用双线性变换法设计IIR数字滤波器

合集下载

用双线性变换法设计原型低通为巴特沃斯型的IIR数字高通滤波器

用双线性变换法设计原型低通为巴特沃斯型的IIR数字高通滤波器

《数字信号处理》课程设计报告用双线性变换法设计原型低通为巴特沃斯型的IIR数字高通滤波器学院:姓名:班级:学号:目录一、设计目的及设计内容 (2)二、概念设计 (4)三、详细设计 (14)四、实验总结 (22)五、参考文献 (23)一、设计目的及设计内容当今,数字信号处理(DSP:Digtal Signal Processing)技术正飞速发展,它不但自成一门学科,更是以不同形式影响和渗透到其他学科:它与国民经济息息相关,与国防建设紧密相连;它影响或改变着我们的生产、生活方式,因此受到人们普遍的关注。

数字化、智能化和网络化是当代信息技术发展的大趋势,而数字化是智能化和网络化的基础,实际生活中遇到的信号多种多样,例如广播信号、电视信号、雷达信号、通信信号、导航信号、射电天文信号、生物医学信号、控制信号、气象信号、地震勘探信号、机械振动信号、遥感遥测信号,等等。

上述这些信号大部分是模拟信号,也有小部分是数字信号。

模拟信号是自变量的连续函数,自变量可以是一维的,也可以是二维或多维的。

大多数情况下一维模拟信号的自变量是时间,经过时间上的离散化(采样)和幅度上的离散化(量化),这类模拟信号便成为一维数字信号。

因此,数字信号实际上是用数字序列表示的信号,语音信号经采样和量化后,得到的数字信号是一个一维离散时间序列;而图像信号经采样和量化后,得到的数字信号是一个二维离散空间序列。

数字信号处理,就是用数值计算的方法对数字序列进行各种处理,把信号变换成符合需要的某种形式。

例如,对数字信号经行滤波以限制他的频带或滤除噪音和干扰,或将他们与其他信号进行分离;对信号进行频谱分析或功率谱分析以了解信号的频谱组成,进而对信号进行识别;对信号进行某种变换,使之更适合于传输,存储和应用;对信号进行编码以达到数据压缩的目的,等等。

数字滤波技术是数字信号分析、处理技术的重要分支[2-3]。

无论是信号的获取、传输,还是信号的处理和交换都离不开滤波技术,它对信号安全可靠和有效灵活地传输是至关重要的。

DSP课程设计报告 双线性变换法设计IIR数字低通滤波器

DSP课程设计报告  双线性变换法设计IIR数字低通滤波器

电子信息工程学院《DSP技术及应用》课程设计报告题目:双线性变换法设计IIR数字低通滤波器专业班级:通信工程专业二〇一三年六月六日目录一、设计目的 (1)二、设计要求 (1)三、设计原理及方案 (1)四、软件流程 (3)五、调试分析 (4)六、设计总结 (5)七、参考文献 (5)一、设计目的通过对信号分析与处理近两学期的学习,对信号分析与处理的理论知识已有一定的自我理解,本课程设计的完成,将原有的理论知识转化为软件进行仿真与制作,这样既可在实际中验证理论知识,也能在实际中更加准确的把握理论。

设计理念:1、通过实验加深双线性变换法设计IIR 滤波器基本方法的了解。

2、了解MATLAB 有关双线性变换法的子函数。

3、掌握用双线性变换法设计数字低通滤波器的方法。

二、设计要求1、熟练掌握信号分析、处理等方面的相关理论知识;2、学会运用Matlab 软件,分别设计巴特沃斯,切比雪夫I 型,切比雪夫II 型滤波器并把它们集中在GUI 平台上,通过这个平台实现数据交互,采集实时音频信号并对该信号进行高频加噪处理,滤波处理,进行时域频域分析。

3、组员之间相互协助,共同完成系统设计。

5、通过对信号分析与处理系统的设计,提高对信号分析与处理课程中所学知识的实际运用能力,以及对软件的操作能力。

三、设计原理及方案1、原理图图1 滤波器设计原理图DF 指标DFAF 指标AF 巴特沃斯 切比雪夫I 型、II 型Ω=2T tan ω2 S =2T1111--+-ZZ信号采集信号分析滤波器设计IIR数字低通滤波器信号处理GUI平台设计,程序连接整合图2 系统整体设计框图2、原理图说明图1是滤波器的设计原理,具体说明如下:(1)将给出的数字滤波器的技术指标转换为模拟滤波器的技术指标(2)根据转换后的技术指标设计模拟低通滤波器H(s)(3)再按一定规则将H(s)转换为H(z)图2是系统的原理框架结构,各模块的具体说明如下:(1)信号采集:利用Windows下的录音机,录制一段自己的话音,时间在5s内,也可使用现有的音频,然后在Matlab件平台下,利用函数wavread对语音信号进行采样,记住采样频率和采样点数。

