机器人结构组成
机器人的机械结构
机器人本体由机座、腰部、大臂、小臂、手腕、末端执行器和驱动装置组成。
共有六个自由度,依次为腰部回转、大臂俯仰、小臂俯仰、手腕回转、手腕俯仰、手腕侧摆。
机器人采用电机驱动,电机分为步进电机或直流伺服电机。
直流伺服电机能构成闭环控制、精度高、额定转速高、但价格较高,而步进电机驱动具有成本低、控制系统简单。
各部件组成和功能描述如下:
(1)底座部件:底座部件包括底座、回转部件、传动部件和驱动电机等。
(2)腰部回转部件:腰部回转部件包括腰部支架、回转轴、支架、谐波减速器、制动器和步进电机等。
(3)大臂:大臂和传动部件
(4)小臂:小臂、减速齿轮箱、传动部件、传动轴等,在小臂前端固定驱动手腕三个运动的步进电机。
(5)手腕部件:手腕壳体、传动齿轮和传动轴、机械接口等。
(6)末端执行器:根据抓取物体的形状、材质等选择合理的结构。
(7)。
机器人的组成
机器人的组成机器人的组成:一个机器人由机械部分、传感部分和控制部分组成。
这三大部分可分为机械结构系统、驱动系统、感受系统、控制系统、机器人—环境交互系统、人—机交互系统六个子系统组成。
1机械结构系统。
机器人的机械结构系统由机身、手臂、末端操作器三大件组成。
每一大件都有若干自由度,构成一个多自由度的机械系统。
机器人按机械结构划分可分为直角坐标型机器人、圆柱坐标型机器人、极坐标型机器人、关节型机器人、SCARA 型机器人以及移动型机器人。
2驱动系统。
驱动系统是向机械结构系统提供动力的装置。
采用的动力源不同,驱动系统的传动方式也不同。
驱动系统的传动方式主要有四种:液压式、气压式、电气式和机械式。
电力驱动是目前使用最多的一种驱动方式,其特点是电源取用方便,响应快,驱动力大,信号检测、传递、处理方便,并可以采用多种灵活的控制方式,驱动电机一般采用步进电机或伺服电机,目前也有采用直接驱动电机,但是造价较高,控制也较为复杂,和电机相配的减速器一般采用谐波减速器、摆线针轮减速器或者行星齿轮减速器。
3感受系统。
它由内部传感器模块和外部传感器模块组成,获取内部和外部环境中有用的信息。
智能传感器的使用提高了机器人的机动性、适应性和智能化水平。
人类的感受系统对感知外部世界信息是极其巧妙的,然而对于一些特殊的信息,传感器比人类的感受系统更有效。
4控制系统。
控制系统的任务是根据机器人的作业指令以及从传感器反馈回来的信号,支配机器人的执行机构去完成规定的运动和功能。
如果机器人不具备信息反馈特征,则为开环控制系统;具备信息反馈特征,则为闭环控制系统。
根据控制原理可分为程序控制系统、适应性控制系统和人工智能控制系统。
根据控制运动的形式可分为点位控制和连续轨迹控制。
5机器人—环境交互系统。
机器人—环境交互系统是实现机器人与外部环境中的设备相互联系和协调的系统。
机器人与外部设备集成为一个功能单元,如加工制造单元、焊接单元、装配单元等。
简述机器人的组成和分类
简述机器人的组成和分类机器人是一种由人工智能技术驱动的自动化设备,它在不同领域具有广泛的应用。
本文将简述机器人的组成和分类。
一、机器人的组成机器人通常由以下几个组成部分构成:1. 机械结构:机器人的机械结构是其身体的具体形态,包括机器人的外形、骨架和关节等。
机械结构的设计决定了机器人的运动能力和适应能力。
2. 传感器系统:传感器系统使机器人能够感知和获取周围环境的信息。
常见的传感器包括摄像头、激光雷达、声音传感器等,它们可以帮助机器人实时地感知到周围的物体、人和环境。
3. 控制系统:控制系统是机器人的大脑,负责接收和处理传感器获取的信息,并作出相应的决策和行动。
控制系统通常由硬件和软件组成,硬件包括主控芯片和执行器,软件则负责算法和逻辑的实现。
4. 电源系统:电源系统为机器人提供能量,使其能够正常运转。
电源可以是电池、充电宝或者连接外部电源等形式,不同的机器人根据其应用场景和能耗需求选择不同的电源方案。
二、机器人的分类根据机器人的用途和功能,可以将机器人分为以下几类:1. 工业机器人:工业机器人主要用于工业生产中的自动化操作,如焊接、装配、搬运等。
它们通常具有较大的工作空间和承重能力,并且能够高效地完成重复性、精密性的任务。
