随机过程马尔科夫过程

合集下载

随机过程马氏过程

随机过程马氏过程
21
Fn ( x1 , x2 ,, xn , t1 , t 2 ,, t n ) P{ X (t1 ) x1 , X (t 2 ) x2 ,, X (t n ) xn }
P{ X (t1 ) x1 }P{ X (t2 ) x2 | X (t1 ) x1 }
P{ X (t n ) xn | X (t n1 ) xn1 , X (t n2 ) xn2 ,,
一、马尔可夫过程的数学定义
二、满足马氏性的随机过程
三、马氏过程的分类 四、马氏过程的有限维分布族
1
一、马尔可夫过程的数学定义
马尔可夫过程是具有所谓马尔可夫性 的一类特殊的随机过程.
1 马尔可夫特性
若当某随机过程{X(t),t ∈ T}在某时刻tk 所处的状态已知的条件下,过程在时刻t(t>tk) 处的状态只会与过程在tk时刻的状态有关,而与 过程在tk以前所处的状态无关。这种特性即称为 马尔可夫性,亦称之为无后效性。
19
例1.5 若每隔一分钟观察噪声电压,以X(n) 表示第n分钟观察噪声电压所得结果,则X(n) 为一随机变量,{X(n),n≥1}为一随机过程, 此过程是马氏过程吗? 实际上,每隔一分钟观察所得噪声电压值 相互并不影响,且X(n)为一连续型随机变量, 因而{X(n),n≥1}是独立同分布的连续型随 机变量列,故知它为离散参数集,连续状态集的 马尔可夫过程.
X (t 2 ) x2 , X (t1 ) x1 }
P{ X (t1 ) x1 }P{ X (t 2 ) x2 | X (t1 ) x1 }
P{ X (t n ) xn | X (t n1 ) xn1 }
F ( x1 , t1 )F ( x2 , t2 | x1 , t1 )F ( xn , tn | xn1 , tn1 )

随机过程习题集-第四章马尔可夫过程

随机过程习题集-第四章马尔可夫过程

1第四章 马尔可夫过程内容提要1. 马尔可夫过程的概念 (1)马尔可夫过程给定随机过程{}(),X t t T ∈,如果对122,∀≥∀<<<∈n n t t t T ,有11221111{()|(),(),,()}{()|()}n n n n n n n n P X t x X t x X t x X t x P X t x X t x ----<====<=则称{}(),X t t T ∈为马尔可夫过程。

称(){}:,==∈E x X t x t T 为状态空间。

参数集和状态空间都是离散的马尔可夫过程称为离散参数马氏链. 参数连续、状态空间离散的马尔可夫过程称为连续参数马氏链. (2)k 步转移概率设{}(),0,1,2,=X n n 为离散参数马氏链,称()(),(,){|},0,1=+==≥≥i j p n k P X n k j X n i n k为{}(),0,1,2,=X n n 在时刻n 的k 步转移概率,称(),(,)((,)),P =∈i j n k p n k i j E为{}(),0,1,2,=X n n 在时刻n 的k 步转移概率矩阵. 特别地,当1k =时,在时刻n 的一步转移概率和一步转移概率矩阵分别简记为()ij p n 和()n P . (3)初始分布、绝对分布称((0)),,==∈i p P X i i E 为离散参数马氏链{}(),0,1,2,=X n n 的初始分布,记为0P ,称()(){},,==∈j p n P X n j j E 为马尔可夫链{}0n X n ≥的绝对分布,记为P n . (4)离散参数齐次马氏链设{}(),0,1,2,=X n n 是一离散参数马氏链,如果其一步转移概率()ij p n 恒与起始时刻n 无关,记为ij p ,则称{}(),0,1,2,=X n n 为离散参数齐次马氏链。

若{}(),0,1,2,=X n n2是离散参数齐次马氏链,则其k 步转移概率记为(),i j p k ,一步转移概率矩阵和k 转移概率矩阵分别记为P 和().P k(5) 离散参数齐次马氏链的遍历性离散参数齐次马氏链{X (n ) ,n=0,1,2… },若对一切状态i ,j ,存在与i 无关的极限()()lim 0,ij j n p n i j E →+∞=π>∈则称此马氏链具有遍历性.0,1j j j Ej E ππ∈>∈=∑若且则称{},j j E π∈为离散参数齐次马氏链{X (n ) ,n=0,1,2… }的极限分布,或称为最终分布,记为{},j j E ∏=∈π(6)离散参数齐次马氏链的平稳分布离散参数齐次马氏链{X (n ) ,n=0,1,2… },若存在{v j , j ∈E } 满足条件:1)0,2)13)j jj Ej i iji Ev j E vv v p ∈∈≥∈==∑∑则称此马氏链是平稳的,称 { v j , j ∈E } 为此马氏链的平稳分布。

