北航数值分析大作业三

合集下载

北航数值分析大作业3

北航数值分析大作业3

数值分析第三次作业1.设计方案对Fredholm积分方程,用迭代法进行求解:()'(())u x A u x=,其中11(())()(,)()A u x g x K x y u y dy-=-⋅⎰对于公式中的积分部分用数值积分方法。

复化梯形积分法,取2601个节点,取迭代次数上限为50次。

实际计算迭代次数为18次,最后算得误差为r= 0.97E-10。

复化Simpson积分法,取迭代次数上限为50次,取2*41+1,即83个节点时能满足精度要求。

实际计算迭代次数为17次,最后的误差为r= 0.97E-10。

Guass积分法选择的Gauss—Legendre法,取迭代次数上限为50次,直接选择8个节点,满足精度要求。

实际计算迭代次数为24次,最后算得误差为r= 0.87E-10。

2.全部源程序module integralimplicit nonecontains!//////////复化梯形subroutine trapezoid(m)implicit noneinteger :: i,j,k,mreal*8 :: x(m+1),u(m+1)real*8 :: sum,sum1,g,r,hreal*8 :: e=1.0e-10h=2./mdo i=1,m+1x(i)=-1.+(i-1)*hend dou=0.02do k=1,50do i=1,m+1sum1=0.g=dexp(x(i)*4.)+(dexp(x(i)+4.)-dexp(-4.-x(i)))/(x(i)+4.)do j=2,msum1=sum1+dexp(x(i)*x(j))*u(j)end dosum=h/2.*(dexp(x(i)*-1.)*u(1)+dexp(x(i)*1.)*u(m+1)+2*sum1)u(i)=g-sumend dor=h/2.*((dexp(x(1)*4)-u(1))**2+(dexp(x(m+1)*4)-u(m+1))**2) do i=2,mr=r+h*(dexp(x(i)*4)-u(i))**2end doif(dabs(r)<=e) exitend dowrite(*,*) kopen(1,file="trapezoid.txt")do i=1,m+1write(1,'(3(f18.12))') x(i),u(i),dexp(x(i)*4.)end dowrite(1,'(4x,a2,e9.2)') "r=",rclose(1)returnend subroutine trapezoid!///////////复化simpsonsubroutine simpson(m)implicit noneinteger :: i,j,k,mreal*8 :: x(2*m+1),u(2*m+1)real*8 :: sum,sum1,sum2,g,r,hreal*8 :: e=1.0e-10h=2./(2.*m)do i=1,2*m+1x(i)=-1.+(i-1)*hend dou=0.02do k=1,50do i=1,2*m+1sum1=0.sum2=0.g=dexp(x(i)*4.)+(dexp(x(i)+4.)-dexp(-4.-x(i)))/(x(i)+4.)do j=1,msum1=sum1+dexp(x(i)*x(2*j))*u(2*j)end dodo j=1,m-1sum2=sum2+dexp(x(i)*x(2*j+1))*u(2*j+1)sum=h/3.*(dexp(x(i)*-1.)*u(1)+dexp(x(i)*1.)*u(2*m+1)+4*sum1+2*sum2) u(i)=g-sumend dor=h/3.*((dexp(x(1)*4)-u(1))**2+(dexp(x(2*m+1)*4)-u(2*m+1))**2)do i=1,mr=r+4.*h/3.*(dexp(x(2*i)*4)-u(2*i))**2end dodo i=1,m-1r=r+2.*h/3.*(dexp(x(2*i+1)*4)-u(2*i+1))**2end doif(dabs(r)<=e) exitend dowrite(*,*) kopen(2,file="simpson.txt")do i=1,2*m+1write(2,'(3(f18.12))') x(i),u(i),dexp(x(i)*4.)end dowrite(2,'(4x,a2,e9.2)') "r=",rclose(2)returnend subroutine simpson!///////////Gauss_Legendre法subroutine Gaussimplicit noneinteger,parameter :: m=8integer :: i,j,kreal*8 :: x(m),u(m),a(m)real*8 :: sum,g,rreal*8 :: e=1.0e-10data x /-0.9602898565,-0.7966664774,-0.5255324099,-0.1834346425,&0.1834346425,0.5255324099,0.7966664774,0.9602898565/data a /0.1012285363,0.2223810345,0.3137066459,0.3626837834,&0.3626837834,0.3137066459,0.2223810345,0.1012285363/u=0.02do k=1,50do i=1,mg=dexp(x(i)*4.)+(dexp(x(i)+4.)-dexp(-4.-x(i)))/(x(i)+4.)do j=1,msum=sum+dexp(x(i)*x(j))*u(j)*a(j)end dou(i)=g-sumend dor=0.do i=1,mr=r+a(i)*(dexp(x(i)*4)-u(i))**2end doif(dabs(r)<=e) exitend dowrite(*,*) kopen(3,file="Gauss.txt")do i=1,mwrite(3,'(3(f18.12))') x(i),u(i),dexp(x(i)*4.)end dowrite(3,'(4x,a2,e9.2)') "r=",rclose(3)returnend subroutine Gaussend module!//////////主程序program mainuse integralimplicit noneinteger :: code1=2600integer :: code2=41call trapezoid(code1)call simpson(code2)call Gaussend program3.各种积分方法的节点和数值解(由于数据太多,在打印时用了较计算时少的有效数字)复化Simpson法4.各方法所得曲线(由于所取节点太多,且精度高,所以图中很难看出各曲线的区别。

北航数值分析实验报告

北航数值分析实验报告

北航‎数值‎分析‎实验‎报告‎‎篇一‎:‎北航‎数值‎分析‎报告‎第一‎大题‎《‎数值‎分析‎》计‎算实‎习报‎告‎第一‎大题‎学‎号:‎D‎Y1‎30‎5‎姓名‎:‎指导‎老师‎:‎一、‎题目‎要求‎已‎知5‎01‎*5‎01‎阶的‎带状‎矩阵‎A,‎其特‎征值‎满足‎?1‎?‎2‎..‎.‎?5‎01‎。

试‎求:‎1‎、?‎1,‎?5‎01‎和?‎s的‎值;‎‎2、‎A的‎与数‎?k‎??‎1?‎k‎?5‎01‎??‎1‎40‎最‎接近‎的特‎征值‎?i‎k(‎k=‎1,‎2,‎..‎.,‎39‎);‎‎3、‎A的‎(谱‎范数‎)条‎件数‎c n‎d(‎A)‎2和‎行列‎式d‎e t‎A。

‎‎二、‎算法‎设计‎方案‎题‎目所‎给的‎矩阵‎阶数‎过大‎,必‎须经‎过去‎零压‎缩后‎进行‎存储‎和运‎算,‎本算‎法中‎压缩‎后的‎矩阵‎A1‎如下‎所示‎。

‎?0‎?0‎?A‎1?‎?a‎1‎??‎b?‎?c‎0‎b a‎2b‎c‎c b‎b c‎.‎..‎..‎..‎..‎..‎.‎c b‎b c‎c‎b a‎50‎0b‎0‎a ‎3.‎..‎a4‎99‎c‎?‎b?‎?a‎50‎1?‎?‎0?‎0?‎?‎由矩‎阵A‎的特‎征值‎满足‎的条‎件可‎知‎?1‎与?‎50‎1之‎间必‎有一‎个最‎大,‎则采‎用幂‎法求‎出的‎一‎个特‎征值‎必为‎其中‎的一‎个:‎当‎所求‎得的‎特征‎值为‎正数‎,则‎为?‎50‎1;‎否则‎为?‎1。

‎在求‎得?‎1与‎?‎50‎1其‎中的‎一个‎后,‎采用‎带位‎移的‎幂法‎则可‎求出‎它们‎中的‎另一‎个,‎且位‎移量‎即为‎先求‎出的‎特‎征值‎的值‎。

用‎反幂‎法求‎得的‎特征‎值必‎为?‎s。

‎由条‎件数‎的性‎质可‎得,‎c n‎d(‎A)‎2为‎模最‎大的‎特征‎值与‎模最‎小的‎特征‎值之‎比的‎模,‎因此‎,求‎出?‎1,‎?5‎01‎和?‎s的‎值后‎,则‎可以‎求得‎c n‎d(‎A)‎2。

北航研究生数值分析上机作业 三 (报告+所有程序大全)

北航研究生数值分析上机作业 三 (报告+所有程序大全)

数值分析上机作业3——求解非线性方程组以及二元函数的插值拟合1. 算法设计对于全部的插值节点(,),0,1,...,10,0,1,...,20i j x y i j ==,带入非线性方程组中,用Newton 迭代法解非线性方程组,得到(,),0,1,...,10,0,1,...,20i j t u i j ==。

对(,)i j t u ,在二维数表中进行插值,采用分片双二次插值法。

插值过程中,先选择分片区域的中心节点,在数表中的列记为(0:5)tt ,行记为(0:5)uu ,中心节点记为(,)a b ,生成向量_(0:2)t temp ,_(0)(())((1))/(((1)())((1)(1)))i i t temp t tt a t tt a tt a tt a tt a tt a =--+----+, _(1)((1))((1))/((()(1))(()(1)))i i t temp t tt a t tt a tt a tt a tt a tt a =---+---+, _(2)((1))(())/(((1)(1))((1)()))i i t temp t tt a t tt a tt a tt a tt a tt a =---+--+-,同理,生成向量_(0:2)u temp ,_(0)(())((1))/(((1)())((1)(1)))_(1)((1))((1))/((()(1))(()(1)))_(2)((1))(())/(((1)(1))((1)())j j j j j j u temp u uu a u uu a uu a uu a uu a uu a u temp u uu a u uu a uu a uu a uu a uu a u temp u uu a u uu a uu a uu a uu a uu a =--+----+=---+---+=---+--+-)记数表中以分片区域中心节点为中心的3×3的矩阵为T , 对于(,)i j t u 插值结果为(_)()(_)T t temp T u temp 。