2. 服务机器人:服务机器人用于提供人类生活和服务的支持,如清洁机器人、导览机器人、护理机器人等。
它们可以与人类进行交流,并执行一些特定的任务,提高人类的生活质量和便利性。
3. 军事机器人:军事机器人主要应用于军事领域,用于战场侦查、侦察、救援等任务。
军事机器人通常具有高度的机动性、防护能力和作战能力,可以在危险环境下执行任务,减少对士兵的伤害风险。
4. 医疗机器人:医疗机器人主要用于医疗领域的辅助治疗和手术操作。
如手术机器人可以通过微创手术的方式减少手术切口,提高手术的精确性和安全性,为患者带来更好的治疗效果。
5. 家庭机器人:家庭机器人是为了满足家庭生活需求而设计的机器人,如智能扫地机器人、智能助理机器人等。
工业机器人的基本结构
工业机器人的基本结构工业机器人是一种用于自动化生产的机器人系统,它具有复杂的结构和多样的功能。
下面将介绍工业机器人的基本结构。
工业机器人主要由机械结构、传感器、控制系统和执行器四个主要部分组成。
一、机械结构工业机器人的机械结构是机器人的骨架,它决定了机器人的外形和运动能力。
机械结构包括机器人的机身、关节、连杆、末端执行器等部分。
1. 机身:机身是机器人的主体部分,承载着各个关节和执行器。
一般采用铝合金、钢材或碳纤维等材料制作,具有较强的刚性和轻量化特性。
2. 关节:关节是连接机身和连杆的部分,用于实现机器人的运动。
根据运动方式的不同,关节可以分为旋转关节和直线关节。
旋转关节可以使机器人在水平方向上旋转,而直线关节可以使机器人在垂直方向上进行上下运动。
3. 连杆:连杆是连接关节和末端执行器的部分,它们通过关节的旋转和直线运动,使机器人能够完成各种复杂的任务。
连杆一般采用铝合金或钢材制作,具有一定的刚性和强度。
4. 末端执行器:末端执行器是机器人的“手”,用于实现机器人的具体操作。
常见的末端执行器包括夹爪、焊枪、刀具等,不同的末端执行器适用于不同的工作任务。
二、传感器传感器是工业机器人的感知器官,用于获取周围环境的信息,帮助机器人做出相应的动作。
常见的传感器包括视觉传感器、力传感器、位置传感器等。
1. 视觉传感器:视觉传感器可以通过拍摄和分析图像,实现对物体的识别、定位和测量。
它可以帮助机器人在不同的工作环境中准确定位和操作物体。
2. 力传感器:力传感器可以测量机器人施加在物体上的力和力矩,帮助机器人控制力的大小和方向,实现精确的操作和装配。
3. 位置传感器:位置传感器可以测量机器人各个关节的位置和姿态,提供给控制系统进行运动控制。
常见的位置传感器有编码器、陀螺仪等。
三、控制系统控制系统是工业机器人的大脑,负责对机器人进行运动控制和任务规划。
它由硬件和软件两部分组成。
1. 硬件:硬件部分包括中央处理器(CPU)、存储器、输入输出接口等。
简述工业机器人的组成及每部分的功能。
简述工业机器人的组成及每部分的功能。
工业机器人主要由以下几个部分组成:
1. 机械结构:工业机器人的机械结构是实现机器人运动和操作的基础。
它包括臂架、关节、机械手、手爪等组件,可以具备多个自由度。
机械结构的主要功能是实现机器人的运动和操作。
2. 控制系统:工业机器人的控制系统是实现机器人工作的核心部分。
它包括控制器、编程设备、传感器等组件。
控制系统接收操作员或者计算机发出的指令,通过控制器对机械结构进行控制和操作。
同时,它还可以根据传感器的反馈信息,实现自适应和反馈控制。
3. 传感器系统:工业机器人的传感器系统主要用于获取周围环境的信息。
它可以包括接近传感器、视觉传感器、力传感器等。
传感器系统的主要功能是检测和感知周围环境的变化,为机器人的操作和决策提供数据支持。
4. 执行器:工业机器人的执行器是机械结构的驱动装置。
它可以包括电机、液压驱动器、气动驱动器等。
执行器的主要功能是将控制系统发出的信号转化为机械力或者运动,驱动机械结构进行工作和操作。
综上所述,工业机器人的组成部分主要包括机械结构、控制系统、传感器系统和执行器。
这些部分通过协同工作,实现机器人的运动、操作和感知能力,完成各种工业任务。
工业机器人的典型结构
工业机器人的典型结构
