小学六年级奥数工程问题及答案

合集下载

小学六年级奥数题:工程问题及答案

小学六年级奥数题:工程问题及答案

这篇关于⼩学六年级奥数题:⼯程问题及答案,是⽆忧考特地为⼤家整理的,希望对⼤家有所帮助!
1、⼀件⼯作。

甲队做2天,⼄队做5天,共完成;甲5天,⼄2天,共完成,问甲、⼄两队单独做各需要多少天?
解答:(19/60-4/15)÷3 = 1/60
(19/60+4/15)÷7=1/12
(1/12+1/60)÷2 = 1/20
(1/12-1/60)÷2 = 1/30
甲:1÷1/20 =20(天)⼄:1÷1/30=30(天)
2、A、B两地相距22.4千⽶。

有⼀⽀*队伍从A出发,向B匀速前进;当*队伍队尾离开A时,甲,⼄两⼈分别从A,B两地同时出发。

⼄向A步⾏;甲骑车先追向队头,追上队头后⼜⽴即骑向队尾,到达队尾后再⽴即追向队头,追上队头后⼜⽴即骑向队尾……当甲第5次追上队头时恰与⼄相遇在距B地 5.6千⽶处;当甲第7次追上队头时,甲恰好第⼀次到达B地,那么此时⼄距A地还有多少千⽶?
解答:设甲每次从队尾追到队头⾏x千⽶,从队头到队尾⾏y千⽶,
5x-4y=22.4-5.6 2x-2y=5.6 解得x= 5.6 y=2.8
相遇时,甲实际⾏5.6×5+2.8×4=39.2(千⽶),⼄⾏5.6千⽶,39.2÷5.6=7
甲到B,实际⾏5.6×7+2.8×6=56(千⽶),⼄⾏5.6÷7=8(千⽶)
⼄距A:22.4-8=14.4(千⽶)。

六年级奥数工程问题(含答案)

六年级奥数工程问题(含答案)

一、基本概念(1) 工作总量完成某一项工程所需的所有工作的数量和,常用“1”来表示.(2) 工作时间(3) 工作效率单位时间内所完成的工作量单位时间内所完成的工作量二、基本关系工作量工作量= 工作效率×工作时间工作效率×工作时间【提示】三者之间的关系,可以类比路程、速度和时间的关系.三、常用工具和方法(1) 基本关系(2) 整体化归思想(3) 对比分析的方法(1) 重点:利用整体化归思想和对比分析方法解决较为复杂的工程问题重点:利用整体化归思想和对比分析方法解决较为复杂的工程问题(2) 难点:复杂问题中整体化归思想、比例思想、方程思想与对比分析方法的综合运用重难点知识框架工程问题一、根据基本关系解题【例 1】一项工程,甲单独做需要28天时间,乙单独做需要21天时间,如果甲、乙合作需要多少时间?少时间?【巩固】 一项工程,甲单独做需要21天时间,甲、乙合作需要12天时间,如果乙单独做需要多少时间?天时间,如果乙单独做需要多少时间?【例 2】一项工程,甲队单独完成需40天。

若乙队先做10天,余下的工程由甲、乙两队合作,又需20天可完成天可完成. . 如果乙队单独完成此工程,则需如果乙队单独完成此工程,则需__________________天天.【巩固】 一项工程,甲队单独做20天可以完成,甲队做了8天后,由于另有任务,剩下的工作由乙队单独做15天完成.问:乙队单独完成这项工作需多少天?天完成.问:乙队单独完成这项工作需多少天?二、运用整体化归思想解题【例 3】有两个同样的仓库,搬运完一个仓库的货物,甲需6小时,乙需7小时,丙需14小时。