数值分析第三次作业

数值分析第三次作业

26.解:(1).J 法:J ∴法收敛.GS 法:()11102210221101110122100210G B D L U ----⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=-=-=--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦022023002-⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦()()()212322det 0232020,2,21G G I B B λλλλλλλλλρ--=-=--∴===∴=GS ∴法不收敛.()2.J 法:()()131231*********()12202101121101212012125det 412125550,,,1222J J J B D L U I B i i B λλλλλλλλλρ---⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=+=--=--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦--==+--∴===-∴=J ∴法不收敛.GS 法:()()()1312310220221101101122022022det 11002201J J J B D L U I B B λλλλλλλλρ---⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=+=--=--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦--===⇒===∴=()1120111200011220212120021120014120G B D L U ----⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=-=-=--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦⎣⎦01212012120012-⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦()()()21231212det 01212120120,12,121G G I B B λλλλλλλλλρ--=+=+=+∴===-=GS ∴法收敛27.解:()1010911102,702106A b -⎛⎫⎛⎫ ⎪ ⎪=--= ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭A 为严格对角占优阵,J ∴法和GS 法均收敛.J 法的分量形式为:()()()11111,1,2,,i nk k k ii ij j ij j j j i ii x b a x a x i n a -+==+⎛⎫=--= ⎪⎝⎭∑∑J ∴法的迭代格式为:(1)()12(1)()()213(1)()321(9)101(72)101(62)10k k k k k k k x x x x x x x +++⎧=+⎪⎪⎪=++⎨⎪⎪=+⎪⎩取初值(0)0x =,J 法的数值结果是:迭代次数k()1k x ()2k x ()3kx 1 0.900000 0.700000 0.600000 2 0.970000 0.910000 0.740000 3 0.991000 0.945000 0.782000 4 0.994000 0.955500 0.789000 50.9955500.9572500.791100GS 法的分量形式为:()()()111111,1,2,,i nk k k ii ij j ij j j j i ii x b a x a x i n a -++==+⎛⎫=--= ⎪⎝⎭∑∑GS ∴法的迭代格式为:(1)()12(1)(1)()213(1)(1)321(9)101(72)101(62)10k k k k k k k x x x x x x x +++++⎧=+⎪⎪⎪=++⎨⎪⎪=+⎪⎩取初值(0)0x =,GS 法的数值结果是: 迭代次数k ()1k x()2k x()3kx10.900000 0.790000 0.758000 2 0.979000 0.949500 0.789900 3 0.994950 0.957475 0.791495 4 0.9957475 0.9578738 0.7915748 50.9957874 0.95789370.7915787()123210,99,950A∆=∆=∆=∴对称正定,()1110000101001011100102010105020110000105J B D L U -⎛⎫⎛⎫ ⎪ ⎪⎛⎫ ⎪⎪ ⎪⎪ ⎪=+=-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭212,310101111det()()00,10520201051()20J J I B B λλλλλλλλρ-∴-=--=-=⇒==±-∴=∴SOR 法的最优松弛因子为:[]2221.01282111/2011()opt J B ωρ==≈+-+-()10.01282opt opt L ρωω=-=对应的渐近收敛率为:R=-ln ()() 4.35654opt opt R L L ωρω=SOR 法的分量形式为:()()()()()111111,1,2,,i nk k k k iii ij j ijjj j i ii x x b a x a xi n a ωω-++==+⎛⎫=-+--= ⎪⎝⎭∑∑∴SOR 法(ω取最佳松弛因子)的迭代格式为:(1)()()112(1)()(1)()2213(1)()(1)3321.012820.01282(9)101.012820.01282(72)101.012820.01282(62)10k k k k k k k k k k x x x x x x x x x x +++++⎧=-++⎪⎪⎪=-+++⎨⎪⎪=-++⎪⎩取初值(0)0x =,SOR 法的数值结果是: 迭代次数k ()1k x()2k x()3kx10.911538 0.801296 0.770006 2 0.981009 0.954035 0.791074 3 0.995588 0.957822 0.791571 4 0.995785 0.957894 0.791579 50.9957890.9578950.79157928.一定收敛.证明:对于11122122a a A a a ⎛⎫=⎪⎝⎭,A 对称正定,()212211122122111221201,2,,det()0,iia i a a A a a a a a a a ∴===-对于J 法:121111121121222221000()01000J a aa a B D L U a a a a -⎛⎫⎛⎫-⎪ ⎪-⎛⎫⎪ ⎪=+== ⎪ ⎪ ⎪-⎝⎭- ⎪ ⎪⎝⎭⎝⎭122211212121,2121122112222det()0J a a a a I B a a a a a a λλλλλ-==-=⇒=22121122121122()1J a a a a B a a ρ∴=∴J 法收敛. GS 法:12221112121221122112212112222121122121122det()00,0()1G G a a a a I B a a a a a a a a a a a B a a λλλλλλλρ⎛⎫-==-=⇒==⎪⎝⎭-∴=∴GS 法收敛.∴对于系数矩阵对称正定的2阶线性方程组,J 法和GS 法一定收敛. 30.证明:由线性代数知识知:∃可逆矩阵使121s J J p B P J J -⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦其中,i in n iJ R ⨯∈对应于特征值()121,2,,i s i s n n n nλ=++=()0B ρ=∴B 的所有特征值为0,120101,1,2,,10i i r r i s J R i s r r r n⨯⎛⎫⎪⎪⎪∴=∈=++= ⎪ ⎪ ⎪⎝⎭1i r =时,11i J R ⨯∈1i r 时, 0,i i r r i i J J R ⨯=∈12kkkk s J J J J ⎡⎤⎢⎥⎢⎥∴=⎢⎥⎢⎥⎢⎥⎣⎦最多迭代到第n 次,即k=n 时,10,0k k k J B PJ P -=== 设x *是Ax b =的精确解,误差向量()()k k e x x *=-()()()()()()110k k k k ke x x B x x B e B e--**=-=-===所以最多迭代到第n 次时,()()()00,k k k e B e x x *===所以结论成立31.解:(1)根据迭代公式(1)()()()k k k x x Ax b α+=--,有: (1)()()k k xI A x b αα+=-+ ∴迭代矩阵13212B I A ααααα--⎛⎫=-= ⎪--⎝⎭ 12132det()(1)(14)0121,14I B λααλλαλααλαλαλα-+∴-==-+-+=-+∴=-=-当{}()max 1,141B ραα=--时,迭代收敛111110121411141ααααα⎧---⎧⎪⇒⇒⎨⎨---⎪⎩⎩012α∴时,此迭代方法收敛{}()()m a x 1,141,00.441,0.40.5B B ρααααραα=---⎧∴=⎨-≤⎩ 0.4α∴=时,()Bρ最小,迭代收敛最快()12,n λλ为A 的特征值,11,1n αλαλ∴--为I A α-的特征值{}1()m a x 1,1n I A ρααλαλ∴-=--必要性:迭代收敛()1I A ρα⇒-111110211nαλαλαλ-⎧-⎪∴⇒⎨-⎪⎩所以必要性成立 充分性:()1111102022,1,2,11,1,2,()max 11i i ini i i ni nI A αλαλλλαλρααλ--=∴≤=∴-=∴-=-所以此迭代法收敛,充分性成立 (3) 1102αλ-时,111121,0()21,2n n in I A αλαλλρααλαλλλ-⎧-≤⎪+⎪-=⎨⎪-⎪+⎩根据图像,12nαλλ=+时,()I A ρα-最小33.解:()()()()()()()()()()()()()()()1()1121()111211111(1)()11111,k k k k k k x D L Ux D L b x L D U x L b x D U L D L Ux D U L D L b D U bC D U L D L U g D U L D L b D U b+--++-------+-----⎧=-+-⎪⎨⎪=--⎩⇒=--+--+-∴=--=--+-分析收敛性:()()()()()1111L D L D L DD LI D D L----=--+-=-+-⎡⎤⎣⎦()()()1111D D L I D L D D D L LD ----⎡⎤=---=-⎣⎦()()111C D U D D L LD U---∴=--()()()()()11112D L D D U L D U D L I DL D U L D U D L U-------=----=--=()()111I C I D L D D U LD U ---⎡⎤∴-=---⎣⎦()()()()111I D L D D U D L D D U A ---⎡⎤⎡⎤=------⎣⎦⎣⎦()()()()1111I I D L D D U A D L D D U A ----⎡⎤⎡⎤=-+--=--⎣⎦⎣⎦ 令()()1M D L D DU -⎡⎤=--⎣⎦1C I M A -∴=-因为A 对称正定,所以D 也正定 令 1111222,()D D D W D D U ----==-TM W W ∴=()()11111112222TWCW D D L LD D D L LD -----⎡⎤⎡⎤=--⎢⎥⎢⎥⎣⎦⎣⎦ 令()11122P DD L LD--=-1T W C W P P -∴=所以C 与T PP 相似,其特征值均为非负实数1111()T I WCW W I C W WM AW W AW -------=-==所以 1I WCW --为对称正定矩阵,其特征值()110WCW λ--C ⇒的特征值()C λ满足()01C λ≤,故该迭代法收敛35.解:1112112111122212Ax Bx b x A Bx A b Bx Ax b x A Bx A b ----⎧+==-+⎧⎪⇒⎨⎨+==-+⎪⎩⎩∴J 法的迭代公式为:(1)()111111(1)()1222110000k k k k J x x A b A B A Bx x A b A B C A B +---+---⎛⎫⎛⎫⎛⎫⎛⎫-∴=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫-∴= ⎪-⎝⎭若λ为矩阵1A B --的特征值,对应的特征向量为11111,0n x R x A Bx x λ-∈≠∴-= 11111111111111111111J J x x x A B x C x x x A B x x x x A B x C x x x A B x λλλλλλ----⎡⎤-⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦-⎡⎤⎡⎤⎡⎤⎡⎤===-⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦⎣⎦∴若n 阶矩阵1A B --有特征值12,,,n λλλ,则2n 阶矩阵J C 有特征值12,,,nλλλ±±±38.(1)解:因为系数矩阵A 对称正定,所以可以运用共轭梯度法(CG )解此方程组 取()()00,0Tx =,()()()()000r p b Ax 0,1T∴==-=-,()()()()()()00r ,r 12p ,Ap α==()()()0,-T10001x xp2α⎛⎫∴=+= ⎪⎝⎭,()()(),0T10003r rAp2α⎛⎫=-=- ⎪⎝⎭,()()()()()(),11r ,r 94r r β==()()(),-T110039p r p 24β⎛⎫=+= ⎪⎝⎭()()()()()()11111r ,r 12p ,Ap α==,()()()()1,-2T2111x x p α=+=()2x 即为所求方程的精确解。

数值分析大作业三、四、五、六、七

数值分析大作业三、四、五、六、七

大作业 三1. 给定初值0x 及容许误差,编制牛顿法解方程f (x )=0的通用程序.解:Matlab 程序如下:函数m 文件:function Fu=fu(x) Fu=x^3/3-x; end函数m 文件:function Fu=dfu(x) Fu=x^2-1; end用Newton 法求根的通用程序 clear;x0=input('请输入初值x0:'); ep=input('请输入容许误差:'); flag=1;while flag==1x1=x0-fu(x0)/dfu(x0); if abs(x1-x0)<ep flag=0; end x0=x1; endfprintf('方程的一个近似解为:%f\n',x0); 寻找最大δ值的程序: cleareps=input('请输入搜索精度:'); ep=input('请输入容许误差:'); flag=1; k=0; x0=0; while flag==1 sigma=k*eps; x0=sigma; k=k+1; m=0; flag1=1;while flag1==1 && m<=10^3 x1=x0-fu(x0)/dfu(x0);if abs(x1-x0)<epm=m+1; x0=x1; endif flag1==1||abs(x0)>=ep flag=0; end endfprintf('最大的sigma 值为:%f\n',sigma);2.求下列方程的非零根5130.6651()ln 05130.665114000.0918x x f x x +⎛⎫=-= ⎪-⨯⎝⎭解:Matlab 程序为:(1)主程序 clear clc format long x0=765; N=100;errorlim=10^(-5); x=x0-f(x0)/subs(df(),x0); n=1; while n<Nx=x0-f(x0)/subs(df(),x0); if abs(x-x0)>errorlim n=n+1; else break ; end x0=x; enddisp(['迭代次数: n=',num2str(n)])disp(['所求非零根: 正根x1=',num2str(x),' 负根x2=',num2str(-x)]) (2)子函数 非线性函数f function y=f(x)y=log((513+*x)/*x))-x/(1400*; end(3)子函数 非线性函数的一阶导数df function y=df() syms x1y=log((513+*x1)/*x1))-x1/(1400*; y=diff(y); end运行结果如下:所求非零根: 正根x1= 负根x2=大作业 四试编写MATLAB 函数实现Newton 插值,要求能输出插值多项式. 对函数21()14f x x =+在区间[-5,5]上实现10次多项式插值.分析:(1)输出插值多项式。