工业机器人的典型结构包括机械臂、控制系统、传感器和执行器等基本部分。
其中:
1. 机械臂:是工业机器人的主要部分,通常包括可伸缩的臂、关节、末端执行器和触觉传感器等。
其结构复杂,设计灵活,能够执行各种不同的任务和功能。
2. 控制系统:是机器人的大脑,包括计算机、控制器和编程器等。
控制系统能够接收外部指令,对机械臂进行准确的控制和调度,调整机器人的运动和转向速度等。
3. 传感器:是机器人的“眼睛”和“耳朵”,能够感知环境和物体,通过视觉识别、声音识别、力量反馈和距离测量等方式获得信息,并传达给控制系统。
4. 执行器:是机器人的“手”和“脚”,能够根据控制系统的指令,执行各种不同的任务,比如移动、抓取、拆分、焊接和研磨等。
总之,工业机器人的典型结构是多种部件的综合体,具有复杂的功能和灵活的设计,能够满足不同领域和产业的机械化需求。
机器人的组成结构
常用的机身结构: 1)升降回转型机身结构 2)俯仰型机身结构 3)直移型机身结构 4)类人机器人机身结构
根据臂部的运动和布局、驱动方式、传动和导向装 置的不同可分为:
1)伸缩型臂部结构 2)转动伸缩型臂部结构 3)驱伸型臂部结构 4)其他专用的机械传动臂部结构
3.机身和臂部的配置形式
机身和臂部的配置形式基本上反映了机器 人的总体布局。由于机器人的运动要求、工作 对象、作业环境和场地等因素的不同,出现了 各种不同的配置形式。目前常用的有如下几种 形式:
36
1. 滑槽杠杆式手部
2.齿轮齿条式手部
4. 斜 楔 杠 杆 式
3.滑块杠杆式手部
5.移动型连杆式手部
6.齿轮齿条式手部
7.内涨斜块式手部
8.连杆杠杆式手部
手指类型:
吸附式取料手
吸式取料手是目前应用较多的一种执行器,特别是用于搬 运机器人。该类执行器可分气吸和磁吸两类。 1)气吸附取料手
连杆(Link):机器人手臂上 被相邻两关节分开的部分。
刚度(Stiffness):机身或臂部在外力作用下抵抗变形的能力。 它是用外力和在外力作用方向上的变形量(位移)之比来度量。
自由度(Degree of freedom) :或者称坐标轴数,是指描述物体 运动所需要的独立坐标数。手指的开、合,以及手指关节的自由 度一般不包括在内。
• 圆柱坐标型机械手有一 个围绕基座轴的旋转运 动和两个在相互垂直方 向上的直线伸缩运动。 它适用于采用油压(或气 压)驱动机构,在操作对 象位于机器人四周的情 况下,操作最为方便。
机器人的组成结构.描述
UTACH/MIT 多指手 双拇指手
44
BH—II 三指手
四指灵巧手
最小的三指手
DLR多指手 哈工大多指手 灵巧的双手
45
手指关节的设计
手指主要用于抓握动作,要求动作灵活,刚度好,具有较大 的抓握力。就其手的结构而言,传动机构有三种方式:
1) 腱传动,特点是结构简单,节省空间,具有很高的抗拉强 度和很轻的重量,但刚性差,较大的弹性,不利于控制。 MIT手、JPL手和DLR-I手都是这种方式。 2) 齿轮传动,特点是传动比可靠,但是摩擦较大,有回程间 隙,占用空间大。
3) 连杆传动,刚度好,加工制造比较简单,高精度,能较好 的实现多种运动规律和运动轨迹的要求。但是设计复杂,不 能精确地满足各种运动规律的要求。典型的如Belgrade手, NASA手等。 4)欠驱动手指关节
46
5 、移动机器人
1)车轮型
两轮型
三轮型
四轮型
2) 履带式
救 援 机 器 人
3)步行式(足式行走)
5、手部机构
机器人的手部是是最重要的执行机构。 机器人手部是机器人为了进行作业,在手腕上配置的操 作机构。因此有时也称为末端操作器。 由于机器人作业内容的差异(如搬运、装配、焊接、喷 涂等)和作业对象的不同(如轴类、板类、箱类、包类物 体等), 手部的形式多样。综合考虑手部的用途、功能和 结构持点,大致可分成以下几类: 1.卡爪式夹持器; 2.吸附式取料手; 3.专用操作器及换接器 4.仿生多指灵巧手。
手腕结构多为上述三个回转方式的组合,组合的方 式可以有多种形式如下图所示:
腕部结构的设计要满足传动灵活、结构紧 凑轻巧、避免干涉。机器人多数将腕部结构的 驱动部分安排在小臂上。首先设法使几个电动 机的运动传递到同轴旋转的心轴和多层套筒上 去。运动传入腕部后再分别实现各个动作。