甲、乙同时开始各搬运一个仓库的货物。

开始时,丙先帮甲搬运,后来又去帮乙搬运,最后两个仓库的货物同时搬完。

则丙帮甲的货物同时搬完。

则丙帮甲 小时,帮乙小时,帮乙 小时。

小时。

例题精讲【巩固】 一池水,甲、乙两管同时开,5小时灌满;乙、丙两管同时开,4小时灌满.现在先开乙管6小时,还需甲、丙两管同时开2小时才能灌满.乙单独开几小时可以灌满?【例 4】一批工人到甲、乙两个工地进行清理工作,甲工地的工作量是乙工地的工作量的112倍.上午去甲工地的人数是去乙工地人数的3倍,下午这批工人中有712的人去甲工地.其他工人到乙工地.到傍晚时,甲工地的工作已做完,乙工地的工作还需4名工人再做1天,那么这批工人有多少人?少人?【巩固】 甲、乙、丙三队要完成A ,B 两项工程,B 工程的工作量是A 工程工作量再增加14,如果让甲、乙、丙三队单独做,完成A 工程所需要的时间分别是20天,24天,30天.现在让甲队做A 工程,乙队做B 工程,为了同时完成这两项工程,丙队先与乙队合做B 工程若干天,然后再与甲队合做A 工程若干天.问丙队与乙队合做了多少天?工程若干天.问丙队与乙队合做了多少天?【例 5】一项工程,甲单独做要12小时完成,乙单独做要18小时完成.若甲先做1小时,然后乙接替甲做1小时,再由甲接替乙做1小时,……,两人如此交替工作,请问:完成任务时,共用了多少小时?用了多少小时?【巩固】 蓄水池有甲、丙两条进水管和乙、丁两条排水管,要灌满一池水,单开甲管需3小时,单开丙管需要5小时,要排光一池水,单开乙管需要4小时,单开丁管需要6小时,现在池内有16的水,若按甲、乙、丙、丁、甲、乙、丙、丁……的顺序轮流打开1小时,问多少时间后水开始溢出水池?问多少时间后水开始溢出水池?三、运用对比分析方法解题【例 6】一项工程,甲、一项工程,甲、乙合作需要乙合作需要20天完成,乙、天完成,乙、丙合作需要丙合作需要15天完成,由乙单独做需要30天完成,那么如果甲、乙、丙合作,完成这项工程需要多少天?那么如果甲、乙、丙合作,完成这项工程需要多少天?【巩固】 一项工程,甲、乙合作需要9天完成,乙、丙合作需要12天,由丙单独做需要36天完成,那么如果甲、丙合作,完成这项工程需要多少天?如果甲、丙合作,完成这项工程需要多少天?【例 7】一项工程,一项工程,如果甲先做如果甲先做5天,天,那么乙接着做那么乙接着做20天可以完成;天可以完成;如果甲先做如果甲先做20天,天,那么乙接着做那么乙接着做8天可以完成.如果甲、乙合作,那么多少天可以完成?天可以完成.如果甲、乙合作,那么多少天可以完成?【巩固】 一件工作甲先做6小时,乙接着做12小时可以完成;甲先做8小时,乙接着做6小时也可以完成.如果甲做3小时后由乙接着做,还需要多少小时完成?小时后由乙接着做,还需要多少小时完成?【例 8】一项工程,甲、乙、丙三人合作需要13天完成.如果丙休息2天,乙就要多做4天,或者由甲、乙两人合作1天. 问这项工程由甲独做需要多少天?问这项工程由甲独做需要多少天?【巩固】 抄一份书稿,甲每天的工作效率等于乙、丙二人每天的工作效率的和;丙的工作效率相当甲、乙每天工作效率和的15.如果3人合抄只需8天就完成了,那么乙一人单独抄需要多少天才能完成?那么乙一人单独抄需要多少天才能完成?【例 9】放满一个水池,如果同时打开1,2,3号阀门,则20分钟可以完成;如果同时打开2,3,4阀门,则21分钟可以完成;如果同时打开1,3,4号阀门,则28分钟可以完成;如果同时打开1,2,4号阀门,则30分钟可以完成.问:如果同时打开1,2,3,4号阀门,那么多少分钟可以完成?少分钟可以完成?【例 10】某工程如果由第一、二、三小队合干需要12天才能完成;如果由第一、三、五小队合干需要7天才能完成;如果由第二、四、五小队合干需要8天才能完成;如果由第一、三、四小队合干需要42天才能完成.那么这五个小队一起合干需要多少天才能完成这项工程?天才能完成.那么这五个小队一起合干需要多少天才能完成这项工程?【例 11】规定两人轮流做一个工程,要求第一个人先做1个小时,第二个人接着做一个小时,然后再由第一个人做1个小时,然后又由第二个人做1个小时,如此反复,做完为止.如果甲、乙轮流做一个工程需要9.8小时,而乙、甲轮流做同样的工程只需要9.6小时,那乙单独做这个工程需要多少小时?要多少小时?【巩固】 公园水池每周需换一次水.水池有甲、乙、丙三根进水管.第一周小李按甲、乙、丙、甲、乙、丙、……的顺序轮流打开1小时,恰好在打开水管整数小时后灌满空水池.第二周他按乙、丙、甲、乙、丙、甲……的顺序轮流打开1小时,灌满一池水比第一周少用了15分钟;第三周他按丙、乙、甲、丙、乙、甲……的顺序轮流打开1小时,比第一周多用了15分钟.第四周他三个管同时打开,灌满一池水用了2小时20分,第五周他只打开甲管,那么灌满一池水需用________小时.小时.【例 12】一项工程,甲、乙合作3125小时可以完成,若第1小时甲做,第2小时乙做,这样交替轮流做,恰好整数小时做完;若第1小时乙做,第2小时甲做,这样交替轮流做,比上次轮流做要多13小时,那么这项工作由甲单独做,要用多少小时才能完成?时,那么这项工作由甲单独做,要用多少小时才能完成?【巩固】 甲、乙、丙三人完成一件工作,原计划按甲、乙、丙顺序每人轮流工作一天,正好整数天完成,若按乙、丙、甲的顺序每人轮流工作一天,则比原计划多用12天;若按丙、甲、乙的顺序每人轮流工作一天,则比原计划多用13天.已知甲单独完成这件工作需10.75天.问:甲、乙、丙一起做这件工作,完成工作要用多少天?做这件工作,完成工作要用多少天?四、综合运用多种思想解题【例 13】一批零件平均分给甲、乙两人同时加工,两人工作5小时,共完成这批零件的23。

小学六年级奥数工程问题及答案(3页)

小学六年级奥数工程问题及答案(3页)

小学六年级奥数工程问题及答案工程问题1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时?解:1/20+1/16=9/80表示甲乙的工作效率9/80×5=45/80表示5小时后进水量1-45/80=35/80表示还要的进水量35/80÷(9/80-1/10)=35表示还要35小时注满答:5小时后还要35小时就能将水池注满。

2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。

如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。

现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?解:由题意得,甲的工效为1/20,乙的工效为1/30,甲乙的合作工效为1/20*4/5+1/30*9/10=7/100,可知甲乙合作工效>甲的工效>乙的工效。

又因为,要求“两队合作的天数尽可能少”,所以应该让做的快的甲多做,16天内实在来不及的才应该让甲乙合作完成。

只有这样才能“两队合作的天数尽可能少”。

设合作时间为x天,则甲独做时间为(16-x)天1/20*(16-x)+7/100*x=1x=10答:甲乙最短合作10天3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。

现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。

乙单独做完这件工作要多少小时?解:由题意知,1/4表示甲乙合作1小时的工作量,1/5表示乙丙合作1小时的工作量(1/4+1/5)×2=9/10表示甲做了2小时、乙做了4小时、丙做了2小时的工作量。

根据“甲、丙合做2小时后,余下的乙还需做6小时完成”可知甲做2小时、乙做6小时、丙做2小时一共的工作量为1。

所以1-9/10=1/10表示乙做6-4=2小时的工作量。

小学六年级奥数第16讲 工程问题(含答案分析)

小学六年级奥数第16讲 工程问题(含答案分析)

第16讲 “组合法”解工程问题一、知识要点在解答工程问题时,如果对题目提供的条件孤立、分散、静止地看,则难以找到明确的解题途径,若用“组合法”把具有相依关系的数学信息进行恰当组合,使之成为一个新的基本单位,便会使隐蔽的数量关系立刻明朗化,从而顺利找到解题途径。

二、精讲精练【例题1】一项工程,甲、乙两队合作15天完成,若甲队做5天,乙队做3天,只能完成工程的307,乙队单独完成全部工程需要几天? 练习1:1、师、徒二人合做一批零件,12天可以完成。

师傅先做了3天,因事外出,由徒弟接着做1天,共完成任务的203。

如果这批零件由师傅单独做,多少天可以完成?2、某项工程,甲、乙合做1天完成全部工程的245。

如果这项工程由甲队独做2天,再由乙队独做3天,能完成全部工程的2413。

甲、乙两队单独完成这项工程各需多少天?【例题2】一项工程,甲队独做12天可以完成。

甲队先做了3天,再由乙队做2天,则能完成这项工程的21。

现在甲、乙两队合做若干天后,再由乙队单独做。

做完后发现两段所用时间相等。

求两段一共用了几天?练习2:1、一项工程,甲队独做15天完成。

若甲队先做5天,乙队再做4天能完成这项工程的158。

现由甲、乙两队合做若干天后,再由乙队单独做。

做完后发现,两段时间相等。

这两段时间一共是几天?2、一项工程,甲、乙合做8天完成。

如果先让甲独做6天,再由乙独做,完成任务时发现乙比甲多了3天。

乙独做这项工程要几天完成?3、某工作,甲单独做要12天,乙单独做要18天,丙单独做要24天。

这件工作先由甲做了若干天,再由乙接着做;乙做的天数是甲3倍,再由丙接着做,丙做的天数是乙的2倍。

终于完成了这一工作。

问总共用了多少天?【例题3】移栽西红柿苗若干棵,如果哥、弟二人合栽8小时完成,先由哥哥栽了3小时后,又由弟弟栽了1小时,还剩总棵数的1611没有栽,已知哥哥每小时比弟弟每小时多栽7棵。