随机过程中的马尔可夫过程

随机过程中的马尔可夫过程

随机过程中的马尔可夫过程在随机过程中的马尔可夫过程马尔可夫过程是在随机过程中常见且重要的一种形式。

它具有一定的数学特性和模型结构,能够描述在离散或连续时间段内状态的转移以及相关的概率。

本文将对马尔可夫过程的基本概念、特性和应用进行详细介绍。

一、概述马尔可夫过程是一种随机过程,其状态转移满足马尔可夫性质。

马尔可夫性质是指在给定当前状态下,未来和过去的转移概率仅与当前状态有关,与过去状态无关。

这种性质使得马尔可夫过程具有简化模型和简单计算的优势,被广泛应用于各个领域。

二、基本概念1. 状态空间:马尔可夫过程的状态空间是指所有可能取值的集合。

例如,一个骰子的状态空间为{1, 2, 3, 4, 5, 6}。

2. 转移概率:马尔可夫过程中的状态转移概率描述了从一个状态到另一个状态的概率。

用P(Xt+1 = j | Xt = i)表示从状态i转移到状态j的概率。

3. 转移矩阵:将所有状态之间的转移概率整合到一个矩阵中,称为转移矩阵。

转移矩阵是一个方阵,大小为n×n,其中n是状态空间的数量。

4. 平稳分布:在马尔可夫过程中,如果某个状态的概率分布在经过无限次转移后保持不变,那么该概率分布称为平稳分布。

平稳分布可以通过解线性方程组来计算。

三、特性1. 马尔可夫链:马尔可夫过程可以看作是离散时间的马尔可夫链。

马尔可夫链是指具有无记忆性质的随机序列,即未来状态只依赖于当前状态。

2. 齐次马尔可夫过程:如果马尔可夫过程的转移概率与时间无关,那么称为齐次马尔可夫过程。

齐次马尔可夫过程的转移概率矩阵在时间上保持不变。

3. 连续时间马尔可夫过程:如果马尔可夫过程的时间是连续的,则称为连续时间马尔可夫过程。

连续时间的马尔可夫过程可以用微分方程来描述。

四、应用领域1. 金融学:马尔可夫过程常用于金融市场的建模和分析,例如股票价格的预测和风险管理。

2. 信号处理:马尔可夫过程可以用于信号和图像的分析与处理,包括语音识别和图像识别等领域。

随机过程中的马尔可夫过程理论

随机过程中的马尔可夫过程理论

随机过程中的马尔可夫过程理论马尔可夫过程理论是随机过程中的一种重要理论,它描述了一类具有马尔可夫性质的随机过程。

在随机过程中,马尔可夫过程是指一个系统在给定当前状态下,其未来状态的概率分布只依赖于当前状态,而与过去的状态无关。

马尔可夫过程在实际应用中具有广泛的应用,尤其在可靠性分析、排队论和金融领域等方面发挥重要作用。

一、马尔可夫过程的基本概念马尔可夫过程由状态空间、转移概率矩阵和初始概率分布三要素构成。

1. 状态空间状态空间是指一个马尔可夫过程中可能出现的所有状态的集合。

通常用S表示,状态空间可以是有限的,也可以是无限的。

2. 转移概率矩阵转移概率矩阵描述了一个当前状态到下一个状态的转移概率。

假设状态空间S有n个状态,转移概率矩阵P的元素P(i, j)表示从状态i转移到状态j的概率。

转移概率矩阵满足非负性和归一性条件,即每个元素都大于等于零,每行元素之和等于1。

3. 初始概率分布初始概率分布是指系统在初始状态下各个状态出现的概率分布。

假设初始状态概率分布为π,其中π(i)表示系统初始状态为i的概率。

二、马尔可夫链马尔可夫过程中的马尔可夫链是指一个没有时间限制的马尔可夫过程,也就是说,它在任意时刻都遵循马尔可夫性质。

马尔可夫链可以是有限的,也可以是无限的。

1. 不可约性不可约性是指一个马尔可夫链中的所有状态都可以通过一系列转移概率到达任何其他状态。

具有不可约性的马尔可夫链被称为不可约马尔可夫链。

2. 遍历性遍历性是指一个不可约马尔可夫链中的任意状态都能在有限步内返回到自身。

具有遍历性的马尔可夫链被称为遍历马尔可夫链。

3. 非周期性非周期性是指一个马尔可夫链中不存在周期性循环。

如果一个状态经过若干步后又返回到自身的最小步数是1,则称该状态为非周期状态。

具有非周期性的马尔可夫链被称为非周期马尔可夫链。

三、马尔可夫过程的稳定性马尔可夫过程的稳定性是指在经过一段时间后,随机过程的状态分布不再发生显著变化。

随机过程-正态马尔可夫过程

随机过程-正态马尔可夫过程

所以, 是马尔可夫过程。 所以, ξ(t) 是马尔可夫过程。
例3.6
图示电路,输入为零均值平稳正态白噪声, 图示电路, 输入为零均值平稳正态白噪声,求
输出过程的特性。 输出过程的特性。
R
ξ(t)
C
η(t)
解:系统传递函数的模平方为
α2 H( jf ) = 2 α + (2π f )2
2
1 α 其中, 输入平稳正态白噪声, 1。 其中, = 。输入平稳正态白噪声,即Sξ ( f ) = 1。于 RC
2 n
设 a= C(1)/C(0),由于 C(1) ≤C(0),故|a|≤1 ,因此 , ,
C(n) = anC(0)(n ≥ 0)
充分性:如果 C(n)/C(0)=an,设n=n1+n2,则 充分性:
C(n1) C(n2 ) C(n1)C(n2 ) C(n) = an1 an2 = ⇒ C(n) = C(0) C(0) C(0) C(0)
C(τ ) = eaτ C(0)
因为|C(τ)|<C(0),故τ >0 时,a<0 , 因为 充分性:如果 充分性:如果C(τ)=eaτC(0) ,则
C(τ + s) C(τ ) C(s) = ea(τ +s) = eaτ eas = C(0) C(0) C(0)

C(τ )C(s) C(τ + s) = C(0)
是输出为
α2 Sη ( f ) = H( jf ) Sξ ( f ) = 2 α + (2π f )2
2
由此可得
Rη (τ ) =
α
2
e
−α τ
由E{ξ(t)}=0得E{η(t)}=0 ,因此 得

5随机过程第五章马尔可夫过程

5随机过程第五章马尔可夫过程

P X nk m j | X n i, X nk l P X nk l | X n i
lS
k m pil n . plj n k
lS
特殊地,在C-K方程中,m=1, 有
P k 1 n P k n P1 n k P k n P n k
5、1 马尔可夫过程定义
2)时间离散 状态连续
3)时间连续 状态离散 泊松过程 更新过程
马尔可夫序列
纯不连续马尔可夫过程 生灭过程 排队服务系统
4)时间状态连续
维纳过程
5、2 马尔可夫链的转移概率及概率分布
设Markov链 X n , n 0 状态空间为S 1.转移概率 (1) 定义: n时刻 X n i k步转移
1
1 0
1/2
2
1/2
对齐次链,有关C-K方程和概率分布可简化
C-K方程
故有 绝对分布
pij
k m
pil plj ,
k m
lS
P
k m
P
k
P
m
Pk Pk , k 0
n j n i 0 . pij
一步转移概率矩阵
P n pij n , i, j S
(4) 0步转移概率 k=0 连续性条件 则
P
0
1, i j pij n ij 0, i j
0
n I
单位矩阵
1,2,3,系统在n时刻的k步转移概率矩阵为 例 状态空间 S
t iS
t t1
t1 ... pit it tn1