用双线性变换法设计BUTTERWORTH低通IIR数字滤波器

用双线性变换法设计BUTTERWORTH低通IIR数字滤波器

用双线性变换法设计BUTTERWORTH低通IIR数字滤波器:wp=0.2*2*pi; %通带边界频率ws=0.3*2*pi; %阻带截止频率rp=1; %通带最大衰减rs=25; %阻带最小衰减fs=1; %采样频率ts=1/fs; %采样周期wp2=2*fs*tan(wp/2*ts); %预畸变校正ws2=2*fs*tan(ws/2*ts); %预畸变校正[n,wn]=buttord(wp2,ws2,rp,rs,'s') %带入经预畸变后获得的归一化模拟频率参数[z,p,k]=buttap(n) %创建归一化的BUTTERWORTH模拟低通原型滤波器[bap,aap]=zp2tf(z,p,k) %把滤波器零极点模型转化为传递函数模型[b,a]=lp2lp(bap,aap,wn) %把模拟滤波器原型转换成截止频率为Wn的模拟低通滤波器[bz,az]=bilinear(b,a,fs); %用双线性变换法实现模拟滤波器到数字滤波器的转换[h,w]=freqz(bz,az); %绘制频率响应曲线subplot(2,1,1);plot(w/pi,abs(h));grid onxlabel('频率');ylabel('幅度');subplot(2,1,2);plot(w/pi,20*log10(abs(h)));grid onxlabel('频率');ylabel('幅度');用窗口法设计一个线性相位FIR低通滤波器,采用汉宁窗设计:wp=0.2*pi; %通带边界频率ws=0.3*pi; %阻带截止频率wdelta=ws-wp; %过渡带宽N=ceil(8*pi/wdelta); %求出N值wc=(0.2+0.3)*pi/2; %求出截止频率r=(N-1)/2;n=0:N-1;hdn=sin(wc*(n-r))./[pi*(n-r)]; %理想的单位冲激响应wn=hanning(N); %求出汉宁窗的表达式h=hdn.*wn'; %滤波器加窗H=fft(h,512);w=2*[0:511]/512plot(w,20*log10(abs(H)));用MATLAB实现时间抽选的基2-FFT算法:function y=myditfft(x) %本程序对输入序列x实现时间抽选的基2-FFT,%点数取大于等于x长度的2的幂次m=nextpow2(x);N=2^m; %求x的长度对应的2的最低幂次mif length(x)<Nx=[x,zeros(1,N-length(x))];endnxd=bin2dec(fliplr(dec2bin([1:N]-1,m)))+1; %1:2^m数列的倒位序y=x(nxd); %将x倒位序排列作为y的初始值for mm=1:m %将DFT作m次基2分解,从左到右Nmr=2^mm;u=1; %旋转因子u初始化wN^0=1WN=exp(-i*2*pi/Nmr); %当前次分解的基本DFT因子wN=exp(-i*2*pi/Nmr) for j=1:Nmr/2 %当前次跨越间隔内的各次蝶形运算for k=j:Nmr:N %当前次蝶形运算的跨越间隔为Nmr=2^mm kp=k+Nmr/2; %确定蝶形运算的对应单元下标t=y(kp)*u; %蝶形运算的乘积项y(kp)=y(k)-t; %蝶形运算的减法项y(k)=y(k)+t; %蝶形运算的加法项endu=u*WN; %修改旋转因子,多乘一个基本DFT因子wN endend。

双线性变换法设计IIR数字滤波器通信专业

双线性变换法设计IIR数字滤波器通信专业

双线性变换法设计IIR 数字滤波器一、 实验目的1) 熟悉用双线性变换法设计IIR 数字滤波器的原理和方法。

2) 掌握数字滤波器设计的计算机仿真方法。

3) 观察对心电 图信号的实际滤波作用,获得数字滤波的感性认识。

二、 实验原理在滤波器的设计过程中,逼近是一个重要的环节,所谓逼近就是根据性能指标的要求,对理想特性进行逼近,以求得一个因果、稳定且可实现的传递函数。

目前模拟滤波器的频域设计理论已经发展的相当成熟,它不仅具有简单而严格的设计公式,而且设计参数已经表格化了。

借助模拟滤波器的逼近方法,用模拟域到数字域的某种变换,完成数字滤波器的逼进,这是一类简单而行之有效的方法。

双线性变换法采用非线性频率压缩方法,将整个频率轴上的频率范围压缩到-/T~/T 之间,再用z=e 转换Z 平面上。

也就是说,第一步先将整个S 平面压缩映射到S1平面的-/T~/T 一条横带里;第二步再通过标准变换关系z=e 将此横带变换到整个Z 平面上去。

这样就使S 平面与Z 平面建立了一一对应的单值关系,消除了多值变换性,也就消除了频谱混叠现象,影射关系如图7-1所示。

图 7-1 双线性变换的映射关系为了将S 平面的整个虚轴j Ω压缩到S1平面j Ω1轴上的-π/T 到π/T 段上,可以通过以下的正切实现) 2tan(21T T Ω=Ω (7-1)式中T 仍是采样间隔。

当Ω1由-π/T 经过0变化到-π/T 时,Ω由-∞+∞-变化到经过0,也即映射了整个j Ω轴。

将式(7-1)写成Tj T j T j T j eee e T j 11112/2/2Ω-ΩΩ-Ω+-=Ω (7-2)将此关系到解析延拓到整个S 平面和S1平面,令j Ω=s ,j Ω1=s1,则得T s Ts ee T Ts Teee e T s T s T s T s T s 111111112)2tanh(2212/2/2/2/--+-⋅==+-⋅=-- (7-3) 再将s1平面通过以下标准变换关系映射到Z 平面: Ts e1z =(7-4)从而得到S 平面和Z 平面的单值映射关系为11112--+-⋅=z z T s (7-5) sTsT s T s T z -+=-+=222121 (7-6)式(7-5)与式(7-6)是s 平面与z 平面之间的单值映射关系,这种变换都是两个线性函数之比,因此称为双母性变换。