共要移栽西红柿苗多少棵?练习3:1、加工一批机器零件,师、徒合做12小时可以完成。

六年级奥数.应用题.工程问题(ABC级). 学生版

六年级奥数.应用题.工程问题(ABC级). 学生版

一、 基本概念(1) 工作总量完成某一项工程所需的所有工作的数量和,常用“1”来表示.(2) 工作时间(3) 工作效率单位时间内所完成的工作量二、 基本关系工作量 = 工作效率×工作时间【提示】三者之间的关系,可以类比路程、速度和时间的关系.三、 常用工具和方法(1) 基本关系(2) 整体化归思想(3) 对比分析的方法(1) 重点:利用整体化归思想和对比分析方法解决较为复杂的工程问题(2) 难点:复杂问题中整体化归思想、比例思想、方程思想与对比分析方法的综合运用重难点知识框架工程问题一、 根据基本关系解题【例 1】 一项工程,甲单独做需要28天时间,乙单独做需要21天时间,如果甲、乙合作需要多少时间?【巩固】 一项工程,甲单独做需要21天时间,甲、乙合作需要12天时间,如果乙单独做需要多少时间?【例 2】 一项工程,甲队单独完成需40天。

若乙队先做10天,余下的工程由甲、乙两队合作,又需20天可完成. 如果乙队单独完成此工程,则需______天.【巩固】 一项工程,甲队单独做20天可以完成,甲队做了8天后,由于另有任务,剩下的工作由乙队单独做15天完成.问:乙队单独完成这项工作需多少天?二、 运用整体化归思想解题【例 3】 有两个同样的仓库,搬运完一个仓库的货物,甲需6小时,乙需7小时,丙需14小时。

甲、乙同时开始各搬运一个仓库的货物。

开始时,丙先帮甲搬运,后来又去帮乙搬运,最后两个仓库的货物同时搬完。

则丙帮甲 小时,帮乙 小时。

例题精讲【巩固】一池水,甲、乙两管同时开,5小时灌满;乙、丙两管同时开,4小时灌满.现在先开乙管6小时,还需甲、丙两管同时开2小时才能灌满.乙单独开几小时可以灌满?【例4】一批工人到甲、乙两个工地进行清理工作,甲工地的工作量是乙工地的工作量的112倍.上午去甲工地的人数是去乙工地人数的3倍,下午这批工人中有712的人去甲工地.其他工人到乙工地.到傍晚时,甲工地的工作已做完,乙工地的工作还需4名工人再做1天,那么这批工人有多少人?【巩固】甲、乙、丙三队要完成A,B两项工程,B工程的工作量是A工程工作量再增加14,如果让甲、乙、丙三队单独做,完成A工程所需要的时间分别是20天,24天,30天.现在让甲队做A工程,乙队做B工程,为了同时完成这两项工程,丙队先与乙队合做B工程若干天,然后再与甲队合做A工程若干天.问丙队与乙队合做了多少天?【例5】一项工程,甲单独做要12小时完成,乙单独做要18小时完成.若甲先做1小时,然后乙接替甲做1小时,再由甲接替乙做1小时,……,两人如此交替工作,请问:完成任务时,共用了多少小时?【巩固】蓄水池有甲、丙两条进水管和乙、丁两条排水管,要灌满一池水,单开甲管需3小时,单开丙管需要5小时,要排光一池水,单开乙管需要4小时,单开丁管需要6小时,现在池内有16的水,若按甲、乙、丙、丁、甲、乙、丙、丁……的顺序轮流打开1小时,问多少时间后水开始溢出水池?三、运用对比分析方法解题【例6】一项工程,甲、乙合作需要20天完成,乙、丙合作需要15天完成,由乙单独做需要30天完成,那么如果甲、乙、丙合作,完成这项工程需要多少天?【巩固】一项工程,甲、乙合作需要9天完成,乙、丙合作需要12天,由丙单独做需要36天完成,那么如果甲、丙合作,完成这项工程需要多少天?【例7】一项工程,如果甲先做5天,那么乙接着做20天可以完成;如果甲先做20天,那么乙接着做8天可以完成.如果甲、乙合作,那么多少天可以完成?【巩固】一件工作甲先做6小时,乙接着做12小时可以完成;甲先做8小时,乙接着做6小时也可以完成.如果甲做3小时后由乙接着做,还需要多少小时完成?【例8】一项工程,甲、乙、丙三人合作需要13天完成.如果丙休息2天,乙就要多做4天,或者由甲、乙两人合作1天. 问这项工程由甲独做需要多少天?【巩固】抄一份书稿,甲每天的工作效率等于乙、丙二人每天的工作效率的和;丙的工作效率相当甲、乙每天工作效率和的15.如果3人合抄只需8天就完成了,那么乙一人单独抄需要多少天才能完成?【例9】放满一个水池,如果同时打开1,2,3号阀门,则20分钟可以完成;如果同时打开2,3,4阀门,则21分钟可以完成;如果同时打开1,3,4号阀门,则28分钟可以完成;如果同时打开1,2,4号阀门,则30分钟可以完成.问:如果同时打开1,2,3,4号阀门,那么多少分钟可以完成?【例10】某工程如果由第一、二、三小队合干需要12天才能完成;如果由第一、三、五小队合干需要7天才能完成;如果由第二、四、五小队合干需要8天才能完成;如果由第一、三、四小队合干需要42天才能完成.那么这五个小队一起合干需要多少天才能完成这项工程?【例11】规定两人轮流做一个工程,要求第一个人先做1个小时,第二个人接着做一个小时,然后再由第一个人做1个小时,然后又由第二个人做1个小时,如此反复,做完为止.如果甲、乙轮流做一个工程需要9.8小时,而乙、甲轮流做同样的工程只需要9.6小时,那乙单独做这个工程需要多少小时?【巩固】公园水池每周需换一次水.水池有甲、乙、丙三根进水管.第一周小李按甲、乙、丙、甲、乙、丙、……的顺序轮流打开1小时,恰好在打开水管整数小时后灌满空水池.第二周他按乙、丙、甲、乙、丙、甲……的顺序轮流打开1小时,灌满一池水比第一周少用了15分钟;第三周他按丙、乙、甲、丙、乙、甲……的顺序轮流打开1小时,比第一周多用了15分钟.第四周他三个管同时打开,灌满一池水用了2小时20分,第五周他只打开甲管,那么灌满一池水需用________小时.【例12】一项工程,甲、乙合作3125小时可以完成,若第1小时甲做,第2小时乙做,这样交替轮流做,恰好整数小时做完;若第1小时乙做,第2小时甲做,这样交替轮流做,比上次轮流做要多13小时,那么这项工作由甲单独做,要用多少小时才能完成?【巩固】甲、乙、丙三人完成一件工作,原计划按甲、乙、丙顺序每人轮流工作一天,正好整数天完成,若按乙、丙、甲的顺序每人轮流工作一天,则比原计划多用12天;若按丙、甲、乙的顺序每人轮流工作一天,则比原计划多用13天.已知甲单独完成这件工作需10.75天.问:甲、乙、丙一起做这件工作,完成工作要用多少天?四、综合运用多种思想解题【例13】一批零件平均分给甲、乙两人同时加工,两人工作5小时,共完成这批零件的23。