随机过程的马尔可夫性与平稳性

随机过程的马尔可夫性与平稳性

随机过程的马尔可夫性与平稳性在概率论与数理统计中,随机过程是一种描述随机事件随时间变化的数学模型。

随机过程的马尔可夫性与平稳性是两个重要的概念,对于理解和分析随机过程的特性具有重要意义。

一、马尔可夫性马尔可夫性是指在一个随机过程中,当前状态的概率分布只与前一个状态有关,与过去的状态或未来的状态无关。

马尔可夫性可以用以下的数学表达式来表示:P(X_{n+1}=x_{n+1}|X_n=x_n,X_{n-1}=x_{n-1},...,X_0=x_0) =P(X_{n+1}=x_{n+1}|X_n=x_n)其中,X_n表示随机过程的第n个状态,x_n表示状态X_n的取值。

马尔可夫性的特点是简化了随机过程的描述,使得问题的求解更加方便。

通过假设当前状态只与前一个状态有关,我们可以使用转移概率矩阵来描述状态之间的转移情况。

具体而言,转移概率矩阵P定义如下:P_{ij} = P(X_{n+1}=j|X_n=i)其中,P_{ij}表示从状态i到状态j的转移概率。

马尔可夫链是一种具有马尔可夫性的随机过程,它的状态空间是有限的或可数无穷的集合。

马尔可夫链可以通过转移概率矩阵的迭代来描述其状态的演化过程。

对于任意k,我们可以计算出转移概率矩阵P^k,表示经过k步转移后的状态分布。

通过马尔可夫性,我们可以研究各种与状态转移概率相关的问题,例如平稳分布、转移概率的收敛性等。

二、平稳性在马尔可夫链中,若存在一个概率向量π,满足以下条件:π = πP其中,π是一个行向量,P是转移概率矩阵。

则称π为平稳分布。

平稳分布的意义在于,它表示了马尔可夫链在长时间演化后的状态分布。

通过求解πP=π,我们可以得到平稳分布π的数值解。

在实际应用中,平稳分布常常具有稳定性和唯一性。

平稳性的研究对于了解一些随机过程的基本性质具有重要作用。

通过平稳分布,我们可以计算一些与状态相关的统计量,例如平均值、方差等,从而进一步分析随机过程的性质。

三、应用实例马尔可夫性与平稳性在许多领域有着广泛的应用,例如:1. 金融市场分析:使用马尔可夫链模型可以描述金融资产的价格或收益率的变化趋势,从而对市场走势进行预测和风险评估。

第五章 随机过程中的马尔可夫过程

第五章 随机过程中的马尔可夫过程

p(k m) ij
(n)

p(k il
)
(n)
p(m lj
)
(n

k
),
i, j S,
n, k, m 0
l

P(km) (n) P(k) (n)P(m) (n k)
证明
2006年9月
p(k ij
m)
(n)

P{X
nk
m

j|
Xn
i}
P{U( X nk l), X nkm j | X n i} l
i
P( X 0 i)P( Xt1 i1 | X 0 i)P( X t2 i2 | X 0 i, X t1 i1)L i
• P( X tn in | X 0 i, X t1 i1, X t2 i2 ,L , X tn1 in1)
P( X 0 i)P( X t1 i1 | X 0 i)P( X t2 i2 | X 0 i)P( X tn in | X tn1 in1)
i

qi0
pt1 ii1

(0)
pt2 i1i2
t1

(t1
)L
p (t ) tn tn1
in1in
n1
i
2006年9月
陕西师范大学物理学与信息技术学院 ——— 《随机过程》
3) 绝对分布
称q(jn) P(Xn j), n 0, j S为马尔可夫链{Xn,n 0}的绝对分布。
2006年9月
陕西师范大学物理学与信息技术学院 ——— 《随机过程》
一种最简单的形式:
P{X (t1) i1, X (t2 ) i2,L , X (tn1) in1, X (tn ) in} P{X (t1) i1}P{X (t2) i2}L P{X (tn ) in}

工程随机过程_3_马尔可夫过程(Markov)

工程随机过程_3_马尔可夫过程(Markov)

College of Science, Hohai University
Stochastic Processes
定理2 若随机变量序列{X(n),n0}对任何n 均满足下式,则该序列为马氏链。
P{ X (0) i0 , X (1) i1 ,, X ( n) in }
P { X ( 0) i 0 } P{ X (1) i1 | X (0) i0 } P{ X ( 2) i2 | X (1) i1 } P { X ( 3 ) i 3 | X ( 2) i 2 } P{ X ( n) in | X ( n 1) in1 }
Pn ( P1 )
n
College of Science, Hohai University
Stochastic Processes
初始概率分布: 马氏链在初始时刻(即零时刻)取各状态 的概率分布 p0 ( i0 ) P{ X (0) i0 } i E 0 称为它的初始概率分布。 绝对概率分布: 马氏链在第n时刻(n 0)取各状态的概 率分布 p ( j ) P{ X (n) j } j E
第三章
马尔可夫过程 (Markov)
College of Science, Hohai University
Stochastic Processes
Markov过程是一个具有无后效性的随机过程. 无后效性: 当过程在时刻tm所处的状态为已知时, 过程在 大于tm的时刻t所处状态的概率特性只与过程在 tm时刻所处的状态有关, 而与过程在tm时刻之前 的状态无关. (1)参数和状态都离散 -----马氏链 (2)参数离散, 状态连续 -----马氏序列 (3)其余皆为马氏过程.

马尔可夫决策过程简介(Ⅰ)

马尔可夫决策过程简介(Ⅰ)