3.4用双线性z变化法设计IIR数字低通滤波器数字信号处理

3.4用双线性z变化法设计IIR数字低通滤波器数字信号处理
现对xs(nTs)取拉普拉斯变换得
z变换的定义
X(s)
x
s
(nTs
)e
sTdt
[
xs (nTs )(t nTs )]esTdt
n
xs (nTs )
[(t
nTs )]esTdt
n
xs (nTs )esnTs X(esTs ) n
z变换的定义
令z= esTs则xs(nTs)的拉普拉斯变换式就可以
3.4用双线性z变化法设计IIR数字低 通滤波器
例:试用双线性z变换法设计一低通数字滤波器, 给定技术指标是 fp=100Hz, αp=3dB, fs=300Hz,αs =20dB , 抽样频率Fs=1000Hz
解: 首先应得到角频率ω,因为2π对应Fs, 所以ωp=2πfp/Fs=2π*0.1=0.2π, ωs=0.6π
P s
1
( 2 z 1) 1 z 1
p
2 Ts
tan( p
/ 2)
Ts z 1
tan(p / 2) z 1
3.4用双线性z变化法设计IIR数字低 通滤波器
因此,无论是在设计模拟滤波器还是由模拟 滤波器转换为数字滤波器的过程,系数 2/Ts均 被约掉,因此,
s z 1 z 1
则相应地 z 1 s
e j/ 2 ) e j/ 2 )
j2 Ts
sin( / 2) cos(/ 2)
3.4用双线性z变化法设计IIR数字 低通滤波器
2 tan(/ 2)
2arctan(
给出Ts 了Ω与ω的映射关系
Ts
/
2)
(1)
这样,当给定了数字滤波器的技术指标ωp,
ωs,αp,αs后,依据式(1)有

用双线性变换法设计IIR

用双线性变换法设计IIR

实验三 用双线性变换法设计IIR 滤波器一、实验目的1、了解两种工程上最常用的变换方法:脉冲响应不变法和双线性变换法。

2、掌握双线性变换法设计IIR 滤波器的原理及具体设计方法,熟悉双线性法设计低通、带通和高通IIR 滤波器的计算机程序。

3、观察用双线性变换法设计的滤波器的品与特性,并与脉冲响应不变法相比较,了解双线性变换法的特点。

4、熟悉用双线性变换法涉及数字Butterworth 和Chebyshev 滤波器的全过程。

5、了解多项式呈几何多项式乘方运算的计算机变成方法。

二、实验原理与方法从模拟滤波器设计IIR 数字滤波器具有四种方法:微分—差分变换法、脉冲响应不变法、双线性变换法、匹配Z 变换法:在工程上常用的是其中两种:脉冲响应不变法、双线性变换法。

脉冲响应不变法需要经历如下步骤:由已知系统传输函数)(s H 计算系统冲激响应)(t h :对)(t h 进行等间隔取样得到)()(nT h t h =,由)(t h 获得数字滤波器的系统响应)(z H 。

这种方法非常直观,其算法宗旨是保证所设计的IIR 滤波器的脉冲响应和响应模拟滤波器的冲激响应在采样个点上完全一致。

而双线性变换法的设计准则是使数字滤波器的频率响应与参考模拟滤波器的频率响应相似。

脉冲响应不变法一个重要的特点是频率坐标的变换式现行的,其缺点是有频谱的周期延拓效应,存在频谱混淆的现象。

为了克服脉冲响应不变法可能产生的频谱混淆,提出了双线性变换法,它依靠双线性变换式:ss z z z s -+=+-=--11,1111 其中,jwre z j s =Ω+=,σ 建立起s 平面和z 平面的单值映射关系,数字频域和模拟频域之间的关系:Ω==Ωarctg w w tg 2),2( (3—1)由上面的关系式可知,当∞>-Ω时,w 中止在折叠频率π=w 处,整个Ωj 周单值的对应于单位圆的一周。

因此双线性变换法不同于脉冲响应不变法,不存在频谱混淆的问题。

实验五:双线性变换法的设计IIR-数字滤波器

实验五:双线性变换法的设计IIR-数字滤波器

实验五、双线性变换法设计IIR 数字滤波器一、实验目的:1、熟悉用双线性变换法设计IIR 数字滤波器的原理与方法。

2、掌握数字滤波器的计算机仿真方法。

3、熟悉Batterworth 滤波器设计方法及特点 二、实验原理(一)、IIR 数字滤波器的设计步骤:① 按照一定规则把给定的滤波器技术指标转换为模拟低通滤波器的技术指标; ② 根据模拟滤波器技术指标设计为响应的模拟低通滤波器;③ 跟据脉冲响应不变法和双线性不变法把模拟滤波器转换为数字滤波器;④ 如果要设计的滤波器是高通、带通或带阻滤波器,则首先把它们的技术指标转化为模拟低通滤波器的技术指标,设计为数字低通滤波器,最后通过频率转换的方法来得到所要的滤波器。

在MATLAB 中,经典法设计IIR 数字滤波器主要采用以下步骤:IIR 数字滤波器设计步骤(二)、用模拟滤波器设计数字滤波器的方法 1、冲激响应不变法:冲激响应不变法是从时域出发,要求数字滤波器的冲激响应h (n ) 对应于模拟滤波器h (t ) 的等间隔抽样。

