机器人的组成与结构

合集下载

机器人的机械结构

机器人的机械结构

机器人本体由机座、腰部、大臂、小臂、手腕、末端执行器和驱动装置组成。

共有六个自由度,依次为腰部回转、大臂俯仰、小臂俯仰、手腕回转、手腕俯仰、手腕侧摆。

机器人采用电机驱动,电机分为步进电机或直流伺服电机。

直流伺服电机能构成闭环控制、精度高、额定转速高、但价格较高,而步进电机驱动具有成本低、控制系统简单。

各部件组成和功能描述如下:
(1)底座部件:底座部件包括底座、回转部件、传动部件和驱动电机等。

(2)腰部回转部件:腰部回转部件包括腰部支架、回转轴、支架、谐波减速器、制动器和步进电机等。

(3)大臂:大臂和传动部件
(4)小臂:小臂、减速齿轮箱、传动部件、传动轴等,在小臂前端固定驱动手腕三个运动的步进电机。

(5)手腕部件:手腕壳体、传动齿轮和传动轴、机械接口等。

(6)末端执行器:根据抓取物体的形状、材质等选择合理的结构。

(7)。

机器人的组成结构及原理

机器人的组成结构及原理

机器人的组成结构及原理机器人是一种能够自动执行任务的机械设备。

它们可以被用于各种各样的任务,从工业制造到医疗保健和军事应用等。

机器人的组成结构和原理是机器人技术的核心,这篇文章将会介绍机器人的组成结构和原理,以及机器人的应用领域。

一、机器人的组成结构机器人通常由以下几个部分组成:1. 机械结构:机械结构是机器人的骨架,它包括机器人的机身、关节、连接器、执行器等。

机械结构的设计直接影响机器人的稳定性、精度和速度。

2. 传感器:传感器是机器人的感知器,它们能够感知环境中的信息并将其转化为机器人能够理解的数据。

传感器包括摄像头、激光雷达、声音传感器、触摸传感器等。

3. 控制系统:控制系统是机器人的大脑,它负责控制机器人的运动和行为。

控制系统包括计算机、控制器、运动控制器等。

4. 能源系统:能源系统是机器人的动力源,它提供机器人所需的能量。

能源系统包括电池、液压系统、气压系统等。

二、机器人的原理机器人的原理是通过机械结构、传感器和控制系统的协同作用来实现机器人的运动和行为。

机器人的运动和行为通常通过以下几个步骤来实现:1. 感知环境:机器人通过传感器感知环境中的信息,并将其转化为机器人能够理解的数据。

2. 分析数据:机器人的控制系统对感知到的数据进行分析,并根据分析结果制定相应的行动计划。

3. 运动控制:机器人的控制系统通过运动控制器控制机械结构的运动,从而实现机器人的运动和行为。

4. 反馈控制:机器人在运动和行为过程中,通过传感器不断反馈环境的变化信息给控制系统,从而实现机器人的自适应控制。

三、机器人的应用领域机器人的应用领域非常广泛,以下是几个典型的应用领域:1. 工业制造:机器人在工业制造中的应用非常广泛,如汽车制造、电子制造、食品加工等。

机器人能够提高生产效率、降低成本、提高产品质量。

2. 医疗保健:机器人在医疗保健中的应用也越来越广泛,如手术机器人、康复机器人、护理机器人等。

机器人能够提高手术精度、减少手术创伤、提高康复效果。

第二章_机器人的机械结构分析

第二章_机器人的机械结构分析

关节型搬运机器人
关节型焊接机器人
第二章
机器人的机械结构
机器人的构型
5、平面关节型 (Selective Compliance Assembly Robot Arm ,简称SCARA) 仅平面运动有耦合性,控制较通用关节型简单。运动灵活 性更好,速度快,定位精度高,铅垂平面刚性好,适于装 配作业。
SCARA型装配机器人
有较大的作业空间,结构紧凑较复杂,定位精度较低。
极坐标型机器人模型
2018/11/2
Unimate
机器人
第二章
机ห้องสมุดไป่ตู้人的机械结构
机器人的构型
4、关节坐标型 (3R) 对作业的适应性好,工作空间大,工作灵活,结构紧凑, 通用性强,但坐标计算和控制较复杂,难以达到高精度。
2018/11/2
关节型机器人模型
2、圆柱坐标型 (R2P)
结构简单紧凑,运动直观,其运动耦合性较弱,控制也较 简单,运动灵活性稍好。但自身占据空间也较大,但转动 惯量较大,定位精度相对较低。
圆柱坐标型机器人模型
2018/11/2
Verstran 机器人
Verstran 机器人
第二章
机器人的机械结构
机器人的构型
3、极坐标型(也称球面坐标型)(2RP)
• 电动式
电源方便,响应快,驱动力较大,可以采用多种灵活的控制方案。
2018/11/2
第二章
机器人的机械结构
二、机器人的分类
1.按机器人的控制方式分类 (1)非伺服机器人 非伺服机器人按照预先编好的程序顺序进行工作, 使用限位开关、制动器、插销板和定序器来控制机器 人的运动。 (2)伺服控制机器人 通过传感器取得的反馈信号与来自给定装置的综合信 号比较后,得到误差信号,经放大后用以激发机器人 的驱动装置,进而带动手部执行装置以一定规律运动, 到达规定的位置或速度等,这是一个反馈控制系统。