马尔可夫决策过程简介马尔可夫决策过程(Markov Decision Process, MDP)是一种用于描述随机决策问题的数学框架。

它是由苏联数学家安德雷·马尔可夫在20世纪初提出的,被广泛应用于控制理论、人工智能、经济学等领域。

马尔可夫决策过程的核心思想是通过数学模型描述决策者在具有随机性的环境中做出决策的过程,以及这些决策对环境的影响。

本文将介绍马尔可夫决策过程的基本概念和应用。

1. 随机过程马尔可夫决策过程是建立在随机过程的基础上的。

随机过程是指随机变量随时间变化的过程,它可以用来描述许多自然现象和工程问题。

在马尔可夫决策过程中,状态和行动都是随机变量,它们的变化是随机的。

这种随机性使得马尔可夫决策过程具有很强的适用性,可以用来描述各种真实世界中的决策问题。

2. 状态空间和转移概率在马尔可夫决策过程中,环境的状态被建模为一个有限的状态空间。

状态空间中的每个状态都代表了环境可能处于的一种情况。

例如,在一个机器人导航的问题中,状态空间可以表示为机器人可能所处的每个位置。

转移概率则描述了从一个状态转移到另一个状态的概率。

这个概率可以用一个转移矩阵来表示,矩阵的每个元素代表了从一个状态到另一个状态的转移概率。

3. 奖励函数在马尔可夫决策过程中,决策者的目标通常是最大化长期的累积奖励。

奖励函数用来描述在不同状态下采取不同行动所获得的奖励。

这个奖励可以是实数,也可以是离散的,它可以是正也可以是负。

决策者的目标就是通过选择合适的行动,使得累积奖励达到最大。

4. 策略在马尔可夫决策过程中,策略是决策者的行动规则。

它描述了在每个状态下选择行动的概率分布。

一个好的策略可以使得决策者在长期累积奖励最大化的同时,也可以使得系统的性能达到最优。

通常情况下,我们希望找到一个最优策略,使得系统在给定的状态空间和转移概率下能够最大化累积奖励。

5. 值函数值函数是描述在给定策略下,系统在每个状态下的长期累积奖励的期望值。

随机过程中的马尔可夫决策过程

随机过程中的马尔可夫决策过程

随机过程中的马尔可夫决策过程马尔可夫决策过程(Markov Decision Process,MDP)是研究随机过程中最常用的一种方法。

它是一个数学框架,用于描述一个决策问题的动态过程,其中包含了决策者、状态和决策时的不确定性。

一、马尔可夫决策过程的基本概念马尔可夫决策过程由以下几个要素组成:1. 状态(State):表示系统在某一时刻的条件或属性,可以用来描述决策问题的各个可能的情况。

状态可以是离散的,也可以是连续的。

2. 决策(Decision):表示决策者在每个状态下可以采取的行为或策略。

决策可以是确定性的,也可以是随机性的。

3. 反馈(Feedback):表示决策者在采取某个行为后,系统转移到下一个状态的概率。

这个概率可以是确定性的,也可以是随机性的。

4. 收益(Reward):表示决策者在每个状态下采取某个行为后获得的收益或效用。

收益可以是实数值,也可以是离散值。

5. 转移概率(Transition Probability):表示系统从当前状态转移到下一个状态的概率。

这个概率通常是通过观测历史数据来估计得到的。

二、马尔可夫决策过程的求解方法马尔可夫决策过程的求解方法主要包括以下几种:1. 基于价值函数的方法:通过定义状态的价值函数或动作的价值函数来确定最优决策。

常用的方法有价值迭代和策略迭代。

2. 基于策略梯度的方法:通过直接优化策略的参数来确定最优决策。

这种方法可以应用于连续动作空间的问题。

3. 基于模型的方法:通过建立系统的动态模型,预测不同决策下的状态转移和收益,然后进行优化。

三、马尔可夫决策过程的应用马尔可夫决策过程在实际应用中具有广泛的应用领域,包括但不限于以下几个方面:1. 机器人路径规划:马尔可夫决策过程可以用来描述机器人在不同状态下的移动和决策过程,从而实现自主路径规划和导航。

2. 股票交易决策:马尔可夫决策过程可以用来描述股票市场的波动和交易决策,从而实现基于历史数据的股票交易策略。

随机过程的马尔可夫跳过程与转移概率

随机过程的马尔可夫跳过程与转移概率

随机过程的马尔可夫跳过程与转移概率马尔可夫跳过程与转移概率在随机过程中扮演着重要角色。

本文将从理论和应用两个方面探讨马尔可夫跳过程以及与之相关的转移概率。

一、马尔可夫跳过程的定义与性质马尔可夫跳过程是随机过程的一种特殊形式,其主要特点是状态之间的转移概率仅依赖于当前状态,而与过去的状态无关。

这种特性被称为马尔可夫性质,也称为无记忆性质。

马尔可夫跳过程可以用状态空间和状态转移概率矩阵来描述。

状态空间是所有可能的状态的集合,转移概率矩阵包含了从一个状态到另一个状态的概率。

通过转移概率矩阵,我们可以计算出从某个状态经过若干步转移到另一个状态的概率。

二、马尔可夫跳过程的应用马尔可夫跳过程在实际问题中有着广泛的应用,下面将分别介绍在自然语言处理和金融领域中的两个应用案例。

1. 自然语言处理中的应用在自然语言处理领域,马尔可夫跳过程常用于文本生成和语言模型的建立。

通过分析大量文本数据,我们可以构建一个马尔可夫模型,用来预测下一个词或者短语的可能性。

这种方法可以应用于机器翻译、自动摘要、文本生成等任务。

2. 金融领域中的应用在金融领域,马尔可夫跳过程可以用于建立股票价格的预测模型。

通过分析股票的历史价格数据,我们可以构建一个马尔可夫模型,用来预测未来的价格走势和风险。

这种方法可以帮助投资者进行决策,降低投资风险。

三、转移概率的计算方法转移概率是马尔可夫跳过程中一个关键的概念,它描述了从一个状态转移到另一个状态的概率。

在实际计算中,我们可以使用最大似然估计或者贝叶斯估计等方法来估计转移概率。

最大似然估计是一种常用的参数估计方法,通过已知的观测数据来计算参数的估计值。

在马尔可夫跳过程中,最大似然估计可以用于计算转移概率矩阵的估计值。

贝叶斯估计是一种基于贝叶斯定理的统计方法,它将先验知识和观测数据相结合来计算参数的估计值。

在马尔可夫跳过程中,贝叶斯估计可以用于计算转移概率矩阵的后验概率分布。

四、总结本文主要介绍了马尔可夫跳过程和转移概率在随机过程中的重要性以及在自然语言处理和金融领域中的应用。

随机过程的基本概念

随机过程的基本概念
或写作矩阵形式,
证明:
随机过程的平稳性
严平稳随机过程
定义,
设有随机过程 ,对任意正整数n及选定时间 ,任意时间间隔τ和 ,有n维分布函数 则称该过程为严平稳随机过程。
严平稳随机过程的性质,
严平稳随机过程的一维分布函数与时间无关,二维分布函数仅与时间间隔有关而与时间本身无关。
K级平稳随机过程,
设有随机过程 ,对任意正整数n<K及选定时间 ,任意时间间隔τ和 ,有n维分布函数 则称该过程为K级严平稳随机过程。
定义1,马尔可夫过程(使用条件概率密度函数,或条件概率分布函数来表示)
设有一个随机过程 , ,若在这些时刻观察到随机过程的值是 ,若它的条件概率密度和条件分布函数满足条件,