优点:时域逼近良好;保持线性关系。

缺点:频域响应混叠。

只适用于限带低通滤波器和带通滤波器2、双线性变换法优点:克服了频域混叠模拟滤波器原型 buttap,cheb1ap频率变换 模拟离散化 bilinear,impin varIIR 数字滤波器/Tπ/T π-3/Tπ3/Tπ-j ΩσjIm (z)Re(z)1S 平面Z 平面1S ~S T Tππ-将整个平面压缩变换到平面一个的带状区域缺点:高频时会引起畸变1)冲激响应不变法impinvar格式:[BZ,AZ]= impinvar (B,A,Fs )功能:把具有[B,A]模拟滤波器传递函数模型转换为采样频率为Fs 的数字滤波器的传递函数模型[BZ,AZ],Fs 默认值为1。

例:一个4阶的Butterworth 模拟低通滤波器的系统函数如下:12251)(234++++=s s s s s H a试用冲激响应不变法求出Butterworth 模拟低通数字滤波器的系统函数。

IIR数字滤波器设计及软件实现-实验报告

IIR数字滤波器设计及软件实现-实验报告

实验报告实验四:IIR数字滤波器设计及软件实现1.实验目的(1)熟悉用双线性变换法设计IIR数字滤波器的原理与方法;(2)学会调用MATLAB信号处理工具箱中滤波器设计函数(或滤波器设计分析丄具fdatool)设计各种IIR数字滤波器,学会根据滤波需求确定滤波器指标参数。

(3)掌握IIR数字滤波器的MATLAB实现方法。

(3)通过观察滤波器输入输出信号的时域波形及其频谱,建立数字滤波的概念。

2.实验原理T SIT IIR数字滤波器一般采用间接法(脉冲响应不变法和双线性变换法),应用最广泛的是双线性变换法。

基本设计过程是:①先将给定的数字滤波器的指标转换成过渡模拟滤波器的指标;②设计过渡模拟滤波器;③将过渡模拟滤波器系统函数转换成数字滤波器的系统函数。

MATLAB信号处理工具箱中的各种IIR 数字滤波器设计函数都是釆用双线性变换法。

第六章介绍的滤波器设计函数butter、chebyl、cheby2和ellip 可以分别被调用来直接设计巴特沃斯.切比雪夫1、切比雪夫2和椭圆模拟和数字滤波器。

本实验要求读者调用如上函数直接设计IIR数字滤波器。

本实验的数字滤波器的MATLAB实现是指调用MATLAB信号处理工具箱函数filter 对给定的输入信号x(n)进行滤波,得到滤波后的输出信号y(n)o3.实验内容及步骤(1)调用信号产生函数mstg产生由三路抑制载波调幅信号相加构成的复合信号st,该函数还会自动绘图显示st的时域波形和幅频特性曲线,如图1041 所示。

山图可见,三路信号时域混叠无法在时域分离。

但频域是分离的,所以可以通过滤波的方法在频域分离,这就是本实验的口的。

(b) s(t)的频谱d L厶;亠亠;••I -------------------------------- ♦ -. —--I-------------------------------- —♦---—a a a a a0 200 400 600 800 1000 1200 U00 1600 1800 2000f7Hz图10.4.1三路调幅信号st的时域波形和幅频特性曲线(2)要求将st中三路调幅信号分离,通过观察st的幅频特性曲线,分别确定可以分离st中三路抑制载波单频调幅信号的三个滤波器(低通滤波器、带通滤波器、高通滤波器)的通带截止频率和阻带截止频率。

实验四 IIR数字滤波器设计

实验四 IIR数字滤波器设计

实验四 IIR数字滤波器设计一、实验目的1、熟悉用双线性变换法设计IIR数字滤波器的原理与方法;2、熟悉用脉冲响应不变法设计IIR数字滤波器的原理与方法。

二、实验内容1、已知低通滤波器的指标为:通带边缘频率:0.4π,Ap=0.5dB;阻带边缘频率:0.6π,As=50dB;a、采用脉冲响应不变法设计巴特沃斯,T=1.画出幅度响应和数字滤波器的脉冲响应h(n);b、b、采用脉冲响应不变法设计巴特沃斯,T=1.画出幅度响应和数字滤波器的脉冲响应h(n)。

2、用双线性变换法设计低通滤波器,满足技术指标wp=0.2π,Ap=0.25dB;ws=0.4π,As=50dB,并对方波信号进行滤波,画出滤波前后的波形图并进行简要分析3、设计一个数字高通滤波器H(z),它用在结构xa(t)A/D H(z) D/A ya(t)中,满足下列要求:a、采样速率为10kHZ;b、阻带边缘频率为1.5kHZ,衰减为40dB;c、通带边缘频率为2kHZ,衰减为3dB;d、单调的通带和阻带。

4、设计一个带阻滤波器,要求通带上下截止频率为0.8π,0.2π,通带内衰减不大于1dB,阻带起始频率为0.7π,0.4π,阻带内衰减不小于30dB。

设计巴特沃斯带阻滤波器并画出该数字高通滤波器的幅度响应和脉冲响应。

三、实验程序及解释和实验分析及图形1a、clear;close all; %清屏wp=0.4*pi;ws=0.6*pi;Ap=0.5As=50;T=1;Fs=1/T;OmegaP=wp/T;OmegaS=ws/T;[cs,ds]=afd_butt(OmegaP,OmegaS,Ap,As);[b,a]=impinvar(cs,ds,Fs);[h,w]=freqz(b,a);subplot(2,2,1);plot(w/pi,abs(h));title('幅度响应');grid;subplot(2,2,2);plot(w/pi,angle(h));title('相位响应');grid;subplot(2,2,2);plot(w/pi,angle(h));title('相位响应');grid;subplot(2,2,3);plot(w/pi,20*log(abs(h)));title('幅度响应dB');grid;n=[0:1:59];imp=[1;zeros(59,1)];y=filter(b,a,imp);subplot(2,2,4);plot(n,y);title('脉冲响应');grid;分析:因为w=Ωt,w与Ω呈线性关系,所以其相位响应图是线性的,如相位响应图所示;因为其设计的是低通滤波器,所以会把其高频部分滤掉,留下低频,从而不是特别陡峭,如脉冲响应图所示。