机器人本体结构_图文
腕部及手部结构
机器人腕部结构的基本形式和特点
机器人的手部作为末端执行器是完成抓握工件或执行特定作业的重要部件,也需要有多种结构。腕部是 臂部与手部的连接部件,起支承手部和改变手部姿态的作用。目前,RRR型三自由度手腕应用较普遍。
腕部是机器人的小臂与末端执行器(手部或称手爪)之间的连接部件,其作用是利用自身的活动度确定手部 的空间姿态。对于一般的机器人,与手部相连接的手腕都具有独驱自转的功能,若手腕能在空间取任意 方位,那么与之相连的手部就可在空间取任意姿态,即达到完全灵活。 从驱动方式看,手腕一般有两种形式,即远程驱动和直接驱动。直接驱动是指驱动器安装在手腕运动关 节的附近直接驱动关节运动,因而传动路线短,传动刚度好,但腕部的尺寸和质量大,惯量大。远程驱 动方式的驱动器安装在机器人的大臂、基座或小臂远端上,通过连杆、链条或其他传动机构间接驱动腕 部关节运动,因而手腕的结构紧凑,尺寸和质量小,对改善机器人的整体动态性能有好处,但传动设计 复杂,传动刚度也降低了。 按转动特点的不同,用于手腕关节的转动又可细分为滚转和弯转两种。滚转是指组成关节的两个零件自 身的几何回转中心和相对运动的回转轴线重合,因而能实现360°无障碍旋转的关节运动,通常用R来标 记。弯转是指两个零件的几何回转中心和其相对转动轴线垂直的关节运动。由于受到结构的限制,其相 对转动角度一般小于360°。弯转通常用B来标记。
一、腕部的自由度
手腕按自由度个数可分为单自由度手腕、二自由度手腕和三自由度手腕。
腕部实际所需要的自由度数目应根据机器人的工作性能要求来确定。在有些情况下,腕部具 有两个自由度,即翻转和俯仰或翻转和偏转。一些专用机械手甚至没有腕部,但有些腕部为 了满足特殊要求还有横向移动自由度。
6种三自由度手腕的结合方式示意图
机器人本体的五大组成
机器人本体的五大组成
机器人本体包括:驱动系统、机械系统、传感系统、控制系统和系统接口五大部分组成,下面来分类讲一下机器人本体包括哪几部分。
1、机械系统:机器人的机械本体机构基本上分为两大类,一类是操作本体机构,它类似人的手臂和手腕,另一类为移动型本体结构,主要实现移动功能。
2、驱动系统:工业机器人驱动系统又叫伺服单元的作用是使驱动单元驱动关节并带动负载按预定的轨迹运动。
已广泛采用的驱动方式有:液压伺服驱动、电机伺服驱动,气动伺服驱动,市场上主流的伺服电机厂家有安川、三菱、松下等。
3、控制系统:各关节伺服驱动的指令值由主计算机计算后,在各采样周期给出。
机器人通常采用主计算机与关节驱动伺服计算机两级计算机控制,计算机控制系统包括电机驱动软件和轨迹控制软件。
4、传感系统:除了关节伺服驱动系统的位置传感器(称作内部传感器)外,还需要搭配视觉、力觉、触觉、接近等多种类型的传感器(称作外部传感器)。
5、输出/输入系统接口:为了与周边系统及相应操作进行联机与应答,会开放各种通信接口和人机通信装置。
机器人的基本构成
机器人的基本构成机器人一词源于捷克斯洛伐克作家卡雷尔·恰佩克的戏剧作品《罗萨姑娘》中的角色。
自从机器人的概念出现以来,人们对于机器人的定义和构成一直在不断发展和演变。
机器人的基本构成包括硬件机械部分、电子电气部分、控制系统和人机交互界面。
1. 硬件机械部分机器人的硬件机械部分是机器人最为直观和显著的特征。
它由机体结构和执行器部件组成。
机体结构包括机器人的主体框架、关节、连接件等。
主体框架决定了机器人的整体结构和形状。
关节是机器人运动的基本单位,通过关节的灵活运动实现机器人在空间中的各种动作。
连接件起到固定、连接不同部件的作用。
执行器部件包括传动装置、执行机构等,用于实现机器人的动作和工作任务。
2. 电子电气部分电子电气部分是机器人的控制核心。
它包括机器人的感知系统、控制系统和电源系统。
感知系统通过传感器感知和获取外界的信息,如视觉传感器、声音传感器、力传感器等。
控制系统是机器人的大脑,根据感知系统获取到的信息,制定相应的控制策略,并通过电气信号控制机器人的运动和工作。
电源系统为机器人提供稳定的电力供应,保证机器人正常运行。