工业机器人组成结构

工业机器人组成结构

工业机器人组成结构工业机器人是一种用于自动化生产的机器,它能够完成人类在生产线上的工作任务。

工业机器人的组成结构是多样的,下面将从机械结构、电气控制和软件系统三个方面来介绍工业机器人的组成结构。

一、机械结构工业机器人的机械结构是支持其运动和操作的基础。

通常,它由底座、臂架、关节、末端执行器等部分组成。

1. 底座:底座是机器人的基础,通常由铸铁或钢板制成,具有足够的强度和稳定性。

底座上通常安装有电机和减速器,用于提供机器人的旋转运动。

2. 臂架:臂架是机器人的主体结构,通常由铝合金或碳纤维等材料制成,具有轻量化和高强度的特点。

臂架上的关节连接着各个运动部件,使机器人能够进行多轴运动。

3. 关节:关节是机器人的运动部件,通常由电动机、减速器和编码器等组成。

关节能够提供机器人的转动和抬升等运动,使机器人能够灵活地完成各种工作任务。

4. 末端执行器:末端执行器是机器人的工作部件,通常根据需要选择不同的执行器,如夹爪、吸盘、焊枪等。

末端执行器能够完成机器人的具体操作任务,如抓取、装配、焊接等。

二、电气控制电气控制是机器人的神经系统,负责控制机器人的运动和操作。

它由电机驱动系统、传感器系统和控制器等组成。

1. 电机驱动系统:电机驱动系统是机器人的动力源,通常由伺服电机和伺服驱动器等组成。

电机驱动系统能够提供机器人的运动能力,使机器人能够精确地控制运动轨迹和速度。

2. 传感器系统:传感器系统能够感知机器人周围的环境和工件信息,通常包括视觉传感器、力传感器、接近开关等。

传感器系统能够为机器人提供反馈信号,使机器人能够根据实际情况进行调整和控制。

3. 控制器:控制器是机器人的大脑,负责整个系统的协调和控制。

控制器通常由工控机或嵌入式控制器组成,可以通过编程来实现机器人的自动化控制和任务规划。

三、软件系统软件系统是机器人的智能核心,负责实现机器人的智能化和自主性。

它由操作系统、控制算法和应用软件等组成。

1. 操作系统:操作系统是机器人的基础软件平台,通常采用实时操作系统(RTOS),如VxWorks、RobotWare等。

工业机器人的五大机械结构和三大零部件解析

工业机器人的五大机械结构和三大零部件解析

工业机器人的五大机械结构和三大零部件解析一、五大机械结构:1.手臂结构:工业机器人的手臂结构类似于人的手臂,用于搬运和操作物体。

它通常由多段关节构成,这些关节可以进行旋转和伸缩。

手臂结构可以根据不同的任务来设计,手臂的长度、关节的自由度和负载能力等可以根据实际需求进行调整。

2.底座结构:底座结构是工业机器人的支撑部分,它承载整个机器人和工作负载的重量,并提供机器人的旋转能力。

底座通常由电机和减速器组成,通过控制电机的旋转实现整体机器人的转动。

3.关节结构:关节结构是工业机器人手臂各关节连接的部分,它具有旋转和转动的能力。