实验二 IIR数字滤波器设计

实验二  IIR数字滤波器设计

实验二 IIR 数字滤波器设计一.实验目的1.掌握双线性变换法设计IIR 数字滤波器的原理及具体设计方法,熟悉用双线性变换法设计低通、带通和高通IIR 数字滤波器的计算机编程。

2.观察用双线性变换法设计的数字滤波器的频域特性,了解双线性变换法的特点。

3.熟悉用双线性变换法设计数字Butterworth 和Chebyshev 滤波器的全过程。

4. 通过观察对实际心电图信号的滤波作用,获得数字滤波工程应用的认识。

二.实验原理与方法1. IIR 数字滤波器可以借助于模拟滤波器设计,即先设计一个适于技术要求的原型模拟滤波器,再按一定的准则用映射的方法将模拟原型的传递函数Ha(s)变换为数字滤波器的系统函数H(z),从而完成数字滤波器的设计任务。

这是一类简单而有效的方法,因为模拟滤波器理论已经相当成熟,有大量公式图表可以利用。

2. 双线性变换法的设计准则是使数字滤波器的频率响应与参考模拟滤波器的频率响应相似。

由双线性变换式 1111z s z ---=+ 建立s 平面与z 平面的单值映射关系,频率变换关系为()2tg ωΩ=。

s 平面的频率轴j Ω单值对应于z 平面上的单位圆j z e ω=,因此不存在频率混叠问题。

由于Ω与ω间的非线性关系,使各个临界频率位置发生非线性畸变,可以通过预畸变校正。

用双线性变换法设计数字滤波器时,先将数字滤波器的各临界频率经过频率预畸变求得模拟原型滤波器的各临界频率,设计模拟原型传递函数,通过双线性变换,正好将这些频率点映射到所需位置上。

双线性变换法设计数字低通滤波器步骤如下:(1)确定数字滤波器的性能指标,包括:通带、阻带临界频率,通带内最大衰减,阻带内最小衰减,采样周期 T 。

(2)确定相应的数字频率。

(3)计算预畸的模拟低通原型临界频率。

(4)计算低通原型阶数N 和3dB 频率ΩC ,求得传递函数Ha(s)。

(5)用低通变换公式1111z s z---=+代入Ha(s),求得数字滤波器系统函数H(z)。

IIR数字滤波器设计报告

IIR数字滤波器设计报告

实验五 IIR数字滤波器设计报告实验目的1.掌握IIR数字滤波器设计方法;2.掌握利用数字滤波器处理连续信号的方法。

实验内容1. 熟悉用双线性变换法设计IIR 数字滤波器的原理与方法。

2. 人体心电信号的主要频率范围为0.05~100Hz,设计带通滤波器,滤除含噪的心电信号。

3. 通过观察对实际心电图信号的滤波作用,获得数字滤波的感性知识。

具体实验步骤及实验结果此次试验,我运用了两种办法设计IIR数字滤波器。

一种是直接运用MATLAB 中已有的函数直接带入参数设计。

一种是运用比较复杂的双线性法设计。

并且分别进行了滤波,和对心电信号的滤波。

函数法:运用MATLAB中已有的函数,buttord,butter,freqz,filter等,直接代入滤波器特性的参数Wp,Ws,Rp,As就可以了。

程序如下:clearclose allclcwp=100;%通带频率ws=300;%阻带频率rp=1;as=50;n=0.0005;E=0.1;f1=20;f2=400;% 1000开始混叠T=0.0005;fs=1/T;[N,wn]=buttord(wp/1000,ws/1000,rp,as);[b,a]=butter(N,wn);freqz(b,a,fs,2000);[hz,w]=freqz(b,a,fs,2000);%加入模拟信号t=0:n:E-n;x=cos(2*pi*t*f1)+cos(2*pi*t*f2); y=filter(b,a,x);h=fft(x)/(E/n); i=fft(y)/(E/n);figure(2); subplot(232);stem(t/E*(1/n),abs(h));axis([0,0.5/n,-1,1]);xlabel('输入频谱(Hz)');subplot(235);stem(t/E*(1/n),abs(i),'r');xlabel('输出频谱(Hz)'); axis([0,0.5/n,-1,1]);subplot(231);plot(t,x);xlabel('原始输入(s)'); subplot(234);plot(t,y);xlabel('滤波之后(s)');subplot(233);plot(w,abs(hz));grid;xlabel('滤波器特性(Hz)');010*******4005006007008009001000-600-400-200Frequency (Hz)P h a s e (d e g r e e s )010*******4005006007008009001000-600-400-2000200Frequency (Hz)M a g n i t u d e (d B )010*******40050060070080090010000.20.40.60.811.21.4滤波器特性(Hz)5001000输入频谱(Hz)5001000输出频谱(Hz)0.050.1-2-1012原始输入(s)0.050.1-2-1012滤波之后(s)我的信号x=cos(2*pi*t*f1)+cos(2*pi*t*f2);为f1=20Hz ,其中带有f2=400Hz 的噪声,所以我设计了一个低通滤波器滤除信号中的高频噪声。