则称这类随机过程为具有马尔可夫性质的随机过程或马尔可夫过程。
性质,马尔可夫过程的有限维概率密度
定义2,马尔可夫链(使用转移概率、条件概率)
宽平稳随机过程
定义,
设有一个二阶矩随机过程 ,它的均值是常数,相关函数仅是 的函数,则称它为宽平稳随机过程或广义平稳随机过程。
正态平稳随机过程,
既是广义平稳的随机过程,又是严平稳的随机过程。
性质1,
或 , 。对于实宽平稳随机过程 ,而实自相关函数是偶函数。证明(略)
性质2,
, 是随机过程的均值。
证明,
证明,(略)
考虑到
因此有
性质3,

证明,
以上证明中、第一个不等式成立是:随机变量平均的模小于等于随机变量模的平均;第二个不等式成立是:Schwartz不等式,随机变量乘积取模统计平均的平方,小于等于随机变量取模平方统计平均的乘积。
因此有
同理有, 。
性质4,

随机过程马尔科夫过程 ppt课件

随机过程马尔科夫过程 ppt课件
3442马尔可夫链的状态分类ijij3542马尔可夫链的状态分类ii1称状态i为非常返的ii不返回到i期望值表示由i出发再返回到i的平均返回时间iinfiiii定义3642马尔可夫链的状态分类首达概率与n步转移概率有如下关系式定理44对任意状态iijij定义3742马尔可夫链的状态分类ijij3842马尔可夫链的状态分类引理42周期的等价定义gcdgcd例例4848设马尔可夫链的状态空间i123转移概率矩阵为求从状态1出发经n步转移首次到达各状态的概率3942马尔可夫链的状态分类121212124042马尔可夫链的状态分类同理可得11134142马尔可夫链的状态分类以下讨论常返性的判别与性质数列的母函数与卷积的卷积的母函数4242马尔可夫链的状态分类定理45状态i常返的充要条件为规定则由定理44iiiiii4342马尔可夫链的状态分类iiiiii4442马尔可夫链的状态分类4542马尔可夫链的状态分类ii同理ii4642马尔可夫链的状态分类定理47设i常返且有周期为d则其中ndiindii4742马尔可夫链的状态分类由定理47知对d的非整数倍数的nndiindiindii4842马尔可夫链的状态分类子序列所以d1从而i为非周期的i是遍历的ndiindiilim而由定理limlimndii4942马尔可夫链的状态分类状态的可达与互通状态i与状态j互通ij
输一局后输光)
2020/11/13
23
4.1 马尔可夫链与转移概率
( p q )u i pu i 1 qu i 1
p(ui1 ui ) q (ui ui1 )
ui1 ui
q p
(ui
ui1 )
i 1,2, , c 1
(1q)1,即 pq1
p
2
ui1ui uiui1ui1ui2 u1u0 ˆ

随机过程-马尔可夫

随机过程-马尔可夫
第一章 马尔可夫过程
实际中常常碰到具有下列性质的运动体系 Σ,如果已知它在 t = n 时 的状态,则关于它在 n 时以前所处的状态的补充知识,对预言 Σ 在 n 时 以后所处的状态不起任何作用。或者说, 在已知“现在”的条件下,“将 来”与“过去”是独立的。这种性质,就是直观意义上的“马尔可夫性” (简称“马氏性”) 或称“无后效性”。具有马氏性的随机过程称为马尔 可夫过程。 马尔可夫过程在理论上和实际应用中都十分重要,在工程、统计、物 理、生物学、数字计算方法、经济管理和市场预测等领域中 都有十分重要 的作用和广泛应用。
(k + l ) (k )
(m) =
证明:
r ∈E
r ∈E (k ) (l ) Pir (m)Prj (m +
Pir (m)Prj (m + k ) k)
(k )
(l )
=
r ∈E
P {X (m + k ) = r|X (m) = i}P {X (m + k + l) = j |X (m + k ) = r}
j1 ,··· ,jk ∈E
即: K -步转移矩阵由 1 步转移矩阵决定。 设P {X (0) = j } = pj , pj ≥ 0,
j ∈I
pj = 1, 称{pj }j ∈E 为 马 氏 链 的 初 始 分 pj n) = 1
(
布。 (n) (n) 称pj = P {X (n) = j }为绝对概率,满足pj ≥ 0,
(n+1) 由pj
j
= P {X (n + 1) = j } =
k
P {X (n + 1) = j |X (0) = k }P {X (0) = k }

