(2)证明:由图得,大正方形面积=×ab×4+c2=(a+b)×(a+b),整理得,2ab+c2=a2+b2+2ab,即a2+b2=c2;(3)如图3,过A作AF⊥AB,过E作EF⊥AF于F,交BC的延长线于D,则四边形ABDF是矩形,∵△ACE是等腰直角三角形,∴AC=CE=c,∠ACE=90°=∠ACB+∠ECD,∵∠ACB+∠BAC=90°,∴∠BAC=∠ECD,∵∠B=∠D=90°,∴△ABC≌△CDE(AAS),∴CD=AB=b,DE=BC=a,S=b(a+b)=2×ab++,矩形ABDF∴a2+b2=c2.27.(1)证明:如图1中,∵AB=AC,∠BAC=120°,∴∠ABC=∠ACB=30°,∵∠ACM=∠ACB,∴∠ACM=∠ABC,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),(2)解:∵△ABD≌△ACE∴AD=AE,∠CAE=∠BAD,∴∠DAE=∠BAC=120°,∴∠ADE=30°.(3)解:如图2中,△GHC是等边三角形.理由:∵∠BAC=120°,AB=AC,∴∠B=∠ACB=30°,∵∠ACM=∠ACB=30°,∴∠ACG=∠ACH,∠GCH=60°,∵AG⊥EC,AH⊥BC,∴∠AGC=∠AHC=90°,∵AC=AC,∴△ACG≌△ACH(AAS),∴CG=CH,∴△GCH是等边三角形.。