小学六年级奥数工程问题及答案

小学六年级奥数工程问题及答案

小学六年级奥数工程问题及答案工程问题1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时?解:1/20+1/16=9/80表示甲乙的工作效率9/80×5=45/80表示5小时后进水量1-45/80=35/80表示还要的进水量35/80÷(9/80-1/10)=35表示还要35小时注满答:5小时后还要35小时就能将水池注满。

2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。

如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。

现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?解:由题意得,甲的工效为1/20,乙的工效为1/30,甲乙的合作工效为1/20*4/5+1/30*9/10=7/100,可知甲乙合作工效>甲的工效>乙的工效。

又因为,要求“两队合作的天数尽可能少”,所以应该让做的快的甲多做,16天内实在来不及的才应该让甲乙合作完成。

只有这样才能“两队合作的天数尽可能少”。

设合作时间为x天,则甲独做时间为(16-x)天1/20*(16-x)+7/100*x=1x=10答:甲乙最短合作10天3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。

现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。

乙单独做完这件工作要多少小时?解:由题意知,1/4表示甲乙合作1小时的工作量,1/5表示乙丙合作1小时的工作量(1/4+1/5)×2=9/10表示甲做了2小时、乙做了4小时、丙做了2小时的工作量。

根据“甲、丙合做2小时后,余下的乙还需做6小时完成”可知甲做2小时、乙做6小时、丙做2小时一共的工作量为1。

所以1-9/10=1/10表示乙做6-4=2小时的工作量。

工程问题(六年级奥数题及答案)

工程问题(六年级奥数题及答案)

1、一个筑路队有13人,3天修路9.75千米,如果每人的工作效率不变,15人5天修路多少千米?
2、甲、乙两地的距离是496千米,一辆客车从甲地开往乙地,每小时行64千米,行驶1小时后,一辆货车从乙地开往甲地,每小时行56千米.货车开出几小时后与客车相遇?
1、一个筑路队有13人,3天修路9.75千米,如果每人的工作效率不变,15人5天修路多少千米?
解答:9.75÷3÷13×15×5=18.75(千米)
2、甲、乙两地的距离是496千米,一辆客车从甲地开往乙地,每小时行64千米,行驶1小时后,一辆货车从乙地开往甲地,每小时行56千米.货车开出几小时后与客车相遇?
解答:(496-64)÷(64+56)=3.6(小时)。

六年级奥数试题及答案:工程问题【三篇】

六年级奥数试题及答案:工程问题【三篇】

六年级奥数试题及答案:工程问题【三篇】导读:本文六年级奥数试题及答案:工程问题【三篇】,仅供参考,如果觉得很不错,欢迎点评和分享。

【第一篇】一项建筑工程,由甲建筑队单独承建要一年半,乙建筑队单独承建要一年零三个月,现在两队合作半年,剩下的由乙队继续完成还要()个月.(假设每月实际工作天数一样)考点:工程问题.分析:把这项工程看做“1”,则甲乙单独完成的工作效率分别是,于是可求出他们合作半年的工作量,也就能求剩余的工作量,进而可求剩余的工作时间.解:他们合作半年的工作量是;剩余的工作量是;剩余的工作时间是;故应填:4.点评:此题主要考查工作量、工作时间、工作效率之间的关系,关键是先求出剩余的工作量.【第二篇】甲、乙、丙三人合修一围墙.甲、乙合修6天修好围墙的1/3,乙、丙合修2天修好余下的1/4,剩下的三人又合修了5天才完成.共得工资180元,按各人所完成的工作量的多少来合理分配,每人应得()元.分析:要求每人分得的钱数,因为按各人所完成的工作量的多少来合理分配工资,所以必须知道每人完成的工作量.要求每人完成的工作量,就要知道每人的工作效率;由题意得甲、乙、丙工作效率之和为;乙、丙合修2天修好余下的1/4,可得乙、丙工作效率之和:;甲的工作效率为;同理可求出乙的工作效率.然后求出各自的工作量.【第三篇】原计划用24个工人挖一定数量的土方,按计划工作5天后,因为调走6人,于是剩下的工人每天比原定工作量多挖1方土才能如期完成任务,原计划每人每天挖土()方.考点:工程问题.分析:方法一:调走6人还剩18人,那么18个人还干24个人的活,即3个人干4个人的活,每个人要多干原来的三分之一的活,而多三分之一就是要多挖1方土,所以每个人要挖3方土;方法二:假设每人每天挖x方,完成任务的天数为y天,那么共有24xy方土需要挖,5天内挖了24×5x方土,5天后剩下24x(y-5)方土没挖,这时只有24-6=18人了,则有24x(y-5)=18(x+1)×(y-5),解此不定方程即可.解:方法一:调走人后每人每天多干原来的几分之几:24÷(24-6)-1=1/3,原计划每人每天挖土的方数:1÷(1/3)=3(方).方法二:设每人每天挖x方,完成任务的天数为y天,则共有24xy方土需要挖,5天内挖了24×5x方土,所以24x(y-5)=18(x+1)×(y-5),根据题意得出y必须大于5,所以24x=18x+18,6x=18,x=3,答:原计划每人每天挖土3方.故答案为:3.点评:此题为工程问题,分析题干,从求调走人后每人每天多干原来的几分之几去思考,一步步解答,同时注意别陷入计算按计划工作5天后工作量的误区.。