随机过程模型及其应用

随机过程模型及其应用

随机过程模型及其应用随机过程模型是指能够随机变化的量在时间或空间上的演变模型。

我们生活中的很多现象都可以用随机过程模型来刻画,比如天气的变化、股票的涨跌、交通流量的变化等等。

随机过程模型的研究,不仅能够让我们更好地理解这些现象,还可以对实际问题进行建模,从而为解决实际问题提供帮助。

常见的随机过程模型有马尔可夫过程、泊松过程、布朗运动等等。

下面我们来分别介绍一下这些模型及其应用。

一、马尔可夫过程马尔可夫过程是一种具有无后效性的随机过程,也就是说,未来的发展只会受到当前状态的影响,而不会受到过去的影响。

马尔可夫过程的状态空间可以是有限的,也可以是无限的。

如果状态空间是有限的,那么马尔可夫链就是一种特殊的马尔可夫过程。

马尔可夫过程可以用来刻画一些具有随机性的现象,比如排队系统、物理过程中的粒子运动等等。

在排队系统中,我们可以用马尔可夫过程来描述每个顾客到来和离开的时间分布,从而帮助我们分析系统的稳定性。

在物理过程中,我们可以用马尔可夫过程来模拟粒子的运动,从而更好地理解物理过程。

二、泊松过程泊松过程是一类具有独立增量和稳定增量的随机过程。

它的一个重要特点是其等间隔增量的分布是泊松分布,这意味着在一定时间内事件发生的次数服从泊松分布。

泊松过程可以用来刻画一些具有随机性的现象,比如电话交换机中电话呼叫的到达、高速公路中车辆的到达等等。

在电话交换机中,我们可以用泊松过程来描述每个时间段内电话的到达情况,从而评估交换机的工作能力。

在高速公路中,我们可以用泊松过程来模拟车辆的到达,从而更好地规划道路建设。

三、布朗运动布朗运动是一种具有无限可分布和无记忆性的连续时间随机过程。

它的增量服从正态分布,因此在小尺度上表现出随机性,但在大尺度上表现出稳定性。

布朗运动可以用来刻画一些具有随机性的物理过程,比如颗粒的布朗运动、金融市场中的股票价格变化等等。

在颗粒的布朗运动中,我们可以用布朗运动来模拟颗粒的运动轨迹,从而更好地理解颗粒的运动规律。

概率论中的随机过程分类

概率论中的随机过程分类

概率论中的随机过程分类概率论是研究随机现象的一门学科,而随机过程则是概率论中的重要概念之一。

随机过程是指一组随机变量的集合,描述了随机现象在时间上的演变规律。

随机过程的分类是概率论研究的重要内容之一,本文将介绍随机过程的分类及其相关概念,包括马尔可夫过程、泊松过程和布朗运动。

一、马尔可夫过程马尔可夫过程是指在给定了当前状态的情况下,未来状态的演变仅依赖于当前状态,与过去状态无关。

其特点是具有“无后效性”。

马尔可夫过程可以分为离散时间和连续时间两种类型。

1.1 离散时间马尔可夫链离散时间马尔可夫链是指在离散的时间点上进行状态转移的马尔可夫过程。

其状态空间是一个有限个或可数无限个离散状态的集合。

转移概率矩阵描述了任意两个状态之间的转移概率。

离散时间马尔可夫链可以用状态转移图表示,每个节点代表一个状态,边表示状态之间的转移概率。

1.2 连续时间马尔可夫链连续时间马尔可夫链是指在连续时间上进行状态转移的马尔可夫过程。

其状态空间可以是有限个或可数无限个离散状态的集合,也可以是连续状态空间。

转移概率由无穷小生成函数表示,可以通过微分方程求解得到系统的稳态分布。

二、泊松过程泊松过程是一类特殊的随机过程,描述了在一段固定时间内随机事件发生的次数。

其特点是事件之间的间隔时间服从指数分布,并且事件的发生与否相互独立。

泊松过程可以用来描述诸如电话呼叫、交通流量、电子设备失效等现象。

泊松过程可以分为纯生灭过程和队列过程两种类型。

2.1 纯生灭过程纯生灭过程是指在单位时间内,每个事件发生的概率为λ,而事件消失的概率为μ。

纯生灭过程可以用来描述人口模型、粒子衰变等现象。

2.2 队列过程队列过程是一类特殊的泊松过程,描述了在排队系统中顾客到达和离开的情况。

队列过程可以用来分析服务设施的利用率、延迟时间、排队长度等指标。

常见的队列模型包括M/M/1队列、M/M/c队列等。

三、布朗运动布朗运动是一类连续时间的随机过程,具有连续状态空间和连续时间参数。

随机过程的连续时间马尔可夫过程与转移概率

随机过程的连续时间马尔可夫过程与转移概率

随机过程的连续时间马尔可夫过程与转移概率随机过程是概率论中研究的重要课题,它描述了随机事件在时间上的演化规律。

马尔可夫过程是一类常见的随机过程,它具有马尔可夫性质,即在给定当前状态下,未来状态的概率分布只与当前状态有关,与过去的状态无关。

本文将重点讨论随机过程中的连续时间马尔可夫过程以及与之相关的转移概率。

一、连续时间马尔可夫过程的定义连续时间马尔可夫过程是指在时间上呈连续变化的随机过程,它的状态空间和状态转移概率在时间的任意一段内都保持不变。

具体而言,对于一个连续时间马尔可夫过程,其状态空间可以用S表示,状态转移概率可以用P(t)表示,其中t表示时间。

二、连续时间马尔可夫过程的特点1. 马尔可夫性质:连续时间马尔可夫过程具有马尔可夫性质,即在给定当前状态下,未来状态的概率分布只与当前状态有关,与过去的状态无关. 这一性质使得马尔可夫过程具有很好的简化性和计算性.2. 独立增量性质:连续时间马尔可夫过程具有独立增量性质,即在不重叠的时间间隔上的状态变量是相互独立的.3. 示性函数的连续性:连续时间马尔可夫过程中,随机变量状态的转移概率是连续函数,这也是它与离散时间马尔可夫过程的一个重要区别。