3. 控制系统控制系统是机器人的核心部分,负责管理和控制机器人的各个部件进行协调工作。
控制系统主要包括机器人的中央处理器(CPU)、嵌入式系统、控制算法等。
中央处理器是机器人的大脑,负责处理和分析感知系统获取的信息,并制定相应的控制策略。
嵌入式系统是指将控制系统集成在机器人内部的微型计算机系统,具有小巧、高效、低功耗等特点。
控制算法是机器人指导运动和执行任务的核心算法,根据机器人的需要进行相应的控制和协调。
4. 人机交互界面人机交互界面是机器人与人类进行交流和互动的界面。
它包括语音交互、视觉交互、触觉交互等多种形式。
语音交互通过语音识别和语音合成技术实现机器人与人类的语言交流。
视觉交互通过摄像头和图像处理技术识别人类的动作和表情,并进行相应的反馈。
触觉交互通过触摸屏和力传感器等设备实现机器人与人类的触觉交互。
机器人本体组成
机器人本体组成机器人本体就是机器人的机械部分,又叫操作机,是工业机器人的操作机构,是指工业机器人的原样和自身。
整体机器人还有其它的配套软件和配套设备组成。
机器人本体基本结构由五部分组成:1、传动部件;2、机身及行走机构;3、臂部;4、腕部;5、手部。
机器人本体结构是机体结构和机械传动系统,也是机器人的支承基础和执行机构。
机器人本体的结构特点有:1、工业机器人本体可以简化成各连接杆首尾相连、末端开放的一个开式运动链,机器人本体的结构刚度差,并随空间位置的变化而变化;2、机器人本体的每个连杆都具有独立的驱动器,连杆的运动各自独立,运动更为灵活;一般连杆机构有1-2个原动件,各连杆间的运动是相互约束的。
3、连杆驱动扭矩变化复杂,和执行件位置相关。
对机器人本体的基本要求:自重小:改善机器人操作的动态性能;静动态刚度高:提高定位精度和跟踪精度;增加机械系统设计的灵活性;减小定位时的超调量稳定时间,降低对控制系统的要求和系统造价;固有频率高:避开机器人的工作频率,有利于系统的稳定。
好的机器人本体门槛很高,除了电机、减速机的硬伤之外,好的结构设计也非常难,这就是为什么国内机器人本体做得好的、批量生产一致性很好的机器人厂商很少。
如果能在这个上面有所突破,那就非常有前途。
很多人都认为机器人本体无非是实际各个轴的相对连接,本体制造多样,一般是铸铝。
但是实际上好的机器人本体要复杂得多,会有很多细节的问题:比如说如果让重心降低,性能提升;电机与减速机的装配如何保证精度;本体的制造工艺如何保证一致性,装配如何实际稳定产量;如何解决电机散热问题;如何保证线缆长时间不损坏;如何保证机器人重复定位精度保持稳定;如何提高机器人动作的平滑,特别是低速运行时不会抖动。
机器人本体结构
三、手爪的典型结构
1.机械手爪
气动手爪 1—扇形齿轮;2—齿条; 3—活塞;4—气缸;5—爪钳
V形爪钳
四种手爪传动机构
2.磁力吸盘
电磁吸盘结构 l—电磁吸盘;2—防尘盖;3—线圈;4—外壳体
3.真空式吸盘
1—电动机;2—真空泵;3、4—电磁阀;5—吸盘;6—通大气
四、机器人传动机构
1.齿轮传动 行星齿轮传动
二、RRR型手腕
RRR型手腕结构示意图
RRR型手腕容易实现远距传动。 为了实现运动的传递,RRR型手腕的中间关节是斜置 的,三根转动轴内外套在同一转动轴线上,最外面 的转动轴套直接驱动整个手腕转动,中间的轴套驱 动斜置的中间关节运动,中心轴驱动第三个滚转关 节。 RRR型手腕制造简单,润滑条件好,机械效率高,应 用较为普遍。
一、腕部的自由度
手腕按自由度个数可分为单自由度手腕、二自由度手腕和三自由度手腕。 腕部实际所需要的自由度数目应根据机器人的工作性能要求来确定。在有些情况下,腕部具 有两个自由度,即翻转和俯仰或翻转和偏转。一些专用机械手甚至没有腕部,但有些腕部为 了满足特殊要求还有横向移动自由度。
6种三自由度手腕的结合方式示意图
谐波传动
1—刚轮;2—刚轮内齿圈;3—输入轴; 4—谐波发生器;5—轴;6—柔轮;7—柔轮齿圈 液压静压谐波发生器的谐波传动
1—凸轮;2—柔轮;3—小孔
2.丝杠—螺母;3—滚珠;4—导向槽
3.带传动与链传动 4.绳传动与钢带传动 5.连杆与凸轮传动 6.流体传动
RRR型手腕关节远程传动示意图
三、腕部的典型结构
1.单自由度回转运动手腕