小学六年级奥数工程类问题专练含答案解析

小学六年级奥数工程类问题专练含答案解析

小学六年级奥数工程类问题专练含答案解析1、新能源项目,A 研发团队单独做要12个月完成,A 、B 两团队合作需8个月完成,如果B 团队单独做,需要多少个月才完成?解析:把工程总量看作单位“1”,A 研发团队需要12个月完成,则A 团队1个月完成工程总量的121,A 、B 两团队合作需要8个月完成,那么8个月A 团队完成了(121×8=32),还剩下31没有完成,由此可知,B 团队完成了工程总量的31,那么B 团队每月完成工程总量的(31÷8=241),工程总量为“1”,所以B 团队单独要(1÷241=24天)才能完成。

2、一项工程,A 团队单独研发需30个月完成,B 团队单独研发需20个月完成。

如果A 团队先干10个月,接着B 团队加入,那么一起完成剩余工作还需多少个月?解析:把一项工程看作单位“1”,A 团队单独研发需30个月完成,则A 团队一个月完成工程的301;B 团队单独研发需20个月,则B 团队1个月完成工程总量的201。

A 团队先干10个月完成总工程的(301×10=31),还剩下总工程师的(1-31=32),接着B 团队加入,说明剩下的工程是A 、B 共同完成,A 团队和B 团队一个月完成总工程(301+201=121),剩余工程还需要(32÷121=8)8个月完成。

3、设计此次新能源项目,甲、乙两个设计师合作需15天完成。

现在由甲设计师先单独工作5天,再由乙设计师单独工作3天后还剩这项工作的43没完成。

甲设计师单独完成这次设计需要多少天?解析:把新能源项目看成单位“1”,由题意知,甲、乙两个设计师合作需要15天完成,甲、乙两个设计师1天完成总工程的151,甲设计师先单独工作5天,乙设计师单独工作3天,可以理解为甲、乙合作3天,甲又单独工作2天,现在这项工作还有43没有完成,说明已经完成41。

合作3天完成总工程的(151×3=51),甲单独工作2天完成工程的(41-51=201),则甲单独工作1天完成总工程的(201÷2=401),所以甲单独完成这次设计需要(1÷401=40天)。

小学六年级奥数工程问题习题与解答【三篇】

小学六年级奥数工程问题习题与解答【三篇】

小学六年级奥数工程问题习题与解答【三篇】教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书,包括教材简析和学生分析、教学目的、重难点、教学准备、教学过程及练习设计等,下面是由小编为大家整理的范文模板,仅供参考,欢迎大家阅读.芬芳袭人花枝俏,喜气盈门捷报到。

心花怒放看通知,梦想实现今日事,喜笑颜开忆往昔,勤学苦读最美丽。

在学习中学会复习,在运用中培养能力,在总结中不断提高。

以下是小编为大家整理的《小学六年级奥数工程问题习题与解答【三篇】》供您查阅。

【文章一】1.一批零件,张师傅独做_时完成,王师傅独做30时完成.如果两人同时做,那么完成任务时张师傅比王师傅多做60个零件.这批零件共有多少个?【文章二】1.一空水池有甲、乙两根进水管和一根排水管.单开甲管需5分钟注满水池,单开乙管需_分钟注满水池,满池水如果单开排水管需6分钟流尽.某次池中没有水,打开甲管若干分钟后,发现排水管未关上,随即关上排水管,同时打开乙管,又过了同样长的时间,水池的1/4注了水.如果继续注满水池,前后一共要花多少时间?【文章三】公园水池每周需换一次水.水池有甲、乙、丙三根进水管.第一周小李按甲、乙、丙、甲、乙、丙…的顺序轮流打开小1时,恰好在打开某根进水管1小时后灌满空水池.第二周他按乙、丙、甲、乙、丙、甲…的顺序轮流打开1小时,灌满一池水比第一周少用了_分钟;第三周他按丙、乙、甲、丙、乙、甲…的顺序轮流打开1小时,比第一周多用了_分钟.第四周他三个管同时打开,灌满一池水用了2小时_分,第五周他只打开甲管,那么灌满一池水需用()小时.考点:工程问题.分析:如第一周小李按甲、乙、丙、甲、乙、丙…的顺序轮流打开1小时,恰好在打开丙管1小时后灌满空水池,则第二周他按乙、丙、甲、乙、丙、甲…的顺序轮流打开1小时,应在打开甲管1小时后灌满一池水,不合题意;如第一周小李按甲、乙、丙、甲、乙、丙…的顺序轮流打开1小时,恰好在打开乙管1小时后灌满空水池,则第二周他按乙、丙、甲、乙、丙、甲…的顺序轮流打开1小时,应在打开丙管45分钟后灌满一池水;第三周他按丙、乙、甲、丙、乙、甲…的顺序轮流打开1小时,应在打开甲管后_分钟灌满一池水;比较第二周和第三周,发现开乙管1小时和丙管45分钟的进水量与开丙管、乙管各1小时加开甲管_分钟的进水量相同,矛盾;所以第一周是在开甲管1小时后灌满水池的;比较三周发现,甲管1小时的进水量与乙管45分钟的进水量相同,乙管30分钟的进水量与丙管1小时的进水量相同.三管单位时间内的进水量之比为3:4:2;据此解答即可.解答:解:由分析可知:甲管1小时的进水量与乙管45分钟的进水量相同,乙管30分钟的进水量与丙管1小时的进水量相同.三管单位时间内的进水量之比为3:4:2;2小时_分=答:第五周他只打开甲管,那么灌满一池水需用7小时;故答案为:7.点评:此题属于复杂的工程问题应用题,根据题意推出:三管单位时间内的进水量之比为3:4:2,是解答此题的关键.小学六年级奥数工程问题习题与解答【三篇】.到电脑,方便收藏和打印:。

六年级奥数工程问题应用题及答案

六年级奥数工程问题应用题及答案

六年级奥数工程问题应用题及答案六年级奥数工程问题应用题及答案 11、甲、乙之间的水路是234千米,一只船从甲港到乙港需9小时,从乙港返回甲港需13小时,问船速和水速各为每小时多少千米?答案:从甲到乙顺水速度:234÷9=26(千米/小时)。

从乙到甲逆水速度:234÷13=18(千米/小时)。

船速是:(26+18)÷2=22(千米/小时)。

水速是:(26-18)÷2=4(千米/小时)。

2、A、B两地相距10000米,甲骑自行车,乙步行,同时从A地去B地。

甲的速度是乙的4倍,途中甲的自行车发生故障,修车耽误了一段时间,这样乙到达占地时,甲离B地还有200米。

甲修车的时间内,乙走了多少米?解:由甲共走了10000-200=9800(米),可推出在甲走的同时乙共走了9800÷4=2450(米),从而又可推出在甲修车的时间内乙走了10000-2450=7550(米)。