数字信号处理实验matlab版用双线性变换法设计IIR数字滤波器

数字信号处理实验matlab版用双线性变换法设计IIR数字滤波器

实验21用双线性变换法设计IIR 数字滤波器(完美格式版,本人自己完成,所有语句正确,不排除极个别错误,特别适用于山大,勿用冰点等工具下载,否则下载之后的word 格式会让很多部分格式错误,谢谢)XXXX 学号姓名处XXXX一、实验目的1. 加深对双线性变换法设计IIR 数字滤波器基本方法的了解。

2. 掌握用双线性变换法设计数字低通、高通、带通、带阻滤波器的方法。

3. 了解MA TLAB 有关双线性变换法的子函数。

二、实验内容1. 双线性变换法的基本知识。

2. 用双线性变换法设计IIR 数字低通滤波器。

3. 用双线性变换法设计IIR 数字高通滤波器。

4. 用双线性变换法设计IIR 数字带通滤波器。

5. 用双线性变换法设计IIR 数字带阻滤波器。

三、实验环境MATLAB7.0四、实验原理1.实验涉及的MATLAB 子函数Bilinear功能:双线性变换——将s 域(模拟域)映射到z 域(数字域)的标准方法,将模拟滤波器变换成离散等效滤波器。

调用格式:[numd,dend]=bilinear(num,den,Fs);将模拟域传递函数变换为数字域传递函数,Fs 为取样频率。

[numd,dend]=bilinear(num,den,Fs,Fp);将模拟域传递函数变换为数字域传递函数,Fs 为取样频率,Fp 为通带截止频率。

[zd,pd,kd]=bilinear(z,p,k,Fs);将模拟域零极点增益系数变换到数字域,Fs 为取样频率。

[zd,pd,kd]=bilinear(z,p,k,Fs,Fp);将模拟域零极点增益系数变换到数字域,Fs 为取样频率,Fp 为通带截止频率。

[Ad,Bd,Cd,Dd]=bilinear(A,B,C,D,Fs);将模拟域状态变量系数变换到数字域,Fs 为取样频率。

2. 双线性变换法的基本知识双线性变换法是将整个s 平面映射到整个z 平面,其映射关系为11z 1z 1T 2s --+-=或2sT/12sT/1z -+=双线性变换法克服了脉冲响应不变法从s 平面到z 平面的多值映射的缺点,消除了频谱混叠现象。

基于双线性变换法的IIR数字高通滤波器设计

基于双线性变换法的IIR数字高通滤波器设计

基于双线性变换法的IIR数字高通滤波器设计摘要随着信息时代和数字世界的到来,数字信号处理已成为当今一门极其重要的学科和技术领域。

在数字信号处理中起着重要的作用并已获得广泛应用的是数字滤波器(DF,Digital Filter)。

数字滤波器是一种用来过滤时间离散信号的数字系统,通过对抽样数据进行数学处理来达到频域滤波的目的。

实现IIR滤波器的阶次较低,所用的存储单元较少,效率高,精度高,而且能够保留一些模拟滤波器的优良特性,因此应用很广。

Matlab软件以矩阵运算为基础,把计算、可视化及程序设计有机融合到交互式工作环境中,并且为数字滤波的研究和应用提供了一个直观、高效、便捷的利器。

尤其是Matlab中的信号处理工具箱使各个领域的研究人员可以直观方便地进行科学研究与工程应用。

本次主要利用matlab的信号处理工具箱设计一个数字高通IIR滤波器,并用此滤波器处理一段音频信号。

此报告重点介绍了用双线性不变法设计IIR数字滤波器的基本流程,比较了各种设计方法的优缺点,总结了模拟滤波器的性能特征。

最后以双线性不变法设计了一个高通巴特沃斯IIR数字滤波器,介绍了设计步骤,然后在Matlab环境下进行了仿真与调试,实现了设计目标。

关键字 IIR数字滤波器巴特沃斯高通双线性变换 MATLABAbstractWith the information era and the advent of the digital world, digitalsignal processing has become one of the important fields of science and technology. In the digital signal processing plays an important role and has been widely applied in the digital filter. Digital filter is a discrete time signal is used to filter the digital system,through the mathematical processing of sampling data to reach the goal of frequency domain filterin. Implementation of IIR filter order is low, less storage unit, with high efficiency, high precision, and can keep some simulation characteristics of filter, so a very wide application. Matlab software based on matrix computation, the calculation,visualization and program design of organic integration to interactive environment, and provides an intuitive, efficient, convenient tool for the research and application of digital filter..The main use of signal processing toolbox of MATLAB to design a digital high-pass IIR filter, and an audio signal with the filter. This report focuses on the basic process of using the bilinearinvariant IIR digital filter design, compares the advantages and disadvantages of various design methods, summarizes thecharacteristics of the analog filter. Finally, by bilinear invariant to design a high Butterworth IIR digitalfilter, introduces the design steps, and then in the Matlab environment for the simulation and debugging, achieves the design goal.Keywords IIR Butterworth high-pass bilinear transform MATLABdigital filter目录摘要 (I)Abstract (II)1.数字滤波器 (1)1.1 数字滤波器介绍 (1)1.2 IIR数字滤波器设计原理 (2)1.2.2双线性变换法 (3)2.数字滤波器设计实现 (6)2.1 典型模拟滤波器比较 (6)2.2 设计步骤 (6)2.3 程序流程图 (7)2.4音频信号部分程序 (8)2.5仿真结果 (8)2.5.1滤波器性能仿真 (9)2.5.2滤波器除噪性能 (10)3.总结 (10)致谢 (11)参考文献 (12)附录 (13)1. 数字滤波器1.1 数字滤波器介绍数字滤波器是具有一定传输选择特性的数字信号处理装置,其输入、输出均为数字信号,实质上是一个由有限精度算法实现的线性时不变离散系统。