北航数值分析大作业三

北航数值分析大作业三

一、题目:关于x, y, t, u, v, w 的下列方程组0.5cos 2.670.5sin 1.070.5cos 3.740.5sin 0.79t u v w x t u v w y t u v w x t u v w y +++-=⎧⎪+++-=⎪⎨+++-=⎪⎪+++-=⎩1、试用数值方法求出f(x, y)在区域 {(,)|00.8,0.5 1.5}D x y x y =≤≤≤≤上的一个近似表达式,0(,)kr s rsr s p x y cx y ==∑要求(,)p x y 一最小的k 值达到以下的精度10202700((,)(,))10i j i j i j f x y p x y σ-===-≤∑∑其中,0.08,0.50.05i j x i y j ==+。

2、计算****(,),(,)i j i j f x y p x y (i = 1, 2, …,8;j = 1, 2,…,5)的值,以观察(,)p x y 逼近(,)f x y 的效果,其中,*i x =0.1i , *j y =0.5+0.2j 。

说明:1、用迭代方法求解非线性方程组时,要求近似解向量()k x 满足()(1)()12||||/||||10k k k x x x --∞∞-≤2、作二元插值时,要使用分片二次代数插值。

3、要由程序自动确定最小的k 值。

4、打印以下内容:●算法的设计方案。

●全部源程序(要求注明主程序和每个子程序的功能)。

●数表:,,i j x y (,)i j f x y (i = 0,1,2,…,10;j = 0,1,2,…,20)。

●选择过程的,k σ值。

●达到精度要求时的,k σ值以及(,)p x y 中的系数rs c (r = 0,1,…,k;s = 0,1,…,k )。

●数表:**,,i j x y ****(,),(,)i j i j f x y p x y (i = 1, 2, ...,8;j = 1, 2, (5)。

北航研究生数值分析试题

北航研究生数值分析试题

∗⎞ ⎟的 A1 ⎠
矩阵。
三、(12 分)试用高斯列主元素法求解线性方程组
⎡ 1 3 −2 −4 ⎤ ⎡ x1 ⎤ ⎡3 ⎤ ⎢ 2 6 −7 −10 ⎥ ⎢ x ⎥ ⎢ −2 ⎥ ⎢ ⎥⎢ 2⎥ = ⎢ ⎥ ⎢ −1 −1 5 9 ⎥ ⎢ x3 ⎥ ⎢14 ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ x4 ⎦ ⎥ ⎣ −6 ⎦ ⎣ −3 −5 0 15 ⎦ ⎣ 四、(12 分)利用矩阵 A 的三角分解 A = LU 求解下列方程组 ⎛ 1 2 1 ⎞ ⎛ x1 ⎞ ⎛ 0 ⎞ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ 2 2 3 ⎟ ⎜ x2 ⎟ = ⎜ 3 ⎟ ⎜ −1 −3 0 ⎟ ⎜ x ⎟ ⎜ 2 ⎟ ⎝ ⎠⎝ 3 ⎠ ⎝ ⎠
第一章
1、近似数 x = 0.231 关于真值 x = 0.229 有( (1)1;(2)2;(3)3;(4)4。

绪论
一、选择题(四个选项中仅有一项符合题目要求,每小题 3 分,共计 15 分) )位有效数字。
2、取 3 ≈ 1.732 计算 x = ( 3 − 1) ,下列方法中哪种最好?(
4

Ax
∞和
A ∞ 的值分别为(

3
(1) 8 , 8 ;
(2) 8 , 7 ;
(3) 8 , 6 ;
(4) 7 , 7 。
5 、若解线性代数方程组的 Gauss 部分选主元方法第二步得到的系数矩阵的第三列向量为
(2
6 3 2 −5 4 2 ) ,则第三步主行是(
T
) (4) 第 6 行。
(1) 第 2 行;
1 − cos x , sin x
x ≠ 0且 x << 1 ;
(2)
1 1− x , − 1+ 2x 1+ x

北航数值分析全部三次大作业

北航数值分析全部三次大作业

北航数值分析全部三次大作业第一次大作业是关于解线性方程组的数值方法。

我们被要求实现各种常用的线性方程组求解算法,例如高斯消元法、LU分解法和迭代法等。

我首先学习了这些算法的原理和实现方法,并借助Python编程语言编写了这些算法的代码。

在实验中,我们使用了不同规模和条件的线性方程组进行测试,并比较了不同算法的性能和精度。

通过这个作业,我深入了解了线性方程组求解的原理和方法,提高了我的编程和数值计算能力。

第二次大作业是关于数值积分的方法。

数值积分是数值分析中的重要内容,它可以用于计算曲线的长度、函数的面积以及求解微分方程等问题。

在这个作业中,我们需要实现不同的数值积分算法,例如矩形法、梯形法和辛普森法等。

我学习了这些算法的原理和实现方法,并使用Python编写了它们的代码。

在实验中,我们计算了不同函数的积分值,并对比了不同算法的精度和效率。

通过这个作业,我深入了解了数值积分的原理和方法,提高了我的编程和数学建模能力。

第三次大作业是关于常微分方程的数值解法。

常微分方程是数值分析中的核心内容之一,它可以用于描述众多物理、化学和生物现象。

在这个作业中,我们需要实现不同的常微分方程求解算法,例如欧拉法、龙格-库塔法和Adams法等。

我学习了这些算法的原理和实现方法,并使用Python编写了它们的代码。

在实验中,我们解决了一些具体的常微分方程问题,并比较了不同算法的精度和效率。

通过这个作业,我深入了解了常微分方程的原理和方法,提高了我的编程和问题求解能力。

总的来说,北航数值分析课程的三次大作业非常有挑战性,但也非常有意义。

通过这些作业,我在数值计算和编程方面得到了很大的提升,也更加深入地了解了数值分析的理论和方法。

虽然这些作业需要大量的时间和精力,但我相信这些努力将会对我未来的学习和工作产生积极的影响。

北航数值分析报告大作业第三题(fortran)

北航数值分析报告大作业第三题(fortran)

北航数值分析报告大作业第三题(fortran)“数值分析“计算实习大作业第三题——SY1415215孔维鹏一、计算说明1、将x i=0.08i,y j=0.5+0.05j分别代入方程组(A.3)得到关于t,u,v,w的的方程组,调用离散牛顿迭代子函数求出与x i,y j对应的t i,u j。

2、调用分片二次代数插值子函数在点(t i,u j)处插值得到z(x i,y j)=f(x i,y j),得到数表(x i,y j,f(x i,y j))。

3、对于k=1,2,3,4?,分别调用最小二乘拟合子函数计算系数矩阵c rs 及误差σ,直到满足精度,即求得最小的k值及系数矩阵c rs。

4、将x i?=0.1i,y j?=0.5+0.2j分别代入方程组(A.3)得到关于t?,u?,v?,w?的的方程组,调用离散牛顿迭代子函数求出与x i?,y j?对应的t i?,u j?,调用分片二次代数插值子函数在点(t i?,u j?)处插值得到z?(x i?,y j?)=f(x i?,y j?);调用步骤3中求得的系数矩阵c rs求得p(x i?,y j?),打印数表(x i?,y j?,f(x i?,y j?),p(x i?,y j?))。