关节结构通常由电机、减速器和编码器等组成,电机提供动力,减速器提供转动和转动的精度,编码器用于反馈位置和速度等参数。

4.手持器结构:手持器结构是机器人手臂的末端装置,用于夹取和操纵物体。

手持器通常由夹爪、吸盘、焊枪等组成,它们可以根据不同的任务和工作环境进行选择和装配。

5.支撑结构:支撑结构是机器人的框架和支撑部分,它提供机器人的稳定性和强度。

支撑结构通常由铝合金、碳纤维等材料制成,具有轻巧、刚性和耐用等特点。

二、三大零部件:1.电机:电机是工业机器人的核心动力部件,它提供驱动力和旋转力。

根据不同的应用需求,电机可以选择步进电机、直流电机、交流伺服电机等,它们具有不同的功率、转速和扭矩等特性。

2.减速器:减速器是机器人关节结构中的关键部件,它将电机的高速转动转换为低速高扭矩的输出。

减速器能够提供精确的旋转和转动控制,确保机器人的高精度和灵活性。

3.编码器:编码器是机器人关节结构中的传感器部件,它用于测量关节的位置和速度等参数。

编码器通过提供准确的反馈信号,帮助控制系统实时控制和监测机器人的运动状态。

以上是对工业机器人的五大机械结构和三大零部件的解析。

机器人的结构和零部件的选择和设计根据不同的应用和需求来进行,它们共同作用于机器人的性能和功能,实现自动化生产和工作的目标。

随着科技的不断发展,工业机器人在各个领域的应用也将越来越广泛。

机器人系统组成结构

机器人系统组成结构
机器人控制系统负责协调、管理、控制系统的所有部件进行工作 ,其基本功能包括:
记忆功能 与外围设备联系功能 示教功能 人机接口 位置伺服功能 传感器接口 故障诊断安全保护功能
22
三、控制系统
机器人控制系统框图
23
三、控制系统
3 机器人控制系统结构
机器人控制系统可分为集中控制、主从控制、分散控制
集中控制:所有控制工作由一台计算机(CPU)完成
轮足混合型行走机构可提高行走效率
问题:大家觉得 轮足混合式机器 人主要优点是什 么??
科学家最新研制的ATHLETE(全地 S形hrim六p全足地地形移外动探机器测人器)机器人
轮足混合是机器人 集中了轮式机器人 的高速高效和足式 机器人的特殊地形 适应性两种优势!
21
三、控制系统
1机器人控制系统的基本功能
第二讲 机器人组成结构
1、机器人组成概述 2、机器人机械系统 3、机器人控制系统 4、机器人感知系统 5、机器人驱动系统
2
一 、机器人组成概述
1 机器人系统组成
机器人系统的三大部分
机械部分



传感部分

控制部分
人机交互系统




控制系统




驱动系统



机械系统

机器人—环境交互系统
3
一、机器人组成概述
有刷 无刷
43
五、驱动系统
3电动机-直流电机的控制
直流 (DC)伺服电机
开环脉冲宽度调速系统的组成:
直流电机调速系统结构(开环)
44
五、驱动系统
4电动机-步进电机的控制