设计IIR滤波器的双线性变换法

设计IIR滤波器的双线性变换法

s

e j2
2e j e j2
cos0
1
1

j
cos0 cos sin

j
此式表明:Z平面单位圆变换到了S平面的虚轴
版权所有 违者必究 第五章 第2讲
22
设计IIR数字滤波器的频率变换法
模拟低通与数字带通的频率变换关系:

,

c
1 1
z z
1 1
1

p3

2
p2

2
p
1
p
0.32491 1
z z
1 1
(1 z 1 )3
1.859208 3.3358z 1 2.241976z 2 0.57016z 3
版权所有 违者必究 第五章 第2讲
17
典型例题
例2:设计一个巴特沃思型数字高通滤波器,3dB数字截
解:① 3阶巴特沃思型归一化模拟低通原型的系统函数为:
HaL ( p)

p3
1 2p2 2p 1
版权所有 违者必究 第五章 第2讲
16
典型例题
② 频率预畸变
c
tg c
2

tg(0.1 ) 0.3249(rad/s)
∴ 数字高通滤波器的系统函数为:
H
(z)

HaL (
p)
p
最小衰减 As 15dB。
解:① 进行频率预畸变,求 p、s 。
p


tg(
p
2
)

tg0.125

0.4142136
s

tg(s
2
)

实验五双线性变换法设计IIR数字滤波器

实验五双线性变换法设计IIR数字滤波器

实验五双线性变换法设计IIR数字滤波器实验五 IIR 数字滤波器设计⼀、实验⽬的(1)熟悉⽤双线性变换法设计IIR 数字滤波器的原理与⽅法;(2)学会调⽤MATLAB 信号处理⼯具箱中滤波器设计函数设计各种IIR 数字滤波器,学会根据滤波需求确定滤波器指标参数。

(3)掌握IIR 数字滤波器的MATLAB 实现⽅法。

(4)通过观察滤波器输⼊输出信号的时域波形及其频谱,建⽴数字滤波的概念。

⼆、实验原理设计IIR 数字滤波器⼀般采⽤间接法(脉冲响应不变法和双线性变换法),应⽤最⼴泛的是双线性变换法。

基本设计过程是:①先将给定的数字滤波器的指标转换成过渡模拟滤波器的指标;②设计过渡模拟滤波器;③将过渡模拟滤波器系统函数转换成数字滤波器的系统函数。

MATLAB 信号处理⼯具箱中的各种IIR 数字滤波器设计函数都是采⽤双线性变换法。

第六章介绍的滤波器设计函数butter 、cheby1 、cheby2 和ellip 可以分别被调⽤来直接设计巴特沃斯、切⽐雪夫1、切⽐雪夫2和椭圆模拟和数字滤波器。

本实验要求读者调⽤如上函数直接设计IIR 数字滤波器。

本实验的数字滤波器的MATLAB 实现是指调⽤MATLAB 信号处理⼯具箱函数filter 对给定的输⼊信号x(n)进⾏滤波,得到滤波后的输出信号y(n )。

三、实验内容及步骤(1)调⽤信号产⽣函数mstg 产⽣由三路抑制载波调幅信号相加构成的复合信号st ,该函数还会⾃动绘图显⽰st 的时域波形和幅频特性曲线,如图5.1所⽰。

容易看出,图5.1中三路调幅信号的载波频率分别为250Hz 、500Hz 、1000Hz 。

抑制载波单频调幅信号的数学表⽰式为0001()cos(2)cos(2)[cos(2())cos(2())]2c c c s t f t f t f f t f f t ππππ==-++ 其中,cos(2)c f t π称为载波,f c 为载波频率,0cos(2)f t π称为单频调制信号,f 0为调制正弦波信号频率,且满⾜0c f f >。

实验三用双线性变换法设计IIR数字滤波器之欧阳与创编

实验三用双线性变换法设计IIR数字滤波器之欧阳与创编

实验_三_题目_用双线性变换法设计IIR 数字滤波器 第16周星期_3_第6,7节二. 实验目的(1)熟悉用双线性变换法设计IIR 数字滤波器的原理与方法。

(2)掌握数字滤波器的计算机仿真方法。

(3)通过观察对实际心电图信号的滤波作用,获得数字滤波的感性知识。

二、实验内容、方法、设计程序及实验结果(1)复习有关巴特沃斯模拟滤波器设计和用双线性变换法设计IIR 数字滤波器的内容,用双线性变换法设计数字滤波器系统函数()z H 。

其中满足本实验要求的数字滤波器系统函数为:()z H k k ∏==31(3.1)式中: ()()3211212121,,,k z C z B z z A z H k k k =--++=---- (3.2)根据设计指标,调用MATLAB 信号处理工具箱buttord 和butter ,也可以得到()z H 。