列算式为10000一(10000-200)÷4=7550(米)答:甲修车的时间内乙走了7550米。

六年级奥数工程问题应用题及答案 21、从甲地到乙地客车需12小时,货车需15小时,两车同时从甲乙两地相对开出,相遇时,客车比货车多行98千米,甲乙两地相距多少千米?解:98÷(15-12)×(15+12),=98÷3×27,=98/3x27=882(千米)答:甲乙两地相距882千米2、一列货车以每小时50千米的速度由甲站开往乙站,2小时后,一列客车以每小时55千米的速度由乙站驶向甲站,客车行了4小时与货车相遇,甲乙两站的距离是多少千米?解:距离=50×2+(55+50)×4=520千米答:甲乙两站的距离是520千米六年级奥数工程问题应用题及答案 31、甲乙两车同时从相距405千米的两城相对开出,如果甲车每小时行45千米,甲的速度是乙的1倍,问多少小时两车相遇?解:405/(45+45)=4.5小时相遇答:4.5小时两辆车相遇2、甲乙两地相距484千米,一辆汽车从甲地开往乙地,1.5小时后,一辆摩托车从乙地开往甲地,4小时与迎面开来的汽车相遇。

六年级奥数工程问题(含答案)

六年级奥数工程问题(含答案)

工程问题知识框架一、基本概念(1)工作总量完成某一项工程所需的所有工作的数量和,常用“1”来表示.(2)工作时间(3)工作效率单位时间内所完成的工作量二、基本关系工作量= 工作效率×工作时间【提示】三者之间的关系,可以类比路程、速度和时间的关系.三、常用工具和方法(1)基本关系(2)整体化归思想(3)对比分析的方法重难点(1)重点:利用整体化归思想和对比分析方法解决较为复杂的工程问题(2)难点:复杂问题中整体化归思想、比例思想、方程思想与对比分析方法的综合运用例题精讲一、根据基本关系解题【例 1】一项工程,甲单独做需要28天时间,乙单独做需要21天时间,如果甲、乙合作需要多少时间?【巩固】一项工程,甲单独做需要21天时间,甲、乙合作需要12天时间,如果乙单独做需要多少时间?【例 2】一项工程,甲队单独完成需40天。

若乙队先做10天,余下的工程由甲、乙两队合作,又需20天可完成. 如果乙队单独完成此工程,则需______天.【巩固】一项工程,甲队单独做20天可以完成,甲队做了8天后,由于另有任务,剩下的工作由乙队单独做15天完成.问:乙队单独完成这项工作需多少天?二、运用整体化归思想解题【例 3】有两个同样的仓库,搬运完一个仓库的货物,甲需6小时,乙需7小时,丙需14小时。

甲、乙同时开始各搬运一个仓库的货物。

开始时,丙先帮甲搬运,后来又去帮乙搬运,最后两个仓库的货物同时搬完。

则丙帮甲小时,帮乙小时。

【巩固】一池水,甲、乙两管同时开,5小时灌满;乙、丙两管同时开,4小时灌满.现在先开乙管6小时,还需甲、丙两管同时开2小时才能灌满.乙单独开几小时可以灌满?【例 4】一批工人到甲、乙两个工地进行清理工作,甲工地的工作量是乙工地的工作量的112倍.上午去甲工地的人数是去乙工地人数的3倍,下午这批工人中有712的人去甲工地.其他工人到乙工地.到傍晚时,甲工地的工作已做完,乙工地的工作还需4名工人再做1天,那么这批工人有多少人?【巩固】甲、乙、丙三队要完成A,B两项工程,B工程的工作量是A工程工作量再增加14,如果让甲、乙、丙三队单独做,完成A工程所需要的时间分别是20天,24天,30天.现在让甲队做A工程,乙队做B工程,为了同时完成这两项工程,丙队先与乙队合做B工程若干天,然后再与甲队合做A工程若干天.问丙队与乙队合做了多少天?【例 5】一项工程,甲单独做要12小时完成,乙单独做要18小时完成.若甲先做1小时,然后乙接替甲做1小时,再由甲接替乙做1小时,……,两人如此交替工作,请问:完成任务时,共用了多少小时?【巩固】蓄水池有甲、丙两条进水管和乙、丁两条排水管,要灌满一池水,单开甲管需3小时,单开丙管需要5小时,要排光一池水,单开乙管需要4小时,单开丁管需要6小时,现在池内有16的水,若按甲、乙、丙、丁、甲、乙、丙、丁……的顺序轮流打开1小时,问多少时间后水开始溢出水池?三、运用对比分析方法解题【例 6】一项工程,甲、乙合作需要20天完成,乙、丙合作需要15天完成,由乙单独做需要30天完成,那么如果甲、乙、丙合作,完成这项工程需要多少天?【巩固】一项工程,甲、乙合作需要9天完成,乙、丙合作需要12天,由丙单独做需要36天完成,那么如果甲、丙合作,完成这项工程需要多少天?【例 7】一项工程,如果甲先做5天,那么乙接着做20天可以完成;如果甲先做20天,那么乙接着做8天可以完成.如果甲、乙合作,那么多少天可以完成?【巩固】一件工作甲先做6小时,乙接着做12小时可以完成;甲先做8小时,乙接着做6小时也可以完成.如果甲做3小时后由乙接着做,还需要多少小时完成?【例 8】一项工程,甲、乙、丙三人合作需要13天完成.如果丙休息2天,乙就要多做4天,或者由甲、乙两人合作1天. 问这项工程由甲独做需要多少天?【巩固】抄一份书稿,甲每天的工作效率等于乙、丙二人每天的工作效率的和;丙的工作效率相当甲、乙每天工作效率和的15.如果3人合抄只需8天就完成了,那么乙一人单独抄需要多少天才能完成?【例 9】放满一个水池,如果同时打开1,2,3号阀门,则20分钟可以完成;如果同时打开2,3,4阀门,则21分钟可以完成;如果同时打开1,3,4号阀门,则28分钟可以完成;如果同时打开1,2,4号阀门,则30分钟可以完成.问:如果同时打开1,2,3,4号阀门,那么多少分钟可以完成?【例 10】某工程如果由第一、二、三小队合干需要12天才能完成;如果由第一、三、五小队合干需要7天才能完成;如果由第二、四、五小队合干需要8天才能完成;如果由第一、三、四小队合干需要42天才能完成.那么这五个小队一起合干需要多少天才能完成这项工程?【例 11】规定两人轮流做一个工程,要求第一个人先做1个小时,第二个人接着做一个小时,然后再由第一个人做1个小时,然后又由第二个人做1个小时,如此反复,做完为止.如果甲、乙轮流做一个工程需要9.8小时,而乙、甲轮流做同样的工程只需要9.6小时,那乙单独做这个工程需要多少小时?【巩固】公园水池每周需换一次水.水池有甲、乙、丙三根进水管.第一周小李按甲、乙、丙、甲、乙、丙、……的顺序轮流打开1小时,恰好在打开水管整数小时后灌满空水池.第二周他按乙、丙、甲、乙、丙、甲……的顺序轮流打开1小时,灌满一池水比第一周少用了15分钟;第三周他按丙、乙、甲、丙、乙、甲……的顺序轮流打开1小时,比第一周多用了15分钟.第四周他三个管同时打开,灌满一池水用了2小时20分,第五周他只打开甲管,那么灌满一池水需用________小时.【例 12】一项工程,甲、乙合作3125小时可以完成,若第1小时甲做,第2小时乙做,这样交替轮流做,恰好整数小时做完;若第1小时乙做,第2小时甲做,这样交替轮流做,比上次轮流做要多13小时,那么这项工作由甲单独做,要用多少小时才能完成?【巩固】甲、乙、丙三人完成一件工作,原计划按甲、乙、丙顺序每人轮流工作一天,正好整数天完成,若按乙、丙、甲的顺序每人轮流工作一天,则比原计划多用12天;若按丙、甲、乙的顺序每人轮流工作一天,则比原计划多用13天.已知甲单独完成这件工作需10.75天.问:甲、乙、丙一起做这件工作,完成工作要用多少天?四、综合运用多种思想解题【例 13】一批零件平均分给甲、乙两人同时加工,两人工作5小时,共完成这批零件的23。