二、源程序(FORTRAN)PROGRAM SY1415215DIMENSIONX(11),Y(21),T(6),U(6),Z(6,6),UX(11,21),TY(11,21),FXY(11,21), C(6,6) DIMENSIONX1(8),Y1(5),FXY1(8,5),PXY1(8,5),UX1(8,5),TY1(8,5)REAL(8) X,Y,T,U,Z,FXY,UX,TY,C,E,X1,Y1,FXY1,PXY1,UX1,TY1OPEN (1,FILE='第三题计算结果.TXT')DO I=1,11X(I)=0.08*(I-1)ENDDODO I=1,21Y(I)=0.5+0.05*(I-1)ENDDO!*****求解非线性方程组,得到z=f(t,u)的函数*******DO I=1,11DO J=1,21CALL DISNEWTON_NONLINEAR(X(I),Y(J),UX(I,J),TY(I,J)) ENDDO ENDDO!*************分片二次插值得到z=f(x,y)***********DO I=1,11DO J=1,21CALL INTERPOLATION(UX(I,J),TY(I,J),FXY(I,J))ENDDO ENDDOWRITE (1,"('数表(x,y,f(x,y)):')")WRITE (1,"(3X,'X',7X,'Y',10X,'F(X,Y)')")DO I=1,11DO J=1,21WRITE(1,'(1X,F5.2,2X,F5.3,2X,E20.13)') X(I),Y(J),FXY(I,J) ENDDOWRITE (1,"('')")ENDDO!***********最小二乘拟合得到P(x,y)**************N=11M=21WRITE (1,'(" ","K和σ分别为:")')DO K=1,20CALL LSFITTING(X,Y,FXY,C,N,M,K,K,E) WRITE (1,'(I3,2X,E20.13)') K-1,EIF(ETA).OR.(A(L,K)==TA)) THENTA=A(L,K)TL=LDO J=K,NT(K,J)=A(K,J)A(K,J)=A(TL,J)A(TL,J)=T(K,J)ENDDOTB(K)=B(K)B(K)=B(TL)B(TL)=TB(K)ENDIF ENDDODO I=K+1,NM(I,K)=A(I,K)/A(K,K)A(I,K)=0DO J=K+1,NA(I,J)=A(I,J)-M(I,K)*A(K,J) ENDDOB(I)=B(I)-M(I,K)*B(K)ENDDOENDDO!回代过程X(N)=B(N)/A(N,N)DO K=N-1,1,-1S=0.0DO J=K+1,NS=S+A(K,J)*X(J)ENDDOX(K)=(B(K)-S)/A(K,K)ENDDORETURNEND!***********求向量的无穷数************ SUBROUTINE NORM(X,N,A) DIMENSION X(N)REAL(8) X,AA=ABS(X(1))DO I=2,NIF(ABS(X(I))>ABS(X(I-1))) THENA=ABS(X(I)) ENDIFENDDORETURNEND!**************分片二次代数插值************** SUBROUTINE INTERPOLATION(U,V,W) PARAMETER (N=6,M=6)DIMENSION X(N),Y(M),Z(M,N),LK(3),LR(3)REAL(8) X,Y,Z,H,TREAL(8) U,V,W,LK,LR !U,V分别为插值点处的坐标,W为插值结果INTEGER R!**********************数据赋值********************** DATA Y/0.0,0.2,0.4,0.6,0.8,1.0/DATA X/0.0,0.4,0.8,1.2,1.6,2.0/DATA Z/-0.5,-0.42,-0.18,0.22,0.78,1.5,&&-0.34,-0.5,-0.5,-0.34,-0.02,0.46,&&0.14,-0.26,-0.5,-0.58,-0.5,-0.26,&&0.94,0.3,-0.18,-0.5,-0.66,-0.66,&&2.06,1.18,0.46,-0.1,-0.5,-0.74,&&3.5,2.38,1.42,0.62,-0.02,-0.5/H=0.4T=0.2!******************计算K,R************************* IF(UX(N-1)-H/2) THENK=N-1ELSEDO I=3,N-2IF((U>X(I)-H/2).AND.(UY(M-1)-T/2) THENR=M-1 ELSEDO J=3,M-2IF((V>Y(J)-T/2).AND.(VN) P=N IF(P>20) P=20IF(Q>M) Q=MIF(Q>20) Q=20XX=0YY=0D1=NAPX(1)=0.0DO I=1,NAPX(1)=APX(1)+X(I)ENDDOAPX(1)=APX(1)/D1DO J=1,MV(1,J)=0.0DO I=1,NV(1,J)=V(1,J)+Z(I,J)ENDDOV(1,J)=V(1,J)/D1ENDDOIF(P>1) THEND2=0.0APX(2)=0.0DO I=1,NG=X(I)-APX(1)D2=D2+G*GAPX(2)=APX(2)+(X(I)-XX)*G*G ENDDO APX(2)=APX(2)/D2BX(2)=D2/D1DO J=1,MV(2,J)=0.0DO I=1,NG=X(I)-APX(1)V(2,J)=V(2,J)+Z(I,J)*G ENDDOV(2,J)=V(2,J)/D2ENDDOD1=D2ENDIFDO K=3,PD2=0.0APX(K)=0.0DO J=1,MV(K,J)=0.0ENDDODO I=1,NG1=1.0G2=X(I)-APX(1)DO J=3,KG=(X(I)-APX(J-1))*G2-BX(J-1)*G1 G1=G2 G2=GENDDOD2=D2+G*GAPX(K)=APX(K)+X(I)*G*GDO J=1,M V(K,J)=V(K,J)+Z(I,J)*G ENDDOENDDODO J=1,MV(K,J)=V(K,J)/D2ENDDOAPX(K)=APX(K)/D2BX(K)=D2/D1D1=D2ENDDOD1=MAPY(1)=0.0DO I=1,MAPY(1)=APY(1)+Y(I)ENDDOAPY(1)=APY(1)/D1DO J=1,PU(J,1)=0.0DO I=1,MU(J,1)=U(J,1)+V(J,I) ENDDO U(J,1)=U(J,1)/D1ENDDOIF(Q>1)THEND2=0.0APY(2)=0.0DO I=1,MG=Y(I)-APY(1)D2=D2+G*G APY(2)=APY(2)+(Y(I))*G*G ENDDO APY(2)=APY(2)/D2BY(2)=D2/D1DO J=1,PU(J,2)=0.0DO I=1,MG=Y(I)-APY(1)U(J,2)=U(J,2)+V(J,I)*GENDDOU(J,2)=U(J,2)/D2ENDDOD1=D2ENDIFDO K=3,QD2=0.0APY(K)=0.0DO J=1,PU(J,K)=0.0ENDDODO I=1,MG1=1.0G2=Y(I)-APY(1)DO J=3,KG=(Y(I)-APY(J-1))*G2-BY(J-1)*G1 G1=G2 G2=GENDDOD2=D2+G*GAPY(K)=APY(K)+Y(I)*G*G DO J=1,PU(J,K)=U(J,K)+V(J,I)*G ENDDOENDDODO J=1,PU(J,K)=U(J,K)/D2ENDDOAPY(K)=APY(K)/D2BY(K)=D2/D1D1=D2ENDDOV(1,1)=1.0V(2,1)=-APY(1)V(2,2)=1.0DO I=1,PDO J=1,QA(I,J)=0.0ENDDOENDDODO I=3,QV(I,I)=V(I-1,I-1)V(I,I-1)=-APY(I-1)*V(I-1,I-1)+V(I-1,I-2)IF(I>=4) THENDO K=I-2,2,-1V(I,K)=-APY(I-1)*V(I-1,K)+V(I-1,K-1)-BY(I-1)*V(I-2,K) ENDDO ENDIFV(I,1)=-APY(I-1)*V(I-1,1)-BY(I-1)*V(I-2,1)ENDDO DO I=1,PIF(I==1) THENT(1)=1.0T1(1)=1.0ELSEIF(I==2) THENT(1)=-APX(1)T(2)=1.0T2(1)=T(1)T2(2)=T(2)ELSET(I)=T2(I-1)T(I-1)=-APX(I-1)*T2(I-1)+T2(I-2) IF(I>=4) THENDO K=I-2,2,-1T(K)=-APX(I-1)*T2(K)+T2(K-1)-BX(I-1)*T1(K) ENDDOENDIFT(1)=-APX(I-1)*T2(1)-BX(I-1)*T1(1)T2(I)=T(I)DO K=I-1,1,-1T1(K)=T2(K)T2(K)=T(K)ENDDOENDIFDO J=1,QDO K=I,1,-1DO L=J,1,-1A(K,L)=A(K,L)+U(I,J)*T(K)*V(J,L) ENDDOENDDOENDDOENDDODT1=0.0DO I=1,NX1=X(I)DO J=1,MY1=Y(J)X2=1.0DD=0.0DO K=1,PG=A(K,Q)DO KK=Q-1,1,-1G=G*Y1+A(K,KK)ENDDOG=G*X2DD=DD+GX2=X2*X1ENDDODT=DD-Z(I,J)DT1=DT1+DT*DTENDDOENDDORETURNEND三、计算结果数表(x,y,f(x,y)): X Y UX TY F(X,Y) 0.00 0.500 1.345 0.243 0.17E+000.00 0.550 1.322 0.269 0.66E+000.00 0.600 1.299 0.295 0.35E+000.00 0.650 1.277 0.322 0.94E+000.00 0.700 1.255 0.350 0.30E-020.00 0.750 1.235 0.377 -0.87E-010.00 0.800 1.215 0.406 -0.58E+000.00 0.850 1.196 0.434 -0.72E+000.00 0.900 1.177 0.463 -0.54E+000.00 0.950 1.159 0.492 -0.86E+000.00 1.050 1.125 0.550 -0.74E+00 0.00 1.100 1.109 0.580 -0.06E+00 0.00 1.150 1.093 0.609 -0.00E+00 0.00 1.200 1.0790.639 -0.18E+00 0.00 1.250 1.064 0.669 -0.52E+00 0.00 1.3001.050 0.699 -0.19E+00 0.00 1.350 1.037 0.729 -0.48E+00 0.001.400 1.024 0.759 -0.68E+00 0.00 1.450 1.011 0.790 -0.52E+00 0.00 1.500 1.000 0.820 -0.29E+000.08 0.500 1.415 0.228 0.67E+00 0.08 0.550 1.391 0.253 0.08E+00 0.08 0.600 1.368 0.279 0.02E+00 0.08 0.650 1.346 0.306 0.47E+00 0.08 0.700 1.325 0.333 0.57E+00 0.08 0.750 1.304 0.360 0.48E-01 0.08 0.800 1.284 0.388 -0.73E-01 0.08 0.850 1.265 0.416 -0.16E+00 0.08 0.900 1.246 0.444 -0.29E+00 0.08 0.950 1.229 0.473 -0.36E+00 0.08 1.000 1.211 0.502 -0.08E+00 0.08 1.050 1.194 0.531 -0.29E+00 0.08 1.100 1.178 0.560 -0.78E+00 0.08 1.150 1.163 0.589 -0.93E+00 0.08 1.200 1.148 0.619 -0.44E+00 0.08 1.250 1.133 0.649 -0.92E+00 0.08 1.300 1.119 0.679 -0.71E+000.08 1.400 1.093 0.739 -0.37E+00 0.08 1.450 1.080 0.769-0.83E+00 0.08 1.500 1.068 0.799 -0.92E+000.16 0.500 1.483 0.214 0.31E+00 0.16 0.550 1.460 0.239 0.64E+00 0.16 0.600 1.437 0.264 0.91E+00 0.16 0.650 1.414 0.290 0.06E+00 0.16 0.700 1.393 0.316 0.70E+00 0.16 0.750 1.372 0.343 0.59E+00 0.16 0.800 1.352 0.370 0.12E+00 0.16 0.850 1.333 0.398 0.77E-02 0.16 0.900 1.315 0.426 -0.83E-01 0.16 0.950 1.297 0.454-0.58E+00 0.16 1.000 1.279 0.483 -0.20E+00 0.16 1.050 1.2620.512 -0.11E+00 0.16 1.100 1.246 0.541 -0.74E+00 0.16 1.1501.231 0.570 -0.09E+00 0.16 1.200 1.216 0.600 -0.59E+00 0.16 1.250 1.201 0.629 -0.66E+00 0.16 1.300 1.187 0.659 -0.71E+00 0.16 1.350 1.174 0.689 -0.32E+00 0.16 1.400 1.161 0.718-0.56E+00 0.16 1.450 1.148 0.748 -0.31E+00 0.16 1.500 1.136 0.778 -0.75E+000.24 0.500 1.551 0.201 0.66E+01 0.24 0.550 1.527 0.2250.03E+000.24 0.650 1.482 0.275 0.64E+00 0.24 0.700 1.460 0.3010.47E+00 0.24 0.750 1.439 0.327 0.34E+00 0.24 0.800 1.419 0.354 0.24E+00 0.24 0.850 1.400 0.381 0.69E+00 0.24 0.900 1.381 0.409 0.04E-01 0.24 0.950 1.363 0.437 -0.42E-01 0.24 1.000 1.346 0.465 -0.06E+00 0.24 1.050 1.329 0.494 -0.59E+00 0.24 1.100 1.313 0.523 -0.83E+00 0.24 1.150 1.297 0.552 -0.15E+00 0.24 1.200 1.282 0.581 -0.19E+00 0.24 1.250 1.267 0.610 -0.84E+00 0.24 1.300 1.253 0.640 -0.66E+00 0.24 1.350 1.240 0.669 -0.30E+00 0.24 1.400 1.227 0.699 -0.86E+00 0.24 1.450 1.214 0.729 -0.84E+00 0.24 1.500 1.202 0.759 -0.77E+000.32 0.500 1.617 0.188 0.28E+01 0.32 0.550 1.593 0.212 0.49E+01 0.32 0.600 1.570 0.236 0.68E+00 0.32 0.650 1.547 0.261 0.75E+00 0.32 0.700 1.526 0.286 0.60E+00 0.32 0.750 1.505 0.312 0.77E+00 0.32 0.800 1.485 0.339 0.05E+00 0.32 0.850 1.466 0.365 0.99E+00 0.32 0.900 1.447 0.393 0.27E+00 0.32 1.000 1.411 0.448 -0.01E-02 0.32 1.050 1.395 0.477-0.41E-01 0.32 1.100 1.378 0.505 -0.18E+00 0.32 1.150 1.3630.534 -0.25E+00 0.32 1.200 1.347 0.563 -0.29E+00 0.32 1.2501.333 0.592 -0.90E+00 0.32 1.300 1.319 0.621 -0.00E+00 0.32 1.350 1.305 0.650 -0.40E+00 0.32 1.400 1.292 0.680 -0.54E+00 0.32 1.450 1.279 0.710 -0.79E+00 0.32 1.500 1.267 0.739-0.91E+000.40 0.500 1.681 0.177 0.91E+01 0.40 0.550 1.658 0.1990.00E+01 0.40 0.600 1.634 0.223 0.83E+01 0.40 0.650 1.612 0.247 0.02E+01 0.40 0.700 1.591 0.272 0.94E+00 0.40 0.750 1.570 0.298 0.49E+00 0.40 0.800 1.550 0.324 0.94E+00 0.40 0.850 1.530 0.350 0.40E+00 0.40 0.900 1.512 0.377 0.33E+00 0.40 0.950 1.493 0.405 0.99E+00 0.40 1.000 1.476 0.432 0.68E+00 0.40 1.050 1.459 0.460 0.08E-01 0.40 1.100 1.443 0.488 -0.84E-01 0.40 1.150 1.427 0.517-0.98E+00 0.40 1.200 1.412 0.545 -0.27E+00 0.40 1.250 1.397 0.574 -0.06E+000.40 1.350 1.369 0.632 -0.66E+00 0.40 1.400 1.356 0.662-0.37E+00 0.40 1.450 1.343 0.691 -0.43E+00 0.40 1.500 1.331 0.721 -0.12E+000.48 0.500 1.745 0.166 0.69E+01 0.48 0.550 1.721 0.188 0.02E+01 0.48 0.600 1.698 0.211 0.74E+01 0.48 0.650 1.676 0.235 0.40E+01 0.48 0.700 1.654 0.259 0.23E+01 0.48 0.750 1.634 0.284 0.56E+00 0.48 0.800 1.613 0.310 0.28E+00 0.48 0.850 1.594 0.336 0.49E+00 0.48 0.900 1.575 0.363 0.31E+00 0.48 0.950 1.557 0.390 0.66E+00 0.48 1.000 1.539 0.417 0.30E+00 0.48 1.050 1.522 0.444 0.34E+00 0.48 1.100 1.506 0.472 0.07E-01 0.48 1.150 1.490 0.500 -0.62E-01 0.48 1.200 1.475 0.529 -0.45E+00 0.48 1.250 1.460 0.557 -0.86E+00 0.48 1.300 1.446 0.586 -0.39E+00 0.48 1.350 1.432 0.615 -0.22E+00 0.48 1.400 1.419 0.644 -0.67E+00 0.48 1.450 1.406 0.674-0.55E+00 0.48 1.500 1.394 0.703 -0.14E+000.56 0.500 1.808 0.156 0.48E+010.56 0.600 1.761 0.200 0.10E+01 0.56 0.650 1.739 0.2230.68E+01 0.56 0.700 1.717 0.247 0.94E+01 0.56 0.750 1.696 0.272 0.33E+01 0.56 0.800 1.676 0.297 0.11E+00 0.56 0.850 1.657 0.323 0.63E+00 0.56 0.900 1.638 0.349 0.97E+00 0.56 0.950 1.620 0.375 0.52E+00 0.56 1.000 1.602 0.402 0.56E+00 0.56 1.050 1.585 0.429 0.47E+00 0.56 1.100 1.568 0.457 0.20E+00 0.56 1.150 1.552 0.485 0.13E+00 0.56 1.200 1.537 0.513 0.09E-01 0.56 1.250 1.522 0.541 -0.47E-01 0.56 1.300 1.508 0.570 -0.99E+00 0.56 1.350 1.4940.599 -0.82E+00 0.56 1.400 1.481 0.627 -0.26E+00 0.56 1.4501.468 0.657 -0.71E+00 0.56 1.500 1.455 0.686 -0.98E+000.64 0.500 1.870 0.147 0.74E+01 0.64 0.550 1.846 0.1680.10E+01 0.64 0.600 1.823 0.190 0.54E+01 0.64 0.650 1.801 0.213 0.42E+01 0.64 0.700 1.779 0.236 0.56E+01 0.64 0.750 1.758 0.260 0.03E+01 0.64 0.800 1.738 0.285 0.42E+01 0.64 0.850 1.718 0.310 0.41E+010.64 0.950 1.681 0.362 0.36E+00 0.64 1.000 1.664 0.388 0.18E+00 0.64 1.050 1.646 0.415 0.28E+00 0.64 1.100 1.630 0.443 0.07E+00 0.64 1.150 1.614 0.470 0.66E+00 0.64 1.200 1.598 0.498 0.09E+00 0.64 1.250 1.584 0.526 0.50E-01 0.64 1.300 1.569 0.554 -0.88E-01 0.64 1.350 1.555 0.583 -0.76E+00 0.64 1.400 1.542 0.611 -0.66E+00 0.64 1.450 1.529 0.640 -0.33E+00 0.64 1.500 1.516 0.669 -0.56E+00 0.72 0.500 1.931 0.139 0.94E+01 0.72 0.550 1.907 0.159 0.84E+01 0.72 0.600 1.884 0.181 0.36E+01 0.72 0.650 1.862 0.203 0.40E+01 0.72 0.700 1.840 0.226 0.47E+01 0.72 0.750 1.819 0.249 0.56E+01 0.72 0.800 1.799 0.273 0.19E+01 0.72 0.850 1.779 0.298 0.37E+01 0.72 0.900 1.760 0.323 0.86E+01 0.72 0.950 1.742 0.349 0.76E+00 0.72 1.000 1.724 0.375 0.24E+00 0.72 1.050 1.707 0.402 0.55E+00 0.72 1.100 1.691 0.429 0.97E+00 0.72 1.150 1.675 0.456 0.27E+00 0.72 1.200 1.659 0.484 0.31E+000.72 1.300 1.630 0.539 0.49E+00 0.72 1.350 1.616 0.5680.72E-02 0.72 1.400 1.602 0.596 -0.69E-01 0.72 1.450 1.589 0.625 -0.67E+00 0.72 1.500 1.576 0.653 -0.20E+000.80 0.500 1.992 0.131 0.31E+01 0.80 0.550 1.968 0.1510.44E+01 0.80 0.600 1.945 0.172 0.41E+01 0.80 0.650 1.922 0.193 0.45E+01 0.80 0.700 1.900 0.216 0.00E+01 0.80 0.750 1.879 0.239 0.10E+01 0.80 0.800 1.859 0.263 0.16E+01 0.80 0.850 1.840 0.287 0.52E+01 0.80 0.900 1.821 0.312 0.02E+01 0.80 0.950 1.802 0.337 0.38E+01 0.80 1.000 1.784 0.363 0.89E+01 0.80 1.050 1.767 0.389 0.28E+00 0.80 1.100 1.751 0.416 0.09E+00 0.80 1.150 1.734 0.4430.23E+00 0.80 1.200 1.719 0.470 0.93E+00 0.80 1.250 1.704 0.498 0.15E+00 0.80 1.300 1.689 0.525 0.86E+00 0.80 1.350 1.675 0.553 0.64E+00 0.80 1.400 1.662 0.582 0.74E-01 0.80 1.450 1.649 0.610 -0.37E-01 0.80 1.500 1.636 0.638 -0.81E+00K和σ分别为:0 0.93E+031 0.61E+012 0.92E-023 0.53E-034 0.16E-055 0.77E-07系数矩阵Crs(按行)为:0.00E+01 -0.83E+01 0.56E+00 0.97E+00 -0.03E+00 0.70E-010.91E+01 -0.99E+00 -0.96E+01 0.17E+01 -0.66E+00 0.10E-01 0.77E+00 0.42E+01 -0.10E+00 -0.81E+00 0.81E+00 -0.62E-01-0.25E+00 -0.21E+00 0.97E+00 -0.18E+00 0.49E+00 -0.63E-010.34E+00 -0.56E+00 0.69E-01 0.51E+00 -0.77E-01 0.27E-01-0.94E-01 0.94E+00 -0.58E+00 0.69E-01 -0.50E-01 0.53E-02 数表(x,y,f(x,y),p(x,y)):X Y F(X,Y) P(X,Y)0.100 0.700 0.58E+00 0.05E+000.100 1.100 -0.66E+00 -0.26E+00 0.100 1.300 -0.68E+00-0.31E+00 0.100 1.500 -0.52E+00 -0.49E+000.200 0.700 0.54E+00 0.19E+00 0.200 0.900 -0.63E-01 -0.65E-01 0.200 1.100 -0.90E+00 -0.90E+00 0.200 1.300 -0.84E+00 -0.90E+00 0.200 1.500 -0.03E+00 -0.04E+000.300 0.700 0.82E+00 0.09E+00 0.300 0.900 0.48E+00 0.11E+00 0.300 1.100 -0.63E+00 -0.88E+00 0.300 1.300 -0.72E+00 -0.96E+00 0.300 1.500 -0.34E+00 -0.84E+000.400 0.700 0.79E+00 0.89E+00 0.400 0.900 0.56E+00 0.63E+00 0.400 1.100 -0.83E-01 -0.04E-01 0.400 1.300 -0.72E+00 -0.71E+00 0.400 1.500 -0.85E+00 -0.07E+000.500 0.700 0.56E+01 0.92E+01 0.500 0.900 0.51E+00 0.23E+00 0.500 1.100 0.59E+00 0.27E+00 0.500 1.300 -0.53E+00 -0.11E+00 0.500 1.500 -0.67E+00 -0.33E+000.600 0.900 0.14E+00 0.75E+00 0.600 1.100 0.19E+00 0.32E+00 0.600 1.300 -0.70E-01 -0.82E-01 0.600 1.500 -0.08E+00 -0.75E+00 0.700 0.700 0.89E+01 0.29E+01 0.700 0.900 0.91E+01 0.11E+010.700 1.100 0.60E+00 0.97E+00 0.700 1.300 0.22E-01 0.06E-01 0.7001.500 -0.53E+00 -0.80E+00 0.800 0.700 0.09E+01 0.06E+01 0.800 0.900 0.32E+01 0.50E+01 0.800 1.100 0.03E+00 0.79E+00 0.800 1.300 0.25E+00 0.50E+00 0.800 1.500 -0.14E+00 -0.28E+00。