单自由度回转运动手腕用回转油缸或气缸直接驱动实现腕部回转运动。这种手腕具有结构紧凑, 体积小,运动灵活,响应快,精度高等特点,但回转角度受限制,一般小于270°
机器人的组成结构及原理
机器人的组成结构及原理机器人是一种能够自主工作的机械设备,是由电子、机械和控制系统组成的复杂系统。
它们使用不同的形式和尺寸的机器人臂来执行各种任务。
下面将阐述机器人主要的组成结构及其原理。
1. 机械结构机械结构是机器人主体的结构,是连接和支撑机器人各部分的基础。
它包括机器人臂、关节、运动系统等。
机器人臂是机器人最重要的部分,它可以根据需求伸缩、旋转和弯曲。
关节是连接机器人臂和其他部分的主要部件,它们可以围绕任意三个轴自由旋转。
运动系统则负责控制机器人的运动。
2. 传感器机器人需要大量的传感器来感知周围环境,从而做出正确的决策。
这些传感器可以包括相机、声音传感器、压力传感器等。
相机可以用来捕获图像,声音传感器可以检测声音,压力传感器可以检测机器人与其他物体之间的压力。
3. 控制系统机器人的控制系统是机器人的大脑。
它包括计算机、编码器、运动控制器和传感器等。
计算机负责计算和传递指令,编码器用于测量怎样从一种状态到达另一种状态,运动控制器控制运动系统的操作,传感器用于提供精确的位置和姿态信息。
4. 电气系统电气系统包括电池、电动机和电机控制器。
电池是机器人的能源来源,它们需要充电才能正常运行。
电动机是机器人的动力系统,它们与机器人的运动部分相连,驱动机器人移动和工作。
电机控制器则负责控制电动机的速度和方向。
5. 软件系统软件系统是机器人的“思考”系统,可以根据程序执行任务。
它包括机器人的程序和算法,这些程序可以由人工智能和机器学习算法支持。
这些算法允许机器人学习并调整其行为,以根据输入数据做出更好的决策。
以上是机器人的主要组成结构及其功能原理。
了解这些原理可以帮助我们更好地理解机器人是如何工作的,以及如何使用它们来完成各种任务。
在未来,机器人将进一步改变我们的生活和工作方式,因为它们能够在许多领域自动化,从而提高效率和生产力。
机器人工作原理
机器人工作原理机器人是一种能够自主执行任务的智能机器。
它们可以完成各种任务,如生产、清洁、维修、医疗和安全等。
机器人在现代工业制造、医疗服务和军事领域等诸多领域中得到应用,它们的出现极大地提高了人们的生活质量和社会效率。
本文将介绍机器人的工作原理。
一、机器人的结构机器人的功能取决于其结构和控制系统。
通常,机器人由四个主要组件组成:1. 机械结构:由轴、传动装置和连接机制组成,包括基座、臂、连接器、关节和末端器等部分。
2. 传感器:用于读取和检测运动、力和位置信息的装置,包括视觉、触觉、声音和其他传感器。
3. 控制电路:通过读取传感器信号和执行任务来控制机器人运动的电路系统。
4. 能源:机器人需要能源来运作,通常使用电动机、压缩空气、液压和化学能源等。
二、机器人的运动原理机器人的运动原理可以分为四个部分:感知、决策、动作和反馈。
1. 感知:机器人使用各种传感器来获取环境的信息,包括图像、声音、接触和其他传感器的信息。
这些感知器将数据传输到机器人的控制中心。
2. 决策:机器人的控制系统会分析所有传感器收集到的数据,并基于内置程序或人工智能算法作出决策。
这些决策可能包括执行任务、如何执行任务、如何移动和寻找解决方案等。
3. 动作:控制系统基于上一个阶段的决策,执行机器人的运动。
机器人的动作通常类似于人类的动作般复杂,需要通过提高运动控制的精度来保证。
4. 反馈:机器人会在执行任务期间收集反馈信息,检查任务是否正确执行。
如果出现问题,机器人将重复上述流程,直到任务完成或出现错误解决。
三、机器人的应用机器人的应用非常广泛,包括工业自动化、医疗、教育和娱乐等各个领域。
以下是一些机器人应用的例子:1. 工业自动化:工业机器人是最常见的机器人类型。
它们用于组装、加工和包装等各个领域,如汽车制造、电子和半导体生产、医疗保健和循环利用等。
2. 医疗:机器人可以用于进行手术、治疗和康复训练等医疗服务。
这包括外科手术机器人、中心减压机器人、物理治疗机器人和康复机器人等。
机器人的四大组成部分.