小学六年级奥数工程问题及答案

小学六年级奥数工程问题及答案

小学六年级奥数工程问题及答案工程问题1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时?解:1/20+1/16=9/80表示甲乙的工作效率9/80×5=45/80表示5小时后进水量1-45/80=35/80表示还要的进水量35/80÷(9/80-1/10)=35表示还要35小时注满答:5小时后还要35小时就能将水池注满。

2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。

如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。

现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?解:由题意得,甲的工效为1/20,乙的工效为1/30,甲乙的合作工效为1/20*4/5+1/30*9/10=7/100,可知甲乙合作工效>甲的工效>乙的工效。

又因为,要求“两队合作的天数尽可能少”,所以应该让做的快的甲多做,16天内实在来不及的才应该让甲乙合作完成。

只有这样才能“两队合作的天数尽可能少”。

设合作时间为x天,则甲独做时间为(16-x)天1/20*(16-x)+7/100*x=1x=10答:甲乙最短合作10天3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。

现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。

乙单独做完这件工作要多少小时?解:由题意知,1/4表示甲乙合作1小时的工作量,1/5表示乙丙合作1小时的工作量(1/4+1/5)×2=9/10表示甲做了2小时、乙做了4小时、丙做了2小时的工作量。

根据“甲、丙合做2小时后,余下的乙还需做6小时完成”可知甲做2小时、乙做6小时、丙做2小时一共的工作量为1。

所以1-9/10=1/10表示乙做6-4=2小时的工作量。

小学六年级奥数工程问题及答案

小学六年级奥数工程问题及答案

小学六年级奥数工程问题及答案工程问题1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时?解:1/20+1/16=9/80表示甲乙的工作效率9/80×5=45/80表示5小时后进水量1-45/80=35/80表示还要的进水量35/80÷(9/80-1/10)=35表示还要35小时注满答:5小时后还要35小时就能将水池注满。

2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。

如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。

现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?解:由题意得,甲的工效为1/20,乙的工效为1/30,甲乙的合作工效为1/20*4/5+1/30*9/10=7/100,可知甲乙合作工效>甲的工效>乙的工效。

又因为,要求“两队合作的天数尽可能少”,所以应该让做的快的甲多做,16天内实在来不及的才应该让甲乙合作完成。

只有这样才能“两队合作的天数尽可能少”。

设合作时间为x天,则甲独做时间为(16-x)天1/20*(16-x)+7/100*x=1x=10答:甲乙最短合作10天3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。

现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。

乙单独做完这件工作要多少小时?解:由题意知,1/4表示甲乙合作1小时的工作量,1/5表示乙丙合作1小时的工作量(1/4+1/5)×2=9/10表示甲做了2小时、乙做了4小时、丙做了2小时的工作量。

根据“甲、丙合做2小时后,余下的乙还需做6小时完成”可知甲做2小时、乙做6小时、丙做2小时一共的工作量为1。

所以1-9/10=1/10表示乙做6-4=2小时的工作量。

小学六年级奥数工程问题及答案

小学六年级奥数工程问题及答案

小学六年级奥数工程问题及答案工程问题.甲乙两个水管单独开,注满一池水,分别需要 小时, 小时 丙水管单独开,排一池水要 小时,若水池没水,同时打开甲乙两水管, 小时后,再打开排水管丙,问水池注满还是要多少小时?解:= 表示甲乙的工作效率× = 表示 小时后进水量= 表示还要的进水量÷( )= 表示还要 小时注满答: 小时后还要 小时就能将水池注满。

.修一条水渠,单独修,甲队需要 天完成,乙队需要 天完成。

如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。

现在计划 天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?解:由题意得,甲的工效为 ,乙的工效为 ,甲乙的合作工效为 = ,可知甲乙合作工效 甲的工效 乙的工效。

又因为,要求“两队合作的天数尽可能少”,所以应该让做的快的甲多做, 天内实在来不及的才应该让甲乙合作完成。

只有这样才能“两队合作的天数尽可能少”。

设合作时间为 天,则甲独做时间为( )天( ) ==答:甲乙最短合作 天.一件工作,甲、乙合做需 小时完成,乙、丙合做需 小时完成。

现在先请甲、丙合做 小时后,余下的乙还需做 小时完成。

乙单独做完这件工作要多少小时?解:由题意知, 表示甲乙合作 小时的工作量, 表示乙丙合作 小时的工作量( )× = 表示甲做了 小时、乙做了 小时、丙做了 小时的工作量。