北航分析研究生数值期末模拟试卷

北航分析研究生数值期末模拟试卷

数值分析模拟试卷1一、填空<共30分,每空3分)1 设,则A的谱半径______,A的条件数=________.2 设,则=________,=________.3 设,是以0,1,2为节点的三次样条函数,则b=________,c=________.4设是区间[0,1]上权函数为的最高项系数为1的正交多项式族,其中,则________,________.5设,当________时,必有分解式,其中L为下三角阵,当其对角线元素满足条件________时,这种分解是唯一的.二、<14分)设,<1)试求在上的三次Hermite插值多项式使满足,. <2)写出余项的表达式.三、<14分)设有解方程的迭代公式为,<1)证明均有<为方程的根);<2)取,用此迭代法求方程根的近似值,误差不超过,列出各次迭代值;<3)此迭代的收敛阶是多少?证明你的结论.四、(16分> 试确定常数A,B,C和,使得数值积分公式有尽可能高的代数精度. 试问所得的数值积分公式代数精度是多少?它是否为Gauss型的?五、<15分)设有常微分方程的初值问题,试用Taylor展开原理构造形如的方法,使其具有二阶精度,并推导其局部截断误差主项.六、<15分)已知方程组,其中,<1)试讨论用Jacobi迭代法和Gauss-Seidel迭代法求解此方程组的收敛性.<2)若有迭代公式,试确定一个的取值范围,在这个范围内任取一个值均能使该迭代公式收敛.七、<8分)方程组,其中,A是对称的且非奇异.设A有误差,则原方程组变化为,其中为解的误差向量,试证明.其中和分别为A的按模最大和最小的特征值.数值分析模拟试卷2填空题<每空2分,共30分)1.近似数关于真值有____________位有效数字;2.设可微,求方程根的牛顿迭代格式是_______________________________________________;3.对,差商_________________;________;4.已知,则________________,______________________ ;5.用二分法求方程在区间[0,1]内的根,进行一步后根所在区间为_________,进行二步后根所在区间为_________________;6.求解线性方程组的高斯—赛德尔迭代格式为_______________________________________;该迭代格式迭代矩阵的谱半径_______________;7.为使两点数值求积公式:具有最高的代数精确度,其求积节点应为_____ ,_____,__________.8.求积公式是否是插值型的__________,其代数精度为___________。

BUAA数值分析大作业三

BUAA数值分析大作业三

北京航空航天大学2020届研究生《数值分析》实验作业第九题院系:xx学院学号:姓名:2020年11月Q9:方程组A.4一、 算法设计方案(一)总体思路1.题目要求∑∑===k i kj s r rsy x cy x p 00),(对f(x, y) 进行拟合,可选用乘积型最小二乘拟合。