机器人的组成结构

机器人的组成结构

机器人的组成结构机器人在现代社会起着越来越重要的作用,无论是工业生产线上的自动化装配,还是日常生活中的智能家居助理,机器人的组成结构对其功能和性能起着关键作用。

本文将从硬件和软件两个方面介绍机器人的组成结构。

一、硬件组成结构1. 机械结构机器人的机械结构是实现物体操作和运动的基础。

通常包括骨架、关节和执行器等。

骨架提供机器人的整体框架,关节则用来连接不同部位,实现运动,执行器负责产生力和动力。

常见的机械结构包括直线结构、旋转结构、平行结构等,不同机器人根据具体任务需求选择不同的结构。

2. 传感器传感器是机器人获取外部信息的重要手段。

通过感知环境和检测自身状态,机器人可以做出相应的控制和决策。

常见的传感器包括视觉传感器、声音传感器、力觉传感器等。

视觉传感器可以让机器人感知周围环境的图像和颜色信息,声音传感器用于识别声音信号,力觉传感器可以感知外部物体的力和压力。

3. 控制系统机器人的控制系统用于指导机器人的运动和行为。

它包括了执行器的控制、传感器信息的处理和决策的执行等。

其中,执行器控制通过对电机或气缸的控制,实现机械结构的运动。

传感器信息的处理包括对传感器采集的数据进行分析和处理,提取有用的信息。

而决策的执行则是根据传感器信息和预设的规则,确定机器人的下一步动作。

二、软件组成结构1. 机器人操作系统机器人操作系统是控制机器人软件的基石。

它提供了通用的功能和接口,使得开发人员可以方便地开发和部署机器人应用程序。

常见的机器人操作系统包括ROS(Robot Operating System)和MIRA等。

机器人操作系统可以提供传感器数据的输入输出、运动控制、路径规划、视觉处理等功能。

2. 感知与理解机器人的感知与理解模块负责对外部环境进行感知,并进行语义理解。

它通过传感器获取环境数据,针对不同任务进行数据分析和处理。

例如,通过图像识别技术对环境中的物体进行识别和分类,通过语音识别技术理解人类的指令等。

机器人本体的五大组成

机器人本体的五大组成

机器人本体的五大组成
机器人本体包括:驱动系统、机械系统、传感系统、控制系统和系统接口五大部分组成,下面来分类讲一下机器人本体包括哪几部分。

1、机械系统:机器人的机械本体机构基本上分为两大类,一类是操作本体机构,它类似人的手臂和手腕,另一类为移动型本体结构,主要实现移动功能。

2、驱动系统:工业机器人驱动系统又叫伺服单元的作用是使驱动单元驱动关节并带动负载按预定的轨迹运动。

已广泛采用的驱动方式有:液压伺服驱动、电机伺服驱动,气动伺服驱动,市场上主流的伺服电机厂家有安川、三菱、松下等。

3、控制系统:各关节伺服驱动的指令值由主计算机计算后,在各采样周期给出。

机器人通常采用主计算机与关节驱动伺服计算机两级计算机控制,计算机控制系统包括电机驱动软件和轨迹控制软件。

4、传感系统:除了关节伺服驱动系统的位置传感器(称作内部传感器)外,还需要搭配视觉、力觉、触觉、接近等多种类型的传感器(称作外部传感器)。

5、输出/输入系统接口:为了与周边系统及相应操作进行联机与应答,会开放各种通信接口和人机通信装置。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3、简介机器人系统的组成与结构,包括三大部分、六个子系统
答:机器人由三大部分六个子系统组成。

三大部分是机械部分、传感部分和控制部分。

六个子系统是驱动系统、机械结构系统、感受系统、机器人一环境交换系统、人机交换系统和控制系统。

驱动系统,要使机器人运作起来,各需各个关节即每个运动自由度安置传动装置。

这就是驱动系统。

驱动系统可以是液压传动、气压传动、电动传动、或者把它们结合起来应用综合系统,可以是直接驱动或者通过同步带、链条、轮系、谐波齿轮等机械传动机构进行间接传动。

机械结构传动,工业机器人的机械结构系统由机座、手臂、末端操作器三大部分组成,每一个大件都有若干个自由度的机械系统。

若基座不具备行走机构,则构成行走机器人;若基座不具备行走及弯腰机构,则构成单机器人臂。

手臂一般由上臂、下臂和手腕组成。

末端操作器是直接装在手腕上的一个重要部件,它可以是二手指或多手指的手抓,也可以是喷漆枪、焊具等作业工具。

感受系统由内部传感器模块和外部传感器模块组成,用以获得内部和外部环境状态中有意义的信息。

智能传感器的使用提高了机器人的机动性、适应性和智能化的水准。

人类的感受系统对感知外部世界信息是极其灵巧的,然而,对于一些特殊的信息,传感器比人类的感受系统更有效。

机器人一环境交换系统是现代工业机器人雨外部环境中的设备互换联系和协调的系统。

工业机器人与外部设备集成为一个功能单元,如加工单元、焊接单元、装配单元等。

当然,也可以是多台机器人、多台机床或设备、多个零件存储装置等集成为一个去执行复杂任务的功能单元。

人工交换系统是操作人员与机器人控制并与机器人联系的装置,例如,计算机的标准终端,指令控制台,信息显示板,危险信号报警器等。

该系统归纳起来分为两大类:指令给定装置和信息显示装置。

控制系统的任务是根据机器人的作业指令程序以及传感器反馈回来的信号支配机器人的执行机构去完成规定的运动和功能。

假如工业机器人不具备信息反馈特征,则为开环控制系统;若具备信息反馈特征,则为闭环控制系统。

根据控制原理,控制系统可分为程序控制系统、适应性控制系统和人工智能控制系统。

根据控制运行的形式,控制系统可分为点位控制和轨迹控制。

相关文档
最新文档