根据“甲、丙合做 小时后,余下的乙还需做 小时完成”可知甲做 小时、乙做 小时、丙做 小时一共的工作量为 。

所以 - = 表示乙做 = 小时的工作量。

÷ = 表示乙的工作效率。

÷ = 小时表示乙单独完成需要 小时。

答:乙单独完成需要 小时。

.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学六年级奥数工程问题及答案
工程问题
1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时?
解:
1/20+1/16=9/80表示甲乙的工作效率
9/80×5=45/80表示5小时后进水量
1-45/80=35/80表示还要的进水量
35/80÷(9/80-1/10)=35表示还要35小时注满
答:5小时后还要35小时就能将水池注满。

2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。

如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。

现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?
解:由题意得,甲的工效为1/20,乙的工效为1/30,甲乙的合作工效为1/20*4/5+1/30*9/10=7/100,可知甲乙合作工效>甲的工效>乙的工效。

又因为,要求“两队合作的天数尽可能少”,所以应该让做的快的甲多做,16天内实在来不及的才应该让甲乙合作完成。

只有这样才能“两队合作的天数尽可能少”。

设合作时间为x天,则甲独做时间为(16-x)天
1/20*(16-x)+7/100*x=1
x=10
答:甲乙最短合作10天
3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。

现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。

乙单独做完这件工作要多少小时?
解:
由题意知,1/4表示甲乙合作1小时的工作量,1/5表示乙丙合作1小时的工作量
(1/4+1/5)×2=9/10表示甲做了2小时、乙做了4小时、丙做了2小时的工作量。

根据“甲、丙合做2小时后,余下的乙还需做6小时完成”可知甲做2小时、乙做6小时、丙做2小时一共的工作量为1。

所以1-9/10=1/10表示乙做6-4=2小时的工作量。

1/10÷2=1/20表示乙的工作效率。

1÷1/20=20小时表示乙单独完成需要20小时。

答:乙单独完成需要20小时。

4.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天。

已知乙单独做这项工程需17天完成,甲单独做这项工程要多少天完成?
解:由题意可知
1/甲+1/乙+1/甲+1/乙+……+1/甲=1
1/乙+1/甲+1/乙+1/甲+……+1/乙+1/甲×0.5=1
(1/甲表示甲的工作效率、1/乙表示乙的工作效率,最后结束必须如上所示,否则第二种做法就不比第一种多0.5天)
1/甲=1/乙+1/甲×0.5(因为前面的工作量都相等)
得到1/甲=1/乙×2
又因为1/乙=1/17
所以1/甲=2/17,甲等于17÷2=8.5天
5.师徒俩人加工同样多的零件。

当师傅完成了1/2时,徒弟完成了120个。

当师傅完成了任务时,徒弟完成了4/5这批零件共有多少个?
答案为300个
120÷(4/5÷2)=300个
可以这样想:师傅第一次完成了1/2,第二次也是1/2,两次一共全部完工,那么徒弟第二次后共完成了4/5,可以推算出第一次完成了4/5的一半是2/5,刚好是120个。

6.一批树苗,如果分给男女生栽,平均每人栽6棵;如果单份给女生栽,平均每人栽10棵。

单份给男生栽,平均每人栽几棵?
答案是15棵
算式:1÷(1/6-1/10)=15棵
7.一个池上装有3根水管。

甲管为进水管,乙管为出水管,20分钟可将满池水放完,丙管也是出水管,30分钟可将满池水放完。

现在先打开甲管,当水池水刚溢出时,打开乙,丙两管用了18分钟放完,当打开甲管注满水是,再打开乙管,而不开丙管,多少分钟将水放完?答案45分钟。

1÷(1/20+1/30)=12 表示乙丙合作将满池水放完需要的分钟数。

1/12*(18-12)=1/12*6=1/2 表示乙丙合作将漫池水放完后,还多放了6分钟的水,也就是甲18分钟进的水。

1/2÷18=1/36 表示甲每分钟进水
最后就是1÷(1/20-1/36)=45分钟。

8.某工程队需要在规定日期内完成,若由甲队去做,恰好如期完成,若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,问规定日期为几天?
答案为6天
解:
由“若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,”可知:
乙做3天的工作量=甲2天的工作量
即:甲乙的工作效率比是3:2
甲、乙分别做全部的的工作时间比是2:3
时间比的差是1份
实际时间的差是3天
所以3÷(3-2)×2=6天,就是甲的时间,也就是规定日期
方程方法:
[1/x+1/(x+2)]×2+1/(x+2)×(x-2)=1
解得x=6
9.两根同样长的蜡烛,点完一根粗蜡烛要2小时,而点完一根细蜡烛要1小时,一天晚上停电,小芳同时点燃了这两根蜡烛看书,若干分钟后来点了,小芳将两支蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的2倍,问:停电多少分钟?
答案为40分钟。

解:设停电了x分钟
根据题意列方程
1-1/120*x=(1-1/60*x)*2
解得x=40
明明和乐乐在同一所学校学习,一天班主任老师问他俩各人的家离学校有多远。

明明说:“我放学回家要走10分钟”,乐乐说:“我比明明多用4分钟到家”。

老师又问:“你俩谁走的速度快一些呢?”乐乐说:“我走得慢一些,明明每分钟比我多走14米,不过,我回家的路程要比明明多1/6 ”。

班主任根据这段对话,很快算出他俩的路程。

你会算吗?
解:设乐乐的速度为x,则明明的速度为(x+14)。

6/7*14x=10(x+14)
12x=10x+140
x=70
明明:(70+14)*10=840(m)
乐乐:840*(1+1/6)=980(m)
有一堆围棋子,其中黑子与白子个数的比是4:3从中取出91枚棋子,且黑子与白子的个数比是8:5,而剩下的棋子中黑子与白子个数的比是3:4。

那么这堆围棋共有多少枚?
假定取出的91子中黑棋为1份,则
其中黑棋数:91/(1+5/8)=56
其中白棋数:91-56=35
如果再假定取出的91子中白棋也是黑子的3/4,因3/4大于5/8,白棋多算(56*3/4-35)子,多算的比例为(4/3-3/4),多算(56*3/4-35)/(4/3-3/4)=12子,就是拿完91子后剩的黑子。

则剩下的白子为4/3*12=16子
总棋子数=91+12+16=119子
只设一个
设共有x个
91*5/5+8=35
91-35=56
3/7x-35=3/4(4/7x-56)
x=119
一项工程,甲先做2天,乙在做3天,完成全工程的四分之一,甲再做3天完成余下的四分之一,最后再由乙做,完成这项工作还要多少天?
甲在做3天完成余下的四分之一
即3天完成总工程的(1/4)*(3/4)=3/16
甲一天完成1/16
甲先做3天,乙在做2天,完全工程的四分之一[1/4-3*(1/16)]/2=1/32
乙一天完成1/32
1/[(1/16)+(1/32)]=32/3天
两队和做32/3天可做完全部工程。

相关文档
最新文档