),(i i y x 与),(i i y x f 的数表由方程组与表A-1得到。

2.),(**j i y x f 与1使用相同方法求得,),(**j i y x p 由计算得出的p(x,y)直接带入),(**j i y x 求得。

1. ),(i i y x 与),(i i y x f 的数表的获得对区域D ={ (x,y)|1≤x ≤1.24,1.0≤y ≤1.16}上的f (x , y )值可通过xi=1+0.008i ,yj=1+0.008j ,得到),(i i y x 共31×21组。

将每组带入A4方程组,即可获得五个二元函数组,通过简单牛顿迭代法求解这五个二元数组可获得z1~z5有关x,y 的表达式。

再将),(i i y x 分别带入z1~z5表达式即可获得f(x,y)值。

2.乘积型最小二乘曲面拟合2.1使用乘积型最小二乘拟合,根据k 值不用,有基函数矩阵如下:⎪⎪⎪⎭⎫ ⎝⎛=k i i k x x x x B 0000 , ⎪⎪⎪⎭⎫ ⎝⎛=k j jk y y y y G 0000数表矩阵如下:⎪⎪⎪⎭⎫⎝⎛=),(),(),(),(0000j i i j y x f y x f y x f y x f U记C=[rs c ],则系数rs c 的表达式矩阵为:11-)(-=G G UG B B B C T TT )(通过求解如下线性方程,即可得到系数矩阵C 。

UG B G G C B B T T T =)()(2.2计算),(),,(****j i j i y x p y x f (i =1,2,…,31 ; j =1,2,…,21) 的值),(**j i y x f 的计算与),(j i y x f 相同。

北航数值分析大作业3(学硕)

北航数值分析大作业3(学硕)

《数值分析》作业三院系:机械学院学号:SY1307145姓名:龙安林2013年11 月24 日1. 算法设计1) 开始;2) 计算数组[][]0.08,0.050.5,0,1,2,,10;0,1,2,,20x i i y j j i j ==+=⋯=⋯(); 3) 将点[][],0,1,2,,10;0,1,2,,20x i y j i j =⋯=⋯(),()带入非线性方程组: 0.5cos 2.670.5sin 1.070.5cos 3.740.5sin 0.79t u v w x t u v w y t u v w x t u v w y +++-=⎧⎪+++-=⎪⎨+++-=⎪⎪+++-=⎩ 得出相应的点,t u (); 4) 选择拉格朗日插值法,将,t u ()作为中间变量,在题目所给出的二维数表中进行二次代数插值,得到[][],)(z f x i y j =;5) 输出数表:[][][][]()()0,1,2,,10;0,1,2,,20,,,x i y j f x i y j i j =⋯=⋯; 6) 令k=0;7) 以()()(),,,0,1,r r r s x x y y r s ϕψ===…,k 为拟合基函数,将上述数表作为拟合条件,对于给定的k 值,得到矩阵B 、G 、U ;8) 令-1-1(),()T T T A B B B U C AG G G ==,用选主元的LU 分解法分别计算矩阵A 和C 的各列,最后得到系数矩阵C ;9) 以公式:()()()00,k ki j rs r i s j s r p x y C x y ϕψ===∑∑计算每个点的拟合值;10) 利用公式:()()()2102000,,i j i j i j f x y p x y σ===-∑∑计算拟合误差,当σ≤10-7时,循环结束,否则k=k+1,转(6);11) 令[][]()**0.10.50.2 1,2,81,2,5x i i y j j i j ==+=⋯=⋯;,;,;12) 计算()()()******,,,,,i j i j i jf x y p x y delta x y ,输出数表,观察逼近效果; 13) 结束。

北航研究生数值分析大作业三

北航研究生数值分析大作业三

数值分析—计算实习作业三学院:17系专业:精密仪器及机械姓名:张大军学号:DY1417114一、程序设计方案程序设计方案流程图如图1所示。

(注:由本人独立完成,并且有几处算法很巧妙,但同时也有许多不足,可以优化和模块化,由于时间原因只实现了调试通过)图1.程序设计方案流程图二、程序源代码#include <iostream.h>#include <iomanip.h>#include <math.h>#include<stdio.h>#include <conio.h>#define M 10000#define N 4#define E 1.0e-12int zuixiaci;static double c[9][9];static double bijin[8][5];int main(){double X[N]={0,0,0,1};double T[11][21],U[11][21],xianshi[11][21];double diertX[N];double F[N];double f[N][N];double Max1=0,Max2=0;int k,i,j,t,tt=0,yao=0;void qiuF(double * X,double *F,int i,int j);void qiuF2(double *X,double *F,int i,int j);void qiuf(double * X,double (*f)[N]);void qiudiertX(double (*a)[N],double*b,double*X); double gouzaohs(double t,double u); void solve_C(double (*U)[21]); void pp(double (*U)[21],int k);for(i=0;i<11;i++)for(j=0;j<21;j++){for(k=0;k<M;k++){qiuF(X,F,i,j);qiuf(X,f);qiudiertX(f,F,diertX);for(t=0;t<N;t++){X[t]=X[t]+diertX[t];}Max1=0,Max2=0;for(t=0;t<N;t++){if(Max1<fabs(X[t]))Max1=fabs(X[t]);if(Max2<fabs(diertX[t]))Max2=fabs(diertX[t]);}if((Max2/Max1)<=E){k=M;yao=1;T[i][j]=X[0];U[i][j]=X[1];xianshi[i][j]=gouzaohs(X[0],X[1]);cout<<setiosflags(ios::scientific)<<setprecision(12);cout<<setprecision(2)<<"("<<setw(5)<<0.08*i<<","<<setw(5)<< (0.5+0.05*j)<<",";cout<<setprecision(12)<<setw(21)<<xianshi[i][j]<<") ";if(tt==3){tt=0;cout<<'\n';cout<<'\n';}else{tt++;}}}if(yao==0)cout<<"迭代不成功"<<endl; yao=0;}cout<<endl;solve_C(xianshi);pp(xianshi,zuixiaci);tt=0;for(i=1;i<9;i++)for(j=1;j<6;j++){for(k=0;k<M;k++){qiuF2(X,F,i,j);qiuf(X,f);qiudiertX(f,F,diertX);for(t=0;t<N;t++){X[t]=X[t]+diertX[t];}Max1=0,Max2=0;for(t=0;t<N;t++){if(Max1<fabs(X[t]))Max1=fabs(X[t]);if(Max2<fabs(diertX[t]))Max2=fabs(diertX[t]);}if((Max2/Max1)<=E){k=M;yao=1;xianshi[i-1][j-1]=gouzaohs(X[0],X[1]);cout<<setiosflags(ios::scientific)<<setprecision(12);cout<<setprecision(2)<<"("<<setw(5)<<0.1*i<<","<<setw(5)<<( 0.5+0.2*j)<<",";cout<<setprecision(12)<<setw(21)<<xianshi[i-1][j-1]<<","<<set w(21)<<bijin[i-1][j-1]<<") ";if(tt==2){tt=0;cout<<'\n';}else{tt++;}}}if(yao==0)cout<<"迭代不成功"<<endl;yao=0;}cout<<endl;return 1;}void qiuF(double *X,double *F,int i,int j){F[0]=-(0.5*cos(X[0])+X[1]+X[2]+X[3]-0.08*i-2.67);F[1]=-(X[0]+0.5*sin(X[1])+X[2]+X[3]-(0.5+0.05*j)-1.07);F[2]=-(0.5*X[0]+X[1]+cos(X[2])+X[3]-0.08*i-3.74);F[3]=-(X[0]+0.5*X[1]+X[2]+sin(X[3])-(0.5+0.05*j)-0.79); }void qiuF2(double *X,double *F,int i,int j){F[0]=-(0.5*cos(X[0])+X[1]+X[2]+X[3]-0.1*i-2.67);F[1]=-(X[0]+0.5*sin(X[1])+X[2]+X[3]-(0.5+0.2*j)-1.07);F[2]=-(0.5*X[0]+X[1]+cos(X[2])+X[3]-0.1*i-3.74);F[3]=-(X[0]+0.5*X[1]+X[2]+sin(X[3])-(0.5+0.2*j)-0.79); }void qiuf(double *X,double (*f)[N]){f[0][0]=-0.5*sin(X[0]);f[0][1]=1;f[0][2]=1;f[0][3]=1;f[1][0]=1;f[1][1]=0.5*cos(X[1]);f[1][2]=1;f[1][3]=1;f[2][0]=0.5;f[2][1]=1;f[2][2]=-sin(X[2]);f[2][3]=1;f[3][0]=1;f[3][1]=0.5;f[3][2]=1;f[3][3]=cos(X[3]);}//求解关于变化X的线性方程组void qiudiertX(double (*a)[N],double*b,double*X) {double H[N][N]={0},l[N]={0};double B;double sum;int i,j,m,k,z;for(k=0;k<N-1;k++){for(j=k;j<N;j++){l[j]=a[k][j];}z=k;for(m=k;m<N;m++){if(fabs(a[z][k])<fabs(a[m][k]))z=m;}for(j=k;j<N;j++){a[k][j]=a[z][j];a[z][j]=l[j];}B=b[k];b[k]=b[z];b[z]=B;for(i=k+1;i<N;i++){H[i][k]=a[i][k]/a[k][k];for(j=k+1;j<N;j++)a[i][j]=a[i][j]-H[i][k]*a[k][j];b[i]=b[i]-H[i][k]*b[k];}}if(a[N-1][N-1]==0){cout<<"算法失效,停止计算"<<endl; }else{X[N-1]=b[N-1]/a[N-1][N-1];for(k=N-2;k>=0;k--){sum=0;for(j=k+1;j<N;j++){sum=sum+a[k][j]*X[j];}X[k]=(b[k]-sum)/a[k][k];}}}//作二元差值,使用分片二次代数插值double gouzaohs(double t,double u){double T[6]={0,0.2,0.4,0.6,0.8,1},U[6]={0,0.4,0.8,1.2,1.6,2};double Z[6][6]={-0.5,-0.34,0.14,0.94,2.06,3.5,-0.42,-0.5,-0.26,0.3,1.18,2.38,-0.18,-0.5,-0.5,-0.18,0.46,1.42,0.22,-0.34,-0.58,-0.5,-0.1,0.62,0.78,-0.02,-0.5,-0.66,-0.5,-0.02,1.5,0.46,-0.26,-0.66,-0.74,-0.5};double g=0,sum=0,sum1=1,sum2=1;int i=0,j=0,k=0,r=0,kk=0,rr=0;for(i=1;(i<6)&&(T[i]-0.1<t);i++){}for(j=1;(j<6)&&(U[j]-0.2<u);j++){}if(i==1)i=2;if(i==6)i=5;if(j==1)j=2;if(j==6)j=5;sum=0;for(k=i-2;k<i+1;k++)for(r=j-2;r<j+1;r++){sum1=1;sum2=1;for(kk=i-2;kk<i+1;kk++){if(k!=kk){sum1=sum1*(t-T[kk])/(T[k]-T[kk]);}}for(rr=j-2;rr<j+1;rr++){if(r!=rr){sum2=sum2*(u-U[rr])/(U[r]-U[rr]);}}sum=sum+sum1*sum2*Z[k][r];}g=sum;return g;}//求r*s阶矩阵A与s*t阶矩阵B的乘积矩阵Cvoid Multi(double *a, double *b, double *c, int la, int lb, int lc, int r, int s, int t){int i, j, k;for (i=0; i<r; i++)for (j=0; j<t; j++){*(c+i*lc+j)=0;for (k=0; k<s; k++)*(c+i*lc+j)+=*(a+i*la+k)*(*(b+k*lb+j));}}//求n阶方阵A的逆矩阵Bdouble Inverse(double *a, double *b, int la, int lb, int n){int i, j, k;double temp;for(i=0; i<n; i++)for(j=0; j<n; j++)if (i==j)*(b+i*lb+j)=1;else*(b+i*lb+j)=0;for (k=0; k<n; k++){j=k;for (i=k+1; i<n; i++)if (fabs(*(a+i*la+k))>fabs(*(a+j*la+k))) j=i;if (j!=k)for (i=0; i<n; i++){temp=*(a+j*la+i);*(a+j*la+i)=*(a+k*la+i);*(a+k*la+i)=temp;temp=*(b+j*lb+i);*(b+j*lb+i)=*(b+k*lb+i);*(b+k*lb+i)=temp;}if (*(a+k*la+k)==0)return 0;if ((temp=*(a+k*la+k))!=1)for (i=0; i<n; i++){*(a+k*la+i)/=temp;*(b+k*lb+i)/=temp;}for (i=0; i<n; i++)if ((*(a+i*la+k)!=0) && (i!=k)){temp=*(a+i*la+k);for (j=0; j<n; j++){*(a+i*la+j)-=temp*(*(a+k*la+j));*(b+i*lb+j)-=temp*(*(b+k*lb+j));}}}return 0;}void solve_C(double (*U)[21]){int i,j,r,s,k;double t1[21][21], t2[21][21], t3[21][21],d[9][9],e[9][9];double B[11][9], B_T[9][11], G[21][9], G_T[9][21],P[11][21];double temp, FangCha;for(i=0;i<9;i++){for(j=0;j<11;j++){B[j][i]=pow(0.08*j,i);B_T[i][j]=pow(0.08*j,i);}for(j=0;j<21;j++){G[j][i]=pow(0.5+0.05*j,i);G_T[i][j]=pow(0.5+0.05*j,i);}}for (k=0; k<9; k++){FangCha=0;Multi(B_T[0], B[0], t1[0], 11, 9, 21, k+1, 11, k+1);Inverse(t1[0], c[0], 21, 9, k+1);Multi(e[0], c[0], d[0], 9, 9, 9, k+1, k+1, k+1);Multi(c[0], B_T[0], t1[0], 9, 11, 21, k+1, k+1, 11);Multi(t1[0], U[0], t2[0], 21, 21, 21, k+1, 11, 21);Multi(G_T[0], G[0], t1[0], 21, 9, 21, k+1, 21, k+1);Inverse(t1[0], c[0], 21, 9, k+1);Multi(G[0], c[0], t3[0], 9, 9, 21, 21, k+1, k+1);Multi(t2[0], t3[0], c[0], 21, 21, 9, k+1, 21, k+1);for(i=0;i<11;i++)for(j=0;j<21;j++){temp=0;for(r=0;r<k+1;r++)for(s=0;s<k+1;s++)temp+=c[r][s]*B[i][r]*G[j][s];P[i][j]=temp;FangCha+=(U[i][j]-temp)*(U[i][j]-temp);}cout<<"k="<<setw(5)<<k<<";"<<setw(5)<<"Sigma="<<FangCha<<" ;\n"<<'\n';if(FangCha<=1.0e-7){zuixiaci=k;cout<<"达到精度要求时: k="<<setw(5)<<k<<";"<<setw(5)<<"Sigma="<<FangCha<<";\n";cout<<" 系数c(r,s)如下:\n";for(i=0;i<k+1;i++){for(j=0;j<k+1;j++){cout<<"C("<<i<<","<<j<<")="<<setw(21)<<c[i][j]<<"; ";}cout<<endl<<'\n';}cout<<endl;return;}}cout<<"经过8次拟合没有达到所需精度;"<<endl;//最高可拟合10次return;}void pp(double (*U)[21],int k){int i,j,r,s;double B[8][9],G[5][9],temp;for(i=0;i<k+1;i++){for(j=0;j<8;j++){B[j][i]=pow(0.1*(j+1),i);}for(j=0;j<5;j++){G[j][i]=pow(0.5+0.2*(j+1),i);}}for(i=0;i<8;i++)for(j=0;j<5;j++){temp=0;for(r=0;r<k+1;r++)for(s=0;s<k+1;s++)temp+=c[r][s]*B[i][r]*G[j][s];bijin[i][j]=temp;}}三、程序运行结果显示程序运行结果显示如图2。