三、连续时间马尔可夫链与转移概率对于连续时间马尔可夫过程,其状态转移概率可以由转移概率矩阵来表示。

转移概率矩阵是一个关于时间t的函数,记作P(t)。

它的元素Pij(t)表示在时间t内从状态i转移到状态j的概率。

转移概率矩阵满足以下性质:1. Pij(t) ≥ 0,对于所有的i、j和t都成立。

2. 对于任意固定的i和t,有ΣjPij(t) = 1,即在固定时间t内,从状态i出发转移到所有可能状态j的概率之和为1。

3. 转移概率矩阵P(t)的乘积P(s+t)等于P(s)乘以P(t),即P(s+t) =P(s)P(t),其中s和t为任意的正实数。

根据转移概率矩阵P(t)的性质,我们可以得出连续时间马尔可夫过程的转移概率随时间的推移而改变,但在任意一段时间内始终保持一致。

随机过程与马尔可夫决策过程

随机过程与马尔可夫决策过程

随机过程与马尔可夫决策过程随机过程和马尔可夫决策过程是概率论和数学建模中常见的两个概念。

它们在各自领域中都扮演着重要的角色。

本文将分别介绍随机过程和马尔可夫决策过程的基本概念、特性以及应用。

一、随机过程随机过程是概率论中的重要概念,也是描述随机现象随时间演变的数学工具。

随机过程可以看作是随机变量在时间上的推广,它描述了一个或多个随机变量在时间轴上的变化。

随机过程可以分为离散随机过程和连续随机过程两类。

离散随机过程的状态空间是有限或可列的,而连续随机过程的状态空间是连续的。

常见的离散随机过程有泊松过程、马尔可夫链等,而连续随机过程有布朗运动、随机微分方程等。

随机过程具有许多重要特性,如平稳性、马尔可夫性、鞅性等。

平稳性表示在不同的时间间隔内,随机过程的统计特性保持不变。

马尔可夫性表示在给定当前状态下,未来的状态与过去的状态无关,只与当前状态有关。

鞅性是随机过程的一种重要性质,它可以看作是一种未来无法预测的随机变量的平衡状态。

随机过程在金融工程、通信系统、信号处理等领域有广泛的应用。

例如,在金融工程中,随机过程可以用来建模股票价格的变动;在通信系统中,随机过程可以用来描述信道的噪声;在信号处理中,随机过程可以用来建模信号的随机变动。

二、马尔可夫决策过程马尔可夫决策过程是决策论中的一个基本模型,用于描述一个决策者在一系列状态和行动中进行决策的过程。

在马尔可夫决策过程中,决策者根据当前的状态选择一个行动,然后转移到下一个状态,并获得一定的奖励或代价。

马尔可夫决策过程的基本要素包括状态空间、行动空间、状态转移概率、即时奖励以及策略等。

状态空间表示决策者可能处于的各种状态;行动空间表示决策者可以选择的各种行动;状态转移概率表示在给定当前状态和行动下,转移到下一个状态的概率;即时奖励表示在给定当前状态和行动下,获得的奖励或代价;策略表示决策者在不同状态下选择行动的规则。