由公式(3.1)和(3.2)可见,滤波器()z H 由三个二阶滤波器()z H 1、()z H 2和()z H 3级联而成,如图3-1所示。

%x=[-4,-2,0,-4,-6,-4,-2,-4,-6,-6,-4,-4,-6,-6,-2,6,12,8,0,-16,...-38,-60,-84,-90,-66,-32,-4,-2,-4,8,12,12,10,6,6,6,4,... 0,0,0,0,0,-2,-4,0,0,0,-2,-2,0,0,-2,-2,-2,-2,0]; k=1; %控制滤波循环变量close all; %关闭全部绘图窗口figure(1); %创建绘图窗口subplot(2,2,1); %定位子图 1n=0:55; %横坐标stem(n,x,'.'); %画出枝干图axis([0,56,-100,50]); %调整坐标xlabel('n'); %标注横坐标ylabel('x(n)'); %标注纵坐标title('心电图信号采集序列x(n)');%命名该子图B=[0.09036,2*0.09036,0.09036];%H1 滤波器的分子系()n y 图3-1 滤波器()z H 的组成数矩阵A=[1.2686,-0.7051]; %H1滤波器的分母系数矩阵A1=[1.0106,-0.3583]; %H2滤波器的分母系数矩阵A2=[0.9044,-0.2155]; %H3滤波器的分母系数矩阵while(k<=3)y=filter(B,A,x); %进行滤波x=y; %重新赋值X 进行下一次滤波k=k+1; %控制循环变量if k==2A=A1;else A=A2;endendsubplot(2,2,3); %定位子图3stem(n,y,'.');axis([0,56,-100,50]);xlabel('n');ylabel('y(n)');title('三级滤波后的心电图信号(原坐标)');subplot(2,2,2)stem(n,y,'.');axis([0,56,-15,5]);xlabel('n');ylabel('y(n)');title('调整坐标后的心电图信号');%求数字滤波器的幅频特性A=[0.09036,2*0.09036,0.09036];%滤波器的分子系数矩阵B1=[1,-1.2686,0.7051]; %H1滤波器的分母系数矩阵B2=[1,-1.0106,0.3583]; %H2滤波器的分母系数矩阵B3=[1,-0.9044,0.2155]; %H3滤波器的分母系数矩阵[H1,w]=freqz(A,B1,100); %进行滤波器幅频特性分析[H2,w]=freqz(A,B2,100);[H3,w]=freqz(A,B3,100);H4=H1.*(H2); %点积H=H4.*(H3);db=20*log10(abs(H)+eps);subplot(2,2,4)plot(w/pi,db);axis([0,0.5,-50,10]);xlabel('w');ylabel('|H(e^j^w)|');grid on; %显示方格title('滤波器的幅频响应曲线');(2)用双线性变换法设计一个巴特沃斯低通IIR数字滤波器。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

周三晚上
数字信号处理实验报告
实验名称:用双线性变换法设计IIR数字滤波器
专业班级:
学生姓名:
学号:
指导教师:
二○一年月日
rp=1;
rs=10;
fs=100;
wp1=0.2*pi;
ws1=0.3*pi;
wp2=2*fs*tan(wp1/2);
ws2=2*fs*tan(ws1/2);
[N,Wn]=buttord(wp2,ws2,rp,rs,'s'); [Z,P,K]=buttap(N);
[Bap,Aap]=zp2tf(Z,P,K);
[b,a]=lp2lp(Bap,Aap,Wn); [bz,az]=bilinear(b,a,fs);
[H,W]=freqz(bz,az);
subplot(2,1,1);
plot(W/pi,abs(H));
grid;
xlabel('频率')
ylabel('幅度')
subplot(2,1,2);
plot(W/pi,20*log10(abs(H))); grid;
xlabel('频率')
ylabel('幅度(db)')
wp=0.2*2*pi;ws=0.3*2*pi;
rp=1;rs=25;
fs=1;ts=1/fs;
wp1=wp*ts;
ws1=ws*ts;
wp2=2*fs*tan(wp1/2);
ws2=2*fs*tan(ws1/2);
[N,Wn]=buttord(wp2,ws2,rp,rs,'s'); [Z,P,K]=buttap(N);
[Bap,Aap]=zp2tf(Z,P,K);
[b,a]=lp2lp(Bap,Aap,Wn); [bz,az]=bilinear(b,a,fs);
[H,W]=freqz(bz,az);
subplot(2,1,1);
plot(W/pi,abs(H));
grid;
xlabel('频率')
ylabel('幅度')
subplot(2,1,2);
plot(W/pi,20*log10(abs(H))); grid;
xlabel('频率')
ylabel('幅度(db)')
wp=0.2*2*pi;
ws=0.3*2*pi;
rp=1;rs=25;
fs=1;ts=1/fs;
wp1=wp*ts;
ws1=ws*ts;
wp2=2*fs*tan(wp1/2);
ws2=2*fs*tan(ws1/2);
[N,Wn]=buttord(wp2,ws2,rp,rs,'s'); [Z,P,K]=buttap(N);
[Bap,Aap]=zp2tf(Z,P,K);
[b,a]=lp2lp(Bap,Aap,Wn); [bz,az]=bilinear(b,a,fs);
[H,W]=freqz(bz,az,64);
subplot(2,1,1);
plot(W/pi,abs(H));
grid;
xlabel('频率')
ylabel('幅度')
subplot(2,1,2);
plot(W/pi,20*log10(abs(H))); grid;
xlabel('频率')
ylabel('幅度(db)')。

相关文档
最新文档