北航《数值分析》习题

北航《数值分析》习题

北航《数值分析》习题习题一1. 下列各数都是经过四舍五入得到的近似数,试指出它们有几位有效数字以及它们的绝对误差限、相对误差限。

(1);(2);(3);(4);(5);(6);(7);1. (1)5,,;(2)2,,;(3)4,,;(4)5,,;(5)1,,;(6)2,,;(7)6,,2. 为使下列各数的近似值的相对误差限不超过,问各近似值分别应取几位有效数字?2. ;;3. 设均为第1题所给数据,估计下列各近似数的误差限。

(1);(2);(3)3. (1);(2);(3)4. 计算,取,利用下列等价表达式计算,哪一个的结果最好?为什么?(1);(2);(3)(4)4. 第(3)个结果最好。

5. 序列满足递推关系式若(三位有效数字),计算时误差有多大?这个计算过程稳定吗?5. 不稳定。

从计算到时,误差约为6. 求方程的两个根,使其至少具有四位有效数字(要求利用。

6. ,7. 某生产部门生产的一件产品需用七个零件,而这七个零件的质量取决于零件参数的标定值,它们的参数允许有一定的误差:若每一零件的标定值取做区间中点,在生产过程中每一零件的参数都有可能产生误差。

由此将零件分成不同的等级:A,B,C三等,等级由标定值的相对误差限表示,A等为1%,B等为5%,C等为10%。

试确定三个等级的零件分别满足的区间。

8. 将一个八位二进制数(10111101)2转换成十进制数时,可以用公式:(1)用多项式求值的秦九韶方法求C的值;(2)写出将任意一个八位二进制数(b1b2b3b4b5b6b7b8)2转化为十进制数的算法。

9. 利用等式变换使下列表达式的计算结果比较精确。

(1);(2)(3);(4)9. (1);(2);(3);(4)10. 设,求证:(1)(2)利用(1)中的公式正向递推计算时误差增大;反向递推时误差函数减小。

习题二1. 判断下列方程有几个实根,并求出其隔根区间。

(1);(2)(3);(4)1. (1),,;(2);(3),,;(4)为根。

北航数分大作业三

北航数分大作业三

一、算法的设计方案1、对于已给出的非线性方程组,其解集可采用牛顿迭代法进行求解。

在每次迭代过程中,将x ,y 的值固定,如此便可得到一组关于t ,u ,v ,w 的解。

因此可以建立一组(x ,y )和(t ,u )一一对应的关系。

2、采用分片二次插值对题目中所给出的z ,t ,u 二维数表进行处理。

于是在 0≤t ≤1, 0≤u ≤2 的矩形区域就建立了 z 与(t,u)的一一对应关系。

其中选择(m ,n )满足,2322m i m h h t t t m -<≤+≤≤,,2322n j n u u u n ττ-<≤+≤≤。

3、对i x i *08.0= 10,...,2,1,0=i ,j y j 05.05.0+= 20,...,2,1,0=j 。

分别使用前两步算法,可得到一组2111)(],[⨯=j i y x f j i z 的数表。

4、采用最小二乘拟合,设∑∑===k r k s s r rs y x cy x p 00)(,m=10 n=20,M=N=K 。

插值基函数10,...,1,0,)(==i x x r i i r φ k r ,...,1,0=,ks j y y sj j s ,...,1,020,...,1,0,)(===ψ。

、)1()1()1()1(][][+⨯++⨯+==k n sj k m r i y G x B U 即为上面所求的Z[11][21]。

为避免计算过程中出现矩阵求逆,将U B B B A T T 1)(-=改为U B A B B T T =)(,再利用高斯消去法以)(B B T作为系数矩阵,U B T 的每一列作为非线性部分,分别解出A 的每一列。

在将1)(-=G G AG A T 改为AG G G C T =)(,然后利用高斯消元法以)(G G T 作为系数矩阵,AG 的每一行作为非线性部分,分解出C 的每一行。

如此便得到了最小二乘拟合的系数矩阵C 。

北航数值分析大作业题目三

北航数值分析大作业题目三
《数值分析》第三次大作业
1、 算法的设计方案: (一)、总体方案设计:
(1)解非线性方程组。将给定的当作已知量代入题目给定的非线性方程组,求得与相对应 的数组t[i][j],u[i][j]。 (2)分片二次代数插值。通过分片二次代数插值运算,得到与数组t[11][21],u[11][21]] 对应的数组z[11][21],得到二元函数z=。 (3)曲面拟合。利用x[i],y[j],z[11][21]建立二维函数表,再根据精度的要求选择适当k 值,并得到曲面拟合的系数矩阵C[r][s]。 (4)观察和的逼近效果。观察逼近效果只需要重复上面(1)和(2)的过程,得到与新的 插值节点对应的,再与对应的比较即可,这里求解可以直接使用(3)中的C[r][s]和k。
{ temp=0; for(l=k+1;l<=3;l++) {temp=temp+dF[k][l]*dx[l]/dF[k][k];} dx[k]=-F[k]/dF[k][k]-temp; } temp=0; for(l=0;l<=3;l++) /*求解矩阵范数,用无穷范数*/ { if(temp<fabs(dx[l])) temp=fabs(dx[l]); } fx=temp; temp=0; for(l=0;l<=3;l++) { if(temp<fabs(X[l])) temp=fabs(X[l]); } fX=temp; if(fabs(fx/fX)<Epsilon1) /*判断是否成立*/ { t[i][j]=X[0]; u[i][j]=X[1]; goto loop4;} else { for(l=0;l<=3;l++) {X[l]=X[l]+dx[l];} n=n+1; goto loop3;} } loop3:{if(n<M) /*判断是否超出规定迭代次数*/ goto loop1; else printf("迭代不成功\n"); goto loop4; } loop4:{continue;} } } } void fpeccz(double t[11][21],double u[11][21])/*分片二次代数插值子程序*/ { int s[11][21],r[11][21]; int i,j,i1,j1,m; double z0[6][6]={{-0.5,-0.34,0.14,0.94,2.06,3.5}, {-0.42,-0.5,-0.26,0.3,1.18,2.38}, {-0.18,-0.5,-0.5,-0.18,0.46,1.42},

北航数值分析A大作业3

北航数值分析A大作业3

一、算法设计方案1、解非线性方程组将各拟合节点(x i ,y j )分别带入非线性方程组,求出与(,)i i x y 相对应的数组te[i][j],ue[i][j],求解非线性方程组选择Newton 迭代法,迭代过程中需要求解线性方程组,选择选主元的Doolittle 分解法。

2、二元二次分偏插值对数表z(t,u)进行分片二次代数插值,求得对应(t ij ,u ij )处的值,即为),(j i y x f 的值。

根据给定的数表,可将整个插值区域分成 16 个小 的区域,故先判断(t i j , u ij ) 所在,的区域,再作此区域的插值,计算 z ij ,相应的Lagrange 形式的插值多项式为:°112211(,)()()(,)m n krkrk m r n p t u l t l u f t u ++=-=-=∑∑其中11()m wk w m k ww kt t l t t t +=-≠-=-∏ (k=m-1, m, m+1) °11()n wr w n r ww ry y l u y y +=-≠-=-∏ (r=n-1, n, n+1)3、曲面拟合从k=1开始逐渐增大k 的值,使用最小二乘法曲面拟合法对z=f(x,y)进行拟合,当710-<σ时结束计算。