机器人的四大组成部分机器人目前是典型的机电一体化产品,一般由机械本体、控制系统、传感器、和驱动器等四部分组成。
为对本体进行精确控制,传感器应提供机器人本体或其所处环境的信息,控制系统依据控制程序产生指令信号,通过控制各关节运动坐标的驱动器,使各臂杆端点按照要求的轨迹、速度和加速度,以一定的姿态达到空间指定的位置。
驱动器将控制系统输出的信号变换成大功率的信号,以驱动执行器工作。
1.机械本体机械本体,是机器人赖以完成作业任务的执行机构,一般是一台机械手,也称操作器、或操作手,可以在确定的环境中执行控制系统指定的操作。
典型工业机器人的机械本体一般由手部(末端执行器)、腕部、臂部、腰部和基座构成。
机械手多采用关节式机械结构,一般具有6个自由度,其中3个用来确定末端执行器的位置,另外3个则用来确定末端执行装置的方向(姿势)。
机械臂上的末端执行装置可以根据操作需要换成焊枪、吸盘、扳手等作业工具。
2.控制系统控制系统是机器人的指挥中枢,相当于人的大脑功能,负责对作业指令信息、内外环境信息进行处理,并依据预定的本体模型、环境模型和控制程序做出决策,产生相应的控制信号,通过驱动器驱动执行机构的各个关节按所需的顺序、沿确定的位置或轨迹运动,完成特定的作业。
从控制系统的构成看,有开环控制系统和闭环控制系统之分;从控制方式看有程序控制系统、适应性控制系统和智能控制系统之分。
3.驱动器驱动器是机器人的动力系统,相当于人的心血管系统,一般由驱动装置和传动机构两部分组成。
因驱动方式的不同,驱动装置可以分成电动、液动和气动三种类型。
驱动装置中的电动机、液压缸、气缸可以与操作机直接相连,也可以通过传动机构与执行机构相连。
传动机构通常有齿轮传动、链传动、谐波齿轮传动、螺旋传动、带传动等几种类型。
4.传感器传感器是机器人的感测系统,相当于人的感觉器官,是机器人系统的重要组成部分,包括内部传感器和外部传感器两大类。
内部传感器主要用来检测机器人本身的状态,为机器人的运动控制提供必要的本体状态信息,如位置传感器、速度传感器等。
简述机器人的结构组成
简述机器人的结构组成
机器人的结构组成包括以下几个方面:
1. 机械结构:机器人主要以机械结构为基础,包括机械臂、关节、传动机构、运动控制系统等。
2. 传感器:机器人需要通过传感器获取外界环境信息,例如光电传感器、力传感器、位置传感器等。
3. 控制系统:机器人控制系统包括硬件和软件,用于实现机器人的动作控制、决策和计算等。
4. 电源系统:机器人需要电力供应,通常采用电池或外部电源供电。
5. 末端执行器:根据不同的应用需求,机器人的末端执行器可能是夹具、喷嘴、激光等。
机器人的结构组成因机器人类型和应用场景的不同而异,但以上五个方面是机器人基本结构组成的核心部分。
机器人系统组成结构
多关节柔性手结构图
多指灵巧手结构图
11
二、机械系统组成
2 机器人的手腕
单自由度手腕 二自由度手腕 三自由度手腕
单自由度手腕示意图 二自由度手腕示意图
三自由度手腕示意图
12
二、机械系统组成
机器人控制系统负责协调、管理、控制系统的所有部件进行工作 ,其基本功能包括:
记忆功能 与外围设备联系功能 示教功能 人机接口 位置伺服功能 传感器接口 故障诊断安全保护功能
22
三、控制系统
机器人控制系统框图
23
三、控制系统
3 机器人控制系统结构
机器人控制系统可分为集中控制、主从控制、分散控制
集中控制:所有控制工作由一台计算机(CPU)完成
48
五、驱动系统
7液压驱动 利用液体的抗挤压力来实现力的传递.