马尔可夫决策过程是人工智能、机器学习、控制论等领域中的重要工具。

数学中的随机过程与马尔可夫决策

数学中的随机过程与马尔可夫决策

数学中的随机过程与马尔可夫决策数学作为一门抽象而广泛应用的学科,涵盖了众多的分支和应用领域。

其中,随机过程和马尔可夫决策是数学中非常重要的概念和工具。

本文将介绍数学中的随机过程和马尔可夫决策,并探讨其在现实生活中的应用。

随机过程是一类描述时间上演化随机性的数学模型。

它由一组随机变量组成,这些随机变量表示在不同时间发生的随机事件。

随机过程可以分为离散时间和连续时间两种类型。

离散时间随机过程,如泊松过程,是在离散时间点上发生的随机事件的集合。

而连续时间随机过程,如布朗运动,是在连续时间上连续发生的随机事件的集合。

随机过程在金融领域、通信领域等方面有着广泛的应用。

马尔可夫决策是一种基于马尔可夫过程的决策方法。

马尔可夫过程是一种具有马尔可夫性质的随机过程。

马尔可夫性质即未来状态只依赖于当前状态,与过去的状态无关。

基于这种性质,马尔可夫决策通过建立转移概率矩阵来描述状态转移的概率,并根据一定的决策规则来选择最优的决策策略。

马尔可夫决策在工程管理、人工智能等领域有着重要的应用。

在实际的生活中,随机过程和马尔可夫决策都扮演着重要的角色。

以股票市场为例,随机过程可以帮助分析股票价格的波动情况,从而进行投资决策。

而马尔可夫决策则可以应用于自动驾驶汽车的行驶决策中,通过分析周围环境的状态和转移概率,选择合适的行驶策略。

另外,随机过程和马尔可夫决策还广泛应用于通信系统、生产调度等领域,为问题的建模和求解提供了有效的数学工具。

总结起来,随机过程和马尔可夫决策是数学中的重要概念和工具。

随机过程用来描述随机性的演化过程,马尔可夫决策则是基于马尔可夫过程进行决策的方法。

它们在现实生活中有着广泛的应用,可以帮助我们分析和解决各种问题。

通过深入研究和应用随机过程和马尔可夫决策,我们能够更好地理解和应对不确定性,为决策提供更科学的依据。

随着技术的不断发展,随机过程和马尔可夫决策的应用将会越来越广泛,为我们的生活带来更多的便利和创新。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.马尔可夫链 定义 参数集和状态空间都是离散的马尔可夫过程
称为马尔可夫链。
注 只讨论马尔可夫链的状态空间为有限或可列无限. 则马尔可夫性可表示为
对n 2,t1 t2 L tn T ,i1,i2,L ,in S,
有 P( X (tn ) in X (t1) i1 , X (t2 ) i2 ,L , X (tn1) in1) P( X (tn ) in X (tn1) in1), xn R
q li
+
p N
,
p N
, j Si j Si
§2. 马尔科夫链的概率分布
定理 (C-K方程)(解决了k步转移概率与一步转移概率间的关系)
p(k m) ij
(n)
p(k il
)
(n)
p(m) lj
(n
k
),
n, m, k 0,i, j S
l
或矩阵形式
P(km) (n) P(k) (n)P(m) (n k)
或 P( X n in X 0 i0 , X1 i1,L , X n1 in1)
P( X n in X n1 in1)
今后,记 S {1, 2,3,L }, T {0,1, 2,L } 马尔可夫链记为{X n , n 0} 也称马氏链,或系统
二 马尔可夫链的转移概率
1. 转移概率
当时中国近代数学才刚刚起步,大学也没有概率课程。此时 苏联的概率论水平已届于世界最前列。王梓坤也根本不知道什么 是概率,可他的研究方向又恰恰被定为概率论, 著有《概率论基础及其应用》、《随机过程论》、 《生灭过程与马尔科夫链》等9部数学著作.
本章主要内容
马尔可夫过程的定义 马尔可夫链的转移概率与概率分布 齐次马尔可夫链状态的分类 转移概率的稳定性能
li (1 li N,) 对应的网页集合为 Si (Si S),用户进入网 页 i 后,按照以下规则进入新的网页;以概率p进 入网页集合S中任何一个网页或者以概率q进入i 的 任一个超级链接,令Xn表示用户在n次选取后所在的 网页,问Xn是非是一马氏链,若是的话,写出其一 步转移概率.
pij
=
特别 对取T={0,1,2,···}的马尔可夫链,记为 {X (n), n 0} 或 {X n, n 0}
此时的马尔可夫性为 对n 1,i0,i1,L ,in S, 有
P( X (n) in X (0) i0 , X (1) i1,L , X (n 1) in1) P( X (n) in X (n 1) in1)
p, q, r 0, p q r 1;
r
(2)移动前i 0处
p0 , r0 0, p0 r0 1
0
p0
1
r0
(3)移动前i a处
qa , ra 0, qa ra 1
qa
a-1
a
ra
设Xn表示质点在n时刻所处的位置,则 {X n , n 0}是以S {0,1,L , a}为状态空间的齐次 马尔可夫链. 其一步转移概率矩阵为
X (tn ) 的条件分布函数恰好等于
在条件 X (tn1) xn1下的条件分布函数,即
P( X (tn ) xn X (t1) x1 , X (t2 ) x2,L , X (tn1) xn1) P( X (tn ) xn X (tn1) xn1), xn R
则称{X (t),t T}为马尔可夫过程.
马尔可夫 (1856年6月14日——1922年7月20日)
马尔可夫对数学的最大贡献是在概率论领域作出 的.十九世纪后二十年,他主要是沿着切比雪夫开创 的方向,致力于独立随机变量和古典极值理论的研究, 从而改进和完善了大数定律和中心极限定理.
二十世纪初,他的兴趣转移到相依随机变量序列的 研究上来,从而创立了以他命名的著名概率模型—— 马尔可夫链.
P(k) (n) ( pi(jk) (n))
为系统{X n , n 0}在 n时的k步转移概率矩阵.
特别 当k=1时,
p(1) ij
(n)为系统在n时的一步转移概率,
记为 pij (n))为系统的一步转移概率矩阵
记为 P(n) ( pij (n))
定义 称可数维的矩阵 P ( pij ) 为随机矩阵,如果
所处的状态无关。
通俗地说,就是在知道过程现在的条件下,其 将来的条件分布不依赖于过去,则称{X (t),t T} 具有马尔可夫(Markov)性。
t t0 过去
t t0 现在
t t0 将来
2. 马尔可夫过程 定义 设 {X (t),t T} 的状态空间为S,
如果对n 2, t1 t2 L tn T , 在条件 X (ti ) xi , xi S, i 1, 2,L , n 1下
pij (n) pij (n 1) pij (n 2) L 则称马氏链X具有时齐性,或称X为其次马尔科夫 链,简称齐次马氏链.
引理(有限制随机游动问题)
设质点只能在{0,1,2,···,a}中的各点上作随机
游动,移动规则如下:
(1)移动前i {1, 2,L , a 1}处 i-1 q
i
p i+1
nc
,
j ic
1
i, b r nc
j
i
0,
其他
例5:设{n : n 0}是相互独立同分布的随机变量序 列,且
P(n 1) p, P(n 1) 1 p, p 0, n 0
n
令随机序列:X n k , k 0
n0
验证:随机序列X={Xn: n≥0}是一个齐次马氏链.
例6(网页浏览)用集合 S={1,2,L ,N } 表示因特 网中的所有网页,假设网页i 上的超级链接数为
王梓坤院士(1929年—)江西吉安人,1952年大学毕业后,被分派 到天津南开大学数学系任教. 是一位对我国科学和教育事业作出 卓越贡献的数学家和教育家,也是我国概率论研究的先驱和学术 带头人之一。
1954年,他又以优异的成绩考取了赴苏研究生。踏进世界著 名学府-莫斯科大学,在这个学府世界概率论的奠基人柯尔莫哥 洛夫院士正领导看一个强有力的概率研究集团。柯尔莫高洛夫慧 眼识英才,非常信赖这位由中国选派的年轻人的能力,把他选作 自己的研究生,去攻概率论的中心问题随机过程理论。
例2 (埃伦菲斯特模型)设一个坛子中装有m个球, 它们或是红色的,或是黑色的,从坛子中随机的摸 出一球,并换入一个相反颜色的球. 设经过n次摸换,坛中黑球数为Xn,则{X n , n 0}是以 S {0,1, , m} 为状态空间的齐次马尔可夫链.
其一步转移概率矩阵为
0 1 0
0
1
m
P
0
0 2 m
r0 p0 0 0
q
r
p 0
0 q r p
P
0 0 0 0 0 0 0 0
0 0 0
0
0
0
0 0 0
q r p
0 qa ra
例1(天气预报问题) 如果明天是否有雨仅与今天的 天气(是否有雨)有关,而与过去的天气无关. 并设 今天下雨、明天有雨的概率为a, 今天无雨而明天有雨的概率为b,又假设 有雨称为0状态天气,无雨称为1状态天气. Xn表示时刻n时的天气状态,则 {X n , n 0}是以 S {0,1}为状态空间的齐次马尔可夫链. 其一步转移概率矩阵为
定义 设 {X n , n 0}是马尔可夫链,称条件概率
p(k ij
)
(n)
@P(
X
nk
j
Xn
i),
i, j S, n 0, k 1
为{X n , n 0}在n时的k步转移概率.
(它表示系统{Xn, n 0}在n时处于状态i的条件下
经过k步转移,于n+k时到达状态j的条件概率).
称以pi(jk) (n)为第i行底j列元素的矩阵
m 1 m 0
0 m2
m
0
0
0
0
0 0 0
0
0 0
0
m 1
m 0
0 0
0
0
0 0
0 1
1
m 0
例3(群体增长)某种生物群体的每个个体在其生存 期内彼此独立地产生后代,假设每个个体都以概率 pk产生k个后代,且有
pk 0,
(k 1, 2,L )
pk 1
k 0
用Xn表示第n代生物群体的总数,它是生物群体的第 n-1代的每个个体的后代个数的总和,因此第n+1代 的个体总数仅依赖于第n代的个体总数,所以X={Xn, n=0,1,2,···}是一个马尔科夫链,状态空间为 S={0,1,2,···}
第五章 离散时间马尔可夫链
马尔可夫过程是前苏联数学家A.A.Markov首先提出 和研究的一类随机过程. 经过世界各国几代数学家的相继努力,至今已成为内 容十分丰富,理论上相当完整,应用也十分广泛的一门 数学分支. 它的应用领域涉及计算机、通讯、自动控制、随机 服务、可靠性、生物、经济、管理、气象、物理、 化学等.
pij 0, (i, j)
pij 1,(i)
j
显然,{X n, n 0}在n时的k步转移概率矩阵 P(k) (n)
是一随机矩阵.
特别 k=0时,约定
p(0) ij
ij
1 0
,
i j i j
i, j S, n 0
此时 P(0) (n) I为单位矩阵.
实际中常会碰到具有时齐性的马氏链
若对任意的状态i, j和时刻n,均有
例4(卜里耶模型)设一个坛子里有b个黑球和r个红 球,每次随机地从坛子中摸出一个球后再放回去, 并加入c个与摸出球同颜色的球。重复以上步骤将摸 球进行下去,设Xn表示第n次摸球放回后坛子中的黑 球数,试写出其一步转移概率矩阵和状态空间
pij (n) P( X n1 j X n i)
相关文档
最新文档