拟合基函数φr (x)ψs (y)选择为φr (x)=x r ,ψs (y)=y s 。

拟合系数矩阵c 通过连续两次解线性方程组求得。

[]rsc *=C ,11()()T T T --=C B B B UG G G其中011101011[()]1kk r i k x x x x x x x ϕ⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦B L LM M M M L ,0011101011[()]1k k s j k y y y y G y y y ψ⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦L LM M M M L [(,)]i j f x y =U4、观察比较计算)5,,2,1,8,,2,1)(,(),,(****⋅⋅⋅=⋅⋅⋅=j i y x p y x f j i j i 的值并输出结果,以观察),(y x p 逼近),(y x f 的效果。

数值分析第三章作业

数值分析第三章作业

i 1
5
1
1
5
2
5
4
xi i
5 1
7277699
( 0 , 1) ( 0 , y ) (1 , y )

xi i
5
2
5327
i 1
5
yi
2 1
271 .4
xi i
y i 369321 .5
5a 5327b 271 .4 5327a 727699 b 369321 .5
1 2
18.在某化学反应中,由实验得分解物浓度与时间关系如下: 时间 t/s 浓度 y/(x10 -4 ) 0 0 5 10 15 20
1.27 2.16 2.86 3.44 3.87 4.15 4.37 4.51 4.58 4.62 4.64
用最小二乘法求 y f(t )
b
解:将给定数据点画出草图,可见曲线近似指数函数,故设 y ae t ,两边取对 数得
1
2
0.06232136
i
( 0 ,1 ) ( 0 ,1 )
11
1
i
0.6039755
i t i
1 11
( 0 ,y )
i 1
y i 13.639649 ,(1 ,y )
y
0.5303303
i
从而解得法方程为
11A 0.60397556 b 13.639649 0.6039755 A 0.062321366 b 0.5303303
xi yi
19
25
31
38
44
19.0 32.3 49.0 73.3 97.8
用最小二乘法求一个形如 y a bx2 的经验公式,并计算均方误差. 解:由题意 span 1, x 2 ,0(x ) 1,1(x ) x 2 ,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

p( xi , yi ) 可以直接使用(3)中的 C[r][s]和 k。
(二)具体算法设计:
(1)解非线性方程组 牛顿法解方程组 F ( x) 0 的解 x* ,可采用如下算法: 1)在 x* 附近选取 x(0) D ,给定精度水平 0 和最大迭代次数 M。 2)对于 k 0,1, ① 计算 F ( x
n=4 allocate(F1(n,n),F(n),x(n)) allocate(u(0:R-1),t(0:R-1)) do i=1,R u(i-1)=0.4D0*(i-1) end do do i=1,R t(i-1)=0.2D0*(i-1) end do !按(x,y)=f(u,v)求出(x,y) do i=1,L do j=1,M call ILE(F1,F,x,x1(i-1),x2(j-1)) uu(i-1,j-1)=x(1) vv(i-1,j-1)=x(2) end do end do deallocate(F1,F,x,u,t) return end subroutine subroutine ILE(F1,F,x,p,q) implicit none !传递参数 real(8)::F1(n,n)!F1为非线性方程组的雅可比矩阵,F为向量函数(即列向 量) !x为解向量,p,q为非线性方程组的参变量 real(8)::F(n),x(n) real(8)::p,q !局部变量 integer::i,j,k integer::M=10000!最大迭代次数 real(8)::deltax(n) real(8)::mox,modeltax real(8)::sum real(8),parameter::epsu=1.0e-12 sum=0.0D0 x=1.0D0!迭代初试值 deltax=0.0D0 do k=0,M write(*,*)"解非线性方程组迭代次数M=",k !计算F(n)
若 y y1

2
或 y yn 1

2
,插值节点对应取 j 1 或 i m 1 。
h h xi x xi , 2 i n 2 2 2 若 y y y ,2 j m 2 j j 2 2
则选择 ( xk , yr )(k i 1, i, i 1; r j 1, j, j 1) 为插值节点。 2)计算
M 执行
(k )
) 和 F ( x( k ) ) 。
② 求解关于 x ( k ) 的线性方程组
F ( x( k ) )x( k ) F ( x( k ) )
③ 若 x
(k )
x( k )

,则取 x* x( k ) ,并停止计算;否则转④。
④ 计算 x( k 1) x( k ) x( k ) 。 ⑤ 若 k M ,则继续,否则,输出 M 次迭代不成功的信息,并停止计算。 (2)分片双二次插值 给定已知数表以及需要插值的节点,进行分片二次插值的算法:
( x0 )0 ( x1 )0 B ( x )0 n
( x0 )1 ( x1 )1 ( xn )1
T 1 T
Hale Waihona Puke ( x0 ) k ( x1 ) k ( xn ) k
T
( y0 )0 ( y1 )0 G ( y )0 m
[ p* ( xi , y j ) uij ]2 107 成立。此时的 k 值就是要求解最小的 k。
i 0 j 0
n
m
二、源程序: !**************计算实习大作业第三题********************* program main use inlinear_equations use Fpcz use NH use NHeff implicit none integer::L0,M0,R0 integer::i,j real(8),allocatable::x1(:),x2(:) real(8),allocatable::uu(:,:),vv(:,:) type(FFuv),allocatable::Fxy(:,:) L0=11 M0=21 R0=6 allocate(x1(0:L0-1),x2(0:M0-1),uu(0:L0-1,0:M0-1),vv(0:L0-1,0:M0-1),Fx y(0:L0-1,0:M0-1)) do i=1,L0 x1(i-1)=0.08D0*(i-1) end do do i=1,M0
1
( y0 )1 ( y1 )1 ( ym )1
( y0 ) k ( y1 ) k ( ym ) k
2) 计算 C ( B B) B UG(G G) 。 在这里,为了简化计算和编程、避免矩阵求逆,记:
A ( BT B)1 BTU , DT G(GT G)1
x2(i-1)=0.5D0+0.05D0*(i-1) end do call ILES_main(L0,M0,R0,x1,x2,uu,vv) call Fpcz_main(L0,M0,R0,uu,vv,Fxy) open(13,file='(x,y,f(x,y)).txt') do i=1,L0 do j=1,M0 write(13,"(e20.12)")Fxy(i-1,j-1)%z end do end do close(13) call NH_main(L0,M0) pause call NHeff_main() pause end program
r 0 s 0
4) 拟合需要达到的精度条件为:
[ p* ( xi , y j ) uij ]2 107 。
i 0 j 0
n
m
其中 uij 对应着插值得到的数表 xi , y j , f ( xi , y j ) 中 f ( xi , y j ) 的值。 5) 让 k 逐步增加,每一次重复执行以上几步,直到
lk ( x)
t k
x xt (k i 1, i, i 1) t i 1 xk xt
i 1
lr ( y )
t j 1 t r
y
i 1
j 1
y yt (r j 1, j , j 1) r yt
插值多项式的公式为:
p( x, y )
module array implicit none integer,save::n!n为非线性方程的未知数个数(方程个数) real(8),allocatable,save::F1(:,:),F(:),x(:) end module module inlinear_equations use array implicit none !该模块用于求解非线性方程组的解 contains subroutine ILES_main(L,M,R,x1,x2,uu,vv) implicit none real(8),allocatable::u(:),t(:) real(8)::x1(0:L-1),x2(0:M-1)!x1,x2为xy平面坐标线交点的坐标 real(8)::uu(0:L-1,0:M-1),vv(0:L-1,0:M-1)!(uu,vv)为(x1,x2)在uv坐标 平面内对应的点的坐标 integer::L,M,R integer::i,j,k!循环变量
设已知数表中的点为:
xi x0 ih(i 0,1, , n) , 需要插值的节点为 ( x, y ) 。 y j y0 j ( j 0,1, , m)
1) 根据 ( x, y) 选择插值节点 ( xi , y j ) : 若 x x1
h h 或 x xn 1 ,插值节点对应取 i 1 或 i n 1 , 2 2
数值分析
—计算实习作业三
学 姓 学
院: 名: 号:
2014-12-15
一、算法的设计方案: (一) 、总体方案设计:
(1)解非线性方程组。将给定的 ( xi , yi ) 当作已知量代入题目给定的非线性方程组,求 得与 ( xi , yi ) 相对应的数组 t[i][j],u[i][j]。 (2)分片二次代数插值。通过分片二次代数插值运算,得到与数组 t[11][21],u[11][21]]对应的数组 z[11][21],得到二元函数 z= f ( xi , yi ) 。 (3)曲面拟合。利用 x[i],y[j],z[11][21]建立二维函数表,再根据精度的要求选择 适当 k 值,并得到曲面拟合的系数矩阵 C[r][s]。 (4)观察和 p( xi , yi ) 的逼近效果。观察逼近效果只需要重复上面(1)和(2)的过程, 得到与新的插值节点 ( xi , yi ) 对应的 f ( xi , yi ) ,再与对应的 p( xi , yi ) 比较即可,这里求解
对上面两式进行变形,得到如下两个线性方程组:
( BT B) A BTU , (GT G) D GT
通过解上述两个线性方程组,则有: C AD 3) 对于每一个 ( xi , y j ) ,
* k k
T
p ( xi , y j ) Crs ( xi ) r ( y j ) s 。
k i 1 r j 1
l ( x)l ( y) f ( x , y )
k r k r
j 1
注:本步进行插值运算的是 (t , u ) ,利用 ( xi , y j ) 与 (t , u ) 的对应关系就可以得到 z 与
( xi , y j ) 的对应关系。
(3)曲面拟合 根据插值得到的数表 xi , y j , f ( xi , y j ) 进行曲面拟合的过程: 1) 根据拟合节点和基底函数写出矩阵 B 和 G:
F(1)=0.5D0*dcos(x(2))+x(1)+x(3)+x(4)-p-2.67D0 F(2)=x(2)+0.5D0*dsin(x(1))+x(3)+x(4)-q-1.07D0 F(3)=0.5D0*x(2)+x(1)+dcos(x(3))+x(4)-p-3.74D0 F(4)=x(2)+0.5D0*x(1)+x(3)+dsin(x(4))-q-0.79D0!x=p,y=q,v=x(3),w=x(4),u =x(1),t=x(2) !计算F1(n,n) F1(1,:)=(/1.0D0,-0.5D0*dsin(x(2)),1.0D0,1.0D0/) F1(2,:)=(/0.5D0*dcos(x(1)),1.0D0,1.0D0,1.0D0/) F1(3,:)=(/1.0D0,0.5D0,-1.0D0*dsin(x(3)),1.0D0/) F1(4,:)=(/0.5D0,1.0D0,1.0D0,dcos(x(4))/) F=-1.0D0*F call L_maine_gauss(F1,F,deltax) do i=1,n sum=sum+deltax(i)**2 end do modeltax=dsqrt(sum) sum=0.0D0 do i=1,n sum=sum+x(i)**2 end do mox=dsqrt(sum) sum=0.0D0 if((modeltax/mox)/mox<=epsu)exit do i=1,n x(i)=x(i)+deltax(i) end do end do if(k==M+1)then write(*,*)"求解非线性方程组不成功,发散或收敛太TM慢" pause stop end if end subroutine ILE subroutine L_maine_gauss(a,b,x) implicit none !传递的参数 real(8)::a(n,n)!a为系数矩阵,b为列向量,x为解向量 real(8)::b(n),x(n) !局部变量 integer::k,i,j!循环变量 integer::ik real(8),allocatable::aa(:),m(:,:)
相关文档
最新文档