典型液压伺服控制系统
d 2 d (Vol) dx
4
Q d (Vol) d 2 dx d 2 x
dt
4 dt 4
dx表示期望的位移; dv是期望的速度;
控制液体流入速度--实现控制活塞速度
位置控制阀原理
49
五、驱动系统
7液压驱动
36
四、感知系统
4传感器-检测类传感器
温度传感器: 数字量输出:以一定协议直接向外输出数字量 模拟量输出:一般为通过电阻的变化间接测量
18B20
PT100
37
四、感知系统
4传感器-检测类传感器
加速度传感器: 一种能够测量加速力的电子设备。
38
四、感知系统
4传感器-检测类传感器
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机器人系统的结构:
机器人的机构部分、
传感器组、
控制部分、
信息处理部分组成。
机器通常由动力部分、工作部分和传动装置三部分组成。
除此之外,还有自动控制部分。
动力部分是机器动力的来源,常用的发动机有电动机、内燃机和空气压缩机等。
工作部分是直接完成机器工作任务的部分,处于整个传动装配的终端,起结构形式取决于机器的用途。
例如金属切削机床的主轴、拖板、工作台等。
传动装置是将动力部分的运动和动力传递给工作部分的中间环节。
例如:金属切削机床中常用的带传动、螺旋传动、齿轮传动、连杆机构、凸轮机构等。
机器应用的传动方式主要有机械传动、液压传动、气动传动及电气传动等。
机器人的执行机构由哪些部件构成
即机器人本体,其臂部一般采用空间开链连杆机构,其中的运动副(转动副或移动副)常称为关节,关节个数通常即为机器人的自由度数。
根据关节配置型式和运动坐标形式的不同,机器人执行机构可分为直角坐标式、圆柱坐标式、极坐标式和关节坐标式等类型。
出于拟人化的考虑,常将机器人本体的有关部位分别称为基座、腰部、臂部、腕部、手部(夹持器或末端执行器)和行走部(对于移动机器人)等
机器的驱动装置有哪些
是驱使执行机构运动的机构,按照控制系统发出的指令信号,借助于动力元件使机器人进行动作。
它输入的是电信号,输出的是线、角位移量。
机器人使用的驱动装置主要是电力驱动装置,如步进电机、伺服电机等,此
外也有采用液压、气动等驱动装置。
机器人的控制系统方式有哪些?一种是集中式控制,即机器人的全部控制由一台微型计算机完成。
另一种是分散(级)式控制,即采用多台微机来分担机器人的控制,如当采用上、下两级微机共同完成机器人的控制时,主机常用于负责系统的管理、通讯、运动学和动力学计算,并向下级微机发送指令信息;作为下级从机,各关节分别对应一个CPU,进行插补运算和伺服控制处理,实现给定的运动,并向主机反馈信息。
根据作业任务要求的不同,机器人的控制方
式又可分为点位控制、连续轨迹控制和力(力矩)控制。
阿西莫夫机器人三定律是什么
科幻小说家艾萨克· 阿西莫夫在小说[1]中所订立的“机器人三定律”。
阿西莫夫为机器人提出的三条“定律”(law),程序上规定所有机器人必须遵守:
一:机器人不得伤害人类,或袖手旁观坐视人类受到伤害;
二:除非违背第一法则,机器人必须服从人类的命令;
三:在不违背第一及第二法则下,机器人必须保护自己。
机器由什么组成的?
机器的组成:
1、动力部分:是机器能量的来源,它将各种能量转变为机器能。
2、工作部分:直接实现机器特定功能、完成生产任务的部分。
3、传动部分:按工作要求将动力部分的运动和动力传递、转换或分配给工作部分的中间装置。
4、控制部分:是控制机器起动、停车和变更运动参数的部分。
(此文档部分内容来源于网络,如有侵权请告知删除,文档可自行编辑修改内容,
供参考,感谢您的配合和支持)。